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ABSTRACT

Defining the RNA target selectivity of the proteins
regulating mRNA metabolism is a key issue in RNA
biology. Here we present a novel use of principal
component analysis (PCA) to extract the RNA se-
quence preference of RNA binding proteins. We show
that PCA can be used to compare the changes in
the nuclear magnetic resonance (NMR) spectrum of a
protein upon binding a set of quasi-degenerate RNAs
and define the nucleobase specificity. We couple this
application of PCA to an automated NMR spectra
recording and processing protocol and obtain an
unbiased and high-throughput NMR method for the
analysis of nucleobase preference in protein–RNA
interactions. We test the method on the RNA bind-
ing domains of three important regulators of RNA
metabolism.

INTRODUCTION

Understanding how RNA-binding proteins select target
RNA sequences is key to explain specificity in RNA reg-
ulation, but is a challenging problem. Many protein regu-
lators recognize a diverse ensemble of cellular RNA targets
by the combined action of several RNA binding domains
(1). Recognition of specific RNA sequences by the individ-
ual domains is important, and it has been shown that mu-
tations in their RNA target sequences disrupt protein func-
tion. However, the sequence specificity of many domains is
still debated and the rules of protein–RNA recognition are
not fully understood (2).

The scaffold independent analysis (SIA) approach can be
used to define the sequence preference of a protein domain.
In SIA, 1H{15N} correlation nuclear magnetic resonance
(NMR) spectroscopy is used to compare the average bind-
ing affinity of a protein domain to different sets of quasi-
degenerate RNA pools (3). For each position in the nucleic

acid whose specificity is to be evaluated, four RNA pools
are used where this position is occupied by either A, C, G
or U, while all other positions are occupied by a random-
ized mixture of the four bases (Figure 1). The only differ-
ence between the four pools is the specified base and there-
fore the comparison of the average binding affinities of the
protein for the four pools reports directly on its nucleobase
preference. SIA analysis is performed by first measuring the
change in the chemical shift (��) of ∼10 individual pro-
tein resonances in four independent titrations with the four
individual pools. Then the �� of each peak in each titra-
tion is normalized with respect to the largest �� for that
peak observed in any of the four titrations. Lastly, the nor-
malized values across the different peaks in one titration
are averaged to obtain the final comparative SIA score (3).
These scores reflect the preference of the protein for one
nucleobase versus another. We and others have tested the
SIA protocol described above on a small number of KH
and RRM domains and we have shown that it can pro-
vide novel and functionally relevant information on the do-
mains’ sequence preference (3–7). However, manual mea-
surement and tabulation of peak shifts in SIA analysis is
laborious, and the choice of the peaks to be evaluated can
introduce bias (4).

Here we describe a novel semi-quantitative application
of principal component analysis (PCA) to analyse similar
NMR data in a high-throughput fashion and determine the
sequence preference of an RNA binding domain. PCA was
developed as a technique to reduce the complexity of multi-
variable sets of data to a smaller number of new variables
(the principal components) that capture the majority of the
variability existing in the data. It allows for the identifica-
tion of patterns in the data displaying the data in a way that
highlight differences and similarities. In the current work,
PCA is employed to recast five variables (free, A, C, G, U),
each with 290 × 256 data points (the dimensions of the fre-
quency domain 1H{15N} correlation spectra), into five prin-
cipal components with associated scores and loadings. PCA
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Figure 1. NMR analysis of the sequence preference of an RNA binding domain. To examine the nucleobase preference in position 2, four randomized
RNA pools which differ only in the nucleobase in position 2 are added to the protein domain in independent assays (top). The NMR spectra of the four
different complexes and of the free protein can be compared either by manually measuring the shift of an ensemble of peaks (by manual analysis––left)
or by an automated comparison of the complete spectra using principal component analysis (by PCA––right). The comparison reports on the different
average binding affinity of the four pools and allows ranking of the preference of the domain for A, C, G and U in position 2 using comparative scores
(bottom).

has been used to correlate measured NMR observables with
conformational transitions, global structural changes and
changes in the protein environment (8,9). Further, it has
been used to assess directly variability between NMR spec-
tra. For example in metabolomics, where the principal com-
ponents of NMR spectra from samples from different pa-
tients are used to correlate variations in metabolite levels
with disease states (10) and to analyse qualitative changes
in 1H{15N} correlation spectra of proteins resulting from
high-throughput ligand screening procedures (11). We have
now applied PCA to compare the 1H{15N} correlation spec-
tra of a protein either free or in the presence of the four in-
dividual RNA pools used to assess nucleobase preference
in SIA (Figure 1)––and evaluate which pool leads to the
largest changes. This is, as far as we are aware, the first time
PCA is applied to directly analyse whole NMR spectra in a
semi-quantitative rather than qualitative fashion.

Manual recording of NMR spectra during SIA titrations
is labour-intensive and requires substantial spectrometer
time: in order to complement the unbiased data analysis
concept described above we have also re-designed the ex-
perimental set up for NMR data acquisition and have estab-
lished a downstream processing pipeline that converts and
processes the NMR data and performs PCA analysis.

The method reported here allows one to compare the
specificity of domains in a streamlined fashion and we ex-
pect will provide an important tool to characterize RNA
target selection by protein regulators. The implementation
of the protocol is based on standard NMR equipment and
standard software for spectra acquisition and data process-
ing and analysis.
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MATERIALS AND METHODS

Protein preparation

Samples of the three recombinant proteins were prepared
by expressing the constructs in Escherichia coli, in minimal
media with 15NH4Cl2 sole as nitrogen source and purify-
ing the protein by affinity chromatography and in two cases
size-exclusion chromatography. Final experimental condi-
tions were optimized based on the quality of the NMR spec-
tra.

Briefly, Strep-tagged RNA15 RRM domain (residues 2–
103) was expressed in BL21(DE3) (Novagen) and purified
using Strep-Tactin resin (IBA). The tag was removed with
GST-tagged Human Rhinovirus 3C protease overnight.
The protease was then removed using a disposable GST col-
umn (GE Healthcare). The protein was further purified us-
ing size exclusion chromatography on a Superdex 75 (16/60)
(GE Healthcare). NMR samples were prepared in 40 mM
NaCl, 20 mM Tris pH 7.5, 0.5 mM TCEP.

His-tagged T-STAR KH domain (residues 50–160) was
expressed in Rosetta BL21 DE3 and purified using Ni-
NTA agarose (Qiagen) followed by TEV cleavage during
overnight dialysis in phosphate buffer at 4◦C and further
purified by size-exclusion chromatography on a Superdex
75 10/300 (GE Healthcare). Final samples were in 50 mM
NaCl, 20 mM NaH2PO4 pH 6.1, 0.1% B-mercaptoethanol.

His-tagged TUT4 CCHC ZnF3 domain (residues 1354–
1382) was expressed in BL21(DE3) cells and purified us-
ing Ni-NTA agarose followed by TEV cleavage during
overnight dialysis in Tris buffer at 4◦C. A second reverse
Ni-NTA agarose purification removed the His-tag and pro-
tease, and lead to high purity samples. Final samples were
in 100 mM NaCl, 10 mM Tris pH 7.4, 0.5 mM TCEP, 10
�M ZnCl2.

RNA preparation

All RNAs pools were purchased from Thermo Scientific
(Dharmacon). Pools were de-protected following the man-
ufacturer instructions and re-suspended in H2O. RNA con-
centration was determined by UV spectroscopy.

NMR

Samples of 25 �M RNA15, 40 �M TSTAR, and 100 �M
TUT4 were prepared and RNA pools added as required to
obtain measurable shifts and depending on the affinity of
each protein for RNA and on the overall spectral quality.
Protein–RNA ratios were 1:1 for RNA15, 1:2 for TSTAR
and 1:4 for TUT4. NMR experiments were performed using
3 mm NMR tubes with a sample volume of 180 �l.

NMR data were acquired using a Bruker Avance III
NMR spectrometer operating at 700 MHz and equipped
with a 5 mm TCI cryoprobe. Automated sample changing
and data acquisition were accomplished using a Samplejet
accessory controlled with Topspin 2.1 via IconNMR. Sam-
ples were stored at 4◦C and then pre-heated at 25◦C prior
to loading. Locking, tuning, matching and shimming were
performed automatically. 2D 15N-SOFAST-HMQC exper-
iments with 32 scans, 64 increments and a recycle delay of

250 ms (total experiment time 21 min per sample) gave ad-
equate resolution and sensitivity and were used through-
out. For each RNA position, spectra from a control sam-
ple and four pools were processed as a pseudo-3D dataset
using NMRPipe and passed as input to pcaNMR, a NMR-
Pipe module which employs the NIPALS algorithm to ap-
ply PCA to the series of NMR spectra. This efficient algo-
rithm permits the calculation of all five principal compo-
nents in seconds. An example processing script is available
from the authors.

RESULTS

The method was tested on the RNA Recognition Motif
(RRM) domain of the yeast mRNA 3′end processing fac-
tor RNA15, a core component of the Cleavage Factor 1A
(CF1A) complex (12,13). CF1A, together with the much
larger Cleavage and Polyadenylation Factor (CPF) complex
performs the 3′ end cleavage and polyadenylation of the pre-
mRNA molecule (Figure 2). CF1A is required for both the
selection of the cleavage site and for the cleavage itself. It has
four core subunits, RNA14, RNA15, PCF11 and Clp1 and
interacts both with the Serine-2 phosphorylated C-terminal
domain of RNA polymerase II and with short sequence ele-
ments in the RNA. The interaction between RNA15 and the
3’UTR of the nascent RNA chain is necessary for CF1A re-
cruitment (14) and is mediated by an RRM domain located
in the N-terminal segment of the protein. The structure of
the RNA15 RRM, alone and bound to RNA (Figure 2),
together with related binding assays have provided an ini-
tial assessment of the RNA binding properties of this do-
main (Figure 2) (15,16). Below we determine the full nucle-
obase preference of RNA15 RRM, comparing the results
obtained by the manual and PCA-based SIA methods.

In the previously described manual SIA approach each of
the 16 SIA pools is titrated into the protein sample and spec-
tra are recorded at three different titration points (free pro-
tein, plus two different RNA concentrations) (3). In order to
streamline NMR data acquisition, we have now recorded a
single 1H{15N}-SOFAST-HMQC spectrum (17) for each of
the complexes between the protein and one of the 16 RNA
pools plus a single spectra for the free protein. These spectra
were acquired using a spectrometer equipped with an au-
tomated sample changer and 3 mm NMR tubes. Together,
the automatic set up for data acquisition and the new ex-
perimental strategy reduces the time of NMR experiments
from five days to about nine hours, while using 3 mm tubes
halves sample requirement.

After acquisition, the data were converted and processed
in-batch using an NMRpipe-based pipeline. We then calcu-
lated the principal components for the group of spectra that
define nucleobase preference in position 1 using the NMR-
Pipe module pcaNMR (18). The calculation was performed
on an ensemble that includes the spectrum of the free pro-
tein, which is used as reference to define the basis set for
the PCA calculation, plus the four spectra of complexes
with NANNN, NCNNN, NGNNN and NUNNN pools.
To represent graphically the PCA ranking of the spectra of
each of the four protein–RNA complexes with respect to the
reference spectrum, we subtracted the absolute value of the
loading of a principal component (in this case the second
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Figure 2. Nucleobase preference of RNA15 RRM domain. (a) RNA 15 RRM mediates the docking of the CF1 complex on the nascent RNA chain,
which is important for RNA cleavage and polyadenylation. (b) Ribbon representation of RNA15 RRM domain (PDB ID: 2X1B). (c) Overlay of 2D 15N-
SOFAST-HMQC spectra from free RNA15 (grey), and RNA15 in complex with each of the four nnnXn pools at protein to RNA ratio 1:1, NNNAN
(black), NNNCN (green), NNNGN (blue) and NNNUN (yellow). Five peaks used in the SIA analysis are highlighted and show the order of nucleobase
preference of the position. The larger shifts indicate greater affinity for that specific base. These peaks have been manually selected because their chemical
shift changes upon RNA binding can be measured accurately. Changes that were difficult to measure accurately because either too small, or because of
peak broadening or overlap were not used in the SIA analysis. However, changes of the position and line-width of these resonances contribute to the PCA
score. (d) Comparison of scores for RNA15 either generated by manual analysis (top) or using PCA (bottom). Histograms display the binding site position
on the x-axis with each bar representing the A, C, G or U RNA pools (black, green, blue and yellow respectively). PCA scores are plotted as the difference
between the absolute scores of the free spectrum and of the different bound spectra. The absolute values of the reported manual and PCA scores are not
directly related as they derive from different evaluation procedure but they are here used in a comparative fashion to assess nucleobase preference.

principal component) of the first RNA-bound protein spec-
trum from that of the reference. The value we obtain repre-
sents the distance between the two projections on the sec-
ond principal component. We repeated this procedure for
the first, third, fourth and fifth principal component. The
automated pipeline for spectra processing and analysis re-
duced the time required for the analysis of the data to a few
minutes.

An initial analysis of the principal component data re-
vealed that, for all four positions, a clear correlation ex-
ists between the loadings on the second principal compo-
nent and RNA-dependent chemical shift changes, i.e. the
spectra where the peaks shift more between free and bound
also have a second principal component that is more dis-
tant from the reference spectrum––despite this component
accounting for only ∼7% of the variance. We did not ob-
serve any such correlation for the first, third, fourth and
fifth principal components (Supplementary Figure S1). The
first principal component (typically ∼80% of the variance)

is presumably dominated by changes in peak intensity––the
method as used entails a dilution on addition of the RNA
pools. The third, fourth and fifth components contribute
<5% each of the remaining variance (Supplementary Ta-
ble S1). This correlation between the second PC and peak
shifts has been noted previously in the analysis of qualita-
tive changes in NMR spectra of proteins recorded during
high-throughput screening of ligand binding (11).

We then compared the results of manual and PC analy-
sis for the four positions in the RNA target. The absolute
values of the SIA scores and of the PCA scores reported in
Figure 2 are not directly related as they derive from very dif-
ferent data evaluation procedures. However, both types of
scores can be used to compare the differences between the
free protein spectrum and the four individual bound pro-
tein spectra and to rank the similarities between free and
bound spectra. The comparison showed that the ranking of
the values of the second principal component recapitulate
the ranking of SIA scores obtained by manually measur-
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Figure 3. Comparison of nucleobase preference for TSTAR and TUT4 by manual SIA and PCA-based SIA. (a) Ribbon representations of example KH
(left, KSRP KH3 domain PDB ID: 2HH3) and CCHC zinc finger domains (right, Lin28 ZnF2 domain, PDB ID: 2CQF). (b) Comparison of nucleobase
preference generated manually (top) or using PCA (bottom). Histograms display the binding site position on the x-axis with each bar representing the
A, C, G and U RNA pools (black, green, blue and yellow respectively). PCA scores are plotted as the difference between the absolute scores of the free
spectrum and of the different bound spectra.

ing the shift of peaks in the same set of spectra. It is worth
mentioning that only a subset of peaks with large chemi-
cal shift changes is normally used in manual SIA analysis.
This can potentially introduce bias, and we have previously
reported changes in SIA scores of up to 0.1 when partially
overlapping sets of peaks from the same titration are used
(4). On the contrary, PCA undertakes a global analysis of

the complete spectrum and includes information provided
by the whole set of peaks, including the many peaks that
undergo small chemical shift changes (Figure 2).

Next, we extended our analysis and probed the effective-
ness of this protocol on two other common RNA bind-
ing domains. T-STAR, also referred to as Sam68-like mam-
malian protein 2 (SLM2) is an important splicing regulator
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of the Neurexin gene (19). The protein contains an extended
KH domain (STAR domain), which is thought to bind to
A-rich sequences, but whose actual specificity is still to be
defined (20). TUT4 is a non-templated poly-uridylase that
plays a key role in the biogenesis of the tumour suppressor
let-7 miRNA, and that contains three CCHC zinc fingers
(21,22). The specificity of these zinc fingers is yet to be char-
acterized, however zinc fingers from viral and mammalian
proteins have been shown to bind G/A-rich sequences (23–
25). The KH core domain of T-STAR, and the third CCHC
ZnF domain of TUT4 (Figure 3) were employed to probe
how PCA and SIA approaches compare in performing the
analysis of the nucleobase preference of KH and ZnF do-
mains. The protocol used was the same described for the
RNA15 RRM domain, except that only three positions
were scanned for TUT4 ZnF––based both on the structural
information obtained on a CCHC ZnF domain in complex
with RNA (24) and on our binding assays on TUT4 ZnF
(Collins et al., unpublished). Our analysis again showed a
comparable ranking of nucleobase preference in PCA and
manual approaches both for the KH and ZnF domain.

DISCUSSION

We present here a principal component-based approach to
compare changes in NMR spectra upon binding of RNA
oligonucleotides, used as an alternative to manual SIA anal-
ysis to determine the specificity of an RNA binding domain.
Coupling PCA to automated sample handling, spectrome-
ter control and processing reduces the time required for data
acquisition, processing and analysis by an order of magni-
tude, from several days to several hours.

The use of PCA for the analysis of NMR data is well es-
tablished. However, the use of PCA as a tool to obtain a
semi-quantitative ranking of affinities from the direct anal-
ysis of 2D dataset has not been attempted before. A first
important question was which, if any, of the principal com-
ponents in our set of spectra correlates with the shift of reso-
nances in the same NMR spectra. The plots of the first five
principal components against the weighted chemical shift
average of the peaks used in the manual SIA analysis (Sup-
plementary Figure S1) showed that a good correlation exists
only for the second principal component. Such a correla-
tion between chemical shift changes and the second prin-
cipal component is consistent with the reported use of the
second principal component to screen the binding of small
molecular weight compounds to a protein, and we observe
it consistently for all positions and in all three domains we
have examined (11). The second key question was whether
the same nucleobase preference would be obtained using
manual SIA and PCA. The results show that the nucleobase
ranking by PCA recapitulates the one obtained by SIA and
is consistent with the known preference of RNA15 RRM
for G/U sequences.

Our aim is to implement an analysis strategy that does
not require a domain-dependent optimization of the pa-
rameters of PC analysis and testing the PCA method on
three common RNA binding domains highlights possible
difference in the output deriving from the domains different
sizes and RNA binding modes. The ZnF domain is signif-
icantly smaller than the KH and the RRM domains. The

total number of amide resonances in the spectrum of the
TUT4 ZnF4 is about one-third of the number of amide res-
onances in RNA15 RRM, and the number of resonances
that shift upon RNA binding is proportionally lower (Sup-
plementary Figure S2). We report that, although the PCA
results recapitulate the manual SIA ones for both domains,
the range of the PCA scores is significantly smaller for the
ZnF domain than for the KH and RRM ones. Indeed ex-
amination of the amount of variance accounted for by each
PC suggests that the variance is more evenly distributed
over the different components (Supplementary Table S1).
This suggests that the empirical relationship between spec-
tral features and principal components has been compro-
mised. This observation may serve as a guide to the range of
applicability of the PCA-based analysis. In general, it seems
that changes in spectra where only very few peaks change
position upon RNA binding are more accurately monitored
using manual SIA scoring than PCA analysis.

New in cell methods (e.g. CLIP and its variants) have
identified the ensemble of RNA targets for many differ-
ent multi-domain regulators of RNA metabolism and lo-
calization. However, in many of these proteins multiple do-
mains contribute to recognition and an understanding of
target selection requires the full characterization of the se-
quence preference of each individual domain. The man-
ual SIA method provides the required characterization of
nucleobase preference but is laborious and time consum-
ing and not designed for the characterization of a large
number of domains. Above we show that PCA and auto-
mated NMR can be used to perform an unbiased and high-
throughput analysis of RNA-binding data and extends the
reach of our analysis to characterize the specificity in a large
number of protein–ssRNA interactions. Further, we believe
the quantitative use of PCA in directly evaluating protein-
ligand binding affinities we present here has the potential to
be applied in a broad range of comparative NMR binding
assays.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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