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Abstract

The dynamics of a liquid film wetting the underside of a semi-infinite horizontal substrate are investigated. Gravity causes the

film to be unstable and the objective of this work is to control such instabilities by using horizontal electric fields. The film wets a

semi-infinite dielectric solid block and is bounded below by air. The electric fields from these two regions are coupled to those in

the liquid film and contribute to the hydrodynamics through the interfacial boundary conditions by introducing electric Maxwell

stresses in the stress tensor. As a result novel nonlocal terms arise and their effect is studied both in the linear regime as well as

nonlinearly through a derivation of a system of long-wave one-dimensional evolution equations describing the interfacial position

and the leading order horizontal velocity in the film. When surface tension is present there exists a band of unstable wavenumbers

rendering the film long-wave unstable. It is shown that the size of this band decreases asymptotically to zero as the electric field

strength is increased (physically this means that any system of finite horizontal length can be fully stabilized by a sufficiently strong

electric field). The derived nonlinear system supports nonlinear coherent structures in the form of traveling waves of permanent

form, and such solutions are computed numerically for a range of parameters. The production of such traveling waves may be

useful in enhancing the transport properties in hanging film systems.
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1. Introduction

Thin liquid films are ubiquitous in technological, biophysical and biological applications, and have been the subject

of extensive research in recent years (the subject along with numerous applications has been reviewed1,2). Instabilities

and ensuing nonlinear dynamics in thin liquid films can arise due to different physical mechanisms including, among

others, shear-induced instabilities (e.g. inertial instabilities in falling liquid films above a threshold Reynolds num-

ber3,4), interfacial instabilities due to surface tension variations (Marangoni instabilities1,2), gravitational instabilities

(Rayleigh-Taylor), as well as instabilities induced by external electric fields5,6,7. More recent work on electrified

film-flow over topograpically structured substrates has revealed that appropriately chosen topography can destabilize
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or stabilize the flow8, but also that electric fields can be utilized to reduce the sizes of interfacial ridges encountered

in film-flow down steps9,10,11,12.

The present work is concerned with the interaction between an imposed electric field and Rayleigh-Taylor grav-

itational instabilities. The fundamental problem considered is that of a hanging film where a liquid layer coats the

underside of a horizontal substrate so that it is unstable due to the presence of gravity. We are interested in controlling

such instabilities via the application of a horizontal electric field (i.e. acting parallel to the undisturbed flat interface).

The feasibility of such stabilization has been demonstrated theoretically for a film wetting the underside of the top

boundary of a horizontal channel13. Direct numerical simulations of the Navier-Stokes equations at both small and

moderate Reynolds numbers, also confirm that the Rayleigh-Taylor instability can be suppressed by sufficiently strong

electric fields acting parallel to the undisturbed interface14. We note that if the field is perpendicular to the undisturbed

interface, then it will cause destabilization above a critical value6, a phenomenon that was originally identified and

described by G.I. Taylor15. The present work extends the analysis of Barannyk et al. 13 who used insulating boundary

conditions for the voltage at solid walls, in order to produce a model that is closer to experimental situations. We

incorporate the electrodynamics of the upper solid whose underside is wetted by the liquid film. This upper solid is

typically a perspex block and we take it to be of infinite lateral extent (this is a reasonable assumption since the liquid

layer is thin - there is numerical evidence for the insensitivity of solutions on truncations of such regions14). As a

result the voltage potential needs to be solved in the upper solid region as well as in the liquid film and the lower air

region below the film. The resulting equations inherit nonlocal terms due to the solutions in these unbounded regions

resulting in novel evolution equations.

The paper is organized as follows. Section 2 presents the mathematical statement of the full problem along with

the exact nonlinear boundary conditions. Section 3 presents the linear stability properties of the flow about the flat

uniform states, while Section 4 is devoted to the long-wave asymptotic analysis that is used to derive a reduced system

of evolution PDEs governing the flow in this limit. Section 5 solves these PDEs numerically and in particular nonlinear

traveling waves are constructed. In Section 6 we present our conclusions.

2. Mathematical formulation

We consider an inviscid incompressible perfect dielectric fluid wetting the underside of a horizontal ceiling wall.

The fluid has density ρ and undisturbed thickness h (see Figure 1). The configuration is assumed to be two-dimensional

and using the usual Cartesian coordinate system, the upper bounding wall is located at y = h, the undisturbed interface

at y = 0, and the evolving interface at y = η(x, t) < h. The region y < η(x, t) below the interface is a gas (typically

air) and the region y > h is solid. The variables in the fluid, solid and gas regions will be distinguished by letters f , s

and g, respectively. The corresponding dielectric permittivities are ε f , εs and εg. In addition to the presence of gravity

acting vertically downwards with acceleration g, a horizontal electric field acts with uniform value E0 far away.

The electrostatic limit of Maxwell’s equations is appropriate and the electric fields can be represented by voltage

potentials as E
f ,s,g = −∇V f ,s,g, and these satisfy the Laplace equations

∇2V s = 0, y > h, (1)

∇2V f = 0, η < y < h, (2)

∇2Vg = 0, y < η. (3)

The flow is assumed irrotational so that the velocity vector is given by u = ∇φ where φ is the velocity potential and

due to incompressibility it also satisfies Laplace’s equation

∇2φ = 0, η < y < h. (4)

The electric field boundary conditions at y = h and y = η(x, t), are the continuity of the tangential component t ·E of the

electric field and the continuity of the normal component of the electric displacement εE · n (here t = (1, ηx)/
√

1 + η2
x,
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and n = (−ηx, 1)/
√

1 + η2
x are the unit tangent and normal at interfaces). These equations are

V s = V f , εs
∂V s

∂y
= ε f

∂V f

∂y
, at y = h (5)

∂V f

∂x
+
∂η

∂x

∂V f

∂y
=
∂Vg

∂x
+
∂η

∂x

∂Vg

∂y
, at y = η (6)

ε f

(
−
∂η

∂x

∂V f

∂x
+
∂V f

∂y

)
= εg

(
−
∂η

∂x

∂Vg

∂x
+
∂Vg

∂y

)
, at y = η. (7)

Far away we must impose

V s ∼ −E0x, as y→ ∞, (8)

Vg ∼ −E0x, as y→ −∞. (9)

The hydrodynamic boundary conditions are a no penetration condition at the wall φy(x, h, t) = 0, a kinematic condition

at the interface

∂η

∂t
+
∂φ

∂x

∂η

∂x
=
∂φ

∂y
, at y = η(x, t), (10)

and the following electrically modified dynamic Bernoulli condition 16 at y = η(x, t)

∂φ

∂t
+

1

2
|∇φ|2 + gη +

1

ρ

1

(1 + η2
x)

(
(η2

x − 1)[E11]
f
g + 2ηx[E12]

f
g

)
= −
σ

ρ

ηxx

(1 + η2
x)3/2

+C, (11)

where σ is the coefficient of surface tension and

E11 =
ε

2
(V2

x − V2
y ), E12 = εVxy. (12)

The boundary conditions (5) coupling regions f and s are most usefully cast into a single boundary condition for V f

by utilising the fact that V s is a harmonic function. Writing V f = −x + Ṽ f , V s = −x + Ṽ s and since Ṽ s is harmonic,

we have at the wall

∂xṼ s(x, h) = H (∂yṼ
s(x, h)), ∂yṼ s(x, h) = −H(∂xṼ

s(x, h)), (13)

whereH ( f ) = 1
π

PV
∫ ∞
−∞

f (θ)

x−θ
dθ is the Hilbert transform of the function f (x); of particular relevance to us is the Fourier

symbol of this operator, namely Ĥ f = −isgn(k) f̂ (k) where k is the wavenumber and hats denote the usual Fourier

transform. The first condition in (5) can be written as ∂xṼ s = ∂xṼ
f , while the second condition becomes (using (13))

ε f ∂yṼ
f = −εsH (∂xṼ

s) ⇒ ε f ∂yṼ
f = −εsH (∂xṼ

f ). (14)

The non-local boundary condition (14) can be imposed as a single condition for the field Ṽ f at the wall and this is

used later in Section 4.

The problem formulated above is a nonlinear free boundary problem and we proceed analytically by studying linear

aspects first before providing a weakly nonlinear theory.

3. Linear stability

The model given in Section 2 is non-dimensionalized by using h,

√
ρh3

σ
, E0h as reference length, time, and electric

potential, respectively. We consider perturbations to the steady state of the form

V f ,s,g = −x + δ v f ,s,g, φ = δ ϕ f ,s,g, η = δ S , (15)
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Fig. 1. Schematic of the problem. A liquid layer (region f ) wets the underside of the dielectric half-space (region s) with a gas half-space below it

(region g). A horizontal field is applied as shown.

where δ is a small parameter allowing linearization around the undisturbed state. Substituting into the dimensionless

governing equations and boundary conditions, and keeping terms of order δ alone, yields the following linear system

∇2vs = 0, y > 1, (16)

∇2v f = 0, 0 < y < 1, (17)

∇2vg = 0, y < 0, (18)

∇2ϕ = 0, 0 < y < 1, (19)

and corresponding boundary conditions

vs = v f , εs, f
∂vs

∂y
=
∂v f

∂y
, at y = 1 (20)

v f = vg, (ε f ,g − 1)
∂S

∂x
+ ε f ,g

∂v f

∂y
−
∂vg

∂y
= 0 at y = 0, (21)

∂S

∂t
=
∂ϕ

∂y
at y = 0 (22)

∂ϕ

∂y
= 0 at y = 1 (23)

∂2ϕ

∂t∂x
+ B
∂S

∂x
+ ε f ,gEb

∂2v f

∂x2
− Eb

∂2vg

∂x2
+
∂3S

∂x3
= 0, at y = 0. (24)

The dimensionless parameters appearing are given

εs, f =
εs

ε f

, ε f ,g =
ε f

εg
, B =

ρgh2

σ
, Eb =

E2
0
εgh

σ
, (25)

and denote permittivity ratios between the phases, the Bond number and an electric Weber number.

This linear system is solved by separation of variables with solutions proportional to eikx−iωt, where k is the

wavenumber (assumed real) and ω is an eigenvalue to be determined. After some algebra, we obtain for k > 0

c2 =
ω2

k2
=

[
k2 − B +

kEb(ε f ,g − 1)2(1 + εs, f + (1 − εs, f )e
−2k)

(1 + εs, f )(1 + ε f ,g) + (1 − εs, f )(1 − ε f ,g)e−2k

]
tanh k

k
. (26)

Note that the flow is stable when c2 is positive and unstable when it is negative. It can be seen that short waves are

always stable since c2 ∼ k for large k, whereas sufficiently long waves are unstable since

c2 ∼ −B + k
Eb(ε f ,g − 1)2

1 + εs, f ε f ,g

+ . . . . (27)
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Fig. 2. Linear dispersion relation (26) as the electric field strength parameter Eb varies from small to large values as shown in the legend. Other

parameters are B = 1, εs, f = 0.5, ε f ,g = 3. The band of instability decreases as Eb increases.

The variation of c2 with wavenumber k for a large range of values of Eb is included in Fig. 2. The left panel

corresponds to small values of Eb ranging from 0.01 to 0.5, while the right panel includes Eb values ranging from

0.5 to 3.0. It can be seen that as the applied electric field increases the band of unstable waves in the vicinity of

k = 0, decreases significantly. From a practical viewpoint we note that if the system has a fixed horizontal extent (e.g.

a channel of low aspect ratio but finite horizontal extent) then a large enough Eb will suppress the Rayleigh-Taylor

instability to waves that are longer than the system size. This observation could be particularly useful in experiments

(see14 for direct numerical simulations along with a physical example).

4. Nonlinear long wave theory

4.1. Formulation and non-dimensionalisation

In this section we consider nonlinear dynamics valid for waves which are long compared to the undisturbed layer

depth h. To achieve this we consider the dimensional system (1)-(4) along with the interfacial boundary conditions

(5)-(11), and non-dimensionalise as follows:

x = L x̂, ys = L ŷ, yg = L Y, y f = h(1 + ζ), η = h η̂, (28)

where L is a typical horizontal length scale and ζ is a vertical coordinate in the fluid layer and has been chosen so

that the wall is at ζ = 0 and the interface is at ζ = −1 + η̂. In addition we non-dimensionalise time, and the fluid and

voltage potentials by

t =

√
ρL3

σ
t̂, φ =

√
σL

ρ
ϕ̂, V = E0L V̂ . (29)

In what follows we assume that δ = h/L is a small parameter and use this to develop asymptotic expansions to solve

the problem. Substituting these scalings into the governing equations and boundary conditions, and dropping hats

from dependent variables, we obtain

∂2V f

∂x̂2
+

1

δ2

∂2V f

∂ζ2
= 0, −1 + η < ζ < 0, (30)

∂2Vg

∂x̂2
+
∂2Vg

∂Y2
= 0, Y < δη, (31)

∂2ϕ

∂x̂2
+

1

δ2

∂2ϕ

∂ζ2
= 0, −1 + η < ζ < 0. (32)
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The non-local electric field boundary condition (14) at the wall becomes

∂ζṼ
f = −εs, f δH (∂x̂Ṽ

f ) at ζ = 0, (33)

where we recall the definition V f = −x̂ + Ṽ f , and it is understood that the Hilbert transform in (33) is an integral with

respect to x̂. The corresponding boundary conditions at the interface read

∂V f

∂x̂
+
∂η

∂x̂

∂V f

∂ζ
=
∂Vg

∂x̂
+ δ
∂η

∂x̂

∂Vg

∂Y
, (34)

ε f ,g

(
−δ
∂η

∂x̂

∂V f

∂x̂
+

1

δ

∂V f

∂ζ

)
= −δ

∂η

∂x̂

∂Vg

∂x̂
+
∂Vg

∂Y
. (35)

The permittivity ratios appearing in (33) and (35) are as defined in (25). The far field conditions (8)-(9) become

V s ∼ −x̂, Vg ∼ −x̂. For the fluid potential the no penetration condition at the wall ζ = 0 becomes ϕζ = 0, while the

kinematic boundary condition (10) at the interface ζ = −1 + η becomes

δ
∂η

∂t̂
+ δ
∂ϕ

∂x̂

∂η

∂x̂
=

1

δ

∂ϕ

∂ζ
. (36)

Finally, the Bernoulli equation (11) becomes

∂ϕ

∂t̂
+

1

2

⎡⎢⎢⎢⎢⎢⎣(∂ϕ∂x̂

)2
+

1

δ2

(
∂ϕ

∂ζ

)2⎤⎥⎥⎥⎥⎥⎦ + δBη + EbQ

1 + δ2η2
x̂

= −
δηx̂x̂

(1 + δ2η2
x̂
)3/2
+C, (37)

where

Q = δ2η2
x̂(ε f ,gM

f

11
− M

g

11
) − 2δηx̂(ε f ,gM

f

12
− M

g

12
) − ε f ,gM

f

11
+ M

g

11
, (38)

with

M
f

11
=

1

2

⎡⎢⎢⎢⎢⎢⎣(∂V f

∂x̂

)2
−

1

δ2

(
∂V f

∂ζ

)2⎤⎥⎥⎥⎥⎥⎦ , M
f

12
=

1

δ

∂2V f

∂x̂∂ζ
, (39)

M
g

11
=

1

2

⎡⎢⎢⎢⎢⎢⎣(∂Vg

∂x̂

)2
−

(
∂Vg

∂Y

)2⎤⎥⎥⎥⎥⎥⎦ , M
g

12
=
∂2Vg

∂x̂∂Y
. (40)

The scaled system presented above is exact but contains the small parameter δ, enabling an asymptotic solution to be

sought for δ	 1 as we describe next.

4.2. Asymptotic expansions

The appropriate asymptotic expansions are

ϕ(x̂, ζ, t̂) = δ1/2
(
ϕ0 + δ

2ϕ1 + . . .
)
, (41)

η(x̂, t̂) = η0 + δ
2η1 + . . . , (42)

V f (x̂, ζ, t̂) = −x̂ + δ
(
V

f

1
+ δV

f

2
+ . . .
)
, (43)

Vg(x̂, Y, t̂) = −x̂ + δ
(
V

g

1
+ δV

g

2
+ . . .
)
. (44)

Note that the δ1/2 scaling for ϕ is chosen in order to balance nonlinear terms with surface tension in the Bernoulli

equation (37) (an appropriate related time-scale is needed as we shall see below). In addition, the expansion for ϕ

proceeds in powers of δ2 while those for V f ,g proceed in powers of δ; the reason is that in the former case the equations

and boundary conditions contain δ2 as a small parameter while in the case of the voltage potentials δ appears in the

nonlocal boundary condition (33). Inserting these expansions into the governing equations and boundary conditions
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yields a sequence of problems to solve at each order. Starting with the fluid layer, the Laplace equation (32) for the

fluid potential gives at the first two orders O(δ−3/2) and O(δ1/2), respectively

∂2ϕ0

∂ζ2
= 0, (45)

∂2ϕ1

∂ζ2
+
∂2ϕ0

∂x̂2
= 0. (46)

These are readily integrated and on applying the no penetration boundary condition at the wall ζ = 0 we have

ϕ0ζ |ζ=0 = ϕ1ζ |ζ=0 = 0, hence

ϕ0 ≡ ϕ0(x, t), (47)

ϕ1 = −
1

2
ζ2ϕ0x̂x̂ + A(x̂, t̂), (48)

where the functions ϕ0(x̂, t̂) and A(x̂, t̂) are to be determined.

The first evolution equation now follows from the leading order contribution of the scaled kinematic condition (36)

evaluated at ζ = −1 + η0. Noting that the second and third terms of (36) are of order δ3/2, it follows that a balance is

possible if a new slow time-scale τ is introduced by writing t̂ = τ/δ1/2. The resulting equation is

∂η0

∂τ
+
∂ϕ0

∂x̂

∂η0

∂x̂
= −(η0 − 1)

∂2ϕ0

∂x̂2
⇒

∂η0

∂τ
+
∂

∂x̂

(
(η0 − 1)

∂ϕ0

∂x̂

)
= 0. (49)

The second equation is provided by the leading order terms of the Bernoulli equation (37). In order to calculate

the electrostatic Maxwell stress contributions we begin by solving for the voltage potentials in regions f and g.

Substituting expansions (42)-(44) into equations (30)-(31), and keeping leading order terms provides

∂2V
f

1

∂ζ2
= 0,

∂2V
f

2

∂ζ2
= 0, −1 + η0 < ζ < 0, (50)

∂2V
g

1

∂x̂2
+
∂2V

g

1

∂Y2
= 0, Y < 0. (51)

Equations (50) are readily solved to find

V
f

1
= A1(x̂, τ)ζ + B1(x̂, τ), V

f

1
= A2(x̂, τ)ζ + B2(x̂, τ) (52)

where the functions A1,2(x̂, τ), B1,2(x̂, τ) are to be found. At O(1) and O(δ) the nonlocal boundary condition (33) gives

∂ζV
f

1
= 0, ∂ζV

f

2
= −εs, f H (∂x̂V

f

1
), (53)

hence A1 ≡ 0 and

V
f

1
≡ B1(x̂, τ), A2 = −εs, fH (∂x̂B1). (54)

Note that B2 is undetermined but of no relevance since it is the vertical electric field ∂ζV
f that is needed in the

completion of the asymptotic solution.

Equation (51) can be solved by introducing the Fourier transform pair ĝ(k) =
∫ ∞
−∞

g(x)e−ikx̂dx̂, g(x) = 1
2π

∫ ∞
−∞

ĝ(k)eikx̂dk

for square integrable functions, and using the boundary condition that the field is uniform as Y → −∞ to obtain

V̂
g

1
(k, Y, τ) = α(k, τ) e|k|Ŷ . (55)

We note that V̂
g

1Y

∣∣∣
Y=0
= α |k|, and this is used below.

It remains to determine the unknown functions B1 and α in terms of the interfacial shape η0 in order to obtain

the final required form of the Bernoulli equation. This information comes from the electrostatic interfacial conditions

(34)-(35) that correspond to continuity of the electric potential and the electric displacement, respectively. Substitution
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of (42)-(44) into (34)-(35), and retention of leading order terms yields (note that these are at order δ in both boundary

conditions since the order one undisturbed electric field terms cancel in (34))

∂V
f

1

∂x̂

∣∣∣∣
ζ=−1+η0

=
∂V

g

1

∂x̂

∣∣∣∣
Y=0
, (56)

ε f ,g

∂η0

∂x̂
− ε f ,g εs, f H (B1x̂) =

∂η0

∂x̂
+
∂V

g

1

∂Y

∣∣∣∣
Y=0
. (57)

Using the solutions (54) and (55) and taking the Fourier transforms of (56) and (57), gives

B̂1 = α, (58)

ik(ε f ,g − 1)η̂0 = α|k| + ε f ,g εs, f |k|B̂1, (59)

so that

B̂1 = α = isgn(k)
(ε f ,g − 1)

(1 + ε f ,g εs, f )
η̂0. (60)

With these results we are now in a position to find the leading order electrostatic contribution Q in the scaled Bernoulli

equation (37). Inspection of (38)-(40) along with the asymptotic solutions found above shows that

Q =
1

2
(1 − ε f ,g) + δ(ε f ,gBx̂ − V

g

1x̂
) + O(δ2). (61)

Considering the scaled Bernoulli equation (37), introducing the asymptotic expansions (41)-(44) along with the slow

time-scale t̂ = τ/δ1/2 introduced earlier and the asymptotic solutions (47)-(48) for the fluid potential shows that the

leading order non-constant terms in the equation are of order δ so that hydrodynamic and electrostatic effects are in

balance. It is convenient to differentiate (37) with respect to x̂ and to introduce the leading order horizontal velocity

u =
∂ϕ0

∂x̂
, (62)

to find the following evolution equation

∂u

∂τ
+ u
∂u

∂x̂
+ B
∂η0

∂x̂
+ Eb(ε f ,gB1 − V

g

1
)x̂x̂ = −

∂3η0

∂x̂3
. (63)

Defining Q1 = (ε f ,gB1 − V
g

1
)x̂x̂ and taking the Fourier transform, we find

Q̂1 = −k2(ε f ,gB̂1 − α) = −isgn(k) k2
(ε f ,g − 1)2

(1 + ε f ,g εs, f )
η̂0. (64)

Using the Hilbert transform introduced earlier along with its symbol in Fourier space, we can conclude that

Q1 = −
(ε f ,g − 1)2

(1 + ε f ,g εs, f )
H [η0x̂x̂]. (65)

To summarize, then, we have obtained the following coupled system of evolution equations for η0 and u =
∂φ0

∂x̂

∂η0

∂τ
+
∂

∂x̂
((η0 − 1)u) = 0, (66)

∂u

∂τ
+ u
∂u

∂x̂
+ B
∂η0

∂x̂
− Eb

(ε f ,g − 1)2

(1 + ε f ,g εs, f )
H [η0x̂x̂] = −

∂3η0

∂x̂3
. (67)

Before proceeding to presenting numerical solutions of the system (66)-(67) we consider linear properties. Linearising

about the uniform state (η0, u) = (0, 0) and looking for solutions proportional to eikx̂−iωτ yields the dispersion relation

ω2 = −k2 B + k2 |k|
Eb(ε f ,g − 1)2

(1 + εs, f ε f ,g)
+ k4. (68)

Hence,

c2 =
ω2

k2
= −B + |k|

Eb(ε f ,g − 1)2

(1 + εs, f ε f ,g)
+ k2, (69)

and this is in complete agreement with the long-wave expansion of the exact dispersion relation (26) given in (27).
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5. Nonlinear traveling waves

We first rewrite the system (66)-(67) in a format suitable for the computation of waves travelling at a constant

velocity c. This is achieved by looking for solutions of the form

η0(x, τ) = S (ξ), u(x, τ) = U(ξ) (70)

where ξ = x − cτ. Substituting (70) into the system (66)-(67) gives

−c
dS

dξ
+

dS

dξ
U + (S − 1)

dU

dξ
= 0 (71)

−c
dU

dξ
+ U

dU

dξ
+ B

dS

dξ
− Eb

(ε f ,g − 1)2

(1 + ε f ,g εs, f )
H [S ξξ] = −

d3S

dξ3
. (72)

The system (71)-(72) is now solved numerically by finite differences. We assume that the wave is periodic with

wavelength λ and symmetric (i.e. S (ξ + λ) = S (ξ) and S (−ξ) = S (ξ)). We introduce the mesh points

ξI =
λ

2

I − 1

N − 1
I = 1, . . . ,N, (73)

ξI+1/2 =
ξI + ξI+1

2
, I = 1, . . . ,N − 1 (74)

and the unknowns

UI = U(ξI), S ′I = S ξ(ξI), I = 1, . . . ,N. (75)

Next we evaluate U(ξ), Uξ, S ξ, S ξξ and S ξξξ at the mesh points (74) by four-point difference and interpolation

formulae. We evaluate S (ξI+1/2) by integrating S ′
I

numerically with the condition S (0) = α.

We obtain 2N − 3 equations by satisfying (72) at the mesh points (74), I = 1, . . . ,N − 1 and (71) at the mesh points

(74) , I = 1, . . . ,N − 2. The Cauchy principal value in (72) is evaluated by the trapezoidal rule with a summation over

the points (73). Two more equations are obtained by imposing S ′
1
= S ′

N
= 0. The last three equations are∫ λ/2

0

S dξ = 0 (76)

∫ λ/2
0

Udξ = 0 (77)

S (ξ1) − S (ξN) = h (78)

where h is the given amplitude of the wave. Equation (76) fixes the origin of S and (77) defines c. We now have

2N + 2 nonlinear equations for the 2N + 2 unknowns (75), α and c. This system is solved by Newton’s method.

We present results for B = 1, Eb = 8, ε f ,g = 3, εs, f = 0.5 and λ = 21.7. Values of c versus h are shown in Figure

3. The horizontal broken line corresponds to the linear approximation (69). As expected the weakly nonlinear results

(solid curve) approach the linear solution broken line) as h → 0. Typical profiles are shown in Figure 4. For small

values of h the profiles are close to the linear sine profile predicted by the linear theory. However for large values of

h, the profiles are clearly nonlinear with sharp crests and broad troughs.
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Fig. 3. Values of c versus h for Eb = 8, εs, f = 0.5, ε f ,g = 3 and λ = 21.7. The solid curve corresponds to the numerical solution of the system

(71)-(72). The broken line shows the analytical solution (69).
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Fig. 4. Wave profiles for Eb = 8, εs, f = 0.5, ε f ,g = 3, λ = 21.7 and various values of h. Note that half the profile is shown due to symmetry.

6. Conclusions

We have studied the stability and nonlinear dynamics of hanging liquid films that are susceptible to gravitational

Rayleigh-Taylor instabilities, under the action of horizontal electric fields applied parallel to the undisturbed fluid

interface. Surface tension is retained and the model accounts for the electric field in the block whose underside is

wetted by the liquid film, as well as in the air region below the liquid layer (see Figure 1), thus extending the work of

Barannyk et al. 13 to configurations that are more likely to be encountered in experiments.

The linear stability of the full problem is studied first. In the absence of an electric field and surface tension, all

waves are unstable and in fact the system is short-wave unstable with shorter waves growing the fastest. Surface

tension introduces a high-wavenumber regularization and induces a finite band of instability. We establish that the

applied electric field has an analogous qualitative effect and acts as a stabilization mechanism. Given any unstable

wavenumber, a sufficiently strong electric field will render it linearly stable (these results are in line with previous

studies13). From a physical perspective this is a useful finding: an externally applied electric field can be used to

make relatively thick films stable (i.e. films that are thicker than the capillary length lc =
√
σ/ρg; for a water-air

system lc ≈ 2 mm).
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Having established the linear aspects of the problem, we used long-wave theories to develop asymptotically correct

one-dimensional model equations to describe the nonlinear dynamics. The analysis results in a system of PDEs

coupling the evolution of the interfacial shape and the leading order horizontal velocity in the liquid film. Even

though the equations are capable of predicting touchdown events where the liquid layer thins to zero thickness, we

have concentrated in situations where the electric field is strong enough to make the system linearly stable. We

computed numerically nonlinear traveling waves in such cases and show that connect to the waves predicted by linear

theory when the wave amplitudes are small. Such nonlinear coherent structures are useful in enhancing the transport

properties of the liquid layer and more detailed studies of such effects would be useful future studies.
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