UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Modelling molecular flexibility for crystal structure prediction

Uzoh, OG; (2015) Modelling molecular flexibility for crystal structure prediction. Doctoral thesis , UCL (University College London). Green open access

[thumbnail of Ogaga_Glory_Uzoh_Thesis_January_2015.pdf]

Download (7MB)


In the crystal packing of molecules wherein a single bond links aromatic groups, a change in the torsion angle can optimise close packing of the molecule. The improved intermolecular interactions, Uinter, outweigh the conformational energy penalty, ΔEintra, to give a more stable lattice energy, Elatt = Uinter + ΔEintra. This thesis uses this lattice energy model hierarchically in a new Crystal Structure Prediction (CSP) algorithm, CrystalPredictor version 1.6, which varies the low-barrier torsion angles at the start of generating hypothetical crystal structures. The crystal structure of 1-benzyl-1H-tetrazole was successfully predicted in an informal ‘blind test’ when given the chemical diagram and the number of molecules in the asymmetric unit cell. Then, the concept of whether specific molecular fragments favour polymorphism (i.e. polymorphophore) was investigated by analysing the crystal energy landscapes of the monomorphic fenamic acid and the polymorphic derivative tolfenamic acid. The CSP results show that the polymorphophore promotes but does not guarantee polymorphism and that the substituents on the polymorphophore fragment decide the relative energies of the crystal structures. Molecular Dynamics (MD) cannot use this lattice energy model because many ab initio calculations of ΔEintra on a single molecule are expensive. However, the examination of the physical origin of the torsional barrier in fenamates aided the derivation of an analytical model fo ΔEintra. This thesis develops codes for fitting analytical intramolecular force fields to ab initio conformational profiles of fenamates. An intramolecular exp-6 atom-atom term (for the non-bonded repulsion-dispersion contributions) plus a cosine term (that represents the changes to the Molecular Orbitals) accurately model the ab initio conformational energy surfaces of fenamic and tolfenamic acids. This thesis provides a first step in extending ΔEintra data generated from CSP studies to help MD on condensed phases of pharmaceutical-like organic molecules.

Type: Thesis (Doctoral)
Title: Modelling molecular flexibility for crystal structure prediction
Open access status: An open access version is available from UCL Discovery
Language: English
Keywords: Crystal Structure Prediction, Force field, Electronic Structure Methods, Intermolecular Forces, Molecular Flexibility
UCL classification: UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Chemistry
URI: https://discovery.ucl.ac.uk/id/eprint/1460832
Downloads since deposit
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item