UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

In vitro vasculogenesis in 3D

Stamati, K; (2014) In vitro vasculogenesis in 3D. Doctoral thesis , UCL (University College London). Green open access

[thumbnail of stamati thesis 2014.pdf]
Preview
PDF
stamati thesis 2014.pdf
Available under License : See the attached licence file.

Download (7MB)

Abstract

Angiogenesis and vasculogenesis are essential neovascularisation processes. Various cell types and growth factors are involved, with vascular endothelial growth factor (VEGF) and its receptors VEGFR1 and VEGFR2 identified as key components. The PhD project “In vitro vasculogenesis in 3D” tested the effect of parameters such as support cells, matrix composition and physiological hypoxia on the morphology and aggregation of ECs in 3D collagen hydrogels. Different aggregation patterns were identified depending on the culture conditions tested, and these were found to reflect the different developmental pathways that ECs take to form different sized tubular structures. ECs formed contiguous sheets in collagen only hydrogels, analogous to the ‘wrapping’ pathway in development. In contrast, in co-cultures in 3D collagen-laminin cultures, end-to-end networks formed, mimicking cord hollowing and cell hollowing. A relationship between matrix composition, growth factors and VEGF receptor levels in 3D collagen hydrogels was shown for the first time in this study. Results showed a key linkage between integrin expression on ECs and their uptake of VEGF, regulated by VEGFR2, resulting in end-to-end network aggregation in HBMSC-HUVEC co-cultures. The effect of physiological hypoxia on EC aggregation was also tested by lowering the oxygen tension to 5% O2 using a controlled culture environment. Angiogenic growth factors were quantified using ELISA and their levels were correlated to EC morphological progression within 3D collagen hydrogels. Overall, the findings here showed how different parameters affected EC morphology and aggregation in 3D in vitro collagen hydrogels. The study provides an understanding of how these individual parameters influence EC morphology and show the mechanisms of how this is achieved in 3D in vitro.

Type: Thesis (Doctoral)
Title: In vitro vasculogenesis in 3D
Open access status: An open access version is available from UCL Discovery
Language: English
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Surgery and Interventional Sci
URI: https://discovery.ucl.ac.uk/id/eprint/1457229
Downloads since deposit
237Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item