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Genetically encoded voltage indicators (GEVIs) promise to reveal the membrane potential of genetically targeted neuronal populations
through noninvasive, chronic imaging of large portions of cortical space. Here we test a promising GEVI in mouse cortex during
wakefulness, a challenging condition due to large hemodynamic activity, and we introduce a straightforward projection method to
separate a signal dominated by membrane voltage from a signal dominated by hemodynamic activity. We expressed VSFP-Butterfly 1.2
plasmid in layer 2/3 pyramidal cells of visual cortex through electroporation in utero. We then used wide-field imaging with two cameras
to measure both fluorophores of the indicator in response to visual stimuli. By taking weighted sums and differences of the two measure-
ments, we obtained clear separation of hemodynamic and voltage signals. The hemodynamic signal showed strong heartbeat oscillations,
superimposed on slow dynamics similar to blood oxygen level-dependent (BOLD) or “intrinsic” signals. The voltage signal had fast
dynamics similar to neural responses measured electrically, and showed an orderly retinotopic mapping. We compared this voltage
signal with calcium signals imaged in transgenic mice that express a calcium indicator (GCaMP3) throughout cortex. The voltage signal
from VSFP had similar signal-to-noise ratios as the calcium signal, it was more immune to vascular artifacts, and it integrated over larger
regions of visual space, which was consistent with its reporting mostly subthreshold activity rather than the spiking activity revealed by
calcium signals. These results demonstrate that GEVIs provide a powerful tool to study the dynamics of neural populations at mesoscopic
spatial scales in the awake cortex.

Introduction
To understand how the cortex processes sensory information,
one must record the activity of large neuronal populations across
large portions of cortical space. Ideally, one would monitor all the
neurons in a cortical area, and, ideally, in more than one area.
However, even a single sensory area in the mouse cortex can
extend over several square millimeters. The techniques that
record from distinct neurons—microelectrode arrays and two-
photon imaging— cannot achieve this spatial coverage. An alter-

native is wide-field optical imaging, which covers millimeters of
cortical space. This mesoscopic approach has been successfully
applied with voltage sensitive dyes (VSD), particularly in visual
and somatosensory areas, and has contributed much to the
understanding of cortical circuit dynamics (Grinvald and
Hildesheim, 2004).

Recently developed genetically encoded voltage indicators
(GEVI) promise to improve upon classic VSDs in multiple ways
(Knöpfel, 2012), as follows: (1) in species with a thin cranium,
such as mice, they allow for noninvasive imaging; (2) they allow
genetic targeting to specific cell populations, providing a handle
into cellular diversity; (3) they provide reliable recordings, from
those cell populations over prolonged periods and multiple ses-
sions; and (4) they enable transgenic expression strategies for
highly reproducible delivery of the indicator.

However, like most indicators, GEVIs have optical spectra
that overlap with the absorption spectrum of hemoglobin (Hill-
man, 2007). The intensity of their fluorescence measured
through blood-perfused tissue, therefore, is corrupted by vascu-
lar signals. These signals reflect changes in local blood volume
and oxygenation that are associated with heart beats and with
hemodynamic responses. The latter are particularly large and fast
during wakefulness (Pisauro et al., 2013, and references therein),
thus posing a considerable challenge.

Here we test a highly sensitive GEVI, VSFP-Butterfly 1.2 (Ake-
mann et al., 2010, 2012), in the visual cortex of awake mice, and
we show that it yields strong voltage signals, which can be
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readily and fruitfully separated from hemodynamic signals.
This GEVI exhibits voltage-dependent Förster resonance en-
ergy transfer (FRET; Romoser et al., 1997; Jares-Erijman and
Jovin, 2003) between a pair of green and red fluorophores:
mCitrine (donor) and mKate2 (acceptor). By imaging both
fluorophores and combining their fluorescence in a simple
linear fashion, we were able to separate a voltage signal and a
hemodynamic signal.

Both signals were large compared with the measurement
noise. The voltage signal had fast temporal dynamics, similar to
those observed with intracellular recordings and with classic VSD
imaging. The hemodynamic signal, instead, had both fast dy-
namics dominated by heart beats, and slow temporal dynamics
similar to blood oxygenation level-dependent (BOLD) signals
measured with functional MRI (Desai et al., 2011) and with op-
tical imaging (Pisauro et al., 2013).

The voltage signal had a signal-to-noise ratio similar to that of
signals measured with wide-field imaging of a calcium indicator
(GCaMP3; Zariwala et al., 2012). The voltage signal, however,
was more immune from vascular artifacts, and it presents the
advantage of reporting not only spiking activity (as for calcium
signals), but also subthreshold inputs.

Materials and Methods
All experimental procedures were conducted according to the UK Ani-
mals Scientific Procedures Act (1986). Experiments were performed at
University College London under personal and project licenses released
by the Home Office following appropriate ethics review.

In utero electroporation. To achieve strong expression, we delivered the
indicator gene by in utero electroporation (Fukuchi-Shimogori and
Grove, 2001; Saito and Nakatsuji, 2001) under the ubiquitous CAG pro-
moter. To target cells destined for layer 2/3, we performed the procedure
at embryonic day 15.5. Pregnant mice (C57BL/6J) were anesthetized with
2% isoflurane in oxygen. Up to 1 �l of DNA solution with Fast Green
(0.05% w/v; Sigma) was pressure injected into one lateral ventricle of
embryos. The solution contained pCAG-VSFP-Butterfly 1.2 plasmid (5
�g/�l, Akemann et al., 2012). Electroporation was achieved with five

square pulses (50 V, 50 ms, 1 Hz; CUY21, NepaGene). The pulses were
targeted to the occipital region of the injected hemisphere (Mizuno et al.,
2007; Sato et al., 2014). We used mCitrine fluorescence (wavelength,
535 � 30 nm) to screen for positive animals under a fluorescence dissect-
ing scope (MVX10, Olympus) on the day of birth. This fluorescence
confirmed clear expression in a cortical region including area V1 (Fig.
1 A, B).

Surgery. Electroporated mice (1–3 months old) of either sex were im-
planted with a head plate and a circular window for imaging through
thinned bone. An analgesic (Rimadyl) was administered (0.05 ml, s.c.) on
the day of the surgery, and on subsequent days as needed. Surgery was
performed under sterile conditions. The animal was anesthetized with
isoflurane (2%). Body temperature was kept at 37–38°C, and the eyes
were protected with ophthalmic gel (Viscotears Liquid Gel, Alcon). The
head was shaved and disinfected, the cranium was exposed, the bone was
thinned with a scalpel over the visual cortex, and a head plate was secured
with dental cement. The plate has a round opening (5 mm in diameter)
for optical imaging of the visual cortex. After the cement solidified, this
opening was filled with cyanoacrylate and covered with a round cover-
slip. The skin was sutured around the implant where necessary.

Visual stimuli. Visual stimuli were presented on two LCD monitors (60
Hz refresh rate; MultiSync LCD2190UX, NEC) arranged to cover 90° of
visual field contralateral from the imaged hemisphere and positioned
�30 cm from the animal. For mapping retinotopy, stimuli were contrast-
reversing gratings presented inside a rectangular window. Stimulus du-
ration was 5 s, flickering frequency was 2 Hz, and spatial frequency was
0.03 cycles/°. To measure preferred azimuth, the rectangular window was
60° high and 20° wide. To measure preferred elevation, it was 20° high
and 60° wide. When studying the propagation of activity in visual cortex,
the stimulus was a bar flashed for 200 ms. We occasionally monitored eye
movements with a camera and found them to be rare (one every few
seconds), small (on the order of 10°), and restricted to the horizontal
dimension (Ayaz et al., 2013).

Electrophysiology. In five additional mice, we performed electrophysi-
ological recordings of the responses to flashed bars. We inserted silicon
probes (NeuroNexus): either two shanks with 16 sites each (covering 750
�m; i.e., almost all layers) or four shanks with 8 sites each (aimed at layer
5). Signals were amplified and sampled at 30 kHz (BlackRock) and then
filtered between 0.1 and 100 Hz to obtain local field potentials (LFPs).
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Figure 1. Imaging VSFP fluorescence from layer 2/3 pyramidal cells in mouse visual cortex. A, Wide-field imaging of mCitrine fluorescence on the left hemisphere through the thinned bone. White
rectangle, Region of interest for subsequent chamber implantation and fluorescence imaging. A–P, Anterior–posterior. B, Imaging of the vascularization in the same ROI under green illumination,
through the chamber. C, D, Confocal images showing VSFP-Butterfly 1.2 expression pattern at low (C) and high (D) magnification. E, The imaging setup, showing the two sCMOS cameras, the light
path, and the spherical treadmill. F, Principal component analysis (PCA) of the mCitrine and mKate2 intensities to extract voltage and hemodynamic signals. G, The method works by projecting the
donor and acceptor intensities onto the two principal axes of variability. Dots represent the relative fluorescence (�F/F) of different pixels at different moments in time. Projection onto the first axis
yields hemodynamic signals (blue), and projection onto the second axis yields voltage signals (black).
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Multiunit activity (MUA) was obtained by nonlinear high-pass filter-
ing of the original traces, followed by thresholding (Hazan et al.,
2006) and spike sorting to distinguish spikes from noise and avoid
double counting of spikes appearing simultaneously in multiple elec-
trode sites.

VSFP imaging. To monitor the FRET between the mCitrine–mKate2
fluorophore pair, we used an epi-illumination system (Akemann et al.,
2010; Fig. 1E). We excited mCitrine with a blue LED light (LEX2-B, Brain
Vision) or with a tungsten-halogen lamp passed through a bandpass filter
(FF01-482/35-25, Semrock). The excitation light was diverted onto the
visual cortex via a dichroic mirror (FF506-Di03, Semrock). The emitted
fluorescence from the donor (mCitrine; Fig. 1 E, green) was reflected by
a second dichroic mirror (FF593-Di03, Semrock), passed through an
emission filter (FF01-543/50-25, Semrock), and collected by a scientific
complementary metal oxide semiconductor (sCMOS) camera
(pco.edge, PCO AG). The emitted fluorescence from the acceptor
(mKate2; Fig. 1 E, red) was transmitted by the second dichroic mir-
ror, passed through an emission filter (BLP01-594R-25, Semrock),
and collected by a second sCMOS camera. Cameras were controlled
by a TTL external trigger synchronized with the visual stimulation. To
obtain a baseline fluorescence level, the camera acquired frames for
1 s before each stimulus trial. The image acquisition rate was 60 Hz,
with a nominal spatial resolution of 200 pixel/mm. Frames from the
two cameras were aligned off-line using the Image Processing Tool-
box in Matlab.

Equalized ratio. To obtain a ratiometric estimate of membrane poten-
tial in each pixel, we used the standard equalized ratio approach (Ake-
mann et al., 2012; Knöpfel, 2012). In this approach, the fluorescence
intensities of the acceptor A(x, y, t) and donor D(x, y, t) are scaled by a
gain factor that corrects for wavelength-dependent light absorption by
hemoglobin, as follows:

Ae � �� A � A� � � A� ,

De � ��D � D� � � D� , (1)

where A� �x, y� and D� �x, y� are baseline intensities (typically, averages
over time in intervals that precede a stimulus), and � and � are scalar
correction factors for the acceptor and donor calculated as follows:

� � �1 �
A� �D

D� �A
� / 2, � � �1 �

D� �A

A� �D
� / 2, (2)

where �A(x, y) and �D(x, y) represent the SDs of A and D measured in the
frequency band of the heart rate (Akemann et al., 2012), where these
fluorescence measurements are dominated by correlated fluctuations of
hemoglobin absorption. The gain-corrected ratiometric signal is calcu-
lated as follows:

�R

R�
�

Ae
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D� e

A� e

� 1. (3)

This signal reflects membrane voltage, discounting the changes in hemo-
globin concentration and oxygenation that lie in the optical path.

Projection method. To estimate hemodynamic activity and separate it
from voltage activity, we developed an alternative method, which does
not involve equalizing the contributions of the two fluorophores. We
computed the relative intensity of the acceptor and donor channels

a�x, y, t� �
�A

A�
and d �x, y, t� �

�D

D�
. We then combined the two into

a N by 2 matrix (a, d), where N represents the concatenated pixels and
time points, and we performed principal component analysis to obtain
two two-dimensional vectors, the principal components (Fig. 1 F, G).
The first vector, C1, reflects congruent temporal fluctuations of the two
intensities. The second vector, C2, isolates intensity changes with oppo-
site polarity. We thus projected the recorded intensities onto those two
axes, and obtained estimates of hemodynamic and voltage activity at each
pixel and time, C1(x, y, t) and C2(x, y, t).

Because the intensities a and d are small, the voltage signal obtained
through this method is similar to the ratiometric estimate. Indeed, a
Taylor expansion for Eq. 3 yields the following:
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and the second principal component can be written as follows:
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Hence,
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and C2 both grow approximately linearly with � A

�A
�

D

�D
�.

The above derivation assumes that the principal components were ob-
tained on traces filtered to isolate the heartbeat frequency, as is done for
the ratiometric quantities. In practice, we found that performing or
omitting this filtering step led to similar principal component axes, con-
sistent with the fact that heart beats dominate the raw acceptor and donor
signals.

Imaging of calcium signals. We generated mice expressing GCaMP3 by
crossing the following two transgenic lines: Emx1-IRES-Cre, expressing
Cre recombinase under the Emx1 promoter (catalog #005628, The Jack-
son Laboratory); and a reporter Ai38-GCaMP3 line (catalog #014538,
The Jackson Laboratory), carrying a floxed copy of the GCaMP3 gene
under the strong CAG promoter in the Rosa26 locus. Offspring expressed
GCaMP3 in excitatory neurons of the neocortex and hippocampus, and
in the glial cells of the pallium (Gorski et al., 2002). GCaMP3 fluorescent
signals were imaged through the filters and camera used for mCitrine
when imaging VSFP signals (see above).

Confocal imaging. To prepare the brain for tissue section, the animal
was anesthetized (pentobarbital sodium, 200 mg/kg, i.p.), and the heart
was perfused with PBS (0.5 ml/min) followed by fixative (paraformalde-
hyde, 4%) in PBS solution. The brain was removed and immersed in a
PBS containing 30% sucrose at 4°C. Frozen coronal sections (60 �m
thick) were obtained with a sliding microtome (Microm HM400R) and
were later viewed through a confocal microscope.

Results
We expressed VSFP-Butterfly 1.2 plasmid in mouse primary vi-
sual cortex (V1) and selectively targeted it to layer 2/3 pyramidal
cells through in utero electroporation (Fig. 1A–D). Confocal im-
aging confirmed that VSFP expression was predominant in the
soma, dendrites, and axons of layer 2/3 pyramidal cells (Fig.
1C,D). This highly preferential expression pattern was present in
both young and adult mice. Once the animals were adult, we
implanted a head post with a circular window that allowed fluo-
rescence imaging through the thinned bone. We were then able to
repeatedly image the mice, while they were awake, head fixed, and
free to run on a spherical treadmill (Dombeck et al., 2007) placed
in front of visual stimuli (Fig. 1E).

Ratiometric estimate of voltage signals
A common difficulty when imaging fluorescence from sources
within the brain is that the path between the cameras and the
fluorophores goes through tissue that contains blood (Knöpfel,
2012). To a first approximation, this tissue acts as a time-varying
optical filter, whose absorption coefficient fluctuates with heart
beats and hemodynamic activity. Indeed, changes in blood vol-
ume and oxygenation affect the optical properties of the tissue at
wavelengths where hemoglobin has a high absorption coefficient
(400 – 600 nm).

VSFP-Butterfly 1.2 plasmid can substantially reduce this
problem because it is based on FRET (Jares-Erijman and Jovin,
2003): a change in membrane potential has opposite effects on
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the fluorescence of the donor (mCitrine) and the acceptor
(mKate2). It can be measured by taking the ratio of their fluores-
cence. This ratio discounts the vascular factors, as those affect the
fluorescence of the two fluorophores in an approximately pro-
portional manner. This method, however, has been validated
only under anesthesia (Akemann et al., 2012), where hemody-
namic activity is typically much smaller and slower than in wake-
fulness (Pisauro et al., 2013). We thus first asked whether it works
in wakefulness.

As expected, when we measured the fluorescence of the two
fluorophores in the awake mouse, we found it to be strongly
influenced by hemodynamic factors (Fig. 2A–C). Following a
brief visual stimulus, the two fluorescence traces (averaged across
pixels located in area V1) shared a slow decrease superimposed
on large pulsations associated with the heart beats (Fig. 2A).
These effects are signatures of changes in blood volume and ox-
ygenation, which are associated with circulation and neurovas-
cular coupling. Their sources are mostly optical, rather than
mechanical, because they persisted after motion compensation
(data not shown). Repeating the measurement multiple times
and aligning by stimulus onset averaged out the large pulsations
(because heart beat and stimulus were not phase locked) and
revealed clear stimulus-triggered hemodynamic responses that
continued for many seconds after the stimulus (Fig. 2B). These
slow responses do not directly reflect neuronal activity: in awake
mice, the neural responses to these stimuli constitute an approx-

imately triphasic trace that lasts only a few hundred milliseconds
(Fig. 2C).

Reassuringly, the standard ratiometric approach recovered a
voltage signal that closely resembled the neural responses mea-
sured with microelectrodes (Fig. 2D,E). The equalized ratio
method estimates the voltage signal by scaling the two traces and
taking their ratio (Akemann et al., 2012). When we applied this
method to single trials, we found fast biphasic responses, which
were only minimally contaminated by the heart beat optical arti-
fact (Fig. 2D). Averaging across trials further reduced this artifact,
leaving a trace that resembled the neural responses recorded with
electrodes (Fig. 2C). These results indicate that the ratiometric
method succeeds not only in the anesthetized cortex (Akemann
et al., 2012), but also in the awake cortex.

Projection estimates of voltage and hemodynamic signals
To better interpret VSFP measurements, we devised a method to
extract the hemodynamic signals so that they can be investigated
in addition to the voltage signals (Fig. 1F,G). We reasoned that
hemodynamic signals would result in positively correlated mea-
surements in the two emission channels (the two cameras),
whereas anticorrelated measurements reflect changes in mem-
brane potential. We thus developed a simple projection method
to obtain a hemodynamic signal and a voltage signal (Fig. 1F).
The method is an alternative to the ratiometric method. It works
by identifying the axes of maximal correlation and anticorrela-
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tion (which we perform through principal component analysis)
and then projecting the data on those two axes (Fig. 1G). Projec-
tion is a simple linear operation, a weighted sum with weights
determined by the axis of interest.

To test this projection method, we first confirmed that it gives
appropriate estimates of the voltage signal (Fig. 2F–H). In indi-
vidual trials, the voltage signal estimated by the projection
method was fast and biphasic (Fig. 2F), with negligible contam-
ination by heart beat artifacts. This contamination was further
reduced when averaging across trials, revealing a biphasic trace
that fully returned to baseline within a few hundred milliseconds
(Fig. 2G). These estimates of the voltage signal are very similar to
those made with the ratiometric method (Fig. 2D,E). Indeed, the
Pearson correlation in the traces measured with the two methods
was high (r � 0.90, p 	 10
55, N � 154 time points).

We then examined the hemodynamic signal, and found that it
had all the characteristics that would be expected from changes in
blood volume and oxygenation (Fig. 2 I, J). In response to single
trials, it contained both a strong component oscillating with the

heart rate, and a slow hemodynamic response to the stimulus
(Fig. 2I). As expected, the fast oscillation was greatly reduced
when averaging across trials, revealing a slow trace that peaked
�1 s after the stimulus (Fig. 2J), which is broadly consistent with
measurements of blood volume in the cortex of awake mice
(Pisauro et al., 2013). In addition to the response to the stimulus,
this trace exhibited remains of the responses to previous stimuli,
as well as slow drifts typical of hemodynamic signals. Similar
results were seen in two other mice, with average voltage signals
fast and biphasic (Fig. 2H), and hemodynamic signals slow and
negative (Fig. 2K). Because the projection method treats each
time point independently, this difference suggests good separa-
tion of the two signals.

Separation of voltage and hemodynamic signals
We have seen that the projection method provides a simple and
intuitive way to estimate not only the voltage signal but also the
hemodynamic signal. The previous analysis indicates good
separation of these signals, but does not rule out the possibility
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of cross-contamination. In fact, some level of contamination
is present, because the voltage signal in single trials shows a
small but visible oscillation at the frequency of the heart rate
(Fig. 2F ).

To estimate these contaminations, we elicited periodic neural
responses, so that each contribution could be tagged with a fre-
quency and, thus, measured (Fig. 3A–D). We elicited periodic
neural responses with gratings whose contrast reversed sinusoi-
dally over time. These stimuli elicit neural responses that oscillate
at twice the frequency of reversal (second harmonic), largely be-
cause complex cell responses are independent of spatial phase
(Movshon et al., 1978). Simple cells, instead, respond to these
stimuli at the frequency of reversal (first harmonic), but with two
possible phases depending on the spatial profile of the receptive
field. If these two phases are equally prevalent, these responses
will cancel each other. The resulting oscillating responses at the
second harmonic frequency have been measured with multiple
techniques, including VSD imaging (Benucci et al., 2007).

Consistent with expectations, the voltage signal contained a
strong oscillation at the second harmonic frequency, with negli-
gible amplitude at the frequency of the heart beat (Fig. 3A,B).
The hemodynamic signal, instead, was dominated by the slower
response (Fig. 3C) that is seen when imaging blood volume
(Pisauro et al., 2013). Superimposed on this slow response was a
small contamination from the oscillating neural response. This
contamination indicates that the voltage signal underestimates
the oscillating neural response, as some of this response makes its
way into the putative hemodynamic signal. The amplitude of this
contamination, however, was �60 times smaller than that of the
slow hemodynamic response, confirming that the putative he-
modynamic signal was indeed dominated by hemodynamic ac-
tivity (Fig. 3C).

As expected from neural responses in visual cortex (Van den
Bergh et al., 2010; Andermann et al., 2011; Marshel et al., 2011),
the amplitude of the oscillating voltage response decreased with
stimulus frequency, with a noticeable reduction when stimulus
frequency went above 3 Hz, corresponding to neural activity os-
cillating at 6 Hz (Fig. 3E,F). Similar results were seen in the other

two mice (Fig. 3G). In subsequent experiments involving
contrast-reversing stimuli, therefore, we generally chose frequen-
cies of 1 or 2 Hz. We emphasize, however, that these choices
reflect the sluggish nature of visual responses, not a limitation of
VSFP, which has much higher temporal resolution (Akemann et
al., 2012).

In summary, contrast-reversing stimuli elicited strong oscil-
lating responses in the voltage signal but only very weak ones in
the hemodynamic signal. Conversely, as we have seen from the
analysis of single trials, the heart beat effects are preponderant in
the hemodynamic signal and are barely visible in the voltage signals
(Fig. 2F). These results confirm that there is limited contamination
between the two sources, as follows: the voltage signal is primarily
neural, and the hemodynamic signal is primarily vascular.

Though we did not explore longitudinal imaging in any for-
mal way, we generally found that mice could be imaged multiple
times after implantation. For instance, a mouse that was imaged
four times after implantation, using the same contrast-reversing
gratings and over the same region of interest, gave consistently
robust responses for 40 d after implantation. We compared the
amplitude of second harmonic responses (averaged over six stim-
ulus trials) in the presence of the grating (signal) and in its ab-
sence (noise). The strength of the signal was highest in the first
session (signal-to-noise ratio, 4.7 at day 4), but the quality was
high enough that responses could be obtained as far as 40 d after
implantation (signal-to-noise ratio, 2.8). These results were fairly
typical and in line with those obtained with genetically encoded
calcium indicators (GECIs; Zariwala et al., 2012). The main lim-
itation seemed to be the clarity of the optical window. Indeed,
previous studies (Akemann et al., 2010, 2012) based on intracel-
lular electrophysiology indicate that cells expressing VSFP are
healthy in adult mice that were transfected with similar methods.

Retinotopy of voltage and hemodynamic signals
Having established that voltage signals and hemodynamic signals
are functionally distinct, and that their temporal profiles are very
different, we investigated their spatial profile (Fig. 4). We used
periodic stimuli, so that we would elicit strong oscillating neural
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responses. The hemodynamic signal, averaged over multiple
stimulus trials to minimize the impact of heart beats, provided
clear maps of retinotopy (Fig. 4A,B), similar to those seen when
imaging vascular responses (Schuett et al., 2002; Kalatsky and
Stryker, 2003; Pisauro et al., 2013). The voltage signal also gave
clear maps of retinotopy (Fig. 4C,D). These were obtained by
measuring the amplitude of the oscillating response at the

second harmonic frequency (Benucci et
al., 2007). Reassuringly, the maps pro-
vided by the two signals were highly
consistent (R 2 � 0.9; Fig. 4E). Similar
results were obtained in three other
mice.

The spatial spread of hemodynamic
signals was not significantly larger than
that of voltage signals. For each pixel, we
fitted the response amplitudes for differ-
ent stimulus positions (azimuth or eleva-
tion) with a Gaussian function. The
position where the function peaks is the
preferred position of that pixel (Fig.
4B,D,E). The width � of the Gaussian
function was a free but global parameter
for the fit. The mean (�SD) values of �
appeared to be larger for the hemody-
namic signal (38.0 � 13.4°) than for the
voltage signal (28.2 � 5.5°), but the differ-
ence was not statistically significant (p �
0.35, paired t test; n � 4 mice).

We conclude that the voltage signal
measured by VSFP imaging in response to
isolated visual stimuli is generally colocal-
ized with the hemodynamic signal. More
generally, VSFP imaging offers the possi-
bility of measuring not only a neural sig-
nal with high temporal resolution, but
also the associated hemodynamic activity,
at the same time, and to compare the two
across trials and stimulus conditions.

Comparison with calcium signals
Having demonstrated the use of a GEVI to
measure population responses in the vi-
sual cortex of awake mice, we asked how it
compares to an established genetically en-
coded indicator of calcium, GCaMP3 (Za-
riwala et al., 2012). We particularly sought
to compare signal-to-noise ratios pro-
vided by the two indicators. Moreover, we
expected to see some differences, as GEVIs
measure subthreshold membrane potential,
whereas calcium indicators measure spiking
activity (Berger et al., 2007).

To image GCaMP3 activity, we used
transgenic mice expressing this indicator
in excitatory cortical neurons (Fig. 5A–C).
We crossed transgenic mice expressing
the calcium indicator GCaMP3 condi-
tional on the presence of Cre (Zariwala et
al., 2012) with mice in which Cre is pres-
ent in cells expressing Emx1. These are ex-
citatory neurons of the neocortex and
hippocampus, and glial cells of the pal-

lium (Gorski et al., 2002). As expected, we found high levels of
expression of GCaMP3 in cortex (Fig. 5A), which resulted into a
uniformly fluorescent imaging window (Fig. 5B). Confocal mi-
croscopy confirmed the localization of GCaMP3 in cortical neu-
rons (Fig. 5C).

The GCaMP3 traces were heavily corrupted by vascular arti-
facts, which could be removed only by temporal filtering (Fig.
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5D–F). Indeed, GCaMP3 fluoresces only in one fluorescence
band and was thus acquired with a single camera. As such, one
cannot use a ratiometric or projection method to remove the
vascular artifacts. The raw traces therefore showed slow varia-
tions over the time scale of seconds, which is typical of hemody-
namic activity (Fig. 5D). Moreover, they showed fast oscillations
at the frequency of the heart rate (visible in individual trials). The
only way in which we could minimize these artifacts was to band-
pass filter the traces in time (Fig. 5E), removing all signals below
0.5–1.0 Hz (to avoid the slow hemodynamic activity) and above
10 –12 Hz (to avoid the heart rate artifact). This filtering does
remove some of the neural activity—such as the initial, positive
onset response—and it reflects a fundamental problem with
wide-field imaging of calcium signals. However, it does not affect
the second harmonic oscillation at 4 Hz caused by the contrast-
reversing gratings. We used the amplitude of this oscillation to ob-
tain orderly maps of retinotopy from GCaMP3 signals (Fig. 5F).

To compare these results with those obtained with the GEVI,
we imaged our mice expressing VSFP using the same contrast-
reversing stimuli. As expected, the projection method yielded
clear separation of a hemodynamic signal (Fig. 5G) from a voltage
signal (Fig. 5H), and the latter gave rise to high-quality maps of
retinotopy (Fig. 5I). These maps appeared highly consistent with
those measured in mice expressing GCaMP3. To get a sense of
their similarity, we compared their progression along the hori-
zontal axis in the visual field (azimuth). We aligned the maps
obtained with the two methods, so that they would have the same
representation of the vertical meridian (azimuth � 0°), and com-
pared the preferred azimuths of each point in one map with the same
point in the other map. The results indicate a very similar progres-
sion of preferred azimuth with cortical distance between the two
maps (Fig. 5J). This similarity is reassuring, especially when consid-
ering that it is, by necessity, measured across different animals.

As expected, selectivity for stimulus position was sharper in
GCaMP3 responses, which reflect spiking activity, than in VSFP
responses, which reflect subthreshold activity (Fig. 5K). To com-
pare the two, for each pixel we fitted a Gaussian position tuning
curve to the amplitude of the responses to visual stimulation at
four horizontal positions. The best SD � for the Gaussian curve
model was chosen to be the one that minimized the least squared
error of the fit for all pixels. Using this measure, we found that
tuning curves were sharper when measured with GCaMP3
(mean � SE, � � 21.0 � 2.2; N � 4) than with VSFP (� � 30.1 �
1.5; N � 5), a difference that was significant (t test, p � 0.019).
This result is consistent with well known differences in selectivity
between subthreshold and spiking responses (Bringuier et al.,
1999; Carandini and Ferster, 2000).

Finally, we compared the reliability for VSFP and GCaMP3 in
terms of signal-to-noise ratios, and found them to be similar. As
explained earlier, we measured the signal as the amplitude of the
frequency response at twice the stimulus frequency (second har-
monic) when a stimulus was present, and the noise as that am-
plitude when there was no stimulus (i.e., blank condition). When
measured with VSFP, this signal-to-noise ratio averaged (�SE)
11.8 � 2.8 (n � 3 mice, average of 10 –20 trials), compared with
12.0 � 1.8 (n � 4 mice, average of 20 trials) when measured with
GCaMP3. The two were not significantly different (p � 0.95,
two-sample t test).

Space–time activation maps from voltage signals
The maps that we have shown with VSFP are the result of exten-
sive temporal averaging, involving multiple stimulus cycles in
multiple trials. However, one of the most exciting prospects for

wide-field imaging lies in its ability to reveal the activity of large
populations in single trials, or even in the absence of any stimulus
(Arieli et al., 1996; Grinvald and Hildesheim, 2004; Mohajerani et
al., 2010, 2013; Akemann et al., 2012; Scott et al., 2014). Indeed,
the concept of “trial” is meaningful only for a repeatable sensory
or motor protocol with a defined start time, not for endogenously
generated activity associated with rest states or higher cognitive
functions. Moreover, any attempt at decoding neural activity
should be based on single trials, because the brain can rarely
average across trials before making decisions. Therefore, it is es-
sential for techniques for wide-field imaging to reveal activity in
single trials.

To assess the ability of VSFP imaging to reveal activity in single
trials, we considered the responses to brief visual stimuli, bar
stimuli flashed for 200 ms (Fig. 2), and compared the individual
responses with their average across 30 trials (Movie 1; Fig. 6). As
we have seen, these brief stimuli produced a voltage signal with a
characteristic biphasic profile (Fig. 6A–D), with a sharp increase
(depolarization) followed by a decrease (hyperpolarization). The
spatial profile of the depolarization (Fig. 6A, 0.2 s) was similar to
that of the subsequent hyperpolarization (Fig. 6A, 0.4 s). Indeed,
the activity was well predicted by a simple separable model (Fig.
6B–D) where responses are simply the product of a spatial profile
(Fig. 6C) and a temporal profile (Fig. 6D). In most experiments,
the spatial profile included not only cortical area V1 but also area
LM (Fig. 6C; Wang and Burkhalter, 2007), and in some experi-
ments also higher visual areas. These results thus differ from
those obtained in somatosensory cortex, where depolarization
has been suggested to be followed by a wider hyperpolarization
(Takashima et al., 2001; Devor et al., 2007).

The separable model is an effective but coarse summary of the
activity over a relatively long time scale, and is not incompatible
with subtler, more complex dynamics that have been observed at
finer time scales in cats and primates (Sit et al., 2009; Sato et al.,
2012). The advantage of the model is that it allowed us to define
the responses in terms of a single spatial profile and a single
temporal profile. This characteristic proved particularly useful
when analyzing single trials, as we see next. VSFP signals were
sufficiently strong to reveal responses in individual trials, and
revealed that activity could differ substantially across trials. In
some trials, activity resembled the average across trials both in
terms of spatial profile and in terms of temporal profile, whereas
in other trials it tended to differ in both respects (Fig. 6E). An
examination of a representative set of trials further illustrates this
phenomenon (Fig. 6F,G). In some trials, such as the 11th, 7th,
and 12th, both spatial and temporal profiles resembled those
measured, on average (Fig. 6C,D). In other trials, such as the 10th
and the 2nd, responses differed both in spatial profile and in
temporal profile. Given that VSFP gives reliable responses to di-
rect neuronal stimulation in vitro (Akemann et al., 2010, 2012),
these differences across trials are likely to reflect genuine varia-
tions in neural activation across space and time. These may be
due to differences in ongoing activity at the onset of each stimulus

0.0 s   0.2 s 0.4 s 0.6 s 0.8 s 

Movie 1. Average VSFP response to a flashed bar stimulus, with onset at 0 s and offset at
0.2 s. These data are analyzed in Figure 6. The upper graph shows the mean fluorescence within
the red rectangle, in �F/F (%), as a function of time, in seconds.
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(Arieli et al., 1996; Petersen et al., 2003; Curto et al., 2009). Fur-
ther research will be required to elucidate this and other ques-
tions, and our results indicate that this research can be fruitfully
pursued using wide-field imaging of voltage-sensitive fluorescent
proteins.

Discussion
We have shown that VSFP-Butterfly 1.2, a GEVI, can be fruitfully
used to reveal the membrane potential of neuronal populations
across large portions of the mouse visual cortex during wake-
fulness. VSFP-Butterfly 1.2 offers numerous advantages, in-
cluding approximate linearity of responses in the range of
typical subthreshold membrane potentials, and good tempo-
ral resolution (Akemann et al., 2010, 2012). Here we showed
that it can be used effectively during wakefulness, a condition

that is more challenging than under an-
esthesia, because membrane potential
responses are typically faster (Haider et
al., 2013) and confounding hemody-
namic activity is stronger (Pisauro et al.,
2013).

We delivered the indicator through in
utero electroporation, thus obtaining
strong and selective expression in layer
2/3 pyramidal cells. This method of deliv-
ery allows highly selective targeting of py-
ramidal cells in a layer of choice. This
selectivity overcomes the promiscuity of
the CAG promoter, which drives gene ex-
pression in a wide range of cell types, in-
cluding astrocytes. Indeed, the cells that
line the lateral ventricle at embryonic day
15.5 migrate during development to be-
come primarily layer 2/3 pyramidal cells.
Astrocytes, instead, migrate into cortex
from a different site, which is not targeted by
the electroporation.

To fully exploit the signals obtained
from the indicator, we developed a
straightforward projection method that
separates its outputs into a signal domi-
nated by voltage and a signal dominated
by hemodynamics. This method exploits
the dual emission of the FRET-based
voltage indicator, which results in two
fluorescent traces. Voltage signals are
traditionally estimated by taking the ratio
of the two traces (Akemann et al., 2012;
Knöpfel, 2012). Our alternative method is
based on linear projection: it simply takes
the signals from both of the fluorophores
of the indicator and computes weighted
sums of the two measurements. This
method estimates not only voltage signals
(similar to those obtained by taking the
ratios), but also hemodynamic signals.

The resulting voltage and hemody-
namic signals were well separated in both
the temporal domain and the frequency
domain. The hemodynamic signal con-
tains strong oscillations due to the heart-
beat, which were almost entirely absent in
the voltage signal. Superimposed on this
fast oscillation is a slower neurovascular

response similar to BOLD responses measured in awake mice
with functional MRI (Desai et al., 2011) and with optical imaging
(Pisauro et al., 2013). The voltage signals, in turn, were markedly
larger than single-trial measurement noise and had fast dynam-
ics, similar to those observed with intracellular recordings in
awake mice (Haider et al., 2013) and broadly comparable to mea-
surements made with classic voltage-sensitive dyes (Polack and
Contreras, 2012; Mohajerani et al., 2013).

One possible confound when measuring fluorescence in the
brain is the presence of activity-dependent fluorescence from
mitochondrial flavoproteins. This autofluorescence is robust and
can be used to obtain maps of activation (Husson et al., 2007;
Andermann et al., 2011; Michael et al., 2014). It is a potential
source of undesired signal components when using fluorescent
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indicators with emission in the 500 – 600 nm range (Coutinho et
al., 2004; Díez-García et al., 2007). However, there are multiple
reasons to conclude that autofluorescence can be neglected when
interpreting the voltage and hemodynamic signals that we have
obtained in this study. First, the fluorescence of the brain outside
the regions expressing the indicator is negligible: those regions
are extremely dark (Fig. 1A). Second, the autofluorescence signal
would have the same polarity in both channels (mostly, in the
green channel), whereas the voltage signal is opposite in the two
channels. Third, the time course of both voltage and hemody-
namic signals is faster than would be expected from autofluores-
cence. For instance, the hemodynamic signal faithfully follows
the heartbeats, which would not be visible in autofluorescence
imaging. These observations indicate that autofluorescence does
not make a relevant contribution to the signals that we analyzed.

Another limitation of our analysis is that it treats the vascular
effects as a time-varying neutral density filter. This is a simplification,
justified empirically by our finding reasonably good separation be-
tween the two signals produced by the projection method. It is,
nonetheless, a simplification, because the ratio of oxyhemoglobin
(HbO) to deoxyhemoglobin (Hb) is thought to change during the
course of a neural response and afterward, and also during ongoing
activity. While the donor fluorescence wavelength (542 nm) is
slightly less absorbed by Hb and HbO (by a factor of 0.9), the accep-
tor fluorescence wavelength (594 nm) is 2.9 times more strongly
absorbed by Hb than by HbO (Prahl, 1999). Thus, as the proportion
of Hb and HbO changes in cortex, the fractional absorption by he-
modynamics would change at these two wavelengths, differentially
affecting donor and acceptor signals. A more precise measurement
would be obtained with a third camera, which could image at a
wavelength where Hb and HbO are equally absorbed (isosbestic
wavelength; Kramer and Pearlstein, 1979). Alternatively, one could
combine fluorescence imaging and reflectance imaging (e.g., in al-
ternate camera frames; Bouchard et al., 2009).

We found that the voltage signal and the hemodynamic signal
provided congruent maps of retinotopy, with an approximately
similar spatial footprint. This similarity had been suggested using
VSD imaging (Takashima et al., 2001), and it has implications for
the spatial footprint of BOLD signals. There is debate as to
whether these signals reveal mostly spiking activity (Heeger et al.,
2000) or subthreshold activity (Logothetis and Wandell, 2004).
The activations measured by imaging voltage signals are certainly
wider than those corresponding to spiking activity (Grinvald and
Hildesheim, 2004). Their resemblance to those obtained from
hemodynamic signals suggests that the latter indeed reflect sub-
threshold neural activation more than spiking activity. Indeed,
we found the spatial footprint of spiking activity to be narrower
than that of the voltage signal (Fig. 5).

Our analysis demonstrates that voltage imaging using GEVIs
is sufficiently developed to illuminate the organization and dy-
namics of neural circuits at mesoscopic spatial scales and at a wide
range of temporal scales, from tens of milliseconds to weeks. We
have not probed the temporal resolution of the GEVI at shorter
time scales, because of the limitations inherent in the visual sys-
tem, which do not follow fast changes. An ideal test bench for
probing temporal resolution is the somatosensory cortex, which
allows finer temporal control of neuronal activity (Ferezou et al.,
2006, 2007; Berger et al., 2007). Therefore, VSFP-Butterfly 1.2 has
been shown to reveal activity with good temporal resolution
(Akemann et al., 2012).

GEVIs present multiple advantages over traditional VSDs
(Knöpfel, 2012). GEVIs allow genetic targeting to specific cell pop-
ulations, providing a handle into cellular diversity, and they allow

reliable recordings from those populations over prolonged periods
and multiple sessions. Moreover, using a GEVI we could perform
the imaging in awake animals, following a simple surgical procedure
that did not involve a craniotomy. Along with the potential pharma-
cological side effects of VSDs (Mennerick et al., 2010; Grandy et al.,
2012), this highlights the clear advantages of the GEVI approach.

The voltage signals were much larger than the measurement
noise, allowing for single-trial imaging and for repeated measure-
ments across multiple weeks, and were as reliable as estimates ob-
tained with a GECI. Because GECIs mostly reveal the activity due to
spiking, performing the same experiments with GEVIs and GECIs
allows one to distinguish the activations that correspond to spiking
alone from those that correspond also to subthreshold inputs, in-
cluding hyperpolarizing inputs (Minderer et al., 2012). GECIs cur-
rently hold the advantage of allowing two-photon imaging, but this
advantage may be partially eroding, as two-photon imaging is begin-
ning to be used also with GEVIs (Akemann et al., 2013).

Together, these results demonstrate that the prospects of meso-
scopic imaging of GEVIs are bright. GEVIs provide a powerful ex-
perimental approach to study the dynamics of neural circuits at
mesoscopic spatial scales and millisecond temporal scales. Their ad-
vantages will only become stronger once transgenic mice that carry
the VSFP Butterfly 1.2 gene in a Cre-dependent configuration be-
come available. Preliminary results indicate that the voltage signals
from these transgenic mice are as good as those in the mice presented
in this study (Shimaoka et al., 2014). By enabling a delivery that is
noninvasive, highly reproducible, genetically targeted, and spatially
widespread, these transgenic mice promise to unleash the full poten-
tial of genetically encoded voltage indicators.
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