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Abstract—Due to the high bandwidth requirements and strin-
gent delay constraints of multi-user wireless video transmission
applications, ensuring that all video senders have sufficient trans-
mission opportunities to use before their delay deadlines expire
is a longstanding research problem. We propose a novel solution
that addresses this problem without assuming detailed packet-
level knowledge, which is unavailable at resource allocation time
(i.e. prior to the actual compression and transmission). Instead,
we translate the transmission delay deadlines of each sender’s
video packets into a monotonically-decreasing weight distribution
within the considered time horizon. Higher weights are assigned
to the slots that have higher probability for deadline-abiding
delivery. Given the sets of weights of the senders’ video streams,
we propose the low-complexity Delay-Aware Resource Allocation
(DARA) approach to compute the optimal slot allocation policy
that maximizes the deadline-abiding delivery of all senders. A
unique characteristic of the DARA approach is that it yields a
non-stationary slot allocation policy that depends on the alloca-
tion of previous slots. This is in contrast with all existing slot allo-
cation policies such as round-robin or rate-adaptive round-robin
policies, which are stationary because the allocation of the current
slot does not depend on the allocation of previous slots. We prove
that the DARA approach is optimal for weight distributions that
are exponentially decreasing in time. We further implement our
framework for real-time video streaming in wireless personal
area networks that are gaining significant traction within the
new Internet-of-Things (IoT) paradigm. For multiple surveillance
videos encoded with H.264/AVC and streamed via the Berkeley
openWSN stack implementing the IoT-oriented IEEE 802.15.4e
TSCH medium access control, our solution is shown to be the
only one that ensures all video bitstreams are delivered with
acceptable quality in a deadline-abiding manner.

Index Terms—wireless video sensor networks, resource alloca-
tion, non-stationary policies, IEEE 802.15.4e, Internet-of-Things

I. INTRODUCTION

Multi-user wireless resource allocation for multiple video
bitstream transmitters is a longstanding research problem
[?][?]-[?]. One of the major challenges in such communica-
tions systems is how to allocate transmission resources (i.e.
timeslots) in a manner that allows all video senders to send
sufficient amount of packets prior to their deadline expiration
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Fig. 1. Video streaming over IoT-oriented standards.

and thus ensure sufficient video quality at the receiver side.
This problem is becoming particularly pertinent today with
the emergence of the Internet-of-Things (IoT) and machine-
to-machine (M2M) communications that are expected to bring
a disruptive change in the way people access real-time sensor
data flows across the globe [?]. This is because new standards
such as the IEEE 802.15.4e at the medium access control
(MAC) layer [?] (as finalized in 2012) and 6LoWPAN at the
network layer [?] now pave the way for a unified IPv6-based
network layer between wireless visual sensors and arbitrary
destinations across the Internet (see Figure 1). Within such
a paradigm the challenging part for delay-constrained video
transmission is the IEEE 802.15.4e-enabled wireless personal
area network (WPAN). Such WPANs are based on a central
coordinator that also serves as the gateway to the broader
Internet and is thus called the low power border router (LPBR)
[?]. The functionality of the LPBR is two-fold [?][?]: firstly
to coordinate the timeslots provided to each sensor during the
network active time and secondly to aggregate all received
streams and forward them to the destination IPv6 addresses
[?][?]. Efficient allocation of timeslots to each visual sensor
is crucial to the success of real-time video streaming due to its
high bandwidth requirements and stringent delay constraints.
Moreover, the allocation should be done without detailed
knowledge about the distortion impact and delay deadlines
of each video packet, which tends to be unavailable or overly-
complex to obtain in real time.

In this paper, we propose for the first time an optimal multi-
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user resource allocation framework for delay-constrained
video streaming which is based solely on statistical informa-
tion about the video users’ characteristics, rigorously prove
its optimality and show how it can be applied to multi-camera
video resource allocation in IEEE 802.15.4e WPANs under
the newly-standardized time synchronized channel hopping
(TSCH) MAC [?][?], which allows for synchronization and
contention-free and interference-mitigated transmission with-
out the use of complex collision avoidance mechanisms [?].
Even though we validate our slot allocation solution for this
particular setting, because it provides ways to coordinate users
with delay preferences using only limited information, our pro-
posal is applicable to many other resource allocation problems
in many other settings, such as IEEE 802.11e WLANs, video
streaming over 3G/LTE Cellular networks, etc.

A. Problem Description

The importance of timeslots (in expectation) is highly re-
lated to their position - the earlier the slot becomes available to
a sensor, the more useful is it to its packet transmission since is
provides more laxity for the deadline requirement. To illustrate
this, Figure 2 presents deadline distributions calculated for
four different video bitstreams within the same slotframe
interval (which is set to one second). Within this interval,
these distributions present the sizes of the video bitstream
of each sensor with transmission deadline after the time
marked in the horizontal axis1. The upper-left graph (sensor 1)
demonstrates a sharp peak at t = 0 as it includes an intra (I)
frame, while all other three graphs only include predicted (P)
and bidirectionally predicted (B) frames within the specific
slotframe interval. Evidently, under the strict transmission
deadline of 100 ms, providing MAC-layer timeslots in a round-
robin fashion to these four sensors will not be optimal as,
for example, sensor 1 requires significantly more timeslots
at the first 100 ms of the slotframe (to accommodate the I-
frame deadline) than sensors 2∼4 that have a much smoother
deadline distribution. This indicates that using weights derived
by such deadline distributions will automatically incorporate a
measure of the expected quality of the received video bitstream
corresponding to the slotframe interval under consideration.

B. Contribution and Paper Organization

In this paper we model the value of different MAC-layer
timeslots to visual sensors by assigning weights to slots for
each sensor, which represent the sensors’ discounting of the
value of future transmission opportunities. These weights de-
pend on only some statistical information of the sensors’ video
content, video application requirements and video encod-
ing/decoding techniques (e.g. the H.264/AVC temporal pre-
diction structure) but not the specific packet-level information.
Since earlier timeslots will satisfy sensors’ delay requirements
more easily, the only constraint is that weights are monotoni-
cally decreasing in time. Given the weights of each sensor,

1These results were generated from CIF-10Hz surveillance videos encoded
with the H.264/AVC encoder under: high profile, low-delay IBBP encoding
structure [?], transmission deadline set to 100 ms and intra-frame period of
4 s.
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Fig. 2. Distributions of four video bitstreams from four visual sensors
presenting the size of each video bitstream within the same slotframe (1-
second interval) that has transmission deadline after the marked time.

we propose an efficient approach to perform MAC-layer
resource allocation for multi-camera WPANs, called Delay-
Aware Resource Allocation (DARA). The DARA approach
assigns each sensor with a single index that captures three
important aspects for its resource (i.e. timeslot) allocation: (i)
the distance from the target timeslot allocation; (ii) the benefit
of allocating a timeslot to a sensor; and (iii) the discounted
sum of remaining transmission opportunities for a sensor in
the same slotframe. It allocates the current timeslot to the
sensor with the largest current index and then updates each
sensor’s slot indices. Hence, a sensor with: (i) larger distance
from the target; (ii) a larger current benefit and (iii) fewer dis-
counted remaining transmission opportunities, is more likely
to be assigned with the current timeslot. For exponentially-
decreasing weight distributions that were found to characterize
well the observed deadline distributions of real video traces,
we prove that our approach achieves the optimal performance.
We also show via numerical experiments and real-world video
streaming over the openWSN IEEE 802.15.4e TSCH MAC
testbed [?] that our approach significantly outperforms existing
solutions.

A unique characteristic of the proposed DARA approach is
that it yields a non-stationary slot allocation policy. We define
the notion of a (non-)stationary allocation below.

Definition A deterministic or probabilistic slot allocation
process is stationary if each slot assignment depends only
on the available (finite) set of selection states and the user
preferences and does not depend on time. Otherwise, a slot
allocation is non-stationary.

Examples: Round-robin allocation is stationary and so is
random slot allocation with fixed probability for each slot.
A weighted round-robin allocation, with the weights depend-
ing on the user preferences (e.g. average bitrates and delay
deadlines) but not on time, is also stationary. A random slot
allocation with each slot having time-varying probability of
being assigned to a video sender is non-stationary.

As we shall see, under an appropriate optimization frame-
work, non-stationary allocations can better adapt to the differ-
ent users’ resource requirements over time and hence, yield a
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much better performance [?]. We discuss this in more detail
in the following subsection.

C. Review of State-of-the-art in Video Streaming over Wireless
Networks

Existing wireless video streaming solutions that could po-
tentially fit into IEEE 802.15.4e-enabled networks can be
broadly divided into three categories. The first category en-
compasses single-user video streaming solutions, focusing on
packet scheduling, error protection or cross-layer adaptation
in order to maximize the received video quality [?]-[?].
Such proposals assume exact packet-level information (e.g.
packet distortion impact and packet-level transmission dead-
line) and propose highly-complex rate-distortion optimized
packet scheduling solutions. Since only single-user transmis-
sion scenarios are considered, such proposals are useful after
the multi-sensor resource (i.e. slot) allocation problem is
addressed and can easily interoperate with our proposed slot
allocation solution.

The second category comprises multi-user video stream-
ing, emphasizing on resource allocation amongst multiple
users (i.e. visual sensors in our case) simultaneously trans-
mitting video and sharing the same wireless resources [?]-
[?]. The network utility maximization (NUM) framework and
optimization-based algorithms have been widely studied for
solving wireless multi-user resource allocation problems in
the past few years [?]-[?]. However, these models do not take
into account the different delay preferences of difference users
over time in the video streaming problem. Hence, the resulting
slot allocations are stationary under our definition. Detailed
packet-level information of the video bitstream and channel
state information are incorporated in the optimized resource
allocation solution. In Huang et al [?], a NUM problem is first
solved for multi-user rate allocation based on which time slots
are assigned to users according to the deadlines of their pack-
ets. The optimal multi-user delay-constrained wireless video
transmission framework is formulated as a multi-user Markov
decision process (MUMDP) [?]. The MUMDP then is decom-
posed into local MDPs which can be autonomously solved by
individual users. Even though such proposals provide for joint
throughput and delay based optimization, detailed knowledge
of the video packet contents and their corresponding distortion
impact is required to perform the resource allocation. However,
such solutions are unsuitable within IoT-enabled networks of
sensors, where it is extremely unlikely that: (i) either the
sensors or the LPBR will have access to the individual packet
distortion estimates and delay requirements; (ii) either system
will have the resources necessary to process and derive an
optimal transmission allocation based on such information.

The third category of research works proposes slot alloca-
tion policies for multi-user video transmission without packet-
level knowledge and is instead based on knowledge of only
some statistics, such as the histogram of the delay deadlines
and/or the histogram of bitstream element sizes present within
the resource allocation period of the video streams. Examples
of such policies are the round-robin policy (e.g. weighted-
round-robin or ”water-filling” strategies). For instance, the

sensors can be set to transmit in some predetermined order,
but, within each slot allocation block, each sensor may be
allocated a number of slots that is proportional to its rate
or delay sensitivity. In Dutta et al [?], a greedy policy is
proposed to fairly allocate transmission slots amongst multiple
variable-bitrate streaming videos in order to maximize the
minimum ”playout lead” (i.e. duration of time the video can
be played using only the data already buffered in its client)
across all videos. When the video streams are compressed
using constant-bitrate encoding, the resulting policy essen-
tially reduces to a weighted round-robin policy with weights
corresponding to the video bitrate. In Pradas and Vazquez-
Castro [?], a NUM-based framework is developed to balance
rate-delay performance for video multicasting over adaptive
satellite networks. Video streams are classified into, so-called,
Classes of Services (CoS) with different delay requirements.
The NUM framework then incorporates these requirements by
solving a weighted sum utility maximization problem (where
the weights are based on the delay requirements). After the
video transmission rates are determined, a weighted-round-
robin policy is performed to allocated slots to different video
streams depending on their CoS. Though not exactly the same
because of the different deployment under consideration, this
policy is analogous to a weighted-round-robin policy is which
the weights are determined based on both the rate and the
delay requirements.

Because our proposal falls into this category of approaches
that do not require packet-level information, and to better illus-
trate the differences with prior works, we provide an intuitive
comparison of our resource allocation with two benchmark
policies (which we call ”R-Round-Robin” and ”RD-Round-
Robin”) that encapsulate the merits of Dutta et al [?] and
Pradas and Vazquez-Castro [?], respectively. It is important to
note that these policies are stationary because the allocation of
the current slot does not depend on, and adapt to, the allocation
of previous slots within each slot allocation block. As we shall
see, we can significantly improve upon the performance of
these stationary polices by using non-stationary policies that
take into account the allocation of previous slots [?].

To better illustrate the difference of these policies, Table
1 shows an example slot allocation for 3 sensors A, B and
C within one slotframe comprising 12 timeslots. The target
rate of sensor A is three times of that of sensor C. The target
rate of sensor B is twice of that of sensor C. Sensor B is
the most delay sensitive while sensor C is the least delay
sensitive. The allocations of all three benchmark policies result
in cyclic repetitions within the slotframe, while in the proposed
DARA policy the allocation depends on past allocations and is
non-cyclic. Table 2 further presents a summative comparison
of our approach with the state-of-the-art on multi-user video
streaming.

The remainder of this paper is organized as follows: Section
II describes the system model and formulates the resource
allocation problem with incomplete information. Section III
proposes the DARA approach for resource allocation. Section
IV derives analytic bounds that characterize the performance
of the DARA approach. Section V provides the numerical as
well as experimental results using real video sequences on a



4

Timeslot (TS) 1 2 3 4 5 6 7 8 9 10 11 12 

Round-robin A B C A B C A B C A B C 
R-Round-robin A A A B B C A A A B B C 

RD-Round-robin A A B B B C A A B B B C 
DARA A B B A A C C B A A B C 

TABLE I
AN ILLUSTRATIVE EXAMPLE OF THE RESULTING ALLOCATION OF

DIFFERENT POLICIES WITHIN ONE SLOTFRAME.

 [16] [21] [26] [27] This paper 
Required 

Knowledge 
Packet- 

level 
Packet- 

level Statistics Statistics Statistics 

Delay 
Constraint Yes Yes No Yes Yes 

Allocation 
Method 

Earliest 
deadline 

first 

State- 
dependent 

Minimal  
lead first 

Weighted 
round 
robin 

Non- 
stationary 

Complexity High High Low Low Low 

TABLE II
COMPARISON OF DIFFERENT POLICIES.

real deployment. Section VI concludes the paper.

II. SYSTEM MODEL

We consider an LPBR under the TSCH mode of IEEE
802.15.4e MAC with N visual sensors sharing the TSCH
slotframe for their video bitstream transmission. Since we
cannot control the end-to-end delay over the IoT scenario
of Figure 1, we consider instead a deadline set for each
video bitstream part produced by each visual sensor. This
transmission deadline is in the order of 100 ms. As shown
in Figure 1, all sensors are directly connected to the LPBR
that relays their video bitstreams to the end users using well-
established streaming over TCP/IP or UDP/IP [?]-[?]. Table
3 provides a nomenclature table of the key notations used in
this paper.

A. Wireless System Abstraction

Under the TSCH mode, within each slotframe interval of
TSF s, each sensor is allocated one or more timeslots (and a
corresponding channel) for each of its transmission opportuni-
ties. Thus, within each TSF s, each sensor will hop to one or
more of the 16 channels available in the IEEE 802.15.4 PHY,
albeit for very brief intervals of time [?][?]. Under TSCH,
the transmission medium coherence time experienced at the

Notation Interpretation Notation Interpretation 

SFT  Slotframe duration slotT  Timeslot duration 

SF

slot

T

TT =  Resource block size nh  
Number of MAC frames 

per slot that can be 
transmitted by sensor n  

packetb  MAC frame payload 
size  Total bitstream size of 

sensor n  within a RAB 

,n kd  
Transmission 

timestamp of packet 
k  of sensor n   

nq  Video delivery utility per 
packet of sensor n  

,n tw  Sensor n ’ weight of 
slot t  nr  Weighted sum rate of 

sensor n  

TABLE III
NOMENCLATURE TABLE.

MAC layer is substantially longer than TSF [?][?][?]. That is,
the error rate at the MAC layer can be regarded as constant
over any time interval smaller or equal to TSF . In fact, due to
TSCH’s properties this assumption has been shown to be valid
even for substantially prolonged periods of time if the sensors
and LPBR are not moving rapidly [?][?]. Moreover, due to
strong channel coding schemes employed at the IEEE 802.15.4
PHY, less than 1% packet loss is observed at the MAC layer
under typical operational conditions [?]. Consequently, in the
following we focus on the resource allocation performed in
groups of T = TSF

Tslot
timeslots, with Tslot being the duration

of one timeslot, and also assume very limited or no packet
retransmissions at the MAC layer. These T timeslots form
a resource allocation block (RAB). The number of MAC
frames that can be transmitted by sensor n, 1 ≤ n ≤ N ,
within each timeslot of a RAB is denoted by hn and we
assume that each MAC frame carries a payload of bpacket

bytes. Typical values for these parameters in TSCH MAC are
[?][?][?]: TSF ∈ [0.2, 2] s, Tslot ∈ [6, 10] ms, hn ∈ {1, 2, 3},
bpacket ∈ [45, 110] bytes.

B. Video Coding Adaptivity and Transmission Abstraction

During each RAB, each sensor n needs to send the bitstream
corresponding to several independently-decodable video bit-
stream units2. We denote the total bitstream size (bytes) of
each sensor within one RAB by ln. Any MPEG video coder
can be used to generate the video bitstream based on any
standard {I, P,B} temporal prediction structure with a fixed
transmission deadline set for each compressed {I, P,B} frame
once it is produced by the encoder. This transmission deadline
is imposed either by the limited on-board memory of each
sensor (e.g. when only limited number of compressed frames
can be buffered), or due to the stringent delay constraints
imposed by the application context (e.g. in real-time video
surveillance or monitoring). Each sensor adjusts its number of
packets by discarding independently-decodable bitstream parts
that have expired. For example, within an MP4 or MKV en-
capsulation of H.264/AVC video [?][?], it is straightforward to
discard NAL units or SimpleBlocks (respectively) with expired
transmission deadlines and a partially received bitstream can
be reliably decoded with the FFmpeg library, which will also
apply error concealment before displaying the decoded video.

Within each RAB, each packet k ∈ {1, ..., ln
bpacket

} of sensor
n bears a transmission time stamp (TTS) dn,k (measured
in number of timeslots with respect to the beginning of the
current RAB). The packet is valid for transmission if and only
if it is sent by the sensor before (or by) slot dn,k. Finally,
each packet of sensor n transmitted until slot dn,k induces an
expected video delivery utility q̄n, which is a measure of the
average improvement of video quality if this packet is used.
We remark that, while distortion estimates can be used for
q̄n following previous work [?]-[?], in this paper we define
utilities based on the expected deadline and expected video
delivery utility of groups packets, as this is information that

2i.e. bitstreams corresponding to {I, P, B} frames that can be decoded if
they are received in their entirety, with the application of concealment - if
necessary.
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can be reliably (and quickly) estimated by the video encoder
prior to the actual production of video packets.

C. Problem Formulation

Since the LPBR has no a-priori knowledge of the character-
istics of the generated video bitstream of each sensor (i.e. no
knowledge of ∀n, k : dn,k), it assigns the slots of each RAB
to sensors solely based on limited statistical information about
each video bitstream. This information corresponds to each
sensor’s weight distribution and the expected video delivery
utility q̄n, which is transmitted from each sensor to the LPBR
periodically with very low overhead (only two MAC layer
packets are needed).

Let s be the current RAB vector, with elements s(t) ∈
{1, 2, ..., N} representing the sensor to which timeslot t ∈
{1, ..., T } is allocated. If the resource allocation incorporates
the entire bitstream of sensor n without any transmission dead-
line violation, then the number of MAC frames transmitted is

hn

T∑

t=1
1(s(t) = 1), where 1(∙) is the indicator function. In

such a case, we define the utility of the sensor n given the
RAB vector s by

Qn(s) = q̄nhn

T∑

t=1

1(s(t) = n) (1)

which gives a measure of the expected video quality for
sensor n in the current RAB [?][?][?]. Because in the actual
deployment the resource allocation is performed before the
video packets are generated, the utility is not considering the
visual significance of each packet per-se but is computed based
on the expected video delivery utility, qn, and the amount of
MAC frames transmitted. However, it is possible that some
packets are not able to meet their TTS deadline if the timeslots
for sensor n come too late. In a multi-camera sensor network,
this problem becomes more complex since different sensors
have different TTS deadlines for their packets. In this paper,
we model the different delay sensitivities amongst the N
sensors by the sensors’ discounting of the value of upcoming
timeslots within the slotframe. Let wn be the weight vector
of size T for sensor n, where wn,t ∈ [0, 1] is nth sensor’s
weight of timeslot t. We normalize the weight vector by setting
wn,1 = 1 and, by definition: ∀n, t : wn,t ≥ wn,t+1, since the
sensor’s valuation of transmission opportunities is decreasing
with time as packets begin to expire. Examples of wn for
four different sensors are given in Figure 2. The expected
discounted utility of sensor n is then given by:

Qn(s,wn) = q̄nhn

T∑

t=1

wn,t1(s(t) = n) (2)

The goal of the LPBR is to maximize an
objective function of the sensors’ discounted utilities
W (Q1(s,w1), ..., QN (s,wN )). This definition of the
objective function W is general enough to include the
objective functions deployed in many existing works. For
example, one can use the weighted sum of utilities of all

sensors:

W (Q1(s,w1), ..., QN (s,wN )) =
N∑

n=1

αnQn(s,wn) (3)

where {αn}n∈{1,...,N} are weights satisfying αn ∈ [0, 1] and
N∑

n=1
αn = 1. The resource allocation problem for the LPBR

can then be formally defined as the derivation of the optimal
RAB vector s∗ that maximizes the objective function of the
sensor’s utilities:

s∗ = arg max
s

{W (Q1(s,w1), ..., QN (s,wN ))}

subject to ‖s‖0 ≤ T
(4)

where ‖s‖0 represents the number of non-zero elements
in vector s. Since there are NT possible RAB vectors s,
exhaustive search for the solution to (4) is clearly very
complex even for modest values for N and T . Thus, we try
to solve this problem in an alternative way. From (2) we can
see that the slot allocation s influences the nth sensor’s utility

through term
T∑

t=1
wn,t1(s(t) = n). We define this term as the

weighted sum rate and write

rn =
T∑

t=1

wn,t1(s(t) = n) (5)

The weighted sum rate can be interpreted as the expected
number of packets that can be sent before their corresponding
TTS deadlines expire during each RAB. Thus, the nth sensor’s
utility can be represented by,

Qn(rn) = q̄nhnrn (6)

Our proposed approach requires determining the optimal
weighted sum rate vector r∗ first and then finding a resource
allocation vector s∗ that achieves r∗ within the RAB.

III. DELAY-AWARE RESOURCE ALLOCATION

In this section, we provide the slot allocation solution for
multi-camera video transmissions with limited information.
The proposed Delay-Aware Resource Allocation (DARA) ap-
proach comprises two steps. The first step determines the
weighted sum rate allocation r using the deadline distributions
wn and the expected video delivery utility q̄n of the video
bitsteams. In the second step, the slot allocation s is deter-
mined using the DARA algorithm3 in order to achieve the rate
allocation r. Because the video characteristics (i.e. deadline
distributions) are changing over time, the slot allocation is
done for each RAB. We note that deadlines and delays do not
need to be aligned with the RAB duration since the importance
of slots is not affected - sending packets in early slots will
satisfy the deadline requirement better than in later slots.

Note that each RAB vector s corresponds to a weighted sum
rate allocation vector r according to (5). However, the inverse
is not true - it can be the case that there is no RAB vector s can
achieve a given r. Hence, only certain values of the weighted

3Note that we use “DARA approach” to refer to the whole approach and
“DARA algorithm” to refer to the algorithm in the second step of the DARA
approach.
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sum rate can be achieved by the slot allocation, depending
on the discounting weights. We write B({w1, ...,wN}; T ) as
the set of achievable weighted sum rate vectors given weights
w1, ...,wN and a RAB with T slots.

A. Weighted Sum Rate Allocation

If all sensors are not delay-sensitive, i.e. ∀n, t : wn,t = 1,
then the slot allocation problem is easy since it reduces to a
simple weighted sum rate allocation problem.

r∗ = arg max
r

{W (Q1(r1), ..., QN (rN ))}

subject to r ∈ B({w1, ...,wN ; T})
(7)

where r ∈ B({w1, ...,wN ; T}) simply means
N∑

n=1
rn = T and

∀n : rn ∈ {0, 1, ..., T }.
Since slots have equal value to sensors, it does not matter

which specific transmission opportunities are allocated to them
within a RAB. Therefore, once the optimal weighted sum rate
allocation vector r∗ is determined, an optimal RAB vector s∗

(which is obviously not unique) can easily be determined (e.g.
using weighted-round-robin schemes or ”water-filling” strate-
gies). However, if video transmissions are delay-sensitive, the
positions of slots will have different impacts on the expected
utility of each sensor’s bitstream since the early transmission
opportunities can satisfy the deadline requirements more eas-
ily. Therefore, delay sensitivity makes the resource allocation
problem significantly more difficult.

Since in most scenarios (7) is a convex optimization, various
efficient optimization methods [?] can be used to solve it
to obtain the weighted sum rate allocation vector. However,
even if we have determined the optimal weighted sum rate
allocation vector r∗ ∈ B({w1, ...,wN}; T ), it is unclear which
RAB vector s∗ corresponds to the optimal utility allocation
(i.e. with respect to distortion reduction). To address this, in the
next subsection we propose an efficient algorithm to compute
the corresponding RAB vector s given the weighted sum rate
allocation vector r ∈ B({w1, ...,wN}; T ) determined in the
first step.

B. Delay-Aware Resource Allocation Algorithm

Given a weighted sum rate allocation vector , we want to
find a RAB vector that achieves . This is achieved by the
DARA algorithm, presented in Algorithm 1.

In slot t, the sensor n∗, 1 ≤ n∗ ≤ N , with the largest value

of the resource allocation metric, fμ
n∗wν

n∗,t(
T∑

τ=t+1
wn∗,τ )−γ ,

will be given the transmission opportunity of the current slot,
where μ, ν, γ ∈ R are algorithm parameters to trade-off the
three components of the metric:

• fn stands for the distance to the target weighted sum rate
allocation of sensor n from the current allocated weighted
sum rate; sensors with larger fn should be given the
higher priority of transmission since their demands are
larger;

• wn,t accounts for the benefit of allocating the current
timeslot to sensor n; sensors with larger wn,t should

Algorithm 1: Delay-Aware Resource Allocation 
(DARA) algorithm 
INPUT: The target weighted sum rate allocation 
vector ,   
OUTPUT: The RAB vector  
Set  
Repeat 

Find the index 
   
Set  
Update  as follows: 

 and 
 

Set  
Until  

be given the higher priority of transmission since these
sensors can increase their video quality more if they
transmit in the current slot;

•
T∑

τ=t+1
wn,τ represents the urgency of allocating the cur-

rent slot to sensor n; sensors with lower
T∑

τ=t+1
wn,τ

should be given the higher priority of transmission since
it becomes more difficult to satisfy their demands in the
future.

The choices of μ, ν, γ ∈ R will depend on specific deployment
scenarios. In general, fn becomes more important with larger

μ, wn,t becomes more important with larger ν and
T∑

τ=t+1
wn,τ

becomes important with smaller γ.
The proposed DARA algorithm requires only statistical in-

formation of sensors’ video transmissions (i.e. the discounting
weights) and is simple and easy to implement in practical
systems. In the following section, we provide the analytic
characterization of the performance of the proposed DARA
approach. In particular, we will prove that the proposed DARA
approach achieves the optimal weighted sum rate allocation for
the exponentially decreasing weights in infinite time horizon
and show the performance gap is bounded for finite time
horizon.

IV. ANALYTIC CHARACTERIZATION OF NON-STATIONARY

POLICIES OF DARA

We characterize the performance of the DARA approach
in various deployment scenarios. Our analysis focuses on
exponentially-decreasing weight distributions4, that is, for each
sensor n, there exists a discount factor δn ∈ [0, 1) such that
wn,t = δt−1

n . Since the focus is on the weighted sum rate
vector sets, we simplify the notation and write the set of
achievable rates as B({δ1, ..., δN}; T ).

A. Identical Discount Factors and Infinite Horizon

Here we assume that sensors have an identical discount
factor and RAB duration T → ∞. Under this assumption,

4Our goodness-of-fit tests show that, over a large ensemble of deadline
distributions obtained from real video streams (e.g. Figure 2), the exponential
distribution achieves the best log-likelihood ratio in comparison to the Half-
Normal distribution and the Generalized Pareto distribution.
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we study the set of achievable weighted sum rate vectors and
prove the optimality of the DARA approach. Note that in this
case, the second and third components of the allocation metric
do not affect the resulting resource allocation since their values
of all sensors are the same.

The first step to solve the slot allocation problem is to
characterize the set of achievable weighted sum rate alloca-
tion vectors such that we can determine the optimal r∗ by
solving the optimization problem (7). When sensors have an
identical discount factor, the sum of sensors’ weighted sum
rate satisfies:

N∑

n=1

rn =
∞∑

t=1

δt−1 =
1

1 − δ
(8)

The above condition is necessary but not sufficient for the set
of achievable weighted sum rate vectors. For example, suppose
sensors are extremely delay-sensitive (i.e. δ = 0), then the set
of achievable weighted sum rate vectors includes only the N
vectors {∀n ∈ {1, ..., N}} : r = (0, ..., rn, ..., 0) where rn =
1. If the condition is also sufficient, then the set of achievable
rates is maximized. The following theorem determines when
(8) is also sufficient.

Theorem 1: Suppose the weight distributions are
exponentially-decreasing, sensors have an identical discount
factor ∀n : δn = δ and the RAB duration T → ∞. We can
achieve the following set of weighted sum rate vectors

B({δ, ..., δ};∞) = {r :
N∑

n=1

rn =
1

1 − δ
} (9)

if and only if the discount factor δ is larger than:

δ ≥ 1 − 1/N (10)

Proof: Since the weights are wn,t = δt−1, based on (5),
we write the weighted sum rate rn as

rn =
∞∑

τ=1

δτ−11(s(τ) = n) (11)

We also write rn = rn(1), indicating that it is the weighted
sum rate calculated at timeslot 1. In general we can define as
the weighted sum rate calculated at timeslot . Similar to the
Bellman equation in dynamic programming, we can decom-
pose into the current rate at time slot 1 and the continuation
weighted sum rate from timeslot 2:

rn =
∞∑

τ=1
δτ−11(s(τ) = n)

= 1(s(1) = n) + δ
∞∑

τ=2
δτ−11(s(τ) = n)

= 1(s(1) = n) + δrn

(12)

Similarly, rn(2) can be further decomposed into the current
rate at timeslot 2 and rn(3). We call the vector of weighted
sum rates r in the set B({δ, ..., δ};∞) a feasible vector
of weighted sum rates r. The main idea of the proof is
to show that when δ ≥ 1 − 1/N , for any t ≥ 1, any
feasible vectors of weighted sum rates r(t) ∈ B({δ, ..., δ};∞)
can be decomposed by a vector of current rates [1(s(t) =
1), ..., 1(s(t) = 1)]T and a feasible vector of continuation

weighted sum rates r(t+1) ∈ B({δ, ..., δ};∞). As long as the
above holds, we can pick any feasible r(1), and decompose
it to determine the current vector of weighted sum rates at
timeslot 1 (i.e. to determine which sensor transmit at timeslot
1). Since all r(1) is feasible, we can decompose it to determine
the current vector of weighted sum rates at timeslot t (i.e. to
determine which sensor transmits at timeslot t). In this way,
we can obtain the slot allocation policy that yields the vector
of weighted sum rates r = r(1).

For easier exposition of the proof, we normalize rn by 1−δ,
yielding the normalized weighted sum rate vn, which repre-
sents the weighted average rate of sensor n. Consequently, a
vector of normalized weighted sum rates v is feasible if it is

in Bv({δ, ..., δ};∞) = {v :
N∑

n=1
vn = 1}. The decomposition

of v(t) can be written as

vn(t) = (1 − δ)
∞∑

τ=t
δτ−t1(s(τ) = n)

= (1 − δ)1(s(t) = n)

+(1 − δ)
∞∑

τ=t+1
δτ−t1(s(τ) = n)

= (1 − δ)1(s(t) = n)

+(1 − δ)
∞∑

τ=t+1
δ ∙ δτ−(t+1)1(s(τ) = n)

= (1 − δ)1(s(t) = n) + δvn(t + 1)

(13)

Hence, our goal is to show that when δ ≥ 1 − 1/N , for
any t ≥ 1 any feasible vector of weighted sum rates v(t) ∈
Bv({δ, ..., δ};∞) can be decomposed into a vector of current
rates [1(s(t) = 1), ..., 1(s(t) = N)]T and a feasible vector
of continuation normalized weighted sum rates v(t + 1) ∈
Bv({δ, ..., δ};∞).

Suppose time slot t is allocated to sensor n. Then v(t) can
be decomposed as follows,

vn(t) = (1 − δ) + δvn(t + 1)
∀m 6= n : vm(t) = δvn(t + 1)

(14)

The continuation normalized weighted sum rates at time t+1
can therefore be derived as

vn(t + 1) =
vn(t) − 1 + δ

δ
, vm(t + 1) =

vm(t)
δ

(15)

It can be easily verified that
N∑

n=1
vn(t+1) = 1 is automatically

satisfied. However, for v(t + 1) to be feasible, we also need
∀n : vn(t + 1) ≥ 0. This requires

δ ≥ 1 − vn(t) (16)

Therefore, the minimum discount factor is

δ = max
v∈Bv

min
n

{1 − vn} (17)

This is achieved when v = {1/N, ..., 1/N}. Therefore δ =
1 − 1/N .

Theorem 1 states when the discount factor is larger enough,
i.e. video transmission is not very delay-sensitive, the set of
achievable weighted sum rate vectors can be maximized. In
the other extreme case, when δ = 0, only N finite weighted
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sum rate allocation vectors can be achieved as we mentioned
earlier.

The result of Theorem 1 is important for the resource
allocation design problem since we need to understand what
can possibly be achieved by the DARA approach (since the
first step of the DARA approach needs to determine the target
weighted sum rates r∗). When δ ≥ 1 − 1/N , we can simply
obtain the optimal allocation r∗ by solving the following
optimization problem

r∗ = arg max
r

W (Q1(r), ..., QN (r))

subject to
N∑

n=1
rn = 1

1−δ

(18)

This optimization problem is easy to solve when W is a
convex function in (r1, ..., rN ). For example, if the objective
is to maximize the minimum of the weighted sensors’ utilities,
i.e. W = min

n
αnq̄nhnrn, then the solution can be obtained

analytically as

r∗n =

[

(1 − δ)
N∑

i=1

αnq̄nhn

αiq̄ihi

]−1

(19)

After the optimal allocation r∗ is determined, we then can run
the DARA algorithm to find the optimal resource allocation
vector s. When sensors have an identical discount factor,
in each slot, finding the sensor n∗, 1 ≤ n∗ ≤ N , that

maximizes fμ
n wν

n,t(
T∑

τ=t+1
wn,τ )−γ is equivalent to finding the

sensor with the maximum fn. The following theorem proves
that the DARA algorithm is able to achieve any weighted sum
rate vector in the set B and hence, the optimal s∗ can be
determined.

Theorem 2: Suppose the weight distributions are
exponentially-decreasing, sensors have an identical discount
factor ∀n : δn = δ and the RAB duration T → ∞. For any
target weighted sum rate vector r ∈ B({δ, ..., δ};∞) and any
δ ≥ 1 − 1/N , the resource allocation s generated by running
the DARA algorithm achieves r.

Proof: We have proved in Theorem 1 that, when δ ≥
1 − 1/N , at any timeslot t, any feasible r ∈ B({δ, ..., δ};∞)
can be decomposed into a vector of slot allocation [1(s(t) =
1), ..., 1(s(t) = N)]T and the continuation weighted sum rate
r(t + 1) ∈ B({δ, ..., δ};∞) as follows: (when s(t) = n)

rn(t) = 1 + δrn(t + 1); ∀m 6= n : rm(t) = δrm(t + 1) (20)

This decomposition determines which sensor to transmit at
timeslot t. In the DARA algorithm, we start with setting the
target weighted sum rate vector r = r(1) at slot 1, which
is then decomposed to determine which sensor to transmit
in timeslot 1. Then we decompose the continuation weighted
sum rate vector and determine which sensor should transmit in
timeslot 2. By performing the decomposition in every timeslot
of the RAB, we can determine which sensor should transmit
in every timeslot. Based on the proof of Theorem 1, we
can do this decomposition forever because every continuation
weighted rate vector is feasible. Moreover, the weighted sum
rate achieved as T → ∞ will be r.

B. Finite Time Horizon

In practice, the channel coherence time T is not infinite.
Hence, the RAB duration T is finite. In the following, we
characterize the performance gap of the proposed algorithm
when T is finite instead of infinite. Let

vT
n =

rT
n

T∑

t=1
δt−1

, v∞
n =

r∞n
∞∑

t=1
δt−1

(21)

be the normalized weighted sum rate allocation when the
time horizon is finite and infinite, respectively. The following
proposition derives an upper bound for the distance of the
achieved weighted sum rate allocation vT

n (by running the
algorithm for only T slots) from the optimal normalized
weighted sum rate v∞

n .
Proposition 1: |vT

n − v∞
n | ≤ δT .

Proof: We can write vT
n and v∞

n as:

vT
n =

T∑

t=1
δt−11(s(t) = n)

T∑

t=1
δt−1

and v∞
n =

∞∑

t=1
δt−11(s(t) = n)

∞∑

t=1
δt−1

(22)

Finally, since,

vT
n ≥

T∑

t=1
δt−11(s(t) = n)

∞∑

t=1
δt−1

= (1 − δ)
T∑

t=1

δt−11(s(t) = n)

(23)

v∞
n ≤

T∑

t=1
δt−11(s(t)=n)+

∞∑

t=T+1
δt−1

∞∑

t=1
δt−1

= (1 − δ)
T∑

t=1
δt−11(s(t) = n) + δT

(24)

we thus have v∞
n − vT

n ≤ δT . Secondly, we have

v∞
n − vT

n ≥

T∑

t=1
δt−11(s(t)=n)

∞∑

t=1
δt−1

−

T∑

t=1
δt−11(s(t)=n)

T∑

t=1
δt−1

= −(1 − δ) δT

1−δT

T∑

t=1
δt−11(s(t) = n)

(25)

Since
T∑

t=1
δt−11(s(t) = n) ≤

T∑

t=1
δt−1 = 1−δT

1−δ , we have

v∞
n − vT

n ≥ −(1 − δ) δT

1−δT

T∑

t=1
δt−11(s(t) = n)

≥ −(1 − δ) δT

1−δT
1−δT

1−δ = −δT

(26)

In summary, we have −δT ≤ v∞
n − vT

n ≤ δT , which means
|vT

n − v∞
n | ≤ δT .

Proposition 1 proves that the performance gap by limiting
the slot (i.e. time) horizon to be finite. Moreover, the gap
can be made arbitrarily small by choosing T large enough.
Therefore, the DARA algorithm asymptotically achieves the
optimal weighted sum rate vector determined in the first step
of the DARA approach as the number of slots goes to infinity.
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C. Resource Allocation for the General Case

In this subsection, we study the resource allocation problem
when sensors have heterogeneous discounting weights and
when the time horizon is finite. It is analytically difficult
to determine the exact set of achievable weighted sum rate
vectors. Hence, we will instead use approximate sets to solve
the optimization problem (7).

We notice that every feasible allocation vector r is bounded
by:

T∑

t=1

min
n

wn,t ≤
N∑

n=1

rn ≤
T∑

t=1

max
n

wn,t (27)

Hence, an approximate set of achievable weighted sum rate
vectors can be

B̃({w1, ...,wN}; T ) = {r :
N∑

n=1

rn = R} (28)

with
T∑

t=1

min
n

wn,t ≤ R ≤
T∑

t=1

max
n

wn,t (29)

For fixed R, when the objective function W is convex in
{r1, ..., rN}, the optimization problem (7) is convex and it is
thus solvable in polynomial time. For example, if the objective
function is the minimum of the weighted sensors’ utilities,
namely , then the solution can be obtained analytically as

r∗n =
R

N∑

i=1

αnq̄nhn

αiq̄ihi

(30)

Once the approximate optimal weighted sum rate vector r∗

is obtained, we can construct the slot allocation vector s
using the DARA algorithm. The performance of using the
approximation set and the DARA algorithm will be evaluated
in the next section.

V. EXPERIMENTS

In this section, we evaluate the performance of the proposed
resource allocation solution via: (i) numerical studies; (ii)
experiments using the Berkeley openWSN [?] instantiation of
the IEEE 802.15.4e TSCH MAC and standard surveillance
videos encoded with H.264/AVC under the assumption of 4,
6 and 10 visual sensors sharing the IEEE 802.15e TSCH
timeslots. These were found to be representative cases under
the bandwidth constraints of the physical layer of IoT-oriented
standards [?][?].

A. Benchmarks

Three benchmark policies are used in our experiments:
• (i) round-robin slot assignment (”Round-robin”), which is

the most typical option in WPAN MAC designs [?][?][?];
• (ii) rate-proportional round-robin slot assignment (”R-

Round-robin”) [?], where the average bit-budget of each
sensor within each RAB is used to allocate a proportional
number of slots in a round-robin fashion (higher budget
corresponds to more slots for a sensor);

Policy Computational Complexity 

Round-robin Periodic allocation of  RAB slots in 
sub-linear time,   

R–Round-robin  

1) Calculate average bit-budget per 
RAB in linear time,   
2) Calculate  indices in linear 
time,  

RD–Round-robin  As above 

Proposed  
DARA approach 

1) Solve the convex optimization (18) 
in polynomial time,  
2) Calculate  indices analytically 
in linear time,  

Optimal Exhaustive search among possible 
policies, i.e.  

TABLE IV
COMPARISON OF DIFFERENT POLICIES IN INCREASING ORDER OF

COMPLEXITY.

• (iii) rate/delay-proportional round-robin slot assignment
(”RD-Round-robin”) [?], where, beyond the bit-budget,
the delay deadline of each sensor is also used to weight
the slot assignment according to a heuristic rule, i.e.,
beyond rate, the delay deadline is taken into account in
the proportional slot allocation.

Note that the optimal slot allocation (”Optimal”), i.e. the
solution to (4) that is computationally hard: since we can
choose any one of the N sensors in each one of the T timeslots
in a RAB, the total number of possible allocations is NT . For
example, even with 2 sensors and a RAB with 100 timeslots,
we need to search amongst more than 1030 possible slot
allocations.

Table 4 lists the computational requirements of each policy,
including the proposed DARA approach. The first steps of the
R-Round-robin, RD-Round-Robin and the proposed DARA
approach involve solving convex optimization problem which
can be solved efficiently by many existing algorithms [?].
The second steps are more critical which determines the
slot assignment among the sensors. Since the number of
visual sensors is limited (i.e. in the vast majority of cases
N < 20), the complexity of determining the weighted sum
rate allocation (i.e. the first step of our DARA approach)
is low. Moreover, since our DARA algorithm ensures that
the complexity of determining the slot allocation (i.e. the
second step of the DARA approach) is linear in T , the
overall computation complexity is not a big concern. Note that
performing the exhaustive search to determine the optimal slot
allocation is extremely complex, i.e. O(NT ), which prevents
it from being implementable in practical systems.

B. Numerical Study

In this subsection, we present numerical results with utility
functions for each sensor that correspond to Theorems 1 and
2 and also use normalized scaling for the expected utilities.
While this study does not directly map to real video sequences
and an IEEE 802.15.4e network, it establishes the validity
of the proposed DARA approach as a general non-stationary
multi-user resource allocation method in a “bias-free” manner,
i.e. regardless of the specific settings of the WPAN and video
codec used. Thus, beyond the specific context of this paper,
via such numerical studies one can extrapolate the usefulness
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of the DARA approach for other cases, e.g. in streaming of
audio or other error-tolerant multi-sensor data volumes under
delay constraints.

We assume that each sensor produces video traffic whose
MAC frames (packets) can be characterized by a normal
distribution 5 with mean 200 and standard deviation 20, i.e.
∀n : hn ∼ N (200, 20). The expected video delivery utility per
sensor is normalized to unity, i.e. ∀n : q̄n = 1. Under these
conditions, we aim to maximize the minimum utility amongst
all sensors, namely

W = min
n

αnq̄nhnrn

subject to r ∈ B({w1, ...,wN}; T )
(31)

where ∀n : αn = 1/N . Unless otherwise stated, the DARA
parameters are set to be μ = ν = γ = 1.

1) Identical Discount Factors: We first investigate the
scenarios where sensors have identical discount factors. In
Figure 3, the utility achieved by our proposed DARA approach
and the two benchmarks (R-Round-robin and RD-Round-robin
coincide for identical discount factors) are shown for various
numbers of sensors N ∈ {2, ..., 10} and two discount factors
δlow = 0.99 and δhigh = 0.995. The resource allocation block
size is set to T = 500 slots and, for ease of illustration,
the minimum utility of (31) has been normalized to for each
algorithm. As increases, each sensor is able to obtain less
timeslots and its utility is thus decreasing. Moreover, the value
of later transmission opportunities is higher for larger values of
the discount factor and thus the utility is higher for such cases.
The proposed DARA approach significantly outperforms the
other benchmarks.

Since the DARA algorithm is adaptively changing the slot
assignment in order to achieve the target objective function
of (31) under Algorithm 1, i.e. maximizing the minimum
utility amongst all sensors, it is important to study whether
the algorithm can actually achieve the target objective. Given
this max-min objective, the target utilities for all sensors are
determined to be the same for all sensors, i.e. 52.9, in the first
step of the DARA approach. Table 5 illustrates the utilities of
individual sensors achieved by the proposed DARA approach,
Round-Robin and R-Round-Robin. The network size is set to
be N = 6, the discount factor is δ = 0.99 and the RAB
is set to T = 500. As we can see, the utilities achieved
by running the DARA algorithm are very close to the target
utilities. However, both Round-Robin and R-Round-Robin do
not achieve the target utilities that maximize the minimum
utility amongst all sensors.

2) General Discounting Factors: When the discounting
factors are not exponentially decreasing or identical for all
sensors, the proposed DARA approach may not achieve the
optimal performance. Figure 4 illustrates the max-min utility
of sensors (normalized to [0, 1]) achieved by all approaches for
two sets of discounting weights and sensors in the network.
In the first set of simulations (solid curves), the sensors’
discounting factors are selected from [0.990, 0.992] with equal
intervals. In the second set of simulations (dashed curves), the

5Similar numerical experiments have been derived for other distributions
and other settings - we only illustrate this case as a representative one.

Fig. 3. Performance comparison of various approaches under identical
discount factors.

Fig. 4. Performance comparison of various approaches under different
discount factors.

sensors’ discounting factors are selected from [0.995, 0.997]
with equal intervals. This set of simulations serve as a coun-
terpart for the case where sensors have identical discount
factors illustrated in Figure 3. When solving (7), we use R =
T∑

t=1
min

n
wn,t. DARA again significantly outperforms Round-

robin, R-Round-robin, and R-D-Round-robin. Importantly, the
max-min utilities achieved by DARA are similar to those in
the case of identical discount factors. The latter fact indicates
that the deviation from optimality does not bring substantial
penalties for DARA.

Sensor 1 2 3 4 5 6 
DARA 52.6 52.3 52.5 52.6 52.5 52.6 

Round-Robin 42.5 89.6 63.8 38.4 62.5 45.7 
R-Round-Robin 58.8 48.6 47.6 53.8 46.6 54.0 

TABLE V
ACHIEVED INDIVIDUAL UTILITIES BY DARA, ROUND-ROBIN AND

R-ROUND-ROBIN.
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C. Application in Video Transmission under IEEE 802.15.4e
TSCH MAC

To validate the proposed DARA approach under realistic
conditions, we used the Berkeley openWSN implementation
for the IEEE 802.15.4e [?] on the TelosB motes with the
CC2420 transceiver. Several camera sensors can be coupled
with this setup (e.g. MEMSIC’s Lotus or IMB400, or EU-
RESYS’s Picolo V16-H.264) in order to capture and encode
video content with the H.264/AVC codec and encapsulate it
in MP4 or MKV format. However, in order to provide experi-
ments under controlled conditions and with well-established
and publicly-available content, we instead encoded surveil-
lance videos from the http://pets2007.net/ website (PETS 2007
benchmark data) after converting them to: (i) 4 views of CIF
resolution at 10 Hz; (ii) 10 views of QCIF resolution at 4 Hz.
These are then packetized and streamed by each openWSN-
based TelosB mote under a pre-established transmission delay
deadline for each video.

1) Content Generation: Out of a wide range of experiments
performed, we present a representative case using dataset
S1 from the PETS benchmark. This dataset comprises 2
min 20 sec of 720576 RGB 25 Hz video stemming from
four different cameras of a public area. This led to four
CIF-10Hz video feeds by filtering and downsampling and
frame downconversion, which correspond to N = 4 sensors.
For N = 6 and N = 10 sensors, the four feeds where
further downscaled to QCIF-4Hz, and two and six additional
video feeds where created by cropping a QCIF-4Hz section
of the original videos at spatial positions (100, 100) and
(250, 250), respectively. By using H.264/AVC encoding in
low-delay/quantization-stepsize mode, average video bitrates
between 25-50 kbps where achieved per visual sensor for the
CIF-10Hz case, while 4-13kbps where achieved for the QCIF-
4Hz case.

2) System Description: These N = {4, 6, 10} views were
streamed based on the openWSN realization of the TSCH
MAC of IEEE 802.15.4e. For our experiments, each bitstream
was encapsulated with the MKV container, as: (i) we have al-
ready developed low-delay open-source streaming mechanisms
in our prior work [?] that derive the hinting description of the
content in real time and are tolerant to a very wide range
of packet loss rates; (ii) our prior work [?] can handle the
streaming service beyond the WPAN within the IoT framework
of Figure 1, thus allowing for the provisioning of an end-to-end
IoT-based multi-camera video streaming solution. The utilized
hinting description contains the transmission deadlines for
each video frame (and consequently for each MAC timeslot)
as well as its size and frame type ({I, P,B}). Thus, each
sensor only needs to generate its weight distributions based on
the hinting description of its recent content and communicate
them, along with the other three parameters αn, q̄n, hn, to
the LPBR once every 12 slotframes. The LPBR solves the
optimization problem based on the parameters αn, q̄n, hn to
obtain the optimal weighted sum rate vector, and then derives
the slot allocation via Algorithm 1, which is communicated
to all sensors in downlink mode in order to be used for the
subsequent 12 slotframes.

3) Experimental Settings and Video Quality Characteri-
zation: The utilized settings are representative to a video
surveillance or monitoring application where the WPAN-based
monitoring could allow for the content to be streamed over an
IoT-enabled application to remote users having a variety of
devices connected via a variety of networks. The parameters
for our experiments were: N = {4, 6, 10}, TSF = 1 s,
Tslot = 7.7 ms, hn = 1, bpacket = 110 bytes, dn ∈ [50, 600]
ms (set randomly for each sensor), VideoLAN x264 encoder
with configuration [–preset placebo –tune psnr –muxer mkv –
keyint 40,16 –crf 44,35], i.e. one I frame every 4 seconds and
two crf values (corresponding to quantization stepsize). These
parameters led to variable-bitrate encoding with average rates
of 25-60 kbps for CIF-10Hz and 4-13 kbps for QCIF-4Hz,
respectively. For the utilized content, application context, and
encoding settings, we have verified via visual inspection that:

• (i) mean PSNR between 20 25 dB corresponds to useful-
quality video, i.e. blurriness and frame drops occur in
several sections but main features and motion of objects
or people is discernible;

• (ii) mean PSNR between 25 30 dB corresponds to good-
quality video (low blurriness and almost no loss of motion
or objects’ characteristics);

• (iii) mean PSNR above 30 dB corresponds to high-quality
video (video looks almost like the original albeit with
very minor artifacts).

4) Experiments: Clearly, the results will vary depending
on the delay deadline imposed on each sensor as well as
the number of sensors in the WPAN. However, one other
aspect that is important in the achievable performance is the
difference between the weight distributions of the sensors. For
instance, the DARA approach will have the maximum benefit
from diversity in the weight distributions as it will assign the
RAB slots according to the delay tolerance and the overall bit
budget of each sensor. The degree of diversity in these weight
distributions depends on: (i) the transmission delay deadlines
imposed; (ii) whether some (or all) sensors have their intra
frames in synchronized transmissions. The prominence of intra
frames is due to their large size in comparison to the remaining
frames, which causes a large peak in the weight distribution
at the particular RAB where their appear, as shown in Figure
2. We thus present three separate sets of results. Specifically,
in Figure 5 and Figure 6 the average PSNR per sensor
(luminance channel) is presented when imposing minimum
diversity (i.e. worst-case scenario where all I-frames of all
sensors are temporally aligned) and maximum diversity in the
sensor transmissions (i.e. I frames of sensors are as temporally
misaligned as possible), respectively. As expected, the results
demonstrate that, under maximum I-frame alignment (worst
case scenario), all algorithms achieve similar performance:
they will only be able to accommodate only 1 5 sensors with
mean PSNR above 20 dB), which means that the video of the
majority of sensors is of unusable quality.

Under maximum misalignment (i.e. best-case scenario of
Figure 6), Round-robin continues to fail as its PSNR is almost
always below 20 dB per sensor and R-Round-robin and RD-
Round-robin achieve moderate success in transmitting useful-
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Fig. 5. Worst-case results: Mean PSNR (luminance channel, dB) per
sensor for different methods (averaged over time and over several experiment
repetitions) under maximum alignment.
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Fig. 6. Best-case results: Mean PSNR (luminance channel, dB) per sensor for
different methods (averaged over time and over several experiment repetitions)
under maximum misalignment.

quality video (i.e. PSNR above 20 dB). On the other hand,
the DARA algorithm not only succeeds in transmitting useful-
quality video from all sensors, but also achieves mean PSNR
above 25 dB (i.e. good quality) for all sensors. This indicates
that, even under the best-case scenario, the DARA algorithm
is the only method that can ensure the deadline-abiding
transmission of all video bitstreams with useful quality.

In practice, the video bitstreams of different sensors have
random alignment conditions. Thus, Figure 7 presents the
mean PSNR averaged under random alignment conditions
in the IEEE 802.15.4e TSCH MAC slotframe assignment.
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Fig. 7. Average-case results: Mean PSNR (luminance channel, dB) per
sensor for different methods averaged over: time, experiment repetitions and
all possible misalignments.

 N 
Round- 
Robin 

R-Round- 
Robin 

RD-Round- 
Robin 

DARA 

Worst-case 
(Figure 5) 

 4 10.9 12.7 11.0 15.3 
 6 13.6 12.3 10.1 15.7 
10 15.2 13.5 12.5 19.6 

Best-Case 
(Figure 6) 

4 10.9 24.1 24.5 27.0 
6 13.7 25.2 25.9 29.9 
10 15.1 22.6 23.3 29.9 

Average-Case 
(Figure 7) 

4 10.9 22.3 23.1 27.5 
6 13.7 20.9 20.4 25.4 
10 15.2 21.2 20.8 26.9 

TABLE VI
AVERAGE PSNR (IN DB) OF DIFFERENT POLICIES.

Similarly, as before, while all other algorithms have one or
more sensors with average PSNR below 20 dB (i.e. unusable
video quality), the DARA approach ensures that usable video
quality is maintained for all sensors. Thus, DARA does not
only lead to the highest average PSNR across all sensors,
but it also ensures that the minimum PSNR achieved is
enough to sustain usable video quality under the imposed delay
constraints.

In Table 6, we report a summary of the average PSNR
achieved by different policies in different scenarios. As men-
tioned previously, PSNR values above 20dB were deemed to
correspond to usable visual quality for the spatial resolution
and frame rate of the utilized video material.

VI. CONCLUSIONS

We present a new solution for slot allocation of multi-
camera video streaming that is validated under IEEE 802.15.4e
wireless personal area networks, which are expected to become
a dominant deployment framework for video streaming under
the Internet-of-Things (IoT) paradigm. Within the resource-
constrained context of IoT applications, unlike existing works
that require packet-level cross-layer information to perform
resource allocation, we consider the more practical case where
only limited statistical information of each sensor’s packet
deadlines is available. A unique characteristic of the proposed
DARA approach for resource allocation is that it yields a non-
stationary slot allocation policy by updating the indices in a
manner that depends on the allocation of previous slots. This
is in contrast with all existing slot allocation policies such as
round-robin and its variants, which are stationary because the
allocation of the current slot does not adapt to the allocation
of previous slots. Our numerical studies and experiments with
H.264/AVC encoded video and the openWSN deployment
of IEEE 802.15.4e TSCH indicate significant performance
improvements against benchmark solutions. The present al-
gorithm is constructed to operate in a particular setting but it
can be applicable to many other resource allocation problems
in many other settings.
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