Eckel, R;
Szulc, B;
Walker, MC;
Kittler, JTJ;
(2015)
Activation of calcineurin underlies altered trafficking of α2 subunit containing GABAA receptors during prolonged epileptiform activity.
Neuropharmacology
, 88
10.1016/j.neuropharm.2014.09.014.
![]() |
Text (Article)
1-s2.0-S0028390814003219-main.pdf Download (2MB) |
Abstract
Fast inhibitory signalling in the mammalian brain is mediated by gamma-aminobutyric acid type A receptors (GABAARs), which are targets for anti-epileptic therapy such as benzodiazepines. GABAARs undergo tightly regulated trafficking processes that are essential for maintenance and physiological modulation of inhibitory strength. The trafficking of GABAARs to and from the membrane is altered during prolonged seizures such as in Status Epilepticus (SE) and has been suggested to contribute to benzodiazepine pharmacoresistance in patients with SE. However, the intracellular signalling mechanisms that cause this modification in GABAAR trafficking remain poorly understood. In this study, we investigate the surface stability of GABAARs during SE utilizing the low Mg2+ model in hippocampal rat neurons. Live-cell imaging of pHluorin (SEP)-tagged α2 subunit containing GABAARs during low Mg2+ conditions reveals that the somatic surface receptor pool undergoes down-regulation dependent on N-methyl-D-aspartate receptor (NMDAR) activity. Analysis of the intracellular Ca2+ signal during low Mg2+ using the Ca2+-indicator Fluo4 shows that this reduction of surface GABAARs correlates well with the timeline of intracellular Ca2+ changes. Furthermore, we show that the activation of the phosphatase calcineurin was required for the decrease in surface GABAARs in neurons undergoing epileptiform activity. These results indicate that somatic modulation of GABAAR trafficking during epileptiform activity in vitro is mediated by calcineurin activation which is linked to changes in intracellular Ca2+ concentrations. These mechanisms could account for benzodiazepine pharmacoresistance and the maintenance of recurrent seizure activity, and reveal potential novel targets for the treatment of SE.
Archive Staff Only
![]() |
View Item |