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Temporal Lobe Impairment in West
Syndrome: Event-Related Potential

Evidence

Klaus Werner, MD, PhD,1,2,3 Tangunu Fosi, PhD, MRCPCH,1,2,3

Stewart G. Boyd, MD,2,3 Torsten Baldeweg, MD,4

Rod C. Scott, PhD, MRCPCH,1,3,5,6 and Brian G. Neville, FRCP1,3,5

Objective: This study investigates auditory processing in infants with West syndrome (WS) using event-related poten-
tials (ERPs).
Methods: ERPs were measured in 25 infants with mainly symptomatic WS (age range 5 3–10 months) and 26 healthy
term infants (age range 5 3–9 months) using an auditory novelty oddball paradigm. The ERP recordings were made
during wakefulness and repeated in stage II sleep.
Results: The obligatory components (P150, N250, P350) and novelty response components (P300, Nc) were recorda-
ble during both sleep and wakefulness in patients and controls. All ERP latencies decreased with age in controls but
not in the WS group (age 3 group interaction, F 5 22.3, p<0.0001). These ERP latency alterations were not affected
by pharmacological treatment for WS.
Interpretation: This study demonstrated a persistently altered ERP signature in patients with a recent history of
infantile spasms. The prolongation of auditory obligatory and novelty ERPs in WS patients indicates a severe failure
of temporal lobe maturation during infancy. It remains to be investigated whether this predicts long-term cognitive
impairments characteristic for this epileptic encephalopathy.
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Epilepsies of childhood have a strikingly high inci-

dence of behavioral, psychiatric and cognitive disor-

ders.1–4 West syndrome (WS), which affects about 1 in 3,000

live births, is the commonest severe epilepsy syndrome.5,6 It

presents at 4 to 6 months of age with epileptic spasms (infan-

tile spasms [IS]), characteristic electroencephalographic

(EEG) changes, and psychomotor regression.7 The two-fifths

of children with WS who have lesions8 are more likely

to experience seizure intractability9 and marked cognitive

and social impairment.10 The epilepsy in this subgroup of

symptomatic WS patients is a significant determinant of

outcome.

Prospective studies of children with perinatal brain

injury and with tuberous sclerosis found that those who

developed WS regressed in visual and cognitive abilities.11,12

These observations are consistent with epileptiform activity

impairing long-term cognitive and neurological function

beyond that observed from the underlying brain lesions

alone. The pathophysiological basis of the term epileptic
encephalopathy13–15 remains unclear, however. Preliminary

evidence would suggest dynamic effects of epilepsy on the

connection architecture of the developing brain bilaterally.

First, prompt removal of focal epileptogenic lesions, which

controls seizures, can normalize contralateral EEG abnor-

malities16 and promote development.17–20 Second, a pro-

longed schedule of anticonvulsant weaning is typically

required following successful lesion excision to maintain

seizure freedom.20 This led us to hypothesize that
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epileptogenesis interferes with the normal remodeling of the

connection architecture of the developing brain bilaterally.

Mid-infancy, the peak onset of WS, is a critical

period for temporal lobe development.17,21–25 We there-

fore reasoned that the effects of WS on the infant brain

will be prominent for temporal lobe function. Here we

used auditory event-related potentials (ERPs) to measure

temporal lobe function with a time resolution in the order

of milliseconds.26 Specifically, obligatory ERP responses to

simple tone stimuli allow us to make inferences on the

maturation of the auditory cortex,27,28 whereas ERPs to

rare environmental sounds elicit prominent novelty ERPs

in temporal, frontal, and parietal association cortex.29 ERP

data were utilized to evaluate differences in temporal lobe

maturation between symptomatic WS patients and healthy

control infants during the first year of life.

Subjects and Methods

Subjects
The study was approved by the ethics committee of the Univer-

sity College London Institute of Child Health and Great

Ormond Street Hospital, London (GOSH). Parental informed

consent was obtained prior to participation as a control or as a

patient. Neonatal hearing tests were all normal.

Controls
Controls were recruited from the community and university

staff. All showed age-appropriate development and no congeni-

tal hearing impairment, chronic otitis media, or other signifi-

cant health problems as obtained by parental interview. They

also had a normal neurological and structured developmental

examination that screened for fine motor, vision, gross motor,

hearing and speech, and social behavior impairments.30 Formal

psychometric testing was not performed.

Patients
Cases were recruited prospectively and consecutively over 4 years

(2002–2006) from GOSH. The entry criteria were a diagnosis of

WS based on clinical and EEG features and informed parental

consent. The study did not interfere with patients’ normal clinical

management. Clinical investigations were brain neuroimaging

(predominantly magnetic resonance imaging [MRI]) and neuro-

metabolic investigation of blood, urine, and cerebrospinal fluid.

The brain MRI scan was inspected and reported by neuroradiolo-

gists at GOSH. For statistical analysis, scans were classified as

either normal or not normal. Treatment was initiated after video-

EEG confirmation of a diagnosis of WS. Parents were counseled

on WS by their neurologist, and received information regarding

the first-line therapies for infantile spasms. The therapeutic agent

was agreed between neurologist and parents.

Experiments
The study intervention was a pseudorandomized oddball auditory

stimulus paradigm comprising a 1,000Hz sinusoidal pure tone

standard stimulus (80%), a 2,000Hz “deviant” (10%), and novel

environmental sounds (10%). The latter consisted of musical

instruments, animal calls, machine sounds, and white noise sounds.

Each stimulus lasted 200 milliseconds, including 10-millisecond

rise and fall times. Stimulus onset asynchrony was 700 millisec-

onds. The paradigm is described in more detail elsewhere.31

Data Acquisition
Scalp EEG was recorded in an electrically shielded sound-

attenuated chamber using Ag/AgCl electrodes in the interna-

tional 10/20 montage. Gentle scalp abrasion with commercial

gel minimized impedance to <10 kX, and adhesive paste

affixed the electrodes. An electrode at the right external canthus

and another in the left infraorbital area detected horizontal and

vertical eye movement artifacts.

The experiments occurred around midday, with the

infant on its mother’s knee, having just been fed. An experi-

ment during wakefulness was followed by a repeat during natu-

ral sleep. Two blocks of the same auditory paradigm were

presented in each state, with different novelty sounds in each.

Computer software (Presentation; Neurobehavioral Systems,

Albany, NY) delivered auditory stimuli to the infant via speak-

ers located 30cm from each ear. Sound intensity was adjusted

to be comfortable for infants (about 60dB SPL).

EEG data were acquired in continuous mode with a

Neuroscan recording system (Neuroscan, El Paso, TX). The

EEG signal was digitized at a sampling of 500Hz, amplified

(band pass 5 0.15–100Hz), and stored at 32-bit resolution for

offline analysis. The data were analyzed without additional

offline filtering. The abnormality of the background EEG dur-

ing the ERP recording session in stage II non–rapid eye move-

ment (NREM) sleep was classified as either moderate, severe,

or hypsarrhythmic. Moderate abnormality showed excess slow

activity of similar amplitude to the ongoing activity, present

for <50% of the recording, with definite evidence of age–

appropriate activity. Severe abnormality was established by

continuous excess of slow activity and/or absence of age-

appropriate rhythmic activity and frequent epileptiform fea-

tures. Hypsarrhythmia was defined as the presence of diffuse,

high-amplitude, nonsynchronous slow-wave theta and delta

activity with loss of normal background features, with the pat-

tern being continuous when awake and fragmented in sleep.

Asymmetry in the hypsarrhythmic pattern was permitted in

the presence of structural lesions.

Data Processing
Data analysis was performed offline using Neuroscan Edit soft-

ware. Preprocessing was performed offline to reject artifacts and

to extract ERPs. Epochs exceeding 6300 mV in stage II sleep

were automatically rejected. EEG segments contaminated by

physical (eye blinks, eye movement, head movement, sucking,

or excessive muscle activity) and electronic artifacts were

rejected by visual assessment. Stage II NREM sleep as defined

by the following EEG criteria: the presence of sleep spindles,

K-complexes, and high-amplitude slow delta activity.32–36 The

arithmetic average locked to the epoch 2100 to 1800 millisec-

onds with respect to the presentation of each stimulus
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(standards, deviants, and novels) was computed to yield the

respective ERP responses. The ERP components were isolated

by referencing the data from the recording electrodes offline to

the average potential of the mastoid (M1 and M2) electrodes.37

Following this demonstration of ERP components, the average

all scalp electrodes was used as the reference for performing

amplitude and latency measurements.

The ERPs for each block were extracted from the

responses to standards, deviants, and novels. The data for the

second block of experiments were inspected visually to establish

replication of the components identified in the first block. A

participant had valid data if the specific component was clearly

visible across multiple neighboring electrodes and was demon-

strated in both experiment blocks of the 2 arousal states. The

statistical analysis described below was performed on the ERP

components isolated in the first block of experiments for partic-

ipants with valid data.

ERPs

SIGNAL-TO-NOISE RATIO AND STIMULUS SET SIZE. The

study design incorporated a minimum number of stimulus

repetitions required to identify the novelty ERP robustly.

This was based on typical ERP amplitudes reported in sleep-

ing infants, and the estimated mean EEG background ampli-

tude in stage II sleep. A novelty ERP signal of amplitude

615 mV and a mean background amplitude of 675 mV

results in a signal-to-noise ratio (SNR) of 0.2. Due to SNR

scaling as a function of the square-root of the number of

stimuli, we required a minimum of 100 novelty stimulus rep-

etitions to achieve an SNR of 2.38 The basic stimulus block

comprised 1,050 stimuli (100 novel stimuli, 100 deviants,

and 850 standards). Evaluation of the performance of the

paradigm revealed that technically satisfactory obligatory and

novelty responses could be measured distinctly from the

background.

ERP MEASUREMENT. The component peak amplitude and

latency were measured manually from the prestimulus baseline

The obligatory ERP response (also known as the N1-T-com-

plex), produced by repetition of the standard,28 occurs over the

temporal regions after 100 to 300 milliseconds in children.39

The components of the obligatory response were recognized:

P150, N250, and P350. The mismatch negativity (MMN) was

defined as the largest negative deflection exceeding the average

baseline voltage by 1.0mV at 80 to 300 milliseconds after stimu-

lus onset in the difference between the response to the deviant

stimuli and the standards immediately preceding. This had to

be present at any 2 of the 4 electrodes F3, F4, C3, and C4.

The novelty response is maximal at the frontocentral electro-

des.40–43 We measured the novelty P300, which was the largest

positive deflection between 200 and 450 milliseconds, and the

Nc response (sometimes termed N450), a negative slow wave

occurring immediately after the novelty P3 at 400 to 700 milli-

seconds poststimulus. The novelty P300 was measured at M1,

M2, P7, P8, C3, C4, and Cz electrodes; the novelty Nc at F3,

F4, F7, F8, and Fz electrodes.

Statistical Analysis
Statistical analyses were performed using SPSS v16 (SPSS, Chi-

cago, IL) package. Repeated measures analysis of variance was

used to compare the amplitudes and latencies of WS patients

with control subjects. This utilized the measurements over the

electrodes that showed the largest amplitude of the waveform.

These were C3, C4, F3, and F4 for each obligatory component;

M1 and M2 for the novelty P300; and Fz and Cz for the nov-

elty Nc. Fisher exact chi-square test (1-tailed) was used post

hoc to verify whether a better yield of ERP components

occurred with less severe background EEG abnormality. The

existence of a relationship between ERP components and clini-

cal factors was tested using logistic regression. The clinical fac-

tors tested were: development before seizure onset (normal,

abnormal), brain MRI abnormality (present, absent), EEG

background abnormality (moderate, severe), and focal epilepti-

form activity (present, absent). The criterion for statistical evi-

dence was p< 0.05.

Results

Demographics
The 25 WS patients (10 female, 15 male,) had a median

age of onset of infantile spasms of 4 months old

(range 5 3–9 months). The age distribution at onset of

infantile spasms was 3 to 4 months (n 5 13), 5 to 8 months

(n 5 10), and 9 months (n 5 2). Their ERP testing was

performed at a median age of 8 months (range 5 3–10

months). The median lag to ERP testing from the onset of

infantile spasms was 3 months (range 5 2 weeks to 13

months). There was no difference in patient demographic

characteristics by sex. None of the patients showed normal

developmental ability on clinical assessment.

The 26 controls (13 female, 13 male) who were

recruited to the ERP study had a median age at ERP

recording of 7 months (range 5 3–9 months). The break-

down of ages at ERP recording (controls, patients) was:

3 to 4 months (n 5 5, n 5 5), 5 to 8 months (n 5 10,

n 5 9), and 9 months (n 5 11, n 5 11). There was no

statistical difference in the demographic characteristics of

the control and patient groups at the time of ERP

recording.

Drug Treatment

FOR INFANTILE SPASMS. Treatment for infantile

spasms was initiated at a median lag of 4 weeks

(range 5 2–20 weeks). Seventeen patients were treated

with steroids. Fifteen were treated with vigabatrin, of

whom 7 did not subsequently receive steroids. Of the 6

patients who had experienced no further IS following the

initiation of treatment, control had been achieved on the

first agent in 4 cases (3 steroids, 1 vigabatrin). The cessa-

tion of spasms occurred within 2 weeks of initial

treatment.
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FOR OTHER SEIZURES. Ten patients were treated for

other seizures prior to referral to our center.

EEG
The EEG recording was possible in 23 patients during both

wakefulness and sleep, whereas in 1 patient it was only pos-

sible during wakefulness and in another patient only during

sleep. The EEG background was severely abnormal in 12

patients during wakefulness (including hypsarrhythmia in

1), and in 16 patients during sleep (including hypsarrhyth-

mia in 4). Focal discharges over temporal leads or multifocal

discharges involving the temporal lobe were present in 15

patients (EEG details available upon request).

MRI
The brain MRI scans were classified into 5 groups: nor-

mal (n 5 8), malformations of cortical development

(n 5 8), tuberous sclerosis (n 5 3), hypoxic–ischemic

changes (n 5 3), or delayed myelination without cortical

abnormality (n 5 3; Table 1).

ERP Components

IDENTIFICATION OF OBLIGATORY COMPO-

NENTS. The presence of clearly defined ERP compo-

nents (Fig 1) was used as a measure of normal auditory

cortex maturation.28,37 Patients were more likely than con-

trols to fail to show the full triadic obligatory response

component structure (p< 0.001 for all components:

P150, N250, P350) for each arousal state (Table 2).

MMN. The MMN was evaluated as part of this study,

using the 2,000Hz deviant stimulus presented at a 10%

probability. This large frequency deviance was expected

to elicit an MMN on the basis of previous work in

infants.44 However, the criterion for reliability of an ERP

component in this study (demonstrability in both blocks

of both states) was not fulfilled for the MMN in any

patient and was met by only 2 control subjects.

NOVELTY COMPONENTS. The novelty components

were detected in both blocks during sleep in most con-

trol subjects (96%, 25 of 26) and in a proportion of WS

infants (60%, 15 of 25). During wakefulness, novelty

ERPs were present in both blocks in 88% (23 of 26) of

control subjects and in 44% (11 of 25) of WS patients.

ERP Components and the EEG Background
All controls had normal EEGs. Patients showed a graded

relationship between the severity of the abnormality of

the EEG background and the presence of obligatory and

novelty ERP components for both sleep and wakefulness.

Considering the obligatory and novelty responses, full

ERP component structure manifested less with severe as

compared to moderate background EEG abnormality in

both states. (Fisher exact test, p 5 0.004). This reflects

the following details: the proportion of patients with

severe background EEG abnormality compared to mod-

erate background EEG abnormality showing all obliga-

tory ERP components was 4 of 16 versus 7 of 8 during

sleep (Fisher exact test, p 5 0.025) and 2 of 12 versus 9

of 10 during wakefulness (p 5 0.001) . The proportion

showing all novelty ERP components was 9 of 16 versus

8 of 8 during sleep (p 5 0.033) and 4 of 12 versus 8 of

10 during wakefulness (p 5 0.038).

Group Comparisons

OBLIGATORY COMPONENTS. The obligatory ERP

response (P150, N250, P350) showed an age-dependent

shortening of the latency of all components in controls

(see Fig 1), which was not seen in patients (Table 3).

The obligatory response latencies were prolonged in WS

compared to controls during both wakefulness and sleep

(Fig 2, Table 4).

NOVELTY COMPONENTS. The novelty ERP response

(P300, Nc) showed an age-dependent shortening of the

latency in healthy infants (Fig 3). This was statistically

significant for the novelty P300 (see Table 3). The group

comparison of novelty ERPs (Fig 4) evidenced a latency

prolongation in WS patients (sleep and wake data col-

lapsed: F 5 6.74, p 5 0.012 for P300 latency; F 5 4.76,

p 5 0.037 for Nc latency). The data are shown separately

for each arousal state in Table 4.

The obligatory and novelty ERP latencies shortened

with age in controls but not WS patients (for sleep and

wake data collapsed: age 3 group interaction, F 5 22.3,

p< 0.0001). ERP amplitudes did not show group differ-

ences, with 1 exception. There was a trend toward a

larger Nc amplitude in WS patients (F 5 3.97, p 5 0.05

for sleep and wake data collapsed).

MMN. The majority of study subjects did not fulfil the

criterion for a reliable MMN, precluding group statistical

comparison between controls and patients.

Relationship between Demographic and Clinical
Factors
Logistic regression failed to find a relationship between

age, gender, or clinical factors and the presence of ERP

components in WS patients.

Unilateral Epileptogenic Lesions, Bilateral
Effects
The observation was made of 2 cases of unilateral right-

sided lesions that involved the temporoparietal junction,
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in which the contralateral auditory novelty ERP response

was abolished (data available upon request). In contrast,

unilateral lesions in other regions did not abolish the

contralateral novelty response.

Discussion

This study probed alterations of temporal lobe function

in patients with a history of WS using auditory ERPs to

frequent sounds (obligatory ERPs) and rare novel sounds

(novelty ERPs). The obligatory ERP responses (P150,

N250, P350) are presumed to be generated within audi-

tory cortex, whereas temporoparietal and frontal associa-

tion cortex are the sources of the novelty responses

(P300, Nc).29 These ERP signatures of basic (acoustic)

and higher order (novelty) auditory processing were

detectable in all healthy control infants and in a smaller

proportion of WS patients. Notably, patients’ ERPs failed

to show the full complement of age-appropriate compo-

nents and had prolonged peak latencies. A limitation of

this study is that MMN, which is generated in the supe-

rior temporal plane in response to deviant sounds,45

could not be elicited reliably.

To our knowledge, this is the first study demon-

strating robust ERP latency prolongation in patients with

WS. This appears to be due to the failure of ERP com-

ponents in WS patients to show the expected rapid age-

dependent latency reduction during the first 2 years of

life.27,46 The findings in WS are in keeping with the

observation of prolonged ERP latencies in heterogeneous

groups of children with other severe epilepsies.47–49 The

finding in WS of ERP impairment across the hierarchy

of auditory processing could potentially underlie the lan-

guage deficits recognized in these patients.50

We cannot rule out the possibility that anti-epilepsy

drug (AED) treatment influenced ERP latencies in the

absence of pretreatment ERP recordings. As patients had

been treated for WS, it is inferred that treatment did not

normalize auditory ERPs. Nevertheless, we failed to find

ERP differences between WS patients on AED treatment

and those without, as well as between those treated with

steroids compared to vigabatrin. There are no published

data on the effect on ERPs of typical treatment doses of

the anticonvulsants used for WS. There is, however,

some limited evidence to suggest that the findings in the

present study are probably not primarily treatment-

induced. First, steroid treatment (using adrenocorticotro-

pic hormone and corticotropin-releasing hormone at low

dose) did not alter ERP latencies in healthy adult con-

trols.51,52 Second, in other severe epilepsies therapeutic

doses of other anticonvulsants did not alter ERP laten-

cies.47,53 We did not identify clear ERP differences in

relation to clinical factors such as development beforeT
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seizure onset, the presence of brain MRI abnormality,

EEG background abnormality, and focal epileptiform

activity, albeit limited by small sample size.

The ERP data are consistent with a qualitative dif-

ference in temporal lobe maturation between the WS

group and controls. The former showed less integrity of

ERP component structure, with a lower probability for

generating all obligatory components, and did not show

evidence of the marked age-related latency reduction

found in control infants. The integrity of ERP compo-

nent structure was poorer, with more severe EEG back-

ground abnormality and fewer ERP components being

isolated. The higher amplitude of the background EEG

was not, however, a sufficient explanation for WS

patients’ ERP findings. First, if their background EEG

merely rendered ERPs less identifiable, then patients’

ERP amplitude ought to be diminished. However, the

ERP amplitude did not differ between patients and con-

trols. Second, the novelty ERPs’ detectability would be

expected to deteriorate during sleep given the more

abnormal and higher amplitude background EEG during

sleep in WS patients. This was found not to be the case.

For these reasons, we do not assume that the ERP find-

ings in WS simply represent the consequence of reduced

signal-to-noise ratio given the high-amplitude back-

ground EEG in this group.

The inference that the developmental patterning of

the temporal lobe connections differs between controls

and patients is supported by our ERP findings in cases

of right hemispheric lesion. Our observation of bilateral

FIGURE 1: The obligatory event-related potential morphology in 3 age groups of healthy control infants during wakefulness
and sleep at frontal electrodes F3 and F4. Note shortening of P150 latency with emergence of N250 and P350 with increasing
age.

TABLE 2. Identification of Obligatory ERP
Components

ERP Component Awake Asleep

P150

Controls 26/26 (100%) 26/26 (100%)

Patients 12/25 (48%) 12/25 (48%)

p, chi-square test <0.0001 <0.0001

N250

Controls 22/26 (84%) 20/26 (77%)

Patients 8/25 (32%) 5/25 (25%)

p, chi-square test <0.001 <0.0001

P350

Controls 22/26 (84%) 20/26 (77%)

Patients 8/25 (32%) 6/25 (23%)

p, chi-square test <0.001 <0.001

In each arousal state, patients were less likely than controls
to show all 3 components.
ERP 5event-related potential.
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ERP alteration in cases with unilateral epileptogenic

structural lesions of the right temporal lobe hints at a

degree of interhemispheric dependence of brain func-

tional maturation. The suggestion of earlier maturation

of the right cerebral hemisphere in infancy54 could mean

that it reaches its peak density of synaptic connections

TABLE 3. Shortening of ERP Latencies during Sleep with Age

ERP Component Patients Controls

n R p n R p

Obligatory

P150 12 26

Right (F4) 0.382 0.05 20.473 <0.0001

Left (F3) 0.379 0.06 20.519 <0.0001

N250 5 20

Right (F4) 20.330 0.25 20.525 <0.0001

Left (F3) 20.280 0.33 20.506 <0.0001

P350 6 20

Right (F4) 20.180 0.52 20.546 <0.0001

Left (F3) 20.189 0.50 20.512 <0.0001

Novelty

P300 15 25

Right (M2) 20.255 0.15 20.529 <0.0001

Left (M1) 20.058 0.75 20.432 0.001

Nc 15 0.010 0.96 25 20.467 0.002

The Pearson correlation coefficient (R) between ERP latency and age (in days) is shown. Controls showed a shortening of all ERP
latencies with age, which was not reproduced in the West syndrome group.
ERP 5event-related potential.

FIGURE 2: Group mean obligatory event-related potentials at electrode F3 in sleep for controls and patients.
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TABLE 4. ERP Group Statistics for Controls and Patients with West Syndrome

ERP Component West Syndrome,
Mean 6 SD Controls, Mean 6 SD p

Sleep Awake Sleep Awake Sleep Awake

Obligate responsea

P150 latency 394 (87) 298 (95) 262 (44) 207 (38) <0.001b <0.001b

P150 amplitude 11.0 (7.7) 4.4 (13) 7.8 (5.4) 4.7 (2.0) 0.183 0.218

N250 latency 321 (95) 363 (118) 267 (33) 284 (47) 0.008b <0.001b

N250 amplitude 221.4 (16.6) 216.8 (6.5) 222.0 (7.3) 218.1 (8.5) 0.689 0.299

P350 latency 616 (219) 513 (160) 462 (60) 386 (52) 0.017b 0.018b

P350 amplitude 5.9 (4.0) 3.2 (2.7) 5.3 (3.1) 3.2 (2.9) 0.608 0.429

Novelty responsec

Novelty P300 latency 692 (152) 950 (193) 585 (91) 729 (74) <0.001b <0.001b

Novelty P300 amplitude 19.6 (18.7) 7.7 (3.6) 14.2 (5.6) 6.5 (4.1) 0.378 0.343

Novelty Nc latency 772 (233) 837 (130) 665 (102) 791 (76) 0.280 0.037b

Novelty Nc amplitude 213.4 (12.6) 24.8 (3.6) 29.5 (7.6) 23.8 (4.7) 0.015b 0.453

The analysis is based on those subjects showing the particular component. Latencies are in milliseconds and amplitudes are in
microvolts.
aFor obligatory response, see Table 2.
bSignificant difference.
cFor the novelty response, the number of subjects for patients and controls was 25 and 15 respectively in sleep and 23 and 11
respectively awake, for both the novelty P300 and novelty Nc.
ERP 5event-related potential; SD 5 standard deviation.

FIGURE 3: Novelty event-related potential responses in 3 age groups of healthy control infants during sleep. Note inversion of
P300 and Nc over temporal leads (labeled on the left side).
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first. We presume that such connections might facilitate

a functional effect at a distance or diaschisis upon the

maturation of cortical networks in the contralateral

hemisphere to account for our observations with right

temporal lobe lesions. The diaschisis phenomenon has

been proposed to account for the finding that focal

cortical resection around the epileptogenic lesion, or

hemispheric disconnection, can restore the contralateral

hemisphere’s functional and hemodynamic matura-

tion.16,55–57 It will be important to determine whether

impairments in interhemispheric temporal lobe connec-

tivity impact on the development of verbal skills, as has

been reported for cohorts of children with perinatal

pathology.58,59

In conclusion, an impairment of temporal lobe mat-

uration is a likely sequela of WS. This is proposed to reflect

defective neuroplasticity associated with WS. Further study

should establish the predictive value of ERP findings for

cognitive and language development in affected children.

New treatments that specifically modulate neuroplasticity

promise improved future outcomes in WS,60 and the use

of auditory ERPs may permit monitoring of temporal lobe

maturation following such treatments.
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