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ABSTRACT 
Motivation: With recent developments of new statistical techniques 
for accurately inferring direct evolutionary couplings between resi-
due pairs in large multiple sequence alignments, the problem of 
predicting inter-residue contacts in proteins from amino acid se-
quence has attracted a lot more attention in the last few years. The 
accuracy of contact prediction is now reaching a point where it offers 
a viable means for accurate 3-D modelling of proteins, with no other 
information required. To extend the usefulness of contact prediction 
further, we have designed and implemented a new meta-predictor 
(MetaPSICOV) which not only combined three distinct approaches 
for inferring coevolutionary signals from multiple sequence align-
ments, but also considers a broad range of other sequence derived 
features such as secondary structure, solvent accessibility and, 
uniquely, a range of metrics which describe both the local and global 
quality of the input multiple sequence alignment. Finally, we explore 
the idea of using a two-stage predictor, where the second stage 
effectively filters the output of the first stage. This two-stage predic-
tor is evaluated not only on the accuracy of contact prediction, but 
also its additional ability to accurately predict the long range network 
of hydrogen bonds in the native structures of target proteins, includ-
ing correctly assigning the donor and acceptor residues. 
Results: Using the original PSICOV benchmark set of 150 protein 
families, MetaPSICOV achieves an overall mean precision of 0.54 
for top-L predicted long range contacts, which is around 60% higher 
than PSICOV, and around 40% better than CCMpred, which em-
ploys the widely-used pseudolikelihood approach to calculate coevo-
lution signals. In de novo protein structure prediction using 
FRAGFOLD, MetaPSICOV is able to improve the TM-scores of 
models by a median of 0.05 compared to PSICOV. Lastly, for pre-
dicting long range hydrogen bonding in proteins, MetaPSICOV-HB 
achieves a precision of 0.69 for the top-L/10 hydrogen bonds com-
pared to just 0.26 for the baseline MetaPSICOV approach.  
Availability: MetaPSICOV is available as a freely available web 
server at 
http://bioinf8.cs.ucl.ac.uk/METAPSICOV/MetaPSICOV.html. Raw 
data (predicted contact lists and 3-D models) and source code can 
be downloaded from 
http://bioinf.cs.ucl.ac.uk/downloads/MetaPSICOV. 
Contact: d.t.jones@ucl.ac.uk 
Supplementary information: Supplementary data are available at 
Bioinformatics online. 

 
1 INTRODUCTION 
Determining protein structure from its amino acid sequence re-
mains an unsolved problem within bioinformatics (Dill and 
MacCallum, 2012). In order to make this notoriously complex goal 
more tractable, one simplification which can be made is to reduce 
the problem to identifying pairs of interacting residue pairs within 
the native structure, termed “contacts”. For many years, accurate 
contact prediction was hampered by the effects of the relatedness 
of homologous sequences and the inability to extract correct resi-
due pairings from vastly intertwined networks of contacts (de Juan, 
et al., 2013). Recently, there has been considerable progress in 
reducing the effects of these two sources of noise, allowing for 
superior prediction accuracy (Taylor, et al., 2013). 

Current methods for contact prediction use large multiple se-
quence alignments to identify interacting residues through corre-
lated mutation analysis. Extracting contacts using correlated muta-
tion analysis exploits the observation that within protein structures, 
interacting residue pairs are under evolutionary pressure to main-
tain their interaction (Altschuh, et al., 1987; Neher, 1994; Poon and 
Chao, 2005). In the event that one residue of such an interacting 
pair mutates, the effect of the mutation can be accommodated by 
the “correlated” mutation of its interacting partner. Therefore, by 
identifying positions within a multiple sequence alignment which 
appear to coevolve, it is possible to infer that these positions are in 
close proximity in the native protein structure. 

Contact maps derived from correlated mutation analyses are now 
of sufficient quality to enable accurate de novo structural model-
ling of both globular (Kosciolek and Jones, 2014; Marks, et al., 
2011; Michel, et al., 2014) and membrane proteins (Hopf, et al., 
2012; Nugent and Jones, 2012), as well as identifying residues at 
the interface of protein complexes (Ovchinnikov, et al., 2014; 
Weigt, et al., 2009). Whilst contacts are clearly useful for con-
straining modelling procedures, even small numbers of incorrect 
predictions are drastically detrimental to the modelling process 
(Konopka, et al., 2014). Despite considerable progress in the accu-
racy of predicted contacts from sequence, further increased preci-
sion will allow for more accurate models to be produced (Michel, 
et al., 2014). 
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It has been shown recently that the incorporation of two different 
coevolution methods, based on distinct underlying principles, is 
able to increase the accuracy of contact prediction (Skwark, et al., 
2013). In this study we develop MetaPSICOV, a hybrid method 
that combines a classical neural network based contact prediction 
method with three different coevolution methods, in order to im-
prove the accuracy of predicted contacts from multiple sequence 
alignments. An additional aspect of MetaPSICOV is to modulate 
predictions according to both the local and global quality of the 
multiple sequence alignment. Thus for alignments that have little 
depth, either in local regions or over the entire length of the target 
protein, MetaPSICOV can effectively down-weight the optimal 
contributions that should be made by coevolution compared to 
more traditional features such as predicted secondary structure and 
solvent accessibility. This means that for poor alignments, MetaP-
SICOV will behave more like a standard machine learning based 
contact prediction method, whereas for deep high quality align-
ments more emphasis will be placed on coevolution signals.  

2 METHODS 

2.1 Datasets for training and benchmarking 
The benchmark test set for this work is the original PSICOV test set of 150 
single domain monomeric proteins with the same alignments as made pub-
licly available back in 2011 (Jones, et al., 2012). To ensure full comparabil-
ity with earlier work, no attempt was made to extend the alignments using 
more up to date sequence data banks. 

The neural network components of MetaPSICOV were trained on a set 
of 624 highly resolved protein chains with no overlap to the test set. To 
start with, we took a non-redundant (percent sequence identity < 25%) set 
of 1780 protein chains from PDB (Berman, et al., 2000) with resolution ≤ 
1.5 Å and chain lengths between 50 and 500 residues. Overlapping proteins 
between the original PSICOV test set and the initial training set were iden-
tified by using HHSEARCH (Söding, 2005) to align test set sequences with 
training set HMMs. Alignments and HMMs for the training set were calcu-
lated using 3 iterations of HHBLITS (Remmert, et al., 2012) with an E-
value threshold of 10-3 and the March 2013 release of the UNIPROT20 
HMM library. The alignments were stored in both PSICOV (Jones, et al., 
2012) native and A3M formats. Any chain in the initial training set match-
ing a test set sequence with an HHSEARCH E-value < 10-3 was excluded, 
leaving a final training set of 624 chains (see supplementary material). 

Three separate coevolution calculations on the alignments were carried 
out using PSICOV v2.1, mean field DCA as implemented in the FreeCon-
tact package (Kaján, et al., 2014) and CCMpred (Seemayer, et al., 2014). 
The same alignments were used in each case, in PSICOV format for 
PSICOV and FreeContact and A3M format for CCMpred. 

In addition to the coevolution features, a number of other simple statis-
tics are computed from the same alignments using a C program (alnstats). 
These statistics are listed in the feature set section below, and are divided 
into single alignment column-based statistics (e.g. the amino acid frequen-
cies in each column) and pairwise column statistics (e.g. mutual infor-
mation scores between each pair of columns). 
 

2.2 MetaPSICOV Input Features 
A total of 672 input features are used in the first stage classifier to predict 
the likelihood of residue i and j being in contact. As a starting point for 
input features, we considered the feature set used in the SVMcon method 
(Cheng and Baldi, 2007). Here, in both training and predicting, three win-
dows are defined: one 9 residue window centered at position i, one 9 resi-

due window at position j and a central window of 5 residues at the midpoint 
½(i+j). At every position in each window, 21 features provide information 
on the amino acid composition in alignment columns i, j and ½(i+j), count-
ing gaps as the 21st amino acid type. The next 4 column features are the 
probabilities of helix, strand and coil states, and a predicted solvent acces-
sibility in the range 0-1 (0 being completely buried and 1 being fully ex-
posed). The secondary structure probabilities are derived from PSIPRED 
(Jones, 1999), and the solvent exposure from a derivative of PSIPRED 
called SOLVPRED. The final two column features are the Shannon entropy 
(-∑k pk log pk) of the alignment column and an extra input to indicate miss-
ing data i.e. where the window exceeds the limits of the sequence. 

The next set of input features (6 in total) provide coevolution infor-
mation for each pair of alignment columns, and are as follows: mutual 
information, normalised mutual information (Dunn, et al., 2008), mean 
contact potential, PSICOV score, mfDCA score and CCMpred score. The 
mean contact potential is computed by averaging contact potential terms 
(Betancourt and Thirumalai, 1999; Miyazawa and Jernigan, 1985) across 
the two alignment columns. 

To encode the sequence separation |i-j|, 16 features are used to represent 
values in the following ranges: |i-j| < 5, |i-j| = {5,6, .. ,13}, 14 ≤ |i-j|<18, 
18 ≤ |i-j|<23, 23 ≤ |i-j|<28, 28 ≤ |i-j|<38, 38 ≤ |i-j|<48, |i-j| ≥ 48.  

The remaining features are derived from the whole alignment and do not 
depend on the window locations: global alignment amino acid composition 
(21 features including gap composition), global fractions of predicted sec-
ondary structure states (3 features), global average predicted solvent expo-
sure, log sequence length, log number of sequences in the alignment, log 
effective number of sequences in the alignment and global average Shan-
non entropy. 

For the second stage classifier, which correlates the outputs of the first 
stage classifier, a total of 731 input features are used. In this case, two 
windows of 11 alignment columns are defined at location i,j, though the 
central window is omitted in this case. The same column features defined 
for the first stage classifier are also used for the two windows in the second 
stage. In addition the same sequence separation features are included. The 
remaining 121 features comprise a 11x11 matrix of values, centered at 
location i,j which are taken from the relevant outputs of the first stage. This 
matrix therefore represents a 2-D (square) window on the first stage pre-
dicted contact map, and thus allows a refined contact map to be generated 
by taking into account correlations between nearby predicted contacts from 
the first stage network. This second stage also allows us to predict other 
kinds of inter-residue interactions e.g. main chain hydrogen bonding, as 
described later. 

2.3 Neural Network Architectures and Training 
Procedure 

Both first and second stage classifiers are classic feed-forward neural net-
works, with 55 hidden units and a single output unit. To train these very 
large networks, alternate rounds of offline and online training are carried 
out until no further improvement in accuracy is obtained on a separate 
validation set, which comprises 10% of the original training data. 
 The classification of residues as contacting (true positive) or non-
contacting (true negative) was made by calculating Cβ-Cβ distances in the 
protein chains, with different thresholds. For glycine residues, the Cα posi-
tion was used in place of the Cβ. In final benchmarking, only the usual 
threshold of 8Å was used, but in training we used five different contact 
distance thresholds: 6, 7.5, 8, 8.5 and 10 Å. An additional criterion that was 
used was to set a threshold distance of 8Å, but then only consider negatives 
where the distance exceeded a second threshold of 11Å. In this latter case, 
residue pairs with an intermediate distance were excluded from the training 
process. Each of these six thresholds was used to generate a separate neural 
net and in making a prediction, the outputs of the six networks are com-
bined by averaging. As Cβ-Cβ contacts are symmetric, for each L residue 
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protein chain in the training set, ½L(L-1) residue pairs are considered in 
testing and training. 
    The training data is obviously highly unbalanced given that only around 
5% of residue pairs make contacts in a typical protein fold. However, we 
find that subsequent calibration of the network outputs is a better way of 
handling this bias than either undersampling negative cases or over-
sampling the positive cases. Once the network training is complete, the 
outputs can be transformed to estimated Positive Predictive Values (PPVs) 
by a log-linear function: 

ܸܲܲ ൌ ܽ	log	ሺܾݔ  ܿሻ, 
 
where a, b and c are adjustable parameters obtained by least-squares fitting 
to the observed PPVs when the training data is re-presented to the networks 
and binned according to neural network output score (x). 
  

2.4 MetaPSICOV-HB 
By a small modification to the second stage classifier and the training 
scheme, it is straightforward to develop an additional predictor which can 
specifically predict main chain hydrogen bonding patterns rather than ge-
neric residue-residue contacts. In this case, positive cases will be residue 
pairs where the first residue acts as donor for a backbone hydrogen bond 
(N-H .. O=C) to the other. In this case, the relevant contact is directional 
and so the resulting contact map can no longer be assumed to be symmet-
ric. In antiparallel sheets, of course, a symmetric pair of contacts can occur, 
as a bridged pair of residues will be involved in two hydrogen bonds going 
in opposite directions. 
 In training and testing, we arbitrarily assign the donor role to residue i 
and the acceptor role to residue j, and a true positive is only considered 
where the amino nitrogen in i is within 3.5Å of the carbonyl oxygen in j. 
No attempt was made to reconstruct the amide hydrogen positions as for 
main chain hydrogen bonds in highly resolved proteins, the heavy atom 
distance criterion is generally sufficient on its own to determine whether an 
energetically favorable hydrogen bond is formed. Short range (sequence 
separation < 5) hydrogen bonds are not considered because these mostly 
relate to alpha helices and can be trivially inferred from secondary structure 
prediction alone, and so the sequence separation binary input for the |i-j| < 
5 case was replaced by a binary feature which simply indicates pairs where 
i > j, which is needed because pairs i,j and j,i can no longer be considered 
equivalent. 
 

2.5 Folding Simulations 
To evaluate the usefulness of MetaPSICOV contacts in de novo protein 
structure prediction, we carried out a benchmark on contact-assisted frag-
ment assembly using FRAGFOLD (Jones, et al., 2005). Details of the 
benchmark have already been described (Kosciolek and Jones, 2014), 
where we evaluated the usefulness of PSICOV contacts in assisting de novo 
protein structure prediction.  Two slight modification made here. Firstly, a 
slightly revised FRAGFOLD energy function is used, with short range (|i-j| 
< 23) and long range contacts treated as two separate equally weighted 
energy terms. Secondly, to select a single representative model from each 
ensemble, the model with the lowest total FRAGFOLD energy was select-
ed. This is a more conservative selection procedure than our previous 
study, where we took the best model from the 5 lowest energy models, but 
this more closely represents the way in which models would be selected in 
practice. 

3 RESULTS AND DISCUSSION 
The accuracies of MetaPSICOV and the component methods were 
evaluated on the widely-used benchmark dataset of 150 proteins 
used to test the original PSICOV algorithm (Jones, et al., 2012). 

Figure 1 shows the relative overlap between the three component 
coevolution methods applied to this set, which clearly demon-
strates the value of a 3-way consensus, with at least 10% of correct 
contacts (13% in the case of CCMpred) being unique to each 
method. 

The analysis of results is divided into two parts based on the se-
quence separation of predicted pairs, as contact prediction between 
residues pairs lying far apart in the sequence are more difficult to 
predict than the ones closer in sequence separation. With this in 
mind, mean precision scores are given at sequence separation 
greater than or equal to 5 and greater than or equal to 23 residues 
respectively. Two residues are considered to be in contact with 
each other if the Cβ-Cβ distance is below 8 Å, which is in accord-
ance with the standard assessment procedure introduced in the 
Critical Assessment of protein Structure Prediction (CASP) exper-
iment (Ezkurdia, et al., 2009). Table 1 depicts the mean precision 
values obtained for different methods including PSICOV, 
(mf)DCA, CCMpred and both stages of MetaPSICOV for the top-
L/10, top-L/5, top-L/2 and top-L contacts where L is the length of 
the target protein, the thresholds used commonly in contact predic-
tion assessment methods, for sequence separation greater than or 
equal to 5 and greater than or equal to 23 simultaneously 
(Ezkurdia, et al., 2009). 

Fig. 1. Distribution of predictions for 9678 observed true contacts, as pre-

dicted by PSICOV, DCA and CCMpred. Data are the top L/2 correct con-

tact predictions from each method (for sequence separation >4 residues), 

for a set of 150 Pfam families (Jones, et al., 2012). 

 
To allow the relative contributions of individual components to 

be gauged, various subsets of features were also evaluated. The 
main subsets are shown in Table 1, and some additional subsets in 
Supplementary Table II. The worst performing subset is unsurpris-
ingly the subset excluding the three coevolution methods, though 
the true positive rate, even in this case, is far from negligible. One 
surprise is that a pure consensus (“Consensus only”) of the coevo-
lution methods performs no better than the best single method 
(CCMpred). This suggest that the additional features in MetaP-
SICOV are vital in correctly deciding the relative weighting to 
assign to the different coevolution inputs. A network without any 
of the coevolution inputs (“Net only”) performs very poorly on 
long range contacts, though when shorter range contacts are in-
cluded, a reasonable level of prediction accuracy is obtained.  
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Fig. 2. Mean precision of contact prediction against increasing number of 

predicted pairs for (a) sequence separation ≥ 5, (b) for sequence separation 

≥ 23 and (c) for sequence separation ≥ 23 with redundant contact predic-

tions excluded (see text for details). 

 

 
 
 
 
 
 
 
 
 

                                                        

                                                                                                                                                    

 

 

 

                                                             

                                                                                                                                                    

 
 
 
 
 
 
 
 
 
     

 
 
 
 
 
 
                       
 
 
 

 

 

 

 
 

 
 
 

Fig. 3. MetaPSICOV top-L/2 precision plotted against (a) PSICOV preci-

sion (b) DCA precision and (c) CCMpred precision for sequence separation 

≥ 5 (line x=y shown for reference) 

 

The 7 different combinations of coevolution methods are evalu-
ated in Supplementary Table II, where it can be seen that a combi-
nation of all three methods performs optimally. 

Figure 2 shows the overall performance of MetaPSICOV in 
terms of its mean precision, both after the first stage and the sec-
ond filtering stage. For comparison, results for CCMpred 
(Seemayer, et al., 2014), PSICOV (Jones, et al., 2012) and DCA 
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(Marks, et al., 2011) are also shown. Clearly, both stages of Meta-
PSICOV significantly outperform the other methods at both se-
quence separation ranges and all four contact subsets. To see this 
in more details, Figure 3 shows a scatter plot between the mean 
L/2 precision against the three component coevolution methods. 
Again, MetaPSICOV shows substantially higher accuracy preci-
sions than any of the other tested component methods in almost 
every case. 

 
Table 1. Mean precision values for the top-L, top-L/2, top-L/5 and top-

L/10 contacts, L= length of target protein, at different sequence separation 

ranges i-j  ≥ 5 and i-j  ≥ 23, where the Cβ-Cβ distance < 8 Å. 

 

    [i-j] ≥ 5     [i-j] ≥ 23   

  L L/2 L/5 L/10 L L/2 L/5 L/10 

Net only 0.37 0.41 0.52 0.66 0.25 0.32 0.4 0.43 

PSICOV 0.45 0.60 0.73 0.79 0.34 0.48 0.65 0.73 

DCA 0.45 0.56 0.66 0.72 0.36 0.49 0.64 0.71 

CCMpred 0.52 0.67 0.77 0.81 0.39 0.55 0.71 0.76 
Consensus 
only 0.51 0.65 0.77 0.81 0.39 0.54 0.70 0.77 
MetaPSICOV 
(stage 1) 0.66 0.79 0.90 0.95 0.47 0.63 0.78 0.85 
MetaPSICOV 
(stage 2) 0.71 0.83 0.91 0.94 0.54 0.70 0.83 0.88 

 
 
One aspect of contact prediction assessment that is typically ig-

nored is the relative redundancy between different predicted con-
tact maps. Let us suppose that we already know that there is a con-
tact between residues i and j in a particular protein. Without even 
looking at the structure or making a calculation we can guess that 
residues in the immediate sequence neighborhood of this contact-
ing pair (i+1, j-1 for example) are also likely to be in contact. Of 
course not all of these contacts in the immediate neighborhood will 
be correct, and the exact pattern will depend on whether the chain 
segments are in beta sheets and then in a parallel or antiparallel 
conformation. Nevertheless, it is fair to say that pairs of contacts 
that are close together along the chain can be considered somewhat 
redundant in terms of predicting the overall chain fold. 

To evaluate the effects of redundancy on our comparison of 
methods, we recalculated the benchmark results after filtering out 
any lower scoring predicted contacts that are immediately adjacent 
(i±1,j±1) to any higher scoring predictions. Filtering was applied to 
both correct and incorrect contacts, therefore methods are on the 
one hand not credited for making multiple adjacent correct contact 
predictions, and on the other hand, not multiply penalized for mak-
ing adjacent incorrect predictions. This is admittedly a very con-
servative benchmarking strategy, as neighboring contacts clearly 
have at least some additional value in constraining the chain fold, 
but their value is clearly much less than unique long range contacts 
that are correctly predicted. Figure 2c shows the impact of exclud-
ing multiple predicted adjacent contacts. Firstly, it is clear that all 
the methods are much more similar in terms of overall perfor-
mance. It’s evident that at least some of the differences between 
the component methods derive from more redundant contacts. 
MetaPSICOV still outperforms the other methods, albeit with a 

reduced margin, but there is now no difference between the first 
and second stage classifiers. This is entirely unsurprising, as the 
whole point of the second stage network is to analyze the neigh-
borhood of predicted contacts from the first stage network in order 
to add missed contacts or remove spurious predictions.  

It is of course interesting to compare MetaPSICOV with the re-
cently published coevolution-based contact metapredictor, PconsC. 
Although the general idea of combining multiple coevolution 
methods is the same in both cases, the philosophy behind the ways 
in which variation in alignment quality is taken into account is 
substantially different. In the case of PconsC, to achieve maximum 
performance a set of 8 different alignments are required, from two 
different alignment methods and four parameters settings in each 
case. In the case of MetaPSICOV, however, a single alignment is 
used, but is supplemented by an array of features which describe 
the local and global quality of the given alignment. As both meth-
ods make use of the same testing set of 150 proteins used in testing 
PSICOV, it is also possible to make at least a rough quantitative 
comparison between them. One slight complication is that PconsC 
does not make use of the original PSICOV alignments, but instead 
uses several combined alignments that clearly will include more 
up-to-date sequence data. That being said, MetaPSICOV still per-
forms well in comparison to PconsC. From the PconsC supplemen-
tary data (Skwark, et al., 2013), the maximum precision reported 
for the top-L Cβ contacts (|i-j| ≥ 5) is 0.55, which compares with 
0.7 for MetaPSICOV. If PconsC is limited to just a single 
jackhmmer alignment, rather than a consensus of different align-
ment methods, which is more comparable to the inputs used for 
MetaPSICOV, then PconsC’s precision drops to 0.5, again com-
pared to the same precision of 0.7 in the case of MetaPSICOV. 

The fact that MetaPSICOV can achieve better results than 
PconsC without requiring sets of alignments to be generated from 
different methods and different runtime parameters, is clearly ad-
vantageous in terms of convenience and reduced computation. This 
also possibly insulates MetaPSICOV from systematic changes in 
both the underlying sequence data banks and the alignment meth-
ods as time goes on. However, it’s certainly worth considering that 
MetaPSICOV might be further improved by also being trained on a 
range of alignments, and this is something that we may explore in 
the future. 

The mean precision scores for MetaPSICOV-HB and a naïve 
method based on the standard MetaPSICOV algorithm for the top-
L/10 contacts is reported in Table 2. The top-L/10 contacts are 
chosen in this case as there are significantly fewer long range hy-
drogen bonds in proteins compared to general long range contacts. 
For the naïve method, any top-L/10 contact predicted by MetaP-
SICOV between residues in predicted beta strands is assumed to be 
a donor/acceptor pair, but with the donor-acceptor labelling being 
ignored. For MetaPSICOV-HB, however, only correctly labelled 
donor-acceptor pairs are counted as true positives. Table 2 clearly 
shows the added value that MetaPSICOV-HB gives over the 
standard method when predicting the hydrogen bonding networks 
in proteins, with a mean precision value 0.69 for long range hydro-
gen bonds compared to 0.26 for the naïve method.  This additional 
information on the directions of hydrogen bonded residue pairs 
could be invaluable in improving the quality of models produced 
by de novo methods, though finding optimal way to use this infor-
mation will take some effort. 
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Table 2. Mean precision values for the Top-L/10 predicted main chain 

hydrogen bonds at different sequence separation ranges, where residue i 

donates a main chain hydrogen bond to residue j (N-H .. O=C distance < 

3.5 Å). The 17 mainly helical targets with fewer than L/10 true hydrogen 

bonds were omitted from this analysis. 

 

  [i-j] ≥ 5 [i-j] ≥ 23     

L/10 L/10 

MetaPSICOV 0.43 0.26 

MetaPSICOV-HB 0.81 0.7 

 

The last part of this study involves evaluating the use of MetaP-
SICOV contact constraints for improving de novo protein structure 
models. For each of the 150 benchmark proteins, 20 models were 
generated by FRAGFOLD using three different predicted contact 
sets: PSICOV, MetaPSICOV stage 1 and MetaPSICOV stage 2 
contacts (9000 models in total). To ensure that all useful contact 
information was being used, each contact list was cut off at a pre-
cision threshold of 0.5 i.e. all the contacts used were estimated to 
have a greater than 0.5 probability of being correct. 

Without any contact constraints, the median TM-score for 
FRAGFOLD without contact constraints is 0.27, compared to 0.41 
for PSICOV, 0.46 for the first stage MetaPSICOV contacts, and 
0.43 for the second stage contacts. Figure 4 shows the distributions 
of TM-score differences between the PSICOV representative mod-
els and the MetaPSICOV models from each target ensemble. Scat-
ter plots for each comparison are also shown in Supplementary 
Figure 2. For 108 targets out of 150, the first stage MetaPSICOV 
contacts produce better models than PSICOV with a median im-
provement of 0.05 TM score units. For 40 targets, however, the 
improvement is quite substantial with an improvement of at least 
0.1 TM units. Surprisingly, given that more correct long range 
contacts are included in the second stage contact lists, results are 
slightly worse than those from the first stage, with only 99 targets 
showing an improvement, and a median improvement of only 0.02 
TM units. Although this looks puzzling at first glance, the explana-
tion is almost certainly down to the same redundancy issue that has 
been described previously. Suppose we were to predict the full set 
of contacts between a pair of hydrogen-bonded beta strands, but 
just two contacts between a pair of helices elsewhere in the struc-
ture. The additional contacts along the strands are not particularly 
informative as most derive purely from the regular hydrogen bond-
ing pattern. In this case, therefore, correctly modelling the beta 
strand pairing might satisfy 5 times as many constraints as correct-
ly modelling the pair of helices, even though the helices may con-
tribute far more to the overall model TM score. Consequently, the 
global optimization procedure is likely to be strongly biased to-
wards satisfying the beta strand constraints rather than the con-
straints between the helices in this hypothetical case. Note that this 
is only an issue because the contact constraints are probabilistic in 
nature. If all the constraints were real, then it’s obvious that the 

best possible model would then result from simply satisfying all of 
the contacts. 

It is clear from these folding results that more sophisticated 
methods are needed to handle the relative redundancy between 
different classes of predicted contacts. Not only do short range 
contacts need to be separated from long range contacts (as we al-
ready do), but the redundancy in 3-D constraints between neigh-
boring contacts also needs to be considered in an ideal weighting 
scheme. How this should best be done is as yet unclear. It would 
obviously be easy to exclude neighboring contacts as shown in 
Figure 1c, but then the additional information is just lost. A better 
approach may be to cluster the contacts into groups, according to 
sequence separation, and then apply a suitable weighting to each 
cluster. 
Fig. 4. Differences in mean TM-scores for the 150 benchmark proteins 

obtained by FRAGFOLD using (a) MetaPSICOV stage 1 contacts and (b) 

MetaPSICOV stage 2 contacts compared to PSICOV contacts. 

 

4 CONCLUSION 

 
Although recent developments in algorithms to determine coevolu-
tion patterns in large multiple sequence alignments have created a 
lot of excitement in structural bioinformatics, co-evolution alone is 
clearly not enough to derive all of the likely contacts in a protein 
structure. Although it is an impressive feat to deduce distance con-
straints purely from a statistical analysis of a multiple sequence 
alignment, it is evident that other sources of information can also 
contribute to producing more accurate predicted contact maps. It 
makes no sense to limit ones analysis solely to one source of in-
formation and ignore other sources, albeit sources that are weaker 
predictors in their own right. 
 MetaPSICOV is an effective hybrid of a fairly standard machine 
learning-based contact prediction method with three state-of-the-
art coevolution-based methods. The neural network is able to make 
a balanced decision between the coevolution signals and the gener-
ic structural features that provide orthogonal information on the 
likelihood of residue pairs making a contact. For target proteins 
with poor quality or sparse multiple sequence alignments the ap-
propriate strategy is to deemphasize coevolution in favour of ge-
neric structural features, but where sufficient homologous se-
quences are available, the overwhelming value of coevolution is 
clear. 
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 Compared to the best single coevolution method, MetaPSICOV 
achieves a precision that is 38% higher than the best individual 
coevolution method (CCMpred) for the top-L long range contacts. 
Furthermore, the mean precision for MetaPSICOV of 0.54 indi-
cates that correct predicted contacts are more likely than incorrect 
contacts, which is an important performance threshold in terms of 
accurate 3-D model building from predicted contacts (Hopf, et al., 
2012; Kosciolek and Jones, 2014; Marks, et al., 2011; Michel, et 
al., 2014; Nugent and Jones, 2012). 
 One of the more interesting observations has been the apparent 
effect of redundancy in predicted contacts. By constructing a two-
stage classifier it is possible to produce a more accurate contact 
predictor, but at the expense of biasing the distribution of contacts 
to regions of the protein where adjacent contacts are made (beta 
sheets). Although benchmarks clearly show that more correct con-
tacts are predicted by the second stage of the MetaPSICOV, the 
added bias in fact results in generally poorer 3-D models when the 
contacts are used for de novo structure prediction using 
FRAGFOLD. Better contact constraint scoring functions, which 
more evenly weight contact constraints according to both sequence 
separation and neighborhood density, are needed to deal with this 
problem. 
 Comparing MetaPSICOV to PconsC, another published coevo-
lution-based consensus contact predictor, MetaPSICOV evidently 
outperforms the earlier method on the same benchmark set. How-
ever, there are interesting aspects of PconsC that are not currently 
considered within the MetaPSICOV feature set e.g. features from 
sampling more than one sequence alignment from different meth-
ods or alignment parameters. Consequently, even better hybrid 
methods may be envisaged by considering even larger feature 
spaces. 
 Finally we show that it is possible to apply MetaPSICOV to 
predicting not just contacting residue pairs, but explicitly identify-
ing donor/acceptor pairings in beta sheets. By combining the accu-
rate prediction of side chain contacts with this much more discrim-
inating structural information, it should be possible to greatly en-
hance the quality of de novo modelling in beta-sheet rich target 
proteins. 
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