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Abstract

We show that including a term which accounts for finite liquidity in port-
folio optimization naturally mitigates the instabilities that arise in the esti-
mation of coherent risk measures on finite samples. This is because taking
into account the impact of trading in the market is mathematically equivalent
to introducing a regularisation on the risk measure. We show here that the
impact function determines which regularizer is to be used. We also show
that any regularizer based on the norm `p with p > 1 makes the sensitivity of
coherent risk measures to estimation error disappear, while regularizers with
p < 1 do not. The `1 norm represents a border case: its “soft” implementation
does not remove the instability, but rather shifts its locus, whereas its “hard”
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implementation (including hard limits or a ban on short selling) eliminates it.
We demonstrate these effects on the important special case of Expected Short-
fall (ES) that is on its way to becoming the next global regulatory market risk
measure.

1 Introduction

Risk management of large investment portfolios presents challenges that go beyond
the textbook example of Markowitz portfolio optimization. For instance, asset man-
agers have to deal with liquidity risk [1] in addition to market risk: Liquidity is
always finite in real markets. Even for highly liquid assets, such as large cap stocks,
the volume of limit orders available in the order book at a given time is of the order
10−5 of market capitalization, corresponding to 1% of the daily traded volume [2].
This means that large orders have to be split and executed incrementally, with the
consequence that execution prices become uncertain. Estimating liquidation prices
requires indeed a good estimation of market-impact. Market-impact refers to the
tendency of prices to respond to trading activity: Liquidation of large positions
makes an impact on prices, and moves the market against the investor. The quan-
tification of market-impact is currently a very active field of research. Empirical
evidence [3, 4] strongly suggests that market-impact is a concave function of the or-
der size, and theories have been proposed to explain such empirical evidence [3, 5].
The form of market-impact predicted by such theories was the basis of the proposal
for impact-adjusted accounting put forward in [6], who consider the implication of
market-impact for the risk of a levered investor and show that accounting for market-
impact in risk management improves risk assessment.

Liquidity considerations should therefore be taken into account when optimizing
portfolios. At first sight this problem seems independent of another difficulty of
portfolio selection: that of the large estimation error. Our purpose here is to reveal
a close link between these two problems.

Risk minimization for large institutional portfolios suffers from the curse of di-
mensionality: the number of different assets (the dimension of the measured return
vector), N , is often comparable to, or even larger than the sample size (the length of
the available time series), T . As such, portfolio optimization belongs to the realm of
high dimensional statistics [7]. Empirical estimates of returns, covariances, etc. are
unstable under sample fluctuations.

The instability has been identified by [8, 9] as an algorithmic phase transition
[10], occurring at a critical value of the ratio N/T (depending on the risk measure
in question). At this critical point the estimation error diverges with a universal
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exponent, independent of the risk measure, the nature of the underlying fluctuations,
or even whether these fluctuations are stationary or GARCH-like [11].

Expected Shortfall (ES) [12, 13] is on its way to becoming the next global reg-
ulatory market risk measure [14, 15]. The sensitivity of ES to estimation error was
studied in [8, 9, 16], where the critical value of the ratio N/T was determined, at
which the estimation error diverges and the risk function becomes unbounded from
below. This instability is a common weakness [17] of all coherent risk measures [18].

Various methods have been proposed to address this problem [19–34], including
a number of works that made use of one or another form of regularization [35–40].
Regularization, the standard way to deal with high dimensional problems, imposes
penalties on large excursions of the estimate. In [41] we advocated the systematic use
of regularization in portfolio selection to eliminate the instability. The combination
of a given risk measure with a choice of regularizer must be adjusted to the nature
of the problem. We illustrated the idea of regularized portfolio optimization (RPO)
using the Expected Shortfall as risk measure and the `2 norm as regularizer [41].
The optimization problem thus obtained was shown [41,42]1 to be closely related to
support vector regression [43].

The relationship between market impact and regularization is revealed by realiz-
ing that regularized portfolio optimization arises naturally when investors take into
account the impact their trades make on the market [44]. We demonstrated (again
using the specific example of ES) that the `2 norm regularizer corresponds to linear
market impact, and that the resulting optimization problem is identical to RPO,
eliminating the instability [44].

In this paper we extend the scope of this idea substantially by demonstrating that
considering market impact in the investment strategy results in a regularized portfolio
optimization for all coherent risk measures. We identify the various regularizers
corresponding to the different impact functions. We furthermore prove that the
instability of all coherent measures can be removed by regularizers based on the `p
norm with p > 1, but not by regularizers with p < 1.

The `1 norm sits on the borderline: it may or may not remove the instability,
depending on the sample, which means that on average it does not remove, but
only shifts it. In order to prevent the instability, the `1 norm regularizer has to be
implemented as a ban on short selling, or any hard constraint that imposes infinite
penalty on solutions wandering outside a finite domain.

We illustrate the effect of various regularizers on the estimation error of Expected
Shortfall, as it has acquired special significance recently since the Basel Committee

1This relationship was first recognized in [42], but the budget constraint (which is an important
element of the portfolio problem, but does not enter support vector regression) was omitted there.
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proposed it as the next global regulatory market risk measure [14, 15]. The calcu-
lations can be carried through analytically in the limit of large Gaussian portfolios
(N, T →∞, with their ratio fixed) by methods borrowed from the statistical physics
of disordered systems.

The paper is organized as follows. In Section 2 we show how market impact
considerations lead to regularization for all coherent risk measures, and display the
correspondence between the various impact functions and regularizers. Section 3
analyzes the effect of various `p regularizers on estimation error, with particular
focus on the `1 norm. We start by analyzing a simple toy example: the Maximal
Loss risk function (the limiting case of ES) with only two assets and two data points.
This serves to provide intuition. We move on to show that the `1 regularizer cannot
remove the instability of any of the coherent risk measures, while an `p with p > 1
can. Section 4 illustrates the above ideas using the example of a large random
portfolio optimized under historical ES, and demonstrates the shift of the instability
as a result of `1-regularization. The effect of `p, p > 1, regularizers is also discussed,
with special emphasis on the case p = 3/2 corresponding to a square root-like market
impact that is characteristic of the liquidation of large positions under normal market
conditions. A combination of the `1 and `2 norms as a regularizer is also considered
in this Section. The last Section is a short summary, followed by the Appendix,
where the technical details of the calculations have been relegated to.

2 Risk measures, market impact and Regularized

Portfolio Optimization

The problem we focus on is that of determining the optimal portfolio ~w = (w1, . . . , wN)
of N assets that an investor should hold. We assume the investor has a fixed wealth
W to invest and can buy assets today at current prices ~pnow. Therefore, feasible
portfolios satisfy the budget constraint

~w · ~pnow =
∑
i=1

wipi,now = W. (1)

The optimal portfolio is the one that minimizes the risk of the portfolio ~w at a future
time, at prices ~pest. Here we assume that

~pest = ~pnow + ~X − η ~ψ(~w), (2)
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where ~X is a random vector of returns, ~ψ(~w) denotes the market impact function,

and η is a proportionality factor.2 The term η ~ψ(~w) accounts for the finite liquidity
of the market. One way to motivate it is to argue that, in order to derive a monetary
value from the portfolio, it ought to be sold. Then this term accounts for effects
of finite liquidity, which are currently of great interest [3, 5]. The liquidation of the
portfolio ~w will generally move prices “against” the trading activity (i.e. ψi(~w) ≥ 0).
Much recent work has been devoted to deriving quantitative estimates of the market
impact function ψi(~w) (see e.g. [3, 5]). Most of this literature has been concerned
with the single asset setting (N = 1), suggesting that ψi(~w) ∝ wγi with γ taking
values around 1/2.

The value of the portfolio can then be estimated by the cash flow that can be
generated when the portfolio is liquidated:

V (~w) = ~w · ~pest (3)

= ~w · ~pnow + ~w · ~X − η ~w · ~ψ(~w). (4)

The optimal portfolio should be chosen in such a way as to minimize the risk attached
to this cash flow [44].

Risk measures will be discussed in section 2.1. For the moment we just remark

that risk enters only in the term ~w
(
~X − η · ~ψ(~w)

)
, because ~w · ~pnow = W is known.

Hence, without loss of generality and for the sake of simplifying mathematical expres-
sions, we will omit this term in future discussion. Also, for the sake of simplicity, we
normalize current prices to pi,now = 1/N , ∀i, so that the budget constraint becomes∑

i=1

wi = NW. (5)

2.1 Coherent risk measures

A risk measure is a function of the random variable Z = ~w · ~X, denoted by ρ[Z] 3

representing a loss, i.e. it is a quantity that one would like to minimize. Here we
focus on coherent risk measures, a broad class of quantitative measures for risk [18].
A risk measure is coherent if it satisfies the following axioms:

2Notation: we use uppercase letters for random variables. ψi(~w) denotes the ith component of

the vector ~ψ(~w).
3The squared parenthesis denotes that this is an operator ρ : X → R that associates a real

number with any random variable Z ∈ X .
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Normalization ρ[0] = 0.

Monotonicity if Z1 ≤ Z2 a.s. then ρ[Z1] ≥ ρ[Z2]

Sub-additivity ρ[Z1 + Z2] ≤ ρ[Z1] + ρ[Z2]

Positive homogeneity if a ≥ 0 then ρ[aZ] = aρ[Z]

Translation invariance if a is a real constant then ρ[Z + a] = ρ[Z]− a

The failure of the widely used risk measure Value at Risk to satisfy subadditivity
was the prime motivation for the introduction of these axioms [18]. The translation
invariance property implies that adding a certain amount a (of cash) to a portfolio
reduces risk by a.

2.2 Market impact and regularization

Because of the translation invariance property, we have for any coherent risk measure,
evaluated on the value, V , of a portfolio (see Eq. 4)

ρ[V ] = ρ[~w · ~X − η ~w · ~ψ(~w)] = ρ[~w · ~X] + η ~w · ~ψ(~w). (6)

The first term corresponds to the risk of the portfolio without market impact
considerations. The second term, η ~w · ~ψ(~w), is a monotonically increasing function
of the weights, therefore it penalizes large positions, which means that it acts as a
regularizer. It is very natural that anticipation of future liquidation should limit the
sizes of one’s positions.

In summary, if the investor minimizes the risk of the cash flow that could be gener-
ated by the liquidation of the portfolio, then considering the impact of the investor’s
own actions on the market naturally leads to Regularized Portfolio Optimization
(RPO) for all coherent risk measures.

The correspondence between market impact functions and regularizers is as fol-
lows:

The bid-ask spread impact ~ψ(~w) = sign(~w) leads to the use of the `1-norm,
which we can write as ~w · sign(~w) = ‖w‖1. This applies to single trades,
as well as to sequential trades executed in a very short time.

Square root impact Large positions are usually liquidated by chopping the exe-
cution into many small child orders that are executed sequentially. Such meta-
orders typically have an impact obeying a square root law ψi(~w) =

√
|wi| [3].

This leads to a p = 3/2 regularizing term: η ~w · ~ψ(~w) = η
∑

i |wi|3/2.
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Cube root impact As an alternative to the square root market impact rule, the
|wi|1/3 rule was derived by Kyle and Obizhaeva within the context of market
microstructure invariance [45, 46]. This leads to a p = 4/3 regularizing term

η ~w · ~ψ(~w) = η
∑

i |wi|4/3.

Linear impact On longer time scales, when the sales are repeated over a long time,
we expect the impact to be linear: ~ψ(~w) = ~w. This leads to the regularizing
term η ~w · ~w = η‖w‖2, i.e. implies the use of the `2 norm.

In general ψi(~w) = |wi|p−1 is equivalent to a regularizing term η
∑

i |wi|p, and thus
implies the use of the `p-norm in RPO:

Market impact: ψi(~w) = |wi|p−1 ⇔ Regularizer : `p(~w)

3 Stability of `p regularized portfolio optimization

In this section we analyze the stability of `p norm based regularized portfolio opti-
mization. We focus particularly on p = 1, as it plays a special role. In particular,
we show that, for all coherent risk measures, if p > 1, then regularization based
on the `p norm removes the divergence that plagues portfolio optimization in the
undersampled regime, but this is not the case for p ≤ 1.

Let us recall that the phenomenon of interest is the instability of the empirical
estimate of the risk measure, when the sample size, T , is of the same order as the
number of assets, N , in the portfolio, i.e. the dimensionality of the return vector.
Assume that a sample, X , consists of T observations, ~xt, t = 1, . . . , T , drawn i.i.d.
from a true (but unknown) underlying probability distribution, p, and that there
is a space of samples, X, which come from the same underlying distribution. The
empirical estimate of a risk measure can then be obtained by using the empirical
distribution

p̂(~x) =
T∑
t=1

δ(~x− ~xt)
T

. (7)

The empirical risk, ρ̂, computed on this distribution, depends on the specific sample
X = {~xt}Tt=1. For some samples, the function ρ̂[~w] is unbounded from below, which
means that the portfolio optimization problem does not have a finite solution. This
results in an instability of the risk measure.

To develop an intuition, we first consider the simple Maximal Loss (ML) risk
measure, regularized by the `1 norm, for N = 2 stocks and T = 2 observations
(Section 3.1).
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We show in Section 3.2 that any coherent risk measure can become unstable to
estimation error for `1 norm based regularization. The proof generalizes that given
in [17] for unregularized portfolio optimization. The proof relies on the probability of
the existence of dominating portfolios. Depending on the ratio N/T , this probability
can be either very close to zero – making the instability a rare event that can be
neglected – or very close to one. Sharp results for the threshold value of N/T that
separates the two cases can be given in the limit N, T → ∞ with fixed ratio, using
methods from statistical mechanics (see Section 4).

3.1 `1 regularized ML – a toy example

To develop an intuition about the regularized portfolio optimization problem with
an `1 regularizer, we first consider a simple risk measure called Maximal Loss (ML),
defined as [47]

ML(~w) = min
wi

max
t=1,...,T

[
−
∑
i

wixi,t

]
. (8)

Maximal Loss is the best combination of the worst losses. As such it is a minimax
type risk measure, a special case of Expected Shortfall (ES). Expected Shortfall is
the average loss beyond a high quantile. The threshold α beyond which the average
loss ES is calculated has typical values in the range (0.95 to 1.00). Maximal Loss
corresponds to α = 1− 1/T .

The regularized portfolio optimization problem then becomes

min
wi

{
max
t=1,...,T

[
−
∑
i

wixi,t

]
+ η‖~w‖p

}
, (9)

where ‖~w‖p is the `p norm. This can be re-written to incorporate the regularizer
directly into the loss function, since the term ‖~w‖p does not depend on the individual
returns, measured at times t = 1, . . . , T . We can write the Regularized Maximal Loss
as

RML(~w) = min
wi

max
t=1,...,T

[
−
∑
i

wixi,t + η‖~w‖p

]
(10)

Now, we investigate stability resulting from use of the `1 norm, ‖~w‖1 =
∑

i |wi|.
To that end, let us consider the simple case of two assets (i = 1, 2) and two data
points taken at times t = 1 and t = 2. The loss associated with each time can be
expressed as

lt = −wx1t − (1− w)x2t + η|w|+ η|1− w| (11)
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where we have taken the budget constraint into account by setting w1 = w and
w2 = 1− w Now we distinguish three different cases:

• if w > 1, then lt = w(x2t − x1t + 2η)− x2t − η

• if 0 < w < 1, then lt = w(x2t − x1t) + η − x2t

• if w < 0, then lt = w(x2t − x1t − 2η) + η − x2t

The instability may arise in the following situations:

• if w < 0, x21 − x11 > 2η and x22 − x12 > 2η (the two straights lines, l1 and l2,
both have positive slope).

• if w > 1, x21 − x11 < −2η and x22 − x12 < −2η (the two straights lines, l1 and
l2, both have negative slope).

This means that in the absence of regularization the Maximal Loss is unbounded
from below whenever one of the assets dominates the other (i.e. its return is higher
at both times). Since both the loss function and the regularizer are piecewise linear
functions, there is a threshold value ηc for any given realization of returns such that
if η > ηc the instability is removed (see Figure 1). However, the threshold is in
general different for different instances of the problem, therefore if we consider the
whole ensemble of possible instances, the regularizer with a fixed, finite value of η
will only prevent the instability with a certain probability.

Let us calculate this probability by considering the ensemble of all possible real-
izations of returns. Assuming that xi,t are independent normal distributed random
variables, the probability that the instability is not removed, is given by

P (η) =

(∫ ∞
2η

e−z
2/4

√
4π

dz

)2

+

(∫ −2η

−∞

e−z
2/4

√
4π

dz

)2

=
1

2
erfc2(η). (12)

Here the integration variable z is distributed as the difference of two independent
Gaussian variables.

The quantity P (η) is plotted in Figure 2.
This probability is positive for any finite η, which means that a ”soft” implemen-

tation of the `1 regularizer cannot prevent the instability. The instability disappears
only for η →∞, when the regularizer imposes an infinite penalty on solutions with
the weights outside the interval [0,1]. This ”hard” constraint is equivalent to a ban
on short selling.
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Figure 1: Maximal Loss with and without `1 regularizer for N = T = 2. Light solid lines
represent losses at time t = 1 and t = 2. Bold lines represent the cost function of the respective
optimization problem. The vertical solid line is drawn at w = 1. Dashed lines in the bottom panels
represent the contribution of the regularizer to the cost function. Top left.: Maximal Loss with
N = T = 2 when neither of the assets dominate, so a finite solution exists (the loss function has a
finite minimum). Top right.: Asset 1 is dominating asset 2 here, the loss function does not have
a finite minimum, and the solution runs off to infinity. Bottom left: Same as top right, with an
`1 regularizer added with a coefficient η = 1. This regularizer is too weak to prevent a run-away
solution. Bottom right.: Same as top right, but now with a strong enough regularizer (η = 4)
that keeps the solution finite. Note that the regularizer sets the weight of the dominating asset to
one, and that of the dominated one to zero.
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Whenever the original problem is unstable and the `1 regularizer removes the
instability, it does so by setting the weight of the dominant asset to 1, and that of
the dominated asset to 0. The well-known property of `1 – that it produces a sparse
solution – means in the toy example considered here that it eliminates one of the
assets.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0
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0.25

0.3

0.35
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d

P(
d
)

Figure 2: Probability that the `1-regularized ML with two assets is unstable as a function of η.

The soft implementation of `1 fails to eliminate the instability, because the orig-
inal loss function and the regularizer are piecewise linear functions. In contrast, a
nonlinear regularizer, such as the `2 norm, removes the instability, as can be seen by
considering the losses at times t = 1, 2:

lt = −wx1t − (1− w)x2t +
η

2
w2 +

η

2
(1− w)2 (13)

= ηw2 + (x2t − x1t − η)w − x2t +
η

2
(14)

The losses are now convex quadratic functions, therefore a finite and unique
minimum for the Maximal Loss exists for all nonzero values of η > 0. The same
holds true for any `p norm with p > 1, whereas a norm with p < 1 can not remove
the instability.
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3.2 Instability of `1 regularized coherent risk measures

We generalize the proof of the instability of coherent risk measures [17], which relies
on the notion of dominant portfolios. The first step is to show that if such a dominant
portfolio exists, then coherent risk measures are unbounded from below and the
optimization problem is ill-defined. The second step is to show that the probability
that dominant portfolios exist is bounded away from zero.

A vector ~u is said to be a µ-dominant portfolio if i) ~u ·~1 = 0 and ii) ~u · ~xt ≥ µ|~u|
for all t = 1, . . . , T , where |~u| =

∑
i |ui| is the `1 norm.

Proposition: If a µ-dominant portfolio exists, then no finite `1-regularized port-
folio can exist for η < µ.

Proof: The objective function that we wish to minimize is

ρ̂[~w · ~X] + η|~w|. (15)

For any normalized portfolio ~w (i.e. ~w · ~1 = 1) consider the portfolio ~w + a~u,
where ~u is a µ-dominant portfolio. This is a normalized portfolio (the sum of portfolio
weights is one), because of i) in the definition of ~u. Now

ρ̂[(~w + a~u) · ~X] ≤ ρ̂[~w ·X] + ρ̂[a~u ·X] sub-additivity

= ρ̂[~w ·X] + aρ̂[~u ·X] positive homogeneity

≤ ρ̂[~w ·X] + aρ̂(µ|~u|) monotonicity (a > 0) (16)

= ρ̂[~w ·X]− aµ|~u| translation inv. + normalization.

To get to eq. (16), we used monotonicity with Z1 = µ (constant) and Z2 = ~u · ~X.
For positive constant a, |~w + a~u| ≤ |~w|+ a|~u| which means that

ρ̂[(~w + a~u) · ~X] + η|~w + a~u| ≤ ρ̂[~w ·X] + η|~w| − a(µ− η)|~u| (17)

For µ > η we can achieve portfolios with negative risk of arbitrarily large absolute
value by letting a→∞: the solution of the optimization problem runs off to infinity.
�

Therefore, `1 regularization is not a good choice if the probability that a µ-
dominant portfolio exists is non-zero. The probability that a µ-dominant portfolio
exists depends on the distribution of returns, and it is therefore hard to make any
general statements without making assumptions about this distribution. Yet, if the
support of the distribution of returns extends to the whole real axis, then the prob-
ability that a µ-dominant portfolio exists is non-zero. In the next section we assume
Gaussian (random) portfolios, providing some intuition about this probability.
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Notice that the proof breaks down when the `1 norm is replaced by the `p norm
with p > 1. Then the objective function

ρ̂[~w · ~X] + η
N∑
i=1

|wi|p ∼ η

N∑
i=1

|wi|p
(
1 +O(w−(p−1))

)
(18)

is dominated by the regularization term when the weights wi diverge.
Conversely, for p < 1 it is the regularization term that becomes negligible com-

pared to the risk measure. Hence regularization with p < 1 is not able to cure the
instability, as soon as a µ-dominant portfolio arises, for any µ ≥ 0.

4 Regularized Expected Shortfall for large ran-

dom portfolios.

In this section we consider the problem of RPO for the risk measure Expected Short-
fall in the particular case where both the number of assets N and the number of
observations T are large (N, T → ∞), but their ratio is a finite constant. In order
to derive quantitative results, we consider, for the sake of simplicity, the case of N
i.i.d standard normal returns. We can extend the approach of [9] to include regular-
ization (see also [44]). This provides us with typical results, i.e. results that occur
with probability arbitrarily close to one in the limit N, T →∞.

For i.i.d. random returns, the true optimal solution is the one where all the
weights are the same, wi = 1/N, ∀i. Individual solutions based on specific samples
will likely deviate from the true optimum, especially when the sample size, T , is not
large enough. The optima for individual samples may deviate from symmetry, but
averaging over the samples will necessarily restore it. Likewise, the `1 regularizer
that tends to produce sparse solutions will not be able to make a distinction between
the equivalent assets, therefore it will set some weights to zero at random for each
sample. Our goal here is merely to demonstrate the effect of `1 on the instability
of a portfolio optimized under ES. The real effect of `1 should be studied using a
heterogeneous (non-i.i.d.) portfolio, a problem we leave for future research.

The optimization of historical Expected Shortfall can be formulated as a linear
programming problem [12]. Expected Shortfall is a piecewise linear loss function,
just like the Maximal Loss. The optimization problem, including the `p regularizer,
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Figure 3: q0 as a function of N/T for different values of η for the `1 regularized ES. The `1
regularizer shifts the feasible- infeasible transition towards larger values of N/T .

reads

min
~w,~u,ε

[
(1− β)Tε+

T∑
t=1

ut + η|~w|p
]
, (19)

s.t. ~w · ~xt + ε+ ut ≥ 0; ut ≥ 0; ∀t, (20)∑
i

wi = WN, (21)

where W is a normalization parameter that is usually set to one. However, since
market-impact depends on the size of the position that is liquidated, we explicitly
keep track of W in what follows. In addition, the sum of the weights was chosen to
be of the order of N , in order for the optimal weights to be of order one.

Assuming Gaussian returns, we can solve the above optimization problem an-
alytically. Generalizing [9, 44] by including the regularizer, we follow lines familiar
from the statistical physics of disordered systems: the loss function is regarded as the
Hamiltonian (energy functional) of a fictitious statistical physics system, a fictitious
temperature is introduced and the free energy of this system is calculated in the
limit N, T → ∞ with T/N = τ fixed. Averaging over the different realizations of
the returns corresponds to what is called quenched averaging in statistical physics.
We report here only the final result, and refer the interested reader to the Appendix,
where details of the calculation are given. After some effort, one ends up with a free
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energy functional, depending on six variables, the so-called order parameters:

F (λ, ε, q0,∆, q̂0, ∆̂) = λW + τ(1− β)ε−∆q̂0 − ∆̂q0 (22)

+ 〈minw [V (w, z)]〉z +
τ∆

2
√
π

∫ ∞
−∞

dse−s
2

g

(
ε

∆
+ s

√
2q0

∆2

)
,

where
V (w, z) = ∆̂w2 + η|w|p − λw − zw

√
−2q̂0. (23)

The function g(x) is given in the Appendix. In Eq. (22) 〈·〉z represents an average
over the normal variable z. The “true” free energy, i.e. the minimal risk per asset, is
the stationary point of the above expression with respect to variations of the order
parameters λ, ε, q0,∆, q̂0 and ∆̂. The original optimization problem involving N+T+
1 variables has been reduced, in the limit of large N and T , to the simpler problem
of finding the minimum of the functional F (λ, ε, q0,∆, q̂0, ∆̂) that only depends on
six variables.

4.1 `1 regularization

The origin of the instability for the Expected Shortfall under `1 is the same as with
Maximal Loss: Expected Shortfall diverges (becomes unbounded from below) when
there is a dominating portfolio [17]. The divergence of ES is linear, therefore a piece-
wise linear regularizer like `1 will not be able to eliminate the instability completely,
it will do so only with a certain probability, depending on the sample. Thus we
expect that after averaging over the ensemble of random returns the instability will
persist. Yet, we know [9] that the probability to observe the instability is essentially
zero for N, T → ∞ when τ = T/N is larger than a critical threshold τc whereas it
is arbitrarily close to one if τ < τc. We now illustrate how the instability arises by
analyzing the extrema of Eq. (22), and show that `1 regularization merely shifts the
instability to a smaller threshold.

The fact that the solution for N, T →∞ contains a nested optimization problem
over w in the first term on the second line of Eq. (22) is not accidental. Indeed, this
arises from the optimization over the weights wi of the original problem. Therefore,
the minimization of V (w, z) can be thought of as a “representative weight” problem,
where the random variable z over which the expectation is taken encodes the effect
of the randomness in the sample.
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The solution w∗(z) of the representative weight problem

w∗(z) =


z
√
−2q̂0+λ−η

2∆̂
, if z > η−λ√

−2q̂0

0, if −η−λ√
−2q̂0

< z < η−λ√
−2q̂0

z
√
−2q̂0+λ+η

2∆̂
, if z < −η−λ√

−2q̂0
,

(24)

has the typical shape induced by `1 regularization. The Gaussian distribution of the
z then induces the weights to be distributed according to p(w) = 〈δ(w − w∗(z))〉z.

The first-order conditions for the free energy read

W = 〈w∗〉z (25)

(1− β) +
1

2
√
π

∫ ∞
−∞

dse−s
2

g′

(
ε

∆
+ s

√
2q0

∆2

)
= 0 (26)

∆̂− τ

2
√

2πq0

∫ ∞
−∞

dse−s
2

sg′

(
ε

∆
+ s

√
2q0

∆2

)
= 0 (27)

−q̂0 − 2
∆̂q0

∆
+

τ

2
√
π

∫ ∞
−∞

dse−s
2

g

(
ε

∆
+ s

√
2q0

∆2

)
+ τ(1− β)

ε

∆
= 0 (28)

∆ =
1√
−2q̂0

〈w∗z〉z (29)

q0 =
〈
w∗2
〉
z
. (30)

Notice in particular, that the first of these equations translates the budget con-
straint of the original problem into the properties of the representative weight prob-
lem above. The last equation, instead, relates the parameter q0 ∝ 1

N

∑
iw

2
i to the

fluctuation of the weights. This corresponds to the distance of the solution from the
optimal one (given by the constant portfolio). In the present setting, this is also
related to the estimation error, since different samples will deviate from the optimal
solution in different ways.

The instability of portfolio optimization manifests itself in the divergence of the
parameter q0. This, in turn, implies that the distribution of weights w∗(z) becomes
degenerate, i.e. infinitely broad. Hence, some intuition about the origin of the insta-
bility can be gained from looking at the optimization problem for the representative
weight. From the form of V (w, z) we see that the optimization problem for w always
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has a finite solution as long as the quantity ∆̂ > 0. However, when ∆̂ = 0, V (w, z)
can be unbounded from below. In this case, the estimated expected shortfall runs
to minus infinity, because the term 〈minw [V (w, z)]〉z in the free energy diverges.
Note that, because of the budget constraint implemented in equation (25), the opti-
mal portfolio will in this case dictate to go infinitely long in some of the assets and
infinitely short in some of the others. In summary, the condition ∆̂ = 0 is what
determines the critical point.

We numerically solved the system of equations (25)–(30), and we plot in Figure 3
the quantity q0 as a function of the ratio τ−1 = N/T for different values of the regu-
larizer’s amplitude η. The study of the stationarity conditions shows that, similarly
to what we saw in the toy example, the `1 regularization produces a shift towards
higher values of N/T of the feasible-infeasible transition, but does not eliminate it
completely. The shift in the critical point where the estimation error blows up is
clearly seen in Figure 3.

In the toy example discussed in section 3.1 we furthermore saw that the hard
implementation of the `1 constraint, obtained in the limit η → ∞, was equivalent
to a ban on short selling. This is true also here. Indeed, if η goes to infinity, the
regularizer imposes infinite penalty on any solution not on the `1 ball (defined by
the relation

∑
i |wi| ≤ NW ). On the other hand, the solution also has to be on the

plane corresponding to the budget constraint. This means the solution must be on
the (+,+,+...+) face of the `1 ball, where all the weights are positive. Conversely,
if all the weights are positive and they also satisfy the budget constraint, then the
solution is necessarily on the (+,+,+...+) face of the `1 ball.

That imposing a ban on short positions helps taming the large sample fluctuations
was noticed by [24], though the authors did not make the connection to regulariza-
tion. It is clear that any constraint that reduces the domain over which the optimum
is sought to a finite volume has a similar effect: there cannot be infinite fluctuations
in a finite volume.

4.2 `p-norm

There is no qualitative difference between the effects of the soft (finite η) or hard
(η → ∞) implementation of a non-linear regularizer that grows faster than linear,
such as the `p-norm with p > 1; the regularizer will eliminate the instability either
way.

We can see this by noting that if p > 1, then the function V (w, z) always has a
finite minimum for any value of z, thus preventing the divergence of the estimation
error. The solution of the representative weight problem, w∗ can be obtained by
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minimization of the function V (w, z) (Eq. 23). Let p = 1 + 1
n
. To compute w∗ we

must solve

2∆̂w + η

(
1 +

1

n

)
|w∗|1/n − λ− z

√
−2q̂0 = 0. (31)

Taking the limit ∆̂→ 0, if η > 0 the equation reduces to

η

(
1 +

1

n

)
|w∗|1/n − λ− z

√
−2q̂0 = 0, (32)

which always has a finite solution for finite n. More generally, we can say that any
regularizer that grows faster than linear will prevent the solutions from running away
to infinity.

This is true in particular for the for the case p = 2 [44], and for the case p = 3/2,
which corresponds to the square root market impact that characterizes the liquidation
of large positions under normal market conditions [3–6].

4.3 Linear combination of the `1 and `2 regularizers.

In high-dimensional problems it is often expedient to use a combination of the `1

and `2 regularizers [7], sometimes called the elastic net [48]. This setting leads to
the following optimization problem

min
~w,~u,ε

[
(1− β)Tε+

T∑
t=1

ut + η1|~w|+ η2|~w|2
]
, (33)

s.t. ~w · ~xτ + ε+ ut ≥ 0; ut ≥ 0; ∀t, (34)∑
i

wi = WN. (35)

The replica method readily extends also to this case. In this situation the free
energy is again of the form (22), but with

V (w, z) = ∆̂w2 + η1|w|+ η2|w|2 − λw − zw
√
−2q̂0 . (36)

The solution of the optimization problem for the representative weight reads:

w∗(z) =



z
√
−2q̂0+λ−η1
2(∆̂+η2)

, if z > η1−λ√
−2q̂0

0, if −η1−λ√
−2q̂0

< z < η1−λ√
−2q̂0

z
√
−2q̂0+λ+η1
2(∆̂+η2)

, if z < − η1+λ√
−2q̂0

.

(37)
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Figure 4: Left panel: q0 as a function of η1 for η2 = 0.1 (blue solid line) and η2 = 0.01 (red
dashed line). Right panel: q0 as a function of η2 for η1 = 0.1 (blue solid line) and η1 = 0.01 (red
dashed line). In both panels τ = 1.5. The quantity q0 strongly depends on η2, in particular close
to η2 = 0.

From these expressions we see that the divergence of w∗ is prevented as long as
η2 > 0, while a divergence may occur if η2 = 0 when ∆̂ = 0.

Using this form of w∗(z) to evaluate the averages over the variable z that appear
in equations (25), (29) and (30), we numerically solve the set of first-order conditions
(25)–(30).

We show the behavior of q0 as a function of the parameters η1 and η2, for τ = 1.5,
in Figure 4 . The dependence on η2 is naturally stronger than the dependence on η1.

A useful scheme may be to set η2 to a value that ensures small estimation error
given the value of τ in a particular application, and then to vary η1 in order to achieve
the desired level of sparseness. Although sparseness reduces diversification, there
might be situations where limiting the dimension of a portfolio may be advantageous,
for example by limiting transaction costs.

5 Conclusion

We have shown that market impact considerations will drive an investor to Regu-
larized Portfolio Optimization (RPO) under any coherent risk measure. The impact
function determines which regularizer should be used. Generalizing our previous
result, that linear impact leads to the use of the `2 norm regularizer [44], we have
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shown here how the impact function selects the regularizer in general.
We have also demonstrated that the instability of Expected Shortfall found in [9]

will be removed by any nonlinear regularizer that grows faster than linear, but will
only be shifted by the piecewise linear `1 norm based regularizer that corresponds to
a bid-ask spread impact. Although we wanted to mostly concentrate on Expected
Shortfall in this paper, we would like to point out that due to the positive homo-
geneity and translational invariance axioms, `p regularizers will have the same effect
on any coherent measure as they do on ES. (Moreover, as these properties are shared
also by Value at Risk, this extends also to VaR.)

In order to illustrate the above points, we also provided explicit analytical calcu-
lations for the optimization of large random portfolios. These calculations required
the use of techniques borrowed from the statistical physics of random systems where
they had been widely used and rigorously established in the cases of various objective
functions [49–52]. As these techniques may not be familiar for most of our readers, we
tried to simplify the task as much as possible, and constrained ourselves to the case
of i.i.d. normal returns. This is clearly not realistic, as returns in real markets exhibit
heavy tails and display complex patterns of interdependencies (see for instance [53]).
The assumption of independence is not crucial, correlated normal variables can be
easily accommodated by the formalism and do not change the conclusions qualita-
tively, as has been shown in a different example by [16]. So or analysis could be
extended analytically to the case of multi-factor models, to account for correlations
between variables due, for example, to industrial sectors or geographic regions.

As for the Gaussian character, it is a critical element of the formalism. In order
to tackle fat tailed distributions, one has to resort to numerical simulations, but
it is a foregone conclusion again that they cannot qualitatively modify the main
message, because the correspondence between the character of the market impact
and the corresponding regularizer follows directly from the coherence axioms and
is obviously independent of the statistical properties of the returns, while the claim
about which regularizer can take care of the instability of which risk measure depends
only on the asymptotic behavior of these quantities as functions of the weights, not
on the returns.

Another simplifying feature of the illustrative calculation is the use of the large
N limit. This is a technicality: at a certain point we had to use the saddle-point
method to evaluate some integrals. The quality of the saddle-point approximation
depends on the curvature of the cost function around the saddle-point, and varies
from point to point in the plane of the control parameters N/T and the confidence
limit β. General experience with saddle point integrals (think of the Stirling-formula)
supported by numerical simulations in our present case tells us that the N values
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required for a good approximation can be quite moderate (such as 50 to 100) if we
are safely inside the stable region, while in the immediate vicinity of the instability
line much larger values (500 or above) are needed.

In summary, we believe that the qualitative message of our paper is robust: The
instability of Expected Shortfall is removed by any `p regularizer with p > 1 and
shifted by an `1 regularizer.

We find it appealing that the statistically motivated use of regularizers is inti-
mately linked to market impact: consideration of finite liquidity should limit exces-
sively large positions, which is exactly what regularizers do.

We also find it remarkable how powerful the method of replicas proves to be
in producing analytical results for the estimation error in situations which would
probably be very hard to approach by more conventional methods of probability
theory.
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Appendix

In this appendix we show how, in the limit where N and T go to infinity, the
optimization problem defined by equations (19), (20) and (21) can be reduced to
that of finding the minimum of the “free energy” functional given by (22).

We need to find the minimum of

E[ε, {ut}] = (1− β)Tε+
T∑
t=1

ut + η‖~w‖p

under the constraints

ut ≥ 0, ut + ε+
N∑
i=1

xi,twi ≥ 0 ∀t
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and
N∑
i=1

wi = WN.

The calculation proceeds as follows: Given a history of returns {xi,t}, we introduce
the inverse temperature parameter γ and define the canonical partition function (or
generating functional) as

Zγ [{xi,t}] =

∫ ∞
0

T∏
i=1

dut

∫ ∞
−∞

dε θ

(
ut + ε+

N∑
i=1

xi,twi

)
δ

(
N∑
i=1

wi −WN

)
e−γE[ε,{ut}],

(38)
where θ(x) = 1 if x > 0 and zero otherwise. The partition function is therefore
an integral over all possible configurations of variables that are compatible with
the constraints of the problem, where each configuration ε, {ut} is weighted by the
quantity e−γE[ε,{ut}] (the Boltzmann weight). For large values of γ the Boltzmann
weight is concentrated on the configurations corresponding to the smallest values of
E[ε, {ut}], so the minimum of the free energy (or cost function) can be obtained by
letting the inverse temperature go to infinity: The minimum cost (per asset) can
then be computed in the limit of large N as

lim
N→∞

lim
γ→∞
− logZγ[{xi,t}]

γN
. (39)

To derive the typical properties of the ensemble we have to average over all possible
realizations of returns and compute

〈logZγ [{xi,t}]〉 =

∫ ∞
−∞

N∏
i=1

T∏
t=1

dxi,tP [{xi,t}] logZγ [{xi,t}] , (40)

where P [{xi,t}] is the probability density function of returns. The calculation of the
average of a logarithm is hard. To circumvent this difficulty, it is expedient to apply
the so called “replica trick”, a device that dates back to [54] and has since been used
in various problems in the statistical physics of random systems, most notably in
spin glass theory [49]. The “trick” consist in using the identity

〈logZ〉 = lim
n→0

∂〈Zn〉
∂n

. (41)

For integer n, we can compute the moment 〈Zn〉 as the average partition function of
a system composed of n independent replicas of the original one - hence the name
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of the trick. An analytical continuation to real values of n will then allow us to
perform the limit n→ 0 and obtain the sought quantity 〈logZγ [{xi,t}]〉. The astute
reader notices that the procedure involves some suspicious steps (order of limits,
non-uniqueness of the analytic continuation from the natural numbers to reals).
These have been carefully analyzed and the results obtained via the use of the trick
reproduced by rigorous methods [50, 51], [52] in problems of a similar nature (with
convex cost functions), but also in the much more complicated case where the cost
function had a large number of competing minima. For the special problem of ES
treated here no such rigorous proof is known, so the replica trick can be regarded as
a heuristic method that produces highly nontrivial results. These can a posteriori
be verified by simulations. We will provide some simulation results as an illustration
at the end of this appendix. Returning to the main line of argument, the replicated
partition function can be computed as4

Zn
γ =

∫ ∞
−∞

(
N∏
i=1

T∏
t=1

dxi,t

)∫ ∞
−∞

(
n∏
a=1

dεa

)∫ ∞
0

(
T∏
t=1

n∏
a=1

duat

)∫ ∞
−∞

(
N∏
i=1

n∏
a=1

dwai

)

×
∫ i∞

−i∞

(
n∏
a=1

dλ̂a

)∫ ∞
0

(
T∏
t=1

n∏
a=1

dµat

)∫ ∞
−∞

(
T∏
t=1

n∏
a=1

dµ̂at

)
T∏
t=1

N∏
i=1

exp

{
−
Nx2

i,t

2

}

× exp

{∑
a

λ̂a(
∑
i

wai −WN)

}∏
t

exp

{∑
a

iµ̂at

(
uat + εa +

∑
i

xi,tw
a
i − µat

)}

× exp

{
−γ
∑
a

(1− β)Tεa − γ
∑
a,t

uat − γη
∑
i

|wai |p
}
,

where we have assumed that

P [{xi,t}] =
T∏
t=1

N∏
i=1

exp

{
−
Nx2

i,t

2

}
, (42)

and we have enforced the constraints through the Lagrange multipliers λ̂a, µat and
µ̂at . Averaging over the quenched variables {xi,t} and introducing the overlap matrix

Qa,b = 1
N

∑
iw

a
iw

b
i and its conjugate Q̂a,b one obtains

4In the calculation we will not keep track of constant multiplicative factors that do not affect
the final result.
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Zn
γ =

∫ i∞

−i∞

(
n∏
a=1

n∏
b=1

dQa,bdQ̂a,b

)∫ ∞
−∞

(
n∏
a=1

dεa

)∫ ∞
0

(
T∏
t=1

n∏
a=1

duat

)∫ ∞
−∞

(
N∏
i=1

n∏
a=1

dwai

)

×
∫ i∞

−i∞

(
n∏
a=1

dλ̂a

)∫ ∞
0

(
T∏
t=1

n∏
a=1

dµat

)∫ ∞
−∞

(
T∏
t=1

n∏
a=1

dµ̂at

)
exp

{∑
a

λ̂a(
∑
i

wai −WN)

}

×
∏
t

exp

{
−1

2

∑
a,b

µ̂atQa,bµ̂
b
t

}
exp

{∑
a,b

Q̂a,b

(
NQa,b −

∑
i

waiw
b
i

)}

× exp

{
−γ
∑
a

(1− β)Tεa − γ
∑
a,t

uat − γη
∑
i

|wai |p
}

×
∏
t

exp

{
i
∑
a

µ̂at (uat + εa − µat )

}
.

We can now perform the Gaussian integral over the variables {µ̂at }:

Zn
γ =

∫ i∞

−i∞

(
n∏
a=1

n∏
b=1

dQa,bdQ̂a,b

)∫ ∞
−∞

(
n∏
a=1

dεa

)∫ ∞
0

(
T∏
t=1

n∏
a=1

duat

)∫ ∞
−∞

(
N∏
i=1

n∏
a=1

dwai

)

×
∫ i∞

−i∞

(
n∏
a=1

dλ̂a

)∫ ∞
0

(
T∏
t=1

n∏
a=1

dµat

)
exp

{∑
a

λ̂a(
∑
i

wai −WN)

}

× exp

{
−γ
∑
a

(1− β)Tεa − γ
∑
a,t

uat − γη
∑
i

|wai |p
}

exp

{∑
a,b

Q̂a,b

(
NQa,b −

∑
i

waiw
b
i

)}

×
∏
t

exp

{
−1

2

∑
a,b

(uat + εa − µat )Q−1
a,b

(
ubt + εb − µbt

)}
exp

{
−T

2
tr logQ

}
.

Introducing the variables yat = µat − ubt and zat = µat + ubt and integrating over the
{zat } we obtain
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Zn
γ =

∫ i∞

−i∞

(
n∏
a=1

n∏
b=1

dQa,bdQ̂a,b

)∫ ∞
−∞

(
n∏
a=1

dεa

)∫ ∞
−∞

(
N∏
i=1

n∏
a=1

dwai

)∫ i∞

−i∞

(
n∏
a=1

dλ̂a

)

× exp

{∑
a

λ̂a(
∑
i

wai −WN)

}
exp

{
−γ
∑
a

(1− β)Tεa − γ
∑
a,t

uat − γη
∑
i

|wai |p
}

× exp

{∑
a,b

Q̂a,b

(
NQa,b −

∑
i

waiw
b
i

)}∏
t

exp

{
−1

2

∑
a,b

(uat + εa − µat )Q−1
a,b

(
ubt + εb − µbt

)}

× exp

{
−T

2
tr logQ− TN log γ + T logZγ({εa, Q})

}
where

Zγ({εa, Q}) =

∫ +∞

−∞

∏
a

dya exp

{
−1

2

∑
a,b

(ya − εa)Q−1
a,b(y

b − εb)

}

× exp

{
γ
∑
a

yaθ(−ya)

}
.

At this point we have to make a guess concerning the structure of the overlap ma-
trices Qa,b and Q̂a,b. The symmetry of the problem with respect to the permutation
of replicas leads one to the “replica symmetric” ansatz

Qa,b =

{
q1, a = b
q0, a 6= b

(43)

Q̂a,b =

{
r1, a = b
r0, a 6= b.

(44)

The assumption of replica symmetry has been justified in every earlier application
of the trick where the cost function was convex.

The next step is to perform the “zero temperature” limit γ → infty. This can
be effected by introducing the following rescaling relations

∆ = γ(q1 − q0), (45)

∆̂ = (r1 − r0)/γ, (46)

λa = λ̂aγ, (47)

q̂0 = r0γ
2. (48)
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The ~w-dependent part of the partition function is∫
[Dw]e−γFw =

∫
[Dw]e

∑
ia λ

awa
i −γη

∑
i |wa

i |p−
∑

a,b Q̂a,b
∑

i w
a
i w

b
i . (49)

Exploiting the identity log〈Xn〉 ' n〈logX〉 valid for n → 0, and after some manip-
ulations, we arrive at the following contribution to the free energy

Fw = γ
〈

log

∫
dwe−γ[∆̂w

2+η|w|p−λw−zw
√
−2q̂0]

〉
z
, (50)

where the notation 〈· · · 〉z means averaging over the normal variable z. After some
further manipulations, we can write the partition function as

Zn
γ =

∫
dλdεdq0d∆dq̂0d∆̂e−γnNF [λ,ε,q0,∆,q̂0,∆̂)] (51)

where

F (λ, ε, q0,∆, q̂0, ∆̂) = λW + τ(1− β)ε−∆q̂0 − ∆̂q0 (52)

− 1

γ

〈
log

∫ ∞
−∞

dwe−γV (w,z)
〉
z

+
τ∆

2
√
π

∫ ∞
−∞

dse−s
2

g

(
ε

∆
+ s

√
2
q0

∆2

)
,

with τ = T/N ,

V (w, z) = ∆̂w2 + η|w|p − λw − zw
√
−2q̂0 (53)

and

g(x) =


0, x ≥ 0
x2, −1 ≤ x ≤ 0

−2x− 1, x < −1
. (54)

In the limit of large N the integral in equation (51) is concentrated around the min-
imum of F (λ, ε, q0,∆, q̂0, ∆̂) and can be computed through the saddle point method.

The minimum cost

lim
γ→∞

lim
n→0

(
−1

γ

∂Zn
γ

∂n

)
(55)

corresponds then to the minimum of the free energy functional F (λ, ε, q0,∆, q̂0, ∆̂)
in the limit γ →∞.

The saddle point method produces an asymptotic series. The corrections to the
leading term given above depend on the curvature of the exponent in the integral.
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These corrections are rather small away from the critical point, and the results ob-
tained for asymptotically large N give a fairly good representation of the behaviour
of the simulations for finite, moderately large N values, such as 50 to a few hundred.
This is clearly shown in figure 5, where we present a comparison between the analyt-
ical solution obtained through the replica method (the lines in the plot) and results
from a numerical solution of the optimization problem for N = 128 assets for the
case of an `1 regularizer. We see from the plot that the agreement between the two
is quite good already for this relatively small value of N .

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
1

1.5

2

2.5

3

3.5

4

T /N

q 0

 

 
d=0 theory
d=0 simulations
d=0.1 theory
d=0.1 simulations
d=1 theory
d=1 simulations

Figure 5: Comparison between analytical solution and numerical simulations. q0 as a function
of the ratio T/N for the case of an `1 regularizer and different values of η. Numerical simulations
refer to systems with N = 128 assets. The match between the result of the replica calculation and
numerical simulations is very good in this regime.

It has to be noted however that in the immediate vicinity of the critical point
much larger N values should be used in the simulations in order to obtain agreement
with the analytical calculation, as we show in figure 6.
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Figure 6: Comparison between analytical solution and numerical simulations. q0 as a function
of the ratio T/N for η = 0. Numerical simulations refer to systems with N = 16, 64, 512 assets.
As we get closer to the critical point (which in this case is for T/N around 2.2), finite size effects
become apparent and larger values of N are needed to obtain a good match with the analytical
curve.

References

[1] Carlo Acerbi and Giacomo Scandolo. Liquidity risk theory and coherent mea-
sures of risk. Quantitative Finance, 8(7):681–692, 2008.

[2] J-P Bouchaud. The endogenous dynamics of markets: Price impact, feedback
loops and instabilities. In A. Berd, editor, Lessons from the 2008 crisis, pages
57–156. Risk publications, 2011.

[3] B. Toth, Y. Lemperiere, C. Deremble, J. de Lataillade, J. Kockelkoren,
and J-P. Bouchaud. Anomalous price impact and the critical nature
of liquidity in financial markets. Physical Review X, 1(2):021006, 2011.
http://arxiv.org/abs/1105.1694.

28



[4] E. Moro, L. G. Moyano, J. Vicente, A. Gerig, J. D. Farmer, G. Vaglica, F. Lillo,
and R.N. Mantegna. Market impact and trading protocols of hidden orders in
stock markets. Physical Review E., 80(6):066102, 2009.

[5] J. D. Farmer, A. Gerig, F. Lillo, and H. Waelbroeck. How efficiency shapes
market impact. Quantitative Finance, 13(11):1743–1758, 2013.

[6] F. Caccioli, J.-P. Bouchaud, and Farmer J. D. A proposal for impact-adjusted
valuation: Critical leverage and execution risk. arXiv:1204.0922, 2012.
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