UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Structural changes and biological responsiveness of an injectable and mouldable monetite bone graft generated by a facile synthetic method

Cama, G; Gharibi, B; Knowles, JC; Romeed, S; DiSilvio, L; Deb, S; (2014) Structural changes and biological responsiveness of an injectable and mouldable monetite bone graft generated by a facile synthetic method. J R Soc Interface , 11 (101) 10.1098/rsif.2014.0727. Green open access

[img]
Preview
Text
ACS Nano paper for RPS.pdf

Download (1MB) | Preview

Abstract

Brushite (dicalcium phosphate dihydrate) and monetite (dicalcium phosphate anhydrous) are of considerable interest in bone augmentation owing to their metastable nature in physiological fluids. The anhydrous form of brushite, namely monetite, has a finer microstructure with higher surface area, strength and bioresorbability, which does not transform to the poorly resorbable hydroxyapatite, thus making it a viable alternative for use as a scaffold for engineering of bone tissue. We recently reported the formation of monetite cements by a simple processing route without the need of hydrothermal treatment by using a high concentration of sodium chloride in the reaction mix of β-tricalcium phosphate and monocalcium phosphate monohydrate. In this paper, we report the biological responsiveness of monetite formed by this method. The in vitro behaviour of monetite after interaction and ageing both in an acellular and cellular environment showed that the crystalline phase of monetite was retained over three weeks as evidenced from X-ray diffraction measurements. The crystal size and morphology also remained unaltered after ageing in different media. Human osteoblast cells seeded on monetite showed the ability of the cells to proliferate and express genes associated with osteoblast maturation and mineralization. Furthermore, the results showed that monetite could stimulate osteoblasts to undergo osteogenesis and accelerate osteoblast maturation earlier than cells cultured on hydroxyapatite scaffolds of similar porosity. Osteoblasts cultured on monetite cement also showed higher expression of osteocalcin, which is an indicator of the maturation stages of osteoblastogenesis and is associated with matrix mineralization and bone forming activity of osteoblasts. Thus, this new method of fabricating porous monetite can be safely used for generating three-dimensional bone graft constructs.

Type: Article
Title: Structural changes and biological responsiveness of an injectable and mouldable monetite bone graft generated by a facile synthetic method
Location: England
Open access status: An open access version is available from UCL Discovery
DOI: 10.1098/rsif.2014.0727
Publisher version: http://dx.doi.org/10.1098/rsif.2014.0727
Language: English
Additional information: © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Keywords: bone defects, bone substitute, monetite
UCL classification: UCL
UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Eastman Dental Institute
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Eastman Dental Institute > Biomaterials and Tissue Eng
URI: https://discovery.ucl.ac.uk/id/eprint/1452174
Downloads since deposit
70Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item