UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Preventing infection of osseointegrated transcutaneous implants: Incorporation of silver into preconditioned fibronectin-functionalized hydroxyapatite coatings suppresses Staphylococcus aureus colonization while promoting viable fibroblast growth in vitro

Chimutengwende-Gordon, M; Pendegrass, C; Bayston, R; Blunn, G; (2014) Preventing infection of osseointegrated transcutaneous implants: Incorporation of silver into preconditioned fibronectin-functionalized hydroxyapatite coatings suppresses Staphylococcus aureus colonization while promoting viable fibroblast growth in vitro. Biointerphases , 9 (3) , Article 031010 . 10.1116/1.4889977. Green open access

[img] PDF
1.4889977.pdf

Download (2MB)

Abstract

The success of transcutaneous implants depends on the achievement of a soft tissue seal by enabling fibroblasts to win the race for the surface against bacteria. Fibronectin-functionalized hydroxyapatite coatings (HAFn) have been shown to improve dermal tissue ingrowth and attachment. However, during the early postoperative period before a soft tissue seal has formed, bacterial colonization may occur. This study explored the incorporation of silver, a broad spectrum antimicrobial agent, into HAFn coatings with the aim of reducing bacterial colonization. Silver is known to have dose-dependent cytotoxic effects. Therefore, the effects of silver incorporation into HAFn coatings on both in vitro human dermal fibroblast viability and Staphylococcus aureus colonization were assessed. An electrochemical deposition technique was used to codeposit hydroxyapatite and silver (HAAg) and fibronectin was adsorbed onto this to produce HAAgFn coatings. Surfaces were preconditioned with serum to mimic the in vivo environment. Nonpreconditioned HAAg and HAAgFn coatings suppressed bacterial colonization but were cytotoxic. After serum-preconditioning, more than 90% of fibroblasts that grew on all HAAg and HAAgFn coatings were viable. The highest silver content coatings tested (HAAg100 and HAAgFn100) resulted in a greater than 99% reduction in biofilm and planktonic bacterial numbers compared to HA and HAFn controls. Although HAAg100 had greater antibacterial activity than HAAgFn100, the findings of this study indicate that fibroblasts would win the race for the surface against S aureus on both HAAg100 and HAAgFn100 after serum-preconditioning.

Type: Article
Title: Preventing infection of osseointegrated transcutaneous implants: Incorporation of silver into preconditioned fibronectin-functionalized hydroxyapatite coatings suppresses Staphylococcus aureus colonization while promoting viable fibroblast growth in vitro
Location: United States
Open access status: An open access version is available from UCL Discovery
DOI: 10.1116/1.4889977
Publisher version: http://dx.doi.org/10.1116/1.4889977
Language: English
Additional information: © 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License
UCL classification: UCL
UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Surgery and Interventional Sci
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Surgery and Interventional Sci > Department of Ortho and MSK Science
URI: https://discovery.ucl.ac.uk/id/eprint/1448459
Downloads since deposit
121Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item