Dynamic Scheduling for Energy Minimization in
Delay-Sensitive Stream Mining

Shaolei Ren, Nikos Deligiannis, Yiannis Andreopoulos, Mohammad A. Islam, Mihaela van der Schaar

Abstract—Numerous stream mining applications, such as vi-
sual detection, online patient monitoring, video search and
retrieval, are emerging on both mobile and high-performance
computing systems. These applications are subject to respon-
siveness (i.e., delay) constraints for user interactivity and, at
the same time, must be optimized for energy efficiency. The
increasingly heterogeneous power-versus-performance profile of
modern hardware presents new opportunities for energy saving
as well as challenges. For example, employing low-performance
processing nodes can save energy but may violate delay re-
quirements, whereas employing high-performance processing
nodes can deliver a fast response but may unnecessarily waste
energy. Existing scheduling algorithms balance energy versus
processing throughput assuming constant processing and power
requirements throughout the execution of a stream mining
task and without exploiting hardware heterogeneity. In this
paper, we propose a novel framework for Dynamic Scheduling
for Energy minimization (DSE) that leverages this emerging
hardware heterogeneity. By optimally determining the processing
speeds for hardware executing classifiers, DSE minimizes the
average energy consumption while satisfying an average delay
constraint. To assess the performance of DSE, we build a face
detection application based on the Viola-Jones classifier chain
and conduct experimental studies via heterogeneous processor
system emulation. The results show that, under the same delay
requirement, DSE reduces the average energy consumption by
up to 50% in comparison to conventional scheduling that does
not exploit hardware heterogeneity. We also demonstrate that
DSE is robust against processing node switching overhead and
model inaccuracy.

Index Terms—Energy efficiency, delay-sensitive, scheduling,
stream mining.

I. INTRODUCTION

Extracting knowledge and recognizing patterns from con-
tinuous and rapid data streams has become ubiquitous today,
thereby enabling the emergence of a plethora of real-time
stream mining applications such as traffic analysis, financial
fraud prevention, disaster information management, video
surveillance, and online patient monitoring [5], [6]. Stream
mining systems rely on sophisticated machine learning tech-
niques and can be conceptually viewed as processing pipelines
that identify data of interest by progressively testing it on
classifiers. The classifiers, which are essential elements that
partition data into multiple classes and filter out irrelevant

TThis work is supported in part by National Science Foundation under Grant
No. 1016081. Part of this work was done while S. Ren was at UCLA. S. Ren
and M. A. Islam are with School of Computing Information Sciences, Florida
International University (sren@cs.fiu.edu, misla012@fiu.edu). M. van der
Schaar is with Electrical Engineering Department, University of California,
Los Angeles (mihaela@ee.ucla.edu) N. Deligiannis and Y. Andreopoulos are
with Electronic and Electrical Engineering Department, University College
London (n.deligiannis@ucl.ac.uk, i.andreopoulos@ucl.ac.uk).

information [5], can be deployed in heterogeneous processing
hardware available on a high-performance cloud-computing
infrastructure or a networked computing cluster of embedded
processors [2].

The evolution of stream mining applications has manifested
two trends. (1) As the number and types of stream mining
applications are rapidly increasing, it becomes essential to
devise energy-efficient solutions and systems for supporting
these applications [1]. (2) Many stream mining applications are
subject to stringent delay requirements, since their users want
responses to their queries quickly and delayed responses are
less valuable or may even result in serious consequences (e.g.,
as in disaster information management or online patient moni-
toring systems). Moreover, another growing trend is that these
applications are increasingly deployed over embedded systems
(e.g., real-time motion detection using mobile devices in
assistive environments) [3] or large computing clusters (which
process interactive data analytics [20]), for both of which
energy efficiency is a critical concern. While enormous efforts
have been dedicated to improving data mining algorithms (see
[30] for an overview), there is currently a limited volume of
work on the minimization of energy consumption of delay-
sensitive stream mining applications. This is a critical aspect
that can become a major hindrance to the wider adoption of
stream mining applications over mobile or large heterogeneous
computing clusters.

In this paper, we aim at optimizing energy efficiency
of stream mining applications employing cascade classifier
chains. Prior studies show that load shedding [8] and classifier
topology configuration [5] can be applied to effectively reduce
the complexity of stream mining applications, potentially sav-
ing the resource consumption (including energy consumption)
as a by-product of the aforementioned solutions. Here, we
adopt a different and equally important approach: optimally
choosing processing speeds for the hardware executing the
classifiers. Our approach leverages the growing heterogeneity
of modern hardware and enables dynamic scheduling of stream
mining workloads over a set of heterogeneous processing
nodes. Notable examples include heterogeneous multicore
processor (e.g., ARM big.LITTLE [16]) and heterogeneous
server clusters in which different servers have different power-
performance profiles [32]. While our goal is clear, a key issue
that remains unsolved spurs our research: selecting processing
nodes with low speeds can save energy but may violate the
delay requirement, whereas selecting processing nodes with
fast speeds can deliver a fast response but may unnecessarily
waste energy. Moreover, some classifiers may be more energy-
consuming than others, thereby further complicating the opti-

1 | Evaluate :
11 Features 1
VO TTTT ! .
Sliding T T T, Classify as
window Face
F F F F
E Reject window - No Face |
Fig. 1. Cascaded classifier architecture of Viola-Jones face detection [4].

mal choice of processing nodes for classifiers.

Our study aims at addressing energy efficiency of delay-
sensitive stream mining applications from a scheduling per-
spective, which is becoming increasingly important in both
mobile systems and large computing clusters. While there
are many different scheduling algorithms in other contexts
(e.g., dynamic voltage and frequency scaling (DVFS) [12],
[13] and scheduling in heterogeneous multicore processors
[14], [21]), these studies assume that a stream mining task
exhibits constant performance (i.e., constant processing cycles
and power consumption) throughout its execution, which does
not necessarily hold (as shown in our experiment). Conversely
to these state-of-the-art works, we propose a novel algorithm,
called Dynamic Scheduling for Energy (DSE), which dynam-
ically chooses processing nodes for executing the classifiers
in order to minimize the average energy consumption for
stream mining, while simultaneously satisfying an average
delay constraint.

To evaluate DSE, we build an image stream mining system
based on the well-known Viola-Jones classifier chain [4],
which extracts features from image sequences and detects the
region(s) where human faces appear in the images. For each
of the Viola-Jones classifiers, we profile the execution time
requirement, measure its frequency of occurrence, and calcu-
late its energy consumption on a set of heterogeneous servers.
When applying DSE for delay-constrained and energy-optimal
realization of the Viola-Jones classifier chain on this het-
erogeneous environment, our results show that the average
energy consumption is significantly reduced (by up to 50%)
in comparison to the best homogeneous system that only
chooses a static speed. Beyond this result, we also conduct
extensive sensitivity studies to demonstrate the robustness of
DSE in cases where some parameters, such as service demand
distribution, may not be completely known.

The rest of this paper is organized as follows. Section II
describes the model. In Section III, we develop the DSE
algorithm. Simulation results are shown in Section IV and
related work is reviewed in Section V. Finally, concluding
remarks are offered in Section VI.

II. STREAM MINING AND JOB MODEL
A. Stream mining system

We provide the modeling details of classifiers and process-
ing nodes. For the ease of presentation, we concentrate on
a single (binary) classifier chain, whereas a more complex
classification tree model is provided in Section III-C. As a
classic example, Fig. 1 illustrates the well-known cascade

classifier chain architecture of the Viola-Jones algorithm [4]
consisting of multiple stages of filters for face detection in
images.

1) Classifier: Ordered according to a certain topology (e.g.,
classifier chain [4], [S]) depending on the specific application,
each classifier is responsible for extracting and classifying
features of certain interest. Note that each classifier also
corresponds to one ‘“stage” of classification [4]. An input
stream data is filtered sequentially along the cascade of
classifiers and two possible labels may be produced at each
stage: “Positive/True” and “Negative/False”. Data labeled as
“Positive/True” is forwarded to the next classifier if any, while
data labeled as “Negative/False” is dropped. We further note
that each classifier may be applied multiple times at one
stage before the input data is forwarded to the next stage.
For example, for face detection within streams of images,
a classifier is typically applied on a small block and then
scans throughout the entire image; those blocks labeled as
“Negative” will not be scanned by the next-stage classifier
[4].

In our model, the classifier chain consists of N stages (i.e.,
N binary classifiers) indexed by 1,2, --- , N, respectively. We
use w; to quantify the average complexity (i.e., number of
required CPU instructions, or resource demand) of the i-th
stage of classification (1 < ¢ < N), during which the -
th classifier may be applied once or multiple times (as in
the case of face detection [4]). Each classifier has a priori
selectivity for the incoming data (i.e., a priori probability that
the data belongs to the “Positive” group, which is an inherent
characteristic of the input data), that can be computed on a
training and cross-validation data set. Given a fixed classifier
configuration, the a-priori selectivity and the likelihood of
classification errors will probabilistically determine the num-
ber of classifiers that will be activated to process the input data
[5]. Mathematically, we denote by f; > 0 the probability that
the input data is processed by ¢ classifiers (i.e., the input data
goes through the first ¢ classifiers prior to being dropped or
completed), for i = 1,2,--- , N. Equivalently, f1, fo, -, fn
can be interpreted as the probability mass distribution of
service demand measured in terms of the number of classifiers.
We denote the cumulative distribution function (CDF) by
F;, = 23:1 f;. Although the actual number of classifiers that
a particular input data will go through is unknown in advance,
the statistical information (i.e., the values of f1, fo, -+, fn)
is readily available by, e.g., online or offline profiling (e.g.,
[5] [12]) or based on the a-priori selectivity of input streams
[5]. In Section IV, we shall show the robustness of DSE in the
presence of service demand estimation errors.

2) Processing node: We present a general model for pro-
cessing nodes that are applicable to both mobile systems and
high-performance computing clusters. Specifically, we use a
general term “node ¢” to represent the hardware for executing
classifier ¢ in the classification cascade. Depending on the
system implementation, a “node” may refer to various types of
physical hardware: a physical server in large computing cluster
[10] or a single core on a heterogeneous multicore processor
[16].

We denote the processing speed of node i for executing
classifier 7 by z; € &;, where S; is the set of available
discrete processing speeds, measured in terms of instructions
per second. For notational convenience, we use the vectorial
expression x = (21, xq, - ,xy) Wherever applicable. Thus,
the average processing time of stage ¢ is given by w; /x;, where
w; is the average number of CPU instructions corresponding
to classifier . For stage 7, we relate the processing speed to en-
ergy consumption via an energy function e; = e;(x;). Here, we
explicitly include the subscript ¢ in the energy function e;(x;)
to emphasize that the energy consumption may be different
even though two different stages ¢ and j are executed using
the same physical hardware at the same speed, because each
stage may involve different types of classification operations
that exhibit different power-performance characteristics [4],
[22]. Without loss of generality, we consider that a faster node
incurs more energy for a given classification stage, i.e., e;(z)
is increasing in z, since otherwise the problem becomes trivial:
a slower node will not be used due to its lower performance
and higher energy consumption. We further assume that, for
each stage of classification ¢ = 1,2,--- N, the energy
consumption e;(x) is convex in the processing speed x, which
has been widely considered and validated extensively by both
analytical models and practical measurement studies (e.g.,
[12], [17]).

We express the average energy consumption of the stream
mining system as follows

N n N

ex) => "> ej@)| fa=D_ 1= Ful-en(an), (1)

n=1 | j=1 n=1

which can be briefly explained as follows. The term
“E?Zl e;j(x;)” represents the energy consumption of an input
data that is processed by the first n classifiers (with a probabil-
ity of f,), and hence we have the average energy consumption
as SN [2?21 ej(;vj)} - fn. Equivalently, we can rewrite

the average energy consumption as 25:1 [1—Fh_1]-en(xn),
where 1 — F},_; is the probability that classifier n is activated.

Remark: In this paper, we focus on optimizing the nodes’
processing speeds per classifier stage, and do not consider
dynamically adjusting the speeds of classification within a
single classifier stage. Moreover, in the model, we implicitly
assume co-located processing nodes such that the communica-
tion delay incurred by migrating a job from one physical node
to another is negligible compared to the delay requirement.
We shall discuss in Section III-C how to incorporate migration
overheads into our model when this assumption does not hold.

B. Job model

Each stream mining service request is referred to as a
job. As discussed in the previous subsection, a job may be
labeled as “negative” and hence discarded by classifier ¢ with
probability f;. Thus, conceptually, a job has a service demand
of 23:1 w; with probability f;. As in [5], we concentrate
on the processing delay. In other words, there is at most one
job at any time instant such that there is no queueing delay.
In practice, this model captures a lightly-loaded system, a

periodic system (e.g., video stream mining system) where the
jobs arrive periodically with a sufficiently large period, and/or
the scenario in which a stream mining request is submitted or
admitted only upon the completion of an existing request. The
single-job model has been adopted by various studies such as
such as [12], [13].

We use the average delay, which is a widely-employed per-
formance metric [5], to capture the responsiveness of stream

mining. Given the processing speeds x = (21,2, -+ ,ZN),
the average delay can be expressed as
N n W N w
| . f, = 1—F, 4] —=, 2
; 2; f ;[s @

which can be interpreted similarly as we did for (1).

III. MINIMIZING ENERGY WITH MULTIPLE DELAY
CONSTRAINTS

This section presents the proposed DSE algorithm that
chooses the processing speeds to minimize the average con-
sumption subject to the average delay constraint. We first
present the problem formulation and then show how to
compute efficiently the optimal processing speeds. Then, we
extend DSE to address migration overheads and tree-based
classification.

A. Problem formulation

We formulate the energy minimization problem as follows:

P1: mlnz [1—F._1] - en(zn) 3)

N
s.t., Z

z; €8 = {51,1,51‘,2, e

<D, “4)

Yn
Sim), Vi=1,2--- N,(5)

where M is the number of available speeds. The subscript
inS; = {s;1,8.2, - ,8i,m} is to emphasize that the same
processing node may exhibit different speeds on different
classifiers [22].

The input to P1 is the service demand distribution
fi, f2, -+, fn, delay constraint, complexity (or resource de-
mand) of each stage and the energy function, while the output
is the optimal processing speeds x = (z1,22--- ,xn) for
classifiers. Due to the discrete processing speed constraint, the
problem P1 falls into combinatorial programming, which in-
curs an exponential complexity. A simple approach to solving
P1 is: (1) by replacing “z; € S;” with z; € [$; min, Si,max]
and reformulating P1 as a convex problem, we apply standard
convex techniques [33] to solve the relaxed problem, denoted
by P2; and (2) we round the obtained continuous processing
speeds = € [Si min, Si,max] tO the closest value in S; that is
no greater than ;. While this approach automatically satisfies
the delay constraint, the energy consumption may be far from
the minimum [31].

Algorithm 1 Greedy

Algorithm 2 DSE

1: Initialize ; = Si min, fort =1,2,--- | N

2: while x # Smax and constraint (4) is not satisfied do
3 Q<—{/L“i:1,27"'7Naxi<5i,max}

4 Az; « argminges, (z > z;), Vi=1,2,--- |N
5: i =argminsco {e;(Az;) —ei(z:)}

6 Ti < A.’L’Z

7: end while

8: return x* =x

B. Dynamic Scheduling for Energy — DSE

Below, we develop an efficient branch-and-bound algorithm
in the following four steps to yield a sub-optimal solution.

1) Decomposition. We first decompose P1 into M sub-
problems, indexed by P2;,P2,5,--- P2,,. Each sub-problem
P2, is expressed as follows:

P2, : mlnz [1— Fp_1]-en(zn) (6)
. N _
s.t., Z :7” <D, (7)
r, €8, Vi=2,3---,N,)
T1 = S1,m,)
where we fix 7 = s1,, as the m-th supported process-

ing speed for classifier 1 and minimize the average energy
x\{x1}.! If we can solve all the M sub-problems and select
one sub-problem (say, P2,,) that yields the minimum energy,
then, combined with x; = s ,,, we obtain the optimal pro-
cessing speeds x*. Each sub-problem itself is an combinatorial
problem and can be further decomposed into multiple smaller
problems by fixing the processing speed for another classifier.
Therefore, the original problem can be solved recursively,
which serves as the basis for applying the branch-and-bound
technique.

2) Lower and upper bounds. By relaxing the processing
speed constraint “x; € S;” with “z; € [$; min, Simax|” and
solving the relaxed problem P2 using convex optimization
[33], the resulting energy consumption is obtained over a
relaxed constraint. This is, therefore, a lower bound on that
of the original problem P1.

To find an upper bound on the minimum energy in P1,
we propose a greedy algorithm (see Algorithm 1), which
never outperforms the optimal solution to P1 in terms of
the energy consumption. In the greedy algorithm, all the
processing speeds are initially set to their minimum values
(i.e., T; = Si,min, for ¢ = 1,2,.--- | N). If the average delay
constraint is not satisfied, we greedily increase the processing
speed such that the total energy increase is minimum (i.e.,
Line 3-6 in Algorithm 2). Repeat this process until all the
processing speeds increase to the maximum or the average
delay constraint is satisfied.

Next, we define the following notations that facilitate the al-
gorithm description: LB(X) is the minimum energy obtained
by solving P2 with the constraint X as its additional input;

'We can also fix the processing speed for any classifier other than 1.

1: Initialize: ¢ « 0, Xy < O, set of leaves of a single-node tree
S — Xo
: Compute lower and upper bounds: Lo = LB(Xp) and Uy =
UB(X))
: while U; — L; > € or ¢ < IterateMax do
Choose the splitting node: X* = argminxes LB(X)
Choose the processing speed to fix: n = next(X™)
Generate M new constraint sets
Xl =X U{zn =51}, Y =
7. Update the set of leaves:
S\ pu{rlyu-u{xly
8: Compute upper and lower bounds for M new constraint sets:
LB(XY,), -, LB(XM,), UB(XY,), - UB(XM,)
9: Update global upper and lower bounds:
L;+1 = minyes LB(X) and U;11 = maxxes UB(X)
10 1141
11: end while
12: Choose the best constraint set thus far:
X = minxes UB(X)
13: return x* achieved by the greedy algorithm (i.e., Algorithm 1)
with X as the constraint

[\

AN

= X" U{acn —S]u}

UB(X) is the energy obtained by using the proposed greedy
algorithm (i.e., Algorithm 1) with the additional constraint
X as its additional input. The definitions can be explained
using the following example example: if X = {1 = s1.m}
where 1., € S1, we compute LB(X) by solving P2 with
the additional constraint of z; = s1,,. We use LB(Q)
and UB(@) to represent the energy obtained by solving the
original problem P2 and by using the greedy algorithm without
additional constraints, respectively.

3) Fixing rule. The branch-and-bound algorithm requires a
“fixing” rule, which determines the next decision variable to
be fixed. We define the “fixing” rule as follows: next(X) is
the classifier index that the proposed greedy algorithm selects
next to update the processing speed given the constraint set
X as the input. In essence, we select and fix the processing
speed for a classifier which, if increased to the next bigger
value out of the supported processing speeds, results in the
minimum energy increase.

4) Algorithm. We describe our branch-and-bound algorithm
in Algorithm 2. The parameter IterateM ax is the maximum
number of iterations selected based on the desired accuracy
and the problem scale. The algorithm generates a tree, where
each node represents a constraint set and all the leaf nodes
are stored in the set S. The algorithm begins with an empty
constraint set Xy = & as the parent node of the tree. In each
iteration, we choose a leaf node and split it into new leaf
nodes, each of which represents a new constraint set with an
additional processing time x; fixed to be one of the permissible
values in S;. In the splitting process (i.e., Line 4-7), we split
the node that corresponds to the constraint set resulting in the
minimum energy (obtained by solving P2 with an additional
constraint specified by the node to be split). Besides the
maximum number of iterations, another stopping criterion is
the difference between the global upper and lower bounds.
Specifically, if U, — L; is no greater than a sufficiently small
positive number e, it is guaranteed that the solution obtained
using the greedy algorithm with an appropriate constraint set is

suboptimal. Therefore, by increasing IterateMazx and using
a sufficiently small positive number €, DSE yields a close-to-
optimal solution, while the global optimality can be achieved
at the expense of increasing the computation complexity. The
analysis of convergence rate is beyond the scope of our paper,
and interested readers are referred to [31].

C. Extension

In this subsection, we provide a discussion on how to extend
the preceding analysis.

1) Migration overheads: Migrating a stream mining job
from one processing node to another (e.g., from one core
to another in a multi-core mobile device) may incur context
switch and hence an overhead: a certain amount of time is
wasted during which no nodes can process the job, although
the overhead is typically small compared to the delay con-
straint, as confirmed by several prior studies [12], [21]. Here,
we briefly describe how to address the migration overhead. If
classifier n and classifier (n + 1) are processed on different
nodes, let 7,0 be the migration overhead of migrating a job,
forn = 1,2,--- | N — 1, quantified in terms of the wasted
time. In the worst case where a job migrates (n — 1) times,
the average delay constraint becomes

N w N-1
Z[l_anl}'?:—’_ZTiOéD'
n=1 i=1

Thus, we can reformulate the energy minimization problem by
replacing the delay constraint (4) with (10) to conservatively
account for the migration overheads.

(10)

2) Classification tree: Section II models a cascade classifier
chain for single-concept detection. Now, we extend our model
to a classification tree. We follow the same notations as in
Section II and still index the classifiers from ¢ = 1,2,--- | N,
although they may not follow a single chain. We consider
that the classification tree consists of L different class labels
indexed by | = 1,2,---, L. There is a unique path from the
data entry point to each label [(i.e., from the parent node
of the tree to each leaf node). We denote by C; the set of
classifiers along the path from the data entry point to label [,
and by f; the probability that an input data is classified into
label [. Thus, if an input data is classified into label [, the
energy consumption is » ;. e;(x;) and the processing delay
is Zz‘ecl ’;’—, where z; is the processing speed for the node
executing classifier ¢. Therefore, we can formulate the energy
minimization problem for a classification tree as

L
P3: minz lz ei(wi)] fi
* 121 Liea
L
3 [z 1“] <b.
i=1 Liec; ™"
x, €8 = {Si,la e

(1)

s.t., 12)

751,M}7VZ:]-7 7N7(13)

which can be solved using the same approach as P1.

Fig. 2. Examples images from face detection database [29].

IV. PERFORMANCE EVALUATION

In this section, we validate our analysis by performing
experiments using a real-world stream mining application.
We first describe our experimental setup that involves face
detection based on the well-known Viola-Jones classifier chain
[4]. We then show that, by varying the processing speeds using
DSE, the average energy consumption can be reduced by up
to 50% while satisfying the delay requirement compared to
the benchmark that does not dynamically choose processing
speeds. We also conduct sensitivity studies and show the
robustness of DSE.

A. Experimental setup

We first briefly introduce the stream mining application,
then describe our implementation, and finally show the profil-
ing results for the Viola-Jones classifier tree.

1) Application: To assess the performance of DSE, we con-
duct a real-world stream mining experiment for the application
of face detection. Specifically, our experimental setup is built
upon the basis of the well-known Viola-Jones algorithm [4],
which has been extensively applied for real-time face detection
on a variety of devices ranging from mobile terminals [24],
[25] to wireless visual sensors [26].

In brief, the Viola-Jones algorithm scans each incoming
video frame with a search window of W x W pixels (with
W = 10 for our experiments), searching for particular human-
face features. If a sufficient amount of such features is suc-
cessfully detected, the specific window is classified as a face.
Instead of operating directly on pixel values, the algorithm
relies on simple Haar-like features that resemble Haar basis
functions [27]. These features can be computed very efficiently
using an intermediate representation of the image, referred to
as integral image [4]. Constructing features in this fashion
results in a large feature set associated with each sliding
window. Although each feature is efficiently computed, the
manipulation and evaluation of such an over-complete set is
prohibitively expensive. Hence, the feature set is restricted to
a small number of critical features that are effectively trained.
Selection and training are performed offline via the use of the
boosting machine learning algorithm AdaBoost [28].

In order to boost the classification performance while
constraining the computational overhead, Viola and Jones
employed a cascade classifier architecture [4] consisting of
multiple stages of filters forming a classifier chain, as shown in
Fig. 1. According to the cascaded principle, simple classifiers
are first tested to reject the majority of sliding windows prior
to the execution of more complex classifiers that achieve
low false positive rates. Each time the sliding window shifts,
the new region within the sliding window will go through
the cascade classifier stage-by-stage. Equivalently, the sliding
window can first slide throughout the entire image and call
respective classifiers for one stage before moving to the next
stage; after moving a new stage, classifiers will not be called
when the sliding window shifts to those regions labeled as
“Negative” by prior stages. While theoretically speaking these
two approaches are equivalent, we choose the latter one, be-
cause processing speed changes are only possibly needed after
the sliding window scans through the entire image and moves
to a new classification stage, whereas the former method may
incur processing speed changes for each region the sliding
window shifts to.

On account of the aforementioned cascaded classification,
the Viola-Jones method has a very high accuracy rate. In
particular, false negative rates of less than 1% and false
positive rates of less than 40%, have been reported, even with
a simple filter setup, while the full system benefits from up to
N = 32 cascaded filters.

2) Implementation: In our C implementation of the Viola-
Jones algorithm, we adhere to a multi-scale representation of
each video frame (i.e., image pyramid). In this way, the face
detection can be scale-invariant, thereby allowing for detecting
large and small faces with the same sliding window size (being
10 x 10 pixels in our implementation). We consider a 25-
stage (N = 25) cascade classifier chain, with each stage
comprising multiple Haar filters ranging from 9 to 211. Within
a particular stage, the image region will go through these filters
in parallel. The output of these filters will be summed up and
compared against a per-determined threshold, based on which
the decision of the detection is made.

We run our implementation of the Viola-Jones algorithm
over the images of the well-known Face Detection Database
(FDDB) [29]. The database contains annotations for 5171
faces in a set of 2845 images taken from the Faces in the Wild
data set. Two example images in the database are depicted in
Fig. 2. Executables written in C and compiled with the gcc
compiler (-O3, full optimization) are run on: two different Intel
Xeon cores of the Intel 31xx and 56xx families, one AMD
processor (Athlon II P320), and the IMGTEC minimorph
board (Meta HTP221 GP processor). The Intel and AMD
processors comprise common choices for multicore high-
performance and desktop architectures today, while IMGTEC
minimorph boards can form a low-energy cloud-computing
cluster when interconnected via their embedded WiFi mesh
connectivity. In our study, the term “processing node” refers
to one of the aforementioned Intel, AMD and IMGTEC cores.

Our experiment environment is based on the CentOS linux
operating system (and the default Linux OS of the mini-
morph boards). Given that there is a lack of a commercially-

available heterogeneous system that includes all these cores
in a single computing environment, following the commonly-
used approach in the literature (e.g., [21]), we emulate a
heterogeneous processor by: (i) repeatedly generating input
streams from our data set and classifying them; (ii) mea-
suring the processing time (delay) and energy consumption
on each processor; and (iii) substituting the measured delays
and energy consumption with projected delays and energy
consumption, as though the input streams are processed by a
heterogeneous system that we desire to have in our experiment.

3) Profiling result: The frequency (i.e., the number of times
each classifier is accessed) and the average execution time
per stage are collected. Energy consumption estimates per
classification stage are derived from the measured execution
time and real-time power estimates. These estimates are ob-
tained by retrieving real-time operating frequency information
from the Linux Hardware Abstraction Layer (HAL) and the
corresponding power values provided by the manufacturers.

Table I reports the results for each one of the 25 classifi-
cation stages in the cascaded architecture illustrated in Fig. 1,
averaged over all images in the database and executed by the
four aforementioned processors (Intel, AMD and IMGTEC).
The classifier frequency results shown in Table 1 corroborate
the principle of the Viola-Jones method. Specifically, in initial
stages, classifiers are called more frequently, while classifiers
lying deep in the cascade are executed fewer times. In addition,
one may observe that later-stage classifiers are more complex
(i.e., they involve higher execution times per invocation) as
they evaluate more Haar-like filters (i.e., up to 211 filters)
than earlier-stage classifiers. It is also worth observing that
the measurements of different stages do not scale exactly
proportionally across different machines. This is due to the
variability of the processing performed by each classification
stage (i.e., different numbers and types of Haar filters per
stage).

Now, we discuss how to apply our model to the Viola-
Jones face detection algorithm. Table I provides the following
information: the energy consumption and processing time for
each classification stage on each different processing node.
Hence, the energy function e;(x) is available (for the given
processing nodes), while the (normalized) processing speed
x; € 8 = {si1, -+ ,si,m} can be readily obtained using
the inverse of execution time for each classification stage <.
To apply DSE, we also need the service demand distribution
information f; (i.e., the probability that a job is completed
after passing through ¢ classification stages), which can be
obtained from the “Frequency” column of Table I. As can be
seen, the number of accessed classifiers varies significantly
across different stages. This is because, during the execution,
the sliding window will filter out those regions with little
chance of having faces and, hence, classifiers are activated
less frequently in later stages. Here, we focus on the energy
consumption per classification over the entire image, rather
than each individual region covered by one sliding window.

TABLE 1
AVERAGE FREQUENCY, EXECUTION TIME AND ENERGY CONSUMPTION PER STAGE IN THE VIOLA-JONES CASCADE OF FIG. 1, EXECUTED ON DIFFERENT
CORES.

Intel Xeon E31225@3.2GHz

Intel Xeon X5690@2.0GHz

AMD Athlon II P320@800MHz IMGTEC MetaHTP221GP

Stage Frequency Time (ms) Energy (J) Time (ms) Energy (J) Time (ms) Energy (J) Time (ms) Energy (J)
1 456556 158.140 37.954 214.736 32.762 384.728 26.931 681.131 17.028
2 44823 23.389 5.613 30.918 4.717 53.786 3.765 82.425 2.061
3 12222 9.545 2.291 12.735 1.943 22.013 1.541 29.135 0.728
4 3880 3.634 0.872 4.822 0.736 8.308 0.582 10.542 0.264
5 2004 2.871 0.689 3.794 0.579 6.507 0.455 7.459 0.186
[§ 975 1.436 0.345 1.883 0.287 3.214 0.225 3.670 0.092
7 531 0.932 0.224 1.245 0.190 2.122 0.149 2.328 0.058
8 352 0.669 0.160 0.903 0.138 1.541 0.108 1.643 0.041
9 273 0.614 0.147 0.817 0.125 1.400 0.098 1.465 0.037
10 204 0.501 0.120 0.673 0.103 1.147 0.080 1.173 0.029
11 146 0.385 0.092 0.520 0.079 0.898 0.063 0.907 0.023
12 122 0.370 0.089 0.495 0.075 0.869 0.061 0.853 0.021
13 102 0.343 0.082 0.456 0.070 0.801 0.056 0.783 0.020
14 91 0.327 0.079 0.437 0.067 0.771 0.054 0.750 0.019
15 84 0.309 0.074 0.411 0.063 0.727 0.051 0.702 0.018
16 79 0.281 0.068 0.373 0.057 0.663 0.046 0.636 0.016
17 73 0.318 0.076 0.422 0.064 0.745 0.052 0.705 0.018
18 69 0.293 0.070 0.388 0.059 0.688 0.048 0.653 0.016
19 66 0.291 0.070 0.388 0.059 0.698 0.049 0.653 0.016
20 59 0.307 0.074 0.408 0.062 0.735 0.051 0.677 0.017
21 58 0.310 0.074 0.409 0.062 0.728 0.051 0.683 0.017
22 56 0.270 0.065 0.358 0.055 0.649 0.045 0.600 0.015
23 52 0.280 0.067 0.374 0.057 0.661 0.046 0.622 0.016
24 49 0.274 0.066 0.367 0.056 0.649 0.045 0.607 0.015
25 47 0.251 0.060 0.335 0.051 0.596 0.042 0.552 0.014
B. Experimental Results 2 = 5
3 —DSE zc
This section evaluates the performance of DSE? and demon- %50 - - DSE-cont Ao
strates its effectiveness in reducing the average energy con- §’40 12 3 4 5 6111225
. w
sumption in comparison with a benchmark, i.e., FIX. We also §3° _____________ ag
demonstrate the robustness of DSE when switching overheads 200 el sc
i i i = i Aol | [[]
exist and certain modeling parameters are not accurate. Unless 5 550 850 1100 1200 1700 T B BT

otherwise stated, all the average values are per image. Before
showing the results, we describe the benchmark algorithm as
follows.

FIX: FIX chooses a fixed processing node to minimize the
energy consumption subject to an average delay requirement
without dynamically varying the processing nodes across
different classification stages.

We choose FIX as our benchmark because it corresponds
to the optimal scheduling algorithms over heterogeneous mul-
ticore processors subject to average delay requirement [14],
[21] that assume a core/speed mode to exhibit a constant
performance (i.e., constant processing cycles and power con-
sumption) throughout the execution of the classifier chain
within an input (i.e., an image or a set of images). Finally, we
remark that our comparisons do not include speed changing
within a classification stage (e.g., using DVFS [12], [13]),
because such approach can be applied under both the proposed
DSE and FIX within each classification stage. However, doing
so requires the probability distribution of execution time of
each classification stage [12], which will further increase the
implementation complexity without further highlighting the

2As classifiers are much less frequently accessed in the last few classifica-
tion stages, we do not always allow varying processing nodes stage by stage.
In this study, DSE is only allowed to change processing nodes after stages
1,2,3,4,5,11 (i.e., we group stages 6—11 and stages 12-25 into two combined
stages).

Average Delay (ms) Classifier Index

(@ (b)

Fig. 3. (a) Energy consumption versus average delay. (b) Selection of
processing speeds over classification stages subject to 500ms delay constraint.
A: Intel Xeon E31225. B: Intel Xeon X5690. C: AMD Athlon II P320. D:
IMGTEC MetaHTP221GP.

[$)]
=]

,;
o
)
:
U<
=X
>
|72}
=
(0]
Q.
o
Q.
=1
w
3
,
o
3
3
X

Average Energy (Joule)
Average Energy (Joule)
»

M

8
© Measured Points .
= = =Fitting

[}
o
‘?
Y
o
Y

n
=1
©
.
.

(=]
L)
0y
.
0y

o
o

©
©

3 5 7 3 5
Normalized Speed Normalized Speed

(@ (b)

Fig. 4. Energy function. (a) Stage 1: eq(x) = 3.80 * z + 8.43. (b) Stage 2:
ea2(z) = 0.75 x = + 0.61.

advantage of dynamic scheduling using DSE over FIX.

1) Comparison between DSE and FIX: To begin with, we
show the comparison between DSE and FIX in terms of energy
consumption given various delay constraints. Fig. 3(a) shows
that DSE achieves up to 50% energy saving compared to
FIX by dynamically choosing the processing nodes across
classification stages. This is because, to meet a certain delay

constraint, a fixed processing node over the entire course of
classifications may be faster than needed and hence unneces-
sarily waste energy. On the other hand, DSE can dynamically
select processing nodes that are just fast enough to meet
delay constraints without wasting more energy. Fig. 3(b)
illustrates the choices of processing nodes over classification
stages subject to an average delay constraint of 500ms. While
FIX always chooses the medium-speed processing node (i.e.,
AMD Athlon IT P320800MHz), DSE can dynamically trade
processing time for energy yet still satisfy the desired delay
constraint. Note that, when the delay constraint is very strin-
gent, the fastest processing nodes have to be used throughout
all classification stages, and certainly DSE and FIX are the
same in this case due to limited choices of processing nodes.
Similarly, DSE and FIX are also equivalent when the delay
constraint is very loose.

As a reference, Fig. 3(a) also shows the minimum energy
consumption by DSE under processing speeds that can be
continuously chosen between the fastest and slowest cores in
Table I. The new curve is labelled as DSE-cont. Due to the lim-
ited number of measurements, we extend the domain of mea-
sured energy function e;(x) to the interval z; € [$; min, Si,max]
using data fitting based on mean square errors. Fig. 4 illustrates
the fitted energy function for the second and third classification
stages, where we define the processing speeds with respect
to the slowest processing node. With continuous processing
speeds (but between the fastest and slowest cores available in
our study), the energy consumption by DSE is clearly a lower
bound on any attainable value in practical systems. With more
processing nodes available, we expect that DSE will achieve
an energy consumption closer to the lower bound.

2) Switching overhead: We now study the impact of
switching/migration overheads (e.g., context switch) incurred
when processing nodes are changed during classification.
Here, we model the switching overhead as a certain amount
of time that is wasted during which no processing nodes can
process the job. While switching overheads cannot be possibly
completely eliminated, they are not major issues for “co-
located” processing nodes (e.g., sub-milliseconds for multicore
processor in an indexing server of search engine [21], a
few milliseconds when switching cores for ARM big.LITTLE
architecture on a mobile system [14]). When switching over-
heads are considered, the energy consumption of DSE will
certainly increase. Nonetheless, Fig. 5(a) demonstrates that
with a switching overhead of 10ms, DSE still outperforms
FIX in terms of energy consumption subject to various delay
constraints. To further strengthen this point, we fix the average
delay constraint as 600ms and show the energy comparison in
Fig. 5(b) with various switching overheads. We see that DSE
yields energy savings compared to FIX under the same delay
constraint for switching overheads of up to 50ms, which is
fairly large in practical systems [14]. For practical values (e.g.,
in the order of a few milliseconds for heterogeneous multicore
processors [14], [21]), DSE is fairly robust against switching
overheads.

3) Model inaccuracy: In practice, it may not be possible
to perfectly obtain the modeling parameters (e.g., processing
speed, service demand distribution, etc.). Here, we focus

D
=1
(4]
=]

I ===FIX = -==FIX
250 == DSE w/o overhead 245 - = DSE w/o overhead
2 = DSE w/ overhead 2 = DSE w/ overhead
340 340
[} [
i i
o 30 o35
% %
g 20 g 30
1 2
800 500 800 1100 1400 1700 50

0
Delay Threshold (ms) Migration Overhead (ms)

(@) (b)
Fig. 5. Impact of switching overhead. (a) Energy consumption under various

delay constraints with a switching overhead of 10ms. (b) Energy consumption
under various switching overheads with an average delay constraint of 600ms.

6110 60 FIX
Actual) o
EEStimated § 50k . |=—DSE w/ prediction error
2 + |===DSE w/o prediction error
34 > %
<] 540 Y
[} [}
& &
9] 30
T2 5
o
@ 20
>
<
0 1 E
2 3 4 5 00 500 800 1100 1400 1700
Classifier Index Delay Threshold (ms)
(a) (b)
Fig. 6. Impact of model inaccuracy. (a) Actual and estimated frequencies

of classifier access in stages 2-5 (b) Energy consumption versus delay
constraints.

on imperfect estimation of frequencies that classifiers are
accessed in each classification stage. This is a major source
of model inaccuracy for face detection applications, because
many factors, such as sizes of future images and how many
faces they have, will affect the values of frequencies. Equiva-
lently, we can view the frequencies as a reflection of the prob-
ability that classifiers are accessed for each sliding window.
Moreover, inaccurate frequencies will also cause inaccurate
energy consumptions and processing times per classification
stage. We dynamically choose processing nodes using DSE
given inaccurate frequencies but still use the actual frequencies
when calculating the average energy. Fig. 6(a) shows the
actual frequencies of classifiers accessed and their estimates
for classification stages 2—5 (by adding 30% random noises).
Despite the inaccurate estimate of frequencies, Fig. 6(b) shows
that DSE still saves energy compared to FIX under various
delay constraints. Moreover, it shows that even with inaccurate
frequencies, the energy consumption of DSE is fairly close to
that with perfect knowledge of frequencies, demonstrating the
robustness of DSE against model inaccuracy.

We also conduct other sensitivity studies such as inaccurate
energy-performance profiles. The results are similar and hence
omitted for brevity.

V. RELATED WORKS

Our research lies at the intersection of real-time stream
mining optimization and energy-efficient computer systems.
We review the related works in the following aspects.

e Stream mining optimization: Improving data mining algo-
rithms and optimally configuring the classifier (e.g., topology,
operation point selection) are both effective approaches to

improving the stream mining performance [5]. Another impor-
tant line of research on stream mining optimization relies on
processing resource (e.g., CPU, memory, etc.) allocation and
load shedding but often without considering responsiveness
requirement (see [7]- [9] and references therein).

o Energy-efficient computing: Recently, heterogeneous
hardware systems, such as heterogeneous multicore processors
[16] and heterogeneous clusters [10], have been shown as an
appealing architecture for energy saving. In such a system,
high-performance but energy-consuming components are com-
bined with low-performance but energy-efficient ones, and a
key technique to realize the benefit of energy efficiency is of
“job mapping”. For example, with predicted service demand,
incoming jobs are scheduled to the most “appropriate” core
[15], [16], and with known job characteristics, complementary
job allocation can be applied to maximize the serve utilization
while avoiding resource bottlenecks (e.g., memory-intensive
jobs and CPU-intensive jobs are allocated to the same server
[11], and conversely, I/O-bound jobs are allocated to energy-
efficient servers while CPU-bound jobs are allocated to high-
performance servers [10]). Nevertheless, these mapping tech-
niques do not address the delay requirement that is important
for stream mining [5], and they are essentially equivalent to
FIX without dynamically varying the processing nodes (i.e.,
job migration) during a job’s execution. Prior studies have
exploited dynamic migration for energy saving subject to max-
imum delay constraint in different contexts such as DVFS [12],
[13] and heterogeneous multicore processor [21]. However, a
critical assumption in these studies is that all the phases of
a job (i.e., classification stages in our study) have the same
energy function; in contrast, different classifiers have different
characteristics in terms of CPU/memory demand, exhibiting
diverse energy functions as shown in Fig. 4. Moreover, these
studies [12], [13], [21] cannot be applied to classification trees.

e Others: Considering large-scale MapReduce computing,
[20] proposes to reserve a portion of the servers for processing
delay-sensitive jobs, leaving the remaining servers to run
at low power states for processing delay-insensitive jobs to
achieve energy efficiency. [18] exploits the inherent parallelism
and proposes to apply MapReduce on a multicore server to
speed up machine learning algorithms. This work has been
extended in various directions (e.g., [19] exploits a CPU-
GPGPU heterogeneous platform to parallel exact inference
to speed up the computation), but algorithm speedup is the
focus without addressing energy efficiency. Our approach is
complementary to all the above approaches in that it can be
applied on top of them to achieve energy efficiency.

VI. CONCLUSION

In this paper, we investigated energy-efficient design for
delay-sensitive stream mining systems from a scheduling al-
gorithmic perspective. We propose a novel algorithm, called
DSE, to optimally determine the processing speed for each
classifier to minimize the average energy consumption while
satisfying the average delay constraint. The key intuition of
DSE is that processing nodes should be dynamically chosen
to provide just enough computing resources for minimizing

energy while meeting the delay requirement. We built a
face detection system based on Viola-Jones algorithm and
conducted extensive simulation studies to validate DSE. The
results showed that compared to the static approach that
does not exploit hardware heterogeneity, DSE can reduce the
average energy consumption by up to 50% given the same
delay requirement. We also demonstrated the robustness of
DSE in various scenarios.

REFERENCES

[1] S. Lakshminarasimhan, P. Kumar, W.-K. Liao, A. Choudhary, V. Kumar,
and N. F. Samatova, “On the path to sustainable, scalable, and energy-
efficient data analytics: Challenges, promises, and future directions,”
IGCC, 2012.

[2] A. Berl, E. Gelenbe, M. Di Girolamo, G. Giuliani, H. De Meer, M.-
Q. Dang, and K. Pentikousis, “Energy-efficient cloud computing,” The
Computer Journal, vol. 53, no. 7, pp. 1045-1051, 2010.

[3] S. K. Tasoulis, C. N. Doukas, V. P. Plagianakos, and 1. Maglogiannis,
“Statistical data mining of streaming motion data for activity and fall
recognition in assistive environments,” Neurocomput., no. 107, pp. 87-
96, May 2013.

[4] P. Viola and M. J. Jones, “Robust real-time face detection,” International
Journal of Computer Vision, vol. 57, no. 2, pp. 137C154, 2004.

[5] R. Ducasse, D. S. Turaga, and M. van der Schaar, “Adaptive topologic
optimization for large-scale stream mining,” /[EEE J. Sel. Topics Signal
Process., vol. 4, no. 3, pp. 620-636, June 2010.

[6] B. Foo and M. van der Schaar, “A distributed approach for optimizing
cascaded classifier topologies in real-time stream mining systems,” IEEE
Trans. Image Process., vol. 19, no. 11, pp. 3035-3048, Nov. 2010.

[7] B. Babcock, S. Babu, R. Motwani, and M. Datar, “Chain: Operator
scheduling for memory minimization in data stream systems,” ACM
SIGMOD, 2003.

[8] Y. Chi, H. Wang, and P. S. Yu, “Loadstar: Load shedding in data stream
mining,” VLDB, 2005.

[9] S. Seshadri, V. Kumar, B. Cooper, and L. Li, “A distributed stream query
optimization framework through integrated planning and deployment,”
IEEE Trans. Parallel Distrib. Syst., vol. 20, no. 10, pp. 1439C1453, Oct.
2009.

[10] N. Yigitbasi, K. Datta, N. Jain, and T. Willke, “Energy efficient
scheduling of MapReduce workloads on heterogeneous clusters,” Green
Computing Middleware, 2011.

[11] W. Xiong and A. Kansal, “Energy efficient data intensive distributed
computing,” IEEE Data Eng. Bull., 2011.

[12] J. R. Lorch and A. J. Smith, “Improving dynamic voltage scaling
algorithms with PACE,” ACM Sigmetrics, 2001.

[13] R. Xu, C. Xi, R. Melhem, and D. Moss, “Practical PACE for embedded
systems,” EMSOFT, 2004.

[14] Y. Zhu and V. J. Reddi, “High-performance and energy-efficient mobile
web browsing on big/little systems,” HPCA, 2013.

[15] J. Chen and L. K. John, “Efficient program scheduling for heterogeneous
multi-core processors,” DAC, 2009.

[16] P. Greenhalgh, “Big.little processing with arm cortex.-al5 & cortex-a7.”
ARM Whitepaper, 2011.

[17] A. Gandhi, M. Harchol-Balter, and C. L. R. Das, “Optimal power
allocation in server farms,” ACM Sigmetrics, 2009.

[18] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, A. Y. Ng, and K.
Olukotun, “MapReduce for machine learning on multicore,” NIPS, 2007.

[19] H. Jeon, Y. Xia, and V. K. Prasanna, “Parallel exact inference on a
CPU-GPGPU heterogenous system,” ICPP, 2010.

[20] Y. Chen, S. Alspaugh, D. Borthakur, and R. Katz, “Energy efficiency for
large-scale MapReduce workloads with significant interactive analysis,”
EuroSys, 2012.

[21] S. Ren, Y. He, S. Elnikety, and K. S. McKinley, “Exploiting processor
heterogeneity in interactive services,” USENIX ICAC, 2013.

[22] R.Kotla, A. Devgan, S. Ghiasi, T. Keller and F. Rawson, “Characterizing
the impact of different memory-intensity levels,” IEEE Workshop on
Workload Characterization, 2004.

[23] V. Balakrishnan, S. Boyd, and S. Balemi, “Branch and bound algorithm
for computing the minimum stability degree of parameter-dependent
linear systems,” Intl. J. of Robust and Nonlinear Control, vol. 1, no.
4, pp. 295-317, Oct.-Dec. 1991.

[24] E. M. Ciaramello and S. S. Hemami, ‘“Real-time face and hand detection
for videoconferencing on a mobile device,” Workshop on Video Process-
ing and Quality Metrics for Consumer Electronics, 2009.

[25] J. Ren, N. Kehtarnavaz, and L. Estevez, “Real-time optimization of
viola-jones face detection for mobile platforms,” IEEE Dallas Circuits
and Systems Workshop, 2008.

[26] M. Camilli and R. Kleihorst, “Demo: Mouse sensor networks, the smart
camera,” in ICDSC, 2011.

[27] C. P. Papageorgiou, M. Oren, and T. Poggio, “A general framework for
object detection”, ICCV, 1998.

[28] Y. Freund and R. E. Schapire, “A desicion-theoretic generalization of
on-line learning and an application to boosting,” Springer Computational
Learning Theory, pp. 23C37, 1995.

[29] V. Jain and E. Learned-Miller, “Fddb: A benchmark for face detection
in unconstrained settings,” UMass-Amherst Tech. Rep. UM-CS-2010-009,
2010.

[30] T. Mitchell, Machine Learning, New York: McGraw-Hill, 1997.

[31] S. Boyd, A. Ghosh, and A. Magnani, Branch and Bound Methods, http:
/Iwww.stanford.edu/class/ee3920/bb.pdf, 2003.

[32] L. A. Barroso, J. Clidaras, and U. Hoélzle, The Datacenter as a
Computer: An Introduction to the Design of Warehouse-Scale Machines,
Morgan & Claypool Publishers, 2013.

[33] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computa-
tion: Numerical Methods, Belmont, MA: Athena Scientific, 1989.

