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Abstract

We introduce the Locally Linear Latent Variable Model (LL-LVM), a probabilistic
model for non-linear manifold discovery that describes a joint distribution over ob-
servations, their manifold coordinates and locally linear maps conditioned on a set
of neighbourhood relationships. The model allows straightforward variational op-
timisation of the posterior distribution on coordinates and locally linear maps from
the latent space to the observation space given the data. Thus, the LL-LVM en-
capsulates the local-geometry preserving intuitions that underlie non-probabilistic
methods such as locally linear embedding (LLE). Its probabilistic semantics make
it easy to evaluate the quality of hypothesised neighbourhood relationships, select
the intrinsic dimensionality of the manifold, construct out-of-sample extensions
and to combine the manifold model with additional probabilistic models that cap-
ture the structure of coordinates within the manifold.

1 Introduction

Many high-dimensional datasets comprise points derived from a smooth, lower-dimensional mani-
fold embedded within the high-dimensional space of measurements and possibly corrupted by noise.
For instance, biological or medical imaging data might reflect the interplay of a small number of la-
tent processes that all affect measurements non-linearly. Linear multivariate analyses such as princi-
pal component analysis (PCA) or multidimensional scaling (MDS) have long been used to estimate
such underlying processes, but cannot always reveal low-dimensional structure when the mapping is
non-linear (or, equivalently, the manifold is curved). Thus, there has been substantial recent interest
in algorithms to identify non-linear manifolds in data.

Many more-or-less heuristic methods for non-linear manifold discovery are based on the idea of
preserving the geometric properties of local neighbourhoods within the data, while embedding, un-
folding or otherwise transforming the data to occupy fewer dimensions. Thus, algorithms such as
locally-linear embedding (LLE) and Laplacian eigenmap attempt to preserve local linear relation-
ships or to minimise the distortion of local derivatives [1, 2]. Others, like Isometric feature mapping
(Isomap) or maximum variance unfolding (MVU) preserve local distances, estimating global man-
ifold properties by continuation across neighbourhoods before embedding to lower dimensions by
classical methods such as PCA or MDS [3]. While generally hewing to this same intuitive path, the
range of available algorithms has grown very substantially in recent years [4, 5].

∗Current affiliation: Thread Genius
†Current affiliation: Google DeepMind

1



However, these approaches do not define distributions over the data or over the manifold properties.
Thus, they provide no measures of uncertainty on manifold structure or on the low-dimensional
locations of the embedded points; they cannot be combined with a structured probabilistic model
within the manifold to define a full likelihood relative to the high-dimensional observations; and they
provide only heuristic methods to evaluate the manifold dimensionality. As others have pointed out,
they also make it difficult to extend the manifold definition to out-of-sample points in a principled
way [6].

An established alternative is to construct an explicit probabilistic model of the functional relationship
between low-dimensional manifold coordinates and each measured dimension of the data, assuming
that the functions instantiate draws from Gaussian-process priors. The original Gaussian process
latent variable model (GP-LVM) required optimisation of the low-dimensional coordinates, and thus
still did not provide uncertainties on these locations or allow evaluation of the likelihood of a model
over them [7]; however a recent extension exploits an auxiliary variable approach to optimise a
more general variational bound, thus retaining approximate probabilistic semantics within the latent
space [8]. The stochastic process model for the mapping functions also makes it straightforward
to estimate the function at previously unobserved points, thus generalising out-of-sample with ease.
However, the GP-LVM gives up on the intuitive preservation of local neighbourhood properties that
underpin the non-probabilistic methods reviewed above. Instead, the expected smoothness or other
structure of the manifold must be defined by the Gaussian process covariance function, chosen a
priori.

Here, we introduce a new probabilistic model over high-dimensional observations, low-dimensional
embedded locations and locally-linear mappings between high and low-dimensional linear maps
within each neighbourhood, such that each group of variables is Gaussian distributed given the
other two. This locally linear latent variable model (LL-LVM) thus respects the same intuitions
as the common non-probabilistic manifold discovery algorithms, while still defining a full-fledged
probabilistic model. Indeed, variational inference in this model follows more directly and with fewer
separate bounding operations than the sparse auxiliary-variable approach used with the GP-LVM.
Thus, uncertainty in the low-dimensional coordinates and in the manifold shape (defined by the local
maps) is captured naturally. A lower bound on the marginal likelihood of the model makes it possible
to select between different latent dimensionalities and, perhaps most crucially, between different
definitions of neighbourhood, thus addressing an important unsolved issue with neighbourhood-
defined algorithms. Unlike existing probabilistic frameworks with locally linear models such as
mixtures of factor analysers (MFA)-based and local tangent space analysis (LTSA)-based methods
[9, 10, 11], LL-LVM does not require an additional step to obtain the globally consistent alignment
of low-dimensional local coordinates.1

This paper is organised as follows. In section 2, we introduce our generative model, LL-LVM, for
which we derive the variational inference method in section 3. We briefly describe out-of-sample
extension for LL-LVM and mathematically describe the dissimilarity between LL-LVM and GP-
LVM at the end of section 3. In section 4, we demonstrate the approach on several real world
problems.

Notation: In the following, a diagonal matrix with entries taken from the vector v is written diag(v).
The vector of n ones is 1n and the n × n identity matrix is In. The Euclidean norm of a vector is
‖v‖, the Frobenius norm of a matrix is ‖M‖F . The Kronecker delta is denoted by δij (= 1 if i = j,
and 0 otherwise). The Kronecker product of matrices M and N is M⊗N. For a random vector w,
we denote the normalisation constant in its probability density function by Zw. The expectation of
a random vector w with respect to a density q is 〈w〉q .

2 The model: LL-LVM

Suppose we have n data points {y1, . . . ,yn} ⊂ Rdy , and a graph G on nodes {1 . . . n} with edge
set EG = {(i, j) | yi and yj are neighbours}. We assume that there is a low-dimensional (latent)
representation of the high-dimensional data, with coordinates {x1, . . . ,xn} ⊂ Rdx , dx < dy . It will
be helpful to concatenate the vectors to form y = [y1

>, . . . ,yn
>]> and x = [x1

>, . . . ,xn
>]>.

1This is also true of one previous MFA-based method [12] which finds model parameters and global coor-
dinates by variational methods similar to our own.
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Figure 1: Locally linear mapping Ci

for ith data point transforms the tan-
gent space, TxiMx at xi in the low-
dimensional space to the tangent space,
TyiMy at the corresponding data point
yi in the high-dimensional space. A
neighbouring data point is denoted by yj
and the corresponding latent variable by
xj .

Our key assumption is that the mapping between high-dimensional data and low-dimensional co-
ordinates is locally linear (Fig. 1). The tangent spaces are approximated by {yj − yi}(i,j)∈EG and
{xj − xi}(i,j)∈EG , the pairwise differences between the ith point and neighbouring points j. The
matrix Ci ∈ Rdy×dx at the ith point linearly maps those tangent spaces as

yj − yi ≈ Ci(xj − xi). (1)

Under this assumption, we aim to find the distribution over the linear maps C = [C1, · · · ,Cn] ∈
Rdy×ndx and the latent variables x that best describe the data likelihood given the graph G:

log p(y|G) = log

∫∫
p(y,C,x|G) dx dC. (2)

The joint distribution can be written in terms of priors on C,x and the likelihood of y as

p(y,C,x|G) = p(y|C,x,G)p(C|G)p(x|G). (3)

In the following, we highlight the essential components the Locally Linear Latent Variable Model
(LL-LVM). Detailed derivations are given in the Appendix.

Adjacency matrix and Laplacian matrix The edge set of G for n data points specifies a n × n
symmetric adjacency matrix G. We write ηij for the i, jth element of G, which is 1 if yj and
yi are neighbours and 0 if not (including on the diagonal). The graph Laplacian matrix is then
L = diag(G 1n)−G.

Prior on x We assume that the latent variables are zero-centered with a bounded expected scale,
and that latent variables corresponding to neighbouring high-dimensional points are close (in Eu-
clidean distance). Formally, the log prior on the coordinates is then

log p({x1 . . .xn}|G, α) = − 1
2

n∑
i=1

(α‖xi‖2 +

n∑
j=1

ηij‖xi − xj‖2)− logZx,

where the parameter α controls the expected scale (α > 0). This prior can be written as multivariate
normal distribution on the concatenated x:

p(x|G, α) = N (0,Π), where Ω−1 = 2L⊗ Idx , Π−1 = αIndx + Ω−1.

Prior on C We assume that the linear maps corresponding to neighbouring points are similar in
terms of Frobenius norm (thus favouring a smooth manifold of low curvature). This gives

log p({C1 . . .Cn}|G) = − ε
2

∥∥∥ n∑
i=1

Ci

∥∥∥2
F
− 1

2

n∑
i=1

n∑
j=1

ηij‖Ci −Cj‖2F − logZc

= −1

2
Tr
[
(εJJ> + Ω−1)C>C

]
− logZc, (4)

where J := 1n ⊗ Idx . The second line corresponds to the matrix normal density, giving p(C|G) =
MN (C|0, Idy , (εJJ> + Ω−1)−1) as the prior on C. In our implementation, we fix ε to a small
value2, since the magnitude of the product Ci(xi − xj) is determined by optimising the hyper-
parameter α above.

2ε sets the scale of the average linear map, ensuring the prior precision matrix is invertible.
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Figure 2: Graphical representation of generative process in LL-
LVM. Given a dataset, we construct a neighbourhood graph G. The
distribution over the latent variable x is controlled by the graph G
as well as the parameter α. The distribution over the linear map
C is also governed by the graph G. The latent variable x and the
linear map C together determine the data likelihood.

Likelihood Under the local-linearity assumption, we penalise the approximation error of Eq. (1),
which yields the log likelihood

log p(y|C,x,V,G) = − ε
2
‖

n∑
i=1

yi‖2− 1
2

n∑
i=1

n∑
j=1

ηij(∆yj,i−Ci∆xj,i)
>V−1(∆yj,i−Ci∆xj,i)− logZy,

(5)
where ∆yj,i = yj − yi and ∆xj,i = xj − xi.3 Thus, y is drawn from a multivariate normal
distribution given by

p(y|C,x,V,G) = N (µy,Σy),

with Σ−1y = (ε1n1n
>) ⊗ Idy + 2L ⊗ V−1, µy = Σye, and e = [e1

>, · · · , en>]> ∈ Rndy ;
ei = −

∑n
j=1 ηjiV

−1(Cj + Ci)∆xj,i
. For computational simplicity, we assume V−1 = γIdy .

The graphical representation of the generative process underlying the LL-LVM is given in Fig. 2.

3 Variational inference

Our goal is to infer the latent variables (x,C) as well as the parameters θ = {α, γ} in LL-LVM. We
infer them by maximising the lower bound L of the marginal likelihood of the observations

log p(y|G,θ) ≥
∫∫

q(C,x) log
p(y,C,x|G,θ)

q(C,x)
dxdC := L(q(C,x),θ). (6)

Following the common treatment for computational tractability, we assume the posterior over (C,x)
factorises as q(C,x) = q(x)q(C) [13]. We maximise the lower bound w.r.t. q(C,x) and θ by the
variational expectation maximization algorithm [14], which consists of (1) the variational expecta-
tion step for computing q(C,x) by

q(x) ∝ exp

[∫
q(C) log p(y,C,x|G,θ)dC

]
, (7)

q(C) ∝ exp

[∫
q(x) log p(y,C,x|G,θ)dx

]
, (8)

then (2) the maximization step for estimating θ by θ̂ = arg maxθ L(q(C,x),θ).

Variational-E step Computing q(x) from Eq. (7) requires rewriting the likelihood in Eq. (5) as a
quadratic function in x

p(y|C,x,θ,G) = 1
Z̃x

exp
[
− 1

2 (x>Ax− 2x>b)
]
,

where the normaliser Z̃x has all the terms that do not depend on x from Eq. (5). Let L̃ := (ε1n1>n +
2γL)−1. The matrix A is given by A := A>EΣyAE = [Aij ]

n
i,j=1 ∈ Rndx×ndx where the i, jth

dx × dx block is Aij =
∑n
p=1

∑n
q=1 L̃(p, q)AE(p, i)>AE(q, j) and each i, jth (dy × dx) block of

AE ∈ Rndy×ndx is given by AE(i, j) = −ηijV−1(Cj + Ci) + δij
[∑

k ηikV
−1(Ck + Ci)

]
. The

vector b is defined as b = [b1
>, · · · ,bn>]> ∈ Rndx with the component dx-dimensional vectors

given by bi =
∑n
j=1 ηij(Cj

>V−1(yi−yj)−Ci
>V−1(yj −yi)). The likelihood combined with

the prior on x gives us the Gaussian posterior over x (i.e., solving Eq. (7))

q(x) = N (x|µx,Σx), where Σ−1x = 〈A〉q(C) + Π−1, µx = Σx〈b〉q(C). (9)

3The ε term centers the data and ensures the distribution can be normalised. It applies in a subspace orthog-
onal to that modelled by x and C and so its value does not affect the resulting manifold model.
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Figure 3: A simulated example. A: 400 data points drawn from Swiss Roll. B: true latent points (x)
in 2D used for generating the data. C: Posterior mean of C and D: posterior mean of x after 50 EM
iterations given k = 9, which was chosen by maximising the lower bound across different k’s. E:
Average lower bounds as a function of k. Each point is an average across 10 random seeds.

Similarly, computing q(C) from Eq. (8) requires rewriting the likelihood in Eq. (5) as a quadratic
function in C

p(y|C,x,G,θ) = 1
Z̃C

exp[− 1
2Tr(ΓC>C− 2C>V−1H)], (10)

where the normaliser Z̃C has all the terms that do not depend on C from Eq. (5), and Γ := QL̃Q>.
The matrix Q = [q1 q2 · · · qn] ∈ Rndx×n where the jth subvector of the ith column is qi(j) =
ηijV

−1(xi−xj) + δij
[∑

k ηikV
−1(xi − xk)

]
∈ Rdx . We define H = [H1, · · · ,Hn] ∈ Rdy×ndx

whose ith block is Hi =
∑n
j=1 ηij(yj − yi)(xj − xi)

>.

The likelihood combined with the prior on C gives us the Gaussian posterior over C (i.e., solving
Eq. (8))

q(C) =MN (µC, I,ΣC),where Σ−1
C := 〈Γ〉q(x) + εJJ> + Ω−1 and µC = V−1〈H〉q(x)Σ>C. (11)

The expected values of A,b,Γ and H are given in the Appendix.

Variational-M step We set the parameters by maximising L(q(C,x),θ) w.r.t. θ which is split
into two terms based on dependence on each parameter: (1) expected log-likelihood for updating
V by arg maxV Eq(x)q(C)[log p(y|C,x,V,G)]; and (2) negative KL divergence between the prior
and the posterior on x for updating α by arg maxα Eq(x)q(C)[log p(x|G, α)− log q(x)]. The update
rules for each hyperparameter are given in the Appendix.

The full EM algorithm4 starts with an initial value of θ. In the E-step, given q(C), compute q(x)
as in Eq. (9). Likewise, given q(x), compute q(C) as in Eq. (11). The parameters θ are updated
in the M-step by maximising Eq. (6). The two steps are repeated until the variational lower bound
in Eq. (6) saturates. To give a sense of how the algorithm works, we visualise fitting results for
a simulated example in Fig. 3. Using the graph constructed from 3D observations given different
k, we run our EM algorithm. The posterior means of x and C given the optimal k chosen by the
maximum lower bound resemble the true manifolds in 2D and 3D spaces, respectively.

Out-of-sample extension In the LL-LVM model one can formulate a computationally efficient
out-of-sample extension technique as follows. Given n data points denoted by D = {y1, · · · ,yn},
the variational EM algorithm derived in the previous section converts D into the posterior q(x,C):
D 7→ q(x)q(C). Now, given a new high-dimensional data point y∗, one can first find
the neighbourhood of y∗ without changing the current neighbourhood graph. Then, it is pos-
sible to compute the distributions over the corresponding locally linear map and latent variable
q(C∗,x∗) via simply performing the E-step given q(x)q(C) (freezing all other quantities the same)
as D ∪ {y∗} 7→ q(x)q(C)q(x∗)q(C∗).

4An implementation is available from http://www.gatsby.ucl.ac.uk/resources/lllvm.

5










