UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Micromechanical Investigation of Hydrate-bearing Sediments with Discrete Element Method

Yu, Y; (2015) Micromechanical Investigation of Hydrate-bearing Sediments with Discrete Element Method. Doctoral thesis , UCL (University College London). Green open access

[img]
Preview
PDF
PhD_Thesis_Yanxin_YU_CEGE_UCL_2014_light.pdf
Available under License : See the attached licence file.

Download (4MB)

Abstract

Natural methane hydrate soil sediments attract worldwide interest, as there is huge commercial potential in the immense global deposits of methane hydrate that lies under deep seabeds and permafrost regions. Methane hydrate develops and exists in the pores of soil sediments under the conditions of high pressure and low temperature. The methane hydrate-bearing sediment can be exploited to extract methane gas, as methane gas is the predominant element of natural gas. However, the sediment’s geomechanical behaviour is poorly understood, but it has impacts on geotechnical issues, such as the instability of the seabed sediment layers and wellbore collapse, and it may also cause various negative environmental effects, particularly in regards to the exploration and exploitation process. Hence, further scientific research is needed. Due to the limitations of in-situ and laboratory studies, in this PhD research, a numerical method Discrete Element Method (DEM) was employed to provide a unique particle-scale insight into the granular geomechanical behaviours of hydrate-bearing sediment. A comprehensive DEM research was performed in order to simulate two commonly used geomechanical investigation methods employed in hydrate-related studies: the triaxial compression test and seismic wave propagation. Accordingly, the six major contributions of this DEM research are: (1) two typical types of microscopic hydrate distribution patterns within soil pores were investigated via a consistent basic soil model: the pore-filling hydrate pattern and the cementation hydrate pattern; (2) The large-strain deformation and the critical state behaviours were explored; (3) a wave propagation study was performed using the DEM hydrate-bearing sediment samples; (4) the bonding strength effect in the cementation model was systematically discussed; (5) the effect of elongated soil particles on the geomechanical behaviours of sediments was studied; and most importantly (6) a comprehensive particle-scale microscopic analysis was conducted to assist the interpretation of the macro responses in the in-situ, laboratory and numerical studies.

Type: Thesis (Doctoral)
Title: Micromechanical Investigation of Hydrate-bearing Sediments with Discrete Element Method
Open access status: An open access version is available from UCL Discovery
Language: English
UCL classification: UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Civil, Environ and Geomatic Eng
URI: https://discovery.ucl.ac.uk/id/eprint/1460501
Downloads since deposit
115Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item