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Abstract

We develop a multi-curve term structure setup in which the modelling ingredients

are expressed by rational functionals of Markov processes. We calibrate to LIBOR

swaptions data and show that a rational two-factor lognormal multi-curve model is

sufficient to match market data with accuracy. We elucidate the relationship between

the models developed and calibrated under a risk-neutral measure Q and their consistent

equivalence class under the real-world probability measure P. The consistent P-pricing

models are applied to compute the risk exposures which may be required to comply with

regulatory obligations. In order to compute counterparty-risk valuation adjustments,

such as CVA, we show how default intensity processes with rational form can be derived.

We flesh out our study by applying the results to a basis swap contract.

Keywords: Multi-curve interest rate term structure models, LIBOR, rational asset

pricing models, calibration, counterparty-risk, risk management, Markov functionals,

basis swap.
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1 Introduction

In this work we endeavour to develop multi-curve interest rate models which extend to

counterparty risk models in a consistent fashion. The aim is the pricing and risk manage-

ment of financial instruments with price models capable of discounting at multiple rates

(e.g. OIS and LIBOR) and which allow for corrections in the asset’s valuation scheme so

to adjust for counterparty-risk inclusive of credit, debt, and liquidity risk. We thus propose

factor-models for (i) the Overnight Index Swap (OIS) rate, (ii) the London Interbank Offer

Rate (LIBOR), and (iii) the default intensities of two counterparties involved in bilateral

OTC derivative transactions. The three ingredients are characterised by a feature they

share in common: the rate and intensity models are all rational functions of the underlying

factor processes. Since we have in mind the pricing of assets as well as the management of

risk exposures, we also need to work within a setup that maintains price consistency under

various probability measures. We will for instance want to price derivatives by making

use of a risk-neutral measure Q while analysing the statistics of risk exposures under the

real-world measure P. This point is particularly important when we calibrate the interest

rate models to derivatives data, such as implied volatilities, and then apply the calibrated

models to compute counterparty-risk valuation adjustments to comply with regulatory re-

quirements. The presented rational models allow us to develop a comprehensive framework

that begins with an OIS model, evolves to an approach for constructing the LIBOR process,

includes the pricing of fixed-income assets and model calibration, analyses risk exposures,

and concludes with a credit risk model that is applied for the analysis of counterparty-risk

valuation adjustments (XVA).

The issue of how to model multi-curve interest rates and incorporate counterparty-risk

valuation adjustments in a pricing framework has motivated much research. For instance,

research on multi-curve interest rate modelling is presented in Henrard (2007, 2010, 2014),

Kijima, Tanaka, and Wong (2009), Kenyon (2010), Bianchetti (2010), Mercurio (2010b,

2010a, 2010c), Fujii, Shimada, and Takahashi (2010, 2011), Bianchetti and Morini (2013),

Filipović and Trolle (2013), Moreni and Pallavicini (2014) or Crépey, Grbac, Ngor, and

Skovmand (2015). On counterparty-risk valuation adjustment, we mention two recent

books by Brigo, Morini, and Pallavicini (2013) and Crépey, Bielecki, and Brigo (2014);

more references are given as we go along. Pricing models with rational form have appeared

before. Flesaker and Hughston (1996) pioneered such pricing models and in particular in-

troduced the so-called rational log-normal model for discount bond prices. Further related

studies include Rutkowski (1997), Döberlein and Schweizer (2001) and Hunt and Kennedy

(2004), Brody and Hughston (2004), Hughston and Rafailidis (2005), Brody, Hughston,

and Mackie (2012), Akahori, Hishida, Teichmann, and Tsuchiya (2014), Filipović, Larsson,

and Trolle (2014), Macrina and Parbhoo (2014) or Nguyen and Seifried (2014). However,

as far as we know, the present paper is the first to apply rational pricing models in a

multi-curve setup, along with Nguyen and Seifried (2014) who develop a rational multi-

curve model in the spirit of Rogers (1997) based on a multiplicative spread, and it is the

only rational pricing paper dealing with XVA computations. We shall see that, despite

the simplicity of these models, they perform surprisingly well when comparing to other,
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in principle more elaborate, proposals such as Crépey, Grbac, Ngor, and Skovmand (2015)

or Moreni and Pallavicini (2013, 2014). Other recent related research includes Filipović,

Larsson, and Trolle (2014), for the study of unspanned volatility and its regulatory im-

plications, Cuchiero, Keller-Ressel, and Teichmann (2012), for moment computations in

financial applications, and Cheng and Tehranchi (2014), motivated by stochastic volatility

modelling.

This paper consists of three main parts: (a) Development of the novel rational multi-

curve interest rate approach along with the rational credit-intensity models necessary for

the computation of the counterparty-risk valuation adjustments. This material is presented

in Section 2. (b) Clean valuation of interest rate securities and model calibration (Sections

3 and 4) where we consider specific rational factor models for the multi-curve interest rates

and default intensity models with the goal in mind of singling out the “most” parsimonious

model that best calibrates to available derivatives data. (c) Counterparty-risk valuation

adjustments (Section 5), which are computed for basis swaps priced with the rational rate

models. The basis swap case study gives also the opportunity to highlight the importance

of consistent pricing and hedging under P and Q.

The main novel research contributions are listed as follows: (i) The rational models for

multi-curve term structures whereby we derive the LIBOR process by pricing a forward

rate agreement under the real-world probability measure. In doing so we apply a pricing

kernel model. The short rate model arising from the pricing kernel process is taken as a

proxy model for the OIS rate. In view of derivative pricing in subsequent sections, we also

provide an alternative derivation of the rational multi-curve interest rate models by starting

with the risk-neutral measure. We call this method “bottom-up risk-neutral approach”. (ii)

We explain the advantages one gains from the resulting “codebook” for the LIBOR process,

which we model as a rational function where the denominator is the stochastic discount

factor associated with the utilised probability measure. We calibrate three specifications

of our multi-curve framework and assess them for the quality of fit and on positivity of

rates and spread. We show that a one-factor rational model is too rigid to be able to

calibrate to given data, a shortcoming that one cannot get rid of even when the driving

factor features jumps in its dynamics. We conclude by emphasising a two-factor lognormal

OIS-LIBOR model as the “most” parsimonious rational model with good tractability and

calibration properties. To our knowledge, this is the first time such an in-depth calibration

analysis has been performed on rational interest rate models. (iii) We show the explicit

relationship in our setup between pricing under an equivalent measure and the real-world

probability measure. We compute the risk exposure associated with holding a basis swap

and plot the quantiles under both probability measures for comparison. As an example, we

apply Lévy random bridges to describe the dynamics of the factor processes under P. This

enables us to interpret the re-weighting of the risk exposure under P as an effect that could

be related to, e.g., “forward guidance” provided by a central bank. (iv) We propose new

credit default intensity models with rational form, which can be guaranteed to take positive

values at all times and have the same appealing mathematical tractability as the rational

(multi-curve) interest rate models. (v) We compute XVA, that is, the counterparty-risk

valuation adjustments due to credit, debt, and liquidity risk, based on rational multi-curve
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interest rate and rational credit-intensity models.

2 Rational multi-curve term structures

We model a financial market by a filtered probability space (Ω,F ,P, {Ft}0≤t), where

P denotes the real probability measure and {Ft}0≤t is the market filtration. The no-

arbitrage pricing formula for a generic (non-dividend-paying) financial asset with price

process {StT }0≤t≤T , which is characterised by a cash flow STT at the fixed date T , is given

by

StT =
1

πt
EP[πTSTT | Ft], (2.1)

where {πt}0≤t≤U is the pricing kernel embodying the inter-temporal discounting and risk-

adjustments, see e.g. Hunt and Kennedy (2004). Once the model for the pricing kernel is

specified, the OIS discount bond price process {PtT }0≤t≤T is determined as a special case

of formula (2.1) by

PtT =
1

πt
EP[πT | Ft]. (2.2)

The associated OIS short rate of interest is obtained by

rt = − (∂T lnPtT ) |T=t, (2.3)

where it is assumed that the discount bond system is differentiable in its maturity parameter

T . The rate {rt} is non-negative if the pricing kernel {πt} is a supermartingale and vice

versa. We next go on to infer a pricing formula for financial derivatives written on LIBOR.

In doing so, we also derive a price process (2.6) that we identify as determining the dynamics

of the FRA rate (2.7). It is this formula that, in our work, reveals the nature of the so-called

multi-curve term structure whereby the OIS rate and the LIBOR rates of different tenors

are treated as distinct discount rates.

2.1 Generic multi-curve interest rate models

We propose a new method for constructing multi-curve pricing models for securities written

on LIBOR by starting with the valuation of a forward rate agreement (FRA). We consider

0 ≤ t ≤ T0 ≤ T2 ≤ · · · ≤ Ti ≤ · · · ≤ Tn, where T0, Ti, . . . , Tn are fixed dates, and

let N be a notional, K a strike rate and δi = Ti − Ti−1. The fixed leg of the FRA

contract is given by NKδi and the floating leg payable in arrears at time Ti is modelled

by NδiL(Ti;Ti−1, Ti), where the random rate L(Ti;Ti−1, Ti) is FTi−1-measurable. The net

cash flow at the maturity date Ti of the FRA contract reads

HTi = Nδi [K − L(Ti;Ti−1, Ti)] . (2.4)

The FRA price process is then given by an application of (2.1), that is, for 0 ≤ t ≤ Ti−1,

by

HtTi =
1

πt
EP [πTiHTi

∣∣Ft]
= Nδi [KPtTi − L(t, Ti−1, Ti)] , (2.5)
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where we define

L(t;Ti−1, Ti) :=
1

πt
EP [πTiL(Ti;Ti−1, Ti)

∣∣Ft] . (2.6)

We call the above process the LIBOR process. We note here that even though LIBOR is

not as such a traded asset, the process (2.6) may be interpreted as a “price process” of a

tradable asset with cash flow L(Ti;Ti−1, Ti) at time Ti. The fair spread of the FRA at time

t (the value of K at time t such that HtTi = 0), called the FRA rate, is then expressed in

terms of L(t;Ti−1, Ti) by

Kt =
L(t;Ti−1, Ti)

PtTi
. (2.7)

For times up to and including Ti−1, the LIBOR process (2.6) can be written in terms of a

conditional expectation of an FTi−1-measurable random variable. In fact, for t ≤ Ti−1,

EP [πTiL(Ti;Ti−1, Ti)
∣∣Ft] = EP

[
EP [πTiL(Ti;Ti−1, Ti)

∣∣FTi−1

] ∣∣Ft] (2.8)

= EP
[
EP [πTi ∣∣FTi−1

]
L(Ti;Ti−1, Ti)

∣∣Ft] , (2.9)

and thus

L(t, Ti−1, Ti) =
1

πt
EP
[
EP [πTi ∣∣FTi−1

]
L(Ti;Ti−1, Ti)

∣∣Ft] . (2.10)

The (pre-crisis) classical approach to LIBOR modelling defines the price process {HtTi}
of a FRA by

HtTi = N
[
(1 + δiK)PtTi − PtTi−1

]
, (2.11)

see, e.g., Hunt and Kennedy (2004). By equating with (2.5), we see that the classical

single-curve LIBOR model is obtained in the special case where

L(t;Ti−1, Ti) =
1

δi

(
PtTi−1 − PtTi

)
. (2.12)

Remark 2.1. Unless markets feature inverted yield curves, one expects the positive-spread

relation L(t;T, T + δi) < L(t;T, T + δj), for tenors δj > δi, to hold . We shall return to

this relationship in Section 4 where various model specifications are calibrated and the

positivity of the spread is checked. For recent work on multi-curve modelling with focus on

spread modelling, we refer to Cuchiero, Fontana and Gnoatto (2014).

2.2 Multi-curve models with rational form

In order to construct explicit LIBOR processes, the pricing kernel {πt} and the random

variable L(Ti;Ti−1, Ti) need to be specified in the definition (2.6). For reasons that will

become apparent as we move forward in this paper—including mathematical tractability,

good calibration properties, and parsimonious modelling—we opt to apply the rational

pricing models for a generic financial asset proposed in Macrina (2014). These models

bestow a rational form on the price processes, here intended as a “quotient of summands”

(slightly abusing the terminology that usually refers to a “quotient of polynomials”). The
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basic pricing model with rational form for a generic financial asset (for short “rational

pricing model”) that we borrow here is given by

StT =
S0T + b2(T )A

(2)
t + b3(T )A

(3)
t

P0t + b1(t)A
(1)
t

, (2.13)

where S0T is the value of the asset at t = 0. There may be more bA-terms in the numerator,

but two (at most) will be enough for all our purposes in this work. For 0 ≤ t ≤ T and

i = 1, 2, 3, bi(t) are deterministic functions and A
(i)
t = Ai(t,X

(i)
t ) are martingale processes,

not necessarily under P but under an equivalent martingale measure M, which are driven

by M-Markov processes {X(i)
t }. The details of how the expression (2.13) is derived from

the formula (2.1), and in particular how explicit examples for {A(i)
t } can be constructed,

are shown in Macrina (2014). Having opted for the particular rational pricing model (2.13),

it follows from the relation (2.1) that the pricing kernel model associated with the price

process (2.13) necessarily has the form

πt =
π0
M0

[
P0t + b1(t)A

(1)
t

]
Mt, (2.14)

where {Mt} is the P-martingale that induces the change of measure from P to an auxiliary

measure M under which the {A(i)
t } are martingales. The deterministic functions P0t and

b1(t) are defined such that P0t + b1(t)A
(1)
t is a non-negative M-supermartingale (see e.g.

Example 2.1), and thus in such a way that {πt} is a non-negative P-supermartingale. By

the equations (2.2) and (2.3), it is straightforward to see that

PtT =
P0T + b1(T )A

(1)
t

P0t + b1(t)A
(1)
t

, rt = − Ṗ0t + ḃ1(t)A
(1)
t

P0t + b1(t)A
(1)
t

, (2.15)

where the “dot-notation” means differentiation with respect to time t.

Let us return to the modelling of rational multi-curve term structures and in particular

to the definition of the (forward) LIBOR process. Putting equations (2.6) and (2.1) in

relation, we see that the class of models (2.13) naturally lends itself for the modelling of the

LIBOR process (2.6) in the considered setup. Since (2.13) satisfies (2.1) by construction,

so does the LIBOR model

L(t;Ti−1, Ti) =
L(0;Ti−1, Ti) + b2(Ti−1, Ti)A

(2)
t + b3(Ti−1, Ti)A

(3)
t

P0t + b1(t)A
(1)
t

(2.16)

satisfy the martingale equation (2.6) and in particular (2.10) for t ≤ Ti−1. Based on our

knowledge, this is the first time that LIBOR is modelled in this way. In Macrina (2014) a

method based on the use of weighted heat kernels is provided for the explicit construction

of the M-martingales {A(i)
t }i=1,2. This further application allows for the development of

(explicit) LIBOR processes, which, if circumstances in financial markets require it, by

construction take positive values at all times.

2.3 Bottom-up risk-neutral approach

Since we also deal with counterparty-risk valuation adjustments, we present another scheme

for the construction of the LIBOR models, which we call “bottom-up risk-neutral ap-

proach”. As the name suggests, we model the multi-curve term structure by making use
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of the risk-neutral measure (via the auxiliary measure M) while the connection to the

P-dynamics of prices can be reintroduced at a later stage, which is important for the cal-

culation of risk exposures and their management. “Bottom-up” refers to the fact that the

short interest rate will be modelled first, then followed by the discount bond price and

LIBOR processes. Similarly, in Section 2.4, the default intensity processes will be modelled

first, and thereafter the price processes of counterparty-risky assets will be derived thereof.

We utilise the notation E[. . . |Ft] = Et[. . .]. In the bottom-up setting, we directly model

the short risk-free rate {rt} in the manner of the right-hand side in (2.15), i.e.

rt = − ċ1(t) + ḃ1(t)A
(1)
t

c1(t) + b1(t)A
(1)
t

, (2.17)

by postulating (i) non-increasing deterministic functions b1(t) and c1(t) with c1(0) = 1

(later c1(t) will be seen to coincide with P0t), and (ii) an ({Ft},M)-martingale {A(1)
t } with

A
(1)
0 = 0 such that

ht = c1(t) + b1(t)A
(1)
t (2.18)

is a positive ({Ft},M)-supermartingale for all t > 0.

Example 2.1. Let A
(1)
t = S

(1)
t − 1, where {S(1)

t } is a positive M-martingale with S
(1)
0 = 1,

for example a unit-initialised exponential Lévy martingale. Then the supermartingale (2.18)

is positive for any given t if 0 < b1(t) ≤ c1(t).

Associated with the supermartingale (2.18), we characterise the (risk-neutral) pricing mea-

sure Q by the M-density process {µt}0≤t≤T , given by

µt =
dQ
dM

∣∣∣
Ft

= E

(∫ t

0

b1(s)dA
(1)
s

c1(s) + b1(s)A
(1)
s−

)
, (2.19)

which is taken to be a positive ({Ft},M)-martingale. We note that, in principle, we allow

for jumps in this setup, and thus we denote by {A(1)
t− } the left-limit process of {A(1)

t }, where

all semi-martingales are assumed right-continuous with left limits. Furthermore, we denote

by Dt = exp
(
−
∫ t
0 rs ds

)
the discount factor associated with the risk-neutral measure Q.

Lemma 2.1. ht = Dt µt.

Proof. The Ito semi-martingale formula applied to ϕ(t, A
(1)
t ) = ln(c1(t)+b1(t)A

(1)
t ) = ln(ht)

and to ln(Dtµt) gives the following relations:

d ln
(
c1(t) + b1(t)A

(1)
t

)
= −rtdt+

b1(t)dA
(1)
t

c1(t) + b1(t)A
(1)
t−
− b21(t)d[A(1), A(1)]ct

2(c1(t) + b1(t)A
(1)
t− )2

+ d
∑
s≤t

(
∆ ln

(
c1(t) + b1(t)A

(1)
t

)
− b1(t)∆A

(1)
t

c1(t) + b1(t)A
(1)
t−

)
,

(2.20)

7



where (2.17) was used in the first line, and

d ln(Dtµt) = d lnDt + d lnµt

= −rtdt+
dµt
µt−
− d[µ, µ]ct

2(µt−)2
+ d

∑
s≤t

(
∆ ln(µt)−

∆µt
µt−

)

= −rtdt+
b1(t)dA

(1)
t

c1(t) + b1(t)A
(1)
t−
− b21(t)d[A(1), A(1)]ct

2(c1(t) + b1(t)A
(1)
t− )2

+d
∑
s≤t

(
∆ ln(µt)−

b1(t)∆A
(1)
t

c1(t) + b1(t)A
(1)
t−

)
, (2.21)

where

∆ ln (µt) = ln

(
µt
µt−

)
= ln

(
1 +

b1(t)∆A
(1)
t

c1(t) + b1(t)A
(1)
t−

)
= ln

(
c1(t) + b1(t)A

(1)
t

c1(t) + b1(t)A
(1)
t−

)
= ∆ ln

(
c1(t) + b1(t)A

(1)
t

)
.

Therefore, d ln(ht) = d ln(Dtµt). Moreover, h0 = D0µ0 = 1. Hence ht = Dtµt.

It then follows that the price process of the OIS discount bond with maturity T can be

expressed, for 0 ≤ t ≤ T , by

PtT = EQ
t

[
DT

Dt

]
=

1

Dt µt
EM [DT µT | Ft] = EM

t

[
hT
ht

]
=
c1(T ) + b1(T )A

(1)
t

c1(t) + b1(t)A
(1)
t

. (2.22)

Thus, the process {ht} plays the role of the pricing kernel associated with the OIS market

under the measure M. In particular, we note that c1(t) = P0t for t ∈ [0, T ] and rt =

− (∂T lnPtT )|T=t . A construction inspired by the above formula for the OIS bond leads

to the rational model for the LIBOR prevailing over the interval [Ti−1, Ti). The FTi−1-

measurable spot LIBOR rate L(Ti;Ti−1, Ti) is modelled in terms of {A(1)
t } and, in this

paper, at most two other M-martingales {A(2)
t } and {A(3)

t } evaluated at Ti−1:

L(Ti;Ti−1, Ti) =
L(0;Ti−1, Ti) + b2(Ti−1, Ti)A

(2)
Ti−1

+ b3(Ti−1, Ti)A
(3)
Ti−1

P0Ti + b1(Ti)A
(1)
Ti−1

. (2.23)

The (forward) LIBOR process is then defined by an application of the risk-neutral valuation

formula (which is equivalent to the pricing formula (2.1) under P) as follows. For t ≤ Ti−1
we let

L(t;Ti−1, Ti) =
1

Dt
EQ
t [DTi L(Ti;Ti−1, Ti)] = EM

t

[
DTi µTi
Dt µt

L(Ti;Ti−1, Ti)

]
(2.24)

= EM
t

[
EM
Ti−1

[hTi ]L(Ti;Ti−1, Ti)

ht

]
, (2.25)

and thus, by applying (2.18) and (2.23),

L(t;Ti−1, Ti) =
L(0;Ti−1, Ti) + b2(Ti−1, Ti)A

(2)
t + b3(Ti−1, Ti)A

(3)
t

P0t + b1(t)A
(1)
t

. (2.26)
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Hence, we recover the same model and expression as in (2.16). The LIBOR models (2.26)

(or (2.16)) are compatible with an HJM multi-curve setup where, in the spirit of Heath,

Jarrow and Morton (1992), the initial term structures P0Ti and L(0;Ti−1, Ti) are fitted by

construction.

Example 2.2. Let A
(i)
t = S

(i)
t − 1, where S

(i)
t is a positive M-martingale with S

(i)
0 = 1.

For example, one could consider a unit-initialised exponential Lévy martingale defined in

terms of a function of an M-Lévy process {X(i)
t }, for i = 2, 3. Such a construction produces

non-negative LIBOR rates if

0 ≤ b2(Ti−1, Ti) + b3(Ti−1, Ti) ≤ L(0;Ti−1, Ti). (2.27)

If this condition is not satisfied, then the LIBOR model may be viewed as a shifted model,

in which the LIBOR rates may become negative with positive probability. For different

kinds of shifts used in the multi-curve term structure literature we refer to, e.g., Mercurio

(2010a) or Moreni and Pallavicini (2014).

2.4 Rational credit model

For the counterparty-risk valuation adjustments (XVA) produced later in this paper, we

require credit-intensity models, which we construct in the same fashion as the rational

multi-curve interest rate models. The following novel rational default-intensity models

are developed by use of the “bottom-up risk-neutral approach” presented in the previous

section.

We consider {X(i)
t }

i=1,2,...,n
t≥0 , which are assumed to be ({Ft},M)-Markov processes. For

any multi-index (i1, . . . , id), we write F (i1,...,id)
t =

∨
l=1,...,dFX

(il)

t . The (market) filtration

{Ft} is given by {F (1,...,n)
t }. For the application in the present section, we fix n = 6.

Markov processes {X(1)
t } = {X(3)} and {X(2)

t } are utilised to drive the OIS and LIBOR

models as described in Section 2.3, in particular the zero-initialised ({Ft},M)-martingales

{A(i)
t }i=1,2,3. The Markov processes {X(i)

t }, i = 4, 5, 6, which are assumed to be mutually

M-independent as well as M-independent of the Markov processes i = 1, 2, 3, are applied

to model {Ft}-adapted processes {γ(i)t }i=4,5,6 defined by

γ
(i)
t = − ċi(t) + ḃi(t)A

(i)
t

ci(t) + bi(t)A
(i)
t

, (2.28)

where bi(t) and ci(t), with ci(0) = 1, are non-increasing deterministic functions, and where

{A(i)
t }i=4,5,6 are zero-initialised ({Ft},M)-martingales of the form A(t,X

(i)
t ). Comparing

with (2.17), we see that (2.28) is modelled in the same way as the OIS rate (2.17), non-

negative in particular, as an intensity should be (see Remark 2.2).

In line with the “bottom-up” construction in Section (2.3), we now introduce a density

({Ft},M)-martingale {µtνt}0≤t≤T that induces a measure change from M to the risk-neutral

measure Q:

dQ
dM

∣∣∣
Ft

= µtνt, 0 ≤ t ≤ T,
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where {µt} is defined as in Section 2.3. Here, we furthermore define νt =
∏
i≥4 ν

(i)
t where

the processes

ν
(i)
t = E

(∫ ·
0

ḃi(t)dA
(i)
t

ċi(t) + ḃi(t)A
(i)
t−

)
are assumed to be positive true ({Ft},M)-martingales.

Lemma 2.2. Let ξ denote any non-negative F (1,2,3)
T -measurable random variable and let

χ =
∏
j≥4 χi where, for j = 4, 5, 6, χj is F (j)

T -measurable. Then

ER
t [ξ χ] = ER

t [ξ]
∏
j≥4

ER
t [χi] , (2.29)

for R = M or Q and for 0 ≤ t ≤ T .

Proof. Since F (4,5,6)
T is independent of F (1,2,3)

t and of ξ,

EM
[
ξ
∣∣F (1,2,3)

t ∨ F (4,5,6)
T

]
= EM

[
ξ
∣∣F (1,2,3)

t

]
.

Therefore,

EM
t [ξ χ] = EM

[
EM
[
ξ χ
∣∣F (1,2,3)

t ∨ F (4,5,6)
T

] ∣∣F (1,2,3)
t ∨ F (4,5,6)

t

]
= EM

[
EM
[
ξ
∣∣F (1,2,3)

t ∨ F (4,5,6)
T

]
χ
∣∣F (1,2,3)

t ∨ F (4,5,6)
t

]
= EM

[
EM
[
ξ
∣∣F (1,2,3)

t

]
χ
∣∣F (1,2,3)

t ∨ F (4,5,6)
t

]
= EM

[
ξ
∣∣F (1,2,3)

t

]
EM
[
χ
∣∣F (1,2,3)

t ∨ F (4,5,6)
t

]
= EM

t [ξ]EM
t [χ] .

Next, the Girsanov formula in combination with the result for M-conditional expectation

yields:

EQ
t [ξχ] = EM

t

[
µT νT ξχ

µtνt

]
= EM

t

[
µT ξ

µt

]
EM
t

[
νTχ

νt

]
= EM

t

[
νTµT ξ

νtµt

]
EM
t

[
µT νTχ

µtνt

]
= EQ

t [ξ]EQ
t [χ] .

The result remains to be proven for the case ξ = 1, which is done similarly.

For the XVA computations, we shall use a reduced-form counterparty-risk approach

where the default times of a bank “b” (we adopt its point of view) and of its counterparty

“c” are modeled in terms of three Cox times τi defined by

τi = inf

{
t > 0

∣∣ ∫ t

0
γ(i)s ds ≥ Ei

}
. (2.30)

Under Q, the random variables Ei (i = 4, 5, 6) are independent and exponentially dis-

tributed. Furthermore, τc = τ4 ∧ τ6, τb = τ5 ∧ τ6, hence τ = τb ∧ τc = τ4 ∧ τ5 ∧ τ6.
We write

γct = γ
(4)
t + γ

(6)
t , γbt = γ

(5)
t + γ

(6)
t , γt = γ

(4)
t + γ

(5)
t + γ

(6)
t ,
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which are the so-called ({Ft},Q)-hazard intensity processes of the {Gt} stopping times

τc, τb and τ, where the full model filtration {Gt} is given as the market filtration {Ft}-
progressively enlarged by τc and τb (see, e.g., Bielecki, Jeanblanc, and Rutkowski (2009),

Chapter 5). Writing as before Dt = exp(−
∫ t
0 rs ds), we note that Lemma 2.1 still holds in

the present setup. That is,

ht = c1(t) + b1(t)A
(1)
t = Dt µt,

an ({Ft},M)-supermartingale, assumed to be positive (e.g. under an exponential Lévy

martingale specification for {A(1)
t } as in Example 2.2). Further, we introduce Z

(i)
t =

exp(−
∫ t
0 γ

(i)
s ds), for i = 4, 5, 6, and obtain analogously that

k
(i)
t := ci(t) + bi(t)A

(i)
t = Zit ν

(i)
t . (2.31)

With these observations at hand, the following results follow from Lemma 2.2. We write

kt =
∏
i≥4 k

(i)
t and Zt =

∏
i≥4 Z

(i)
t .

Proposition 2.1. The identities (2.22) and (2.26) still hold in the present setup, that is

PtT = EQ
t

[
e−

∫ T
t rs ds

]
= EQ

t

[
DT

Dt

]
= EM

t

[
hT
ht

]
=
c1(T ) + b1(T )A

(1)
t

c1(t) + b1(t)A
(1)
t

(2.32)

and, for t ≤ Ti−1,

L(t;Ti−1, Ti) =
L(0;Ti−1, Ti) + b2(Ti−1, Ti)A

(2)
t + b3(Ti−1, Ti)A

(3)
t

P0t + b1(t)A
(1)
t

. (2.33)

Likewise,

EQ
t

[
e−

∫ T
t γs ds

]
= EQ

t

[
ZT
Zt

]
= EM

t

[
kT
kt

]
=

∏
i=4,5,6

ci(T ) + bi(T )A
(i)
t

ci(t) + bi(t)A
(i)
t

, (2.34)

EQ
t

[
e−

∫ T
t γs ds γcT

]
= −EQ

t

[
Z

(5)
T

Z
(5)
t

]
∂T EQ

t

[
Z

(4)
T Z

(6)
T

Z
(4)
t Z

(6)
t

]

= −EQ
t

[
e−

∫ T
t γs ds

] ∑
i=4,6

ċi(T ) + ḃi(T )A
(i)
t

ci(t) + bi(t)A
(i)
t

, (2.35)

EQ
t

[
e−

∫ T
t (rs+γcs)ds

]
= EQ

t

[
DTZ

(4)
T Z

(6)
T

DtZ
(4)
t Z

(6)
t

]
=

∏
i=1,4,6

ci(T ) + bi(T )A
(i)
t

ci(t) + bi(t)A
(i)
t

. (2.36)

Proof. Using Lemma 2.2, we compute

EQ
t

[
e−

∫ T
t rsds

]
= EQ

t

[
DT

Dt

]
= EM

t

[
hT νT
htνt

]
= EM

t

[
hT
ht

]
EM
t

[
νT
νt

]
= EM

t

[
hT
ht

]
=
c1(T ) + b1(T )A

(1)
t

c1(t) + b1(t)A
(1)
t

, (2.37)

where the last equality holds by Lemma 2.1. This proves (2.32). The other identities are

proven similarly.
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Remark 2.2. Equations (2.32) and (2.34) are similar in nature and appearance. As it

is the case for the resulting OIS rate {rt} (2.17), the fact that (2.31) is designed to be a

supermartingale has as a consequence that the associated intensity (2.28) is a non-negative

process. This is readily seen by observing that {ν(i)t } is a martingale and thus the drift

of the supermartingale (2.31) is given by the necessarily non-negative process {γ(i)t } that

drives {Z(i)
t }.

At time t = 0, we have A
(i)
0 = 0, hence only the terms ci(T ) remain in these formulas.

Since the formulae (2.32) and (2.33) are not affected by the inclusion of the credit component

in this approach, the valuation of the basis swap of Section 5.2 remains unchanged. By

making use of the so-called “Key Lemma” of credit risk, see for instance Bielecki, Jeanblanc,

and Rutkowski (2009), the identity (2.36) is the main building block for the pre-default price

process of a “clean” CDS on the counterparty (respectively the bank, substituting τb for τc
in (2.36)). In particular, the identities at t = 0

EQ
[
e−

∫ T
0 (rs+γcs)ds

]
= c1(T )c4(T )c6(T ), EQ

[
e−

∫ T
0 (rs+γbs)ds

]
= c1(T )c5(T )c6(T ), (2.38)

for T ≥ 0, can be applied to calibrate the functions ci(T ), i = 4, 5, 6, to CDS curves of the

counterparty and the bank, once the dependence on the respective credit risk factors has

been specified. The calibration of the “noisy” credit model components bi(T )A
(i)
t , i = 4, 5, 6,

would require CDS option data or views on CDS option volatilities. If the entire model is

judged underdetermined, more parsimonious specifications may be obtained by removing

the common default component τ6 (just letting τc = τ4, τb = τ5) and/or restricting oneself

to deterministic default intensities by settting some of the stochastic terms equal to zero,

i.e. bi(T )A
(i)
t = 0, i = 4, 5 and/or 6 (as is the case for the one-factor interest rate models in

Section 3). The core building blocks of our multi-curve LIBOR model with counterparty-

risk are the couterparty-risk kernels {k(i)t }, i = 4, 5, 6, the OIS kernel {ht}, and the LIBOR

kernel given by the numerator of the LIBOR process (2.26). We may view all kernels as

defined under the M-measure, a priori. The respective kernels under the P-measure, e.g.

the pricing kernel {πt}, are obtained as explained at the end of Section 5.2.

3 Clean valuation

The next questions we address are centred around the pricing of LIBOR derivatives and

their calibration to market data, especially LIBOR swaptions, which are the most liquidly

traded (nonlinear) interest rate derivatives. Since market data typically reflect prices of

fully collaterallised transactions, which are funded at a remuneration rate of the collateral

that is best proxied by the OIS rate, we consider in this section clean valuation ignoring

counterparty-risk for the purpose of model calibration in the next section and thus assume

funding at the rate rt. That is, in this part we do not make use of the credit-intensity

models proposed in Section 2.4, but will apply them in Section 5 for the computation of

counterparty-risk and funding valuation adjustments.

An interest rate swap, see for instance Brigo and Mercurio (2006), is an agreement

between two counterparties, where one stream of future interest payments is exchanged

12



for another based on a specified nominal amount N . A popular interest rate swap is

the exchange of a fixed rate (contractual swap spread) against the LIBOR at the end of

successive time intervals [Ti−1, Ti] of length δ. Such a swap can also be viewed as a collection

of n forward rate agreements. The swap price Swt at time t ≤ T0 is given by the following

model-independent formula:

Swt = Nδ
n∑
i=1

[L(t;Ti−1, Ti)−KPtTi ].

Remark 3.3. In the market, a floating leg has typically higher frequency than a fixed leg.

For simplicity we consider the case when the timings of the fixed and floating payments are

the same. Of course, taking different frequencies can be accommodated.

A swaption is an option between two parties to enter a swap at the expiry date Tk (the

maturity date of the option). Its price at time t ≤ Tk is given by the following M-pricing

formula:

SwntTk =
Nδ

ht
EM[hTk(SwTk)+|Ft]

=
Nδ

ht
EM

[
hTk

(
n∑

i=k+1

[L(Tk;Ti−1, Ti)−KPTkTi ]

)+ ∣∣∣Ft]

=
Nδ

P0t + b1A
(1)
t

EM

[( n∑
i=k+1

[
L(0;Ti−1, Ti) + b2(Ti−1, Ti)A

(2)
Tk

+ b3(Ti−1, Ti)A
(3)
Tk

−K(P0Ti + b1(Ti)A
(1)
Tk

)
])+∣∣∣Ft], (3.39)

using the formulae (2.22) and (2.26) for PTkTi and L(Tk;Ti−1, Ti). In particular, the swap-

tion prices at time t = 0 can be rewritten by use of A
(i)
t = S

(i)
t − 1 so that

Swn0Tk = Nδ EM
[(
c2A

(2)
Tk

+ c3A
(3)
Tk
− c1A(1)

Tk
+ c0

)+]
= Nδ EM

[(
c2S

(2)
Tk

+ c3S
(3)
Tk
− c1S(1)

Tk
+ c̃0

)+]
,

(3.40)

where

c2 =

n∑
i=k+1

b2(Ti−1, Ti), c3 =

n∑
i=k+1

b3(Ti−1, Ti), c1 = K

n∑
i=k+1

b1(Ti),

c0 =

n∑
i=k+1

[L(0;Ti−1, Ti)−KP0Ti ], c̃0 = c0 + c1 − c2 − c3.

As we will see in several instances of interest, these expectations can be computed efficiently

with high accuracy by various numerical schemes.

Remark 3.4. The advantages of modelling the LIBOR process {L(t;Ti−1, Ti)} by a rational

function of which denominator is the discount factor (pricing kernel) associated with the
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employed pricing measure (in this case M) are: (i) The rational form of {L(t;Ti−1, Ti)} and

also of {PtTi} produces, when multiplied with the discount factor {ht}, a linear expression in

the M-martingale drivers {A(i)
t }. This is in contrast to other akin pricing formulae in which

the factors appear as sums of exponentials, see e.g. Crépey et al. (2015), Equation (33). (ii)

The dependence structure between the LIBOR process and the OIS discount factor {ht}—or

the pricing kernel {πt} under the P-measure—is clear-cut. The numerator of {L(t;Ti−1, Ti)}
is driven only by idiosyncratic stochastic factors that influence the dynamics of the LIBOR

process. We may call such drivers the “LIBOR risk factors”. Dependence on the “OIS risk

factors”, in our model example {A(1)
t }, is produced solely by the denominator of the LIBOR

process. (iii) Usually, the FRA process Kt = L(t;Ti−1, Ti)/PtTi is modelled directly and

more commonly applied to develop multi-curve frameworks. With such models, however,

it is not guaranteed that simple pricing formulae like (3.39) can be derived. We think

that the “codebook” (2.6), and (2.26) in the considered example, is more suitable for the

development of consistent, flexible and tractable multi-curve models.

We next consider one-factor and two-factor models in preparation for calibration to

market data. The ultimate goal is to find a simple, parsimonious and tractable interest

rate model that can be accurately calibrated to swaptions written on LIBOR.

3.1 Univariate Fourier pricing

We begin with a much simplified model that is driven by a single market factor. We will

eventually see that such a choice is unrealistic and in particular the resulting model is too

rigid to allow for satisfactory model calibration. One might justify such a model by saying

that since in current markets there are no liquidly-traded OIS derivatives and hence no

useful data is available, a pragmatic simplification is to assume deterministic OIS rates

{rt}. However, this assumption produces unrealistic future scenarios for the basis spreads

between OIS and LIBOR rates, which are not guaranteed to be positive. Hence, we shall

relax such an assumption later when we consider a two-factor model, and thus OIS returns

to be a stochastic process.

Let us assume A
(1)
t = 0, and hence b1(t) plays no role either, so that it can be assumed

equal to zero. Furthermore, for a start, we assume A
(3)
t = 0 and b3(t) = 0, and (3.40)

simplifies to

Swn0Tk = Nδ EM
[(
c2A

(2)
Tk

+ c0

)+]
= Nδ EM

[(
c2S

(2)
Tk

+c̃0

)+]
,

where here c̃0 = c0−c2. For c̃0 > 0 the price is simply Swn0Tk = Nδc0. For c̃0 < 0, and in

the case of an exponential-Lévy martingale model with

S
(2)
t = eX

(2)
t −t ψ2(1),

where {X(2)
t } is a Lévy process with cumulant ψ2 such that

EM
[
ezX

(2)
t

]
= exp [tψ2(z)] , (3.41)
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we have

Swn0Tk =
Nδ

2π

∫
R

c̃ 1−iv−R
0 M

(2)
Tk

(R+ iv)

(R+ iv)(R+ iv − 1)
dv, (3.42)

where

M
(2)
Tk

(z) = eTkψ2(z)+z
(
ln(c2)−ψ2(1)

)
and R is an arbitrary constant ensuring finiteness of M

(2)
Tk

(R + iv) for v ∈ R. For details

concerning (3.42), we refer to Eberlein, Glau and Papapantoleon (2010).

3.2 One-factor lognormal model

In the event that {A(1)
t } = {A(3)

t } = 0 and {A(2)
t } is of the form

A
(2)
t = exp

(
a2X

(2)
t −

1

2
a22t

)
− 1, (3.43)

where {X(2)
t } is a standard Brownian motion and a2 is a real constant, it follows from

simple calculations that the swaption price is given, for c̃0 = c0 − c2, by

Swn0Tk =Nδ EM
[(
c2A

(2)
Tk

+c0

)+]
(3.44)

=Nδ

(
c2Φ

(
1
2a

2
2Tk − ln(−c̃0/c2)

a2
√
Tk

)
+ c̃0Φ

(
−1

2a
2
2Tk − ln(−c̃0/c2)
a2
√
Tk

))
, (3.45)

where Φ(x) is the standard normal distribution function. In Section 4, where we focus on

model calibration, we also consider a one-factor model that is driven by an NIG-process,

as an example of a model with jumps.

3.3 Two-factor lognormal model

We return to the price formula (3.40) and consider the case where the martingales {A(i)
t }

are given, for i = 1, 2, 3, by

A
(i)
t = exp

(
aiX

(i)
t −

1

2
a2i t

)
− 1, (3.46)

for real constants ai and standard Brownian motions {X(1)
t } = {X(3)

t } and {X(2)
t } with

correlation ρ. Then it follows that

Swn0Tk = EM
[(
c2e

X
√
Tka2− 1

2
a22Tk + c3e

Y
√
Tka3− 1

2
a23Tk − c1eY

√
Tka1− 1

2
a21Tk + c̃0

)+]
, (3.47)

where X ∼ N (0, 1), Y ∼ N (0, 1), (X|Y ) = y ∼ N (ρy, (1− ρ2)). Hence,

Swn0Tk =

∫ ∞
−∞

∫ ∞
−∞

(c2e
x
√
Tka2− 1

2
a22Tk −K(y))+f(x|y)f(y)dxdy

=

∫
K(y)>0

(∫ ∞
−∞

(c2e
x
√
Tka2− 1

2
a22Tk −K(y))+f(x|y)dx

)
f(y)dy

+

∫
K(y)<0

(∫ ∞
−∞

(c2e
x
√
Tka2− 1

2
a22Tk −K(y))+f(x|y)dx

)
f(y)dy,
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where

K(y) = c1(e
a1
√
Tky− 1

2
a21Tk − 1)− c3(ea3

√
Tky− 1

2
a23Tk − 1)− c0,

f(y) =
1√
2π

e−
y2

2 ,

f(x|y) =
1√

2π(1− ρ2)
e

−(x−ρy)2

2(1−ρ2) .

This expression can be simplified further to obtain

Swn0Tk

=

∫
K(y)>0

[
c2e

a2
√
Tk ρy+

1
2
a22Tk(1−ρ2)Φ

(
ρy + a2

√
Tk(1− ρ2) + ln(c2)− 1

2a
2
2Tk −K(y)√

1− ρ2

)

−K(y)Φ

(
ρy + ln(c2)− 1

2a
2
2Tk −K(y)√

1− ρ2

)]
f(y)dy

+

∫
K(y)<0

(
c2e

a2
√
Tkρ(y− 1

2
a2
√
Tkρ −K(y)

)
f(y)dy.

The calculation of the swaption price is then reduced to calculating two one-dimensional

integrals. Since the regions of integration are not explicitly known, one has to numerically

solve for the roots of K(y), which may have up to two roots. Nevertheless a full swaption

smile can be calculated in a small fraction of a second by means of this formula.

4 Calibration

The counterparty-risk valuation adjustments, abbreviated by XVAs (CVA, DVA, etc.), can

be viewed as long-term options on the underlying contracts. For their computation, the

effects by the volatility smile and term structure matter. Furthermore, for the planned

XVA computations of multi-curve products (e.g. basis swaps), which we shall consider in

the next section, it is necessary to calibrate the proposed pricing model to financial instru-

ments with underlying tenors of δ = 3m and δ = 6m. Similar to Crépey et al. (2015), we

make use of the following EUR market Bloomberg data of January 4, 2011 to calibrate our

model: EONIA, three-month EURIBOR and six-month EURIBOR initial term structures

on the one hand, and three-month and six-month tenor swaptions on the other. As in the

HJM framework of Crépey et al. (2015), to which the reader is referred for more details in

this regard, the initial term structures are fitted by construction in our setup. With regard

to the calibration to swaptions, at first, we calibrate the non-maturity/tenor-dependent

parameters to the swaption smile for the 9Y1Y swaption with a three-month tenor un-

derlying. The market smile corresponds to a vector of strike bps [−200,−100,−50,−25,

0, 25, 50, 100, 200] around the underlying forward swap spread. Then, we make use of at-

the-money swaptions on three and six-month tenor swaps all terminating at exactly ten

years, but with maturities from one to nine years. This co-terminal procedure is chosen

with a view towards the XVA application in Section 5, where a basis swap with a ten-year

terminal date is considered.
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The general idea leading through Section 4 is that we calibrate the “simplest” stochastic

interest rate model, driven by one factor, where two cases are considered: (i) log-normal

factor, and (ii) log-NIG factor. It turns out that neither of these models calibrate to

swaption data satisfactorily, thus suggesting that a two-factor rational model is the next

class that needs to be taken under consideration. As we will find out, the two-factor

rational log-normal multi-curve interest rate model provides good calibration properties

and is deemed to be the “winning” model. Another conclusion is that we do not need to

include jump drivers in the specification of the two-factor rational model.

Model calibration in a one-factor setup where, say, {A(2)
t } is the single stochastic factor,

involves the following steps:

1. We calibrate the parameters of the driving martingale {A(2)
t } to the smile of the 9Y1Y

swaption with tenor δ = 3m. This part of the calibration procedure gives us also the

values of b2(9, 9.25), b2(9.25, 9.5), b2(9.5, 9.75) and b2(9.75, 10), which we assume to

be equal.

2. Next, we consider the co-terminal, ∆Y(10−∆)Y ATM swaptions with ∆ = 1, 2,. . . , 9

years. These are available written on the three and six-month rates. We calibrate the

remaining values of b2 one maturity at a time, going backwards and starting with the

8Y2Y for the three-month tenor and with the 9Y1Y for the six-month tenor. This is

done assuming that the parameters are piecewise constant such that b2(T, T +0.25) =

b2(T+0.25, T+0.5) = b2(T+0.5, T+0.75) = b2(T+0.75, T+1) for each T = 0, 1, . . . , 8.

4.1 One-factor lognormal model

In the one-factor lognormal specification of Section 3.2, we calibrate the parameter a2
and b = b2(9, 9.25) = b2(9.25, 9.5) = b2(9.5, 9.75) = b2(9.75, 10) with Matlab utilising the

procedure “lsqnonlin” based on the pricing formula (3.44) (if c̃0 < 0, otherwise Swn0Tk =

Nδc0). This calibration yields:

a2 = 0.0537, b = 0.1107.

Forcing positivity of the underlying LIBOR rates means, in this particular case, restricting

b ≤ L(0; 9.75, 10) = 0.0328, c.f. (2.27). The constrained calibration yields:

a2 = 0.1864, b = 0.0328.

The two resulting smiles can be found in Figure 1, where we can see that the unconstrained

model achieves a reasonably good calibration. However, enforcing positivity is highly re-

strictive since the Gaussian model, in this setting, cannot produce a downward sloping

smile.
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Figure 1: Lognormal one-factor calibration

Next we calibrate the b2 parameters to the ATM swaption term structures of 3 months

and 6 months tenors. The results are shown in Figure 2. When positivity is not enforced

the model can be calibrated with no error to the market quotes of the ATM co-terminal

swaptions. However, one can see from the figure that the positivity constraint does not

allow the b2 function to take the necessary values, and thus a very poor fit to the data is

obtained, in particular for shorter maturities.

With this in mind the natural question is whether the positivity constraint is too re-

strictive. Informal discussions with market participants reveal that positive probability for

negative rates is not such a critical issue for a model. As long as the probability mass for

negative values is not substantial, it is a feature that can be lived with. Indeed assigning

a small probability to this event may even be realistic.1 In order to investigate the signifi-

cance of the negative rates and spreads issue mentioned in Remark 2.1, we calculate lower

quantiles for spot rates as well as the spot spread for the model calibrated without the

positivity constraint. As Figure 3 shows, the lower quantiles for the rates are of no concern.

Indeed it can hardly be considered pathological that rates will be below -14 basis points

with 1% probability on a three year time horizon. Similarly, with regard to the spot spread,

the lower quantile is in fact positive for all time horizons. Further calculations reveal that

the probabilities of the eight year spot spread being negative is 1.1 × 10−5 and the nine

year is 0.008 – which again can hardly be deemed pathologically high.

We find that the model performs surprisingly well despite the parsimony of a one-factor

lognormal setup. While positivity of rates and spreads are not achieved, the model assigns

only small probabilities to negative values. However, the ability of fitting the smile with

such a parsimonious model is not satisfactory (cf. Fig. 1), which is our motivation for the

next specification.

1A broad panel of money market rates are currently negative, including DKK (CIBOR), short term

EURIBOR and CHF LIBOR.
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Figure 2: One-Factor Lognormal calibration. (Left) Fit to ATM swaption implied volatility

term structures. (Right) Calibrated values of the b2 parameters. (Top) δ = 3m. (Bottom)

δ = 6m.
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Figure 3: One-Factor Lognormal calibration. 1% lower quantiles
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4.2 Exponential normal inverse Gaussian model

The one-factor model, which is driven by a Gaussian factor {A(2)
t }, is able to capture the

level of the volatility smile. Nevertheless, the model implied skew is slightly different from

the market skew. To overcome this issue, we now consider a one-factor model driven by a

richer family of Lévy processes. The process {A(2)
t } is now assumed to be the exponential

normal inverse Gaussian (NIG) M-martingale

A
(2)
t = exp

(
X

(2)
t − tψ(1)

)
− 1, (4.48)

where {X(2)
t } is an M-NIG-process with cumulant ψ(z), see (3.41), expressed in terms of

the parametrisation2 (ν, θ, σ) from Cont and Tankov (2003) as

ψ(z) = −ν
(√

ν2 − 2zθ − z2σ2 − ν
)
, (4.49)

where ν, σ > 0 and θ ∈ R. The parameters that need to be calibrated at first are ν, θ, σ

and b = b2(9, 9.25) = b2(9.25, 9.5) = b2(9.5, 9.75) = b2(9.75, 10). After the calibration, we

obtain

b = 0.0431, ν = 0.2498, θ = −0.0242, σ = 0.1584.

Imposing b ≤ L(0; 9.75, 10) = 0.0328 to get positive rates we obtain instead

b = 0.0291, ν = 0.1354, θ = −0.0802, σ = 0.3048.

The two fits are plotted in Figure 4. Here, imposing positivity comes at a much smaller cost

when compared to the one factor Gaussian case. The NIG process has a richer structure

(more parametric freedom) and therefore is able to compensate for an imposed smaller level

of the parameter b2.
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Figure 4: Exponential-NIG calibration

2The Barndorff-Nielsen (1997) parametrisation is recovered by setting µ = 0, α =
1

σ

√
θ2i
σ2
i

+ ν2i , β =
θi
σ2
i

and δ = σν.
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We continue with the second part of the calibration of which results are found in Figure

5. Here we see that enforcing positivity may have a small effect on the smile but it means

that the volatility structure cannot be made to match swaptions with maturity smaller

than 7 years. Thus, enforcing positivity in this model produces limitations which we wish

to avoid. In Figure 6, we plot lower quantiles for the rates and spreads as for the one-factor
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Figure 5: Exponential-NIG calibration. (Left) Fit to ATM swaption implied volatility term

structures. (Right) Calibrated values of the b2 parameters. (Top) δ = 3m. (Bottom)

δ = 6m.

lognormal model. While spot spreads remain positive, the levels do not, and, as shown, the

model assigns an unrealistically high probability mass to negative values. In fact the model

assigns a 1% probability to rates falling below -12% within 2 years! Thus, the one-factor

exponential-NIG model loses much of its appeal because it cannot fit long-term smiles and

shorter-term ATM volatilities while maintaining realistic values for the interest rate.

4.3 Calibration of a two-factor lognormal model

The necessity to produce a better fit to the smile than what can be achieved with the

one-factor Gaussian model, while maintaining realistically positive rates and spreads, leads

us to proposing the two-factor specification presented in Section 3.3. This model is heavily
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Figure 6: Exponential-NIG calibration calibration. 1% lower quantiles.

parametrised and the parameters at hand are not all identified by the considered data. We

therefore fix the following parameters:

a1 = 1, a3 = 1.6, (4.50)

b3(T, T + 0.25) = 0.15L(0;T ;T + 0.25), T ∈ [9, 9.75], (4.51)

b2(T, T + 0.25) = 0.55L(0, T ;T + 0.25), T ∈ [0, 8.75]. (4.52)

We assume that b1 is constant, i.e. b1 = b1(T ) for T ∈ [0, 10], and that b3, outside

of the region defined above, is piecewise constant such that b3(T, T + 0.25) = b3(T +

0.25, T + 0.5) = b3(T + 0.5, T + 0.75) = b3(T + 0.75, T + 1) for each T = 0, 1 . . . , 8 and

b3(T, T + 0.5) = b3(T + 0.5, T + 1) holds for each T = 0, 1 . . . , 9. We furthermore assume

that b2(T, T + 0.5) = b2(T, T + 0.25), T ∈ [0, 9.5]. These somewhat ad hoc choices are

made with a view towards b2 and b3 being fairly smooth functions of time. We herewith

apply a slightly altered procedure to calibrate the remaining parameters if compared to the

scheme utilised for the one-factor models.

1. We first calibrate to the smile of the 9Y1Y years swaption which gives us the param-

eters a2, ρ, the assumed constant value of b1, and b2(9, 9.25) to b2(9.75, 10) which are

assumed equal to a constant b. Similar to the exponential-NIG model, we make use

of four parameters in total to fit the smile.

2. The remaining b2 parameters are determined a priori, so what remains is to calibrate

the values of b3. The three-month tenor values b3(T, T + 0.25) for T ∈ [0, 8.75] are

calibrated to ATM, co-terminal swaptions starting from the 8Y2Y years and then

continuing backwards to the 1Y9Y instruments. For the six-month tenor products,

we calibrate b3(T, T +0.5) for T ∈ [0, 9.5] starting with 9Y1Y and proceed backwards.

These are the values we obtain from the first calibration phase: b1 = 0.2434, b =

0.02, a2 = 0.1888, ρ = 0.9530. The corresponding fit is plotted in the upper left quad-

rant of Figure 7. In order to check the robustness of the calibrated fit through time, we

also calibrate to three alternative dates. The quality of the fit appears quite satisfactory
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Figure 7: Lognormal two-factor calibration.
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and comparable to the exponential-NIG model. For all four dates the calibration is done

enforcing the positivity condition b2(T, T + 0.25) + b3(T, T + 0.25) ≤ L(0;T, T + 0.25).

However, the procedure yields the exact same parameters even if the constraint is relaxed.

We thus conclude that a better calibration appears not to be possible for these datasets

by allowing negative rates. Note that it is only for our first data set that the calibrated

correlation ρ is as high as 0.9530. In the other three cases we have ρ = 0.4118, ρ = 0.3964,

and ρ = 0.2461. Figure 8 shows the parameters b2 and b3 obtained at the second phase

of the calibration to the data of 4 January 2011. As with the previous model (cf. the left

graphs of Figures 2 and 5), the volatilities are matched to market data without any error.
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Figure 8: Two-factor lognormal calibration. (Left) Parameter values fitted to three-month

ATM swaption implied volatility term structures. (Right) Parameter values fitted to six-

month ATM swaption implied volatility term structures.

We add here that, although not visible from the graphs, the calibrated parameters satisfy

the LIBOR spread positivity discussed in Remark 2.1.

In conclusion, we find that the two-factor log-normal has the ability to fit the swaption

smile very well, it can be controlled to generate positive rates and positive spreads, and it is

tractable with numerically-efficient closed-form expressions for the swaption prices. Given

these desirable properties, we discard the one-factor models and retain the two-factor log-

normal model for all the analyses in the remaining part of the paper.

5 XVA Analysis

So far we have focused on so-called “clean computations”, i.e. ignoring counterparty-risk

and assuming that funding is obtained at the risk-free OIS rate. In reality, contractually

specified counterparties at the end of a financial agreement may default, and funding to

enter or honour a financial agreement may come at a higher cost than at OIS rate. Thus,

various valuation adjustments need to be included in the pricing of a financial position. The

price of a counterparty-risky financial contract is computed as the difference between the

clean price, as in previous sections, and adjustments accounting for counterparty-risk and
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funding costs, such as CVA (credit valuation adjustment), DVA (debt valuation adjustment)

and LVA (liquidity-funding valuation adjustment).

5.1 XVA BSDE

In the reduced-form counterparty-risk setup of Section 2.4, following Crépey (2012), given

a contract (or portfolio of contracts) with “clean” price process {Pt} and a time horizon T ,

the total valuation adjustment (TVA) process {Θt} accounting for counterparty-risk and

funding cost, can be modelled as a solution to an equation of the form

Θt = EQ
t

[∫ T

t
exp

(
−
∫ s

t
(ru + γu)du

)
fs(Θs)ds

]
, t ∈ [0, T ], (5.53)

for some coefficient {ft(ϑ)}. We note that (5.53) is a backward stochastic differential

equation (BSDE) for the TVA process {Θt}. For accounts on BSDEs and their use in

mathematical finance in general and counterparty-risk in particular, we refer to, e.g., El

Karoui, Peng, and Quenez (1997), Brigo et al. (2013) and Crépey (2012) or (Crépey et al.

2014, Part III). An analysis in line with Crépey (2012) yields a coefficient of the BSDE

(5.53) given, for ϑ ∈ R, by:

ft(ϑ) = γct (1−Rc)(Pt − Γt)
+︸ ︷︷ ︸

CVA coefficient (cvat)

− γbt (1−Rb)(Pt − Γt)
−︸ ︷︷ ︸

DVA coefficient (dvat)

+ b̄tΓ
+
t − btΓ

−
t + λ̃t

(
Pt − ϑ− Γt

)+ − λt(Pt − ϑ− Γt
)−︸ ︷︷ ︸

LVA coefficient (lvat(ϑ))

,
(5.54)

where:

– Rb and Rc are the recovery rates of the bank towards the counterparty and vice versa.

– Γt = Γ+
t − Γ−t , where {Γ+

t } (resp. {Γ−t }) denotes the value process of the collateral

posted by the counterparty to the bank (resp. by the bank to the counterparty), for

instance Γt = 0 (used henceforth unless otherwise stated) or Γt = Pt.

– The processes {b̄t} and {bt} are the spreads with respect to the OIS short rate {rt}
for the remuneration of the collateral {Γ+

t } and {Γ−t } posted by the counterparty and

the bank to each other.

– The process {λt} (resp. {λ̃t}) is the liquidity funding (resp. investment) spread of

the bank with respect to {rt}. By liquidity funding spreads we mean that these are

free of credit risk. In particular,

λ̃t = λ̄t − γbt (1− R̄b), (5.55)

where {λ̄t} is the all-inclusive funding borrowing spread of the bank and where R̄b
stands for a recovery rate of the bank to its unsecured lender (which is assumed risk-

free, for simplicity, so that in the case of {λt} there is no credit risk involved in any

case).
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The data {Γt}, {bt} and b̄t are specified in a credit support annex (CSA) contracted between

the two parties. We note that

EQ
t

[∫ T

t
exp

(
−
∫ s

t
(ru + γu)du

)
fs(Θs)ds

]
= EM

t

[∫ T

t

µsνsDsZs
µsνtDtZt

fs(Θs)ds

]
= EM

t

[∫ T

t

hsks
htkt

fs(Θs)ds

]
. (5.56)

Hence, by setting Θ̃t = ht kt Θt, one obtains the following equivalent formulation of (5.53)

and (5.54) under M:

Θ̃t = EM
t

[∫ T

t
f̃s(Θ̃s)ds

]
, t ∈ [0, T ], (5.57)

where

f̃t(ϑ̃)

htkt
= ft

( ϑ̃

htkt

)
= γct (1−Rc)(Pt − Γt)

+ − γbt (1−Rb)(Pt − Γt)
−

+ b̄tΓ
+
t − btΓ

−
t + λ̃t

(
Pt −

ϑ̃

htkt
− Γt

)+

− λt
(
Pt −

ϑ̃

htkt
− Γt

)−
.

(5.58)

For the numerical implementations presented in the following section, unless stated other-

wise, we set:

γb = 5%, γc = 7%, γ = 10%,

Rb = Rc = 40%,

b = b̄ = λ = λ̃ = 1.5%.

(5.59)

In the simulation grid one time-step corresponds to one month and m = 104 or 105 scenarios

are produced. We recall the comments made after (2.38) and note that (i) the counterparty

and the bank may default jointly, which is reflected by the fact that γt < γbt + γct , and (ii)

we consider a case where default intensities are assumed deterministic, that is biA
(i) = 0

(i = 4, 5, 6). In fact, any stochasticity of the default intensities {γ(i)t } would be averaged

out in all the pricing formulae at t = 0 that are derived below (but it would appear in more

general t-pricing formulae, or in the XVA greeks even for t = 0).

5.2 Basis swap case study

A typical multi-curve financial product, i.e. one that significantly manifests the difference

between single-curve and multi-curve discounting, is the so-called basis swap. Such an

instrument consists of exchanging two streams of floating payments based on a nominal

cash amount N or, more generally, a floating leg against another floating leg plus a fixed

leg. In the classical single-curve setup, the value of a basis swap (without fixed leg) is zero

throughout its life. Since the onset of the financial crisis in 2007, markets quote positive

basis swap spreads that have to be added to the smaller tenor leg, which is clear evidence

that LIBOR is no longer accepted as an interest rate free of credit and liquidity risk. We

consider a basis swap with a duration of ten years where payments based on LIBOR of six-

month tenor are exchanged against payments based on LIBOR of three-month tenor plus
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a fixed spread. The two payment streams start and end at the same times T0 = T 1
0 = T 2

0 ,

T = T 1
n1

= T 2
n2

. The value at time t of the basis swap with spread K is given, for t ≤ T0,

by

BSt = N

 n1∑
i=1

δ6mi L(t;T 1
i−1, T

1
i )−

n2∑
j=1

δ3mj

(
L(t;T 2

j−1, T
2
j ) +KPtT 2

j

) .

After the swap has begun, i.e. for T0 ≤ t < T , the value is given by

BSt = N

(
δ6mit L(T 1

it−1;T
1
it−1, T

1
it) +

n1∑
i=it+1

δ6mi L(t;T 1
i−1, T

1
i )

−δ3mjt
(
L(T 2

jt−1;T
2
jt−1, T

2
jt) +KPtT 2

jt

)
−

n2∑
j=jt+1

δ3mj

(
L(t;T 2

j−1, T
2
j ) +KPtT 2

j

))
,

where T 1
it

(respectively T 2
jt

) denotes the smallest T 1
i (respectively T 2

i ) that is strictly greater

than t. The spread K is chosen to be the fair basis swap spread at T0 so that the basis

swap has value zero at inception. We have

K =

∑n1
i=1 δ

6m
i L(T0;T

1
i−1, T

1
i )−

∑n2
j=1 δ

3m
j L(T0;T

2
j−1, T

2
j )∑n2

j=1 δ
3m
j PT0T 2

j

.

The price processes on which the numerical illustration in Figure 9 have been obtained

was simulated by applying the calibrated two-factor lognormal model developed in Section

4.3. The basis swap is assumed to have a notional cash amount N = 100 and maturity

T = 10 years. In the two-factor lognormal setup, the basis swap spread at time t = 0

is K = 12 basis points, which is added to the three-month leg so that the basis swap is

incepted at par. The t = 0 value of both legs is then equal to EUR 27.96. The resulting

risk exposure, in the sense of the expectation and quantiles of the corresponding price

process at each point in time, is shown in the left graphs of Figure 9, where the right

plots correspond to the P-exposure discussed below. Due to the discrete coupon payments,

there are two distinct patterns of the price process exposure, most clearly visible at times

preceding payments of the six-month tenor coupons for the first one and at times preceding

payments of the three-month tenor coupons without the payments of the six-month tenor

coupons for the second one. We show the exposures at such respective dates on the upper

and lower plots in Figure 9.
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Figure 9: Exposures of a basis swap (price process with mean and quantiles) in the cali-

brated two-factor Gaussian model. (Top) Exposure of the basis swap at t = 5m, 11m, etc.

(Bottom) Exposure of the basis swap price at t = 2m, 8m, 14m, etc. (Left) Exposure un-

der the M-measure. (Right) Exposure under the P-measure with the prediction that the

LIBOR rate L(10.75y; 10.75y, 11y) will be either 2 % with probability p = 0.7 or 5 % with

probability 1− p = 0.3.

Lévy random bridges The basis swap exposures in Figure 9 are computed under the

auxiliary M-measure. The XVAs that are computed in later sections are derived from these

M-exposures. However, exposures are also needed for risk management and as such need

to be evaluated under the real-world measure P. This means that a measure change from

M to P needs to be defined, which requires some thoughts as to what features of a price

dynamics under P one might like to capture through a specific type of measure change and

hence by the induced P-model. In other words, we design a measure change so as to induce

a particular stochastic behaviour of the {At} processes under P, and in particular of the

underlying Markov processes {Xt} driving them.

A special case we consider in what follows is where {Xt} is a Lévy process under M,

while it adopts the law of a corresponding (possibly multivariate, componentwise) Lévy

random bridge (LRB) under P. Several explicit asset price models driven by LRBs have
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been developed in Macrina (2014). The LRB-driven rational pricing models have a finite

time horizon. The LRB is characterised, apart from the type of underlying Lévy process,

by the terminal P-marginal distribution to which it is pinned at a fixed time horizon U .

The terminal distribution can be arbitrarily chosen, but its specification influences the

behaviour of the LRB as time approaches U . In turn, the properties of a specified LRB

influence the behaviour of {At} and hence the dynamics of the considered price process.

We see an advantage in having the freedom of specifying the P-distribution of the factor

process at some fixed future date. This way, we can implement experts’ opinions (e.g.

personal beliefs based on some expert analysis) in the P-dynamics of the price process as

to what level, say, an interest rate (e.g. OIS, LIBOR) is likely to be centred around at a

fixed future date.

The recipe for the construction of an LRB can be found in Hoyle, Hughston and Macrina

(2011), Definition 3.1, which is extended for the development of a multivariate LRB in

Macrina (2014). LRBs have the property, as shown in Proposition 3.7 of Hoyle, Hughston

and Macrina (2011), that there exists a measure change to an auxiliary measure with respect

to which the LRB has the law of the constituting Lévy process. That is, we suppose the

auxiliary measure is M and we have an LRB {Xt}0≤t≤U defined on the finite time interval

[0, U ] where U is fixed. Under M and on [0, U), {Xt} has the law of the underlying

Lévy process. To illustrate further, let us assume a univariate LRB; the analogous measure

change for multivariate LRBs is given in Macrina (2014). Under P, which stands in relation

with M via the measure change

ηt =
dP
dM

∣∣∣
Ft

=

∫
R

fU−t(z −Xt)

fU (z)
ν(dz), t < U, (5.60)

where ft(x) is the density function of the underlying Lévy process for all t ∈ (0, U ] and ν

is the P-marginal law of the LRB at the terminal date U , the process {Xt} is an LRB (the

change of measure is singular at U).

Now, returning to the calibrated two-factor lognormal model of Section 4.3, but similarly

also to the other models in Section 4, we may model the drivers {X(1)
t } = {X(3)

t } and

{X(2)
t } by two dependent Brownian random bridges under P. The computed M exposures

in Figure 9 thus need to be re-weighted by the corresponding amount ηt in order to obtain

the P-exposures of the basis swap. Since here we employ LRBs, we have the opportunity

to include an expert opinion through the LRB marginals ν as to what level one believes

the interest rates will tend to by time U . The re-weighted P-exposures of the basis swap

are plotted in the graphs of the right-hand side of Figure 9. The maximum of the upper

quantile curves shown in the graphs is known as the potential future exposure (PFE) at

the level 97.5%3.

Hence, we now have the means to propose a risk-neutral model that can be calibrated to

option data, and which after an explicit measure change can be applied for risk management

purposes while offering a way to incorporate economic views in the dynamic of asset prices.

3In fact, people rather consider the expected positive exposure (expectation of the positive part of the

price rather than the price) in the PFE computation, but the methodology is the same.
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Recalling (2.19) and (5.60), the Q-to-P measure change is obtained by

dP
dQ

∣∣∣
Ft

=
ηt
µt
, (5.61)

and the pricing formula for financial assets (2.1) may be utilised under the various measures

as follows:

StT =
1

Dt
EQ[DT STT | Ft] =

1

Dt µt
EM[DT µT STT | Ft] =

1

ht
EM[hT STT | Ft]

=
ηt

Dt µt
EP
[
DT µT
ηT

STT

∣∣∣Ft] =
1

πt
EP[πT STT | Ft], (5.62)

for 0 ≤ t ≤ T < U (since we consider price models driven by LRBs). It follows that the

pricing kernel is given by πt = Dt µt η
−1
t = η−1t ht. Measure changes from a risk-neutral

to the real-world probability measure are discussed for similar applications also elsewhere.

For a recent study in this area of research, we refer to, e.g., Hull, Sokol and White (2014).

BSDE-based computations The BSDE (5.57)-(5.58) can be solved numerically by sim-

ulation/regression schemes similar to those used for the pricing of American-style options,

see Crépey, Gerboud, Grbac, and Ngor (2013), and Crépey et al. (2015). Since in (5.59)

we have λt = λ̃t, the coefficients of the terms (Pt− ϑ̃/(htkt)−Γt)
± coincide in (5.58). This

is the case of a “linear TVA” where the coefficient f̃t depends linearly on ϑ̃. The results

emerging from the numerical BSDE scheme for (5.58) can thus be verified by a standard

Monte Carlo computation. Table 1 displays the value of the TVA and its CVA, DVA and

LVA components at time zero, where the components are obtained by substituting for ϑ,

in the respective term of (5.58), the TVA process Θ̃t computed by simulation/regression

in the first place (see Section 5.2 in Crépey et al. (2013) for the details of this procedure).

The sum of the CVA, DVA and LVA, which in theory equals the TVA, is shown in the sixth

column. Therefore, columns two, six and seven yield three different estimates for Θ̃0 = Θ0.

Table 2 displays the relative differences between these estimates, as well as the Monte Carlo

confidence interval in a comparable scale, which is shown in the last column. The TVA

repriced by the sum of its components is more accurate than the regressed TVA. This ob-

servation is consistent with the better performance of Longstaff and Schwartz (2001) when

compared with Tsitsiklis and Van Roy (2001) in the case of American-style option pricing

by Monte Carlo methods, see Chapter 10 in Crépey (2013), for example.

In Table 3, in order to compare alternative CSA specifications, we repeat the above

numerical implementation in each of the following four cases, with λ̄t set equal to the

constant 4.5% everywhere and all other parameters as in (5.59):

1. (R̄b, Rb, Rc) = (100, 40, 40)%, Q = P, Γ = 0,

2. (R̄b, Rb, Rc) = (100, 40, 40)%, Q = P, Γ = Q = P,

3. (R̄b, Rb, Rc) = (40, 40, 40)%, Q = P, Γ = 0,

4. (R̄b, Rb, Rc) = (100, 100, 40)%, Q = P, Γ = 0.

(5.63)

Remembering that the t = 0 value of both legs of the basis swap is equal to EUR 27.96,

the numbers in Table 3 may seem quite small, but one must also bear in mind that the toy
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m Regr TVA CVA DVA LVA Sum MC TVA

104 0.0447 0.0614 -0.0243 0.0067 0.0438 0.0438

105 0.0443 0.0602 -0.0234 0.0067 0.0435 0.0435

Table 1: TVA at time zero and its decomposition (all quoted in EUR) computed by re-

gression for m = 104 or 105 against X
(1)
t and X

(2)
t . Column 2: TVA Θ0. Columns 3 to 5:

CVA, DVA, LVA at time zero repriced individually by plugging Θ̃t for ϑ̃ in the respective

term of (5.58). Column 6: Sum of the three components. Column 7: TVA computed by a

standard Monte Carlo scheme.

m Sum/TVA TVA/MC Sum/MC CI//|MC|
104 -2.0114% 2.0637% 0.0108 % 9.7471%

105 -1.7344 % 1.7386 % -0.0259% 2.9380%

Table 2: Relative errors of the TVA at time zero corresponding to the results of Table 1.

“A/B” represents the relative difference (A−B)/B. “CI//|MC|”, in the last column, refers

to the half-size of the 95%-Monte Carlo confidence interval divided by the absolute value

of the standard Monte Carlo estimate of the TVA at time zero.

Case Regr TVA CVA DVA LVA Sum Sum/TVA

1 0.0776 0.0602 -0.0234 0.0408 0.0776 -0.0464 %

2 0.0095 0.0000 0.0000 0.0092 0.0092 -3.6499%

3 0.0443 0.0602 -0.0234 0.0067 0.0435 -1.7344 %

4 0.0964 0.0602 0.0000 0.0376 0.0978 1.4472%

Table 3: TVA at time zero and its decomposition (all quoted in EUR) computed by regres-

sion for m = 105 against X
(1)
t and X

(2)
t . Column 2: TVA Θ0. Columns 3 to 5: CVA, DVA

and LVA at time zero, repriced individually by plugging Θ̃t for ϑ̃ in the respective term of

(5.57). Column 6: Sum of the three components. Column 7: Relative difference between

the second and the sixth columns.
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model that is used here doesn’t account for any wrong-way risk effect (see Crépey and Song

(2015)). In fact, the most informative conclusion of the table is the impact of the choice of

the parameters on the relative weight of the different XVA components.

Exposure-based computations In addition to their use for the computation of PFE,

the exposures in Section 5.2 can be applied to compute CVA, DVA and LVA. Let us restrict

attention to the case of interest rate derivatives with {Pt} adapted with respect to {F (1,2,3)
t }.

We introduce c(s) =
∏
i≥4 ci(s) and the function of time

EPE(s) := EM [hsP+
s

]
= EQ [DsP

+
s

]
, resp. EM [hsP−s ] = EQ [DsP

−
s

]
,

called the expected positive exposure, resp. expected negative exposure. For an interest-

rate swap, the EPE and ENE correspond to the mark-to-market of swaptions with maturity

s written on the swap, which can be recovered analytically if available in a suitable model

specification. In general, the EPE/ENE can be retrieved numerically by simulating the

exposure.

In view of (5.57)-(5.58), by the time t = 0 forms of (2.34) and (2.35), the noncollater-

alised CVA at t = 0 satisfies (for Rc 6= 1, otherwise CV A0=0):

1

(1−Rc)
CV A0 = EM

[∫ T

0
hsksγ

c
sP

+
s ds

]
=

∫ T

0
EM [hsP+

s

]
EM [ksγ

c
s] ds

=

∫ T

0
EM [hsP+

s

]
EQ [Zsγ

c
s] ds = −

∫ T

0
EPE(s)

(
ċ6(s)

c6(s)
+
ċ4(s)

c4(s)

)
c(s)ds.

Similarly, for the DVA (for Rb 6= 1, otherwise DV A0 = 0) we have:

1

(1−Rb)
DV A0 = −

∫ T

0
ENE(s)

(
ċ6(s)

c6(s)
+
ċ4(s)

c4(s)

)
c(s)ds.

For the basis swap of Section 5.2 and the counterparty-risk data (5.59), we obtain by this

manner CV A0 = 0.0600 and DV A0 = −0.0234, quite consistent with the corresponding

entries of the second row (i.e. for m = 105) in Table 1. As for the LVA, to simplify its

computation, one may be tempted to neglect the nonlinearity that is inherent to lvat(ϑ)

(unless λ̃t = λt), replacing ϑ by 0 in lvat(ϑ). Then, assuming lvat(0) ∈ X (1,2,3)
t , by (5.53)-

(5.54), one can compute a linearised LVA at time zero given by

L̂V A0 = EM
[∫ T

0
hsks lvas(0)ds

]
=

∫ T

0
EM [hs lvas(0)]EM [ks] ds =

∫ T

0
EM [hs lvas(0)] c(s)ds,

by (2.34) for t = 0. This is based on the expected (linearised) liquidity exposure

EM [hslvas(0)] = EQ [Dslvas(0)] .

In case of no collateralisation (Γt = 0) and of deterministic λ̃t and λt, we have

lvas(0) = λ̃sP
+
s − λsP−s , L̂V A0 =

∫ T

0

(
λ̃sEPE(s)− λsENE(s)

)
c(s)ds.
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In case of continuous collateralisation (Γt = Pt) and of deterministic b̄t and bt, the formulas

read

lvas(0) = b̄sP
+
s − bsP−s , L̂V A0 =

∫ T

0

(
b̄sEPE(s)− bsENE(s)

)
c(s)ds.

As for CVA/DVA, the LVA exposure is controlled by the EPE/ENE functions, but for

different “weighting functions”, depending on the CSA. For instance, for the data (5.59),

the LVA on the basis swap of Section 5.2 (collateralised or not, since in this case b̄t = bt =

λ̃t = λt = 1.5%), we obtain L̂V A0 = 0.0098, quite different in relative terms (but these are

small numbers) from the exact (as opposed to linearised) value of 0.0067 in Table 1.

6 Conclusion

So far, most of the work on (linear-)rational interest rate and pricing (kernel) models has

focused on the relevance of these models from the viewpoint of economics. The transparent

relation between model specifications under the risk-neutral and the real-world probabil-

ity measures provided by the underlying pricing kernel structure has been appreciated for

some time. This paper emphasises the appeal of these models also from the perspective of

financial engineering. Models with rational form provide particularly tractable interest rate

models, which can be readily extended to multi-curve interest rate models while retaining

tractability. These multi-curve models (i) can be efficiently calibrated to swaption data and

are particularly easy to simulate since their market factors are deterministic functions of

basic processes such as Brownian motions, (ii) require no jumps to be introduced in their

dynamics in order to achieve acceptable calibration accuracy, where we recall that traders

dislike models with jumps from a hedging perspective. In addition, (iii) the same class of

rational models allows for the development of manageable credit-intensity models necessary

for the analysis of counterparty-risk valuation adjustments. (iv) The transparent relation

between the measures P and Q is employed to derive counterparty-risk pricing adjustments

(under Q) that are consistent with sound risk-measure computations (under P).
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Döberlein, F. and M. Schweizer, On Savings Accounts in Semimartingale Term Structure

Models. Stochastic Analysis and Applications, 2001, 19, 605-626.

Eberlein, E., K. Glau and A. Papapantoleon, Analysis of Fourier transform valuation

formulas and applications. Applied Mathematical Finance, 2010, 17, 211–240.

El Karoui, N., S. Peng, and M.-C. Quenez, Backward stochastic differential equations in

finance. Mathematical Finance, 1997, 7, 1–71.
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