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Abstract

Active brain stimulation to abate epileptic seizures has shown mixed success. In

spike-wave (SW) seizures, where the seizure and background state were proposed

to coexist, single-pulse stimulations have been suggested to be able to terminate

the seizure prematurely. However, several factors can impact success in such a

bistable setting. The factors contributing to this have not been fully investigated on

a theoretical and mechanistic basis. Our aim is to elucidate mechanisms that

influence the success of single-pulse stimulation in noise-induced SW seizures. In

this work, we study a neural population model of SW seizures that allows the

reconstruction of the basin of attraction of the background activity as a four

dimensional geometric object. For the deterministic (noise-free) case, we show how

the success of response to stimuli depends on the amplitude and phase of the SW

cycle, in addition to the direction of the stimulus in state space. In the case of

spontaneous noise-induced seizures, the basin becomes probabilistic introducing

some degree of uncertainty to the stimulation outcome while maintaining qualitative

features of the noise-free case. Additionally, due to the different time scales

involved in SW generation, there is substantial variation between SW cycles,

implying that there may not be a fixed set of optimal stimulation parameters for SW

seizures. In contrast, the model suggests an adaptive approach to find optimal

stimulation parameters patient-specifically, based on real-time estimation of the

position in state space. We discuss how the modelling work can be exploited to

rationally design a successful stimulation protocol for the abatement of SW seizures

using real-time SW detection.
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Introduction

Epilepsy is a chronic neurological disorder characterised by recurrent seizures. In

children, several types of seizures display generalised rhythmic spike-wave (SW)

discharges in the electroencephalogram (EEG). Spike-wave seizures may appear

benign, as in the case of typical childhood absence. However, these may occur

frequently, and patients show increased co-occurrence of behavioural, cognitive,

and linguistic disorders [1, 2]. Anti-epileptic drug treatment is available but due to

the chronic nature of the disorder patients often suffer from side-effects that

impact their quality of life [3]. Spike-wave seizures frequently lack pathological

neuroradiological abnormalities and invasive treatments such as surgical

intervention are typically not indicated. Alternative means to reduce seizure

activity are therefore sought.

The control or suppression of epileptic seizures using stimulus perturbations

offers a potential alternative to anti-epileptic drugs. Investigations of the potential

of brain stimulation to abort seizures have been undertaken in both humans and

animal models of epilepsy [4] including epilepsy associated with SW seizures. In

animal models of generalised spike-wave seizures, electric, magnetic and auditory

stimuli have been shown to abate seizures [5, 6], whereas electrical vagus-nerve

stimulation was less successful [7]. In humans, brief auditory stimuli at SWD

onset led to a reduction of average seizure length in about 57% of cases in a study

with 19 patients, but a significant number of failed stimulations were also reported

[8]. Fig. 1 shows examples of a successful and an unsuccessful application of an

auditory stimulus during a SW seizure from this study [8]. In a single-case report,

transcranial magnetic stimulation repeated at 5 Hz reduced seizure duration in a

pediatric patient [9]. These variable results indicate that stimulation protocols for

spike-wave seizures may not yet be optimal. In addition, the reasons why the success

of stimulation varies greatly are not well understood [6].

The design of effective and efficient stimulation protocols requires a rational

approach, incorporating knowledge of the mechanisms underlying the generation

of seizures and their electrographic signatures. Apart from animal experimental

studies, mathematical models are an ideal means to explore these mechanisms and

to test the potential effects of different perturbations before their application in

patients (see e.g. [10]). A number of mathematical models were developed to

describe the abnormal SW rhythm [11–15]. The model of Breakspear et al. [12]

(which builds on [11]) explicitly accounts for the thalamocortical interactions

which are crucial for the generation of SW seizures in rodent models [16, 17] and

in humans (e.g. see [18–20]). However none of these models have been used to

investigate stimulation in SWD.

Lopes da Silva et al. suggested to view epileptic seizures from the perspective of

dynamical diseases [21]. They argued that while the focal onset of so-called partial

seizures is consistent with the slow modulation of a systems parameter, the

dynamic mechanism for generalised seizures might be different. They suggest that

SW seizures occur from a normal background dynamics in a bistable setting. I.e.

the seizure state coexists with the background state and the transition to the
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seizure state is induced by the presence of noisy fluctuations, e.g. from subcortical

input to the cortex. This hypothesis was supported by a mechanistic

computational model of the thalamo-cortical loop dynamics [22] and the SWD

seizure duration statistics obtained from rat models and humans [23].

Assuming bistability, the success of the single-pulse stimulation can be

explained by the presence of the so-called basin of attraction of the background

state. This basin is the structure in state space that is associated with normal

background dynamics. Whenever the system (in our case the brain electric

activity) assumes the background state, it will be contained within the basin

structure. During the seizure, the system assumes a trajectory outside of this basin.

In these terms, the goal of stimulation is therefore to apply a single pulse

perturbation such that the brain activity returns to a state within the basin of

attraction of its background state.

For the case of a coexistence of the seizure and the background state it was

proposed that brief single-pulse stimulation might be sufficient to abort the

seizure [24]. This was numerically confirmed for the thalamo-cortical model of

coexisting background and seizure states [22]. The authors showed that an

appropriate single pulse stimulus can abate an abnormal oscillatory state. That

study found optimal sets of stimulation phases and amplitudes in noise-free,

deterministic simulations (see Fig. 6c of [22]). However, previous models

studying single pulse stimulation in bistable systems either did not incorporate the

complexities of the SW waveform morphology, or study the impact of noise on

the resulting stimulation. Furthermore, a detailed analyses of the state space (basin

of attraction) have not been shown in previous models, often due to their high

dimensionality.

In the following we investigate the basin of attraction of the background state in

a minimal thalamo-cortical model of SW seizures. We use the model to examine

the effect of single pulse stimulation in the absence and in the presence of noise.

From the results we derive some suggestions for the practical application of

stimuli during absence seizures based on real-time detection of SW.

Fig. 1. Successful and unsuccessful auditory stimulation. Clinical EEG recordings of successful (upper
panel) and unsuccessful (bottom panel) seizure abatement by an auditory stimulus (arrow). Figure modified
from [8] with permissions.

doi:10.1371/journal.pone.0114316.g001
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Results

Spontaneous spike-wave dynamics

Fig. 2 (a) shows a clinical recording of a typical SWD seizure from a single EEG

electrode. There is an apparently spontaneous transition from a normal irregular

background state to an abnormal seizure state with large amplitude regular

oscillations. The seizure stops abruptly after about 11 seconds and is followed by

continued normal background activity. To account for this paroxysmal dynamics,

we use the minimal model (Equation 4) of thalamo-cortical interactions. The

model describes the temporal evolution of the state of four variables

corresponding to the activity of populations of (i) cortical pyramidal neurons

(PY), (ii) cortical inhibitory interneurons (IN), (iii) thalamo-cortical neurons

(TC), and (iv) inhibitory (thalamic) reticular neurons (RE) [25] (see section

Model and Methods for details). The model can account for the background state

of normal activity and the rhythmic SW state of abnormal activity. Parameters are

set such that the background state coexists with the SW state in the absence of

noisy input. The addition of noise (simulating e.g. irregular subcortical input to

the cortex) results in irregular background activity and occasional noise-induced

transitions to large-amplitude SW rhythms. Fig. 2 (b) shows a simulated time

series for comparison with the clinical recording Fig. 2(a) . In this setting the

simulated paroxysms have durations between 10–15 seconds which is common for

clinical absence seizures in humans [23]. Fig. 2(c) shows a zoom into the EEG

seizure state and the morphology of the SW waveform with a duration of

approximately 300 msec. A zoom into the simulated seizure dynamics (Fig. 2 (d))

reveals qualitative similarity of the SW complex, its large amplitude and a

duration of about 300 msec. The model thus correctly reproduces the proposed

mechanism of a dynamical setting where the background state and the seizure

state coexist, and are in close vicinity to each other such that noisy input induces

sudden transitions to the seizure state and back again [21].

The basin of attraction

In the deterministic bistable model (Eq. 1), two attractors coexist (background

and SW). Hence the state space can be separated into two distinct areas, each

associated with an attractor. The set of all possible states evolving towards the

background state is termed the basin of attraction of the background. Similarly,

the SW basin of attraction is the set of all states that evolve towards to SW

attractor. These two sets of states are distinct in state space and separated by a

manifold, termed a separatrix. Unlike all previous thalamo-cortical models of SW,

the current model with its four variables allows the comprehensive study of the

basin of attraction of the background state (which is also four dimensional). In

the background state, small perturbations (within the background basin of

attraction) will not lead to a qualitative change of dynamics. Stronger

perturbations (beyond the separatrix) result in a transition to the rhythmic spike-

wave seizure state. Analogously, when on the SW attractor, a perturbation beyond
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the separatrix is required for a return to the background state. Thus the basin of

attraction of the background should be the target for seizure abating stimuli. In

the following, we are therefore interested in the basin of attraction of the

background.

We have numerically determined this basin of attraction for our model in the

absence of noise by systematically scanning points in the four dimensional state

space of the model. Points that evolve towards the background state are points in

the basin of attraction of the background. The ensemble of all detected points in

the basin gives an impression of the geometry of the basin. While the four

dimensional geometry cannot be visualised fully in a single image we can study

different projections to lower dimensions. Essentially, we can take three

dimensional slices through the four dimensional basin structure by keeping one

model variable constant. In such a three dimensional projection, all the points

that evolve towards the background state can be shown in a 3D plot, and they all

share the same initial condition value in one variable. Figs. 3 (a) and (b) show two

projections of the basin points in (pseudo-) 3D plots. The actual matlab 3D plots

are shown in S1 File & S2 File. The projection of the basin points in the

pyramidal-inhibitory-thalamocortical population space (PY-IN-TC, keeping RE

constant) in Fig. 3 (a) appears to embrace the spike-wave attractor and is indeed

located in the vicinity of it. The projection in the pyramidal-thalamocortical-

reticular population space (PY-TC-RE, keeping IN constant) in Fig. 3 (b) shows

how the spike-wave attractor surrounds the basin, in agreement with the

schematic picture in [21]. However, these are solely projections for a single value

in the fourth dimension. The projection points in the fourth dimension (i.e. the

value of the reticular population when projecting into the PY-IN-TC space, and

the value of the inhibitory population when projecting into the PY-TC-RE space)

in these figures were chosen to be points on the SW attractor, since we ultimately

wish to perturb into the background basin from the SW attractor. Such a

Fig. 2. Comparison between clinical and simulated EEG. The clinical (left) and simulated (right) EEG are compared in various properties, such as the
long-term time series (a,b), and seizure waveforms (c,d).

doi:10.1371/journal.pone.0114316.g002
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projection is essentially showing the basin of the background viewed from this

point on the SW attractor. In other words, when on a particular point of the SW

attractor, we show the basin of attraction of the background (fixed point) in two

projections. Fig. 3 (c) and (d) additionally show the basin from a different

projection point on the SW attractor. The shape and size of the basin in this

projection point has changed considerably. Fig. 3 (e) shows these two projection

points in a time series of SW oscillations (indicated by the two stars).

A more complete view of the basin can be obtained if the same projection is

plotted during the evolution of the system on the spike-wave cycle, i.e. for a range

of values of the fourth variable. This time-dependent projection can be seen in the

S1 Movie. The video demonstrates how the three dimensional projection of the

basin changes both size and form during the SW cycle. Specifically, there is a

larger volume of the basin in the projection during the slow wave component as

compared to the time while the system performs the spike.

Upon the inclusion of noise, the model exhibits spontaneous episodes of seizure

arising autonomously from the background, comparable to the clinical occurrence

of SW seizures (see Fig. 2). In the presence of noise input, the basin of attraction

of the background fixed point becomes less well defined compared to the

deterministic case (Fig. 3). Particularly near the basin boundary trajectories from

a particular point in state space can develop differently under different noise-

inputs. Hence, it is difficult to unambiguously decide whether that particular state

space point leads to trajectories returning to the background fixed point or not. In

this case, the either/or decision of the deterministic case is replaced by a

likelihood. This likelihood of a particular point in state space to return to the

background dynamics can be approximated by simulating repeated trials from the

same initial conditions with different noise inputs. This ‘‘return probability’’ is 0

for points that never return, 1 for points that always return and a value between 0

and 1 for points are found to lead to both the background and the seizure state.

In Fig. 4 we compare projections of the return probability in a two dimensional

state space in the deterministic case (left) and under noise input (right). The two

dimensional TC-RE state space is taken at the PY and IN values of the fixed point.

In the deterministic case (Fig. 4, left), there is a well-defined boundary between

the basin of attraction of the background (green) and the basin of SW dynamics

(black). It was shown that clinical SW dynamics is dominated by deterministic

dynamics [26] and it is therefore likely that the basin boundary will preserve

major features of the deterministic case in the presence of noise. Simulating the

model with noise input we find that the structure of the basin of attraction from

the deterministic case is indeed still discernible (Fig. 4, right). However, the

boundary is now fuzzy and a gradient in return probabilities can be observed. The

degree of ‘‘fuzziness’’ depends on the noise amplitude and the dynamics of the

system. Importantly, however, the core of the deterministic basin retains a high

return probability.
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Stimulation of deterministic spike-waves

In the deterministic case the model set in the background state does not show

spontaneous paroxysms. Similarly, when starting the deterministic model on the

bistable SW attractor, it does not return to the background. To study the effect of

stimulation we therefore start the model in the SW rhythm and apply single-pulse

stimuli.

In a clinical setting it is unlikely that individual neural populations in the cortex

or thalamus can be addressed individually. We therefore assume that a simulated

stimulus affects the activity of both cortical neural populations (PY and IN)

simultaneously (e.g. modelling a TMS pulse). In essence, we thereby fix the

direction of the stimulus in state space and allow its timing and amplitude to vary.

Fig. 3. Three dimensional slice through the four dimensional basin of attraction of the background state. Black line indicates the SWD attractor. Stars
show the slice point positions. Coloured dots are located in the basin of attraction of the background state in three dimensional state space. Colouring is only
included to enable better three dimensional visibility of the geometry of the basin. Red, green and blue intensities encode the three principal axes of the 3D
plot. Additive colouring is used to plot off-axis positions (e.g. red & green contribute to the yellow areas between the first and second axis). The SWD basin of
attraction is not specifically shown, as it is simply the part in state space that is not the background basin. (a) and (c) are three dimensional PY ,IN,TC slices
through the four dimensional state space. The slice point in the fourth dimension corresponds a single value of RE on the SWD attractor at time t~1:2s (red
star) for (a) and t~1s (green star) for (c). (b) and (d) PY ,RE,TC slices with the slice point corresponding to a single value of IN on the SWD attractor at time
t~1:2s (red star) for (b) and t~1s (green star) for (d). (e) Corresponding time series showing the slice points. 3D Matlab.fig files are available for (a) and (b) in

S1 File & S2 File.

doi:10.1371/journal.pone.0114316.g003
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We will demonstrate later that fixing the direction does not restrict the generality

of the investigation.

Fig. 5 (a) shows a time series for one deterministic SWD cycle where a stimulus

of fixed amplitude was applied at different phases of the cycle. I.e. we took

different time points in a SW cycle and applied the same stimulus at those time

points. Stimulation outcome is labelled as successful and coloured in green when

the system’s behaviour goes to background activity. If the stimulus is unsuccessful,

the colour code is dark grey (SW continues). Hence the result is a colour coding

allocated for each time point of stimulation. In turn, these time points can be

mapped to the SW time series, and hence the resulting figure is a colour-coded

time series. There are two phases during the slow wave component where the

stimulus to the cortical populations stops the SW oscillations. For the majority of

the time series (shown in dark grey), this particular single pulse stimulus does not

stop the model seizure.

Fig. 5 (c) shows a state space representation of an exemplary successful

stimulation (marked at a blue arrow in Fig. 5 (a)). The basin of attraction of the

background state is shown together with the SW cycle (thick black line). The blue

arrow indicates the stimulation direction and amplitude. This stimulation indeed

targets the basin of attraction, as shown in the zoom in the upper right corner of

(c), and thereby leads to SW termination. In contrast, Fig. 5 (d) shows an

exemplary unsuccessful stimulus, indicated by the red arrow (corresponding to

the red arrow in the time series view in (a)). This time the stimulation misses the

basin of attraction, and the SW activity continues despite of the stimulation. The

apparent change of the basin of attraction from (c) to (d) is, as explained in the

previous section, due to the three dimensional projection. The actual basin of

attraction is a fixed four dimensional structure and does not change.

In Fig. 5 (b), additional to scanning the stimulation time points, we also varied

the stimulation amplitude. The scan result (success of stimulus) is plotted

depending on the two scanned parameters, stimulation time and stimulus

amplitude. The color coding is as in (a): the green denotes stimulation parameter

combinations for which stimulation terminates SW dynamics, and dark grey

indicated unsuccessful stimulation parameters. There is a minimum stimulation

amplitude below which no SW termination is seen (around {0:08) and for

stronger stimuli there can be up to six phases on a single cycle during which

termination is achieved. Only one of these phases is broad and could be

considered as a candidate for an optimal stimulation protocol. Note, that the

width of the area changes with stimulation amplitude.

The grey box indicates the stimulation strength applied to obtain the colour

coding in Fig. 5 (a), which was mapped to the time series. Here we observe that

stimulation during the first green phase in Fig. 5 (a) with both a weaker and a

stronger stimulus may be unsuccessful. To reiterate, it is the geometry of the basin

of attraction that determines the outcome of a stimulation. This underlines that

stronger stimulation does not necessarily lead to better success. On the contrary,

we found cases, where a stronger stimulus not only did not abort the seizure but

substantially prolonged it compared to the unstimulated case.
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In summary, successful SW abatement in the deterministic case by a single

pulse stimulus critically depends on the phase/timing and the amplitude of the

applied stimulus. In the case of realistic spike-wave morphology the situation is

more complex than previously found in a model where the seizure waveform did

not have spike-wave morphology but was a simple oscillation [22]. The fixed

stimulus direction does not change our result in this section qualitatively. Using

different stimulus directions, we still find phases of successful stimulation and

unsuccessful stimulation depending on the stimulus amplitude. The success still

depends on if the stimulus reaches the basin of attraction of the background state.

Only the colour code positions in Fig. 5 (a) and the map in Fig. 5 (b) would have

a different structure (data not shown).

Stimulation in the noise-driven model

To investigate the impact of stimulation in the noise-driven setting, we

systematically scan the stimulation timing and amplitude as in the previous

section. However, as explained, unlike in the deterministic case, where only the

target state space position determines the stimulation outcome, the added noise is

now an additional factor influencing the stimulation outcome. In fact, we know

that even on the SW trajectory, the probability of returning to the background is

non-zero. Hence simulated seizures terminate eventually under noise-input, even

without stimulus. To account for this effect, we vary the noise input after the

stimulus in repeated simulations and measure the probability of reaching the

background state with a given stimulus, whereby we approximate the return

probability of the stimulus target position.

Fig. 6 illustrates the variation of stimulation responses depending on the noise

input. Fig. 6 (a) shows two exemplary time series following the same stimulus

during the same seizure, but using two different noise inputs after the stimulus. In

the left hand panel the seizure is successfully terminated, whilst in the right hand

Fig. 4. Return probability in a 2D slice through state space. Two dimensions of the four dimensional state
space is visualised in the deterministic (left panel) and noise-driven (right panel) models. PY and IN are fixed
at the value of the background fixed point. Return probabilities (colour code) are scanned in the TC,RE
variables. The red dot marks the position of the background fixed point.

doi:10.1371/journal.pone.0114316.g004

A Computational Study of Stimulus Driven Epileptic Seizure Abatement

PLOS ONE | DOI:10.1371/journal.pone.0114316 December 22, 2014 9 / 26



panel the SW continues. Compare this to the outcome of the clinical situation

displayed in Fig. 1.

To investigate the effect of the noise-input on stimulus success systematically,

we scan the stimulus timing (for the same stimulus amplitude) over repeated trials

using different noise-inputs after the stimulus. Fig. 6 (b) shows the impact of a

stimulus of fixed amplitude at time St (x axis) using 20 different noise input seeds

for the noise vector after the stimulation (vertical axis). See the time series in

Fig. 6 (c) for the position of spikes and slow waves. Variations in the successful

stimulation timing when using different noise vectors can be seen. For example,

Fig. 5. Single pulse stimulation in a deterministic SWD system. (a) Colour coded time series of one cycle
of SWD. The green colour indicates a return to the background fixed point if stimulated at the colour-coded
position (using a fixed stimulus amplitude). Blue/red arrows indicate stimulation points in (c)/(d). (b) Colour
coded map of stimulation amplitude and timing in the same SWD cycle. The same colour code as in (a) has
been used. The particular amplitude used for (a) has been outlined in a grey box. (c) Basin of attraction of the
background state (coloured dots) in the PY ,IN,TC projection for the stimulation point on the SWD cycle is
shown together with the SWD attractor (black line). Blue arrow indicates the successful stimulus at this point,
as it points into the basin of attraction. (d) Same as (c). Red arrow indicated the unsuccessful stimulus at this
point as it does not point into the basin. Notice the change in axes between (c) and (d), the figures are rotated
to aid visualisation, however, the stimulus direction is the same. 3D Matlab.fig files are available for (c) and (d)
in S3 File & S4 File.

doi:10.1371/journal.pone.0114316.g005
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using 1 as the noise seed only around a third (32.3%) of the stimulations were

successful, whereas when using 18 as the noise seed 95% of stimuli of the same

amplitude successfully terminated the SW within 3 seconds.

In order to account for this variability, we use the notion of the stimulation

success rate, which is essentially the return probability of the stimulus target

position. We calculate the success rate for a stimulus by taking the percentage of

successful simulation trials over the total number of simulation trials (20 in our

case). For example, the strip at the top of Fig. 6 (c) shows the success rate at

different stimulation time points derived from the data in Fig. 6 (b). Essentially,

the strip in Fig. 6 (c) is an average of Fig. 6 (b) over the noise trials. When this

success rate is mapped onto the time series, some regularity can be observed. It is

Fig. 6. Stimulation in the noise-driven system. (a) Two examples of the same simulation timing and
amplitude in the same seizure, but with varied outcomes. Different noise inputs were used after the stimulation
for the two examples. (b) The effect of different noise inputs (y axis) is scanned depending on the ensuing
seizure duration (colour code). As in (a), different noise inputs were used following the stimulation. The
stimulus amplitude was constant (20.0825) for the whole scan. (c) The top bar indicates the success rate
(derived from the data in (b)) at each stimulation time point, which is then applied as a colour code to the
actual SWD time series. (d) The success rate is also scanned for different stimulation amplitudes. In essence
the strip in (c) is a row in (d), indicated by a grey bar.

doi:10.1371/journal.pone.0114316.g006
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clear that the top of the wave and the downward part of the wave are typically the

most successful periods during the SW cycle (using the same fixed setting of

stimulus amplitude and direction as in Fig. 5 (a)). This is to be expected given the

results in the deterministic system (see Fig. 5 (a)), as the basin of attraction is, to

some extent, preserved under the noise-input (as reported in the second Results

section).

So far we have used the same stimulus amplitude in the analysis. When

additionally scanning the stimulus amplitude at each stimulation time point, we

derive a success rate map for our simulated seizure (see Fig. 6 (d)). The ‘strip’ in

Fig. 6 (c) is an extract of the ‘map’ in Fig. 6 (d), indicated by the grey box. The

map is effectively a likelihood of success of a stimulus for a specific stimulus

amplitude and timing in the simulated seizure. Again, the pattern of high success

rate stimulation parameters agree to some extent with the deterministically

derived pattern for one cycle of SWD (compare with Fig. 5 (b)).

Cycle to cycle variation

Despite the agreement of the deterministic stimulation pattern and the noise-

driven success rate pattern, a between cycle variability is observed in the noise-

driven case in Fig. 6 (c) and (d). For example the pattern for the first full cycle of

SWD after 0 s in Fig. 6 (d) is quantitatively different from the first full SW cycle

just after 2 s. Although some qualitative similarity can be observed between the

cycle patterns, which agrees with the deterministic prediction (Fig. 5 (b)), the

variability is strong enough to significantly alter success rates even during the

apparently optimal phase around the top of the wave (e.g see the lack of success

on top of the wave between 2.1 and 2.4 seconds, in Fig. 6 (c)).

As the success rate is derived from averages over repeated simulations with

different noise vectors, these cycle to cycle variations cannot be attributed to the

noise effect alone. In order to elucidate the source of the cycle to cycle variations

we plot the time series as a trajectory in state space. We shall also map the success

rate onto the trajectory with the same colour map as before. Instead of the model-

specific state space in Figs. 3 and 5 we now plot the state space reconstructed by

time delay embedding because this can also be obtained from an EEG recording

and thus allows direct comparison (see Model section 6 for details of attractor

reconstruction in state space).

Fig. 7 (a) and (c) are reconstructed state space projections using both the

unfiltered and filtered model output. Fig. 7 (a) and (b) are comparable to the

PY ,IN,TC state space, and Fig. 7 (c) and (d) are comparable to the PY ,TC,RE
state space. (See Methods for details of the reconstructed phase space.) In this

state space view it becomes clear that the exact state space position of the SW

trajectory varies from one cycle to the next. This is in contrast to the deterministic

case where all cycles follow an identical path. The reason for this variation is that

the model (particularly with its slow thalamic compartment) acts as a moderate

low-pass filter for the noise.
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In consequence, although the change in position is not very strong, the

(average) result of stimulation may change considerably. For example, in the

zoom-in panel of Fig. 7 (a), the variation of the position along the direction

indicated by the black arrow is enough to modify the outcome from mostly

successful to mostly unsuccessful. Nevertheless it can be seen that the

predominantly successful (circled in red) and unsuccessful regions cluster in state

space and optimal stimulation regions can be identified. This indicates that the

altered position of the cycle changes the relative position of the basin of attraction

(or region of high return probability), and consequently leads to altered mean

success rates for the same stimulus from the same SW phase.

For comparison, we plotted a reconstructed state space from a clinical EEG

recording during a SW seizure in Figs. 7(b) and (d). There is good qualitative

agreement between the simulated and clinical SW cycle forms, also in terms of the

cycle to cycle variation. In order to determine the success rate in the clinical

scenario, we suggest that a patient-specific derivation should be performed (as

discussed later). The model derived high success rate regions are not necessarily

directly applicable to the clinical case, as (i) the stimulus direction is arbitrarily

chosen in the model and (ii) the model parameters are not patient-specific, hence

the basin of attraction cannot be expected to be identical in the model as in the

patient.

Nevertheless, our presented results are still highly relevant, as we proposed

mechanistic reasons for the failure of current stimulation protocols in SW

seizures. For example, we could show that when using arbitrary stimulation

timings and amplitude, an average success rate of about 55% can be obtained

(average success rate of the whole map in Fig. 6 (d)). This would agree with the

Fig. 7. Delay embedding reconstruction of the SWD attractor. The simulated seizure (left) and the clinical
seizure (right) are reconstructed. The same reconstruction parameters (delay time and filter frequency cut-off)
have been used for both simulated EEGs (Sim.) and clinical EEGs (EEG). F(…) indicates low-pass filtering of
the simulated EEG, as explained in the Methods section. Time delays used are indicated in seconds on the
axis label. (a, b) Reconstructed attractor, in this case corresponding to the PY ,IN,TC phase space view (c.f.
Fig. 5 (a) rotated). (c, d) Reconstructed attractor corresponding to the TC,RE,PY phase space view (c.f. Fig. 5
(c)). 3D Matlab.fig files are available for all subfigures in S5 File, S6 File, S7 File, & S8 File.

doi:10.1371/journal.pone.0114316.g007
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success rate of 57% reported in [8] (where stimulation was delivered at arbitrary

time points during the cycle with potentially varying amplitude). Even with an

optimised stimulation amplitude, only a maximal success rate of 65% was

obtained. Only by taking into account all the mechanisms we proposed in this

study, optimal stimulation regions in state space can be derived (red circle in

Fig. 7). In Discussion, we propose how this mechanistic insight should be used to

devise better stimulation protocols.

Discussion

In this study we have treated generalised spike-wave seizures from a dynamical

systems point of view. Abrupt changes in dynamics associated with disease states

have been suggested as evidence that such a perspective might complement more

traditional views of disease pathophysiology [27]. Anecdotal evidence that absence

seizures can be terminated by a brief acoustic stimulus (i.e. by an auditory or

arousal mechanism) was considered as a hint that SW seizures might present an

example of a bistability between a background and a disease state [24]. Such a

concept has more recently been connected to other abnormal states as well [28].

Whilst the proposal of single-pulse abatement of SW seizures [24] was

implemented in a computational model of the thalamo-cortical loop [22], the

model in that study did not display the characteristic spike-wave waveform and

the full geometry of the basin of attraction was not studied. Our work shows that

when a realistic waveform is considered, even in the simplified version of the

thalamo-cortical loop the response to stimulation is much more complex.

Our model eq. (4) produces a 4D basin of attraction of the background state,

which we visualised as a time-varying 3D projection. The basin of attraction is

well-defined in the case of deterministic simulations where noise input is ignored.

Nevertheless, we demonstrated that the basin is a complicated structure in our

model that leads to a non-trivial phase- and amplitude-dependency of the

stimulus (Fig. 5 and S1 Movie). Specifically, in different phases of the SW

oscillation, a stimulus with the same strength (amplitude) might either abort the

SW sequence, leave it unaffected, or even prolong it. Previous experimental [29]

and clinical [30] studies have suggested phase dependency as being crucial for

stimulation success. However, unlike in cases where the pathological dynamics is a

simple sinusoidal oscillation (see e.g. the phase dependence of stimulating an

essential tremor rhythm [31]), the SW morphology is associated with a basin

boundary which manifests as highly complex geometrical object. Nevertheless, a

clear pattern of successful stimulation parameters can be estimated from the scan

of phase and amplitude of the stimulation (Fig. 5).

A second level of complication comes with the addition of noise input to the

model. Noise is unavoidable in the in vivo situation. In the bistable model it is

used as the driving mechanisms for spontaneous transitions into and out of SW

seizures. The presence of noise makes the borders of the basin of attraction fuzzy

(Fig. 4). Nevertheless, the noise input in our model leaves the deterministic

A Computational Study of Stimulus Driven Epileptic Seizure Abatement

PLOS ONE | DOI:10.1371/journal.pone.0114316 December 22, 2014 14 / 26



structures intact, as the dynamics of the SW seizures was shown to be dominated

by deterministic behaviour [26]. Hence, the predominantly deterministic nature

of SW seizures are likely to preserve the core of the basin, i.e. a robust region in

phase space into which the dynamics can be directed to abort the seizure.

However, there is a third level of complication. Due to the low-pass filtering

properties of the slow time scale on the noise input, the position of the SW cycle

relative to the basin of attraction may vary substantially from cycle to cycle. With

the complex geometry of the basin, this leads to a significant alteration of the

degree of success one can expect from repeated application of the same stimulus

in the same SW phase. As the exact geometry of the basin will be unknown in the

clinical setting, it is unlikely that any fixed set of successful stimulation parameters

can be predicted even with a detailed model of SW.

We therefore suggest a practical solution to the problem of determining

stimulation parameter candidates using a state space approach. A low dimensional

state space can be reconstructed from a single clinical recording using delay

embedding. In the learning phase, the result of a stimulation at a given point in

state space is stored. Stimuli of different amplitudes can be used to reach better

coverage of the state space. When a state space volume has reached a certain

density in terms of stored points, a return probability of this volume can be

calculated (see Fig. 8). Repeated stimulation should then lead to the appearance of

volumes associated with high return probability in a given patient. Note that in

the case of no success, stimulation can be repeated within the same seizure. Also

the frequency of typical absences and the fact that they can often be precipitated

by hyperventilation should allow for sufficient trials in the learning phase to

estimate a volume in phase space that is the best target for single-pulse

stimulation. The consistency of SW seizures within patients as compared to the

variability between patients [19] leads us to expect that each patient will have

individual optimal state space volumes. Therefore adaptable algorithms based on

the real-time determination of position in a reconstructed state space are the

optimal strategy according to our computational study.

Such a stimulation protocol could be implemented in an ‘‘automatic self-

stimulation’’ device, as suggested by [8]. In such a device, surface electrodes can

be used for the detection of SWD in real time and stimulation can be delivered,

for example, by an auditory stimulus. The closed loop stimulation device can be

entirely non-invasive in design and implementation. For validation of the

stimulation protocol on SWD in animal models the WAG/Rij or GAERS rats

could be used experimentally [6, 32]. Due to the non-invasive nature this

approach could also be tested during clinical monitoring or during sleep in a non-

clinical setting. For other types of seizures, invasive designs (as successfully applied

in animal models [5, 6, 33]) might be adopted.

In the current work we only investigated the effect of single pulse stimulation

and assumed that these pulses have the effect of directly influencing the state

variables (i.e. variables representing the EEG voltage) and preserving the

bifurcation structure. This is conceptually different to bifurcation control (e.g.

[34, 35]), where it is assumed that a particular system parameter can be
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controlled/tuned from outside. In the latter scenario, the SW attractor can be

destroyed altogether by shifting a parameter out of the bistable region in

parameter space. Such an approach requires more physiological details to be

considered in modelling studies and might therefore best be done in a detailed

biophysical model of SW, e.g. [36].

One potential limitation of the model in its current presentation is that any

spatial interactions are lumped together (as in previous cases, e.g. [11]). On the

one hand, it has been argued for generalised absence seizures that spatially

extended brain processes may be responsible mechanisms and consequently a

reduction in the spatial dimension [37] can be made. On the other hand, it was

demonstrated that spatial heterogeneities could be important for seizure genesis

and maintenance [13, 38, 39]. Future work should include such heterogeneities,

ideally using patient-derived connectivity data as suggested in [40, 41], to

additionally investigate the optimal stimulus position in space [42].

In summary, our study predicts that SWD seizures can be abated through the

application of single pulse stimulation. Successful stimulation requires that the

optimal pulse targets a specific region in state space: the basin of attraction of the

background behaviour. Due to the complexity of the basin and the relative

Fig. 8. Schematic of a suggested single pulse stimulation protocol. In the learning phase (top) success
rate of state space targets are stored based on arbitrary stimulations during seizures. Once the state space is
charted, the application phase (bottom) can use the information of the success rate of state space targets to
deliver high success rate stimuli to abate SWD seizures.

doi:10.1371/journal.pone.0114316.g008
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position of the SW trajectory to it, the optimal stimulation timing and amplitude

is predicted to be complex and time-dependent. We suggest that the real-time use

of a reconstructed state space can aid a learning/optimisation algorithm in a

patient-specific manner. Such an adaptive algorithm could then potentially be

used to non-invasively suppress generalised SW activity, particularly in paediatric

patients.

Materials and Methods

Physiological basis of the model

The bilateral generalised nature of many SWD seizures has led many investigators

to hypothesise about an underlying pacemaker to synchronise such large cortical

areas. Indeed, experimental and clinical evidence suggests a key role for thalamic

involvement (see eg. [43] and references therein) in widespread SWD.

To model thalamocortical interactions we follow previous modelling

approaches based on the physiological connectivity of this system (see Fig. 9

below, and compare to [22] and [12]). Specifically, the neural mass approach by

[22] forms a neural population version of the detailed biophysical model

advanced by [36]. On the macroscopic level, the pyramidal cell population (PY)

variable is self-excitatory [44] and excites the inhibitory interneuron population

(IN) [22]. In addition, PY excites thalamocortical cells in the thalamus (TC), and

cells in the reticular nucleus of the thalamus (RE) [22, 45]. Inhibitory

interneurons inhibit local cortical PY cells only [22]. Direct thalamic output to

the cortex comes exclusively from excitatory TC connections to PY populations

[12]. Intrathalamic connectivity is incorporated into the model as follows: TC
cells have excitatory projections to RE, which in turn inhibits the TC population

along with self-inhibition of RE. This connectivity scheme is consistent with

experimental results reviewed in [16] and summarised in their Fig. 1.

Finally, we incorporate a slow timescale into the thalamic compartment, as it

has been demonstrated in a minimal model of SWD that at least a slow driver is

required in addition to the PY and IN units [15], which we assume to be the

cortical populations that generate the SWD seizure EEG [46]. Furthermore, there

is experimental evidence for abnormal slow processes (variations in a tonic

inhibitory current), which may be a common mechanism in typical absence

seizures [47]. This is also supported by theoretical studies that find slow timescales

crucial for the generation of realistic SWD. These studies either incorporate the

slow timescale directly by modelling the slower reaction of thalamic populations

[39, 48] or by incorporating explicit delays [12]. [48] compares the two

approaches and finds similar bifurcation structures leading to the onset of SWD.

As the exact dynamic mechanisms underlying the emergence of the slow timescale

is still unclear, we assume that the thalamic compartment operates on a slower

timescale. This specifically has the advantage that the model could in future be

analysed in terms of slow-fast subsystems [15].
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Deterministic Model

We implement the model using a neural population version of the Amari neural

field equations [44], following [14, 39]. The explicit connectivity scheme and a

formal description of the model including the equations are given below.

For simulations of the deterministic system the ode45 MATLAB solver was used

with Eqn. 1.

dPY
dt

~t1(hpy{PYzC1 f ½PY �{C3 f ½IN�zC9 f ½TC�)

dIN
dt

~t2(hin{INzC2 f ½PY �)

dTC
dt

~t3(htc{TCzC7 f ½PY �){C6 (s½RE�)

dRE
dt

~t4(hre{REzC8 f ½PY �){C4 (s½RE�)zC5 (s½TC�)

ð1Þ

where hpy,in,tc,re are input parameters, t1:::4 are time scale parameters and f ½:�
and s½:� are the activation functions:

f ½u�~(1=(1zE{u)) ð2Þ

s½u�~auzb ð3Þ

with u~PY ,IN,TC,RE. The parameter E determines the sigmoid steepness.

These equations implement the connection schematic as shown in Fig. 9. The

model EEG is taken as the mean of the two cortical populations. All model

Fig. 9. Connectivity scheme of the model. Excitatory (inhibitory) connections indicated in green (red). PY is
the cortical pyramidal neural population, IN is the cortical inhibitory neural population, TC is the
thalamocortical neural population, and RE is the thalamic reticular nucleus neural population.

doi:10.1371/journal.pone.0114316.g009
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parameters used to produce the figures in this manuscript are listed in Tab. 1. In

this study we place the model in a bistable state. Parameter scans of the input

parameters to the TC and RE variables indicate that the bistability occupies a fairly

large region in the SWD parameter space (S1 Fig.) and can therefore be

considered robust.

For simplicity, a linear activation term s½u�~auzb is used instead of the

sigmoid (f ½u�~(1=(1zE{u))) is used in the thalamic subsystem. This approx-

imation is justified because the thalamic compartment is mainly operating in the

linear range of the sigmoid for the SWD. It simplifies the analysis of the model

and the adjustment of the required bistability between background activity and

SW dynamics. S2 Fig. shows the qualitative agreement between the two versions

of the model (with sigmoidal and linear activation functions for the thalamic

compartment) including the existence of bistable SWD upon perturbation at

St~3.

Stochastic Simulations

We also use a stochastic equivalent of the model in Eqn. 1 to simulate noise driven

seizure transitions. The noise term was added to the TC population following

previous modelling literature of the thalamo-cortical loop [11, 12, 48], and

Table 1. Parameter values used to produce the figures in this manuscript.

Parameter Interpretation Fig. 2, 4b, 6, 7 Fig. 3, 4a, 5

C1 PY?PY connectivity strength 1.8 1.8

C2 PY?IN connectivity strength 4 4

C3 IN?PY connectivity strength 1.5 1.5

C4 RE?RE connectivity strength 0.2 0.2

C5 TC?RE connectivity strength 10.5 10.5

C6 RE?TC connectivity strength 0.6 0.6

C7 PY?TC connectivity strength 3 3

C8 PY?RE connectivity strength 3 3

C9 TC?PY connectivity strength 1 1

t1 PY timescale 26 26

t2 IN timescale 32.5 32.5

t3 TC timescale 2.6 2.6

t4 RE timescale 2.6 2.6

hpy Input PY 20.35 20.35

hin Input IN 23.4 23.4

htc Input TC 22.05 22.0

hre Input RE 25 25

E Sigmoid steepness 250000 250000

a Linear intersection steepness 2.8 2.8

b Linear intersection offset 0.5 0.5

a Standard deviation of noise 0.022 0

doi:10.1371/journal.pone.0114316.t001
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represents non-specific ascending noise input from the brain stem. The noise

driven model is written as a stochastic differential equation:

dPY(t)~t1(hpy{PYzC1 f ½PY �{C3 f ½IN�zC9 f ½TC�)dt

dIN(t)~t2(hin{INzC2 f ½PY �)dt

dTC(t)~t3(htc{TCzC7 f ½PY �{C6 (s½RE�))dtzadW(t)

dRE(t)~t4(hre{REzC8 f ½PY �{C4 (s½RE�)zC5 (s½TC�))dt

ð4Þ

Simulations were performed with Eqn. 4 using the Euler-Maruyama solver and

a step size (d) of d~1=15000s. Simulations using smaller step sizes yielded

qualitatively similar results. Autonomous seizure transitions occur in the model as

a result of added noise to the TC variable in line with [48]. The noise-term dW
follows a normal distribution with zero mean and standard deviation a. The

higher the noise amplitude a is, the more frequently shorter seizures occur. We

adjusted a such that seizures of about 5-10 seconds occurred every few minutes, in

accordance with clinical findings. All solutions were checked for stability using

alternative solvers and were found to be qualitatively robust. Parameter values

used can be found in Table 1.

Reconstruction of the basin of attraction

To numerically determine the deterministic basin of attraction of the background

state, we systematically scan the initial conditions of the simulations in the four

dimensional state space. The basin is obtained with our motivation to study

perturbations of the seizure state. Hence, during a simulation of the SW we fix

one of the variables at a time point (indicated by the red star in Fig. 3 (a)) and

scan the state space of the three remaining variables. We record the state space

initial condition points from which the trajectory reaches the background state

within 3 s. We define a return to the background state as a stimulus which ensures

the model output does not exceed a threshold of 0:35 for more than 3 seconds

post stimulus. The threshold is used as a heuristic to detect high amplitude SW

oscillations in our model. This measurement is aimed to reflect what could be

done experimentally (i.e. inducing sub-threshold, low amplitude activity). By

scanning many time points on a SW cycle for a fixed variable, we obtain multiple

3D slices of the 4D basin. The scan resolution (in state space, as well as in time)

chosen was determined by the available computational power.

Fig. 3 and Fig. 5 (c,d) used 3D slices in the PY ,IN,TC dimensions and the scan

points belonging to the basin are marked with coloured dots. S1 Movie shows the

basin of attraction, with the fourth dimension (RE) mapped to the time domain.

In the video, we have also included the critical manifold [49] of the cortical

subsystem as a blue grid for orientation. For more details regarding critical

manifolds in SW, see [15].
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Under noise-input, the basin of attraction is not well-defined. Trajectories

starting near the (former) basin boundary can either reach the steady state or the

SW state depending and the noise input. We therefore determine the likelihood of

trajectories to reach the background state by repeating the simulation for each

scanned state space point with different noise vectors. Similar to the deterministic

case we deem an initial condition as belonging to the basin, if the trajectory

approaches the noisy background state within 3 s. From averages over 20 noise

trials for each state space point, we derive a likelihood of the scanned state space

points to belong to the basin of attraction (i.e. a probability to return to the

background state).

This definition of return probability of state space points is compatible with the

deterministic basin of attraction with its well-defined separatrix. There, all points

within the basin have a return probability of one, all points outside have a return

probability of zero.

Simulation of single pulse stimulation

We are interested in using our model to better understand the results of

stimulation for the abatement of spike-wave seizures. Single pulse stimulation at

time St was performed by simulating the model (stochastic or deterministic) from

t~0 to t~St, then changing the variables to be stimulated by the desired stimulus

amplitude Sa and then continuing the simulation from t~St to t~tend. (I.e. an

initial condition reset.)

In the experimental setting the direction of the stimuli is not necessarily

controllable (e.g. a TMS pulse), if it were the problem of stimulation is trivial and

the background fixed point could always be targeted. We therefore keep the

stimulation direction constant, with equal input to the PY and IN variables, thus

simulating an unspecific stimulation to the cortex.

In order to gauge whether a stimulus in the model was successful, we measure

the distance of the trajectory to the background fixed point 3 s after the

stimulation and define that the stimulus is successful if the trajectory returns to

the vicinity of the fixed point.

Attractor reconstruction

In order to compare clinical data with model simulation, we not only show

comparison of time series, but also comparison of attractors in state space. To

recover the attractor from clinical time series in a state space comparable to the

model state space, we assume that the dynamics are dominated by a deterministic

behaviour (as in, e.g. [12]). In this case delay embedding can be used [50].

Furthermore, to recover the slow variables in a fast-slow system, [51] suggests

using a low pass filter in conjunction with the above. Since our model contains

fast (PY ,IN) and slow (TC,RE) variables we use the same technique of delay

embedding and low pass filtering to reconstruct a comparable attractor (to our
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model) from clinical and simulated time series (compare for example the seizure

attractor in Fig. 7a,c with the clinically recorded reconstruction in Fig. 7b,d).

To reconstruct the attractor from the time series there are two key parameters.

Firstly the low pass filter cutoff must be chosen such that the fast frequencies are

removed. Secondly, the delay must be chosen to provide good visibility of the

structure. In this study a low-pass filter is used with a cutoff at 6 Hz and time

delays are chosen on a per figure basis (all approximately 0.06 s).

MATLAB code

Matlab code and parameters for the model will be made available online at

modelDB.

Supporting Information

S1 Fig. Parameter scans of input parameters to the thalamic subsystem in the

deterministic system. Parameter scans showing bistability between background

fixed point and SWD limit cycle scanning htc (a), hre (b). Bistable regions are

highlighted in grey.

doi:10.1371/journal.pone.0114316.s001 (TIF)

S2 Fig. Comparing linear and sigmoidal activation functions in the thalamic

subsystem. Model dynamics are qualitatively similar using either the linear

activation function (a) or the nonlinear sigmoid function (b) in the thalamic

subsystem. The system in both cases is bistable and a perturbation at t53 s

induces a transition from the fixed point to the SWD attractor.

doi:10.1371/journal.pone.0114316.s002 (TIF)

S1 File. 3D Matlab figure for Fig. 3 (a). 3D Matlab figure file showing the 3D

slice of the basin of attraction of the background fixed point in the PY ,IN,TC state

space. Black solid line indicates the SWD attractor. Additional state space

structures can be made visible in the figure editor.

doi:10.1371/journal.pone.0114316.s003 (ZIP)

S2 File. 3D Matlab figure for Fig. 3 (b). 3D Matlab figure file showing the 3D

slice of the basin of attraction of the background fixed point in the PY ,TC,RE
state space. Black solid line indicates the SWD attractor. Additional state space

structures can be made visible in the figure editor.

doi:10.1371/journal.pone.0114316.s004 (ZIP)

S3 File. 3D Matlab figure for Fig. 5 (c). 3D Matlab figure file showing the 3D

slice of the basin of attraction of the background fixed point in the PY ,IN,TC state

space. The successful stimulation at this point is shown in cyan. Black solid line

indicates the SWD attractor. Additional state space structures can be made visible

in the figure editor.

doi:10.1371/journal.pone.0114316.s005 (ZIP)
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S4 File. 3D Matlab figure for Fig. 5 (d). 3D Matlab figure file showing the 3D

slice of the basin of attraction of the background fixed point in the PY ,TC,RE
state space. The unsuccessful stimulation at this point is shown in red. Black solid

line indicates the SWD attractor. Additional state space structures can be made

visible in the figure editor.

doi:10.1371/journal.pone.0114316.s006 (ZIP)

S5 File. 3D Matlab figure for Fig. 7 (a). 3D Matlab figure file showing the 3D

projection of the reconstructed simulated SWD trajectory in a 3D delay

embedding. This embedding is comparable to the PY ,IN,TC state space. The

colour map at any point indicates the success rate of a stimulus at this point (of

amplitude -0.0825).

doi:10.1371/journal.pone.0114316.s007 (ZIP)

S6 File. 3D Matlab figure for Fig. 7 (b). 3D Matlab figure file showing the 3D

projection of the reconstructed clinical SWD trajectory in the same 3D delay

embedding as S5 File.

doi:10.1371/journal.pone.0114316.s008 (ZIP)

S7 File. 3D Matlab figure for Fig. 7 (c). 3D Matlab figure file showing the 3D

projection of the reconstructed simulated SWD trajectory in a 3D delay

embedding. This embedding is comparable to the PY ,TC,RE state space. The

colour map at any point indicates the success rate of a stimulus at this point (of

amplitude -0.0825).

doi:10.1371/journal.pone.0114316.s009 (ZIP)

S8 File. 3D Matlab figure for Fig. 7 (d). 3D Matlab figure file showing the 3D

projection of the reconstructed clinical SWD trajectory in the same 3D delay

embedding as S7 File.

doi:10.1371/journal.pone.0114316.s010 (ZIP)

S1 Movie. The four dimensional basin of attraction shown in 3D slices over

time. The 3D slices are in PY ,IN,TC state space, changing over time, essentially

mapping RE onto the time domain. The RE slice points were chosen to be the RE
values of the SWD attractor. Additionally, the critical manifold [49] is shown as a

blue grid for orientation. For more details regarding critical manifolds in SW, see

[15].

doi:10.1371/journal.pone.0114316.s011 (MOV)
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