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H I G H L I G H T S

� We model lateral solid mixing in fluidized beds using the Eulerian modeling approach.
� We quantify mixing by means of a lateral dispersion coefficient.
� We investigate how design parameters and operational conditions affect the coefficient.
� We examine the influence of frictional stress models on the numerical results.
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a b s t r a c t

We investigated the influence of design parameters and operational conditions on lateral solid mixing in
fluidized beds adopting the Eulerian-Eulerian modeling approach. To quantify the rate at which solids
mix laterally, we used a lateral dispersion coefficient (Dsr). Following the usual approach employed in the
literature, we defined Dsr by means of an equation analogous to Fick's law of diffusion. To estimate Dsr ,
we fitted the void-free solid volume fraction radial profiles obtained numerically with those obtained
analytically by solving Fick's law. The profiles match very well. Our results show that Dsr increases as
superficial gas velocity and bed height increase; furthermore, it initially increases with bed width, but
then remains approximately constant. The values of Dsr obtained numerically are larger than the
experimental ones, within the same order of magnitude. The overestimation has a twofold explanation.
On one side, it reflects the different dimensionality of simulations (2D) as compared with real fluidized
beds (3D), which affects the degrees of freedom of particle lateral motion. On the other, it is related to
the way frictional solid stress was modeled: we employed the kinetic theory of granular flow model for
the frictional solid pressure and the model of Schaeffer (1987) for the frictional solid viscosity. To
investigate how sensitive the numerical results are on the constitutive model adopted for the frictional
stress, we ran the simulations again using different frictional models and changing the solid volume
fraction at which the bed is assumed to enter the frictional flow regime (ϕminÞ. We observed that Dsr is
quite sensitive to the latter. This is because this threshold value influences the size and behavior of the
bubbles in the bed. We obtained the best predictions for ϕmin ¼ 0:50. The results show that accurate
prediction of lateral solid dispersion depends on adequate understanding of the frictional flow regime,
and accurate modeling of the frictional stress which characterizes it.
& 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).

1. Introduction

Fluidization is an operation in which a bed of granular material
is made to behave like a fluid. This occurs when there is an upward
flow of fluid through the granular material that makes the drag
force exerted on it counterbalance its effective weight. This
operation has been a winning technology, having applications in
many industrial processes, such as coal combustion, biomass

gasification, waste to energy conversion, sulfide roasting and food
processing. Many of these processes rely on intense mixing in the
fluidized bed, which creates intimate contact between the fluid
and solid phases, intensifying heat and mass transfer.

To design and operate large-scale fluidized beds safely and
efficiently, one needs to achieve good solid mixing in both lateral
(horizontal) and axial (vertical) directions. For instance, one sees
the importance of lateral solid mixing in fluidized bed combustors;
in the latter, the rate at which solid fuel mixes laterally strongly
influences the plant performance, affecting combustion efficiency,
allocation of heat release and formation of emissions (Gómez-
Barea and Leckner, 2010). It is therefore crucial to ensure that fuel
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spread homogeneously and rapidly over the whole cross-section of
the bed. One way of achieving this is to feed the fuel at multiple
entry points with the aid of a spreader; however, each added feed
point increases the installation costs, and consequently one should
aim to minimize their number. The knowledge of how fuel mixes
laterally in a combustor is also crucial for minimizing excess air;
the latter causes energy loss in the system and thus increases
cost. Therefore, knowing how fuel mixes laterally is essential for
improving the design of fluidized bed combustors. Efficient opera-
tion of the latter, naturally, also depends on how well mixing is
achieved vertically.

To quantify the rate at which solids mix in fluidized beds,
researchers often resort to axial and lateral dispersion coefficients;
these, as we shall see in this study, are effective diffusivities rela-
ting to the times that solids take to spread axially and laterally
over a given distance in the bed. Recently, researchers have made
considerable efforts to analyze lateral dispersion coefficients more
closely; this is because earlier studies (May 1956; Lewis et al.,
1962; Avidan and Yerushalmi, 1985) concentrated mainly on axial
dispersion. Notwithstanding, lateral dispersion is essential in the
design and operation of large-scale beds, the coefficient quantify-
ing it being a key input parameter in many models for fluidized
bed reactors.

Despite the importance of lateral solid mixing, there is a dearth
of research on this subject, the available works focusing mainly
on the experimental methods of estimating lateral disper-
sion coefficients. Kashyap and Gidaspow (2011) summarized these
methods as saline (Rhodes et al., 1991), ferromagnetic (Avidan and
Yerushalmi, 1985), thermal (Borodulya and Epanov, 1982), radio-
active (Mostoufi and Chaouki, 2001), carbon (Winaya et al., 2007)
and phosphorescent (Du et al., 2002) tracing methods. These expe-
rimental approaches have their limitations: in thermal tracking
techniques heat is transferred to the fluid phase and walls, making
it difficult to interpret the results; in radioactive tracking methods
safety of equipment and personnel are of great concern; in phosp-
horescence tracking methods most successful applications usually
take place in dilute fluidized beds. For all solid tracer techniques,
the common limitation is that repeatable results are only guaran-
teed if numerous runs of experiments are carried out, a condition
that may not be practicable in real experiments. In addition,
experiments with solid tracers are difficult to perform because of
lack of continuous sampling and presence of residual tracer.
Despite these experimental investigations, the understanding of
how design parameters and operating conditions affect lateral
dispersion coefficients is still limited, because the mechanisms
governing solid mixing are complex.

In recent times, computational fluid dynamics (CFD) simulation
provides a powerful tool, complementary to experiments, to inves-
tigate the dynamics of fluidized beds (Gidaspow, 1994; Mazzei
and Lettieri, 2008, Mazzei et al., 2010; Mazzei, 2011, 2013). The
model equations are based on first principles: the balance equation
for mass, momentum and energy. Two modeling approaches are
usually adopted: the Eulerian-Eulerian and the Eulerian-Lagrangian
(Lettieri and Mazzei, 2009). In the former, averaged equations
describe the fluid and the solid as interpenetrating continua. In
the latter, conversely, one tracks the motion of each particle and
solves the average equations of motion only for the continuous
phase. The first approach offers the advantage of being relatively
less computationally demanding, providing information of direct
interest in applications (for example, average velocity fields and
volume fractions). The other approach is useful in providing
enormous details of the fluid bed dynamics, and is an approach of
choice for researchers who are interested in gaining deeper insight
into the dynamics of granular media. The CFD modeling approach
has proven to be effective in studying the dynamics of fluidized
beds (Coroneo et al., 2011; Tagliaferri et al., 2013), offering distinct

advantages: an accurate CFD model can considerably aid in the
design of the bed, saves time and improves the confidence of plant
scale-up.

Despite these advantages, studies on lateral solid dispersion in
fluidized beds using numerical approaches are still scanty. This has
hindered the advancement of knowledge on how various design
parameters and operating conditions affect fluid bed processes.
To the best of our knowledge, numerical works on lateral solid
dispersion in fluidized beds have only been carried out by Liu and
Chen (2010) and Farzaneh et al., (2011). Liu and Chen (2010)
employed the Eulerian-Eulerian approach to estimate the lateral
dispersion coefficients using a micro and a macro method. The
latter fits the transient particle concentration profile obtained
numerically with the solution of a Fickian-type diffusion equation,
while the former generates statistics of particles by using a
random walk approach. Farzaneh et al., (2011), on the other hand,
adopted a multi-grid Eulerian-Lagrangian approach.

In this work, we aimed to use and test a Eulerian-Eulerian
model that one could employ to estimate lateral solid dispersion
coefficients (we did not intend, nevertheless, to derive a numeri-
cal correlation for them). The model describes both solid and
fluid phases as interpenetrating continua. It consists of the con-
tinuity equations and linear momentum balance equations written
for each phase. These equations are valid for any physical and
chemical system, and therefore this approach does not introduce
any assumption in the model, except for the constitutive equations
needed to render the equations mathematically closed. We follow
an approach similar to that proposed by Brotz (1956). He used two
solids of equal physical properties, but differing in color. The solids
were separated by a vertical partition plate which divided the bed
into two equal parts. He fluidized the bed for a certain time and
then removed the partition; by measuring the rate at which the
two solids mix, he estimated the lateral dispersion coefficient.
With Brotz, we defined two solid phases, Solid-1 and Solid-2, with
equal physical properties, differing only in the names assigned to
them in the computational code. We then placed Solid-1 on the
left and Solid-2 on the right of a removable partition. We fluidized
the bed with air at ambient temperature, allowing it to reach
pseudo-stationary conditions, and then removed the partition.
From the radial concentration of the Solid-1 phase, we estimated
the lateral solid dispersion coefficient at the assigned operating
conditions. Before advancing further, let us briefly discuss how Dsr

is defined in this work.

2. Lateral dispersion coefficient – definition and estimation

Sometimes one might be interested in estimating how fast
particles mix in a fluid bed at given operating conditions, without
wanting to solve complex and numerically expensive models. One
way of doing this is resorting to axial and lateral dispersion
coefficients; these, as said, are effective diffusivities relating to the
time that solids take to spread axially and laterally over a given
distance in the bed. We are going to focus on the lateral dispersion
coefficient; therefore, before going any further, let us clarify how
the latter is defined. Most researchers (Brotz, 1956; Borodulya and
Epanov, 1982; Shi and Fan, 1984; Liu and Chen, 2010) define it
through an equation analogous to Fick's law of molecular diffusion,
writing:

∂tC ¼Dsr∂2xxC ð1Þ
where C represents the void-free solids concentration and Dsr

represents the lateral dispersion coefficient. This equation, as just
said, should be regarded as a definition of such coefficient. Let us
briefly comment on the applicability of Eq. (1) to the present
investigation. One might wonder how the diffusion equation above
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can be relevant to the study of lateral solid mixing in fluidized beds.
Lacey (1954) proposed a diffusion-like mechanism for solid mixing,
arguing that particles spread through a surface in a manner similar to
ordinary molecular or thermal diffusion. Each particle has equal
chance of moving to either side of the surface, closely resembling the
motion of molecules of a gas. Indeed, experimental data obtained by
Carstensen and Patel (1977) revealed that mixing of binary particles
can be well characterized by Eq. (1) as long as the mean diameters of
the particles are identical, the coefficient Dsr appearing in the
equation lumping together the effects of various mechanisms respo-
nsible for solid mixing such as: wake transport, emulsion drifti-
ng, bubble coalescence and break-up. For shallow beds, particle
ejection/fall-back in the freeboard upon bubble bursting at the bed
surface may also be relevant.

Take a 2D bed (we consider two dimensions to simplify the
description, but similar considerations hold in three dimensions)
where the concentration of solids depends in general on both spatial
coordinates, so that c¼ cðx; y; tÞ, with x and y denoting the horizontal
and vertical coordinates, respectively. The concentration in Eq. (1) is
averaged over the vertical direction, and hence is a function of the
x coordinate only, so that C ¼ Cðx; tÞ. For a given system, by matching
the actual concentration function Ceðx; tÞ, which one can determine
either experimentally or numerically, with the analytical solution of
Eq. (1), one can find the lateral dispersion coefficient. We should bear
in mind that, unlike molecular diffusion coefficients, Dsr is not just a
function of the particle properties, but depends on the system
geometry and on the operating conditions; this should be apparent
from its definition.

Let us be more specific. Often, to determine the lateral dispersion
coefficient, one considers a bed divided into two equal compart-
ments; the particles occupying the compartments differ solely in
color (having in particular same size and density). For instance, one
can have black particles in the left compartment and white particles
in the other. The functions cðx; y; tÞ and Cðx; tÞ represent the
concentration of just one kind of particles, say the black ones, which
are regarded as tracer particles. Hence, the initial conditions chara-
cterizing this particular setup are:

t ¼ 0 : C ¼ C f or 0rxo L
2

and C ¼ 0 f or
L
2
oxrL ð2Þ

The boundary conditions that one needs to assign to solve Eq. (1)
are:

x¼ 0; x¼ L : ∂xC ¼ 0 ð3Þ

In the real experiment (which may be numerical) the two compart-
ments, as reported above, are separated by a removable wall. At time
t ¼ 0, one fluidizes the system, waiting for the latter to reach
pseudo-stationary conditions. Then one removes the partition,
letting the black and white particles spread through the bed. The
void-free concentration of black particles, which one in theory could
measure (or calculate numerically), is cðx; y; tÞ. One can then divide
the bed in a given number of vertical layers and calculate the mean
value of Ce in each layer using the relation:

Ceðx; tÞ � 1
VL

Z
VL

c x; y; tð ÞdV ð4Þ

where VL denotes the volume of each vertical layer. The next step is
solving Eq. (1), using the conditions in Eqs. (2) and (3). For this
simple system an analytical solution is available (Hirama et al.,
1975):

C x; t;Dsrð Þ ¼ 1
2
þ2
π

∑
1

a ¼ 1

1
a
sin

aπ
2

� �
cos aπ

x
L

� �
exp �a2π2 t

L2=Dsr

 !
ð5Þ

Here we have reported explicitly the dependence of the analytical
solution on the parameter Dsr . Then, to estimate Dsr we simply

match the profiles Ceðx; tÞ and C x; t;Dsrð Þ. To do this, we define:

G� C x; t;Dsrð Þ�Ce x; tð Þ½ �2 ð6Þ

The task of determining Dsr then reduces to finding the value of Dsr

that minimizes G in Eq. (6). This value gives the lateral dispersion
coefficient for the system under investigation.

By repeating this procedure for many geometries and operating
conditions, one can obtain a correlation of the formwritten in Eq. (7),
which others can then use to estimate Dsr; this reduces the need for
solving complex models or conducting experiments each time one is
interested in estimating Dsr .

Dsr

ðu�umf Þhmf
¼ f

ρf ðu�umf Þ dp
μf

;
hmf

dp
;
ρp�ρf

ρf
;
L
dp

 !
ð7Þ

Here u is the superficial gas velocity, umf the minimum fluidiza-
tion velocity, hmf the bed height at minimum fluidization, ρp the
particle density, ρf the fluid density, μf the fluid viscosity and L the
bed width.

As said, one can use the lateral dispersion coefficient Dsr to
roughly estimate the time τ that solids take to spread laterally over
a distance L in the bed. To demonstrate this, we note that:

∂C
∂t

� C
τ

;
∂C
∂x

� C
L

;
∂
∂x

∂C
∂x

� �
� C=L

L
¼ C

L2

where C represents the concentration scale (whose value does not
affect τ, because Eq. (1) is linear in the concentration). Eq. (1) thus
yields:

τ� L2

Dsr
ð8Þ

So, if one knows the value of Dsr for a given design and set of
operating conditions, one can estimate the time τ required for the
solids to spread laterally over the length L in the bed.

We would like to emphasize that the parameter Dsr in Eq. (1) is
different from the coefficient appearing in the original Fick's law.
In the latter the parameter is molecular diffusivity, which is
constant for a solute in a given solvent. Fick's law relates only to
the diffusion of molecules generated by their random motion. The
lateral dispersion coefficient, conversely, is affected by various
competing mechanisms. These, as experimental evidence reveals,
include bubble break-up at the upper bed surface and subsequent
ejection of particles into the freeboard, wake transport and drifting
of emulsion owing to the passage of bubbles. Hence, the lateral
dispersion coefficient is affected by several variables, among which
we find bubble size and velocity, particle size and density as well
as fluid density and viscosity. Shi and Fan (1984) reported that
gross particle circulation also affects lateral mixing, this circulation
in turn depending on bed height and superficial gas velocity.
Determining Dsr is therefore quite challenging.

Another clarification is in order. As said, when calculating
lateral dispersion coefficients, we operated in terms of concentra-
tions averaged along the vertical direction of the bed, considering
the function Cðx; tÞ, defined through Eq. (4), in place of the function
cðx; y; tÞ. In doing so, we lost information about vertical variations
in concentration, which we expect to be present; these variations,
nevertheless, are accounted for, inasmuch as they affect the value
of Cðx; tÞ and in turn that of Dsr . We had to operate in terms of
vertically averaged concentrations, for we decided to define Dsr

through Eq. (1), which is one-dimensional and accounts solely for
variations along the horizontal space coordinate. We employed
Eq. (1) to define Dsr because this is the relation usually used in
the literature; in particular, the researchers cited in this article
who measured Dsr experimentally – and whose results we used
to validate our simulations – did adopt this definition and, as
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a consequence, operated in terms of vertically averaged concen-
trations.

3. Multiphase fluid dynamic model

The governing equations in this work consist of balance equa-
tions for mass and linear momentum written for the fluid and the
two solid phases:
Continuity equation – Fluid phase

∂tε¼ �∇Uεue ð9Þ
Continuity equation – Solid phase i

∂tϕi ¼ �∇Uϕiui ð10Þ
Dynamical equation – Fluid phase

∂t ερeue
� �¼ � ∇U ερeueue

� �þ∇USe�n1f 1�n2f 2þερeg ð11Þ
Dynamical equation – Solid phase i

∂t ϕiρiui
� �¼ �∇U ϕiρiuiui

� �þ∇USiþnif i�nif ikþϕiρig ð12Þ
Here i is a phase index, subscripts 1 and 2 identify the solid to the
left and to the right of the partition, respectively (as reported in
Section 2), ρe and ρi, ε and ϕi are the densities and volume fractions
of the fluid and solid phases, respectively, while g is the gravitational
acceleration. Furthermore, ue, ui, Se, Si, f i, and f ik are the averaged
velocities, effective stress tensors and interaction forces per unit
particle exerted by the fluid and by the kth solid phase on the ith
solid phase, respectively. The equations written above are unclosed;
various terms need to be expressed constitutively.

3.1. Fluid-particle interaction forces

The main components of the fluid-particle interaction force are
the buoyancy and drag forces. We neglect other contributions
(Owoyemi et al., 2007); thus, we write f i ¼ f i

sþf i
d . We define the

buoyancy force as nif i
s � �ϕi∇pe. We close the drag force using

the expression of Mazzei and Lettieri (2007):

nif i
d � βi ue�uið Þ ; βi ¼

3
4
CD Reið Þρe Jue�ui Jεϕi

di
ε�ψ ε;Reið Þ ð13Þ

ψ ε; Reið Þ � � lnφðε;ReiÞ
ln ε

; φðε;ReiÞ �
CD

nðε;ReiÞ
CDðReiÞ

ε2ð1�nÞ

CD Reið Þ ¼ ð0:63þ4:8Re�ð1=2Þ
i Þ2 ; Cn

D ε;Reni
� �¼ ð0:63þ4:8Ren�ð1=2Þ

i Þ2

Rei �
ρe

μe
ε Jue�ui Jdi ; Rein ε;Reið Þ � Rei

εn
;

nðReinÞ ¼
4:8þ2:4U0:175Rein3=4

1þ0:175Rein3=4
ð14Þ

Here di is the particle diameter of the ith solid phase, Rei and Rein

are particle Reynolds numbers, while CD and CD
n are drag

coefficients.

3.2. Particle-particle interaction force

We assume that the interaction force f ik exchanged between
particles of different phases includes only a drag-like contribution.
Therefore, it is proportional to the slip velocity between the phases.
We used the constitutive equation developed by Syamlal (1987):

nif ik ¼ ζik uk�uið Þ;

ζik ¼
3
4
1þeikð Þ 1þπ

4
Fik

� �ρiρkϕiϕkgik diþdkð Þ2

ρidi
3þρkdk

3 Juk�ui J ð15Þ

where eik is a coefficient of restitution equal to 0.90, Fik is a
coefficient of friction equal to 0.15 and gik is a radial distribution
function that one obtains by combining the radial distribution

functions gi and gk of the ith and kth particle phases, respectively.
Their expressions are:

gi ¼
di
2

∑
2

k ¼ 1

ϕk

dk
þ 1� ϕ

ϕmax

� �1=3
" #�1

; gik ¼
digkþdkgi
diþdk

ð16Þ

Here ϕ is the overall solid volume fraction, while ϕmax is the
maximum value that ϕ can attain.

3.3. Effective stress

We close the effective stress tensors using the Newtonian
constitutive equation:

Se ¼ �peIþ2μeDeþ κe�
2
3
μe

� �
trDeð ÞI ;

Si ¼ �piIþ2μiDiþ κi�
2
3
μi

� �
trDið ÞI ð17Þ

where pe, pi, μe, μi, κe and κi are the averaged pressures, viscosities
and dilatational viscosities of the fluid and particle phases,
respectively; I is the identity tensor, while De and Di are the rate
of deformation tensors defined as:

De �
1
2

∇ueþ∇ue
T� �

; Di �
1
2

∇uiþ∇ui
T� � ð18Þ

Closing the effective stress tensors therefore reduces to finding
constitutive expressions for the pressure, viscosity and dilatational
viscosity of each phase. The fluid is regarded as incompressible
and so the fluid pressure does not need a constitutive expression.
The viscosity μe is assumed to be constant, while the dilatational
viscosity κe is neglected. For the solid phases, we need constitutive
expressions to model all these quantities.

The solid phase can be in two flow regimes: the viscous regime
where particles undergo transient contacts and momentum trans-
fer is translational and collisional, and the frictional regime, where
particles are in enduring contacts and momentum transfer is
mainly frictional. In both regimes, the solid phase is modeled as
a continuum; in the viscous regime it is characterized by a viscous
solid pressure pi

v, viscosity μi
v and dilatational viscosity κiv, while

in the frictional flow regime it is characterized by a frictional solid
pressure pi

f , viscosity μi
f and dilatational viscosity κi f .

We express pi
v using the closure of Lun et al. (1984):

pi
v ¼ 1þ2 ∑

2

k ¼ 1

dik
di

� �3

ð1þeikÞϕkgik

" #
ϕiρiΘi ; dik �

diþdk
2

ð19Þ

Here Θi is the granular temperature of the ith phase. In the
present study, di ¼ dk, eii coincides with the restitution coefficient
ei and gik reduces to gi. For the viscosity μi

v we adopt the closure of
Gidaspow (1994):

μi
v ¼ 10ρidi

ffiffiffiffiffiffiffiffiffi
πΘi

p
96ð1þeiÞgi

1þ4
5
ð1þeiÞϕigi

	 
2
þ4
5
ϕi

2ρidigi 1þeið Þ Θi

π

� �1
2

ð20Þ
For the dilatational viscosity κiv we use the closure of Lun et al.
(1984):

κiv ¼
4
3
ϕi

2ρidigi 1þeið Þ Θi

π

� �1
2

ð21Þ

The granular temperatures are governed by balance equations for
the pseudointernal energies related to the fluctuation velocities of
the particles (Gidaspow, 1994; Syamlal et al., 1993). The equation
reads:

∂t ϕiρiUi
� �¼ �∇U ϕiρiUiui

� ��∇UqiþSi : ∇uiþGi
d�Si

v�Si
c ð22Þ

where Si
c is a sink term representing losses of pseudointernal

energy caused by inelastic collisions, Gi
d is a source term
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representing the generation of particle velocity fluctuations by
fluctuating fluid-particle forces, while Si

v is a sink term representing
dampening of particle velocity fluctuations caused by viscous
resistance to particle motion. The pseudointernal energy per unit
particle mass is Ui ¼ 3Θi=2, and qi is the pseudothermal heat flux.
For the closures of qi; Gi

d; Si
v and Si

c we refer to Gidaspow (1994).
In the frictional flow regime, as reported earlier, particles

interact largely through frictional enduring contacts. These are
not accounted for by the kinetic theory of granular flow. Therefore,
to model the flow properties in this regime, one needs to adopt the
theories of plasticity and soil mechanics. Shaeffer (1987) devel-
oped a model that relates μi

f to pi
f based on the principles of soil

mechanics. The model reads:

μi
f ¼ pi

f sinφ
2

ffiffiffiffi
I2

p ð23Þ

where φ is the angle of internal friction and I2 is the second
invariant of the deviatoric stress tensor. The frictional solid
pressure is often modeled by means of arbitrary functions that
have no theoretical basis but correctly describe qualitatively how
dense granular media behave (Syamlal et al., 1993). The prime
feature that must be captured is that such materials cannot reach
compactions that are unphysically high. A closure for the frictional
solid pressure that some modelers use is:

pi
f ¼ϕip

n where pn � 10A ϕ�ϕmin

� � B ð24Þ
where ϕmin is the frictional packing limit, and A and B are
coefficients having typical values of 25 and 10, respectively. This
equation is extremely sensitive to the deviation of ϕ from ϕmin and
this could lead to big pressure fluctuations and violent numerical
instabilities (Schaeffer, 1987). Eq. (24) is often employed with
radial distribution functions that are bounded and so do not
diverge positively when ϕ approaches ϕmax. For instance, the
model of Syamlal et al. (1993), used in the CFD code MFIX, adopts
the expression of Lebowitz (1964):

gi ¼ 1þ3di
2ε

∑
2

k ¼ 1

ϕk

dk

 !
ð25Þ

where, as opposed to Eq. (16), ϕmax does not feature. As in Eq. (16)
gi diverges when ϕ approaches ϕmax, the viscous solid pressure

already prevents the mixture from overpacking; therefore, one can
use the same equation used to model the viscous solid pressure,
that is, Eq. (19), to model also the total solid pressure in the
frictional regime (instead of summing to the viscous solid pressure
an additional contribution modeled by means of an arbitrary diver-
gent function, qualitatively sound but theoretically unfounded).

These considerations induced us to employ the so-called KTGF-
based model, a frictional model partly based on the kinetic theory
of granular flows (KTGF) which accounts only for the frictional
viscosity μi

f neglecting the frictional solid pressure pi
f and the

frictional dilatational viscosity κi f . When ϕ exceeds ϕf , the model
keeps on using the viscous closure for the solid pressure, Eq. (19),
but increases the solid viscosity by adding to the viscous con-
tribution, Eq. (20), the frictional one given by Eq. (23). As a conse-
quence, the solid viscosity becomes:

μi ¼ μi
f þμi

v ð26Þ

In Eq. (23) the pressure used in the calculation is the viscous solid
pressure (which, as said, coincides with the total solid pressure,
since the frictional solid pressure is not considered).

3.4. Boundary and initial conditions

The computational grid (uniform, with square cells of 5 mm
side) is two dimensional; hence the front and back wall effects are
neglected. On the left, right and middle walls, no-slip boundary
conditions apply. At the bottom of the bed, a uniform inlet fluid
velocity u is specified. The fluid is ambient air. At the upper
boundary, the pressure is set to 105 Pa. On all the boundaries, the
solid mass fluxes are set to zero.

Initially, the bed is fixed and consists of two equal and adjacent
compartments partitioned by a removable wall. Each compart-
ment consists of solids having the same size and density. The
voidage is set to 0.4 everywhere in the bed. We fluidize the solids
in each compartment with the same superficial gas velocity for
about three seconds until they reach stable fluidization, and then
we remove the partition. To obtain the horizontal solid volume
fraction profiles in the bed, we divide the bed into twenty equal
vertical layers evenly distributed over the horizontal direction and

Table 1
Simulation parameters for Powder 1.

Parameters Value

Vessel height 0.35 m
Bed width 0.20–1.00 m
Superficial gas velocity 0.87–1.17 m/s
Particle diameter 491 μm
Particle density 2620 kg/m3

Minimum fluidization velocity 0.20 m/s
Bed height 0.05–0.11 m
Computational cell 0.005 m
Time-step 0.001 s

Table 3
Simulation parameters for Powder 2.

Parameters Value

Vessel height 0.60 m
Bed width 0.90 m
Superficial gas velocity 0.45–0.75 m/s
Particle diameter 595 μm
Particle density 1400 kg/m3

Minimum fluidization velocity 0.25 m/s
Bed height 0.17–0.23 m
Computational cell 0.005 m
Time-step 0.001 s

Table 2
Summary of simulation cases.

Cases Frictional Pressure Model Frictional Viscosity Model Frictional Packing Limit

KTGF J & J Schaffer J & J 0.50 0.61

1 X X X
2 X X X
3 X X X
4 X X X
5 X X X
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we compute the void-free solid volume fraction in each layer
following the procedure reported in Section 2.

4. Results

We considered two sets of powders: Powder 1 was used by Shi
and Fan (1984) in their experimental study of lateral mixing of
solids in batch fluidized beds, and Powder 2 was investigated by
Mori and Nakamura (1965). The parameters used to simulate these
powders, in particular the geometry and the bed height, are
chosen to replicate the experimental work of these authors. We
report in Table 1 the parameters employed in the simulations of
Powder 1; those for Powder 2 are reported in Table 3.

As said earlier, we fluidized the bed, divided it into two equal
parts by a removable partition, for a certain period, allowing them to
reach pseudo-stationary conditions, and then removed the partition.
We ran preliminary simulations, removing the partition after three
and five seconds, and comparing the void-free concentration profiles
obtained in the two cases. We observed that there was no significant
difference between the two; consequently, in subsequent simula-
tions, we removed the partition after three seconds.

4.1. Effect of superficial gas velocity

From the solid volume fraction profiles obtained numerically,
we calculated the void-free mass fraction ϕ̂i of solid phase i in
each layer:

ϕ̂i �
ϕi

ϕ1þϕ2
ð27Þ

We ran the simulations at various superficial gas velocities (start-
ing from 0.87 m/s, which is the minimum velocity investigated
experimentally by Shi and Fan, 1984, up to 1.17 m/s, with incre-
ments of 0.10 m/s), keeping the minimum fluidization bed height
at 5.23 cm (which is the maximum bed height at minimum
fluidization conditions investigated by Shi and Fan, 1984) and
the bed width at 0.6 m (which is the single bed width investigated
by Shi and Fan, 1984). We fitted the void-free mass fraction profiles
obtained from our simulations with those obtained from Eq. (1)
using the least square regression method, as reported in Section 2.
In Fig. 1 we report the profiles of void-free mass fraction obtained
from Eq. (1) and those obtained numerically at t¼5.0 s. Similar
profiles are found at other times, but we have chosen 5.0 s as

representative time. We obtained a reasonable fit, as Fig. 1 shows.
Fig. 2A reports the snapshots of particle concentrations obtained
from the simulations at a superficial gas velocity of 0.87 m/s (4.35
times umf ). The figure shows how particles placed at the left of the
removable partition spread to the right. We observe from Fig. 2A
that the spread of the particles proceeds in a manner similar to
what one would observe in, for instance, the molecular diffusion of
ink in water; even though in this case the spread of particles is
induced primarily by bubbles. This diffusion-like spread of parti-
cles explains why we obtained a reasonable fit between our
numerical results and those obtained from Eq. (1). The snapshots
showing the contours of particle concentrations at superficial gas
velocity of 1.17 m/s (5.85 times umf ) are reported in Fig. 2B. It is
interesting to observe that the contours of solid volume fraction
shown in this figure are partly different from those in Fig. 2A, even
though the snapshots were taken at the same computational
times. In Fig. 2B we observe streams of particles transported into
the freeboard in a region close to the bed surface. This is caused by
the burst of bubbles and subsequent ejection of their solid content
into the freeboard. As reported by Davidson and Harrison (1971),
particles are carried up through the bed in the bubble wakes and,
when bubbles burst, part of them spreads over the surface of the
bed. This kind of solid transport is essentially absent in Fig. 2A.
This additional mechanism, observed when the superficial gas
velocity is larger, contributes to the higher value of Dsr obtained at
this velocity, as reported in Fig. 3.

In Fig. 3 we plot Dsr against the superficial gas velocity, compar-
ing our simulation results with those obtained from empirical
correlations available in the literature. We observe that the value
of the dispersion coefficient increases as the superficial gas velocity
increases. This is expected, because an increase in velocity induces
more vigorous mixing in the bed, rendering solid circulation more
intense and enhancing lateral solid transport. As said, at higher
superficial gas velocities an additional mechanism affects lateral
mixing; this is the solid transport across the bed surface caused by
bubble eruption. These observations were also reported by Kunii and
Levenspiel (1989). Fig. 3 also shows that the numerical values of the
dispersion coefficient have the same order of magnitude as those
given by the empirical correlations, but in all cases overestimate the
latter. The reason for this needs to be investigated.

4.2. Effect of bed height

We investigated the effect of bed height on lateral dispersion
coefficients. To do this, we ran simulations at different minimum
fluidization bed heights (spanning the range between 5.23 cm and
11.23 cm), fixing the superficial gas velocity at 1.07 m/s (5.35 times
umf ; an intermediate value in the velocity range considered in
Section 4.1) and the bed width at 0.6 m. Following the same
procedure outlined above, we obtained the void-free horizontal
mass fraction profiles in the bed. We report in Fig. 4 the profiles
when the bed height is 7.23 cm. The numerical profile fits reason-
ably well the analytical one obtained from Eq. (1).

As shown in Fig. 5, we observe an increase in dispersion co-
efficient as the bed height is increased. This is because as the bed
height increases, bubbles grow in size causing more recirculation and
more particles to be drawn into their wakes. As bubbles erupt at the
bed surface, they eject more particles into the freeboard, enhancing
the lateral transport of solids. These effects are observed in the
snapshots of solid volume fraction reported in Fig. 6 for different bed
heights at t¼5.0 s. As the bed height increases, the size of bubbles
increases, implying that greater volume of emulsion can be driven
aside. This leads to more intense mixing, and hence increases solid
lateral transport. We also compared the simulation results with
empirical correlations available in the literature, as shown in Fig. 5.
The values of dispersion coefficients obtained from the simulations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6

Vo
id

-fr
ee

 m
as

s 
fr

ac
tio

n 
[-]

Horizontal coordinate [m]

Dsr = 0.00313 m2/s Fluent

Fick

t = 5.0s
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numerically.
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have the same order of magnitude as those given by the empirical
correlations; again, however, the numerical results overestimate the
empirical ones.

4.3. Effect of bed width

Most researchers investigating lateral solid dispersion in flui-
dized beds often neglect the influence of bed width. For instance,
Shi and Fan (1984) in their experimental work on lateral solid
mixing in batch gas-fluidized beds summarized the mechanisms
governing lateral solid mixing as: bubble movement through the bed,
bubble burst at the surface, and gross particle circulation in the bed. In
summarizing the parameters on which these mechanisms depend,
they did not include bed width. Several other authors (Berruti et al.,
1986; Bellgardt et al., 1987; Salam et al., 1987; Xiang et al., 1987;
Winaya et al., 2007) who have developed empirical correlations for

lateral dispersion coefficients also ignore bed width as a parameter
that might affect it. We believe that bed geometry should influence
lateral mixing, and hence the coefficient quantifying it, Dsr : This is
because bed geometry plays a crucial role in gross particle circula-
tion, which is an important mechanism responsible for lateral solid
mixing. To investigate the influence of bed width on lateral solid
dispersion, we considered beds of different widths, ranging from
0.2 to 1.0 m (values smaller and larger than that used by Shi and
Fan, 1984, which we employed in Sections 4.1 and 4.2). We fluidized
these beds, maintaining the superficial gas velocity at 1.07 m/s and
the minimum fluidization bed height at 5.23 cm. We then deter-
mined the lateral dispersion coefficient at each value of bed width,
using the approach described previously. In Fig. 7, we report the
values of the dispersion coefficient at different bed widths. The
figure shows that the coefficient increases rapidly as the bed width
increases from 0.2 to 0.4 m, afterwards increases slowly and finally
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Fig. 2. Solid 1 volume fraction profiles at different times. (A) Superficial fluid velocity of 0.87 m/s. (B) Superficial fluid velocity of 1.17 m/s. The minimum fluidization bed
height is 5.23 cm, while the bed width is 0.60 m. The horizontal dashed line indicates where the bed ends and the freeboard begins.

0

1

2

3

4

5

6

7

8

9

10

0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

D
sr

 ×
 1

03 
 [m

2 /s
]

Superficial gas velocity [m/s]

Shi & Fan
Borodulya
Berruti
Gabor
Present work

Fig. 3. Dispersion coefficient values at different superficial fluid velocities. The
minimum fluidization bed height is 5.23 cm, while the bed width is 0.60 m. The
values are compared with those obtained from empirical correlations in the literature.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6

Horizontal coordinate [m]

Fluent

Fick

t = 5.0s

Vo
id

-fr
ee

 m
as

s 
fr

ac
tio

n 
[-]

Dsr = 0.00569 m2/s

Fig. 4. Solid 1 void-free vertically averaged mass fraction horizontal profiles for a
minimum fluidization bed height of 7.23 cm. The superficial fluid velocity is 1.07 m/s,
while the bed width is 0.60 m. The ‘Fick’ profile is that obtained from the analytical
solution of the Fick's law, while the ‘Fluent’ profile is that obtained numerically.

O. Oke et al. / Chemical Engineering Science 120 (2014) 117–129 123



becomes approximately constant. To explain this trend, let us briefly
report on the observation by Pallarès et al. (2007) regarding the
mechanisms of lateral solid mixing. They reported that lateral solid
mixing is due to horizontally aligned vertical vortices, rotating in
alternate directions (these vortices are referred to as mixing cells).
In these mixing cells, the following mechanisms for solid mixing
take place: bubble wake mixing, drifting aside of emulsion and bubble
eruption at the bed surface. The net lateral solid transport in the bed
results from the exchange of solids in the mixing cells and is
determined by the integral length scale of macroscopic solids
circulation patterns. It is likely that the integral length scale of
solids circulation be constrained by bed width for comparatively
narrow beds. For wide beds the integral length scale of solids
circulation, hence lateral solid transport, should rather be dictated
by bed height.

5. Discussion

It is clear from the results presented above that the values of
Dsr obtained from our simulations are larger than those predicted

by empirical correlations, albeit the order of magnitude of the
coefficient is correctly captured. We believe that this overestima-
tion has two main causes. The first relates to how the frictional
stress of the solid phase is modeled constitutively; we address
this aspect in the next section. The second has to do with the
dimensionality of our simulations. Our simulations are 2D (a choice
often found in the literature, in our case dictated by our computa-
tional resources, the real-time duration of each simulation and the
number of simulations that our analysis requires). In actual flui-
dized beds the lateral motion of the solid has, we might say, two
degrees of freedom (bubble-induced particle lateral motion devel-
ops in a horizontal plane), while in 2D fluidized beds only one
degree of freedom is present (particle lateral motion can only
develop along a horizontal line). Hence, when comparing lateral
solid dispersion coefficients obtained numerically by means of 2D
simulations with those estimated using empirical correlations, one
needs to account for the 2D nature of the simulations. As discussed
by Norouzi et al. (2011), omitting one dimension in the simulations
significantly affects the value of the coefficient. The latter, in
particular, is overestimated, as we have also observed in our work.
We shall address this aspect in Section 5.2.
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5.1. Influence of hydrodynamic models

The Eulerian equations of motion adopted in this work, as said
in Section 3, contain indeterminate terms that need to be
expressed constitutively. Such terms are the fluid-particle and
particle-particle interaction forces and the fluid and solid stress
tensors. To close the stress tensors, one usually regards the phases
as Newtonian continua; therefore, the closure relationships take
the form reported in Eq. (17). So, the problem of closure reduces to
finding constitutive expressions for the pressure, viscosity and
dilatational viscosity for each phase. For the solid phases one
needs to model these parameters constitutively.

To model the solid stress, one usually adopts the kinetic theory
of granular flows (KTGF). This assumes that particles are smooth
and spherical, that collisions are binary and instantaneous and
that the powder is far from the frictional packing limit. Thus, the
kinetic and collisional momentum transfer arising from the
particle velocity fluctuations and the particle collisions are mod-
eled following the Enskog theory for dense gases (Chapman and
Cowling, 1970). Nevertheless, in several fluidized bed applications,
like the one investigated in this work, particles interact largely
through frictional enduring contacts, and the kinetic theory of
granular flows does not take into account these important inter-
actions. Hence, using the kinetic theory to model the solid stress in
dense systems is inadequate and creates problems. We will now
discuss in detail these problems.

In regions of high solid volume fraction, particles interact with
multiple neighbors and the mechanism for stress generation is not
just due to kinetic and (particularly) collisional contributions, but
also to sustained contacts among particles. These contacts make
particles dissipate a lot of energy, making them form very dense
regions in the bed. This increases the ability of the granular
assembly to resist shearing, because tangential frictional forces
at contact points are now present. Consequently, the frictional
viscosity of the bed is larger than that predicted by the granular
kinetic theory model, insofar as this does not account for frictional
interactions. So, using the kinetic theory alone to model dense
fluidized beds underpredicts the solid viscosity, overestimating in
turn the extent of particle mixing.

Enduring particle contacts in dense regions of fluidized beds do
not only affect the viscosity of the solid phase, but also its pressure.
The latter has a more pronounced effect on the fluid dynamics of the
bed than the former, for the solid pressure influences significantly
the formation and the size of the bubbles. Let us explain why. The
two-phase theory by Toomey and Johnstone (1952) suggests that the
void fraction around the bubbles and that in the emulsion phase are
equal, for the theory assumes that all the gas in excess of that
required to just fluidize the bed results in the formation of bubbles,
the emulsion phase remaining at minimum fluidization conditions
with uniform void fraction. However, local measurements of bed
porosity by Lockett and Harrison (1967), done via capacitance probes,
revealed that the void fraction around the bubbles is not uniform.
This was observed experimentally by many other authors (Nguyen
et al., 1973; Collins, 1989; Fan et al., 1990). Experimental investiga-
tions of voidage distributions around bubbles by Yates et al. (1994),
and numerical simulations by Patil et al., (2005a), confirmed this,
showing that the void fraction decreases exponentially from the
bubble interface to the bulk of the emulsion phase. Fig. 8 reports the
void fraction distribution around a bubble, as revealed by experi-
mental and numerical studies (Patil et al., 2005b); regions A, B and C
represent the bubble, the bubble boundary and the bulk of the
emulsion phase, respectively. A question that one may want to ask is
how the void fraction distribution around the bubbles and the
frictional interactions among the particles affect the size of the
bubbles. Answering this question will allow us to highlight the role
of frictional stress on the dynamics of bubbling beds.

The bubble size is affected by the resistance that the gas finds to
cross the bubble boundary and reach the emulsion phase. The larger
the resistance, the less leaky the bubble boundary is and, in con-
sequence, the larger the bubble results. The resistance through the
bubble boundary depends on the drag experienced by the gas. This
decreases when the void fraction around the bubbles increases. The
frictional solid pressure strongly influences the void fraction distribu-
tion around the bubbles by reducing the compaction of solids around
their interface, which increases the gas flow through the bubble
boundary into the emulsion phase, thereby leading to smaller bubbles.
Hence, if one employs the kinetic theory to model the solid pressure,
without accounting for frictional stress, the solid pressure and in turn
the void fraction around the bubbles are underestimated. This
increases the drag experienced by the gas around the bubble
boundaries and in turn reduces the gas leakage from the latter. This
makes numerical simulations overestimate the sizes of the bubbles
and the extent of particle mixing.

To overcome this problem, Johnson and Jackson (1987) proposed
that the frictional stress should be added to the viscous stress modeled
by the granular kinetic theory. The latter, as said, captures the flow
regime in which the solid pressure is dictated mainly by kinetic and
collisional contributions, whilst the former captures the flow regime in
which enduring contacts are present among the particles. Even if the
physical basis of adding the two stress contributions might be argued,
the approach captures well the two extremes of granular flow. The
frictional stress is usually modeled as follows:

σi
f ¼ pi

f Iþμi
f ∇uiþ∇ui

T� � ð28Þ

where pi
f is the frictional pressure and μi

f is the frictional viscosity
(the dilatational viscosity is usually neglected). When the solid volume
fraction exceeds a threshold value ϕmin, the frictional contribution to
the solid pressure and viscosity are added to the viscous contribution:

pi ¼ pi
vþpi

f ; μi ¼ μi
vþμi

f ð29Þ

Johnson and Jackson (1987) proposed the following constitu-
tive equation for the frictional pressure:

pi
f ¼

F ðϕ�ϕminÞa
ðϕmax �ϕÞb; ϕZϕmin

0 ϕoϕmin

8<
: ð30Þ

Here F , a and b are empirical constants, ϕmin is the minimum solid
volume fraction at which particles start generating stress through
enduring contacts, while ϕmax is the maximum volume fraction
that the particles can attain. The frictional viscosity is then related
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to the frictional pressure by the Coulomb (1776) friction law:

μi
f ¼ pi

f sinφ ð31Þ
where φ is the angle of internal friction of the granular material.

Another approach to modeling frictional stress was proposed
by Shaeffer (1987) based on the principles of soil mechanics. The
model reads:

pi
f ¼ 1025 ϕ�ϕmin

� � 10 ; μi
f ¼ pi

f sinφ
2

ffiffiffiffi
I2

p ð32Þ

where I2 is the second invariant of the deviatoric stress tensor.
Following the reasoning of Johnson and Jackson (1987),

Srivastava and Sundaresan (2003) employed an additive approach
to describe the solid stress, using Eq. (30) to model the frictional
pressure. To model the frictional viscosity, they adopted a modified
form of Shaeffer's model:

μi
f ¼ pi

f sinφ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2þðΘi=dp

2Þ
q ð33Þ

where Θiis the granular temperature and dp is the particle diameter.
The additional term Θi=dp

2 ensures that numerical singularity is
avoided in regions where I2 approaches zero, provided that in such
regions the granular temperature does not vanish. They used this
hybrid model to simulate the rise of a bubble in a fluid bed. To
highlight the role of frictional stress on the bed dynamics, they ran
another simulation without accounting for it. The results of their
simulations revealed that frictional stress influences the bed dynamics
significantly, affecting the shape and size of the bubbles.

Passalacqua and Marmo (2009) employed the model of
Srivastava and Sundaresan (2003) to investigate the influence of
frictional stress on bubble growth in fluidized beds. They reported
that it affects significantly the size of the bubbles: with frictional
stress accounted for, the predicted bubble size was significantly
lower than that observed in simulations with no frictional stress
implemented. They also showed that the value ascribed to ϕmin,
appearing in Eq. (30), plays a key role: the size of the bubbles
predicted with lower values of ϕmin are smaller than those
obtained with higher values of the parameter. This is expected,
for the lower the value of ϕmin, the sooner frictional stress is
accounted for (in the simulations) and the more particle compac-
tion reduces around the bubbles; this in turn makes the latter
leakier, reducing their sizes. This effect, as we shall see, affects
significantly lateral dispersion.

In light of this, we conclude that the way in which frictional
stress is modeled affects significantly the fluid dynamic behavior
of fluidized beds; particularly in bubbling beds, where the latter is
dictated mainly by the action of bubbles. In this section, we intend
to investigate the role of frictional stress modeling on lateral solid
mixing. These significantly influence bubble size and shape, which
in turn affect how quickly the solid spreads throughout the bed. To
investigate this aspect, we ran simulations using the operational
conditions reported in Table 1 and considering the different cases
outlined in Table 2. We tested different frictional pressure and
viscosity models, changing the solid volume fraction at which the
bed enters the frictional flow regime ðϕminÞ and observing the
effects of these variations on lateral dispersion.

Fig. 9A shows the plot of the lateral dispersion coefficient
against the superficial gas velocity for Cases 1 and 2. These cases
are identical, except that in Case 2 frictional stress is introduced
earlier (the value chosen for ϕmin is lower). Fig. 9A shows that Dsr

is predicted better in Case 2, its values being lower and closer to
those found empirically. The same is observed for Cases 3 and 4,
which are also identical, except that in Case 4 frictional stress is
introduced earlier. Fig. 9B shows that the values of Dsr in Case 4 are
lower than those in Case 3. This is because frictional stress is

introduced earlier. The effect of this, as said in the preceding
paragraphs, is that the voidage around the bubbles increases,
reducing the compaction of the particles and lowering the drag
experienced by the fluid. Consequently, the leakage of gas through
the bubble boundary increases, leading to bubbles of smaller size
compared with cases where the introduction of the frictional
stress is delayed. To illustrate this, we determined a statistical
distribution of the bubble diameters by dividing the diameter
range into classes, as shown in Fig. 10. Although there is no general
consensus on how the equivalent bubble diameter should be
defined, we took it to be the diameter of a circle having the same
area (we are working in two dimensions) as the bubble. Thus, the
equivalent bubble diameter is calculated as follows:

Deq ¼
ffiffiffiffiffiffi
4A
π

r
ð34Þ

where A denotes the area of the bubble. We used image analysis
software to process the simulation results and compute the area of
the bubbles. To do this, we assumed that bubbles are continuous
regions in which the void fraction is larger than 0:85. By establish-
ing a color contrast between these regions and the other parts of
the bed, the software allows to determine the number of bubbles
and their areas. Fig. 10 shows that Case 2, in which we introduced
the action of frictional stress earlier, predicts the largest percen-
tage of small-sized bubbles, which belong to diameter classes
[0 cm, 1 cm] and [1 cm, 2 cm]. Conversely, Case 1 predicts higher
percentages for greater bubble diameter classes. The reduction in
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bubble size observed in Case 2 reduces the extent of lateral mixing,
causing Dsr to have lower values.

To investigate the effects of frictional viscosity models on
particle mixing, we compare Cases 1 and 3. In the first we adopted
the model of Schaeffer (1987), while in the second that of Johnson
and Jackson (1987). In both we used the same value for ϕmin. As
Figs. 9A and 9B show, Case 3 gives lower values for Dsr . This is
because the model of Johnson and Jackson (1987) gives larger
values of the frictional viscosity than those predicted by the model
of Schaeffer (1987) (we verified this numerically). The larger the
solid viscosity is, the more the granular assembly is able to resist
shearing; this effect reduces the extent to which particles mix
laterally, leading to lower values of the dispersion coefficient.

In the cases investigated, we highlighted the influence of
frictional viscosity on lateral mixing, modeling the frictional
pressure by means of the kinetic theory while varying the
frictional viscosity model and the frictional packing limit. The
simulation results revealed that increasing the effective viscosity
of the solid slows down the bed dynamics, making the particles
less able to mix, thereby reducing Dsr . We think that we can
further improve the simulation results by changing the frictional
pressure model. Thus, instead of modeling the frictional pressure
using the kinetic theory, we used the semi-empirical model
proposed by Johnson and Jackson (1987). The simulation set-up
is shown in Table 2, Case 5. In Fig. 11 we compare the results
obtained from Cases 4 and 5. In the latter we obtained lower Dsr

values than in the former for all values of the superficial gas
velocity. This is expected because the frictional pressure predicted
by the model of Johnson & Jackson, used in Case 5, is higher than
that predicted by the kinetic theory model, used in Case 4 (for a
quantitative comparison between these pressure models, we refer
to Passalacqua and Marmo, 2009). The higher frictional pressure is,
the higher the void fraction around bubbles is, and the leakier the
latter become. Consequently, Case 5 predicts smaller bubbles than
Case 4. To confirm this, we carried out a statistical analysis of the
bubble size distributions on these cases, as we did previously. This
is reported in Fig. 12. We observe that Case 5 has a higher
proportion of small bubbles in the size range [0, 1 cm], [1 cm,
2 cm] and [2 cm, 3 cm].

The results obtained revealed that Case 5 gives the best set-up
for predicting Dsr . To confirm this, we used the set-up in Case 5 to
investigate Powder 2. The properties of this powder are reported
in Table 3. We compared the results with those obtained using
the set-up in Case 1 (which is the default in Fluent). We began
by investigating the influence of the superficial gas velocity on
the dispersion coefficient. To do this, we kept the minimum

fluidization bed height at 0.17 m and the bed width at 0.9 m, we
fluidized the bed at different superficial gas velocities and we
calculated the values of the dispersion coefficient. The results are
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Fig. 10. Comparison of bubble size distributions for Cases 1 and 2. The superficial
fluid velocity is 1.07 m/s, the minimum fluidization bed height is 5.23 cm, while the
bed width is 0.60 m. The details of the cases are reported in Table 2.
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Fig. 11. Dispersion coefficient values at different superficial fluid velocities for
Cases 4 and 5. The minimum fluidization bed height is 5.23 cm, while the bed
width is 0.60 m. The details of the cases are reported in Table 2.
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Fig. 13. Dispersion coefficient values at different superficial fluid velocities for
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reported in Fig. 13. The trends observed are similar to what we
reported for Powder 1: the dispersion coefficient increases with
the superficial gas velocity, and Case 5 gives better predictions
than Case 1. We also ran simulations changing the bed height and
keeping the superficial gas velocity and bed width at 0.65 m/s
(2.6 times umf ) and 0.9 m, respectively. Fig. 14 shows that the
dispersion coefficient increases with bed height, and that Case
5 predicts better results than Case 1.

5.2. Effect of simulation dimensionality

As mentioned in the general discussion, the overestimation of
Dsr is partly due to the 2D nature of our simulations, which
reduces the degrees of freedom of lateral solid motion. To assess
how the dimensionality of our simulations affects the numerical
results, we scaled down the numerical values obtained for Dsr by a
factor α, to account for the dimensionality difference between the
2D domain used in our simulations and the 3D nature of the
fluidized beds to which the empirical correlations used for valida-
tion refer. So, the dispersion coefficient values found empirically
were no longer compared with the values Dsr found numerically,
but rather with the scaled values Dsr=α: To a first approximation, it
was speculatively assumed that scaling could be accomplished by
accounting for the degree of freedom lost when passing from a 3D
to a 2D case, hence α¼ 2: Fig. 15 reports, for Case 1, the original
and scaled-down values of the dispersion coefficient obtained
numerically and those obtained from the empirical correlations.
The scaled values of Dsr compare fairly well with predictions of
Borodulya et al. (1982), but are still larger than the values yielded
by the other empirical correlations. Altogether, it may be con-
cluded that values of Dsr of reasonable accuracy can be obtained
from 2D simulations with proper consideration of particle fric-
tional stress combined with scaling to account for simulation
dimensionality.

6. Conclusions

In this work we investigated lateral solid mixing in fluidized
beds using a Eulerian-Eulerian modeling approach. We defined the
lateral dispersion coefficient Dsr using an equation analogous to
the Fick's law of molecular diffusion. We examined the influence of
design parameters and operational conditions on the values of Dsr ,
considering how the latter is affected by the constitutive equations
used to model the frictional solid stress. The simulation results
show that Dsr increases with the superficial gas velocity and bed

height. We also observed that Dsr increases rapidly at low values of
bed width, but as this increases, Dsr rises slowly and then remains
approximately constant. Furthermore, we investigated the influ-
ence of the fluid-dynamic model used in the simulations on the
numerical results. To do so, we ran simulations with different
frictional pressure and viscosity models, changing the solid
volume fraction at which the bed is assumed to enter the frictional
flow regime. The results showed that the model choice signifi-
cantly affects the numerical results. Bubble size distributions in
the bed show that early introduction of frictional solid stress
results in the formation of smaller bubbles, leading to lower values
of Dsr . We confirmed such findings by running simulations with
another powder. For the two sets of powders, we obtained similar
trends in Dsr values. Finally, we examined the influence that the
2D dimensionality of our simulations has on the numerical results
obtained. The overestimation found is partly due to this dimen-
sionality issue. A simple scaling rule based on the consideration of
the loss of degree of freedom of lateral particle motion when
passing from a 3D to a 2D domain was effective to largely reconcile
simulated and empirical values of Dsr .

References

Avidan, A., Yerushalmi, J., 1985. Solids mixing in an expanded top fluid bed. AIChE
J. 31, 835–841.

Bellgardt, D., Schoessler, M.,, Werther, J.,, 1987. Lateral nonuniformities of solids
and gas concentrations in fluidized bed reactors. Powder Technol. 53, 205–216.

Berruti, F., Scott, D.S., Rhodes, E., 1986. Measuring and modelling lateral solid
mixing in a three dimensional batch gas-solid fluidized bed reactor. Can. J.
Chem. Eng. 64, 48–56.

Borodulya, V.A., Epanov, Y.G., Teplitskii, Y.S., 1982. Horizontal particle mixing in a
free fluidized bed. J. Eng. Phys. 42, 528–533.

Brotz, W., 1956. Untersuchungen über Transportvorgänge in durchströmtem,
gekömtem Gut. Chem. Ing. Tech. 28, 165–174.

Carstensen, J.T., Patel, M.R., 1977. Blending of irregularly shaped particles. Powder
Technol. 17, 273–282.

Chapman, S., Cowling, T.G., 1970. The Mathematical Theory of Non-Uniform Gases.
Cambridge University Press.

Collins, R., 1989. A model for the effects of the voidage distribution around a
fluidization bubble. Chem. Eng. Sci. 44, 1481–1487.

Coroneo, M., Mazzei, L., Lettieri, P., Paglianti, A., Montante, G.,, 2011. CFD prediction
of segregating fluidized bidisperse mixtures of particles differing in size and
density in gas-solid fluidized beds. Chem. Eng. Sci. 66, 2317–2327.

Coulomb, C.A., 1776. Essai sur une application des règles de maximis et minimis a ̀
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