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Abstract

The Recursive Bayesian Net (RBN) formalism was originally devel-
oped for modelling nested causal relationships. In this paper we argue that
the formalism can also be applied to modelling the hierarchical structure
of mechanisms. The resulting network contains quantitative information
about probabilities, as well as qualitative information about mechanis-
tic structure and causal relations. Since information about probabilities,
mechanisms and causal relations is vital for prediction, explanation and
control respectively, an RBN can be applied to all these tasks. We show
in particular how a simple two-level RBN can be used to model a mech-
anism in cancer science. The higher level of our model contains variables
at the clinical level, while the lower level maps the structure of the cell’s
mechanism for apoptosis.
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1 Introduction

This paper seeks to integrate considerations arising from recent philosophical
work on scientific explanation into the causal Bayesian network modelling for-
malism.

Bayesian networks were originally developed to model probabilistic and causal
relationships (Pearl, 1988). In the last two decades, Bayesian nets have become
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the model of choice for prediction and control—for making quantitative pre-
dictions and for deciding which variables to intervene on in order to control
variables of interest. Thus a Bayesian net can be used to answer questions such
as: given that a patient has treatment t, what is the probability P (r|t) that their
cancer will recur in the next 5 years? And: on which variables should we inter-
vene in order to minimise the probability of recurrence? Causal information is
important here because it is only worth intervening on the causes of recurrence,
not on other variables which might be indicators of, or evidence of, recurrence.

The causal structure modelled by a Bayesian net can also help answer certain
simple explanatory questions, such as, what was the chain of events that led up
to the recurrence of the patient’s cancer? But often we want to be able to
offer explanations, not in this backward, ætiological sense, but in a downward,
mechanistic sense. In order to answer how did the patient’s cancer recur? we
may need to specify the lower-level activities of the relevant cancer mechanism
and the corresponding cancer response mechanisms. To answer such explanatory
questions a model needs to represent the relevant mechanisms, including their
hierarchical organisation.

Philosophers of science have studied this kind of mechanistic explanation
in some detail in recent years. The current consensus is that a phenomenon
is explained by pointing out the constitution of reality—carved up in terms of
parts, what the parts do, and the organisation of these parts—that is responsible
for the phenomenon. These lower-level phenomena may themselves call for
explanation, in which case yet lower-level phenomena will be invoked, and so
on. This sort of explanation invokes inter-level constitution and responsibility
relations rather than intra-level causal relations. It is usually downward-looking,
but in some cases phenomena can be explained in upward-looking mechanistic
explanations (Darden, 2006, p. 109).

The question therefore arises as to whether Bayesian nets—which are often
used to model intra-level causal relations—can be extended to model hierar-
chical mechanistic structure, i.e., inter-level explanatory relations. If so, then
Bayesian nets could be used for mechanistic explanation as well as for predic-
tion and control. They could also be used for inter-level prediction and control,
addressing questions such as, what components of the (low-level) DNA damage
response mechanism should one intervene on in order to increase the probability
of survival?

On the other hand, the question arises as to whether models of mechanisms,
which, in the biomedical science textbooks for instance, often take the form of
elaborate diagrams, and which depict qualitative structure very well, can be ex-
tended to include quantitative, probabilistic information. This would allow one
to use the model to answer quantitative inter-level explanatory questions. E.g.,
why did Alfie survive 10 years rather than the 1 year that was most probable
given his (higher-level) clinical symptoms? Because his (lower-level) DNA dam-
age response mechanism had certain features that made longer survival much
more probable. That there is a need for a quantitative extension of mechanistic
models is highlighted, for instance, by cancer biologist Yuri Lazebnik:

Biologists summarize their results with the help of all-too-well recog-
nizable diagrams, in which a favorite protein is placed in the middle
and connected to everything else with two-way arrows. Even if a
diagram makes overall sense, it is usually useless for a quantitative
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analysis, which limits its predictive or investigative value to a very
narrow range. (Lazebnik, 2002, p. 181)

With the aim of addressing these two questions, this paper applies a hierar-
chical extension of Bayesian nets to modelling hierarchical (inter-level) mecha-
nistic structure as well as causal (intra-level) relations and quantitative, proba-
bilistic relations.

Bayesian nets have been extended to model hierarchy in a number of ways.
For example, recursive Bayesian multinets model context-specific independence
relationships and decisions (Peña et al., 2002), recursive relational Bayesian
networks model relational structure and more complex dependence relation-
ships (Jaeger, 2001), object-oriented Bayesian networks can simplify the struc-
ture of large and complex Bayesian nets (Koller and Pfeffer, 1997), hierarchical
Bayesian networks offer a very general means of modelling arbitrary lower-level
structure (Gyftodimos and Flach, 2002) and recursive Bayesian networks were
developed to model nested causal relationships (Williamson and Gabbay, 2005).
In this paper we shall see how recursive Bayesian networks can also be used to
model mechanisms, thus providing an integrated modelling formalism for pre-
diction, explanation and control. This is important from the philosophy of
science perspective of seeking to understand modelling and its relation to goals
of science such as prediction, explanation and control. It is also important from
the AI perspective of needing to provide models that can be used to answer a
variety of queries in decision support systems. And it is important from the
bioinformatics perspective, which requires models that can integrate a variety
of data sources at different levels (e.g., clinical data and genomic data) with
qualitative knowledge of the basic science involved.

In the remainder of this section we will introduce the notion of mechanistic
explanation to which we appeal, the Bayesian net modelling formalism, and a
cancer-science case study that we will use as our running example. Then, in §2,
we explain the recursive Bayesian network formalism and show how it can be
used to model mechanisms. In §3 we show how such a network can be applied to
the cancer science example. In §4 we argue that the recursive Bayesian network
formalism really does model mechanisms in the sense invoked by the recent
philosophy of science literature. In §5 we compare the formalism advocated here
with other kinds of formalisms that might be applied to prediction, explanation
and control. We summarise and outline future research in §6.

It should be emphasised that in this paper we assume full knowledge of
causal, probabilistic and mechanistic relationships with the aim of showing that
recursive Bayesian networks offer a useful way of representing and reasoning
with that knowledge. While the assumption of full knowledge is rather strong, it
allows us to set aside certain technical questions to do with partial information;
for example, causal Bayesian nets depend on the Causal Markov Condition
(see below) and when common causes of measured variables are not themselves
measured, this assumption becomes implausible. We leave the questions of
how best to cope with partial knowledge, and of how to use recursive Bayesian
networks in an exploratory way to discover causal, probabilistic and mechanistic
relationships to future work; these questions will not be addressed in this paper.

Mechanistic explanation. Mechanistic explanation is an alternative to tra-
ditional approaches to explanation such as the deductive-nomological (DN)
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Figure 1: A directed acyclic graph

model. It is far more suited to the biomedical sciences, where there are few
if any laws, and where scientists see themselves as instead involved in discover-
ing mechanisms. In the last decade there has been a great deal of philosophical
debate about what a mechanism is, with three main contenders. Machamer,
Darden and Craver have the dominant view: ‘Mechanisms are entities and ac-
tivities organized such that they are productive of regular changes from start or
set-up to finish or termination conditions’ (Machamer et al., 2000, p. 3). Stuart
Glennan holds: ‘A mechanism for a behavior is a complex system that produces
that behavior by the interaction of a number of parts, where the interactions
between parts can be characterized by direct, invariant, change-relating gen-
eralizations’ (Glennan, 2002, p. S344). Bechtel and Abrahamsen’s view is: ‘A
mechanism is a structure performing a function in virtue of its component parts,
component operations, and their organization. The orchestrated functioning of
the mechanism is responsible for one or more phenomena.’ (Bechtel and Abra-
hamsen, 2005, p. 423). These detailed debates are interesting, but there is also
clearly some consensus. The main contenders agree that much explanation in
the biomedical sciences proceeds by finding the mechanism responsible for the
phenomenon, and they all agree that finding a mechanism involves finding parts,
what the parts do, and their organization. Mechanistic explanation is usually
thought of as hierarchical rather than causal: the parts sought are those that
constitute the phenomenon of interest.

Bayesian nets. A Bayesian net (BN) consists of a finite set V = {V1, . . . , Vn}
of variables, each of which takes finitely many possible values, together with a
directed acyclic graph (DAG) whose nodes are the variables in V , and the proba-
bility distribution P (Vi|Par i) of each variable Vi conditional on its parents Par i

in the DAG. Fig. 1 gives an example of a directed acyclic graph; to form a Bayes-
ian net, the probability distributions P (V1), P (V2|V1), P (V3|V2), P (V4|V2V3) and
P (V5|V3) need to be provided. The graph and the probability function are
linked by the Markov Condition which says that each variable is probabilis-
tically independent of its non-descendants, conditional on its parents, written
Vi ⊥⊥ ND i | Par i. Fig. 1 implies for instance that V4 is independent of V1 and
V5 conditional on V2 and V3. A Bayesian net determines a joint probability
distribution over its nodes via P (v1 · · · vn) =

∏n
i=1 P (vi|par i) where vi is an

assignment Vi = x of value x to Vi and par i is the assignment of values to
its parents induced by the assignment v = v1 · · · vn. In a causally-interpreted
Bayesian net or causal net , the arrows in the DAG are interpreted as direct
causal relationships (Williamson, 2005), and the net can be used to infer the
effects of interventions as well as to make probabilistic predictions (Pearl, 2000);
in this case the Markov Condition is called the Causal Markov Condition.
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Cancer case study. The applicability of RBNs will be illustrated with refer-
ence to cancer science. Cancer is a complex biological and social phenomenon,
initiated by exposure to DNA-damaging factors and leading, through a succes-
sion of steps, to ‘unregulated cell growth’ (King, 2000, p. 1). At the molecular
level of description, causal factors triggering cancer are commonly divided into
those that are external to the individual (e.g., UV, ionising radiation, chemicals)
and those that are internal (e.g., free radical formation, incomplete repair of mis-
aligned bases).1 These factors, in turn, are related to high-level variables such
as lifestyle (e.g., dietary habits, smoking habits, exposure to solar radiation),
family history, age, clinical evidence (e.g., biopsy results, X-rays), survival, etc.
The bearing of these high-level variables on the molecular variables is still not
well understood. What we know, however, is that internal and external factors
both exercise their harmful potential by damaging DNA and that, in turn, the
cell’s ability to respond to DNA damage, whether unaided (before cancer de-
velopment), or aided by treatments (when cancer, after development, is being
cured), influences the organism’s survival via regulating cell growth.

In §3 we will present a two-level RBN comprising, at the higher level, simple
variables—age, familial factors and survival—and a recursive variable, DNA
condition, the latter being analysed at the lower level in terms of one mech-
anism for DNA damage response, apoptosis, i.e., cell suicide, and the role of
the protein p53 within this mechanism. This can provide a valuable insight into
the relationships between higher-level variables, on the one hand, and molecular
indicators of correct or incorrect functioning of apoptosis, on the other.

2 Recursive Bayesian nets

Recursive Bayesian networks (RBNs) were originally developed in Williamson
and Gabbay (2005) to model nested causal relationships such as [smoking caus-
ing cancer] causes tobacco advertising restrictions which prevent smoking which
is a cause of cancer. But nested causality is not a general concern of this pa-
per; in this section we develop the RBN formalism in the context of modelling
mechanisms rather than nested causality.2

Definitions. A recursive Bayesian net is a Bayesian net defined over a finite
set V of variables whose values may themselves be RBNs. A variable is called
a network variable if one of its possible values is an RBN and a simple variable
otherwise.

1King (2000, p. 24) uses the terms ‘exogenous’ and ‘endogenous’ factors, respectively. In
order to avoid confusion with the technical meaning those terms have in statistical modelling,
we use the more intuitive terms ‘external’ and ‘internal’.

2A mechanism can be thought of as a special case of nested causality: one in which causal
relations are nested according to the levels of organisation of the mechanism. While in the
general case of nested causality the same variable can appear at more than one level (e.g.,
smoking and cancer in the above example), this is rarely if ever plausible within the specific
context of a mechanism, where different levels tend to mention different variables because each
level of a mechanism is taken to constitute a higher-level phenomenon to be explained as well
as to explain it. This fact makes the question of the consistency of a RBN (Williamson and
Gabbay, 2005, §4) somewhat easier to analyse in our context. (On the other hand, should
mechanisms be found that do exhibit causation across levels, then it is possible to use repeated
variables in the RBN formalism to represent such phenomena.)
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Note that an RBN is a Bayesian net—a Bayesian net whose variables may
be richly structured. On the other hand, Bayesian nets are also RBNs: a simple
Bayesian net is an RBN whose variables are all simple.

The directed acyclic graph of an RBN A is the top level of A. A DAG of
another RBN that is the value of a network variable Vi of A is the next level
down in A, and so on; Vi is the direct superior of the variables in that DAG, and
those variables are its direct inferiors. Variables that occur at the same level of
an RBN are said to be peers. If an RBN contains no infinite descending chains—
i.e., if each descending chain of inferiors terminates in a simple variable—then
it is well-founded . We restrict our attention to well-founded RBNs here.

Example. To take a very simple example, consider an RBN on V = {M,S},
where M stands for some DNA damage response mechanism which takes two
possible values, 0 and 1, while S is survival after 5 years which takes two possible
values yes and no. The corresponding Bayesian net is:

����
M -����

S

P (M), P (S|M)

Suppose that S is a simple variable but that M is a network variable, with each
of its two values denoting a lower-level (simple) Bayesian network that represents
a state of the DNA damage response mechanism. When M is assigned value 1
we have a net m1 representing a functioning damage response mechanism, with
a probabilistic dependence (and a causal connection) between damage D and
response R:

����
D -����

R

Pm1(D), Pm1(R|D)

On the other hand, when M is assigned value 0 we have a net m0 representing
a malfunction of the damage response mechanism, with no dependence (and no
causal connection) between damage D and response R:

����
D ����

R

Pm0
(D), Pm0

(R)

Since these two lower-level nets are simple Bayesian nets the RBN is well-
founded and fully described by the three nets.

Modelling assumptions. Since an RBN is defined as a special kind of Bayes-
ian net, the Markov Condition is imposed on any set of peers. In fact, since we
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are concerned here with modelling mechanisms under complete causal knowl-
edge, we shall assume in this paper that each arrow is interpreted causally—
though this causal interpretation is not essential to the general RBN formalism—
and that the Causal Markov Condition holds of any set of peers.3 The Causal
Markov Condition describes the causally-induced probabilistic independencies
that obtain at any particular level of the RBN. But RBNs are subject to a
further condition, the Recursive Markov Condition, which describes inter-level
independencies and which says that each variable is probabilistically indepen-
dent of those variables that are neither its inferiors nor peers, conditional on its
direct superiors. Combining the intra-level independencies posited by the Causal
Markov Condition and the inter-level independencies of the Recursive Markov
Condition we have a further condition, which we take as the key condition to
be satisfied by an RBN:

Recursive Causal Markov Condition (RCMC). Each variable in the RBN
is independent of those variables that are neither its effects (i.e., descen-
dants) nor its inferiors, conditional on its direct causes (i.e., parents) and
its direct superiors: Vi ⊥⊥ NID i | DSupi ∪Par i for each variable Vi, where
NID i is the set of non-inferiors-or-descendants of Vi and DSupi is the set
of direct superiors of Vi.

Joint distribution. We shall now turn to the question as to how one might
exploit the modelling assumption RCMC to define a joint probability distri-
bution over the variables that occur as the various levels of the network. Let
V = {V1, . . . , Vm} (m≥ n) be the set of variables of an RBN closed under the
inferiority relation: i.e., V contains the variables in V , their direct inferiors, their
direct inferiors, and so on. Let N = {Vj1 , . . . , Vjk} ⊆ V be the network variables
in V. For each assignment n = vj1 , . . . , vjk of values to the network variables
we can construct a simple Bayesian net, the flattening of the RBN with respect
to n, denoted by n↓, by taking as nodes the simple variables in V plus the as-
signments vj1 , . . . , vjk to the network variables,4 and including an arrow from
one variable to another if the former is a parent or direct superior of the latter
in the original RBN. The conditional probability distributions are constrained
by those in the original RBN: P (Vi|Par i ∪DSupi) must be consistent with the
Pvjl

(Vi|Par i) given in the RBN for each direct superior Vjl of Vi. If each variable
has at most one direct superior in the RBN then this will uniquely determine the
required distribution P (Vi|Par i ∪ DSupi); in other cases we follow Williamson
and Gabbay (2005, §5) and take the distribution to be that, from all those that
satisfy the constraints, which has maximum entropy. The Markov Condition
holds in the flattening because the Recursive Causal Markov Condition holds in
the RBN.

Of course in the flattening the arrows are not all interpretable causally so

3Note that the Causal Markov Condition is somewhat controversial (see, e.g., Cartwright,
2007, Part II). In particular, its validity depends on the way in which causality itself is analysed
(Williamson, 2005, Chapter 4). For the purposes of this paper, we need neither pin down a
specific analysis of causality nor precisely delimit the validity of the Causal Markov Condition:
it is simply taken to be a modelling assumption that is open to question and to testing. See
(Spirtes et al., 1993, §5.5) for discussion of statistical tests for probabilistic independence.

4These can be thought of as variables that can only take one possible value, i.e., constants.
In the Bayesian net literature they are called instantiations of the corresponding variables
Vj1 , . . . , Vjk .
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the Causal Markov Condition is not satisfied. The non-causal arrows (the ar-
rows from the direct superiors of a variable to the variable itself) are not to be
interpreted as giving the direction of explanation either—they signify the direct
superiority relation. The flattening should be thought of as a formal tool for
defining a joint distribution, rather than a part of the RBN model itself, so the
fact that the arrows in the flattening do not admit a uniform interpretation is
neither here nor there: the arrows are a formal device for representing proba-
bilistic independencies via the Markov Condition. (For the flattening to satisfy
the Markov Condition, the extra arrows have to be directed from direct superior
to direct inferior; the opposite orientation will not work as it will imply different
independence relationships which are not all supported by the Recursive Causal
Markov Condition.)

In our example, for assignment m0 of network variable M we have the flat-
tening m↓

0:

����
m0 -

?
HH

HHHj

����
S

����
D ����

R

with probability distributions P (m0) = 1, P (S|m0) determined by the top level
of the RBN and with P (r1|m0) = Pm0

(r1) and similarly for r0, d0 and d1. The
flattening with respect to assignment m1 is:

����
m1 -

?
H
HHHHj

����
S

����
D -����

R

Again P (r1|d1m1) = Pm1(r1|d1) etc. In each case the required conditional
distributions are fully determined by the distributions given in the original RBN.

As long as certain consistency requirements are satisfied (Williamson and
Gabbay, 2005, §4), the flattenings suffice to determine a joint probability dis-
tribution over the variables in V via P (v1 · · · vm) =

∏m
i=1 P (vi|par idsupi) where

the probabilities on the right-hand side are determined by a flattening induced
by v1 · · · vm.

Prediction, explanation and control. With a joint distribution, the RBN
determines the probabilities of all combinations of assignments of values to vari-
ables, so the model can be used for prediction. For example, the probability
that R has value 1 and that the patient will survive 5 years is

P (s1r1) = P (m0s1r1) + P (m1s1r1) =

P (s1|m0)P (m0)Pm0
(r1)+P (s1|m1)P (m1) (Pm1

(r1|d1)Pm1
(d1) + Pm1

(r1|d0)Pm1
(d0))

and these latter probabilities are all given in the RBN.
More than that, since at each level the arrows in the RBN are interpreted

causally, the model can be used for backwards ætiological explanation: one
might cite damage response mechanism type 1 as the reason a patient survived
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5 years. If the inter-level relations match that of mechanistic composition then
the model can be used for mechanistic explanation. Thus the values of the
damage and response variables and the link between the two might explain
survival.

Finally one can use an RBN to reason about control across levels: by inter-
vening on response R one might change the probability of survival. Interventions
in RBNs work in just the same way as they do in standard Bayesian nets. When
one intervenes to fix the value of a variable, one creates a new net by deleting all
the arrows that go into that variable in the RBN. Then one calculates probabil-
ities in the usual way, instantiating the variable in question to the appropriate
value, and using flattenings if necessary. Thus in our example, intervening to
set R to value r1 involves no change at the top level, but both lower-level graphs
now have no arrow from D to R:

����
D ����

R

Both flattenings then have the same graphical structure:

����
mi -

?
HH

HHHj

����
S

����
D ����

R

and the new probability of s1 after intervention to set r1,5 is P (s1||r1) =
P (s1r1)/P (r1), with these last probabilities calculated using the new network
structure:

P (s1r1) = P (m0s1r1) + P (m1s1r1) =

P (s1|m0)P (m0)Pm0(r1) + P (s1|m1)P (m1)Pm1(r1),

and
P (r1) = P (m0)Pm0(r1) + P (m1)Pm1(r1).

While the formal apparatus for handling interventions in RBNs is exactly the
same as that for standard Bayesian nets, one needs to be careful now that the
level at which the intervention takes place has been correctly identified. Thus
while it may be possible to intervene at the lower level to set R to value r1,
presumably what one wants to do in this case is not to initiate damage response
(e.g., cell suicide) in all cells, healthy included. Rather, one wants to intervene
to ensure that the response is triggered by damage, i.e., one wants to ensure
that D does cause R. This is an intervention to fix the value of M to m1, rather
than to fix the value of R to r1—it is a higher-level intervention.

Note that it is quite common in the mechanisms literature to distinguish in-
terventions at different levels, even when those levels are related by constitutive
relations—e.g., in discussions of mutual manipulability of different levels of a
mechanism (see §4). So RBNs are not adding anything conceptually here. Also,
the formal treatment of interventions that RBNs appeal to is just the formal
treatment in ordinary Bayesian nets, so RBNs do not add anything in terms
of formal explication. What RBNs do, is allow one to apply the latter formal
account of what interventions entail (in terms of the probabilistic inferences

5A conditional probability where the condition is an intervention is often represented using
a double bar, P (·||·).
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Figure 2: F : Familial Factors; A: Age; C: DNA Condition; S: Survival.
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Figure 3: Functioning apoptosis mechanism. D: Damaging agents; G: p53
gene status; P : p53 protein level; O: Apaf1 level; E: caspase 3 level; T : TNF
level; I: caspase 8 level.

one can draw on the basis of interventions) to the former case of multi-level
interventions. This is something new and not handled by standard Bayesian
nets.

3 Cancer application

In this section the applicability of RBNs to cancer science is illustrated in more
detail. We will present a more realistic two-level RBN, comprising a higher,
clinical level and a lower, molecular level. At the clinical level (see Figure 2),
familial (i.e., hereditary) factors of a certain type of cancer (F ) and age (A)
cause DNA condition (C), which in turn causes survival in months (S), with
A having also a residual influence on S that doesn’t go through C. F , A and
S are simple variables. C, instead, is a network variable whose two values, c1
(good) and c0 (bad), correspond to lower-level networks (Figure 3 and Figure 4)
representing the mechanism for apoptosis functioning, respectively, correctly or
incorrectly.6 Let us introduce these lower-level networks whilst describing the
mechanism.7

DNA damage is responsible (i) for disrupting the cell’s regulatory activities,
that is, the cell’s ability to transcribe genes that the affected DNA encodes; and
(ii) for modifying the survival ability of the daughter cells, due to the harmful

6At the higher level, the amount of DNA carried by the cell constitutes evidence for apopto-
sis functioning correctly or incorrectly—in case of malfunctioning of apoptosis the cell’s DNA
can grow up to 4-5 times larger.

7If one were to draw the flattenings c↓1 and c↓0 that contain the lower-level networks rep-
resented in figure 3 and figure 4 respectively, one would also need to include nodes for the
assignments c1 and c0 of the network variable C and arrows from them to their inferiors
D,G, P,O,E, T and I in each flattening.
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Figure 4: Malfunctioning apoptosis mechanism. D: Damaging agents; G: p53
gene status; P : p53 protein level; O: Apaf1 level; E: caspase 3 level; T : TNF
level; I: caspase 8 level.

genomic mutations which obtain as the damage is passed from mother cell to
daughter cell when the mother cell undergoes mitosis, i.e., cell division. When
the DNA is damaged, a well-functioning cell reacts via defence mechanisms
known as “DNA repair” mechanisms that heal the cell after damage has arrested
its cycle. Depending on the kind of damage (e.g., single-strand, double-strand,
mismatch), different enzymes are recruited to fix the damage. As a last resort,
if the damage is serious and cannot be effectively repaired, the cell either (i)
enters an irreversible state of dormancy (“senescence”) or (ii) commits suicide
(“apoptosis”). However, when none of the above strategies is effective, damaged
cells keep growing and dividing and, in so doing, produce mutations, which are
the first step toward cancer development.

This is, in short, how errors accumulate irreversibly, from one mitosis to
another. During DNA replication, misreading of damaged bases can occur,
leading to incorporation of wrong bases opposite damaged ones (e.g., an A:T
nucleotide base pair is in the daughter cell DNA where the mother cell DNA
had a G:C nucleotide base pair, due to a G → A mutation). When the cell
undergoes division, DNA changes in the mother cell result in mutations, that is,
irreversible changes in DNA sequence, in the daughter cell. Inherited changes,
in fact, cannot be repaired, as they are on both strands of DNA, so template
information for correction is lost. As a consequence, they are replicated and
inherited through further divisions.

Notice that, although DNA replication mechanisms are very precise, DNA
damage due to both internal and external factors can produce a daily number
of lesions high enough to be dangerous (King, 2000, p. 125). This is why the
mechanisms that allow the cell to correct errors before they are replicated (re-
pair) or prevent mutations (senescence and apoptosis) are so important. In fact,
a mutation can start a cascade of mutations, because of its capacity to impair
the cell’s activities (among which there is the production of enzymes needed in
DNA repair itself), so that further mutations occur more easily.

What follows is a summary of the mechanism upon which the cell relies
in order to oppose cancer development.8 Possible indicators of good or bad
functioning of these mechanisms will also be introduced in order to devise the
lower-level decomposition of the network variable C.

Although there are ways of measuring DNA damage in vitro, there currently
is no way to determine this directly in vivo. One needs to resort to the ex-

8This summary develops discussion in Weinberg (2007, ch. 9) and we refer the reader to
that text for a more detailed description.
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pression levels of certain DNA damage response genes as a surrogate for DNA
damage; among these genes, p53 is considered the “master guardian” of genomic
integrity of the cell. After noticing presence of metabolic disorder or genetic
damage, protein p53 can induce cell-cycle arrest, activate DNA repair proteins,
or lead to cell death (apoptosis).9 The basic steps leading to cell-cycle arrest are
p53’s induction of the synthesis of the protein p21Cip1, which prevents cyclin
dependent kinases (CDKs) from triggering the process of growth-and-division.
Halting the cell cycle, in turn, permits DNA polymerases and other molecules
to perform DNA repair. However, if the metabolic derangement or genomic
damage is too severe to be cured, p53 may decide—it is still unclear how—that
cell death is a better option. For reasons of brevity, only a simplified version of
the mechanisms responsible for apoptosis involving p53 will be presented here.

In a well-functioning cell,“wild”(e.g., non-mutant) p53 normally goes through
a rapid degradation, due to its being “tagged” by the Mdm2 protein and subse-
quently “digested” by proteasomes. The amount of p53 increases when, e.g., its
phosphorylation due to genotoxic (i.e., DNA damaging) factors (e.g., X-rays),
or the phosphorylation of Mdm2 due to ATM kinase, results in Mdm2 being
unable to bind to p53. Interestingly enough, p53 promotes synthesis of Mdm2,
thereby contributing to its own inhibition in a negative feedback loop. This
loop successfully regulates apoptosis unless the gene p53 mutates. In the latter
case, mutation of p53 prevents Mdm2 from binding to p53 and, as per the wild
case, this results in an increase of p53. However, the defective p53 has lost its
ability to act as a transcription factor, that is, is unable to bind to the promoters
of genes that synthesise pro-apoptotic proteins in the successive stages of the
mechanism.

According to available data, gene p53 is mutated in 30% to 50% of commonly
occurring human cancers (Weinberg, 2007, p. 310). The crucial, causal, role
of the protein p53 is explicitly recognised, as is the possibility of building a
mechanistic model around p53 to explain how alarm signals stop the cell cycle or
trigger apoptosis (Weinberg, 2007, pp. 316-317). The explanatory value of such
a model and the added, predictive, advantage of our RBN will be particularly
relevant to cancer types where p53 is highly mutated.

When modelling, the Mdm2-p53 loop will be simplified so as to represent its
overall influence by a single arrow, since RBNs, like standard BNs, do not admit
cycles (see also section 4). In the RBN, the upstream variables D (damaging
agents) and G (p53 gene status, which can be wild or mutant) initiate distinct
pathways in the case of a healthy cell and a cancerous cell. In both, an edge
links D and G to P (p53 protein level). In the network for the healthy cell,
P is, in turn, directly linked to downstream effects of the regulatory feedback
loop p53-Mdm2. This latter link is missing in the network for the cancerous
cell. Both networks include, among the values of D, both radiotherapy and
chemotherapeutic agents (e.g., Cisplatin and the topoisomerase II inhibitors
etopiside and mitoxantrone), whose effects on apoptosis are being extensively
investigated (see, e.g., http://www.virtualtumour.co.uk/apoptosis.htm).

In the well-functioning cell, increased p53 plays an important role in several
apoptotic signalling pathways. It is useful to distinguish between an intrinsic
(internal to the cell) and an extrinsic (external) pathway. The apoptotic signal

9Following the lead of the biological literature, we use the same name to refer to a gene
and the protein it codes for, and distinguish the former from the latter by italicising it (e.g.,
p53 stands for the gene, p53 for the protein).
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can also be amplified via crosstalk between these pathways.
Internally, p53 acts as transcription factor for the encoding of pro-apoptotic

proteins (e.g., Bax) that, by opening the mitochondrial membrane channel, allow
release of cytochrome c. Pro-apoptotic proteins belong, together with anti-
apoptotic proteins, to a family of proteins named the “Bcl-2 family” (after Bcl-
2, the first protein found to contribute to regulation of apoptosis besides p53),
due to their sharing a common coding sequence. Their balance determines the
opening of the mitochondrial membrane and the release of cytochrome c, that
binds a protein called Apaf1 and leads to the formation of a wheel-like heptamer
called apoptosome. The apoptosome, then, recruits procaspase 9 and activates
it by means of proteolytic cleavage, so that it becomes caspase 9 (“initiator”).
Caspase 9, in turn, initiates a cascade of caspases 3, 6 and 7 (“executioners”)
that results in the disintegration of the cell. Executioners can be inhibited
by IAPs proteins—their action, in turn, being inhibited by another protein,
Smac/DIABLO, also released by the mitochondrion together with cytochrome c.
Level of apoptosis cannot be easily measured. Expression levels of the caspases
3 and 9 are often used as surrogates.

Also in this case, it will be useful to bypass the intermediary steps of the
cascade, as the catalytic action of caspases amplifies the signal via a positive
feedback loop. For the sake of simplicity, our RBN will include an edge from
P to O, which stands for the effect of p53 on the production of Apaf1 in the
healthy cell network, and no such link in the cancerous cell network. Another
edge will then depart from O to E to signify the overall activation level of
Caspase 3 due to the production and subsequent activation of Apaf1 via the
activation of Caspase 9.10 In both the healthy cell network and the cancerous
cell network a direct edge from D to E will stand for all damaging, residual,
effects on apoptosis that do not go through P .

Let us turn to the extrinsic pathway. This is due to ligands in the extracel-
lular space (e.g., FasL) belonging to the TNF (tumour necrosis factor) protein
family, that bind to death receptors on the surface of the cell (e.g., FasR). The
tail of these receptors act in conjunction with the FADD protein to assemble
DISC, a complex which, by prior activation of initiator caspases 8 and 10, trig-
gers another cascade of caspases 3, 6 and 7. p53 contributes to this process
by promoting the expression of the genes encoding the Fas receptor, thereby
increasing the cell’s responsiveness to extracellular death ligands, specifically
FasL. The extracellular apoptotic signal can be amplified by crosstalk between

10Notice that, although this is a simplified representation of the intrinsic apoptotic pathway,
it is sufficiently faithful to reality. As shown by recent studies on the role of Apaf1, XIAP,
and Caspases 3 and 9 (Legewie et al., 2006), Caspase 3 activity is bistable and irreversible.
Simulations identify hysteretic behaviour, with low active Caspase 3 depending on low active
Apaf1 until a threshold point is reached where active Caspase 3 switches irreversibly to a high
state. Other simulations explain the role of XIAP in establishing bistability and irreversibility.
For low Apaf1, most Apaf1-associated active Caspase 9 is inhibited by XIAP, whereas above
the threshold Apaf1 manages to initiate Caspase 3 activation. Active Casp3 then further
promotes its own activation by sequestering XIAP away from Apaf1-associated Caspase 9.
This results in most of XIAP being bound to Caspase 3, and therefore being unable to inhibit
Caspase 9, which is then free to trigger executioner Caspase 3. Furthermore, Caspase 3
activity is maintained even if the stimulus is removed, since Caspase 3, once activated, retains
XIAP, thereby preventing full Caspase 9 deactivation. These conclusions are well supported
by experimental data. This makes it plausible to model the influence of p53 on Caspase 3 in
a linear fashion, with P contributing to O, and O having a positive net effect on E, and to
ignore the inhibiting activity of XIAP.
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the two pathways: caspases 8 and 10 cleave Bid, which inhibits the action of
Bcl-2 antiapoptotic proteins.

The extrinsic pathway in the RBN will be modelled as follows: an edge will
be included to represent the influence of T (TNF proteins) on I (activation level
of Caspase 8), which, in turn, has an effect on E. Furthermore, an arrow from
P to I will be included to represent the—indirect—effect of p53 on Caspase 8
activation via the expression of genes encoding Fas. Finally, an edge from I to O
will be added to model the inhibiting effect of Caspase 8 on Bcl-2 antiapoptotic
proteins through the activation of Bid. The latter two edges provide a (simpli-
fied) representation of the crosstalk between intrinsic and extrinsic pathways.11

Cancer cells inactivate apoptosis in several ways that enable them to survive
and thrive. They can increase the level of anti-apoptotic proteins, change the
gene coding for p53 or its upstream regulators, methylate promoters of pro-
apoptotic genes, interfere with the release of cytochrome c, inhibit caspases,
etc. On the other hand, over expression of proapoptotic proteins or dysfunction
of antiapoptotic proteins due to mutations can result in too much apoptosis and
cause other pathological conditions, e.g., neurodegenerative disorders such as
Alzheimer’s or Parkinson’s disease. Thus, an RBN could also prove useful in
explaining the relevance of p53 with regard to these latter diseases.

4 RBNs as models of mechanisms

We have described the formalism that allows recursive Bayesian nets to be ex-
tended to model mechanistic hierarchy, and illustrated it by applying it to a
DNA damage response mechanism. In this section we address philosophical
concerns about the interpretation of RBN models. According to the recent
mechanisms literature, mechanistic explanation proceeds by identifying mech-
anisms. Here we argue that RBNs are legitimate descriptions of such mecha-
nisms: BNs, designed to model causal structures, can be extended in the way
we suggest to model mechanistic hierarchy. First, we will examine how well
the RBN framework can be used to capture the philosophical consensus on
mechanisms. In particular, we will illustrate how the network variables in an
integrated model—which are the variables that must fit both in a causal BN
and in the mechanistic hierarchy—can accommodate the relevant constraints.
Then we will move on to examine the modelling assumptions that RBNs need
to satisfy. We conclude this section by discussing the advantages of representing
mechanisms in this way.

Modelling mechanisms. It is natural to have philosophical concerns about
integrating BNs and mechanisms. Causal BNs are designed to model causal
relations between distinct events, and are explicitly quantitative; the mecha-
nisms literature concerns itself instead with constitutive relations—with how a
lower level makes up or composes a higher level that it is not entirely distinct

11In this case the simplified representation of the extrinsic pathway in the RBN is also
supported by experimental evidence aided by computation. Mai and Liu (2009) have recently
produced a 40-node Boolean Network and performed extensive statistical analyses of its state
space, which has resulted in the identification of key network components responsible for the
stability of the surviving states and the irreversibility of the apoptotic process. Among other
things, the study has confirmed the role of TNF as a strong promoter of apoptosis, its effects
being only partially offset by GF (growth factor) once apoptosis has been initiated.
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from—and is largely qualitative. We need to explain how a single model can
accommodate these differences.

The qualitative-quantitative difference is not a deep one. Attention has
been given to qualitative aspects of mechanisms in the philosophical literature
on mechanisms because the main worry has been interpretation—the question
being what counts as a mechanism and what doesn’t—rather than modelling.
But there is no reason why relations in mechanisms cannot be modelled quan-
titatively. The structure of this model is another issue: can we represent causal
and constitutive structure so readily in the same model?

We will begin to address this question by explaining how RBNs can legiti-
mately be used to describe mechanisms as they are examined in the burgeon-
ing mechanisms literature.12 The complex-systems approach to mechanisms of
Machamer, Darden and Craver (MDC), Glennan, and Bechtel, that we have
introduced earlier in §1 is explicitly concerned with explanation. It offers an
account of what mechanisms are as they are used in decompositional explana-
tions of higher-level phenomena in terms of the lower-level parts that constitute
them. There are disagreements over details within this literature, but a great
deal of agreement over core elements vital to a mechanistic explanation. These
are:

• Decomposition into entities and activities (always)

• Organisation (always)

• Hierarchy (often)

The first element is that mechanisms have two kinds of parts: the objects
in the mechanism, and the things that the objects do. MDC, Glennan, and
Bechtel use different language for the two kinds of parts, but agree on this
distinction. We use MDC’s language but we use it merely descriptively as has
become standard; there is no need to adopt their controversial metaphysical
claims of entity-activity dualism in this paper. Entities and activities are not
just any old division of a mechanism into pieces. The division must be into
functioning components—a mechanistic explanation must identify those entities
and activities by which the phenomenon is produced. Put simply, Craver’s
account of what it is for X to be part of the mechanism for Y is i) X is a
part of Y and ii) X and Y are mutually manipulable—wiggle X and Y wiggles,
and vice versa. (For Craver’s more formal statement of this, see Craver (2007,
p. 152-3).)

The second element is that the entities and activities must be organized,
spatially and temporally, in order to produce the phenomenon. This element
cannot be ignored. As Machamer et al. (2000, p. 3), for example, write: ‘The
organization of these entities and activities determines the ways in which they

12There is controversy within that literature, of course. We will not address the views of
Woodward, and of Glymour and Cheng, on mechanisms (Woodward, 2002, p. S375; Glymour
and Cheng, 1998). They hold that mechanisms are chains of difference-making relations of
the same kind as are already modelled using BNs. Modelling mechanisms of this sort is
done merely by adding extra nodes between existing nodes of a simple BN. There is nothing
distinctive about this kind of mechanism, nothing beyond the BN approach. Modelling this
kind of mechanism is no particular challenge because it does not add an extra explanatory
dimension to the structure already existing in a standard BN.
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produce the phenomenon’ (Machamer et al., 2000, p. 3). See also Bechtel and
Abrahamsen (2005, p.435) and Darden (2002, p. S355).

The third element is that mechanistic decomposition is often hierarchical.
The decomposition often continues beyond the entities and activities that ini-
tially explain a particular phenomenon, to look at the entities and activities
that in turn explain one or more of the newly-identified activities, and so on.
As Machamer et al. (2000, p. 13) write: ‘Mechanisms occur in nested hierarchies
and the descriptions of mechanisms in neurobiology and molecular biology are
frequently multi-level.’ Again, the decomposition is constrained: the entities
and activities sought are those responsible for the phenomenon.

Take Glennan’s favourite example of a toilet. We can explain the flushing
of the toilet mechanistically. The edge of the handle, and a part of the water
are pieces of the mechanism of the toilet, but not components. They don’t each
have a function that contributes to the functioning of the toilet, so altering them
won’t have a recognisable effect on the functioning of the toilet. But the handle
itself and the ballcock and valve are components performing specific functions—
including triggering, and regulating water flow. Thus, changing one of these will
affect the operation of the toilet in a recognisable way. They are component en-
tities and activities. See Illari and Williamson (2010) for detailed discussion of
the importance of function with reference to the mechanisms of protein synthesis
and natural selection. Organization also exists in the toilet. The cistern must
be appropriately positioned relative to the bowl, and the pulling of the lever
will occur before the flushing of the water. Hierarchy is also present. Presum-
ably, at a lower level the materials that the ballcock and valve are composed
of will explain their functioning. For example, the material and construction
of the ballcock explains why it floats, so responding to the level of water. The
mechanistic explanation can descend one level.

RBNs. Our aim is to use RBNs to describe mechanisms of this and more com-
plex kinds: entities and activities organized to be responsible for a phenomenon,
often hierarchically. Broadly, we envisage nodes in the RBN standing for vari-
ables describing either entities or activities. In our cancer example, variable
G describes an entity—whether the p53 gene is wild or mutant. Variables P
and E measure activities—the rising or falling levels of protein p53 or caspase
3, respectively. Arrows in the RBN, however, will stand only for activities—
interactions and influences among the variables. This is because the structure
of the arrows in the RBN will represent aspects of the causal organization of
the mechanism. Arrows in our cancer example represent, for instance, the influ-
ence of familial factors on the patient in question, and the influence of the level
of protein p53 in triggering Apaf1 level, and caspase 8 level, which trigger the
caspase cascade leading to apoptosis.

RBNs are flexible enough to do this because they use variables, which can
represent many things. The interesting question for RBNs concerns the network
variables. These are the most constrained since they have to represent the kind
of thing that can be related causally to other (same-level) nodes in the model,
and constitutively to other (higher- or lower-level) nodes in the model. Our
network variable is node C, standing for DNA condition. Node C represents
something causally related to age, familial factors, and survival time; and consti-
tutively related to what is represented by the lower-level nodes D,G,P,O,E, T

16



and I—the mechanism responsible for DNA condition. This requires some at-
tention, since on the one hand causes conventionally (although not uncontrover-
sially) relate distinct events. On the other hand, mechanisms relate entities and
activities and their organization to the explanandum phenomenon they consti-
tute.

Happily, this is no bar to the success of the model. Network variables will
have to represent only activities or phenomena that are susceptible to constitu-
tive mechanistic explanations. The activity represented by a particular network
variable will be the characteristic activity produced by the lower-level mech-
anism or mechanisms described in the lower-level nets that are the possible
assignments to that variable. In our cancer example, the relevant phenomenon
is DNA condition, and the lower-level nets model the mechanisms responsible for
correctly functioning apoptosis, yielding good DNA condition, and incorrectly
functioning apoptosis, yielding bad DNA condition. In this way, the lower-level
BNs describe the mechanisms responsible for the changes in the higher-level
variable describing the activity of the mechanisms. Clearly, some nodes will not
have a decomposition, since they will not be the kinds of things likely to have a
mechanistic explanation. Age, for example, seems unlikely to have a lower-level
mechanism. In our RBN, such nodes are simple variables.

The arrows to and from nodes describe relations between the activities pro-
duced by the lower-level mechanisms, and variables describing other (same-level)
entities and activities in the RBN. In our case, increased age causes worse DNA
condition, and worse DNA condition reduces likely survival time. These are
modelled by (same-level) arrows in the RBN. Both higher-level and lower-level
networks are directed acyclic graphs and so represent causal structures. In so far
as they are useful, it will be because they represent something about the causal
organization of the mechanisms they describe. The unified model, modelling
both causal and constitutive relations, offers valuable insights into the relation-
ships between higher-level clinical variables known to be relevant to survival and
lower-level indicators of DNA damage.

Formal modelling assumptions. We move now to consider the formal mod-
elling assumptions that RBNs must satisfy. It is worth clarifying exactly what
claim we defend: we claim that the RBN formalism we have presented can
usefully represent some mechanisms. We are not claiming that all RBNs can
be interpreted mechanistically, for reasons that will become clear. Nor are we
claiming that all mechanisms can be represented using an RBN. There are
well-known modelling assumptions required for BNs to be applied, and RBNs
inherit these. Where the following modelling assumptions are violated, there is
no guarantee that RBNs will be useful for modelling mechanisms:13

• Causal Markov Condition: At each level, each variable is independent of
its non-effects, conditional on its direct causes.

• Modularity: At each level, an intervention to change the value of a variable
does not change the underlying causal structure. It merely breaks the
arrow between the altered variable and its parents.

13We do not include stability, faithfulness or minimality assumptions. These assumptions
are normally invoked to justify procedures for learning causal networks from data. Since we
assume causal relations are given for the purposes of this paper, they are unnecessary.
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• Acyclicity: The system does not involve any feedback loops.

We have added a new assumption, and there is no guarantee that RBNs will
be useful where it is violated:

• Recursive Markov Condition: Each variable is probabilistically indepen-
dent of those variables that are neither its inferiors nor peers, conditional
on its direct superiors.

As explained in §2, the Recursive Markov Condition and Causal Markov Con-
dition are integrated via the Recursive Causal Markov Condition.

The first three assumptions have been thoroughly discussed and are well-
understood (see, e.g., Williamson, 2005; Cartwright, 2007, Part II). There are
established strategies for building models that do not violate the Causal Markov
Condition or acyclicity (Pearl, 1988; Neapolitan, 1990; Spirtes et al., 1993;
Neapolitan, 2004). Problematic cases for modularity are well-known, such as in
the social sciences: for example see the discussion of ‘structure altering inter-
ventions’ in Steel (2008). We will not discuss these further here. It is sufficient
to note that both levels of our cancer RBN separately meet the modelling as-
sumptions of traditional BNs. In particular, the lower-level networks do not
include cycles. This is why the Mdm2-p53 negative feedback loop, and the com-
plex intermediate steps of the caspase cascade, which involves positive feedback
loops, have each been summarised in a standard way with a single causal arrow.
Summarising in this way ensures that the relationships represented in each BN
do satisfy these modelling constraints.14

The Recursive Causal Markov Condition, however, is new, and it is worth
examining whether every mechanism will satisfy it. Looking again at our cancer
example, represented in Figure 2, the network variable is node C—DNA con-
dition. The lower-level nets are represented in Figure 3—correctly-functioning
apoptosis—and Figure 4—incorrectly-functioning apoptosis. For this net, the
Recursive Causal Markov Condition requires that, conditional on C, all the
lower-level variables, D,G,P,O,E, T and I, are probabilistically independent
of the other higher-level variables, A,F and S. The condition can be informally
linked with Craver’s mutual manipulability criterion for being a component in
a mechanism. If D,G,P,O,E, T and I represent components in the mechanism
for C, wiggling D,G,P,O,E, T and I should affect C, and vice versa. However,
if the value of C is held fixed, wiggling any of the higher-level variables A,F and

14In general, handling causal cycles in the right way is of crucial importance for BNs to
deliver good predictions under intervention. (Since an RBN is a special kind of BN, the
issue of cyclicity is not a distinct, extra problem.) For this purpose, one among the following
strategies is commonly employed. One strategy consists in time indexing the variables, which
is commonly done when using dynamic BNs (DBNs). For DBNs, it is possible that one
variable causes another and vice versa—but at different times. DBNs are also useful for
inferring the time that elapses between cause and effect. For these reasons, they are often
used to model biological mechanisms such as gene expression networks. (For more on DBNs
and their biological applications, see, e.g., Friedman et al. (1998, 2000).) However, since the
temporal aspect is orthogonal to our primary concern, which is modelling hierarchy, it will
not be dealt with here. Another strategy consists in combining the values (e.g., a1, a2, b1, b2)
of two variables (A and B) that are connected by a causal loop, into a single variable (AB,
taking the possible values a1b1, a1b2, a2b1, a2b2). Finally, one can leave out a node if one is
not interested in it, provided the node in question is not a common cause of other variables
in the net—in the present case, a suitable move is simply to leave out Mdm2. Notice that
these strategies do not involve making false assumptions about known cycles, but are instead
formal moves to deal with them in a principled way.
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S should have no effect on any of the lower-level variables D,G,P,O,E, T and
I, and vice-versa.

There are two possible problems for the Recursive Causal Markov Condition,
which are separate. The first problem is the existence of systems such that no
possible RBN (satisfying the Recursive Causal Markov Condition) could model
such a system. An infringement of the condition might be due to a failure of
the Causal Markov Condition: for instance, any system where there are two
peers that are dependent but not causally connected will create this problem.
For example, the flow of the water in the toilet and the sound of the water are
dependent, but might not be viewed as causally connected because they do not
correspond to spatio-temporally distinct events. (Each seems to be the kind
of thing that has a mechanistic explanation at the lower level, and of course
the mechanistic explanation of the flow of water in the toilet will at the very
least overlap considerably with the mechanistic explanation of the sound of the
water.)

The second problem concerns the usefulness of RBNs for modelling some
systems. The kind of system that might create difficulties (although note that it
may not count as a mechanism) is a system that is richly integrated so that many
of the higher-level variables are related to many of the lower-level variables, and
vice-versa. RBNs representing such systems may have to be so complex in order
to satisfy the Recursive Causal Markov Condition, as to be not much practical
use. RBNs are designed to be useful for modelling systems where a subset of the
lower-level variables can be selected such that they act on the higher-level net
only via a subset of the higher-level variables (or a single higher-level variable
as in our cancer example). Selecting such a subset may be difficult for some
systems.

Consider for example a thermodynamic explanation for the temperature and
velocity of a body of air. These two aggregate variables are often related. We
have an explanation for the aggregate variable temperature in terms of (among
other things) the kinetic energy of the individual molecules. We have an expla-
nation for the aggregate velocity of the body in terms of (among other things)
the velocity of each individual molecule. Perhaps we could produce an RBN
that included causal relations between the temperature and aggregate velocity
of the body, which would both be network variables, with lower-level nets repre-
senting the molecular explanation. However, the kinetic energy of a molecule is
not independent (causally or probabilistically) of its velocity, so temperature is
not independent of the velocity of individual molecules, and aggregate velocity
is not independent of the kinetic energy of individual molecules. This is not just
because velocity and kinetic energy measure aspects of the same molecule, but
because of the meanings of ‘kinetic energy’ and ‘velocity’.

Such a system can still be modelled using an RBN that satisfies the Recursive
Causal Markov Condition. For the above case, this can be achieved by making
temperature also a direct superior of the variables describing the average veloc-
ity of individual molecules, and making aggregate velocity also a direct superior
of the variables describing the kinetic energy of individual molecules. Whether
this is a model of a mechanism or not depends on whether the superior-inferior
relationships have a legitimate interpretation as representing mechanistic hier-
archy, as well as the original superior-inferior relationships between temperature
and kinetic energy and between aggregate and individual velocity. Either way,
this move already makes the RBN messier than we originally wanted. It can be
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seen that putting further pressure on this example could lead to an RBN where
all the higher-level variables describing the body of air are direct superiors of
all the lower-level variables describing aspects of the individual molecules. The
Recursive Causal Markov Condition is trivially satisfied in such a net, but this
is certainly not the kind of model that would be particularly useful to build. In
such a case—and of course if this kind of system counts as a mechanism—then
the RBN formalism may be less useful for modelling this mechanism than some
of the other formalisms we discuss in the next section.

The advantages of such a representation. By contrast, though, this kind
of difficult case highlights situations where the RBN formalism is instead likely
to be useful. This happens precisely when lower-level components responsible
for particular features of the higher level can be identified. Take a machine we
have built, such as Glennan’s toilet. We have constructed a ballcock and valve
to refill the cistern after each flush. It is this system that is responsible for the
level of water in the cistern. It is not responsible for anything else. We can
be confident that the ballcock and valve acts on the flushing of the toilet—say,
the flow of water through the toilet bowl—only by being the component that
determines the level of water in the cistern. If we hold the level of water in the
cistern (the value of the higher-level network variable) fixed, the action of the
ballcock and valve is independent of the flow of water through the toilet bowl.

With the idea clear, we can return to our cancer example. This is not
as simple as the toilet. Cancer is a complex phenomenon, with many more
interacting causes than a toilet has. There are two possible problems. The first is
that of many unknown causes. This is clearly a practical concern when modelling
cancer systems. However, we are here assuming complete causal knowledge.
This simplifies things. If we have complete causal knowledge—if we know all the
causal paths from D,G,P,O,E, T and I—we will be in a position to know that
they only affect or are affected by the higher-level variables via C. (As we have
said, for the purposes of this paper we are setting aside the question of how RBNs
might be useful in the absence of complete causal knowledge—in the process of
mechanism discovery.) The second problem is whether it is plausible that a
lower-level component can be identified that is responsible for the higher-level
clinical variable. Since DNA condition can be measured independently of the
states of D,G,P,O,E, T and I, it is a legitimate clinical variable. DNA damage
and the cell’s response is absolutely central to the development, treatment and
survival of cancer; it has been extensively studied, and in the construction of
this example we draw on a wide consensus that these are some of the lower-level
mechanisms responsible for DNA condition. While of course a great deal is
still unknown about cancer, we choose DNA damage response—one of the most
intensively studied features of cancer, generating vast amounts of data—because
we know enough about these mechanisms to make modelling them using RBNs
a plausible strategy, and one that is likely to be useful.

So we believe both that the Recursive Causal Markov Condition will be
satisfied in this case, and that our model showing the effect of the lower-level
variables D,G,P,O,E, T and I in terms of a single recursive variable describing
DNA condition will be fruitful. If the Causal Markov Condition is also satisfied
in each net, then the Recursive Causal Markov Condition will be satisfied. The
RBN formalism will be applicable, and useful.
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There are various general advantages of representing mechanisms in this way.
Here, we discuss three.

The first advantage is that this gives a quantitative description of a mech-
anism. If our intention were to replace the more usual qualitative description
of a mechanism in words and diagrams with an RBN, there would be both
losses and gains. Information from the qualitative description would be lost.
Most activities are represented in the same ways using arrows in RBNs, so that
richer descriptions of, for example, ‘pushing’ as different from ‘pulling’ would
be lost. But our intention is not to replace the descriptions of the biological
literature, so the richness of these descriptions is retained. There is only a gain:
in the precision and subtleties of quantitative relationships that can now be
represented. The two representations put together—diagrams plus RBN—are
far more powerful than either alone. A flat BN might be useful for these pur-
poses, but a hierarchical RBN will do more. In the next section we discuss other
quantitative models which might be used to model mechanisms, and explain the
advantages of RBNs.

The second advantage lies in the consistency of the story about explana-
tion, prediction and control that the RBN framework adds to traditional ways
of describing mechanisms. The RBN framework enforces consistency. BNs are
designed to represent causal relationships and allow prediction and intervention.
The RBN formalism extends that to allow intervention and prediction across
levels—using precisely those hierarchical relationships that are discovered when
mechanisms are investigated. For more complex mechanisms, even the explana-
tory story given in traditional qualitative descriptions is enhanced by getting
these quantitative relationships right. It is increasingly vital in, for example,
both proteomics and genomics to represent very precisely not just what proteins
are produced, or genes expressed, but exactly what levels and over what time
periods.

The third advantage of RBNs is economy. A single RBN encapsulates many
BNs. This economy of representation matters, allowing the relationships be-
tween the BNs to be represented in a more readily understandable and cogni-
tively manipulable way. Formally equivalent mathematical formalisms are not
equal in their representational usefulness, and this economy of representation
might lead to fruitful progress.

In sum, RBNs are useful for representing mechanisms as they are discussed
in the complex-systems mechanisms literature. There are many benefits to
representing mechanisms this way.

5 Alternative models for prediction, explana-
tion and control

In this section we further argue for the suitability of the RBN formalism by
comparing it with alternative models. Recall, the reason why we opted for
recursive Bayesian nets was that they satisfy three desiderata:

1. to model causal relations, so that the model can be useful for causal ex-
planation and for control,

2. to model hierarchical mechanisms, so that the model can be useful for
mechanistic explanation, and
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3. to model probabilistic relations, so that the model can give accurate quan-
titative predictions.

Alternative models, notably differential equations, agent-based models and
multilevel models, certainly perform pretty well in providing quantitative in-
formation, as they all go beyond mere qualitative description of phenomena.
They look like good potential candidates for our purposes—and consequently
like competitors to RBNs—because they are intended to model hierarchies or
they can easily be adjusted and interpreted in order to do so. Yet, as we shall
show, they all have trouble with at least one of the other two desiderata.

Differential equations. For instance, much can be learnt from a compar-
ison with differential equations. This formalism has been developed in order
to model complex systems, and in particular their dynamics, that is how they
evolve over time. System analysis (see for instance Bunge (2000, 1979); Simon
(1969); von Bertalanffy (1968)) exploits this formalism because the mathemat-
ics of differential equations allows the scientists to include in the model a large
number of variables at a time, as well as their relations, including back-and-forth
interactions between variables.

But system analysis has trouble modelling the kind of mechanisms we are
interested in. This is because in differential equations, variables have no explicit
causal role because such equations do not on their own capture any causal
asymmetry. Nor is there a natural mechanistic interpretation of differential
equations (on this point see, e.g., Russo (2010)). Granted, some differential
equations might be interpreted as modelling hierarchies—in principle nothing
prevents the inclusion of variables at different levels—but we need mechanistic
hierarchy. Decomposing and describing the mechanisms in terms of entities and
activities makes the model specifically mechanistic in that it provides details
about the functioning and about the relations between the parts.

Agent-based models. Another type of model that is increasingly receiving
attention in the scientific community is the agent-based model. Agent-based
models are computational models that aim to simulate behaviour of individual
agents in a system. The goal is, ultimately, to assess the effects of individ-
ual agents on the system as a whole. In particular, agent-based models aim
to reproduce emergent behaviour from micro- to macro-level. There has been
growing interest in, and more and more applications of, agent-based models
since the mid-1990s, especially in business and technology problems. More re-
cently, there have been attempts to model cellular behaviour in cancer science
(see for instance Chen and Hardoon (2009); Chen (2009)).

Agent-based models attempt to reproduce the behaviour of individual agents
such that the behaviour will give rise to emergent properties/behaviours at a
higher level of organisation, thus implying that the system as a whole is more
than the sum of its individual components. But this methodology has some
well-known limitations, restricting its use for prediction, explanation and con-
trol. First, since simulation is used to derive the relevant emergent properties,
it is typical that so many simplifying assumptions need to be made that it is
implausible that the resulting model is an accurate enough model of a complex
system for it to make reliable quantitative predictions. Second, the direction
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of explanation is rather limited: agent-based models attempt to simulate be-
haviour that emerges from the lower level to the higher level, but not the other
way round. The lower level is always taken to be at the individual level, and
the resulting emergent behaviour to be at a higher, aggregate level. So only
two levels are involved and the direction of explanation is always bottom-up.
Third, the direction of control is similarly restricted: an agent-based model tells
one how to control the emergent phenomenon by changing the parameters or
constraints operating on the individuals, but that is the only kind of control
question that the model can help answer.

One advantage of agent-based models is that they may be able to capture
spatial aspects of phenomena—in our case the spatio-temporal evolution of tu-
mours. RBNs, admittedly, are not able to do this. Yet, RBNs are not meant to
be the only model for explanation, prediction or control. RBNs are meant to
augment, rather than replace, pictorial representations of tumour development,
which can capture spatial information.

Multilevel models. The most interesting comparison is perhaps with mul-
tilevel models. The reason is that the primary motivation for developing this
formalism was exactly the recognition of a hierarchical structure of systems in
virtually all domains.

Multilevel models are an extension of structural equation models (and there-
fore, in a loose sense, of Bayesian nets too, since Bayesian net models and struc-
tural equation models are very similar) that allow one to formalise the following
idea: systems, particularly social systems (where this formalism was first devel-
oped and applied) have a hierarchical structure. Multilevel analysis posits that
society is essentially hierarchically organised (see Goldstein (2003); Courgeau
(2003, 2007); Snijders and Bosker (2004)). In the social sciences, various levels
of aggregation are possible. For instance, economics is interested in the pro-
duction, distribution and consumption of wealth; however, there is no a priori
restriction on whether analyses concern individuals, markets, firms, or nations.
Likewise, demography has no a priori restriction to the level of family, local pop-
ulation, or national population. Multilevel analysis recognises the existence of a
multiplicity of levels and tries to specify the relations holding among individuals
and/or among different levels of aggregation. The underlying idea is that there
is a reciprocal influence of the individual on the group and of the group on the
individual. While traditional statistical methods use different models to analyse
data at the individual or aggregate level, multilevel models permit the analysis
of such hierarchical structures in the framework of a single statistical model.
Failing to recognise the hierarchical structure of social systems leads to incor-
rect identification of causal relationships and even to the well-known ecological
and atomistic fallacies (Robinson, 1950).

Multilevel models were first developed in the social sciences. Here is an
example of the kind of phenomena social scientists wanted to model. A pio-
neering case study concerns migration behaviour in Norway (Courgeau (2003,
1994)), where multilevel models were used to explain migration rates of farm-
ers. Multilevel modelling offered a successful explanation of a phenomenon
in which an individual-level model and a separate aggregate model delivered
apparently opposite results. On the one hand, an individual-level model ex-
plains individual-level outcomes by individual-level explanatory variables. For
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instance, in this model we can represent the probability of an individual migrat-
ing conditional on the individual characteristic of being/not being a farmer. On
the other hand, the aggregate model explains aggregate-level outcomes through
aggregate-level variables. For instance, we explain the percentage of migrants
in a region through the percentage of people in the population having a certain
occupational status (e.g., the percentage of farmers). Multilevel models make
claims across the levels—from the aggregate-level to the individual-level and
vice versa; that is, the multilevel model of migration in Norway explains the
probability of migration of a non-farmer (individual) through the percentage of
farmers in the same region (aggregate): in the Norwegian countryside farmers
have a low chance of migration, but, as the percentage of farmers increases, they
will start to migrate more thus raising the overall probability of migration in the
whole population. In other words, the multilevel model allows the proportion
of farmers in the population to be a cause of a particular farmer migrating.

Multilevel models go some way toward satisfying the three desiderata we
identified: they model probabilistic and causal relations, and they model hier-
archical systems. However, multilevel models were not devised to model mech-
anisms. Now, arguably, causal models in social science, which do include mul-
tilevel models, ought to be used to model mechanisms insofar as they aim to
explain a phenomenon, since the explanatory job is carried out by the mecha-
nism being modelled (Russo, 2009, ch. 6). Nevertheless, it seems that in cancer
science multilevel models are rather used to reconcile results between various
levels of aggregation (see e.g., Delsanto et al. (2008)), or to check distribution
of disease (see e.g., Short et al. (2002)), but not to model mechanisms that
are hierarchical in themselves. In other words, multilevel models are used as
means to avoid ecological and atomistic fallacies in drawing causal conclusions
from analyses that use data at only one level, and the statistical machinery of
multilevel models is not ipso facto a legitimate representation of a hierarchical
mechanism.

It is also important to bear in mind that multilevel models can model hier-
archical structures, but only to a limited extent. In fact, the present state of the
art is that multilevel models cannot put aggregate variables as response vari-
ables, while RBNs can. Simply put, this means that, at present, this formalism
models how individual-level variables (plus, if needed, aggregate variables) have
an influence on a aggregate variables.

In sum, RBNs suit our goals because they can account, in a single modelling
framework, for the three aspects we took to be essential: modelling causal rela-
tions, modelling probabilistic relations, and modelling mechanistic hierarchies.
RBNs proved to be more suitable than BNs for our purposes because they are
hierarchical. RBNs are better suited to modelling hierarchical mechanisms than
system analysis because they can capture causal connections. RBNs have wider
scope than agent-based models which just capture mechanisms involving multi-
agent interactions. Finally, RBNs have the advantage of modelling mechanistic
constitution relations rather than levels of aggregation, unlike multilevel analy-
sis.
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6 Conclusion

The need for quantitative models of hierarchical mechanisms is recognised by
biological scientists when they make such claims as:

The best test of our understanding of cells will be to make quan-
titative predictions about their behaviour and test them. This will
require detailed simulations of the biochemical processes taking place
within the modules. But making predictions is not synonymous with
understanding. We need to develop simplifying, higher-level models
and find general principles that will allow us to grasp and manip-
ulate the functions of biological modules. ... Connecting different
levels of analysis—from molecules, through modules, to organisms—
is essential for an understanding of biology that will satisfy human
curiosity. (Hartwell et al., 1999, C52)

This paper has been an attempt to fill this need by introducing the recursive
Bayesian network (RBN) formalism and applying it to the modelling of mech-
anisms. The RBN formalism, we maintain, provides an integrated modelling
formalism for explanation, prediction and control. The formalism can be ap-
plied to modelling cancer mechanisms, where hierarchy is ubiquitous and vast
amounts of data are increasingly available. This kind of model also shows how
the current philosophical conception of a mechanism can be further developed,
by integrating a quantitative description of the interaction between variables
with the philosophically more familiar structural description of hierarchical re-
lations between activities and entities. It is prima facie preferable to other kinds
of models used in this context, such as agent-based models, differential-equation
models, and multilevel models.

But there is much more to do before this kind of model can be routinely ap-
plied. First, formal work is needed to develop efficient methods for performing
inference in an RBN. While standard Bayesian net methods for inference can
be applied to RBNs, there is an added computational consideration for RBNs
arising from the multiplicity of flattenings—for a single RBN there are 2k flat-
tenings, assuming k binary network variables—and work needs to be done to
ensure that this extra complexity can be kept under control. Second, it would
be helpful to develop the cancer application more fully, in particular on real
data, to test the RBN formalism and validate the model. Third, the question
of how to build RBNs in the face of incomplete mechanistic, causal and proba-
bilistic knowledge needs thorough investigation. Known causal structure can be
imposed on data to help make sense of the remaining relationships, and there
are existing methods for doing this using BNs. The RBN formalism offers a
parallel way of imposing known structure on data—by appealing to hierarchical
structure, information which is currently normally thrown away. One interesting
issue is whether mechanisms currently represented using newly-born represen-
tations such as the Systems Biology Graphical Notation (Novere et al., 2009)
can be automatically translated into RBN hierarchical structure.

A satisfactory answer to this third question would open up the use of RBNs
for mechanism discovery. By treating hierarchical structure in a formally equiv-
alent way to causal structure, this formalism might allow us to extend known
methods for extracting unknown causal structure from data to extracting un-
known hierarchical structure. This is an exciting possibility for studying cancer,
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where both causal and hierarchical structure are still to be discovered in the ar-
eas opened up by new technology in the last decade. But it is also of relevance
to any field in which there is a great deal still to be found about both causal and
hierarchical structure, and yet plenty of data available, such as in proteomics
and genomics.
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