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Detonation nanodiamond (ND) has recently emerged as a useful new class of diamond material.

However, to date there has been little investigation of the electrical properties of this material. Due

to the nanoscale dimensions, the surface functionalisation of the individual ND is of particular

importance to the characteristics of ND films. Here, hydrogen and oxygen termination of ND,

verified using Fourier transform infrared spectroscopy, are shown to strongly influence the

electronic properties of NDs. Hydrogen terminated ND exhibiting a far greater resilience to

thermal decomposition when compared to the oxygen terminated NDs. Moreover, H-NDs also

displayed so-called “surface conductivity,” a property displayed by hydrogen-terminated bulk

diamond films, whilst O-NDs display properties high resistivity. These results indicate that under

the correct conditions ND layers can display similar electrical properties to “bulk” diamond thin

films. VC 2014 Author(s). All article content, except where otherwise noted, is licensed under a
Creative Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4897218]

I. INTRODUCTION

Diamond surfaces can support a wide range of func-

tional chemical groups. These include, but are not limited to,

hydrogen, hydroxide, oxygen, esters, carboxyl, amines,

silane, and halogens.1 The ultra-low dimensions of nanodia-

monds formed by detonation processes (ND), being typically

around 5 nm,2 result in the constituent atoms being largely at

the surface, therefore functionalisation of the surface can

have a large effect on the characteristics of single digit NDs.

The electrical properties of ND layers in the presence of

functional groups are not well understood. Whilst the current

and future range of applications for NDs is vast, only a small

amount of work has focused on the study of their electrical

properties. In work presented by Chaudhary et al.,3 resistiv-

ity of untreated ND layers was found to be similar to that of

bulk diamond. Additionally, the dielectric character of the

ND layers was also found to be good, with dielectric loss

tangent values found to lie between 0.05 and 0.5. These val-

ues were found to be permanently lost after 10 min of heat-

ing at 425 �C. Kondo et al. found the electrical conductivity

of ND powder packed into a glass cylinder with an internal

diameter of 1 mm to be reduced by almost 2 orders of magni-

tude after hydrogen termination.4 This work aims to improve

the current level of understanding of the electrical properties

of ND with differing surface functional groups. Impedance

spectroscopy (IS) was performed on ND layers in a sandwich

(or parallel plate stack) configuration across a wide tempera-

ture range. This was done in order to study thermal stability

and the progression of temperature dependant electrical char-

acteristics. Additional experiments were performed in vac-

uum in order to provide a comparison against the effect of

air on the decomposition of the NDs constituent components,

and to prevent adsorbates from the air providing the electron

sink needed for so-called surface conductivity.5 Oxygen and

hydrogen functionalisations were chosen due to the previ-

ously reported large observed changes in surface conductiv-

ity,6,7 electron affinity,8 hydrophobicity/hydrophilicity,9 and

thermal stability10,11 seen in various forms of diamond. IS

was employed for this study due to its previously demon-

strated suitability of electrically investigating nano- and

microcrystalline materials—including diamond.12,13 IS is of

particular use in this instance, as it can be used for the decon-

volution of multiple conduction paths seen in complex

arrangements of diamond and carbon materials, as has been

previously well established.14,15

II. EXPERIMENTAL METHODS

Sample preparation: Monodispersed detonation-derived

nanodiamond (DND) colloid, NanoAmando, was used

throughout (New Metals & Chemicals Corporation, Japan).

This form of DND has been subjected to a deagglomeration

process utilising wet milling with zirconia.16 In order to per-

form IS through (rather than across) the ND layer a sandwich

arrangement was employed, using an ND coating on one

side polished (at the ND-silicon interface), highly conductive

silicon (arsenic doped, q¼ 0.001 X.cm) seeded with �10 nm

thick layer of ND as described previously.2 Hydrogen anneal
treatment: A custom made chamber was used to heat sam-

ples to 500 �C in 10 Torr of hydrogen for 5 h and allowed to

cool in hydrogen. Ozone treatment: A custom built chamber

was used in conjunction with a commercially available

ozone generation unit (Ozonia TOGC2–100201). Here, sam-

ples were subjected to ozone flow at a pressure of 50 mbar,

at 200 �C for 30 min. After which the sample was allowed to

cool in ozone before being removed. Impedance spectros-
copy: Measurements were made by taking the coated
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DND substrates and placing them inside a Solartron 1260

Impedance measurement system. This system was also inte-

grated with a Solartron 1296 Dielectric Interface in order

to measure the high impedance anticipated (the 1296 in

conjunction with the 1260 is specified to the range of 100

– 1014 X and 0.1 – 107 Hz).17 The sample was placed on a

ceramic heater inside a vacuum chamber (to provide electri-

cal and environmental isolation), connected to the imped-

ance equipment. Two metal probes were then placed on the

top and bottom plates in order to probe through the ND layer,

as described elsewhere.2 Measurements were then taken

either at atmospheric pressure or vacuum (10�2 – 10�3 mbar),

across a temperature range from room temperature to a maxi-

mum of 580 �C, where the temperature was maintained for

10 min unless otherwise specified. If during the course of tak-

ing a heated measurement there was significant change in the

magnitude of the impedance, the sample was then cooled to

room temperature and retested. Control measurements were

taken using uncoated silicon plates to ensure the effects

observed were due to the ND layers. Samples were tested until

destruction or the limits of the measurement equipment (e.g.,

loss of resistivity or gain in noise) or heater assembly were

reached. FTIR: FTIR spectroscopy was performed using a

Perkin Elmer Spectrum One FTIR Spectrometer. Samples

were either directly drop coated onto (when in solution) or

scraped from the treatment substrate onto CaF2 windows for

analysis. Drop coating was performed in a clean room envi-

ronment by pipetting one drop at a time of concentrated solu-

tion onto CaF2 windows placed a bench top heater set to

�100 �C. Scrape coated windows had a similar volume of ND

to the drop coating method deposited on it, then another CaF2

window was placed on top to secure the loose ND powder

between the windows. Note monolayers of ND (as used in the

electrical measurements) were not used due to their low IR

absorption, resulting in unacceptable signal to noise ratio,

therefore the drop coated ND layers were ca. 300 nm thick.

Both styles of coated CaF2 window were then mounted in the

FTIR with a corresponding (single or double) uncoated refer-

ence window from which to compare spectra in order to

remove any influence of the CaF2 window. Mounted samples

were then allowed to sit in the N2 environment to desorb

water, measurements were taken after a 10 min N2 purge.

Samples were scanned and an average was calculated over 10

min between 800 and 4000 cm�1.

III. RESULTS AND DISCUSSION

A. Nanodiamond surface modification

Figure 1(a) shows the FTIR spectrum of untreated ND.

Here, the most striking feature is the wide peak between

3000 and 3600 cm�1, which can be attributed to the covalent

hydroxl bond from adsorbed water.18 The narrow peak at

1726 cm�1 can be ascribed to the C¼O stretch seen in car-

boxylic acid groups and anhydride functionalities.19

Between 1000 and 1500 cm�1, there is a convoluted set of

peaks typical for ND including COO-, C-O-C, C-OH, and

C-H.20 The surface state after hydrogen treatment is shown

in Figure 1(b). A significant feature is the strong CHx stretch

centred at 2923 cm�1, coupled with the peaks at 1461 cm�1

and 1377 cm�1 (CH2 and CH3, respectively) which strongly

indicate hydrogenation of the diamond surface.21 Also of

note is the reduced occurrence of the C¼O stretch at

1726 cm�1 in comparison to the untreated surface. The com-

plete absence of the wide peak between 3000 and 3600 cm�1

seen in Figure 1(a) can be explained by the hydrophobicity

of hydrogen terminated diamond preventing readsorption of

water.22 The remaining oxygen containing groups were

likely inaccessible to the hydrogen gas during treatment.

Figure 1(c) shows the FTIR spectrum obtained after the

ozone treatment. There is a peak at 1755 cm�1, the C¼O

stretch, emerging from the anhydride peak. C-O-C and C-O

peaks are seen at 1249 cm�1 and 1141 cm�1, respectively,

indicating oxidation of some bonds. However, the CHx

stretch is still apparent, so a full oxidation of the surface has

not taken place.

Figure 1(d) shows the spectra taken after hydrogen and

subsequent ozone treatment. A very weak CHx stretch can

now be observed—when compared to the ozone only treat-

ment, there is clearly a greater efficacy of CHx removal. The

band centred around 1800 cm�1 (associated with cyclic acid

anhydride) is also distinct from that seen on the ozone only

treatment. Strong peaks can also be seen at 1256 cm�1 and

1123 cm�1 corresponding to C-O-C and C-O peaks, respec-

tively. The desorption of water from the surface can be seen

FIG. 1. FTIR spectra taken on (a) as received ND, (b) hydrogen treated ND,

(c) ozone treated ND, (d) hydrogen then ozone treated ND with increasing

N2 purge durations.
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across 3000–3750 cm�1 with increasing duration of N2

purges, suggesting a hydrophilic surface—corresponding to

oxygen terminated diamond.22 Hence, the combination of

hydrogen and ozone treatments provides well-defined oxy-

gen containing peaks and is preferable to ozone treatment

alone. As all samples are dried before or during processing

therefore the adsorbed water (or hydrophilicity) seen on the

untreated and oxygenated NDs should not be a contributing

factor. Instead, the homogenous surface left by the hydrogen

treatment seems to provide an easier target for ozone to oxy-

genate ND, resulting in short treatment durations.

B. Electrical properties of thin ND layers

Here, the term ‘thin ND layer’ refers to substrates ultra-

sonically coated with ND to a thickness of approximately

10 nm, as described in previous work.2 A note on symbols

used: Hollow symbols depict measurements made in vac-

uum, and solid symbols for measurements performed in air.

1. Hydrogen terminated nanodiamond—air
measurement

Figure 2(a) shows that the low frequency impedance of

the ND films is reduced with rising measurement tempera-

ture, although upon returning the ND layer to room tempera-

ture, the low frequency impedance largely recovers

indicating typical semiconductive behaviour. The primary

observation from Figure 2(a) is the low frequency impedance

response is three orders of magnitude lower than that seen in

untreated ND,2 at 106 – 107X. This observed drop is likely

due to surface transfer doping, as has been reported on ND

by other groups recently The recovery of the original room

temperature impedance occurs at higher temperatures than

the untreated ND layers, a full 24 h after heating to 475 �C
for 10 min, no significant permanent change is detected at

room temperature. This suggests hydrogen termination pro-

vides some protection against the permanent damage

inflicted at higher temperatures. Indeed, hydrogen termina-

tion of bulk diamond has long been known to stabilise the

surface during and after CVD growth, preventing the transi-

tion to other phases, such as graphite.23 However, after one

hour of heating to 475 �C it is apparent that upon return to

room temperature (RT after 1 h 475 ( �C)) the impedance

values do not begin to revert to the initially observed imped-

ance levels. Subsequent measurements at room temperature

showed no change. Instead the layer remains much like that

seen at 475 �C, indicating a permanent structural change has

occurred. This temperature of degradation is only slightly

lower than that reported by Lee et al. for 150–600 nm CVD

diamond spheres heated in dry oxygen (450 �C),24 although

the large change in dimensions from the CVD diamond

spheres to ND and the increased oxygen content would be

antagonistic factors for the onset of thermal oxidation. It

should be noted that due to the production method in the

work of Lee and co-workers, the surface of CVD diamond

spheres were also hydrogen terminated.

Whilst only one semicircular response (and hence only

one observed conduction mechanism)25 could be determined

between 30 and 250 �C from the Cole-Cole plots, a second

semicircle emerges between 300 and 400 �C (shown in

Figure 2(b)). The second conduction path only becomes

apparent at temperatures beyond the desorption point of

water and other air-bound adsorbates, which are required for

surface conductivity. Therefore, this second conduction path

cannot be ascribed to hydrogen induced surface conductivity.

FIG. 2. (a) Bode plot of hydrogen terminated ND in air. Successive cycling

between temperatures near the permanent deformation point of untreated

ND (seen in Ref. 2) and room temperature were performed to compare tem-

perature stability. (b) Cole-Cole plot of hydrogen terminated ND layer meas-

ured at 300 �C. Two semicircular responses are observed and have been

fitted to the plot to aid recognition. (c) Arrhenius plot of two conduction

paths observed on hydrogen terminated ND layer.
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However, this second conduction path is maintained once

the sample is returned to room temperature. Therefore, this

trend could be present at lower temperatures, but masked by

the larger, lower frequency semicircle. Figure 2(b) shows the

first emergence of the second semicircle at 300 �C and high-

lights the limit in resolving closely positioned conduction

paths. The semicircles fitted to the data presented in Figure

2(b) were determined to show that the capacitance had a

magnitude in the tens of picofarads. Picofarad capacitance

has been reported previously to indicate grain interior con-

duction in polycrystalline film (whereas nanofarad capaci-

tance is associated with grain exterior conduction).26 The

magnitude of capacitance in Figure 2(b) lies only one order

of magnitude greater than the untreated ND layers indicating

a similar, if slightly less ordered, material through which the

conduction mechanism passes. Figure 2(c) shows an

Arrhenius plot of the extracted semicircular responses seen

on a hydrogen terminated ND layer. For the first semicircle,

three regimes are apparent. Between 30 and 100 �C
Ea¼ 110 meV (Standard error (S.E)¼ 30 meV), for

100–300 �C Ea¼ 400 meV (S.E¼ 20 meV), and for 375–

475 �C Ea¼ 2 eV (S.E¼ 130 meV). The second semicircle

has a negative activation energy of �270 meV

(S.E¼ 85 meV) between 300 and 400 �C. The low tempera-

ture range activation energy is likely due to the removal of

the adsorbed wetting layer,27 which is readsorbed upon

return to room temperature. The mid-level activation energy

(100–300 �C) is due either to the removal of adsorbed gas

(ND has a very high sorption capacity of between 150 and

450 m2 g�1)28 or just through previously reported, unspeci-

fied defects shown to have an activation energy of

400 meV.29 The activation energy seen above 375 �C is far

greater than those previously described. At 2 eV, this activa-

tion energy is substantially lower than that given for the re-

moval of hydrogen reported in the literature. A value of

�80 kcal mol�1 (3.47 eV) was found by Su et al. through

temperature programmed desorption, however, this was per-

formed on {100} orientated bulk diamond at UHV pressures

(2� 10�10 Torr)30 and hence cannot be easily compared to

the present case. Studies on the thermal decomposition of

ND (at 10�5 Torr) show the onset of CHx groups’ desorption

to be ca. 750 �C,31 far above the temperature reached in this

experiment. Additionally, the fact the impedance values

recover upon return to room temperature (at least when a

maximum temperature below 475 �C is used) indicates the

hydrogen termination, and hence the surface conductivity, is

not lost. Zhao et al. calculated the size dependence of the

onset of nanodiamond-graphite transition.32 Their calcula-

tions suggest 5 nm ND would undergo graphitisation as low

as 425 �C. Indeed, this theoretical prediction was later con-

firmed by the work of Osswald et al. who showed that below

375 �C, oxidation in air was not detected, however, above

450 �C both sp2 and sp3 carbon are oxidised. Therefore, the

activation energy seen in Figure 2(c) between 375 and

475 �C is likely the oxidation of graphite with a possible con-

tribution from the early stages of diamond oxidation. Finally,

the onset of the second semicircle results in an observed neg-

ative activation energy suggesting a barrier-less reaction

where increasing the temperature decreases the probability

of the excitation of a charge carrier. In isolation, this may be

due to de-trapping at defect sites, however, as previously dis-

cussed the close proximity of a larger semicircle in Figure

2(b) may be preventing the identification of this trend at

lower measurement temperatures.

2. Hydrogen terminated nanodiamond—Vacuum
measurement

Figure 3(a) shows that when the measurements are pre-

formed in a vacuum, the hydrogen-terminated ND layer

FIG. 3. (a) Bode and (b) Cole-Cole plot of hydrogen terminated ND in low

vacuum (10�3 mbar). For the data presented at 150 �C, two semicircular

responses are apparent. (c) Arrhenius plot of primary and secondary conduc-

tion paths seen on hydrogen terminated ND measured in vacuum.
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displays an extremely high impedance, at 1010 X, similar to

both bulk diamond and aggregated nanodiamond.33 This is

in stark contrast to when measuring hydrogen treated ND in

air, as the room temperature impedance is three orders of

magnitude lower than that seen in vacuum. As such, the layer

more closely resembles the response seen in untreated or

oxygen terminated ND layers (see Chaudhary et al.2 and

Figure 4(a), respectively). This corroborates the evidence

presented in Figure 2(a) of the hydrogen treatment inducing

surface transfer doping as this effect is not seen in vacuum

due to the removal of necessary surface adsorbates. Above

150 �C, the behaviour of the layers is largely identical, as

would be expected of a conduction mechanism that relies on

the presence of a wetting layer and adsorbates. In contrast to

the data acquired in air, hydrogen terminated ND in vacuum

shows two conduction paths below 150 �C. The primary

conduction path does not show as great a disparity between

vacuum and air measurements in the magnitudes of room

temperature impedance (1010 and 106 X, respectively).

Instead, the gap is narrowed to 107 and 106 X, so whilst the

bode plots indicate similar room temperature behaviour

between untreated ND in air and hydrogen terminated ND in

vacuum, closer analysis of the data reveals this relationship

only holds for the absolute magnitude of impedance.

Interestingly, the second conduction path in vacuum is of the

same order of magnitude as that seen above 300 �C in air,

lending weight to the earlier proposition that a second con-

duction path does exist below 300 �C in air, buried by a

closely situated semicircle. Both vacuum and air measure-

ments show the second semicircle to remain upon return to

room temperature. The Arrhenius plot of the extracted semi-

circular responses seen on a hydrogen terminated ND layer

measured in vacuum is presented in Figure 3(c). Due to the

noise observed, it is difficult to ascertain whether the primary

semicircle is one regime or more. Fitting the entire range

yields Ea¼ 540 meV (S.E¼ 94 meV) between 30 and

475 �C. There is a greater incidence of noise around the sec-

ond semicircle where between 30 and 150 �C Ea¼ 80 meV

with a rather high standard error (S.E¼ 170 meV), making it

difficult to draw firm conclusions from these Arrhenius plots.

3. Oxygen terminated nanodiamond—Air
measurement

Figure 4(a) indicates the difficulty in performing a stable

measurement on oxygen terminated ND in air. The data are

initially noisy at room temperature, and then beyond a tem-

perature of 150 �C further measurements were not possible

due to the sample becoming too conductive. Therefore, it

was ascertained that permanent damage had occurred

through the ND layer at a far lower temperature (200 �C)

than that seen on either the untreated or hydrogen terminated

samples. The sample was subsequently slowly cooled and

measurements taken at regular temperature intervals to

investigate at what point the sample became measureable

again. It was found the oxygen terminated ND had a far

lower impedance, approximately 105 X, and this was only

weakly temperature dependent. This difficulty is likely due

to the oxygen termination hastening the onset of

graphitisation, possibly accelerated through the increased

presence of adsorbed water (see Figure 1(d)) due to the

hydrophilic nature of oxygen terminated ND. Previous stud-

ies have shown water to act as a catalyst for the graphitisa-

tion of 40–60 nm ND particles in high pressure high

temperature conditions (2 GPa, 785–1485 �C),34 therefore, it

FIG. 4. (a) Bode plot, (b) Cole-Cole plot, and (c) Arrhenius plot of oxygen

terminated ND, measured in air. Note the lack of a sufficient number of data

points to calculate an activation energy.
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is likely that this mechanism is amplified for smaller par-

ticles and hence this effect could be observed at ambient

pressure and a temperature of 200 �C. The oxygen in the air

also has an effect; Danilenko reported the exclusion of oxy-

gen caused a three orders of magnitude shift in rates of

graphitisation over a 22 year period at room temperature.35

This work found the shells of NDs were first graphitised,

then oxidised leaving a smaller core size of ND. This process

would continue until the ND reached a core size around 4 nm

where a dramatic graphitisation of the entire particle would

take place. This process reportedly occurred at 525 �C,

higher than the temperatures used in the current study, how-

ever it is likely that this process is occurring, albeit at a

reduced rate. This might provide insight into why at high

temperature the ND layer is too conductive to measure—the

thermal activation of carriers as seen in the untreated and

hydrogen terminated ND, combined with the graphitisation

of the ND shell, causes effective conduction routes through

the ND layer, causing a collapse in measured impedance.

Upon return to sub-critical temperatures (i.e., 100 �C) the re-

moval of the thermally activated carriers leaves the ND layer

with an impedance response between that of pure ND (or

bulk diamond) and graphite, where the isolated graphitic

regions do not yet form a continuous conduction path.

Figures 4(a) and 4(b) show the single semicircular response

indicating a single conduction path is seen for oxygen termi-

nated ND layers. The measurements that were achieved

showed a wide range of resistance values associated with the

fitted semicircles in a very narrow temperature window—

1010 X for 50 �C, and 103 X for 150 �C. The data points

displayed in Figure 4(c) are insufficient to draw firm conclu-

sions from, however, the extent of the slope appears to be of

the order of magnitude associated with graphitisation.

4. Oxygen terminated nanodiamond—Vacuum
measurement

Figure 5(a) shows IS data for oxygen terminated NDs

measured in vacuum. An initial impedance of 108 X can be

seen, 2–3 decades lower than that observed at atmospheric

pressure. This lies close to the initial impedance seen on

hydrogen terminated diamond when measured in vacuum

and may be due to the removal of surface adsorbates that aid

conduction through the wetting layer, as after heating and

once the ND layer has had 18–24 h to recover, the imped-

ance is an order of magnitude higher than the initial value.

This recovery behaviour is distinct to the previous experi-

ments, where permanent change to the impedance was

observed. In this case, the overall increase in impedance sug-

gests the heating and cooling stages are removing graphitic

deposits. Figure 5(b) depicts the recovery of impedance after

several heating and cooling cycles. Both sets of data exhibit

a high degree of noise, however semicircle fits before and

after exposure to 475 �C yield extracted resistance values

only one order of magnitude apart. All extracted capacitance

values are of the 10 pF order of magnitude, indicating crys-

talline material remains.23 At the peak temperature, the

only conduction path seen was ca. 5 kX (C¼ 95 pF), how-

ever when measured immediately after return to room

temperature (25 min later) two conduction paths were visi-

ble, with the primary at 3� 108 X (C¼ 88 pF) and the sec-

ondary at 10 kX (C¼ 5 pF). The observed shift in

capacitance was the only observed occurrence, this effect

FIG. 5. (a) Bode plot of oxygen terminated ND in vacuum. Successive cool-

ing stages were performed in an attempt to find the temperature where per-

manent reduction of the impedance occurs. Additionally, a large cooling

period was performed to investigate the recovery of impedance at room tem-

perature. (b) Cole-Cole plots of original and recovered impedance values (c)

Arrhenius plot of the extracted conduction path resistance values, taken on

oxygen terminated ND layers in vacuum.
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was not seen after further time at room temperature.

Therefore, considering the noise on the data, and the single

occurrence, it is difficult to draw firm conclusions from this

observation. The Arrhenius plot in Figure 5(c) resembles

that of untreated ND measured in air, with two distinct

regions separated by a sudden shift in extracted resistance at

200 �C. For the first region between 30 and 150 �C,

Ea¼ 47 meV (S.E¼ 8.5 meV), whereas for the second high

temperature region between 200 and 475 �C, Ea¼ 220 meV

(S.E¼ 96 meV). Neither value for Ea is of the order expected

for ND graphitisation, suggesting only desorption and oxida-

tion processes occurring on the oxygen terminated ND layer.

IV. CONCLUDING REMARKS

The electrical properties of NDs have been explored as a

function of H- or O- terminations. Despite NDs being prone

to phase changes on heating to far more modest temperatures

than bulk diamond, the fact that so-called surface transfer-

doping can be observed on NDs when hydrogenated suggests

conditions exist where they can be electrically similar to

bulk diamond. This important observation means that surfa-

ces coated with H-terminated NDs can be expected to dis-

play properties expected of H-terminated bulk diamond.

Given that 3D ND coatings can be simply produced from

water-based room temperature sonication processes, many

new applications for diamond coatings on materials that

would not be stable under conventional diamond CVD con-

ditions can be envisaged.

The acquisition of FTIR required very thick layers to be

treated in order to obtain enough material for the transmis-

sion experiments, however, this is sub-optimal for static dry

processing as some ND material will not be exposed to the

reactants and therefore the observed changes to the ND sur-

face may be underestimated, particularly when compared to

the thin ND films presented here. Therefore, it is reasonable

to suggest the spectra shown in Figure 1 may be understating

the effect of processing on thin ND layers. During the tem-

perature cycling, the electronic properties of hydrogen termi-

nated ND particles recover after short exposures to high

temperature (475 �C). However, the observation that this is

lost with greater durations of heating (1 h), leading to behav-

iour similar to that seen on oxygen terminated ND, suggests

hydrogen terminations are gradually replaced by oxygen

containing groups from the atmosphere (in the case of air

measurements). This process is not observed in vacuum,

reinforcing the notion the ambient air—likely the oxygen

and moisture content—plays a vital role in the degradation

of the electronic properties. Oxygen terminated ND is seen

to degrade at a far lower temperature threshold (200 �C) in

air. This is likely mediated through its hydrophilicity,17

where OH ions are free to attack oxygen containing surface

groups, occasionally resulting in the formation of dangling

bonds, which are thought to be required for the graphitisation

of the surface.36 Perhaps the most surprising result was the

extremely resilient behaviour of the NDs, particularly in vac-

uum. The ubiquitous occurrence of picofarad magnitude ca-

pacitance throughout the sample series suggests the

conduction paths observed are associated with grain

interiors.23 Whilst surface treatments certainly modulate the

number of charge carriers present, this study indicates the

bulk of charge transfer occurs within the ordered sp3 interior

of the ND, not the mixed phase surface. When surface trans-

fer doping is not present (i.e., oxygen terminated ND) capac-

itance values of the order of tens of picofarads are observed,

suggesting conduction through the outer sp3 regions where

higher concentrations of defects are present at the interface

between the core and shell of the ND37 but not through the

grain boundary where nanofarad magnitude capacitance is

expected.23
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