
Supporting information

Figure S1. Schematic illustration of the mutagenesis and screening strategy used to isolate antenna mutants.

Figure S2. Functional antenna size of PSII and PSI measured in wild-type and TAM mutants

(A) Variable Chl fluorescence was induced with a green light of 15 μ mol photons m⁻² s⁻¹, on dark-adapted cells (~1.0·10⁷ cells/ml) in BG-11 medium supplemented with 50 μ M DCMU. The reciprocal of time corresponding to two-thirds of the fluorescence rise ($T_{2/3}$) was taken as a measure of the PSII functional antenna size. (B) The kinetics of P700 oxidation (Δ Abs at 705 nm) were measured on thylakoids suspension (75 μ g Chl/ml) treated with 50 μ M DBMIB and 1 mM methylviologen, upon illumination with a 10 s pulse of red actinic light (λ = 630 nm, 560 μ mol photons m⁻² s⁻¹). Data are expressed as mean \pm SD, n = 7.

Figure S3. Light-saturation curves of photosynthesis. Curves were obtained with the *C. sorokiniana* wild-type and TAM mutants. Data are expressed as mean \pm SD, n = 4.

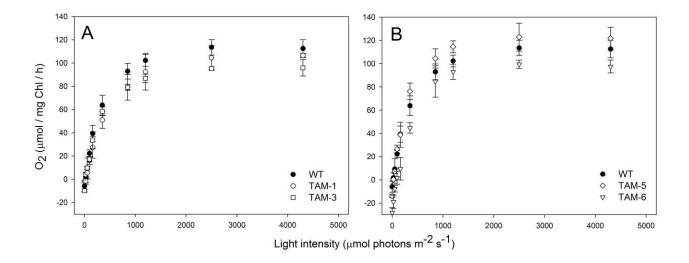
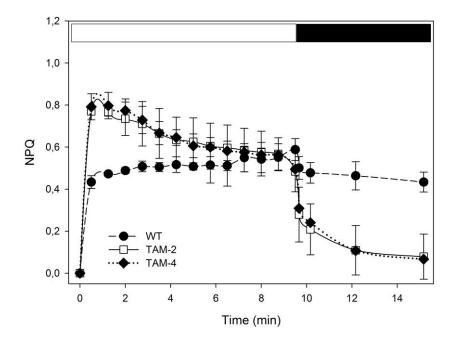



Figure S4. Kinetics of formation and relaxation of photoprotective energy dissipation in wild-type and TAM mutants. NPQ kinetics were measured on wild-type, TAM-2 and TAM-4 cells, grown photoautotrophically, upon illumination with 500 μ mol photons m⁻² s⁻¹ of white actinic light. Symbols and error bars show means \pm standard deviation (n = 3).

Figure S5

Figure S5. Daily mean irradiance on the reactors' surface (left panel) and mean atmospheric temperature (right panel) measured during the outdoor experiment.

Table S1. Pigment composition of wild-type and TAM mutants. Data are expressed as mean \pm SD. Significantly different values (ANOVA, P < 0.05) with respect to the wild-type, within the same column, are marked with different letters.

genotype	Chl / cell (pg)	Chl a/b	Chl / Car	PSII antenna size $(T_{2/3}^{-1} \cdot 10^3, \text{ms}^{-1})$
WT	0.49 ± 0.07^{a}	2.62 ± 0.02^{a}	3.43 ± 0.02^{a}	18.2 ± 1.4^{a}
TAM-1	0.50 ± 0.09^{a}	2.92 ± 0.03^{b}	$3.16 \pm 0.02^{b,c}$	14.5 ± 1.6^{b}
TAM-2	0.30 ± 0.02^{b}	3.36 ± 0.02^{c}	3.07 ± 0.02^{b}	10.5 ± 0.5^{c}
TAM-3	0.58 ± 0.09^{a}	2.69 ± 0.12^{d}	3.47 ± 0.12^{a}	15.5 ± 0.5^{b}
TAM-4	0.34 ± 0.05^{b}	3.41 ± 0.03^{c}	$3.18 \pm 0.03^{b,c}$	9.4 ± 0.5^{c}
TAM-5	0.52 ± 0.08^{a}	2.84 ± 0.03^{b}	$3.30 \pm 0.04^{a,c}$	12.9 ± 0.5^{b}
TAM-6	0.51 ± 0.07^{a}	2.91 ± 0.02^b	3.35 ± 0.02^{a}	12.9 ± 0.8^{b}

Table S2. HPLC analysis of carotenoid composition of wild-type and TAM mutants. Cells were dark-adapted before pigment extraction in DMFA. Data are expressed as mean \pm SD and normalized to 100 Chls. Significantly different values (ANOVA, P < 0.05) with respect to the wild-type, within the same column, are marked with different letters.

genotype	mol pigment / 100 mol Chls							
	neoxanthi n	violaxanthin	antheraxanthin	lutein	zeaxanthin	α-carotene	β-carotene	
WT	6.6 ± 0.2^{a}	1.5 ± 0.1 ^a	0.6 ± 0.1^{a}	17.3 ± 0.3 ^a	0.8 ± 0.1^{a}	0.5 ± 0.2^{a}	2.1 ± 0.2^{a}	
TAM-1	6.2 ± 0.2^{a}	2.0 ± 0.1^a	0.5 ± 0.1^a	17.3 ± 0.1^a	1.1 ± 0.1^{a}	0.8 ± 0.2^a	2.1 ± 0.1^{a}	
TAM-2	5.8 ± 0.2^{b}	5.9 ± 0.1^{b}	$1.9\pm0.1^{\rm b}$	10.3 ± 0.2^{b}	2.6 ± 0.2^b	0.2 ± 0.1^a	3.7 ± 0.3^{b}	
TAM-3	6.5 ± 0.1^{a}	2.1 ± 0.1^{a}	1.2 ± 0.1^{c}	14.2 ± 0.3^{c}	2.2 ± 0.1^{b}	0.4 ± 0.2^a	2.3 ± 0.1^{a}	
TAM-4	6.0 ± 0.1^{b}	6.9 ± 0.1^{c}	$1.9\pm0.1^{\rm b}$	$9.6\pm0.1^{\rm d}$	2.4 ± 0.2^b	0.2 ± 0.1^a	3.9 ± 0.2^b	
TAM-5	6.7 ± 0.3^{a}	$3.1\pm0.1^{\rm d}$	2.8 ± 0.1^d	9.4 ± 0.2^d	3.7 ± 0.3^{c}	0.2 ± 0.1^a	2.8 ± 0.2^c	
TAM-6	6.3 ± 0.2^{a}	3.6 ± 0.1^d	$1.4\pm0.1^{\rm c}$	13.2 ± 0.3^{c}	2.1 ± 0.1^{b}	0.4 ± 0.1^{a}	2.4 ± 0.2^a	

Table S3. Relative abundance of pigment-protein complex in the wild-type and TAM mutants.

Amount of pigment-protein complexes per cell were calculated by densitometric analysis of native PAGE and by Chls content per cell, and expressed as a percentage of the corresponding wild-type values. Data are expressed as means \pm standard deviation (n = 3). Significantly different values (ANOVA, P < 0.05) with respect to the wild-type, within the same column, are marked with different letters.

Genotype	Relative abundance of pigment-protein complexes per cell					
	PSI-LHCI	PSII core	Lhcb			
WT	100 ± 8^{a}	100 ± 9^a	100 ± 7^{a}			
TAM-2	$66 \pm 4^{\text{b}}$	102 ± 4^{a}	51 ± 3^{b}			
TAM-4	66 ± 11^{b}	107 ± 6^{a}	$62 \pm 6^{\mathrm{b}}$			