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The success of transcutaneous implants depends on the achievement of a soft tissue seal by enabling

fibroblasts to win the race for the surface against bacteria. Fibronectin-functionalized hydroxyapatite

coatings (HAFn) have been shown to improve dermal tissue ingrowth and attachment. However, dur-

ing the early postoperative period before a soft tissue seal has formed, bacterial colonization may

occur. This study explored the incorporation of silver, a broad spectrum antimicrobial agent, into

HAFn coatings with the aim of reducing bacterial colonization. Silver is known to have dose-

dependent cytotoxic effects. Therefore, the effects of silver incorporation into HAFn coatings on both

in vitro human dermal fibroblast viability and Staphylococcus aureus colonization were assessed. An

electrochemical deposition technique was used to codeposit hydroxyapatite and silver (HAAg) and

fibronectin was adsorbed onto this to produce HAAgFn coatings. Surfaces were preconditioned with

serum to mimic the in vivo environment. Nonpreconditioned HAAg and HAAgFn coatings

suppressed bacterial colonization but were cytotoxic. After serum-preconditioning, more than 90% of

fibroblasts that grew on all HAAg and HAAgFn coatings were viable. The highest silver content coat-

ings tested (HAAg100 and HAAgFn100) resulted in a greater than 99% reduction in biofilm and

planktonic bacterial numbers compared to HA and HAFn controls. Although HAAg100 had greater

antibacterial activity than HAAgFn100, the findings of this study indicate that fibroblasts would win

the race for the surface against S aureus on both HAAg100 and HAAgFn100 after serum-precondi-

tioning. VC 2014 Author(s). All article content, except where otherwise noted, is licensed under a
Creative Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1116/1.4889977]

I. INTRODUCTION

Conventional socket prostheses for amputees may be com-

plicated by numerous problems including poor fit, repeated

fittings, and pressure sores due to uneven pressure distribu-

tion.1,2 Difficulty attaching socket prostheses to short limb

stumps, discomfort, and excessive heat and sweating in the

socket may also occur.2 Osseointegrated transcutaneous

implants have been developed to overcome these problems

by enabling attachment of prostheses directly to bone via a

skin-penetrating abutment and consequently resulting in

forces being transferred directly to the skeleton.1,3,4 Direct

skeletal attachment of prostheses is associated with increased

proprioception and osseoperception, leading to improved

range of motion, function, gait, and overall quality of life.5–8

Osseointegrated implants have been used successfully in

dental practice for over 40 years.9 However, use in amputees

has been complicated by high infection rates, reported to be

18% in a series by Tillander et al.8,10,11 Infection occurs

when there is a failure to achieve a tight seal between the

soft tissue and the implant, which leads to epithelial down-

growth and marsupialization.1 The reduced success rate

associated with osseointegrated amputation prostheses com-

pared to dental implants is potentially due to the greater soft

tissue coverage around limb implants, which increases the

interfacial movement.3 Additionally, oral mucosal fibro-

blasts exhibit more rapid proliferation, greater extracellular

matrix reorganizational ability, as well as increased matrix

metalloproteinase expression and growth factor secretion

compared to dermal fibroblasts.12–14

In order for soft tissue integration to occur and to prevent

infection of osseointegrated transcutaneous implants, it is

necessary for dermal fibroblasts to win the race for the sur-

face against bacteria. If fibroblasts win the race, a cellular

layer covers the surface, and bacteria will be less able to

attach. If bacterial cells win the race, infection and ultimately

biofilm formation will occur.15,16 Removal of the implant is
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often the only effective method for eradication of infection

once a biofilm has formed. This is due to the increased antibi-

otic resistance of bacteria within biofilms.16,17

A number of strategies have been investigated to increase

soft tissue integration. Hydroxyapatite (HA) has been used

to coat the skin-implant interface as it increases in vitro
fibroblast adhesion and in vivo soft tissue ingrowth.1,3,4

Fibronectin is a glycoprotein that contains an arginine–glyci-

ne–aspartate (RGD) amino acid sequence that attaches cells

via integrins and increases fibroblast adhesion.18 Fibronectin

may be adsorbed onto hydroxyapatite to further enhance the

effects of hydroxyapatite on soft tissue attachment.3,19,20 For

example, Pendegrass et al. implanted subcutaneous plates

into sheep tibia and found that fibronectin-functionalized

hydroxyapatite (HAFn) coatings were associated with

greater dermal tissue ingrowth and attachment than nonfunc-

tionalized hydroxyapatite coatings.20

During the early postoperative period, before the soft tis-

sue seal has formed, it may be useful to incorporate an anti-

microbial agent into these coatings in order to prevent

bacterial colonization. Silver has been considered an attrac-

tive antimicrobial agent because it has a broad spectrum of

activity against both gram positive and gram negative

bacteria as well as fungi.21 Silver is known to have dose-

dependent cytotoxic effects. However, when used at low

concentrations silver has demonstrated antibacterial activity

without being cytotoxic.21–24 Silver may be incorporated

into hydroxyapatite coatings using electrochemical deposi-

tion. Electrochemical deposition is a non–line-of-sight

procedure that takes place at low temperatures and may be

used to coat complex structures such as porous titanium.25

A method of electrochemical deposition developed by

Ghani et al. has been shown to produce crystalline coatings

and a sustained release of silver.26 This method was used in

the present study because electrochemical deposition is

able to uniformly coat the inner pores of porous struc-

tures.27 This is important because it is planned that porous

titanium will be employed as the underlying substrate to

manufacture transcutaneous implants for clinical use as it

promotes soft tissue ingrowth.1,28,29 Other more commonly

commercially available methods such as plasma spraying

are not able to do this. Although fibroblast viability has

been assessed for hydroxyapatite and silver (HAAg) coat-

ings produced by other methods, it has not been previously

reported for this method of electrochemical deposition.30

Additionally, the effect of this coating in combination

with fibronectin has not been studied. Our study aimed to

assess fibroblast viability and bacterial colonization on

fibronectin-functionalized electrochemically deposited

hydroxyapatite and silver. It was hypothesized first that

these coatings would support growth of viable fibroblasts

while preventing bacterial biofilm formation and inhibiting

colonization within surrounding planktonic bacterial sus-

pensions. Secondly it was hypothesized that serum-

preconditioning of the surfaces (which mimics the in vivo
environment) would improve the cytocompatibility. The

rationale for using preconditioning to improve

cytocompatibility is that it is known to remove ionizable

metals from biomaterials.31

II. MATERIALS AND METHODS

A. Surface preparation

Titanium alloy (Ti6Al4V) disks measuring 10� 3 mm

were used. The following surface coatings were tested:

uncoated polished Ti6Al4V (Pol), HA, HAFn, HAAg, and hy-

droxyapatite with silver and fibronectin (HAAgFn). These surfa-

ces were studied before and after preconditioning by immersion

in fetal calf serum (First Link Ltd., UK) for 24 h (P24).

HA was electrochemically deposited onto the surface of

the disks. Disks to be HA coated were immersed in a 0.13 M

solution of calcium phosphate monobasic [Ca(H2P4)2]. The

disk to be coated acted as a cathode and a platinum anode

was used. An electrical current density of 80 mA/cm2 was

applied for 10 min using a DC Dual Power Supply 6010D.

The current was controlled using a FLUKE 867B Graphical

Multimeter (Fluke Corporation, USA). Silver nitrate

(AgNO3) (100 mg) was added per liter of the Ca(H2P4)2 so-

lution to produce an HAAg coating, which was named

HAAg100. This method was originally described by Ghani

et al. and has been shown to produce coatings of 102.2 þ/�
4.20 lm thickness with silver incorporated into the HA crys-

talline structure.26 Modifications of this coating named

HAAg10 and HAAg50 were tested where 10 and 50 mg of

AgNO3 was added per liter of the Ca(H2P4)2 solution,

respectively, and a lower electrical current density of

approximately 28 mA/cm2 was applied for 4 min.

Electrochemical deposition of HAAg coatings was carried

out in the dark to prevent precipitation of silver. The initial

layer of brushite [Ca(HPO4)�2(H2O)] that formed (with or

without Ag incorporated) was converted to HA by immer-

sion in 0.1 M sodium hydroxide for 72 h.26,32

Disks were sterilized with dry heat for 1 h at 160 �C.

Human plasma fibronectin (Sigma Aldrich, Dorset, UK)

(500 ng) was adsorbed onto surfaces as a 20 ll droplet.

B. Surface characterization

Surface characterization was carried out to determine if

there were any differences in the morphology, the composi-

tion and the roughness of the coatings as these factors may

affect cell attachment and subsequently cytocompatibility.

Scanning electron microscopy (SEM) was used to visualize

samples and assess the morphology of the coatings (JSM

5500 LV, JEOL, UK). The atomic percentage of silver present

within the coatings was determined using energy dispersive

X-ray (EDX) analysis (EDAX Genesis V5.216 AMETEK,

NJ, USA). Six areas on three disks were analyzed (n¼ 3,

N¼ 6). Surface roughness (Ra) was measured using a noncon-

tact surface optical profilometer (Bruker Contour GT).

C. Cell culture

Human dermal fibroblasts (1BR3G, ECACC) were cul-

tured in 225 cm2 vented flasks (Corning Incorporated, New
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York, USA). The cells were cultured in Dulbecco’s

Modified Eagle’s Medium (DMEM) (Sigma Aldrich, Dorset,

UK) containing 4500 mg/l glucose, 1%penicillin/streptomy-

cin (Invitrogen Corporation, Paisley, UK), and 10% fetal

calf serum.

D. Fibroblast viability

Cells were seeded onto the disk surface at a density of

5000 cells per disk and cultured for 24 h. The cells were

then incubated in a solution containing 2 lM calcein AM

and 4 lM ethidium homodimer-1 (Invitrogen Molecular

Probes) for 45 min in the dark. A Zeiss fluorescent micro-

scope was used to visualize cells. Three disks per coating

were used and six areas per disk were viewed (n¼ 3, N¼ 6).

The numbers of the live and dead cells were counted, and

the percentage of live cells was calculated.

E. Fibroblast metabolism

Cells were seeded onto the disk surface at a density of

15, 000 cells per disk. After 24 h, 1 ml of 10% Alamar blue

in phenol red free DMEM was added. The cells were incu-

bated at 37 �C with 5% CO2 for 4 h. Six disks per coating

were used and two 100 ll aliquots from each sample were

added to a white 96 well plate (FluoroNuncTM) (n¼ 6,

N¼ 2). Absorbance was measured at 570 nm (reference

range, 630 nm) using an Ascent fluoroscan plate reader

(Thermo Electron Corporation, MA).

F. Bacterial challenge

Samples in all groups were challenged with 106

Staphylococcus aureus ATCC 29213. S aureus was used for

experiments because it is the commonest organism causing

infection of osseointegrated transcutaneous implants.11 Each

disk was placed into a 1 ml planktonic suspension of the bac-

teria in nutrient broth (Oxoid Ltd., Basingstoke, UK) and

incubated for 24 h at 37 �C on a shaking tray at 50 rpm.

G. Biofilm direct colony counts

The samples were rinsed in phosphate buffered saline

(PBS) (Oxoid) in order to remove poorly adhered bacteria.

The attached biofilms that had formed on the surface of the

disks were removed by ultrasonication in PBS for 2 min. The

resultant bacterial suspension was vortexed for 10 s to sepa-

rate the bacterial aggregates, and serially diluted in PBS over

a 6-log range. Three disks per group were used, and 10 ll of

each dilution was plated onto Columbia horse blood agar

(Oxoid) in triplicate (n¼ 3, N¼ 3). The plates were incubated

at 37 �C. After 24 h, the colony forming units (cfu) were

counted. The number of cfu per milliliter was calculated.

H. Planktonic direct colony counts

The planktonic bacterial suspensions that disks had been

immersed in were vortexed, serially diluted, and plated.

Direct colony counts were performed using the same method

as for biofilm direct colony counts described in Sec. II G.

I. Statistical analysis

The data were analyzed using SPSS, version 17.0 for

Windows (Chicago, US). The Kruskall–Wallis test was per-

formed to compare three or more groups and Mann–Whitney

tests were used for pairwise comparisons. The differences

were considered statistically significant when p< 0.05.

III. RESULTS

A. Surface characterization

SEM of the electrochemically deposited coatings showed

the presence of a combination of needle shaped, plate

shaped, and globular microcrystals on HA and HAAg surfa-

ces. HAAg100 coatings appeared to have a greater propor-

tion of larger plate shaped crystals and a more disorganized

morphology than HAAg50 and HAAg10 coatings.

Fibronectin adsorption did not affect the morphology of the

coatings. The presence of a protein film was visible on surfa-

ces that had been serum-preconditioned. As it was necessary

to dry the samples prior to performing SEM, cracks were

visible in the protein film. Few needle and plate shaped crys-

tals were visible on preconditioned surfaces and the crystals

appeared to be predominantly aggregated together as glob-

ules beneath the film (Fig. 1).

EDX analysis detected the presence of silver in all HAAg

coatings and confirmed the absence of silver in the control

coatings. HAAg100 coatings had the highest silver content

and HAAg10 coatings had the lowest silver content (Table I)

(p< 0.05). Fibronectin adsorption and serum-

preconditioning resulted in the appearance of elements not

detected in HA and HAAg coatings such as Cl, K, Mg, and

N (Fig. 2). HAAg surfaces that had been preconditioned had

a lower silver content than nonpreconditioned HAAg surfa-

ces; however, this reduction was not statistically significant

(p> 0.05).

Profilometry showed that Pol surfaces were smoother

than all HA and HAAg surfaces having significantly lower

Ra values (p< 0.05). There was no difference in the rough-

ness of HA, HAAg10 and 50 surfaces (p> 0.05). However,

HAAg100 (with and without fibronectin) was significantly

rougher than all other surfaces (p< 0.05). Preconditioning of

HAAg surfaces resulted in reduced Ra values; however, this

reduction was found to be statistically significant only for

HAAgFn10 and HAAg50 (p< 0.05). The adsorption of fi-

bronectin onto surfaces did not significantly affect Ra values

(p> 0.05) (Table II).

B. Fibroblast viability

All nonpreconditioned HAAg surfaces were cytotoxic to

fibroblasts compared to Pol, HA, and HAFn (p< 0.05).

HAAg100 and HAAgFn100 exhibited the greatest cytotoxic-

ity and there were no live cells on these surfaces, compared

to significantly greater median percentage live cells of 16%

on HAAg50 and 55% on HAAg10 (p< 0.05).

Preconditioning of HAAg surfaces significantly reduced the

cytotoxic effects. After 24 h preconditioning, all surfaces
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were cytocompatible with more than 90% cell viability, and

there was no reduction in viability on HAAg (P24) surfaces

compared to Pol, HA, and HAFn controls (p> 0.05).

Preconditioning did not affect the cytocompatibility of

the control surfaces. Adsorption of fibronectin onto surfaces

did not improve the cytocompatibility of surfaces (Figs. 3

and 4).

C. Fibroblast metabolism

The greatest cell metabolism was observed on HAFn con-

trols, which resulted in greater metabolism than Pol

(p¼ 0.008) but was not significantly different compared to

HA (p¼ 0.143). There was significantly less cell metabolism

on HAAg surfaces that had not been preconditioned than on

Pol, HA, and HAFn surfaces (p< 0.05). Decreased cell me-

tabolism was observed on HAAg100 surfaces compared to

HAAg50 and HAAg10 surfaces (p< 0.05). The cell metabo-

lism on HAAg surfaces increased after preconditioning,

compared to HAAg surfaces that had not been precondi-

tioned (p< 0.05). There was no difference in cell metabo-

lism between HAAg10, HAAg50, and HAAg100 surfaces

after preconditioning (p> 0.05) and no difference between

these surfaces and Pol and HA controls (p> 0.05). However,

FIG. 1. Scanning electron micrographs showing morphology of coatings (a) Pol, (b) HA, (c) HAFn, (d) HAAg10, (e) HAAg10 Fn, (f) HAAg50, (g) HAAg100,

(h) Pol (P24), (i) HA (P24), and (j) HAAg100 (P24). Key: Pol¼Uncoated polished Ti6Al4V, HA¼ electrochemically deposited hydroxyapatite,

HAFn¼ electrochemically deposited hydroxyapatite with adsorbed fibronectin, HAAg¼ electrochemically codeposited hydroxyapatite and silver,

HAAgFn¼ electrochemically codeposited hydroxyapatite and silver with adsorbed fibronectin, and (P24)¼ serum-preconditioning for 24 h.
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greater cell metabolism was observed on HAFn controls

than on HAAg (P24) surfaces (p< 0.05). A trend was

observed that fibronectin was associated with increased cell

metabolism on HAAg surfaces; however, this was only stat-

istically significant when added to HAAg50 (p¼ 0.003), but

not when added to HAAg10 and HAAg100 (p¼ 0.799 and

0.977, respectively) (Fig. 5).

D. Biofilm direct colony counts

Greater numbers of bacteria were present within biofilms

that formed on HA compared to Pol (p¼ 0.008). There was

a further increase in the numbers of bacteria within biofilms

formed on HAFn compared to HA (p¼ 0.001).

Nonpreconditioned HAAg surfaces reduced bacterial

colonization compared to Pol, HA, and HAFn controls

(p< 0.05). Increasing the silver content increased the degree

of antibacterial activity. HAAg100 and HAAgFn100 showed

the greatest antibacterial activity, and there was complete

suppression of bacterial colonization on these surfaces. After

preconditioning, some bacterial colonization occurred on

HAAg100 surfaces. However, the numbers of bacteria colo-

nizing HAAg100 (P24) surfaces remained significantly

lower than the control surfaces (p< 0.05). There was a

reduction of 1.997� 106 cfu/ml on HAAg100 (P24) com-

pared to HA (P24), which is equivalent to a 99.85% reduc-

tion in bacterial colonization. There was a reduction of

1.983� 106 cfu/ml on HAAgFn100 (P24) compared to

HAFn (P24) (99.15% reduction). After preconditioning,

FIG. 2. Energy dispersive x ray analysis spectra for (a) Pol, (b) HA, (c) HAAg100, and (d) HAAgFn100 (P24).

TABLE I. Atomic silver percentage for each surface presented as median val-

ues and (95% confidence intervals).

Surface Ag (at. %)

Pol 0.000

HA 0.000

HAFn 0.000

HAAg10 0.205 (0.190–0.230)

HAAgFn10 0.145 (0.090–0.240)

HAAg50 0.280 (0.270–0.330)

HAAgFn50 0.290 (0.230–0.370)

HAAg100 0.665 (0.440–0.820)

HAAgFn100 0.595 (0.440–0.760)

HAAg10 (P24) 0.200 (0.150–0.230)

HAAgFn10 (P24) 0.150 (0.130–0.180)

HAAg50 (P24) 0.270 (0.230–0.390)

HAAgFn50 (P24) 0.290 (0.200–0.400)

HAAg100 (P24) 0.460 (0.310–0.620)

HAAgFn100 (P24) 0.535 (0.440–0.690)

TABLE II. Surface roughness results presented as median values and (95%

confidence intervals).

Surface Ra (lm)

Pol 0.031 (0.028–0.033)

HA 2.952 (2.828–3.451)

HAFn 3.317 (2.802–3.444)

HAAg10 2.804 (2.345–3.504)

HAAgFn10 3.261 (2.602–3.683)

HAAg50 3.022 (2.735–3.678)

HAAgFn50 3.301 (2.411–3.635)

HAAg100 4.774 (4.663–5.327)

HAAgFn100 4.550 (4.302–4.715)

HAAg10 (P24) 2.597 (2.334–3.802)

HAAgFn10 (P24) 2.255 (2.087–3.605)

HAAg50 (P24) 2.333 (2.250–3.028)

HAAgFn50 (P24) 2.540 (1.947–4.059)

HAAg100 (P24) 4.358 (3.296–5.579)

HAAgFn100 (P24) 4.184 (3.477–4.638)
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HAAg10 and HAAg50 lost their antibacterial activity com-

pared to Pol, but fewer bacteria colonized these surfaces

than HA (p¼ 0.04 and 0.02, respectively). It was noted that

reduced numbers of bacteria colonized Pol, HA, and HAFn

control surfaces after they were preconditioned (p¼ 0.001,

0.088, and 0.000, respectively). In contrast increased num-

bers of bacteria colonized HAAg and HAAgFn surfaces after

they were preconditioned (p< 0.05). HAAg100 was the only

surface that maintained an antibacterial effect after precondi-

tioning compared to Pol (P24) surfaces (p¼ 0.008).

Fibronectin resulted in an increase in bacterial colonization

on HAAg100 (P24) but did not affect the bacterial coloniza-

tion on other HAAg (P24) surfaces (Fig. 6).

E. Planktonic direct colony counts

HAAg100 and HAAgFn100 had the greatest antibacterial

activity and were the only surfaces to reduce bacterial colo-

nization compared to all three control surfaces before and af-

ter serum-preconditioning (p< 0.05). HAAg100 (P24) was

associated with a 2.493� 107 cfu/ml reduction in planktonic

colonization compared to HA (P24) (99.72% reduction).

HAAgFn100 (P24) reduced planktonic colonization by

1.994� 107 cfu/ml compared to HAFn (P24) (99.68% reduc-

tion). Fibronectin increased bacterial colonization when

adsorbed onto HAAg50 (P24) (p¼ 0.000). This effect was

not observed on other surfaces (Fig. 7).

IV. DISCUSSION

The key results of this study show that electrochemically

deposited HAAg100 and HAAgFn100 suppress bacterial

FIG. 3. Box-plot showing the percentage of live fibroblasts on each surface.

FIG. 4. Live (green):dead (red) staining images of fibroblasts stained with calcein AM and ethidium homodimer-1 (a) Pol, (b) HA, (c) HAFn, (d) HAAg10, (e)

HAAg50, (f) HAAg100, (g) HAAg10 P24, (h) HAAg50 (P24), and (i) HAAg100 (P24).
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colonization before and after preconditioning in fetal calf se-

rum. After preconditioning, all silver containing surfaces

were cytocompatible and supported the growth of fibro-

blasts. Cell metabolism also increased after preconditioning,

which may have been due to increased cell proliferation.

Previous studies using inductively coupled plasma mass

spectrometry (ICP MS) have shown that silver is released

from HAAg produced using this method of electrochemical

deposition. Furthermore, the release slows down to a sus-

tained controlled release.26 As a result, it is hypothesized

that after preconditioning surfaces, the release would be

slower, hence accounting for the improved cytocompatibil-

ity. Further elution kinetic studies measuring the amount of

silver released into culture media would be valuable to

investigate this. The observation of reduction of planktonic

bacterial numbers in the present study also indicates that sil-

ver is released from HAAg surfaces into the surrounding

fluid and consequently silver levels within the coating would

be expected to be reduced. However, EDX analysis results

showed that the reductions in the atomic percentage of silver

observed after preconditioning were not significant. This

finding may be due to loss of other elements in addition to

silver. It could also be due to the number of silver ions ini-

tially released being a very small proportion of the total

number of silver ions. Further studies to determine the over-

all amount of silver within the coatings using atomic absorp-

tion spectroscopy or ICP MS (rather than a percentage as

measured by EDX) may be of value. Extraction of silver into

nitric acid could be used to quantify the amount of silver

within the coating after preconditioning. It is likely that sil-

ver ions interact with proteins adjacent to the surface making

them less toxic but the number of ions involved in this pro-

cess would be very difficult to measure. It has already been

shown by Sandrucci et al. that preconditioning removes sil-

ver ions from silver-containing surfaces, which indicate that

the overall silver levels (but not necessarily the percentage)

within the substrate would be reduced.31 This is an explana-

tion for the improved cytocompatibility associated with

preconditioning.

An alternative explanation for the lack of significant

reductions in percentage silver on P24 surfaces that should

be considered is that silver content reduction may not be the

only reason for the increased cytocompatibility associated

with preconditioning. As the percentage of silver was not

reduced on P24 surfaces, it is possible that the effect of P24

could be associated with other factors such as the deposition

of proteins. One observation that supports this theory is that

the percentage of live cells on HAAg P24 surfaces was equal

to that of controls that did not contain silver. Furthermore,

there were no differences in the cell viability between

HAAg10, 50, and 100 (P24) surfaces. Furno et al. concluded

that silver ions were able to penetrate protein conditioning

films and maintain their bactericidal activity.33 Similarly, in

our study, a substantial amount of the silver may have

resided in the preconditioning film resulting in the reductions

in silver content detected by EDX being insignificant. The

finding of improved viability on preconditioned surfaces

may be partly due to less of the silver being in a biologically

active ionized form due to binding to serum proteins such as

FIG. 5. Box-plot showing Alamar Blue absorbance levels for each surface

tested.

FIG. 6. Box-plot showing the number of colony forming units per milliliter

within biofilms presented as log10 transformed numbers.

FIG. 7. Box-plot showing the number of colony forming units per milliliter

within planktonic suspensions presented as log10 transformed numbers.
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albumin.34 However, it should be noted that the study by

Furno et al. suggested that not all silver bound to proteins is

inactivated as their conditioned substrates did not exhibit

any loss of antibacterial activity.33 Indeed, in our study

although some reduction of antibacterial activity was seen

on HAAg100 after preconditioning, bacterial growth was

still significantly less compared to controls. Another finding

was that after preconditioning, additional elements such as

Cl, K, N and Mg were incorporated into the coatings. Other

studies have concluded that immersion in simulated body

fluids affects the composition and consequently may influ-

ence the biological behavior of HA coatings.32,35 It has also

been noted by other studies that preconditioning may affect

the crystallinity of ceramics and result in different apatite

phases, which may contribute toward the increased

cytocompatibility.36

The increased time period and higher current density used

for electrochemical deposition may have contributed to the

increased roughness of HAAg100 compared to HAAg50 and

HAAg10. Higher current densities are associated with more

vigorous hydrogen evolution and the overall process is less

efficient as a larger proportion of brushite crystals are unable

to survive the turbulent environment of a high current den-

sity and are thus lost.37 Redepenning et al. reported that the

crystals that do survive this environment would be expected

to adhere better, resulting in coatings with an overall greater

integrity.37 The same current density and time was used to

produce HA coatings, which were not as rough as

HAAg100, indicating that the silver content affects the to-

pography of these surfaces. Previous x-ray diffraction analy-

sis of HAAg showed peaks that were sharper than those

observed for HA, suggesting that the Agþ ion incorporation

may increase the crystallinity.26 The reduction in Ra

observed on preconditioned surfaces was not statistically sig-

nificant for all surfaces. Nevertheless, it was evident from

the scanning electron micrographs that the crystal morphol-

ogy was markedly different after preconditioning. This may

be due to the fact that when a hydroxyapatite surface is

immersed into a simulated body fluid, resorption of hydroxy-

apatite and the deposition of an apatite layer on the surface

as described by Kokubo et al. may occur.38,39 Fibroblasts are

known to be sensitive to surface topography and previous

studies have shown that reductions in roughness even on a

nanometric scale are associated with improved fibroblast

attachment, proliferation, or viability.40–45 However, many

factors such as wettability and surface chemistry influence

fibroblast responses and may change the way fibroblasts to

respond to surfaces. This may enable cells to grow on

rougher surfaces despite the fact that they usually respond

better to smoother surfaces.42,46,47

HAAg50 and 10 did not perform as well as HAAg100 in

terms of antibacterial activity. The only potential advantage

of lower silver content coatings is that before precondition-

ing they were less cytotoxic than HAAg100. This raises the

possibility that they may be able to promote earlier attach-

ment of viable fibroblasts but this is not conclusive. After

preconditioning, there was no difference in HAAg50 and 10

groups in terms of cytotoxicity compared to HAAg100. It is

possible that with a smaller bacterial challenge HAAg10 and

HAAg50 may have been able to demonstrate a greater anti-

bacterial effect. The administration of a bacterial challenge

of 106 S. aureus cfu for a 10 mm� 3 mm disk (surface area

of 251 mm2) could be considered an excessively large num-

ber of bacteria, which should rarely be encountered clini-

cally in the early postoperative period before a soft tissue

seal forms. It was encouraging though to ascertain that

HAAg100 was able to withstand such a large bacterial

challenge.

Interestingly, the effect of preconditioning was different

on controls and HAAg surfaces. Less bacterial colonization

was observed on Pol disks after they were preconditioned.

Similar findings have been previously reported by other stud-

ies where adhesion of bacteria was significantly inhibited on

surfaces treated with serum or proteins.48–52 Hydrophilic

proteins in serum such as albumin are believed to be respon-

sible for this phenomenon as bacteria adhere better to hydro-

phobic surfaces.51–53 It has also been suggested that

preconditioning surfaces forms a barrier to bacterial adhe-

sion.48 Conversely, Antoci et al. found an abundance of live

adherent bacteria on titanium rods coated with serum.54 The

reason for these conflicting findings is unclear, but differen-

ces in the initial surface characteristics of the underlying

substrate may be relevant. Further research on the wettability

of these surfaces may be of value. Reductions in bacterial

colonization were also seen on HA and HAFn but were less

marked than those seen on Pol. Indeed, large numbers of

bacteria in the range of more than 106 colonies remained

present on HA and HAFn surfaces after preconditioning,

meaning this reduction is unlikely to be clinically useful.

The reduction in bacterial colonization on Pol is also not

likely to be exploited clinically as Pol would be unsuitable

as a surface for osseointegrated transcutaneous implants due

to inadequate soft tissue attachment in vivo.1

Preconditioning HAAg surfaces had the opposite effect to

preconditioning controls, and there was an increase in bacte-

rial colonization. If silver from preconditioned HAAg coat-

ings had become bound to proteins and some silver had been

inactivated as discussed earlier, the postulated increase in

wettability would be expected to have been counteracted.

The adsorption of fibronectin onto HAAg100 (P24) surfa-

ces increased bacterial colonization to the extent that

HAAgFn100 (P24) was not statistically significantly antibac-

terial compared to Pol. However, it was still antibacterial

compared to HA and HAFn, which is important because HA

surfaces are used clinically (whereas an uncoated Pol surface

would not be used clinically). In addition to the possibility

of some inactivation of silver associated with fibronectin, S.
aureus contains fibronectin binding sites.55 The results of

this study indicate that silver does not counteract the effect

of these binding sites. This negative effect of fibronectin on

antibacterial activity could be less marked with other bacte-

rial species that do not contain fibronectin binding sites.

However, as S aureus is the most common bacterial species

causing infection of transcutaneous implants it may be
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considered that this is the most important bacterial species

for the coating to have antibacterial activity against.

Additionally, this study showed that adsorption of fibronec-

tin onto HAAg did not counteract the detrimental effects of

silver on fibroblast metabolism or viability. In the absence of

silver, fibronectin increased metabolism but not viability (as

viability was already more than 90% on Pol and HA con-

trols). The RGD sequence of fibronectin that is responsible

for cell binding may be less likely to increase bacterial colo-

nization and would ultimately be more commercially accept-

able.56 However, the RGD sequence would not be expected

to have an advantage over fibronectin on cell viability and

metabolism in combination with HAAg.

Fetal calf serum was chosen over simulated body fluids

for preconditioning as it contains serum proteins such as al-

bumin and globulins and so was more representative of the

in vivo environment than simulated body fluids.

Nonetheless, it could be argued that a limitation of this

study is that plasma would have been more representative

as it contains clotting factors such as fibrinogen in addition

to serum proteins. This may be relevant as S. aureus con-

tains fibrinogen-binding proteins. The finding that precon-

ditioning is necessary before HAAg surfaces become

cytocompatible, suggests that in clinical practice HAAg

may be cytotoxic initially; and a short time period (up to 24

h) may be required for cells to attach to these surfaces. The

clinical implications of this delay are not known. In clinical

practice, preconditioning prior to implantation with autolo-

gous serum in order to promote earlier soft tissue attach-

ment would be possible but logistically less convenient. An

assessment of preconditioning for shorter time periods

would reveal whether cytocompatibility is achieved at an

earlier stage than 24 h. In vivo experiments will be carried

out in the near future and will address some of the limita-

tions of this in vitro study.

It would be useful to assess the effect of HAAg and

HAAgFn surfaces on other cell types and other bacterial spe-

cies to widen the potential clinical applicability of this coat-

ing. In contrast to fibroblasts, osteoblasts are known to

respond better to rougher surfaces. Osteoblasts have been

reported to respond well to surfaces with similar Ra micro-

roughness levels to the surfaces investigated in this

study.45,57,58 It is well known that HA increases osteoblast

adhesion. Studies have also shown that the addition of fibro-

nectin improves osteoblast responses further.59–61 If osteo-

blasts were found to respond well to HAAg/HAAgFn, this

technique could be useful for the intraosseous portion of

osseointegrated transcutaneous implants as well as more

widely for other orthopedic implants such as arthroplasty

prostheses. This would be advantageous because hip and

knee arthroplasties are associated with an infection rate of

approximately 1%, which is associated with significant mor-

bidity and substantial economic costs.62 Finally, further

modification of the topography of these coatings could be

achieved using alterations of the current density, silver con-

tent of the electrolyte solution and the time period used for

electrochemical deposition.

V. CONCLUSIONS

This study is the first to show that electrochemically de-

posited HAAg surfaces lose their cytotoxic effects when pre-

conditioned and support viable fibroblast growth. More than

90% of fibroblasts cultured on all preconditioned surfaces

were viable. Before preconditioning complete suppression of

S. aureus biofilm formation was observed on HAAg100 and

HAAgFn100. After serum preconditioning more than 99%

of the antibacterial activity of HAAg100 and HAAgFn100

compared to HA and HAFn controls was maintained. This

indicates that fibroblasts win the race for the surface against

S. aureus on HAAg100 and HAAgFn100 after serum-

preconditioning. This is a step forward toward developing a

surface that could prevent infection of osseointegrated trans-

cutaneous implants and other orthopedic devices.
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