Brown-von Neumann-Nash Dynamics:
The Continuous Strategy Case*

Josef Hofbauer Jorg Oechssler
Department of Mathematics Department of Economics
University of Vienna University of Heidelberg

Frank Riedel
Institute of Mathematical Economics
University of Bielefeld

September 3, 2007

Abstract

Brown and von Neumann introduced a dynamical system that con-
verges to saddle points of zero sum games with finitely many strategies.
Nash used the mapping underlying these dynamics to prove existence of
equilibria in general games. The resulting Brown—von Neumann—Nash
dynamics are a benchmark example for myopic adjustment dynamics
that, in contrast to replicator dynamics, allow for innovation, but re-
quire less rationality than the best response dynamics. This paper
studies the BNN dynamics for games with infinitely many strategies.
We establish Nash stationarity for continuous payoff functions. For
negative semidefinite games (that include zero sum games), we gener-
alize the results of Brown and von Neumann. In addition, we show
that evolutionarily robust Nash equilibria are asymptotically stable.
A complete stability analysis for doubly symmetric games is also ob-
tained.
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1 Introduction

This paper studies the Brown—von Neumann—Nash (BNN) dynamics for
games with a continuum strategy space. Studying BNN dynamics is inter-
esting for at least three reasons. First, Brown and von Neumann [9] used it
as an algorithm to find saddle points in zero sum games. We extend their
results to continuum zero sum games and certain non zero sum games (neg-
ative semidefinite or stable games). We also show that the corresponding
flow is continuous (in the appropriate weak topology). This shows that one
can use BNN to find Nash equilibria in continuum games. This may prove
to be very useful in games that are not easily solvable. An interesting nu-
merical application might be the continuous strategy version of the Blotto
game (Borel [8], for a recent application see Laslier and Picard [28]).

Second, Nash [31] used the mapping underlying the BNN dynamics to
prove existence of equilibria that carry his name. It is now well known that
Nash always had a dynamical interpretation of this mapping in mind (see
Weibull [46]). In fact, one might conjecture that the BNN dynamics always
converge to a Nash equilibrium. This is not the case, as Berger and Hofbauer
[2, 3] have shown. It is thus a challenge to find sufficient conditions that
ensure convergence for as many games as possible. We prove that the BNN
dynamics converge for a large class of games, including zero sum games,
versions of Cournot and Bertrand oligopolies, coordination games, and the
War of Attrition.

Third, the BNN dynamics are the mean dynamics for a stochastic learn-
ing process for which a plausible microfoundation can be given (see Appendix
B for an argument based on Sandholm [39, 40]). We leave it to the reader
to decide whether this adjustment process describes human behavior or not.
(This is, in the end, an empirical question beyond the scope of this paper).
The BNN dynamics are, however, the benchmark example of innovative, yet
not fully rational dynamics: they are myopic adjustment dynamics [44] that
lie in between the replicator dynamics, which require arguably too little ra-
tionality to do justice to human behavior, and the best response dynamics,
which may require too much of it.

Our results are as follows. In the next section we show that the BNN
dynamics are well defined for very general strategy spaces. We allow strate-
gies to come from some measurable space. This makes it possible to apply
BNN in games of incomplete information like auctions where strategies are
usually mappings from some real interval to another real interval. Further-
more, we show that under some mild assumptions on the strategy space
and for bounded and Lipschitz continuous payoff function, the semi—flow
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induced by the BNN dynamics is weakly continuous. For several reasons
it is useful to know whether the semiflow B is weakly continuous. First,
from an applied perspective, a starting point P(0) can only be known as a
rough approximation. Thus, it would be reassuring to know that dynamics
that start at nearby initial points, do not diverge from each other too much.
Second, a continuous model, as we use it here, is only employed for conve-
nience. A continuous model should always be a good approximation for a
finite model if the number of strategies gets large. Weak continuity of the
flow is a sufficient condition for such an approximation to persist over time.
Finally, from a mathematical perspective, for S a compact metric space, B
is a continuous semiflow on a compact metric space A, for which we can
then employ a large body of dynamical systems theory, in particular make
use of w-limits to describe the asymptotic behavior.

In Section 3 we prove that, as in the finite case, the rest points of the
dynamics coincide with the Nash equilibria (this property is called Nash
stationarity) if the payoff function is continuous and the strategy space is a
compact metric space. We also show by example that one cannot weaken
the condition of continuity in general. Nash stationarity is a useful property.
For example, if a trajectory of BNN converges to some point, this point must
be a Nash equilibrium.

There turn out to be some important differences between the case of
a finite number of pure strategies (as studied by Berger and Hofbauer [2]
and Hofbauer [25]) and the continuous strategy case studied here. Probably
most important is the fact that strict equilibria are not necessarily (Lya-
punov) stable in the continuous case.! We demonstrate this in Section 4
through an example with a quadratic payoff function. Interestingly, sta-
tic stability concepts originally developed for the replicator dynamics (such
as a “continuously stable strategy” (CSS) [15] and Evolutionary Robustness
[35]) become relevant for stability with respect to the BNN dynamics. These
concepts are introduced in Section 5.

In Section 6 and 7 we deal with two classes of games, namely doubly sym-
metric games and negative semi—definite games, for which we have nearly
complete results with respect to stability. For doubly symmetric games,
we have the Fundamental Law of Natural Selection: average fitness is in-
creasing over time. This leads to several stability results. We show that
evolutionary robust Nash equilibria are asymptotically stable for BNN dy-
namics. If a game has only one Nash equilibrium, this one is asymptotically

! This is also the case for other dynamics like the replicator dynamics, see e.g. Oechssler
and Riedel, [34] and [35].



stable. An important class of examples are the quadratic games (including
linear Cournot and Bertrand oligopolies). These games can be transformed
into doubly symmetric games with the same excess payoff, and hence, same
BNN trajectories. We show that for these games, asymptotic stability is
equivalent to the fact that the slope of the best reply function is less than 1.
This property has been called continuous stability (CSS) by Eshel [15]. For
discrete BNN dynamics, asymptotic stability in doubly symmetric games is
equivalent to ESS. As evolutionary robustness (ER) is the natural general-
ization of ESS for continuum games, one might conjecture that asymptotic
stability for continuum BNN is equivalent to ER. Our quadratic example
shows that this conjecture is not true.

Finally, we establish stability results for negative semi—definite games.
This class includes zero sum games, contests, and the War of Attrition.
Here, a function that measures the quadratic (positive) excess payoff is a
Lyapunov function. Under suitably compactness and continuity conditions,
we conclude that BNN dynamics converge to the (convex) set of Nash equi-
libria. A strict Nash equilibrium — which is then unique by negative semi—
definiteness — is globally asymptotically stable. For example, the unique
strict Nash equilibrium of contests is globally asymptotically stable for BNN.
Finally, we treat at length the War of Attrition because of its importance.
Here, the payoff function is not continuous, and our general results do not
apply. However, we are able to prove global convergence to the unique Nash
equilibrium by using arguments similar to Brown and von Neumann [9].
Some proofs and an attempt of a microfoundation for the BNN dynamics
are relegated to an Appendix.

2 The BNN dynamics

We consider symmetric two—player games with (pure) strategy set S. Let A
be a o—algebra on S and u be a finite measure on (S,.4). Let f: Sx S —R
be a bounded measurable function, where f(z,y) is the payoff for player 1
when he plays x and player 2 plays y. An interesting special case which will
be treated in more detail is when S is a compact interval S C R with the
Lebesgue measure.

A population is identified with the aggregate play of its members and
is described by a probability measure P on the measurable space (S,.A).
We denote by A the set of all populations (probability measures or mixed
strategies) on S. Since A is not a vector space, we shall work with the linear
span of A, that is the space M®(S,.A) of all finite and signed measures.



Recall that v is a finite signed measure on (5,.4) if there are two finite
measures p! and p? such that for all sets A € A, v(A) = p(A) — p?(A).
The average payoff of a measure P against a measure () is defined as

E(P.Q) = /S /5 f(2,9)Q(dy) P(dx) (1)

Let
o(x,P) = E(64, P)— E(P,P)

denote the difference between the payoff of strategy « € S (identified with
the Dirac measure §, on z) and the average population payoff. The ezcess
payoff of pure strategy x when matched against population P is defined as

o4(z, P) := max(o(x, P),0).

We now define the Brown—von Neumann—Nash dynamics on the measure
space (S, A, ) as the differential equation on A

P(A) = /A o (x, P)u(dz) — P(A) /S o (. P)u(d), 2)

for all A € A. Let X(P) := [q0.4(s, P)u(ds) denote the total excess. If
Y(P) > 0, then the relative excess for a subset A € A is denoted by
RP(A) = ﬁ J4 04 (z, P)p(dz) and defines a probability measure on (.S, A),
absolutely continuous with respect to p, with density function r(z) =
%oq(x, P). Then (2) can be rewritten as

P(A) = S(P)(R"(A) - P(A)). (3)

Hence, under the BNN dynamics, a population P moves toward its relative
excess measure RT, and the speed of motion is proportional to the total
excess. For later reference note that by construction of R we have that

E(RY,P)> E(P,P),VP, (4)

and the inequality is strict whenever total excess doe not vanish. This
property implies that the dynamics is weakly compatible in the sense of
Friedman [18] as it moves towards relatively fitter strategies.

We first show existence and uniqueness of solutions of the differential
equation (2) by interpreting it as a differential equation in a suitable Banach
space.



Theorem 1 For each P = P(0) € A there is a unique solution P(t) € A
of the ordinary differential equation (2) fort € [0, col.

See the appendix for a proof and precise meaning of this statement.

Given that a unique solution to the BNN dynamics exists, we can define
the semiflow
B: A x[0,00[— A,

where B(P,t) = P(t) denotes the population at time ¢t when the BNN dy-
namics start in P = P(0).

In most applications, S is a metric space and then the weak topology
on A is a natural choice. For several reasons it is useful to know whether
the semiflow B is weakly continuous. First, from an applied perspective, a
starting point P(0) can only be known as a rough approximation. Thus,
it would be reassuring to know that dynamics that start at nearby initial
points, do not diverge from each other too much. Second, a continuous model
as we use it here is only employed for convenience. A continuous model
should always be a good approximation for a finite model if the number of
strategies gets large. Weak continuity of the flow is a sufficient condition for
such an approximation to persist over time (compare [35]). Finally, from a
mathematical perspective, for S a compact metric space, B is a continuous
semiflow on a compact metric space A, for which we can then employ a
large body of dynamical systems theory, in particular make use of w-limits
to describe the asymptotic behavior.

Theorem 2 Let S be a separable metric space and f be bounded and Lip-
schitz continuous. Then the semiflow B is continuous with respect to the
weak topology of measures.

Proof. see Appendix.

3 Nash stationarity

A nice property of the BNN dynamics is that for continuous f (and thus, in
particular, for the finite strategy case) the rest points of the dynamics coin-
cide with the Nash equilibria.? The total excess ¥(P) vanishes if o(x, P) < 0
or E(6,,P) < E(P, P) for u—almost all x € S, in particular, if P is a Nash
equilibrium. For continuous payoff functions f the reverse holds also.

?Sandholm [26] calls this property “Nash stationarity”.



Proposition 1 Let S be a compact metric space, 1 a finite Borel measure
on S with full support. Suppose f is continuous. Then P is a rest point of
the BNN dynamics if and only if (P, P) is a Nash equilibrium.

Proof. If P is a best reply to itself, then oy(x,P) = 0 for all z, and
stationarity follows.
Let P* be a stationary point of (6), that is

/A 0 (2, P*)u(da) = P*(A)S(P*) (5)

for all Borel sets A. We distinguish two cases, ¥(P*) = 0 and X(P*) > 0.
Case 1: X(P*) = 0. In this case, for u— almost every z, we have

o4(z,P*)=0.

0+ (z, P*) inherits continuity from f. As p has full support, it follows that
o4 (z, P*) = 0 holds true for all x € S. This is equivalent to

E(,, P*) < E(P*, PY),

and it follows that P* is a best reply to itself.
Case 2: X(P*) > 0. Since P* is a stationary point of (6), we get from
(5) that P* has a density p* with respect to Lebesgue measure and

wy _ o+(@ P
V= sy

for P*-almost every x. For every x with p*(z) > 0, we have thus

oo (z, P*) > 0,

or

E(8,, P*) > E(P*, P*).

By integrating, we get

E(P*,P*) = / E(S0, P*)p* (2)ulde) > E(P*, P*),
{z:p*(x)>0}

a contradiction. Hence, we cannot have X(P*) > 0 for a stationary point
P*. This concludes the proof. B



Example 1 In general, one cannot weaken the continuity assumption made
in the previous proposition. Take S = [0, 1], u = dx,and let the payoff func-
tion f(x,y) = 0 for all x < 1 and all y € [0,1]. Let f(1,y) = 1 for all
y € [0,1]. In this game, the strategy x* = 1 is strictly dominant. The
unique Nash equilibrium is thus (1,1). However, every distribution P on
[0, 1] with a strictly positive Lebesque density p(x) > 0 for all x € [0,1] has
Y(P) = 0. Thus, all such P are rest points of BNN, but not Nash equilibria.

4 An example: quadratic games

In the previous section we saw that all symmetric Nash equilibria are rest
points of the BNN dynamics. However, some of those Nash equilibria may
turn out to be unstable. One is used to think of strict Nash equilibria as
particularly stable with respect to all kinds of dynamics. And indeed, in the
case of finite strategy sets S it is straightforward to show that strict Nash
equilibria are asymptotically stable with respect to the BNN dynamics (see
e.g. Berger and Hofbauer [2]). The following simple example shows that
this is not the case anymore for general S.

For this example we shall assume that S is a compact interval in R
endowed with the Lebesgue measure. Thus, (2) can be written as

PA) = /A o (z, P)dz — P(A) /S o (z, P)dz. (6)

Example 2 Let S C R be an interval around 0 and f(x,y) = —2? + azy
be a linear—quadratic game with a > 0. For all parameters a, (0,0) is a
strict Nash equilibrium. However, for a > 2, this strict Nash equilibrium
is unstable with respect to the BNN dynamics.®> For a < 2, BNN dynamics
globally converge to the strict Nash equilibrium as both mean and variance
converge to 0 along any solution of BNN.

The statements in the Example are formally proven by Proposition 4 below.
Here we shall present an informal argument to illustrate the issue.

Note first that the game with payoff function f(z,y) = —22 + axy is
strategically equivalent to the doubly symmetric game with payoff function
f(z,y) = —2?+axy —y? = f(y,x). The behavior of BNN is the same under
both payoff functions since o (z, P) is the same for both payoff functions.

3For a formal definition of stability see Definition 1 below.



Let P; := [¢a"P(dx) denote the ith moment of P. Then

E(,,P) = /(—a:2 +azy — y*)P(dy) = —2* + axP, — Py (7)
S

and
E(P,P) = / / —2 + azy — y?) P(d) P(dy)
= aP{ —2P,. (8)
Therefore
o4 (2, P) = [z(aP; — 7) — aP? + B3], (9)

and the density 7*(z, P) = o (x, P)/X(P) of the relative excess measure is
the positive part of a quadratic function® in . Thus, the density of RY is a
symmetric function about the maximizer x = ¢ Py. It follows that the mean
of the excess measure is also §P;. From Eqn.(3 ), it follows that the mean
value of the population changes under BNN according to

Py =%(P)(Rf - P),

where R denotes the mean of RT'. Applying this to our example, we obtain

Py = %(P) (g - 1) P (10)

Thus, for a < 2, Py(t) — 0, whereas for a = 2, P;(t) = P1(0), and for a > 2,
Py (t) moves away from 0. Hence, for a > 2, §p is unstable with respect to
the BNN dynamics.

To prove asymptotic stability for a < 2, note that (8) implies

1 1

Py = §an - 5 B(P.P).
Thus,
Py=appy— 14 E(P,P)
=a - —— :
2 1471 2 dt )
Since the game is doubly symmetric, we have furthermore that

d

ZE(P(1), P(1)) = E(P,P) + E(P,P) =2E(P, P)

= 2%(P)E(RY - P,P) >0, (11)

4We ignore here boundary effects, assuming essentially S = R. For a compact interval
S the result follows from the analysis in Section 6, see Proposition 4.



where the last inequality follows from (4). By (10) we obtain
B, = aPx(P) (g - 1) Py — 25(P)E(RP — P, P)
— (P [an (% - 1) —2B(R® - P,P)| <o.

The second term in the bracket has the required sign by (11). The first
term is negative for 0 < a < 2. The inequality is strict unless P = &g, which
proves that Ps is a Lyapunov function for the BNN dynamics. W

The fact that the parameter a is decisive for stability, suggests that
second derivatives of f may play an important role. The following sections
show that this intuition is correct.

The above example also shows that §q is unstable in the strong topology
arising from the variational norm.” Even if the initial measure has some
positive mass on 0, this will disperse into a smooth distribution of better
replies near 0 and the mass at 0 will decrease to 0, see Figure 1 for a numer-
ical example. This is in contrast to the replicator dynamics. In the above
example 0 is an “uninvadable” strategy (in the sense of Bomze [7]), which
implies that it is stable in the strong topology with respect to the replicator
dynamics for every a € R, see [34, Theorem 3].

5 Stability and the measure of closeness

Most, if not all, relevant strategy spaces carry an appropriate metric. For
subsets of R”, there is the Euclidean distance. When considering Bayesian
games, strategies are given by certain classes of functions that also come
with metrics. For this reason, we assume from now on that S carries a
metric d.

The choice of topology is an important issue when defining dynamic sta-
bility as one has to specify what it means for a populations @ to be “close”
to a given population P. See Oechssler and Riedel [35] for an extensive dis-
cussion on this. For the reasons stated there, we find it most appropriate to
use the topology of weak convergence to measure closeness of populations
in evolution. Note also that the BNN dynamics tends to disperse the pop-
ulation as it introduces all strategies that are fitter than average even if we
start with a homogeneous population. If p is, e.g., Lebesgue measure, the
distance between the trajectory and a possible stationary homogeneous state

°In the variational norm the distance between two probability measures P and Q is
given by ||P — Q|| = 2sup e 4 |P(4) — Q(A)] (see e.g. [42]).
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Figure 1: Simulated BNN dynamics for the payoff function f(z,y) = —22 —
2zy. The initial population has mass 0.5 on the two points 0 and .8. After a
few steps of the discretized BNN dynamics, the point masses have decreased
drastically and the distribution is dispersed between —0.4 and .4. The grey
curve shows that after 100 steps the distribution starts concentrating around
the long run equilibrium 0. In fact, we have convergence with respect to the
weak topology, but no convergence with respect to the strong topology.

11



is always maximal in the strong topology. As a consequence, BNN dynamics
cannot converge in the strong topology, see Figure 1 for an example.

The weak topology is defined as follows. A sequence (P,) converges
weakly to P if [ fdP, — [4 fdP for every bounded, continuous real func-
tion f. The Prohorov metric can be used to measure the distance between
populations. It is defined as (cf. [5, p. 238])

p(P,Q) :=1inf{e > 0: Q(A) < P(A®) + e and P(A) < Q(A°) +¢, VA€ A},

where A° := {x : Jy € A, d(y,z) < €}. Thus, P, converges weakly to P if
and only if p(P,, P) — 0.

The weak topology captures the following notion of closeness. If Q =
(1 —¢e)dy + €d, with 0 < ¢ < 1, then p(dy, Q) = min{e, d(u,x)}. Thus,
population @ is close to the Dirac measure 9, only if a small subpopulation
deviates to a (possibly far away) pure strategy z or if a (possibly large) part
of the population deviates to a nearby strategy x. In particular, the distance
between two homogenous populations agrees with the natural metric on the
set of pure strategies, i.e. p(dy,0,) = d(u,x), when u and x are close to each
other.

The next definition specifies the dynamic stability concepts we will use
in the following.

Definition 1 Let Q* be a rest point of the BNN dynamics. Then

e Q* is called (Lyapunov) stable if for all € > 0 there exists an n > 0
such that p(Q(0),Q*) < n = p(Q(t),Q*) < e for all t > 0.

o Q" is called asymptotically stable if additionally there exists € > 0
such that p(Q(0),Q*) < & = p(Q(t), Q") — 0.

Dynamic stability can be related to a number of static stability concepts
which have the advantage that they can easily be checked given the payoff
function. Since strictness of Nash equilibrium is not sufficient for dynamic
stability, stronger concepts are required. As it turns out, concepts originally
developed for the continuous version of the replicator dynamics in evolution-
ary biology like CSS [15] and Evolutionary Robustness [35] become relevant
for the BNN dynamics as well.

The classical definition of an evolutionary stable strategy (ESS) (May-
nard Smith [29]) requires that for all mutant populations R there exists an
invasion barrier € such that the original population P does better against

12



the mixed population (1 — n)P 4+ nR than R does for all n < e. In this
definition some invasion barrier exists for each R.
Eshel and Motro [15] introduced the following definition for S C R.

Definition 2 (CSS) A strategy u is a continuously stable strategy (CSS)
if (1) it is an ESS and (2) there exists an € > 0 such that for all v € S with
|v —u| < e there exists an n > 0 such that for all x € S with |[v—z| <n

f(v,x) > f(z,z) if and only if [v — u| < |x — ul. (12)

As shown by Eshel [16] if f is twice differentiable, a necessary condition
for an interior ESS u to be a CSS is that

Jaw(u, w) + foy(u,u) <0. (13)

Condition (13) is sufficient if the weak inequality is replaced by a strict one.
The following condition was introduced by Oechssler and Riedel [35] and
is stronger than CSS.

Definition 3 A population P* € A(S) is evolutionarily robust if there ex-
ists € > 0 such that for all Q # P* with p(Q, P*) < ¢ we have

E(P*, Q) > E(Q, Q). (14)

When (14) holds for all @ # P, P is called globally evolutionarily robust.
If f is twice differentiable, a necessary condition for an interior, homogenous
., to be evolutionary robust is that (cf. Oechssler and Riedel [35])

Jrz(u,w) + 2 foy(u,u) <0. (15)

6 Doubly symmetric games

Games in which all players have the same payoff function f and which have
a symmetric payoff function, f(z,y) = f(y,z) for all z,y € S, are called
doubly symmetric. Doubly symmetric games or games that can be trans-
formed into the symmetric form (as the one in Example 1) have the property
that the mean payoff E(P, P) is increasing along every solution of BNN.

Lemma 1 Let (S, A,u) be a measure space with pu a finite measure on
S. Consider a doubly symmetric game. Then the mean payoff E(P,P) is
monotonically increasing along every solution of BNN, and strictly increas-
ing along every nonstationary solution. A (strict) local mazimizer of mean

13



payoff is (asymptotically) stable under BNN. If (S,d) is a compact metric
space, | a finite Borel measure on S with full support, and f is Lipschitz
continuous, then the set of limit points of any trajectory is a nonempty con-
nected compact set of Nash equilibria.

Proof. The fact that mean payoff E(P, P) is monotonically increasing along
every solution of BNN follows directly from (11), as we have

A(P(t)) = —%E(P(t)vp(t)) — —2%(P(t))E(R"Y — P(t), P(t)) <0,
and the inequality is strict for nonstationary trajectories. If P* is a (strict)
local maximizer of mean payoff, A(Q) := E(P*, P*)— E(Q, Q) is a Lyapunov
function. From a suitable generalization of Lyapunov’s theorem (see e.g.
Oechssler and Riedel [35, Appendix B] or Bhatia and Szego [4], Chapter V),
we obtain (asymptotic) stability.

If S is compact metric space, then the set of limit points of any trajectory
is non—empty. If additionally f is Lipschitz continuous, Theorem 2 implies
that the semiflow is weakly continuous and from standard results in dynamic
systems theory (see e.g. [4], Chapter II) the set of limit points is compact
and connected. Moreover, average payoff is constant on this set. Hence,
each w-limit point of a trajectory is stationary and, by Proposition 1, a
Nash equilibrium. B

We use the above general result to show local or global asymptotic sta-
bility of an equilibrium. We will demonstrate this for two classes of games:
Games with an equilibrium that satisfies evolutionary robustness and games
with a unique Nash equilibrium.

Proposition 2 Let S be compact and f Lipschitz continuous. If a dou-
bly symmetric game has a unique Nash equilibrium P*, then P* is globally
asymptotically stable under BNN.

Proof. From Lemma 1, we get that P* is asymptotically stable. From the
proof, one sees immediately that A(Q) := E(P*, P*) — E(Q, Q) is a global
Lyapunov function, and global convergence follows. B

Proposition 3 Consider a doubly symmetric game with Lipschitz continu-
ous payoff function f and compact metric strategy space S. If P* is evolu-
tionarily robust, then P* is asymptotically stable with respect to BNN.

14



Proof. By definition of evolutionary robustness, we have for ) close to P*,

AQ) = E(P",P")-EQ.Q)
= E(P,PY)-EP,Q)+E(P,Q) - EQ,Q)
> E(P*,P*)— E(P*,Q)
= E(P*,P) - EQ,P) >0,

where the last equality follow from double symmetry of f, and the last
inequality from the fact that every evolutionary robust population is a sym-
metric Nash equilibrium. Note that the first inequality above becomes strict
unless () = P*. The result then follows from Lemma 1. B

For replicator dynamics and finite (doubly symmetric) games, ESS is
equivalent to asymptotic stability. So one might conjecture that evolution-
ary robustness is equivalent to asymptotic stability for BNN in the current
setting. However, this is not the case as the linear—quadratic case intro-
duced in Example 2 shows. We are now ready to completely characterize
the dynamic behavior of BNN dynamics for this case.

Proposition 4 Let S = [-A, B] C R be an interval around 0 and f(x,y) =
—22 4+ axy —y? be a linear—quadratic game. For all parameters a € R, (0,0)
18 a strict Nash equilibrium.

o Fora < 2,0 is a strict maximizer of mean payoff and BNN dynamics
globally converge to dg.

e Fora > 2, §p is unstable. There are two other symmetric strict Nash
equilibria at the boundary of S, (—A,—A) and (B, B). 0_4 and dp are
strict local mazimizers of mean payoff and hence asymptotically stable
under BNN.

e For a =2, there is a continuum of pure strategy Nash equilibria (z,x)
forallz € S and BNN dynamics converge to this set of Nash equilib-
ria.

In particular, d¢ is asymptotically stable if and only if it is CSS.

Proof. The Proposition follows from Lemma 1 once we note that (cf. (8))

E(P,P) = aP? — 2P, = (a — 2)P? — Var(P),

15



where Var(-) denotes the variance. Thus, maximizing mean payoff implies
that Var(P) = 0. For a < 2, §g strictly maximizes mean payoff. For a > 2,
both §_4 and ép are local maximizers. To see instability of Jg, note that
E(80,00) = 0 and E(04,0,) = (a — 2)a? > 0 for z # 0. Furthermore,
average payoff E(P(t), P(t)) is strictly increasing if one starts close to do.
Lyapunov’s instability theorem then yields that &g is unstable. For a = 0,
E(P,P) = — Var(P). Hence, all pure strategies and only those maximize
mean payoff. By Lyapunov’s stability theorem, the set of all pure strategies
is globally asymptotically stable. B

Note that for 1 < a < 2, 0 is a CSS but dg is not evolutionary robust
(see equations (13) and (15)). Therefore, evolutionary robustness is some-
times too strong a condition and is not necessary for asymptotic stability.
For linear—quadratic games, Proposition 4 shows that CSS is necessary and
sufficient for asymptotic stability.®

The next proposition shows that CSS is a necessary condition for general
symmetric payoff functions.

Proposition 5 Let S be an interval in R, with x* in the interior of S,
and let f be twice continuously differentiable and symmetric. If §.+ is as-
ymptotically stable with respect to BNN, then x* satisfies the CSS condition

(13).

Proof. By (11), every asymptotically stable state .~ must correspond
to a local maximum of mean payoff E(P, P). In particular, * must be a
maximum of f(z,z). The necessary second order condition for z* to be a
maximum is fpq (2%, %) + 2 fzy (x*, %) + fyy(a*, 2*) <0, which reduces due
to symmetry of f to the CSS condition (13). W

Given the insight from Example 2 and the previous proposition one might
hope that for general payoff functions, CSS is also sufficient for a homoge-
neous population P* = §,+ to be asymptotically stable with respect to BNN.
Since this result holds for quadratic payoff function, one may further con-
jecture that the general result can be proven by using a second order Taylor
approximation of the payoff function. The following example shows that
this is unfortunately not the case in general.

Example 3 Let S = [~1,1] and f(x,y) = 10z* — 2? — zy.

%Since (13) does not apply for the two boundary equilibria, one needs to check the CSS
definition (12) directly. For a > 2, 6_a and ép are CSS.
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Let g(z,y) = —2%—zy be the quadratic approximation (through a second
order Taylor approximation) at = y = 0. Since g(x,y) satisfies condition
(16), Theorem 3 below implies that dp is globally asymptotically stable for
the payoff function g(x,y). However, for the actual payoff function f, the
BNN dynamics converges to @ = %5_1 + %61 from any initial P(0) # dg.
This follows from Proposition 2 or Theorem 3 since () is the unique Nash
equilibrium of this negative semi—definite game. Figure 2 shows a typical
simulation of time—discretized BNN dynamics where the initial population is
a discretized, truncated normal distribution whose mean can be arbitrarily
close to 0. Clearly, the dynamics diverges to QQ = %5_1 + %51.

Note that (0,0) is not a Nash equilibrium for the payoff function f(z,y),
and hence not even a stationary point under BNN. However it is a local
strict Nash equilibrium and satisfies condition (13) for CSS. Hence, g is
stable for the replicator dynamics w.r.t. initial distributions with support
close to 0 and attracts such initials whose support is an interval containing
0, see [11, 12].

The class of doubly symmetric games may appear restrictive (and it is)
but there are many games that can easily be transformed into a such game
as the following example shows.

Example 4 Consider a Bertrand game with heterogeneous goods. Two
firms simultaneously set prices p1 and pa. The demand function for firm
1 given by 1 — p; + yp—; with 0 < v < 2. Firm 1’s payoff function is then

f(p1,p2) = p1(1 — p1 +yp2).

By adding pa —p3 to the payoff function, this game can be transformed into a
doubly symmetric one.” Thus, by Proposition 2 BNN dynamics globally con-

verge (also for the original game) to the unique symmetric Nash equilibrium

* _ooox 1
pl_p2_2—fy

7 Negative semi—definite games

In this section we will consider games with an expected payoff function that
is negative semi—definite in the sense that for all P,@Q € A

E(P-Q,P-Q)<0 (16)

"Note again that o(z, P) is not affected by adding terms that depend only on y. Thus,
the dynamics do not change.
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Figure 2: Simulation of time—discretized BNN dynamics with payoff function
f(z,y) = 102* — 22 — zy on strategy space {—1,—.99,...,.99,1}. Initial
distribution (light grey) is truncated normal. Dashed line shows simulation
after 10 iterations, solid black line after 50 iterations.
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(see e.g. [25] for the corresponding property in finite games; in [26] these are
called ‘stable games’). Note first that linear quadratic games like f(z,y) =
—x? + axy satisfy condition (16) if and only if @ < 0 as one can easily
check. Furthermore, every symmetric zero—sum game satisfies condition
(16). By definition of a symmetric zero-sum game, f(z,y)+ f(y,z) =0 for
all z,y € S. This implies that E(P,Q) + E(Q,P) = 0, and in particular
E(P, P) =0. Therefore, E(P—Q, P—Q) = 0. Further examples for negative
semi-definite games include contests (see Example 5 below) and the War of
Attrition (see Example 6). Finally, it is well known (see e.g. [27, p. 122])
that all finite games with an interior ESS satisfy (16) with strict inequality
for all P # Q.

Lemma 2 (1) Under condition (16), the set of Nash equilibria is convex.
(2) If either there exists a strict Nash equilibrium or condition (16) holds

with strict inequality (and at least one NE exists), there is a unique Nash

equilibrium, which is, furthermore, globally evolutionarily robust.

Proof. (1) Suppose P* and Q* are Nash equilibria. By condition (16) we
have that

E(P", P+ E(Q7, Q) < E(P, Q")+ E(Q", P*) < E(Q", Q")+ E(Q", P7),

which implies that E(P*, P*) = E(Q*, P*). Thus, any convex combination
Py, = AP*+ (1 —)\)Q* is also a best reply against P*, and similarly against
Q*. Since for all Q

E(P)\,P)\) = AE(P)\,P*)—F(l—)\)E(P,\,Q*)
> ABQ, P+ (1-NE(Q,Q)
= E(va)\)v

P, is also a Nash equilibrium which proves that the set of Nash equilibria is
convex.

(2) Let P* be a Nash equilibrium and @ # P*. Then
E(P"-Q,Q)=E(P"-Q,Q—-P")+E(P"—Q,P").

The first term is nonnegative by condition (16) and the second term is non-
negative by definition of a Nash equilibrium. For a strict Nash equilibrium,
the second term is strictly positive. If (16) holds with strict inequality, the
first term is strictly positive. In either case, E (P* — @, Q) > 0, that is, P*
is globally evolutionarily robust. This in turn implies that there is no other
Nash equilibrium because E(Q, Q) < E(P*,Q) for all Q # P*. R
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We may now proceed to study the global stability properties of Nash
equilibria in negative semi—definite games.

Theorem 3 For negative semi—definite games (16), define the function

1

H(P)= 2/SJ+ (z, P)? p(da).

The following statements hold true:

(1) H is nonnegative and decreases to 0 along every solution of BNN.

(2) If S is a compact metric space, f is continuous, and p a measure with full
support, then every trajectory of BNN converges to the set of Nash equilibria.
(8) In particular, every strict Nash equilibrium and every equilibrium that
satisfies (16) with strict inequality is globally asymptotically stable.

Proof. Let us first determine the gradient of o(z, P) with respect to P at
some point (). We have

Vo (z,P)(Q) = E(6.,Q) — E(P,Q) — E(Q, P).

From this, we obtain via the chain rule

%H(p) _ /S o+ (2, P) Vo (z, P) (P)u(dx)
— /s(” (2.P) [E (6, ) — B (P, P) = B (,P)| n(dw)
= »(P)(B(R",P)-E(P.P)-E(P,P)),

where we have used the definition of the relative excess measure RP. By

definition of the dynamics P;, we proceed to

%H(P) = X(P)*(E(R",R" -P)-E(P,R" - P)-E(R" - P,P))
= 2(P)’(E(R" - P,R" - P)-E(R" - P,P)).

The first term in parentheses, (RP — P,RF — P) < 0 by Assumption (16),
and the second term, F (RP — P, P) > 0 by definition of the relative excess
measure (see (4)). Thus, we obtain

d

—H(P)<0
dt (P) <
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and the inequality is strict whenever P is not a stationary point.

If S is a compact metric space and f Lipschitz continuous, then A is
compact (in the weak topology) and BNN generates a weakly continuous
semiflow by Theorem 2. Hence, the w-limit set (in the weak topology)
of a trajectory P(t) is non-empty and contained in the set of P € A for
which %H (P) = 0, which is the set of Nash equilibria by Proposition 1.
Thus, the BNN dynamics converge to the convex set of Nash equilibria. In
particular, every strict Nash equilibrium and every equilibrium that satisfies
(16) with strict inequality, is a unique equilibrium and, therefore, globally
asymptotically stable.

For general measure spaces S, we proceed similar to [9]. The above
expression implies

%H(P) < -X(P)E(RF - PP)
= -2 (P)? </ E(éx,P)O;(Z’D)P);L(dm) — E(P, P))
= (PP [ 1BGnP) - B T 5 )
= -3 (P)? / Wﬂ(d@«) = —2%(P)H(P). (17)

Since f is bounded, o4 (z, P) < 2| f|| =: 1. Hence,

Y(P) = [90+($,P)u(dx) > C/SO'+(CC,P)2[L(d$) = cH(P).

Therefore, (17) implies the differential inequality

%H(P) < —2cH(P)?,

which integrates to H(P(t)) < %_

Hence H(P(t)) — 0 as claimed.

Example 5 Contests. Let S = [a,b] for some numbers a <b. Two players
exert an effort level of x and y in S, respectively, to obtain a prize worth
K > 0. The probability that player 1 wins the prize is p(x,y), and the
probability that player 2 wins is p(y,x) = 1—p(x,y). Costs are given by some
cost function c(z). The payoff function is thus f(x,y) = Kp(z,y) —c(x). An
example is the all-pay auction for which p(x,y) =1 ifx >y , p(z,y) =1/2
if x =y, and p(x,y) =0 else.
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We claim that contests are negative semi—definite. To see this, note that
because of p(z,y) + p(y,x) = 1, we have

E(P.Q) + E(Q.P)= K - / () P(dz) — / (5)Q(dy).

It follows that E(P, P) = % - /c(a:)P(dx), and this implies

E(P-Q,P-Q)=E(P,P)+ EQ,Q) - E(P,Q) - E(Q,P) =0.

Now assume that p(-,-) and c(-) are continuously differentiable, p(-,-) is
strictly concave in x, and c(-) is convex. If there exists T € (a,b) with
Ka%p(a?,i) = d(Z), then (Z,Z) is a strict Nash equilibrium (which is then
unique by Lemma 2). By Theorem 3, 0z is globally asymptotically stable
under BNN dynamics.

Finally, we will demonstrate how our techniques are useful even when
applied to games with discontinuous payoff function, like the war of attrition.

Example 6 War of attrition. Consider two players fighting for a prize
worth V' to both players. A strategy is to choose a length of time x € [0, M]
for which one is prepared to stay in the race. Fighting is costly. The payoffs
are given as follows

V—y ife>y
flay) =4 v -z fe=y
—x ifx <y
that is, a player gets the prize if he stays longer in the race than his rival
but has to share if they stay equally long.

We assume that M > V/2. Otherwise waiting until the end is always
profitable. Bishop and Cannings [6] show that there is a unique Nash equilib-
rium, which has the following equilibrium distribution P* with t* = M —V/2,

1—e 2V ifg <t
P([0,z])=¢ 1—e/V iftr <z <M
1 if v = M.

Bishop and Cannings [6] show that P* is an ESS. They also show [6, p. 118]
that

M
E(P—Q,P—Q)Z—/O (P (s, M]) = Q ([s, M]))* ds. (18)
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In particular, the war of attrition is a negative semi—definite game. As the
payoff function f is not continuous, we cannot apply the second part of
the above theorem. Nevertheless, its conclusion still holds true provided the
measure u that defines the excess measure in the definition of BNN dynamics
(see equation (2)) puts some weight on the point M. The intuition for this
assumption is as follows: the Nash equilibrium has a mass point on M, but
strategies close to M are not being played in equilibrium. If x is the Lebesgue
measure, the excess measure has a density with respect to the Lebesgue
measure that is zero close to M, and strictly positive at M. However, a
single value of the density does not contribute to the distribution, and thus,
the excess measure puts no weight on M if p is the Lebesgue measure.
Consequently, there is in general no hope that BNN generates some mass on
or around M if one uses the Lebesgue measure. Therefore, we assume that
1 puts some small mass on M. The following proposition shows that this is
sufficient for convergence.

Proposition 6 Assume that p = dx + €dpr for some (small) € > 0. In
the War of Attrition, every trajectory of BNN converges to the unique Nash
equilibrium.

Proof. Without loss of generality, we set V' = 1 in the proof. Consider the
Lyapunov function H(P) as in Theorem 3, where we take u = dx + €dyy,
the sum of the Lebesgue measure on [0, M] and a point mass on M. The
proof of H(P(t)) —¢—o0 0 does not use continuity of f.

We show next that H (P) is lower semi-continuous in the weak topology in
the sense that H(P) < liminf H(P") if (P™) converges in the weak topology
to P. By symmetry, we have

| = / / oy P(dz) P(dy) + / / 1 <oy P(dz) P(dy)
4 / / Loy P(d2) P(dy)
_ / / Lpeyy P(dz) P(dy) + / / Loy P(dz) P(dy).

23



It follows that average payoff can be written as
E(P,P) = //1{I<y}P (dz)P(dy) + //l{x sy P(dz) P(dy)

_//min(x,y)P(dw)P(dy)
_ %_ / / min(x, y) P(dx) P(dy).

As min(z,y) is continuous in (z,y), F(P, P) is continuous in the weak topol-
ogy. For points z with P({z}) = 0, E(d,, P) = P([0,z)) — [ min(z,y)P(dy).
By the Portmanteau Theorem, P +— P([0, z)) is continuous at P in the weak
topology for these z. The function = — [ min(z,y)P(dy) is continuous in
the weak topology because the integrand is continuous. We conclude that
o+ (z, P) is continuous at P in the weak topology for all x with P ({z}) = 0.
Now let P* — P in the weak topology. Then lim o (z, P") = o4 (z, P)
for all points x with P ({z}) = 0. As the set of points = with P({z}) = 0
has full Lebesgue measure, and the payoff function is bounded, we get
by dominated convergence that lim & [¢ o (v, P")*dw = 1 [y oy (2, P)* da.
Hence, the first part of H is continuous in the weak topology. Now consider

oy (M,P) =1-31P({M}) - /:EP(d:c). By the Portmanteau Theorem,

P ({M}) > limsup P" ({M}). Therefore, o4 (M, P) < liminf oy (M, P").
This finally establishes H(P) < liminf H(P").

As H is lower semi-continuous in the weak topology, we conclude that
every limit point P° of BNN dynamics satisfies H(P%) = 0. It follows that
o(x, PY) < 0 for u— almost all x € [0, M]. It remains to be shown that
this implies o(z, P°) < 0 for all z. As g has a point mass on M, we have
o(M, P% < 0. Now consider some x < M. There exists a sequence (x™)
that converges to = from the right and satisfies P? ({2"}) = 0 as well as

o(z", P%) < 0 for all n.
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It follows that

E(P° P% > lim E(64n, P%) :limPO([O,m"))—/min(m”,y)PU(dy)
= P(0.a)) ~ [ win(e,)P(dy)

> PO([0,2)) + 5P (o)) ~ [ min(o, )P (dy)

= E(0, PY).
This establishes o (x, PO) <Oforallz <M. R

8 Discussion

To put the contribution of the current paper into perspective it is useful to
compare the BNN dynamics and its properties to its two main “competitors”
when it comes to describing human learning behavior in games.

Under the replicator dynamics, the population share of a pure strategy
grows at the rate of its excess payoff (the current payoff minus the current
average payoff of the population). Replicator dynamics emerge if one inter-
prets payoff as number of offspring and uses a purely selective Darwinian
model (Taylor and Jonker [45]). It is also possible to give an economic mi-
crofoundation based on imitation (Schlag [41]). The replicator dynamics
are the prototype of regular selection dynamics where selection pressure op-
erates on existing strategies. Regular selection dynamics do not allow the
appearance (or reappearance) of extinct strategies.

In contrast, both, BNN and best response dynamics, are innovative dy-
namics, that is, new strategies can enter the population. Best response
dynamics (Gilboa and Matsui [19]; Hofbauer [24]) move in the direction of
the current best reply. They emerge when (new) individuals in the popu-
lation behave myopically rational in the sense that they exactly know the
current population distribution and play a best response to this distribution.
Since small changes in the population state can change the best response to
it, best response dynamics are not continuous, in contrast to the other two
considered dynamics.®

8n general, the best response dynamics are not continuous, even for continuous pay-
off functions. However, under suitable regularity and smoothness conditions plus quasi-
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BNN dynamics can be viewed as the prototype of innovative, better—
reply dynamics that lie in between the replicator dynamics, which arguably
require too little rationality to do justice to human behavior, and the best
response dynamics, which may require too much of it. With BNN dynamics,
all strategies with a positive excess payoff increase proportionally to their
current excess payoff. Strategies with negative current excess payoff decrease
at the same rate. In some sense, BNN dynamics require less rationality
than best response dynamics as they just require that some better than
average strategy be chosen by new members (see also the microfoundation
in the Appendix). Moreover, the probability of choosing such a strategy is
proportional to the excess payoff, which is close in spirit to the replicator
dynamics.

An important property that all three dynamics share is that of being
myopic adjustment dynamics (Swinkels [44]), i.e. they tend to move in
the direction of better replies. As a consequence, asymptotically stable
states of all dynamics satisfy strong rationality postulates. In this sense, all
dynamics tend to support rational predictions of equilibrium play. On the
other hand, Berger and Hofbauer [3] have recently given an example of a
game in which a strictly dominated strategy does not die out under BNN.
For replicator dynamics, Samuelson and Zhang [36] have shown that strictly
dominated strategies always become extinct (as they do, obviously, under
the best response dynamics).

We now consider rest points. For regular selection dynamics, all pure
strategies are rest points. For replicator dynamics, a rest point P is a Nash
equilibrium in a game that has only the support of P as pure strategies.
Under BNN dynamics, the set of rest points coincides with the set of Nash
equilibria. As we show in our paper, in games with a continuum strategy
set, the latter statement holds when the payoff function is continuous. The
property of Nash stationarity is also shared by the best response dynamics.

As far as equilibrium predictions of the three dynamics are concerned,
it is best to consider specific examples that highlight the similarities and
differences that can generally occur.

For payoff functions of the form f(z,y) = —2? + axry we understand
completely the dynamics of replicator, BNN and best response dynamics.
These games have a strict (symmetric) Nash equilibrium at 0. Note that a/2
is the slope of the best reply function in these games. The Nash equilibrium

concavity of the payoff function, best replies are unique and depend smoothly on the
strategy of the opponent. In these classes of games, the best response dynamics are also
continuous.
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0 is evolutionary robust (ER) if a < 1. Asymptotic stability for replicator
dynamics is a subtle issue, see [10], [11], [12], , [35]. Replicator dynamics
cannot converge to a point mass on 0 if 0 is not in the support of the initial
distribution. A meaningful definition of asymptotic stability thus restricts
to initial populations that have 0 in their support. Cressman/Hofbauer
[11], building on Oechssler/Riedel [35], show that the point mass on 0 is
asymptotically stable for replicator dynamics (in this restricted sense) if
a < 2. Eshel and Sansone have shown that this condition is also necessary
for asymptotic stability. In summary, asymptotic stability for the replicator
dynamics is equivalent to evolutionary robustness. In this paper, we show
that the point mass on 0 is asymptotically stable for BNN if and only if 0
is CSS or continuously stable (Eshel [16]), which is the case if a < 2. The
(smooth) best response dynamics are here & = BR(z) —z = (a/2 — 1)z.
Again, 0 is asymptotically stable if and only if @ < 2, i.e. when it is CSS.
We collect the above discussion in table 1.

Table 1: Properties of the different dynamics

property BNN replicator | best response
regular selection no yes no
innovative yes no yes
continuous yes yes no
rest points = Nash equilibria yes* no yes
dominated strategies die out no yes yes
quadratic games:
asymptotically stable points= | CSS (e < 2) | ER (a < 1) | CSS (a < 2)

Note: *For continuous payoff functions.

Thus, although the different dynamics share many features, there are
some straightforward testable differences that could be checked in a sim-
ple laboratory experiment. For example, a testable difference between BNN
and replicator dynamics arises in the following game. Consider the quadratic
game f(x,y) = —22+3/2zy and take the strategy set to be S = [0,1]. Under
BNN, players’ behavior converges to 0 (according to Proposition 4 above),
whereas it converges to 1 under replicator dynamics if initially enough play-
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ers use the strategy 1 and no player uses strategies in [1/2,1). An interesting
experiment would thus be to study the convergence or nonconvergence of
behavior for this game in the lab.

Appendix A

Proof of Theorem 1
The strategy for proving the Theorem is the following. Denote by

F(Q) = / o (2, Q)uldz) - Q() /S o (2, Qu(de)

the right—hand side of the BNN-dynamics. Since F' is neither bounded nor
globally Lipschitz continuous on M€, we construct in the following lemma
an auxiliary function F which has these properties and coincides with F on
A (see also Bomze, [7]). In particular, we show that F satisfies a global
Lipschitz condition

K > 0 s.t. Yu,v € M,

F(w) = FW)|| < K =]

where ||-|| denotes the variational norm on M¢(S, A). The variational norm
is given by

) = sup ‘/gdu |
where the sup is taken over all measurable functions g : S — R bounded by
1, supseg |9(s)] < 1. Endowed with the variational norm, M¢® is a Banach
space (see [42]).

Standard arguments (see e.g. Zeidler [47, Corollary 3.9]) then imply that
the ordinary differential equation

Q(t) = F(Q(t), Q(0) =P

has a unique solution (Q(t)). Finally, since Q(¢)(S) = 0, Q(t) never leaves
A, which implies that (Q(t)) also solves differential equation (2) on A.

Lemma 3 Supp0§e f is bounded, then there exists a bounded, Lipschitz con-
tinuous function F : M® — M€, which coincides with F on A,

F(P) = F(P), VP € A.
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Proof. We define F as

F@)=@2-lelhy F(Q).

F is zero for ||Q| > 2. It is bounded and coincides with F on A because
probability measures have norm 1. It remains to show that Q — F(Q) is
Lipschitz for ||Q|| < 2.

The estimates

[E(02, Q) < I fll QU [E(P, Q)] < [ Fllo IPIHIQ (19)

imply that for each = € S, the functions @ — o(z,Q) and hence also
Q +— o4 (x,Q) are Lipschitz (for |@Q]] < 2) with a Lipschitz constant L inde-
pendent of z. Then the map Q — F(Q) with F(Q)(A) = Jr04+(2z,Q)p(dx)
from M€ into itself is Lipschitz with Lipschitz constant Lu(S). In particular,
also @ — X(Q) : M® — R is Lipschitz. Hence F(Q) is Lipschitz in Q. B

Proof of Theorem 2

In the following, we will use the metric ||-|| 5; on A which metrizes the
weak topology (cf. [42, p. 352]). Endowed with the BL-norm, M°¢ is a
Banach space. For a Lipschitz continuous, bounded function g : 5 — R, let

= su T su M
9l = suplo(e)] + sup 5 A, (20)

Abusing notation slightly, we define the dual norm ||-|| 53, on M*(S,.A) via

1@l =suw { [ i}, (21)

where the supremum is taken over all bounded, Lipschitz continuous func-
tions g with ||g||z; < 1.
We prove below that we have

o (2, P) =0 (2,Q)| < L||P—-Qllp (22)

for some constant L > 0 and all populations P, @ and all strategies . The
same Lipschitz estimate holds true when we pass to the positive part, so we
have

oy (2, P) — oy (2,Q)| < L[P = Q|- (23)
This implies that the right hand side of (2) is Lipschitz in the norm (21). The
claim follows then from Gronwall’s Lemma (see e.g. Zeidler [47, Propositions
3.10 and 3.11]), which implies that

IP(t) = QM) < ™ [P(0) — Q) 5. (24)
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(for a possibly different L) and hence continuous dependence of solutions on
initial conditions for finite time.

It remains to prove the claim (22). By boundedness and Lipschitz con-
tinuity of f, there exist constants Lg, L; > 0 such that for all strategies

’oo
x’y’x7y

|flz,y)] = Lo (25)
|fla,y) = f(@'y)] < Limax{d(z,2),d(y,y")}. (26)

For x = a2/, the latter inequality yields

|f(z,y) = fz,y)| < Lid(y, o). (27)

Let R be a population. Define the function

o(y) = /S £, y) Ridz).

Since R is a probability measure, (25) carries over to g,

l9(y)| < Lo,

and so does (27),
l9(y) — 9(¥)| < Lud(y,y').

Hence, g is a bounded and Lipschitz continuous function with ||g||z, <
Lo + L. We thus obtain

BRP-Ql = | [ s -
< lgllgp 1P = Qllpr
< (Lo+ L) [P —=Qllgp- (28)
By a symmetric argument, we also have

[E(P—Q,R)| < (Lo+L1) |P-Qlp- (29)
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Now, to prove our claim, note that

|o(z, P) — o(z,Q)] |E(dz, P — Q)| + |E(Q, Q) — E(P, P)|

<
< Bz, P = Q)+ |EQ - P,Q)| + |E(P,Q - P)|

Applying (28) for R = §, and R = P, as well as (29) for R = @, we finally
obtain
lo(z, P) —o(z, Q)| <3(Lo+ L1) [|P - Qli 5,

and the proof is complete. l

Appendix B

Although the BNN dynamics have been mentioned as learning process by
a number of authors (see e.g. Skyrms [43] or Swinkels [44]), probably the
most convincing microfoundation has recently been provided by Sandholm
[39, 40]. It runs as follows.

In a large population of players each player receives an opportunity to
revise his strategy in each round according to a Poisson process with arrival
rate R. When given the opportunity, a player switches from his current
strategy s to a new strategy s’ with conditional switching rate p . Benaim
and Weibull [1] and Sandholm [38] show that the resulting stochastic process
is well approximated by the deterministic continuous time process

Ds = Z Ps'Psts — Ps Z Pss’s (30)

s'eS s'eS

where p; is the share of the population playing pure strategy s. The first
term describes the “inflow” to strategy s and the second term represents the
“outflow” from s.

Our favorite interpretation of this revision opportunity for a player is that
a player (the “parent”) “dies”, or leaves the population for other reasons,
and is replaced by his “child”, who imitates the parent’s current strategy
without really knowing why he should follow this strategy, i.e. without
knowing its payoff. (Arguably, this is how education works all too often).

What should the switching rate p;; depend on? In contrast to evolu-
tionary or imitation dynamics which allow only to play strategies which are
already in use in the population, BNN dynamics are based on the assump-
tion that unused strategies can be sampled. In particular, a player randomly
samples one strategy, all strategies being equally likely to be sampled (this
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can be generalized. In fact, in equation (2) in the paper we do just that by
allowing for a general measure u(dz) for sampling new strategies).

The player then compares the expected payoff of the sampled strategy
u(es, p) to the current average payoff of all strategies in the population u(p, p)
and switches only if the u(es,p) > wu(p,p). Furthermore, if the expected
gain is positive, the player switches with a probability that is proportional
to the expected gain in payoffs u(es, p) — u(p,p). Plugging those switching
probabilities into (30) yields

s =Y Py [ules,p) —ulp,p)ly —ps Y [ules,p) — ulp,p)];
s'eS s'eS

which reduces to the discrete BNN dynamics

Ps = [ules, p) — ulp,p)l+ —ps Y _ [ulesr,p) — u(p,p)l4 (31)
s'eS

The continuous strategy version of (31) is given by equation (2) in the
paper.
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