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Abstract

The development of efficient, cell surface targeted retroviral vectors is critical for 

successful gene therapy as gene delivery to non-target cells may be harmful and 

would deplete the pool of viral particles. To date, the only surface-targeting strategies 

that have allowed efficient infection by retroviral vectors in vivo are those that have 

limited the tropism of amphotropic murine leukaemia virus (MLV-A), which can 

infect cells of many mammals, by modification of the envelope glycoprotein.

To this end we have explored tumour targeting of vectors based on MLV-A by 

modification of the retroviral surface protein (SU) backbone of the envelope chimera. 

The first approach used a receptor co-operation strategy to target human tumour cells 

by linking single chain antibodies (scFv) recognising tumour antigens 

(carcinoembryonic antigen (CEA) and high molecular weight melanoma-associated 

antigen (HMWMAA)) via proline-rich spacers to the amphotropic murine leukaemia 

virus surface protein. This approach showed selective targeting to both CEA and 

HMWMAA in vitro.

The second approach used a protease targeting strategy to target tumour cells 

expressing CEA. We fused a single-chain variable fragment (scFv) directed against 

CEA to the amphotropic murine leukaemia virus envelope. A proline-rich hinge and 

matrix metalloprotease cleavage site linked the two proteins. Following attachment to 

CEA, MMP cleavage of the envelope at the cell surface removed the scFv and 

proline-rich hinge allowing infection. This approach showed selective targeting to 

carcinoembryonic antigen (CEA) both in vitro and in vivo with up to 10% infection of 

cells within a CEA-positive tumour xenograft. No infected cells were detected after 

delivery of targeted vectors to CEA-negative tumour xenografts. Intraperitoneal 

injection of amphotropic producer cells resulted in transduction in spleen, liver and 

kidney, which was not detected when targeted producer cells were used. These results 

demonstrate the feasibility of using targeted retroviral vectors for in vivo gene 

delivery and highlight the safety benefits of targeted vectors that do not infect other 

host tissues.
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Chapter 1

Introduction

1.1 The use of vectors in gene therapy

The aim of gene therapy is simple: insert the gene into cells where the gene product 

should cure or alleviate the symptoms of disease (Somia and Verma, 2000). Gene 

therapy was initially conceived as a treatment for diseases caused by single gene 

defects such as cystic fibrosis (Kay and Woo, 1994). Today its role has been 

expanded with acquired diseases, such as cancer, cardiovascular disease, 

neurodegenerative disorders and infectious disease, the subject of most gene therapy 

research (Thomas et a l, 2003) (Table 1.1). Initial enthusiasm for gene therapy has 

waned after successive clinical trials have failed to show efficacy (Somia and Verma, 

2000). These trials highlighted important obstacles, most notably gene delivery i.e. the 

ability to transfer genes into a wide variety of cells, tissues and whole organs. Thus far 

the problem has been a failure to deliver genes efficiently, safely and to obtain 

sustained expression.

Gene delivery vehicles (vectors) need to address the application/disease for which 

they are going to be used. A property that all vectors require is that an appropriate 

amount of the therapeutic gene needs to be delivered to the target site without 

substantial toxicity.

An ideal vector should possess the following properties:

1. Efficient, easy and cheap production: high-titre preparations of vector particles 

should be reproducibly available. For widespread use simple production 

procedures are needed.

2. Safety: the vector should neither be toxic to the target cells nor induce 

unwanted effects including immunological reactions against the vector or its 

subsequent gene product. Immunological reactions may not only eliminate the
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vector and/or the transduced cells but may also cause life-threatening 

complications such as septic shock

3. Sustained and regulated gene expression: the gene delivered should be 

expressed in an appropriate way. Permanent or even life-long expression is 

required in some diseases e.g. haemophilia or cystic fibrosis. Regulated gene 

expression may be required for other diseases e.g. diabetes where expression 

of insulin will need to be tightly regulated to blood glucose concentrations.

4. Targeting: transduction of specific cell types is highly desirable and this will 

be addressed later.

5. Infection of dividing and non-dividing cells: because the majority of cells in 

an adult human being are in a post mitotic non-dividing state, vectors should 

be able to transduce these cells.

6. Site-specific integration: integration into the host genome at specific site(s) 

would enable the repair of specific defects caused by mutations and deletions 

by insertion of the correct sequences.

7. Insert size: the vector should have no size limit to the genes that it can deliver.

Although no such vector is currently available, all of these properties exist, 

individually, in disparate delivery systems.

There are two main categories of vector viral and non-viral. The use of non-viral 

vectors ranges from direct injection of DNA to mixing of DNA with polylysine or 

cationic lipids that allow DNA to cross the cell membrane (Niidome and Huang, 

2002). Although non-viral vectors can be produced in relatively large amounts, and 

are likely to present fewer toxic or immunological problems, they suffer from 

inefficient gene transfer at present (Niidome and Huang, 2002). Furthermore, 

expression of the foreign gene is transient. There remains a need, in many diseases, 

for sustained and often high-level expression of the transgene that can only be 

provided by viral vectors.
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Table 1.1 Gene therapy protocols and vector usage from completed, ongoing or 

pending clinical trials up to 2003.

Panels A and B show the diseases treated while panels C and D indicate the vectors 

used. Data obtained from the Journal of Gene Medicine clinical trials database 

www.wilev.co.uk/genetherapv/clinical/
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A. Protocols by disease

Condition Number of 
Protocols

Percentage of 
Protocols

Cancer 403 63.4
Monogenic disease 78 12.3
Vascular disease 51 8.0
Gene marking 49 7.7
Infectious disease 41 6.4
Healthy volunteers 2 0.3
Others 12 1.9

B. Patients by disease

Condition Number of Percentage of
Patients Patients

Cancer 2392 68.5
Monogenic disease 408 11.7
Vascular disease 309 8.8
Gene marking 274 7.8
Infectious disease 86 2.5
Healthy volunteers 6 0.2
Others 19 0.5

C. Protocols by vector

Vector Number of Percentage of
Protocols Protocols

Retrovirus 217 63.4
Adenovirus 171 12.3
Lipofection 77 8.0
Naked/plasmid DNA 70 7.7
Vaccinia virus 39 6.4
Adeno-associated virus 15 0.3
Herpes simplex type I 5 1.9
Others 42 6.6

D. Patients by vector

Vector Number of 
Patients

Percentage of 
Patients

Retrovirus 1755 50.2
Adenovirus 644 18.4
Lipofection 619 17.7
Naked/plasmid DNA 123 3.5
Vaccinia virus 88 2.5
Adeno-associated virus 36 1.0
Herpes simplex type I 21 0.6
Others 208 6.1
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1.2 The use of viral vectors in gene therapy

Viruses represent highly evolved natural vectors for the transfer of foreign genetic 

material into cells and are thus in some ways ideally suited as vectors for gene therapy 

(Kay et a l, 2001). The viral life cycle can be divided into two distinct phases: 

infection and replication. Infection results in the introduction of the viral genome into 

the cell. This leads to an early phase of gene expression characterised by the 

expression of viral regulatory products, followed by a late phase when structural 

genes are expressed and assembly of new viral particles occurs (Kay et al., 2001). 

Ideal virus-based vectors for most gene therapy applications harness the viral 

infection pathway but avoid the subsequent expression of viral genes that leads to 

replication and toxicity. This is achieved by deleting some or all of the coding regions 

from the viral genome, but leaving intact those sequences that are required in cis for 

functions such as packaging the vector genome into the virus capsid and integration of 

vector DNA into the host chromosome (Kay et al., 2001). The therapeutic gene of 

interest is then cloned into the viral backbone in place of those sequences that were 

deleted. The deleted genes encoding proteins that are involved in replication or 

capsid/envelope proteins are included in separate plasmid/s to provide helper 

functions in trans. These viral genes may even be incorporated in the chromatin of 

producer cells to ensure their stability and limit their remobilisation. The packaging 

cells into which the packaging construct and vector genome are supplied produce the 

recombinant vector particles (Thomas et al., 2003)(Figure 1.1). Such vectors are 

unable to replicate and thus transduction that introduces the gene of interest into the 

target cell is an abortive (or ‘dead-end’) infection.

The development of a viral vector is limited by the organisational complexity of the 

viral genome. The intact viral genome often ensures an appropriate balance of viral 

protein production by complex regulatory changes in gene expression. Importantly, 

cw-interactions between the genome and its translation products are lost in an 

engineered vector-packaging system. These limitations of vector design may result in 

inefficient packaging of vector genomes as compared to wild-type viruses, and in the 

release o f excess defective vector particles that are incapable of gene transfer 

themselves and which may also interfere with the transduction of biologically active 

vector particles.
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A.

Viral genome 

Parental virus

Structural
proteins

B. Packaging 
construct

Vector 
Genome

Viral vector

□  Inverted repeats 

C  Pathogenecity genes 

C  Promoter 

[Z Transgene 

C  Poly(A) C

Genes that encode 
proteins required for 
DNA synthesis 
Structural protein 
genes
Envelope gene

Figure 1.1 Converting a virus into a vector

A. Schematic diagram of a generic viral vector.
B. A packaging (helper) construct, containing viral genes derived from the 
parental virus that encode structural proteins and proteins that are required 
for vector genome replication, is introduced into a packaging cell line along 
with a construct that contains the vector genome.
Adapted from (Thomas et al., 2003).
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After production in a packaging cell line, the recombinant vector particles are purified 

and quantified. The relative concentration of vectors is measured as a titre expressed 

as the concentration of viral particles that are capable of transduction. This is usually 

expressed as the number of transducing units per millilitre. The transducing particles 

usually represent a small percentage of the total particles and can vary between 

different preparations. Quantification may vary as a result of different methods used 

in different laboratories. Thus there is a need for standardised methods to determine 

the specific activity of vectors. Particle titre and an infectious or transducing titre are 

both important as impurities and variations in infectious activity can influence 

efficacy, toxicity and immunogenecity.

The number of different viruses that are under development as gene-therapy vectors is 

steadily increasing, but there at present five main classes of clinically applicable viral 

vectors. These can be subdivided into those which integrate into the hosts 

chromosomal DNA (oncoretroviruses and lentiviruses) and those that are non­

integrating (adenoviruses, adeno-associated viruses (AAVs) and herpes simplex-1 

viruses (HSV-ls)). Each of these vectors have a different set of properties that make it 

suitable for some applications but not for others. Their particular characteristics 

compared to their non-viral counterparts are shown in Table 1.2.

Oncoretrovirus vectors were the first class of viral vector to be developed and have 

been important in the technical and conceptual development of viral vectors as a 

whole (Somia and Verma, 2000). Retroviral vectors have, so far, been the most 

widely used in clinical trials (Table 1.1).

1.3 Retroviruses

The Retroviridae comprise a diverse family of enveloped animal viruses with single 

stranded positive sense diploid RNA genomes. Whilst retroviruses have been 

identified in a wide range of vertebrate hosts (Hemiou et al., 1998) they all share 

certain similarities with regards to their RNA genome, viral structure, mode of entry 

and replication.
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factor Retrovirus Lentivirus Adenovirus AAV HSV-1 Vaccinia Liposomes Naked
DNA

nsert size ~8kb ~8kb ~35kb <4kb >20kb >25kb >20kb >20kb

fitre/ml 107 107 1011 109 10io N/A N/A N/A

ntegration Yes Yes No Yes/
No

No No No No

Sustained gene 
expression Variable Variable Transient Variable Transient Transient Transient ?

n vivo delivery Poor Poor High High High High Variable ?

rransduction 
>f non-dividing 
:clls

No Yes Yes Yes Yes Yes Yes Yes

mmune
iroblems Few Few Extensive Few Few Few Few Few

>re-existing 
lost immunity Unlikely

Unlikely. 
Possible in 
HIV+VE

Yes Yes Yes Yes ? Yes

Safety
iroblems

Insertional
mutagenesis

Insertional
mutagenesis

Toxicity None Toxicity Toxicity None None

Table 1.2 Main features of common gene therapy vectors

Adapted from (Somia and Verma, 2000) (N/A: not applicable, ?: not known)
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Reverse transcriptase is an RNA-dependent DNA polymerase enzyme first identified 

in 1970 in murine and avian RNA tumour viruses (Baltimore, 1970; Temin and 

Mizutani, 1970). Subsequently, these viruses were named ‘retro’viruses as they 

replicate by converting their viral genomic RNA into double stranded DNA. The 

DNA copy of the viral genome then integrates into the host chromosomal DNA as a 

provirus, which is subsequently transcribed and translated by host cellular 

mechanisms to provide the necessary proteins for packaging full length RNA 

transcripts into progeny virions.

1.3.1 Retroviral classification

Initial retroviral classification based on electron microscopy divided retroviruses into 

four morphological groups termed as types A, B, C and D. The A-type particle has an 

electron-lucent centre with one or two concentric electron-dense rings. This 

morphology is commonly termed ‘immature’ as a similar morphology is seen in 

mutant retroviruses unable to proteolytically process their internal proteins. B-type 

particles (e.g. Mouse Mammary Tumour Virus (MMTV)) have large, dense, round 

cores with characteristic ‘spiky’ surface glycoproteins. C-type particles comprise 

avian and mammalian retroviruses and have dense cores which appear centrally 

located in the virion. D-type particles (e.g. Mason Pfizer Monkey Virus (MPMV)) 

have cylindrical cores and bear short surface spikes (de Harven, 1974; Coffin, 1992). 

A, B and D-type particles assemble within the cell cytoplasm forming stable 

structures (often termed intracytoplasmic A-type particles (ICAPs)) that are 

transported to the plasma membrane where they acquire their envelopes upon 

budding. In contrast, C-type particle assembly occurs at the plasma membrane with 

the concurrent formation of immature viral cores and envelope acquisition.

Retroviruses have also been grouped according to their biological activity and disease 

association into three groups: oncoviruses implicated in tumours and

immunodeficiency; lentiviruses causing slow chronically progressing disease with 

extended latency periods between initial infection and disease manifestation; and 

spumaviruses or foamy viruses, which cause vacuolation of cells in culture but with, 

as yet, no known disease association (Teich, 1984).
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Recent retroviral classification, based on the genetic similarity of genome sequences 

between the different retroviral groups, has differentiated seven distinct retroviral 

genera. These are the spumaviruses, the lentiviruses, the HTLV-related viruses 

(deltaretroviruses), the mammalian B-type and D-type viruses (betaretroviruses), the 

mammalian C-type viruses (gammaretroviruses), the avian C-type viruses 

(alpharetroviruses) and the epsilonretroviruses (e.g. Walleye Dermal Sarcoma Virus) 

(Hunter and Stoye, 2000).

1.3.2 Structure of retroviral particles.

Most retroviruses are 80-130 nm in diameter with a similar structural morphology. 

The virion core consists of two molecules of genomic RNA that are associated with 

the nucleocapsid (NC) protein (NC-RNA complex) and a tRNA molecule, which 

primes the start of reverse transcription. The NC-RNA complex is surrounded by the 

capsid (CA) protein containing copies of three retroviral enzymes: reverse 

transcriptase (RT), protease (PR) and integrase (IN), which are all required in the 

early stages of infection. The matrix (MA) protein surrounds the capsid proteins or 

‘core’, and lies just below the envelope that is derived from the host cell membrane. 

The retroviral envelope is studded with envelope glycoproteins arranged in oligomeric 

complexes that contain three or four heterodimers composed of a transmembrane, 

TM, component associated with a surface unit, SU glycoprotein (Vogt, 1997) (Figure

1.2). In certain retroviruses (e.g. ASLV and MLV) envelope oligomeric complexes 

consist of trimers of SU-TM heterodimers (Einfeld and Hunter, 1988; Kamps et a l,

1991), while in others (e.g. HIV and SIV), dimmer, trimer and tetrameric forms of 

envelope proteins have been described (Dorns et a l, 1991).

1.3.3 Retroviral genome.

The full length RNA genome varies between 7-13 kb with two identical molecules 

carried in a single virion. Conceptually it is easier to discuss the retroviral genome 

organisation in terms of the DNA that is integrated into cellular DNA, as this places 

the promoter, the RNA start site and the polyadenylation site in the same position as 

found in typical host cells.
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Gag gene

Matrix Capsid Nucleocapsid
(CA) (NC)

Transmembrane 
(TM) protein 
(trimeric)

Surface (SU) 
glycoprotein 
(trimeric)

f t

f t

S'

§

Genomic RNA 
dimer complexed 

with NC

Host cell 
derived lipid 

bilayer envelope
Protease

(PR)
Reverse transcriptase Integrase 
(RT) (complexed (IN)
with RT:RNase H)

Pol gene

Figure 1.2 General structure of a typical retroviral particle

The schematic model of a typical mature retrovirus depicts virion components common to 
all retroviruses. The virus is bound by a host cell derived lipid bilayer envelope into which 
trimeric envelope glycoproteins (SU-TM) are embedded. The matrix (MA) surrounds the 
‘core’ proteins comprised of capsid (CA) and nucleocapsid (NC) proteins and the linear, 
single stranded, positive-sense RNA genome which is packaged as a dimer. Viral enzymes 
reverse transcriptase (RT-RNase-H), integrase (IN), protease (PR) are packaged within the 
capsid.

Adapted from (Swanstorm and Wills, 1997).
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The retrovirus genome is organised with protein coding regions flanked by regulatory 

domains known as long terminal repeats (LTRs) (Figure 1.3). LTRs are identical 

sequences which can be divided into three elements: U3, derived from unique 

sequences to the 3’ end of viral RNA; R derived from repeat sequences identical to 

both ends of viral RNA; and U5, derived from sequences unique to the 5’ end of viral 

RNA. The LTRs are generated during reverse transcription and as a result, proviral 

DNA is longer than genomic viral RNA. The LTRs contain sequences important in 

the control of viral transcription and post-transcriptional modifications, such as 

promoters, multiple enhancers and polyadenylation signals (Vogt, 1997).

The essential viral genes gag, pro, pol and env occupy the body of the DNA (Figure

1.3). They are present in all retroviruses and for ‘simple’ retroviruses, such as 

gammaretroviruses, they are the only genes, where as ‘complex’ retroviruses, such as 

lentiviruses and spumaviruses, express other accessory genes required to co-ordinate 

and regulate viral replication. The gag gene encodes the internal structural protein of 

the virus. Gag is proteolytically processed into the mature proteins MA (matrix), CA 

(capsid), NC (nucleocapsid) and sometimes others whose function is uncertain e.g. 

p i2 for MLV. The pro gene encodes the viral protease (PR) that acts late in assembly 

of viral particles by cleaving the proteins encoded by gag, pro, pol and sometimes 

env. pol encodes the enzymes reverse transcriptase, which has both DNA polymerase 

and RNase H activity, and integrase, which mediates replication of the genome. em> 

encodes the surface unit glycoprotein and transmembrane protein of the virus, which 

form a complex that determines viral envelope tropism that will be discussed later.

1.3.4 Retroviral Life Cycle.

Knowledge of the retroviral life cycle is crucial in development of retroviral vectors 

(Figure 1.4). It can be divided into two phases. The first involving attachment, entry, 

reverse transcription and integration with the host DNA and the second involving 

synthesis of viral proteins and genomic RNA, assembly and budding of infectious 

virions from the host cell.

The first step is attachment to the target cell. The viral envelope glycoprotein dictates 

the host range of the virus through its interaction with the receptors on the target cells.
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Attachment of the envelope SU binding domain to a specific receptor triggers 

conformational changes within the SU. This leads to exposure of the hydrophobic 

‘fusion peptide’ within the TM domain that mediates fusion of cellular and viral 

membranes and results in viral core entry into the cell cytoplasm (Hunter, 1997).

In the cytoplasm viral genomic RNA (as part of a nucleoprotein complex) is reverse 

transcribed by activated RT (Hunter, 1997). Once DNA synthesis is complete viral 

integrase cleaves the terminal two nucleotides from each 3’ end of the linear double 

stranded viral DNA, creating recessed 3’-OH groups. In simple retroviruses like 

MLV, entry of the viral nucleoprotein complex into the nucleus occurs during mitosis 

when the nuclear membrane is dissociated (Roe et al., 1993). However, in 

lentiviruses, nuclear entry can also occur during interphase by active transport through 

the nuclear pore allowing the infection of non-dividing cells (Weinberg et al., 1991).

Binding of viral DNA with host DNA is initiated by integrase, which uses the 3’-OH 

groups at the end of the viral DNA (in the integrase-viral complex) to attack the 

phosphodiester bonds on the host chromosomal DNA. Once in the host chromosome 

integration is completed by cellular enzymes, which remove mismatched bases, repair 

single strand gaps and ligate host/viral DNA (Lee and Craigie, 1994).

The provirus is transcribed by the host cell machinery as a cellular gene. Viral 

mRNA, like its cellular counterpart, is 5’ capped and 3’ polyadenylated ensuring its 

stable export to the cytoplasm, env genes are translated from mRNA that has been 

spliced by cellular spliceosomes, while unspliced mRNAs are used either for gag and 

pol translation or incorporated into new virions as genomic RNA.

Retroviral proteins can be translated as a large Gag-Pro-Pol fusion polyprotein 

precursor or as a single Gag polyprotein or as an Env polyprotein. In MLV a read- 

through mechanism occurs to encode gag and pol in the same reading frame and thus 

produce a Gag-Pro-Pol fusion protein (Yoshinaka et al., 1985). This translational 

mechanism ensures that correct amounts of proteins are packaged into mature virions, 

typically 2000 copies of Gag and 20-50 copies of Pol.
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Retroviral assembly involves interactions between viral proteins, genomic proteins 

and host cell tRNA. Genomic RNA encapsidation and dimerisation, tRNA packaging, 

viral protein and RNA transport to an assembly site at the host cell plasma membrane 

and envelope acquisition during budding are events common to all retroviruses. In C 

type retroviruses (e.g. MLV) and lentiviruses, Gag-Pro-Pol core polyproteins and 

genomic RNA migrate to the plasma membrane, directed by the Gag MA domain, 

where they assemble before budding. Retroviral RNA contains cis-acting signals that 

allow it to be encapsidated by Gag polyproteins during virus assembly. This process 

requires interactions between the packaging signal, Psi (vj/) or the encapsidation signal 

(E) and the Gag polyprotein (Berkowitz et a l, 1996).

The final stages in the retroviral lifecycle involve the maturation of viral particles. In 

most retroviruses the core particles have an ‘immature’ morphology irrespective of 

their assembly pathway. Gag and Gag-Pro-Pol polyprotein precursors are cleaved by 

viral protease to initiate maturation (Vogt, 1997). The timing of this protease- 

mediated cleavage is crucial and usually occurs at late assembly or just after budding. 

Premature processing results in intracytoplasmic accumulation of mature viral protein 

forms, which may interfere with normal particle assembly. Cleavage is critical in the 

production of infectious viruses, as demonstrated by mutations in the protease-coding 

domain (Stewart et a l, 1990) or the use of proteinase inhibitors (Sommerfelt et a l,

1992), otherwise non-infectious virus containing unprocessed Gag and Gag-Pro-Pol is 

produced. After cleavage, the viruses take on a mature form in which the core is 

detached from the membrane, as opposed to the immature morphology in which Gag 

precursor proteins are anchored by the MA protein to the inner face of the viral 

envelope.

1.4 Retroviral Vectors

Vectors based on members of the retrovirus family are the most widely used today 

(Table 1.1). The majority of the retroviral vectors currently used in gene therapy 

models are derived from the murine leukaemia virus (MLV) and were among the first 

viral vectors to be used in human gene therapy trials (Blaese et a l, 1995). MLV has a 

small, simple and well-characterised genome, which allows extensive vector
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manipulation. To produce retroviral vectors all of the protein-encoding sequences are 

removed from the virus and replaced by the transgene of interest. The essential ex­

acting sequences such as the packaging sequence (vj/) have to be included in the vector 

construct. The viral sequences necessary for reverse transcription of the vector RNA 

and integration of the proviral DNA, the LTRs, the transfer RNA-primer binding site, 

and the polypurine tract (PPT) also have to be present for efficient gene transduction 

and integration (Vogt, 1997). Thus the retroviral vector is replication-defective as it is 

incapable of making the proteins required for additional rounds of replication.

Viral proteins needed for infection are provided in tram in the packaging cell line. 

Retroviral packaging constructs are either transiently transfected into the packaging 

cells or a cell line is established that stably expresses the viral proteins. The packaging 

constructs are modified to reduce the chances of generating replication-competent 

virus (RCV) through recombination in the packaging cells. To further decrease the 

possibility of developing helper virus in the packaging cells a split genome packaging 

strategy was developed. Here two packaging constructs, one containing gag and pol 

and the other containing env are used (Danos and Mulligan, 1988; Markowitz et al., 

1988) (Figure 1.5). This not only increases the safety of retroviral vectors but also 

facilitates the pseudotyping of retroviral vectors with different envelope constructs.

Retroviral vectors possess several features that make them suitable for gene therapy. 

They are able to integrate into the target cell chromatin and thus have the potential for 

long-term gene expression. Although integration does not guarantee stable expression 

of the transduced gene, it is an effective way for the genetic material to be maintained 

in a self-renewing tissue and in the clonal outgrowth of a stem cell. The design of the 

retroviral vector means that target cells do not express viral proteins, which are 

responsible for most of the pathological and immunological consequences of viral 

infection. Thus gene transduction is usually well tolerated. Vector design allows up to 

8 kb of exogenous DNA to be inserted and expressed in place of the viral genes (Kay 

et al., 2001). Recent packaging cell lines produce titres above 107 transducing 

particles/ml and are suitable to be scaled-up for manufacturing large amounts of 

vector free from replication competent viruses (RCV) for clinical use.
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Figure 1.5 Retrovirus-based vectors

A. The retroviral genome contains gag, pol and env genes. The y sequence is the 
packaging sequence that differentiates viral RNA from all other RNA in the cell 
and is recognised by the viral proteins for packaging.

B. The vector genome, gag, pol and env genes are replaced by the therapeutic gene.

C. The packaging cell. The gag and pol genes areseparated from the env gene making 
regeneration of a replication competent virus unlikely. The vector genomes, by virtue 
of the V sequence are encapsulated along with the Pol and Gag proteins. The virus, buds 
from the packaging cell, resulting in the retroviral vector.

Adapted from (Somia and Verma, 2000).
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A critical limitation to the use of C-type retroviral vectors is their inability to infect 

non-dividing cells (Vogt, 1997). As discussed previously, nuclear entry of simple 

retroviruses requires disruption of the nuclear membrane to allow the pre-integration 

complex to gain access to the chromatin (Roe et a l , 1993) and is thus dependent on 

target cell mitosis shortly after entry (Miller et al., 1990). Recently, a nuclear 

localisation signal was engineered in the matrix protein of an avian C-type retrovirus, 

spleen necrosis virus (SNV), to enable an SNV vector to transduce non-proliferating 

cells (growth-arrested human T lymphocytes and quiescent primary monocyte-derived 

macrophages) (Parveen et a l, 2000). However, most work has concentrated on 

lentiviruses which are able to penetrate an intact nuclear membrane and transduce 

non-dividing cells. This characteristic means that lentiviral vectors will probably 

become important vector systems in the future treatment of a wide range of diseases. 

They are able to transduce haematopoietic stem cells ex vivo without first inducing 

them to proliferate with cytokine stimulation. They have been shown to be effective 

tools for gene delivery to the central nervous system (CNS), generating long-term 

expression without detectable pathology (Naldini et a l, 1996a). Therapeutic efficacy 

has also been demonstrated in a primate model for Parkinson’s disease (Kordower et 

a l, 2000), which is the first successful gene therapy in such a model. Lentiviral 

transduction of muscle and liver has also been shown in animals, but studies in the 

liver have shown that not all non-dividing cells are equally susceptible to transduction 

by lentiviral vectors (Park et a l, 2000). Some cell types, such as the hepatocyte, might 

require cell cycling for efficient gene transfer

1.5 Safety of Retroviral vectors

1.5.1 Insertional mutagenesis

Integration is a mutagenic event with the potential to activate or inactivate cellular 

genes, including oncogenes or tumour-suppressor genes. A classical example of this is 

the integration of ALV upstream of a gene encoding a cellular transcription factor (c- 

myc), which causes lymphoma in chickens (Hayward et a l, 1981). One of the key 

advantages of retrovirus derived vectors, insertion of the transgene into the host 

chromosome with sustained gene expression, was until recently a theoretical
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disadvantage with the potential for insertional mutagenesis. The potential for 

transformation by a gene therapy vector was first described in a murine model using a 

retroviral vector (Li et al., 2002). This issue has come to prominence recently with the 

recent report of two cases of T-cell leukaemia in patients treated with retroviral gene 

therapy for X-linked severe combined immune deficiency (X-SCED) (2003), which 

will be discussed in greater detail below.

1.5.2 Gene therapy of X-linked SCID.

X-SCID is an inherited disorder characterised by an early block in T and natural killer 

(NK) lymphocyte differentiation. This results in the absence of both T and B cells 

leading to severe and recurrent infections that are usually fatal in the first years of life. 

The block is caused by mutations of the gene encoding the yc cytokine receptor 

subunit of interleukin 2, 4, 7, 9 and 15 receptors, which participate in the delivery of 

growth, survival and differentiation signals to early lymphoid precursors. Bone 

marrow transplantation (BMT) can be used to successfully treat X-SCID, but it works 

best when there is a fully compatible donor. Unfortunately this is the case in under 

one third of X-SCID children. In unmatched recipients, BMT carries the risk of graft 

failure, graft-versus-host disease, lymphoma and other medical problems.

The lack of therapeutic options in X-SCID led to the development of a gene therapy 

trial by Fischer and colleagues (Cavazzana-Calvo et al., 2000). Bone marrow stem 

cells were obtained from the affected children, cultured with growth factors and 

transfected on three successive days with a Moloney derived retroviral vector carrying 

the yc gene. 10 out of the first 11 patients achieved effective and life-saving immune 

reconstitution^j$)03). The patients recovered well and were able to lead a normal life 

for periods of up to 3 years from the first group of patients. Expression of the yc gene 

was detected in T and NK cells with T, B and NK cell counts and function 

comparable to age matched controls (Cavazzana-Calvo et al., 2000). Thus gene 

therapy was able to correct the disease phenotype and from a clinical perspective may 

have been considered cured by this pioneering treatment.
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However, 30 months after treatment one of the patient developed a monoclonal 

gamma-delta T-cell lymphoproliferative disorder (leukaemia like disorder) (2003). 

Subsequently a second child has developed a T-cell leukaemia. Both leukaemias 

appear to be caused by insertional mutagenesis i.e. retroviral activation of a cellular 

oncogene at the site of insertion. The gene LIM domain only 2 (LM02), located on 

chromosome 11, is normally involved in the control of blood cell proliferation and 

differentiation and is known to be activated in certain types of T-cell leukaemias. Its 

expression has shown to be elevated in both cases. It is thought that the cancerous T 

cells in both patients are derived from single transduced cells in which the retrovirus 

genome has inserted near, or in, the LM02 oncogene activating LM02 expression 

(Kohn et a l , 2003). A similar insertion into the LM02 region has recently been 

identified in a third child in this study, although this child has not developed 

leukaemia (Thomas et al., 2003).

The complication of leukaemia has not occurred in any other clinical trial nor in any 

large animal model that used retroviral vectors to modify haematopoietic stem cells. 

Leukaemia has been linked to vector integration in only one mouse study using this 

approach (Li et a l , 2002). Multiple factors may have contributed to the development 

of leukaemia in the patients involved in the X-SCID trial. These include the high level 

of engraftment and expansion of genetically modified cells, unique properties of the 

haematopoietic stem and progenitor cells in the bone marrow of X-SCID patients, the 

immune deficiency of X-SCID patients and/or the transferred gene itself. The gene 

itself is one that lends itself perfectly to gene replacement in that it provides a 

stimulus to growth and survival but this may have contributed to the malignant 

transformation. Further use of current gene-transfer methods for the treatment of X- 

SCID poses a complex dilemma in the consideration of potential risks and benefits. 

New recommendations from the United States Food and Drug Administration (FDA) 

Biological Response Modifiers Advisory Committee (BRMAC) state that this form of 

therapy should not be the first line of treatment for X-SCID, but it can be considered 

in the absence of other options such as matched bone-marrow transplantation (Check, 

2003).

Insertional mutagenesis had always been considered a potential risk associated with 

the use of retroviral vectors. It is important to recognise that the risks could be
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different for each disease, each therapeutic gene and each class of patient and every 

subsequent gene therapy trial involving the use of retroviral (or other integrating 

vectors) should be preceded by a careful assessment of the risk-benefit ratio.

Understanding the risk of oncogenesis by vector integration requires further 

investigation into the mechanisms that underlie transformation. This will lead to the 

development of approaches to minimise the likelihood of leukaemia or tumour 

formation. One of the first priorities is to analyse the site-selection patterns of 

integration for different vectors. For oncoretroviruses it is established that integration 

is biased towards DNAse I hypersensitive chromatin (Vijaya et a l, 1986; 

Rohdewohld et al., 1987). This also appears to be the case for HIV-1 (Schroder et al., 

2002). This bias results in preferential integration in gene-rich regions, particularly in 

or near actively transcribed genes. This preference is likely to be conserved in the 

replication defective vectors that are derived from these viruses. The potential sites 

and frequency of integration will probably differ between vector types as well as 

between target cells and further research is needed to determine likely sites that will 

aid decisions about future treatments.

1,6 Cancer Gene Therapy

The direct targeting of cancer cells with gene therapy offers tremendous promise for 

the future of cancer treatment with new molecular technology offering several ways 

of targeting tumour cells. Cancer has become the most common disease treated in 

current gene therapy protocols with 68.5% of all patients treated (Table 1.1). The field 

of cancer gene therapy embraces a range of ideas and technologies from direct attack 

on tumour cells to harnessing the immune response to tumour antigens.

1.6.1 Immuno-gene therapy

The immune system has several features that are ideally suited to gene therapy most 

notably an amplification of the therapeutic effect following relatively low level gene 

delivery and high level specificity of body-wide target cell killing once correctly 

activated (Vile et al., 2000). The potential of harnessing these two features to fight
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metastatic disease is why the majority of cancer gene therapy protocols are aimed at 

immune stimulation (54% of open trials listed by the US recombinant advisory 

committee; data from /www.nih.gov/science/).

The timing of treatment in immuno-gene therapy, like most, if not all, treatment 

modalities for cancer is crucial. The smaller the tumour the more likely that 

appropriately activated immune cells can control and eradicate it. Animal models 

show that with tumour vaccines directed at the immune system, gene therapy was 

more successful in smaller tumours (Fomi et a l, 1995). Early in the disease, 

immunomodulatory gene therapy can eradicate disseminated metastases that are 

antigenically similar to the primary tumour and that do not yet exert an inhibitory 

immunosuppressive effect. In the clinical setting tumours may evolve over long 

periods when the immune system is intact. Variants that are poorly immunogenic are 

probably selected and these escape immune surveillance. Thus, the smaller the 

volume of disease, the shorter the time in which tumour cells can acquire mutations 

allowing them to evade the immune system. In addition, immune dysfunction has 

been shown to correlate with disease extent in cancer patients, making effective 

activation of the immune system less likely in advanced disease (Kavanaugh and 

Carbone, 1996). Finally, the more advanced the tumour the more likely that the 

patient will have received chemotherapy (and/or radiotherapy) regimens that may 

suppress the immune system and decrease further the efficacy of gene therapy.

The first clinical protocols for cancer gene therapy involved the ex vivo modification 

of freshly isolated tumour cells with cytokines (Pardoll, 1995). It became apparent 

that in many cases cytokine modification was little better than conventional adjuvant- 

based cancer cell therapies with no gene transfer component (Hock et a l, 1993). 

Additionally, the recovery and establishment in culture of patient tumour cells is time 

consuming and expensive and may also significantly alter the phenotype of the cells.

However, animal models showed clear efficacy for this treatment modality. For 

example, a vaccine of irradiated tumour cells (B16 melanoma model) engineered to 

secrete murine granulocyte-macrophage colony-stimulating factor (GM-CSF) showed 

potent, specific, and long-lasting anti-tumour immunity in mice (Dranoff et a l, 1993). 

It was subsequently shown that cytokine modified vaccines can generate significant
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immune responses in patients with minimal toxicity. Irradiated autologous melanoma 

cells melanoma cells engineered to secrete human GM-CSF using either retroviral or 

adenoviral vectors have shown promising activity in patients with metastatic 

melanoma with evidence of potent antitumour immunity. (Soiffer et al., 1998; Soiffer 

et al., 2003). However, given the preparation and subsequent modification of 

autologous tumour cells needed to produce vaccines it is unlikely that this will ever 

become a universal approach.

The two areas in which immuno-gene therapy may make most progress are likely to 

be the use of tumour-associated antigens and the exploitation of the central 

significance of the dendritic cell in generating anti-tumour immune responses. The 

identification of tumour-associated antigens (TAA) from human tumour cells 

(commonly melanoma), which are recognised by either CD8+ (Boon and van der 

Bruggen, 1996) or CD4+ T cells (Wang et a l, 1999a; Wang et al., 1999b; Walker et 

a l, 2002), has provided evidence that tumours can express antigens against which T 

cell-mediated responses can be raised. The identification of these antigens means that 

tumour vaccination can move from the relatively crude level of whole cell vaccines to 

more defined targets. It is important to note that tumours are highly heterogeneous 

and unlikely to express one antigen on all of the cells. Thus, vaccination with a 

‘cocktail’ of antigens is likely to be necessary.

The most potent antigen presenting cell in the immune system is the dendritic cell 

(DC) so called because of its extensive cellular processes with which it interacts with 

T cells in lymphatic tissue (Banchereau and Steinman, 1998). The presence of anti­

tumour immune responses against defined tumour antigens has led to investigations in 

the use of modified DCs to break tolerance and induce anti-tumour immune 

responses. Vaccination of patients with advanced melanoma with dendritic cells 

pulsed with tumour lysate or a cocktail of peptides has shown impressive anti-tumour 

activity (Nestle et al., 1998; Nestle et a l, 2001). Several clinical trials using patient 

DCs pulsed with peptide antigen or tumour lysates have shown similar results raising 

the possibility that DC based vaccines may allow the development of effective 

therapies against melanoma and other cancers (Timmerman and Levy, 1999).
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However, the disadvantages of DCs pulsed with synthetic peptides from TAA include 

the uncertainty regarding the longevity of antigen presentation, the restriction by the 

patient's haplotype and the relatively low number of known MHC class I and in 

particular of MHC class II helper cell-related epitopes (Humrich and Jenne, 2003). In 

addition whole tumour cell preparations are difficult to standardise, and depend on the 

availability of tumour cells. Thus the utilisation of viral vectors genetically modified 

to express TAA for the ex vivo transduction of DCs is an attractive alternative to 

achieve a MHC I- and MHC Il-restricted presentation of tumoural antigens. To induce 

protective anti-tumoural immune responses an increasing number of modified viral 

vectors have been used to transduce DCs.

Initial murine studies using DCs transduced ex vivo by retroviruses encoding a model 

tumour antigen (P-galactosidase) were able to generate antigen-specific cytotoxic T 

lymphocytes (CTLs), with significant anti-tumour activity, against tumours 

expressing the antigen (Specht et al., 1997). Delivery of genes by adenoviral vectors 

has also been demonstrated (Song et al., 1997; Song et al., 2000), but the high 

antigenecity of these vectors seems likely to preclude their use in this situation. DCs 

are non-dividing and this has led to great interest in the use of lentiviral vectors to 

modify them, which has successfully been achieved (Chinnasamy et a l, 2000; 

Schroers et al., 2000). Transduced cells have been shown to maintain T-cell 

stimulatory activity and antigen specific responses have been demonstrated (Dyall et 

al., 2001).

It is important to recognise the possibility of inducing autoimmune damage by 

modification of DCs with tumour associated antigens that are displayed on normal 

tissues. The first goal in the modification of DCs must be the establishment of potent 

anti-tumour immune responses; the second will be to learn how to restrict such 

responses solely to the tumour.

1.6.2 Tumour suppressor genes and oncogenes

A more direct approach for gene therapy is the altering of a DNA sequence that is 

specifically responsible for a malignant transformation or its maintenance, such as the

36



ablation of an oncogene or the replacement of a functional tumour suppressor gene. 

The replacement of tumour suppressor genes has proved a particularly attractive target 

for cancer gene therapy. This concept is based on two assumptions. Transformation of 

a normal cell to a malignant cell is causally related to the acquisition of a series of 

genetic lesions. The first assumption is therefore that restoration of a single genetic 

defect will be effective in inhibiting tumour cells that have multiple additional defects. 

Despite the multiplicity of these lesions within a single cancer cell studies have shown 

that correction of a single critical genetic lesion is sufficient to abrogate 

tumorigenecity in human cancer cells (McCormick, 2001). This has been 

demonstrated for the principal tumour suppressor genes, for example: adenomatous 

polyposis coli (APC) (Morin et al., 1996), retinoblastoma (RB) (Nikitin et al., 1999) 

and p53 (Roth et al., 1996). Expression of each of these genes in tumour cells in vitro 

causes an acute change in cell physiology and gene expression, resulting in cell-cycle 

arrest or death. As well as validating the concept of this form of gene therapy, these 

experiments clearly demonstrate the selective advantage of losing tumour-suppressor 

gene expression in tumour development.

The second assumption regarding the use of tumour suppressor genes is that collateral 

delivery of these genes to normal tissue will have little effect because these genes are 

already expressed in normal cells where they are appropriately regulated. This issue 

has not been addressed rigorously in model systems. The normal tissue counterpart of 

the tumour would seem a logical choice for experimental investigation, but the toxic 

effects of the gene are more likely to be seen in cells exposed to the highest levels of 

the vector, such as the liver or vascular endothelial cells. In one study delivery of p53 

to normal bronchial epithelial cells showed no effects on cell growth, with a 2-3 log 

therapeutic window relative to the tumour cells (Zhang et al., 1994).

These results supported the rationale of delivering tumour suppressor genes, but the 

effects were thought to be cell autonomous with negligible effects on surrounding 

uninfected cells. This means that virtually every tumour cell would need to be 

infected, an enormous technical hurdle especially for disseminated disease. However, 

it appears that a bystander effect whereby adjacent cells to those that have been 

transfected are also killed is seen with gene delivery of p53 (McCormick, 2001). This 

may be because p53 is anti-angiogenic: it downregulates expression of vascular
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endothelial growth factor (VEGF) and upregulates expression of thrombospondin -  a 

potent inhibitor of angiogenesis (Nishizaki et a l, 1999).

The first clinical effects of delivering a tumour suppressor gene, p53, used a retroviral 

vector containing the wild-type p53 gene to mediate transfer of wild-type p53 into 

human non-small cell lung cancers (NSCLC) by direct injection (Roth et a l, 1996). 

The treatment was well tolerated with clear signs of apoptosis in injected tumours, 

and three out of the nine treated patients showed regression of their tumours as well as 

evidence of a bystander effect. More recent studies have used adenoviral vectors to 

deliver p53 (Ad-p53). Repeated intratumoural injections of Ad-p53 appear to be well 

tolerated, result in transgene expression of wild-type p53, and seem to mediate 

antitumour activity in a subset of patients with advanced NSCLC (Swisher et a l, 

1999) and squamous cell carcinoma of the head and neck (daym an et al, 1999). Ad- 

p53 is now being tested in phase II and III clinical trials as well in combination with 

chemotherapeutic agents (Nemunaitis et a l, 2000) or radiotherapy. Replacement of 

p53 may have particular relevance to cytotoxic chemotherapy as cells that contain 

mutant p53 appear to be more resistant to chemotherapy. Thus correction of p53 

function could in theory allow apoptosis in response to chemotherapy-induced DNA 

damage.

The opposite approach to introducing tumour suppressor genes is the blocking of 

overactive oncogenes. Again viral vectors have been used to deliver antisense 

oligonucleotides or ribozymes to block oncogene expression (McCormick, 2001). The 

applicability of this approach is reliant on similar assumptions to those of tumour 

suppressor gene therapy and again these have been fulfilled. Tumour cells with many 

genetic defects still depend on oncogene expression for growth and survival. For 

example, tumours that are driven by HRAS are destroyed when it is eliminated by 

either genetic or pharmacological approaches (Chin et a l, 1999). Furthermore, 

ribozymes that target mutant RAS selectively should have no effect on normal cells.

The effectiveness of this approach may be hindered by a lack of a bystander effect and 

also by the increasing number of alternative approaches to oncogene-directed therapy. 

Recent successes with small molecules, particularly inhibitors of the RAS pathway 

(Sebolt-Leopold et a l, 1999) and p210 BCR-ABL (Druker et a l, 2001), show that
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more attention is likely to be directed to this area of oncogene-based research and 

therapy. In contrast, it is more difficult to develop small molecules that reactivate 

mutated tumour suppressors.

1.6.3 Suicide genes

The next broad approach to direct targeting of cancer cells with gene therapy is the 

delivery of suicide genes. These are enzyme encoding genes which, once expressed, 

allow the cancer cell to metabolise a harmless prodrug into a toxic metabolite. 

Examples include cytosine deaminase which converts 5-fluorocytosine into the toxic 

agent 5-fluorouracil and herpes simplex thymidine kinase (HSV-tk), which initiates 

the phosphorylation of the non-toxic drugs acyclovir and ganciclovir to their toxic tri­

phosphate forms. A bystander effect is commonly seen with suicide gene therapy and 

may be mediated by either a local or immune effect or a combination of the two (Vile 

et a l , 2000). The prototypical bystander effect involves the transfer of toxic 

metabolites between cells (Moolten, 1994) but there may be other effects such as 

suppression of angiogenesis.

The first clinical study of suicide gene therapy used direct injection of murine 

retroviral producer cells to treat brain tumours (Ram et al., 1997). The aim was to 

release retrovirus encoding the herpes simplex virus thymidine kinase (HSVtk) 

suicide gene, which would infect surrounding tumour cells (the only cells that should 

be replicating at that site and thus be susceptible to C-type retroviral infection) and 

render them susceptible to the prodrug ganciclovir (GCV) (Culver et a l , 1992). This 

would kill the retroviral producer cells, the infected cells and bystander tumour cells. 

This approach proved successful in the rat model (Culver et a l , 1992), however there 

was only limited success when used to treat human brain tumours (Ram et a l, 1997). 

There was some antitumour activity in five smaller tumours (1.4 +/- 0.5 ml), but there 

appeared to be limited gene transfer to tumours suggesting that this effect was due to 

‘bystander’ mechanisms from the vector-producing cells. The injected producer cells 

remained stuck in close proximity to the injecting needle and tk cDNA transfer by the 

retroviral vector was limited to a few cells away. The response of only very small
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tumours showed the feasibility of this approach, but highlighted the need to improve 

delivery of the therapeutic gene.

Several enzyme-prodrug combinations are being evaluated but HSV-tk has been most 

widely evaluated and has progressed farthest into the clinic with many phase I and II 

trials currently ongoing. The first phase III trial has recently reported its results 

(Rainov, 2000).This multicentre trial randomised 248 patients with newly diagnosed, 

previously untreated glioblastoma multiforme (GBM) to either standard therapy 

(surgical resection and radiotherapy) or standard therapy plus adjuvant gene therapy 

(using retroviral producer cells) during surgery. Progression-free median survival in 

the gene therapy group was 180 days compared with 183 days in control subjects. 

Median survival was 365 versus 354 days, and 12-month survival rates were 50 

versus 55% in the gene therapy and control groups, respectively. These differences 

were not significant. Therefore, the adjuvant treatment improved neither time to 

tumour progression nor overall survival time, although the feasibility and good 

biosafety profile of this gene therapy strategy were further supported. The failure of 

this specific protocol may be due mainly to the presumably poor rate of delivery of 

the HSV-tk gene to tumour cells. In addition, the current mode of manual injection of 

vector-producing cells with a non-migratory fibroblast phenotype limits the 

distribution of these cells and the released replication-deficient RV vectors to the 

immediate vicinity of the needle track. Further evaluation of the RV-mediated gene 

therapy strategy must incorporate refinements such as improved delivery of vectors 

and transgenes to the tumour cells, non-invasive in vivo assessment of transduction 

rates, and improved delivery of the prodrug across the blood-brain and blood-tumour 

barrier to the transduced tumour cells.

A more promising approach appears to be the local injection of adenoviral vectors that 

express HSV-tk into brain tumours, which has shown a survival benefit in a small 

number of patients when compared to retroviral producer cells or lacZ control. Mean 

survival times for retrovirus, adenovirus, and control groups were 7.4, 15.0, and 8. 3 

months, respectively. The difference in the survival times between the adenovirus and 

retrovirus groups was significant (p < 0.012) (Sandmair et al., 2000). Despite this 

promising result there remains a need to improve the efficacy of suicide gene therapy. 

Efforts are underway to improve to achieve this using different vectors and suicide
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genes that might produce stronger bystander effects and investigating the potential of 

combining suicide genes that act synergistically (McCormick, 2001). Another 

potential method of potentiating the bystander effect is by using lovastatin and other 

compounds that upregulate the number of gap junctions (Touraine et a l, 1998). In a 

murine tumour model only two or three injections of lovastatin during ganciclovir 

treatment doubled the antitumour response rate, with 60-70% of the mice achieving 

complete remission (Touraine et a l, 1998). This supports the hypothesis that the 

transfer of phosphorylated ganciclovir from HSV-tk gene-expressing cells to 

neighbouring tumour cells is a major component of the bystander effect and that 

pharmacological manipulation of gap junction function with lovastatin can result in 

striking improvement in the antitumour response in mice with tumours modified to 

contain as few as 10% HSV-tk cells.

1.6.4 Anti-angiogenic genes

Bystander effects can also be achieved in other ways with one of the most promising 

being suppression of angiogenesis. Several anti-angiogenic agents have been 

developed that show promising activity in animal tumour models. Gene therapy has 

the potential to produce these therapeutic agents in high concentrations in a local area 

for a sustained period, thereby avoiding the problems encountered with long-term 

administration of recombinant proteins, monoclonal antibodies, or anti-angiogenic 

drugs. For example, adenoviral expression of a soluble form of VEGF receptor was 

shown to suppress tumour growth in mouse models (Takayama et al., 2000). And 

angiostatin and endostatin expressed from plasmid DNA complexed with liposomes 

are able to inhibit the growth of breast cancer in mice (Chen et a l, 1999).

1.7 Targeting gene delivery

On of the major goals of all anti-cancer treatments is to destroy tumour cells without 

affecting normal tissues. Gene therapy protocols would be improved by the 

availability of targetable vectors that could deliver genes to specific target cells or 

disease sites. Non-target cells should not be infected as gene delivery could be 

potentially harmful e.g. suicide genes, and would deplete the pool of vector particles.
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There are two contrasting ways of achieving targeted gene therapy. On the one hand a 

non-targeted, non-specific vector can be delivered to achieve a selective effect e.g. 

directly injecting a tumour. This is called extrinsic targeting. Alternatively the 

capacity for selective delivery may reside within the agent itself: intrinsic targeting. 

This is achieved by designing elements into the gene therapy vector that enable it to 

selectively transduce the target cells of choice.

Intrinsic targeting may be achieved by transcriptional or transductional targeting. 

Transcriptional targeting is achieved by altering the promoter sequence within the 

vector so that the gene is only expressed in certain tissues. Several ‘tissue specific 

promoters’ have been identified e.g. the tyrosinase gene is only expressed in 

melanocytes and control of its expression is dependent on a promoter which is only 

active within these cells. Thus if  this promoter is inserted upstream of a particular 

gene that gene will only be expressed in cells of melanocyte lineage including 

melanoma cells (Vile and Hart, 1993). Several potentially useful tissue specific 

promoters for cancer gene therapy have been identified that enable selective gene 

delivery in vitro and in animal models (McCormick, 2001). Examples of these include 

the androgen receptor promoter for prostate cancer, thyroglobulin for thyroid cancer 

and surfactant protein B for bronchial cancers.

Another approach to targeting has been transductional targeting i.e. delivering DNA 

to specific cells. There have been numerous attempts to develop reliable approaches 

for targeting gene delivery using both viral and non-viral gene delivery systems. One 

approach has been to use adaptor molecules to cross-link gene delivery vehicles to 

receptors on the target cell surface. An alternative approach has been to introduce 

receptor binding polypeptides into the surface of viral vectors (Russell and Cosset, 

1999). Depending upon the vector system used and the targeting strategy employed, 

the gene delivery vehicle may or may not be competent to deliver its gene after it has 

bound to the targeted receptor. A targeting element may therefore be used to direct 

delivery through a cell surface receptor, to inhibit gene delivery to a specific target 

cell or to modulate the trafficking and localisation of a gene delivery vehicle in the 

body.
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As previously stated retroviral vectors are the ones most commonly used in current 

clinical trials (Table 1.1). At the present time most retroviral gene therapy protocols 

require that target cells be removed from the body, transduced ex vivo and then 

reimplanted. This method is inconvenient, inefficient and expensive and this provides 

a strong impetus for continued efforts to develop targetable, injectable retroviral 

vectors. The most common method used to achieve such targeting is via alterations in 

the retroviral envelope. Thus in order to see how retargeting may be achieved it is 

necessary to understand the structure and function of the retroviral envelope 

glycoprotein complex.

1.7.1 Retroviral envelope gycoprotein

The first steps of retroviral entry are attachment to the target cell surface and 

subsequent fusion of the viral and cellular membranes (Hunter, 1997). These steps of 

attachment and fusion are mediated by the viral envelope glycoproteins. These 

homotrimeric proteins have an extraviral surface (SU) subunit that is linked to a 

membrane-anchored transmembrane (TM) subunit, which spans the lipid membrane 

of the virus (Figure 1.6). The viral envelope glycoprotein is synthesized as a 

polyprotein precursor that is directed by its N-terminal signal peptide in to the lumen 

of the endoplasmic reticulum (Hunter and Swanstrom, 1990). In the endoplasmic 

reticulum the signal peptide is cleaved from the protein and cellular chaperone 

proteins guide the folding of the monomer subunits. These are assembled into trimers 

and exported from the endoplasmic reticulum to the Golgi compartment. The 

precursor polypeptide is cleaved by a Golgi protease that recognises a cleavage signal 

at the SU-TM junction. After cleavage the SU and TM remain associated primarily 

through non-covalent bonds (Gliniak et al., 1991), but are also linked by a labile 

disulphide bond that may play an important part in the fusion triggering mechanism 

(Pinter et al., 1997). Cleavage activation at the SU-TM junction is required for correct 

functional maturation of the protein to a fusion-competent state.

From the Golgi compartment, the mature SU-TM complex is transported to the cell 

surface and incorporated into budding retroviral particles. The precise mechanism by 

which envelope glycoproteins are preferentially concentrated in budding virions is not 

fully understood (Hunter, 1997). Several cell surface and viral heterologous
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Figure 1.6 Functional domains o f the retroviral envelope proteins

Schematic representation of the functional domains of MLV envelope 
proteins.

SU: surface subunit, SP: signal peptide, VRA/VRB: variable regions A+B, 
PRO: proline rich region, C: C-terminal domain and TM: transmembrane 
region
This figure does not reflect the size difference between SU and TM regions; 
MLV SU is approximately 480 amino acid and TM 200 amino acids.

Adapted from (Battini et al, 1995, Zhao et al, 1998)
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glycoproteins can also be incorporated into retroviral particles (Suomalainen and 

Garoff, 1994).

Final maturation of the envelope glycoprotein complex to the fully fusion-competent 

state only occurs after the protein has been incorporated into a retroviral particle. At 

the time of, or shortly after budding, the viral protease becomes active and cleaves a 

C-terminal peptide (the R-peptide) from the cytoplasmic tail of the TM protein 

(Ragheb and Anderson, 1994; Rein et a l , 1994). Before this final cleavage step 

occurs, the envelope glycoprotein is competent to bind to its receptor on the target cell 

but is unable to trigger the post-binding events that lead to membrane fusion. Exactly 

how the R-peptide inhibits this fusion triggering is unknown, but its importance is 

shown by the fact that truncated envelope glycoproteins lacking the R-peptide are 

potent inducers of cell-cell fusion and are thus strongly cytotoxic to the cells from 

which they are expressed (Ragheb and Anderson, 1994; Rein et al., 1994).

When a virus decorated with mature envelope glycoprotein encounters a permissive 

target cell, the SU glycoprotein binds with high affinity to its receptor and this triggers 

a series of post-binding events that lead to membrane fusion (Figure 1.7). The SU 

glycoprotein comprises an N-terminal receptor-binding domain connected through a 

proline-rich hinge rich region to a C-terminal domain believed to mediate interactions 

between the SU and TM that lead to fusion. Comparing the receptor-binding domains 

of SU glycoproteins of type C-mammalian retroviruses reveal the presence of a 

conserved framework containing two hypervariable regions (VRA and VRB) that are 

thought to be the main determinants of receptor-binding specificity (Battini et al, 

1992; Baer et a l, 1993; Battini et a l, 1995). Mutagenesis of critical residues in these 

hypervariable regions can abolish receptor-binding activity (Bae et a l, 1997). Close 

to N-terminus of SU is a conserved peptide motif centering on a histidine residue that 

has been shown to be critical for post-binding events that lead to membrane fusion 

(Bae et a l, 1997; Lavillette et a l, 2000). Deletion or mutation of this histidine residue 

has no effect on receptor recognition and virus binding, but abrogates fusion 

triggering. By exposing cells to a soluble receptor-binding fragment of the SU that 

contains the histidine motif it is possible to restore their susceptibility to infection by 

viruses that carry the histidine mutated envelope (Lavillette et a l, 2000). This infers
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that the N-terminal histidine-containing motif transmits a post-binding signal to the 

target cell and/or envelope complex that triggers membrane fusion.

The proline-rich region provides a flexible linker between the N- and C- terminal 

domains of SU. However, recent reports suggest that it also acts as a functional 

domain critical to the structure and function of the SU. It has been shown to influence 

receptor recognition (Battini et a l, 1995), to be important for stabilisation of the SU- 

TM interaction (Gray and Roth, 1993) and also to alter viral fusogenecity (Andersen, 

1994).

The TM subunit is divided into an extraviral domain, a membrane-spanning domain 

that anchors the envelope glycoprotein complex in the viral membrane and a short C- 

terminal peptide that remains, projecting from the interior surface of the viral 

membrane after the R-peptide has been cleaved. A hydrophobic fusion peptide is 

present close to the N-terminus of TM, which is critical for fusion triggering (Jones 

and Risser, 1993; Zhu et a l , 1998). The exposed fusion peptide is believed to 

penetrate the target cell membrane and directly catalyse the process of fusion between 

the viral and target cell membranes (Figure 1.7).

1.7.2 Targeting with adaptor molecules

Targeting can be achieved using adaptor molecules to cross-link retroviruses to 

receptors on target cells. One binding site of the adaptor interacts with the retrovirus 

and the other interacts with the target cell. This was first demonstrated using a 

streptavidin bridging approach in which viruses were coated with biotinylated 

antibodies against the retroviral envelope, cells were coated with retrovirus-specific 

biotinylated antibodies and the streptavidin was used to cross-link the virus and cell- 

associated antibodies (Goud et a l, 1988; Roux et a l, 1989). This bridging strategy 

established proof of principle that ecotropic retroviruses could be retargeted to human 

cells although transduction of target cells was very inefficient (Roux et a l, 1989).

Despite the relative inefficiency of these early results, interest in this strategy has 

recently been revived with the development of adaptor molecules that can 

simultaneously retarget virion binding and trigger conformational changes in the
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glycoprotein of retroviruses that belong to the group of avian leukosis viruses (ALVs) 

(Snitkovsky and Young, 1998). These adaptors consist of recombinant polypeptides in 

which ligands are fused to soluble forms of the receptors for ALVs. They allow the 

virions to bind to specific cell-surface molecules and the retroviral receptor moiety 

activates viral entry into target cells. This elegant targeting strategy has been 

demonstrated in vitro for adaptor molecules that cany EGF-receptor binding 

determinants such as EGF itself (Snitkovsky et a l, 2000). The bridge proteins can 

either be preloaded on target cells or, more interestingly, preloaded on ALV vector 

particles (Boerger et al., 1999). This latter approach is more likely to have greater 

interest for gene therapy although the adaptor may dissociate from the virus particle or 

induce dissociation of the ALV SU before targeting has been achieved.

1.7.3 Targeting by envelope modification

The viral envelope glycoprotein determines which cells the retrovirus can infect and it 

has thus become the primary focus of retroviral targeting studies that aim to alter viral 

tropism. Retroviruses recognise a relatively limited number of cell-surface proteins as 

entry receptors (Sommerfelt, 1999) and several retroviral glycoproteins (e.g. those of 

ecotropic MLV) do not recognise a receptor on human cells. Thus initial attempts 

were made to extend their host-range so that they could bind to human cell surface 

molecules (Russell and Cosset, 1999). These attempts to retarget retroviral tropism 

consisted of the insertion of ligands (i.e. growth factors, hormones, peptides or single­

chain antibodies) into various locations on the viral surface glycoproteins. Figure 1.8 

shows examples of insertion sites into the MLV glycoprotein that have been 

characterised and found to be functional (Lavillette et a l, 2001b). They include 

modifications of the glycoprotein such as domain replacement (Kasahara et a l, 1994), 

peptide insertion into prefolded domains (Battini et a l, 1998; Wu et a l, 2000), and 

the display of polypeptides as additional folded domains (Russell et a l, 1993; Cosset 

e ta l, 1995a; Zhao etal., 1999).

Many of these chimeric glycoproteins fold correctly and are stably incorporated on 

virions achieving efficient retargeted virion binding to the new cell-surface molecules. 

Unfortunately, upon binding to the new target receptors most, if  not all, of the 

chimeras are unable to induce membrane fusion and subsequent penetration of the
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Figure 1.8. Insertion sites into the MLV glycoprotein.

Schematic representation of chimeric retroviral envelopes. SU: surface subunit, SP: 
signal peptide, RBD: receptor binding domain, VRA/VRB: variable regions A+B, 
PRR: proline-rich region, C: C-teminal domain and TM: transmembrane subunit.

The red arrows show the positions of the MLV glycoprotein that accommodate 
insertion/substitutions of peptides and/or polypeptides.

Adapted from (Lavillette et al, 2001b).
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viral core into the cytosol. In many cases, this failure is not caused by inactivation of 

the fusion machinery of the chimeric glycoproteins themselves as the chimeras are 

able to achieve membrane fusion once they are allowed to bind cells expressing the 

natural retroviral receptors. Instead the poor fusion activity of chimeric glycoproteins 

is thought to be due to a loss of coupling between retargeted binding and fusion 

activation (Zhao et al., 1999).

It therefore appears that the interaction of the envelope chimera with the targeted cell 

surface molecule is not able to activate the fusion function of the chimeras and the 

infectivity of the recombinant retrovirus is inhibited at a post-binding block. It is 

critically important when designing retargeted retroviruses to understand the 

molecular mechanism that converts receptor binding into a signal that can activate the 

retroviral fusion machinery. Closer examination of the molecular mechanisms that 

couple binding via the natural retroviral receptors to fusion activation show that it 

involves complex inter-relations between the different subdomains of the glycoprotein 

complex (Lavillette et al., 1998; Barnett and Cunningham, 2001; Barnett et al., 2001; 

Lavillette et al., 2001a).

1.7.4 Targeting by host range restriction

Several strategies have been developed to overcome this loss of binding-to-fusion 

coupling. Many of which are based on the display of polypeptides on retroviral 

glycoproteins that naturally recognise a target receptor and thus infect these cells (e.g. 

amphotropic MLV). The aim here is to restrict the range of host cells, which may be 

infected. An important advantage of host-range restriction is that the natural virus 

entry pathway is utilised and thus fusion activation of the chimeric envelope is more 

readily achieved (Russell and Cosset, 1999; Lavillette et al., 2001b). This approach 

also has a potential safety advantage in that the host-range is not expanded and so 

there is not the risk of generating a more pathogenic strain of the virus from which the 

vector is derived.
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1.7.5 Retroviral display of cell-specific blocking domains to restrict tropism

Several ligands displayed at the N-terminus of C-type retroviral envelope 

glycoproteins have been shown to block infectivity on cells expressing the targeted 

receptor (Russell and Cosset, 1999). This was first seen when epidermal growth factor 

(EGF) was displayed on the amphotropic MLV glycoprotein (Cosset et al., 1995a). 

These vectors could efficiently bind to EGF receptor-positive target cells but could 

not infect them. This sequestration can be competitively abrogated by adding the 

displayed ligand (EGF) as soluble polypeptide. The blocking effect occurs even if the 

amphotropic receptor is co-expressed on the target cells and despite M l infectivity on 

EGF receptor-negative cells. This is due to the fact that some ligand-receptor pairs 

have the capacity to sequester cell-bound retargeted virions. This phenomenon of 

receptor-mediated sequestration has mainly been seen, although not exclusively, for 

molecules belonging to the tyrosine kinase family of receptors (Lavillette et al., 

2001b)

Inverse targeting exploits receptor-mediated virus neutralisation and allows targeted 

gene delivery in mixed cell populations to cells that express only the viral receptor. 

For example, EGF displaying retroviral vectors could efficiently infect EGF receptor- 

negative haematopoietic cells, but were non-infective for EGF-receptor positive 

epithelial carcinoma cells (Fielding et al., 1998). This approach can thus be used to 

selectively transduce haematopoietic cells with an advantageous gene (e.g. multi-drug 

resistance gene), whilst minimising the risk of inadvertent transduction of 

contaminating cancer cells which express EGF receptors. An advantage of inverse 

targeting is that infection occurs via the natural virus entry pathway and so fusion 

activation of the chimeric envelope is efficient. However, there is a slight reduction 

(2-10 fold depending on the ligand) in the efficiency with which these targeted 

envelopes mediate entry into receptor-negative cells. This is thought to be due to a 

steric effect of the displayed ligand.

Inverse targeting has also been demonstrated for lentiviral vectors (Peng et al., 2001). 

Targeted HTV-1-based lentiviral vectors were generated by pseudotyping them with 

chimeric murine leukaemia virus (MLV) envelope glycoproteins displaying EGF at 

their N-terminus. Intravenous inoculation of mice with non-targeted lentiviral vectors,
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carrying wild-type glycoprotein leads to maximal gene delivery to the liver and spleen 

with minimal delivery to heart, muscle, lung, brain, kidney, ovary and bone marrow. 

In contrast, EGF-displaying vectors administered intravenously are expressed 

maximally in the spleen with very low expression in EGF receptor-rich liver cells. 

Transduction of liver cells can be restored by pre-treating the animals with soluble 

EGF, suggesting that these vectors are inversely targeted to spleen cells (Peng et a l , 

2001). This important study shows that it is possible to generate lentiviral vectors 

carrying retargeted glycoproteins and establishes the feasibility of retargeting them in 

vivo.

A method of utilising this sequestration to allow specific gene delivery to the targeted 

cell itself has also been explored; protease targeting. This relies on enabling the virus 

to escape from the sequestering receptor, and has been achieved by inserting, between 

the displayed ligand and the envelope glycoprotein, peptide sequences that are 

cleavable by cell-surface-specific proteases. This has been shown in EGF-displaying 

amphotropic vectors with a matrix metalloprotease (MMP) cleavage site, which were 

able to preferentially infect EGF-receptor positive MMP-rich target cells in vitro 

(Peng et al., 1997) and also to discriminate between MMP-rich and MMP-poor 

tumour xenografts in nude mice (Peng et al., 1999). The retroviral envelope may also 

be masked in a more general manner by homotrimeric polypeptides that efficiently 

block infection on all cell types. For example, the N-terminal expression of the 

trimerising extracellular domain of the CD40 ligand on the amphotropic MLV 

glycoprotein is able to block infection (Morling et a l, 1997). It either hinders receptor 

binding and/or fusion activation and thus prevents infection. This block in infection 

can be overcome by inserting, between such blocking domains and the viral 

glycoprotein, a protease cleavage site that is recognised by a cell surface protease 

expressed on target cells (Morling et a l, 1997).

These results have therefore opened the possibility that proteases on the cell surface, 

rather than receptors, could be used to target gene delivery. Retroviral vectors that can 

be activated by cell-surface proteases involved in carcinogenesis can be generated and 

may also be used to identify novel proteases, by using random peptide display 

libraries j nserted between the infection-blocking domain and the viral glycoprotein 

(Buchholz et a l, 1998).
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1.7.6 Escorting viral entry

Another way of expanding viral tropism is the co-expression of a ‘targeted’ 

glycoprotein with the wild-type glycoprotein. The targeted glycoprotein, which is 

usually defective for fusion, carries a specific binding domain that enables binding to 

tissues that express the target molecules (Hall et al., 1997; Jiang et a l, 1998). Recent 

strategies using this approach have concentrated on incorporating matrix-targeting 

motifs (i.e. collagen-binding peptides) on amphotropic MLV vector particles. It has 

been shown to improve retrovirus binding and transduction of human endothelial cells 

in vitro (Gordon et a l, 2000; Gordon et a l, 2001) . Importantly these vectors were 

able to target gene delivery to sites of vascular injury in vivo in rats (Hall et a l, 2000) 

and to the tumour vasculature in human xenografts in nude mice (Gordon et a l, 

2001). This ‘preferential’ targeting cannot be highly specific in principle and closer 

examination of vector biodistribution is needed to determine the extent of the ‘leak’ to 

non-target cells.

More specific targeting may be achieved through a similar approach using vectors 

derived from avian spleen necrosis virus (SNV) (Jiang et a l, 1998). SNV and simian 

D-type retroviruses belong to the same receptor interference group and appear to use 

the same receptor; the human allele of this receptor cannot mediate SNV entry into 

human cells. It is believed that this is because of its low affinity for the SNV 

glycoprotein (Jiang et a l, 1998). However, viruses that display both the wild type 

glycoprotein and a chimeric glycoprotein with an engineered high-affinity binding 

motif improve the SNV glycoprotein interaction with its receptor and promote 

membrane fusion in a restricted manner (Jiang et a l, 1998). This vector-mediated, 

cell type-specific gene delivery is maintained in vivo in a murine tumour model (Jiang 

andDomburg, 1999).

1.8 Tumour antigens

The identification of tumour-associated antigens (TAA) provides an attractive target 

for various therapeutic approaches including retroviral gene therapy. Tumour 

associated antigens are antigens which are expressed at an increased level on cancer 

cells. They may also be expressed in very low quantities on normal tissues, some
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being strongly restricted to certain stages/sites in tissue development. My project 

concerns the targeting of specific tumour antigens: primarily carcinoembryonic 

antigen (CEA) and also high-molecular-weight melanoma associated antigen (HMW- 

MAA).

HMW-MAA is an integral membrane proteoglycans that is expressed in greater than 

90% of melanomas but not in normal adult tissues (Natali et al., 1981). Its expression 

in melanoma is associated with a poor prognosis (Kageshita et al., 1993). HMW- 

MAA has been used successfully in vivo as a target for both radioimaging and for 

immunotherapy (Mittelman et al., 1994).

1.8.1 Carcinoembryonic antigen (CEA)

CEA was first described by Gold and Freedman in 1965, when they identified an 

antigen that was present in both foetal colon and adenocarcinoma of the colon but 

appeared to be absent from adult tissues (Gold and Freedman, 1965). It was suggested 

that CEA was an oncofoetal antigen; expressed during foetal life, absent in healthy 

adults and re-expressed in cancer. Subsequent work demonstrated that CEA was also 

present in healthy adult tissues although at much lower levels than in malignant 

tissues (Boucher et al., 1989).

Later it was discovered that CEA could be measured in serum from patients with 

colorectal and other carcinomas using a sensitive radioimmunoassay (Thomson et al., 

1969). These findings prompted the widespread use of CEA as marker for colorectal 

cancer. The main reasons why CEA is useful as a serum tumour marker are probably 

because it is a stable molecule shed from the cell surface, with a restricted expression 

in normal adult tissue and high level of expression in positive tumours 

(Hammarstrom, 1999).

The main clinical use of serum CEA is in the post-surgical surveillance of colon 

cancer. Two large studies showed that an increase in CEA was the first indicator of 

recurrent disease in over 80% of patients (Minton et a l, 1985; Wanebo et al., 1989). 

Monitoring of CEA levels post-operatively allows for second-look surgery or other 

treatment modalities to be instigated at an earlier time. Recently it has been shown 

that serum CEA measurement is the most cost-effective test in detecting potentially
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curable recurrent disease (Graham et al., 1998). Serum CEA levels may also be used 

as a prognostic indicator as high pre-operative level is associated with poor 5-year 

survival (Hammarstrom, 1999).

The gene encoding CEA is a member of the immunoglobulin supergene family 

(Thompson et a l, 1991). The human CEA gene family is clustered on chromosome 

19q and comprises 29 genes. Of these, 18 are expressed, with 7 belonging to the CEA 

subgroup and 11 to the pregnancy-specific glycoprotein (PSG) subgroup. The domain 

structure of the 7 expressed CEA subgroup members is shown in. Two types of 

immunoglobulin domains are seen in the CEA family: an N-terminal domain of 108 

amino acids homologous to the Ig variable domain (IgV-like) and between zero and 

six domains homologous to the Ig constant domain of the C2 set (Williams and 

Barclay, 1988). The IgC2 domains may either be of type A containing 93 amino acids 

or of type B containing 85 amino acids. A signal peptide of 34 amino acids precedes 

the N-domain, which is cleaved from the mature protein following transport to the cell 

surface. Molecules from the CEA and PSG subgroups differ at their C-terminal end. 

The CEA subgroup members are attached to the cell surface while the PSGs are 

secreted molecules. CEA is attached to the cell surface by a glcoysl phosphatidyl 

inositol moiety and is probably released as a soluble form by a phospholipase C or D 

(Hammarstrom and Baranov, 2001).

Two features appear to be characteristic for all expressed members of the CEA 

family: (i) they contain a single IgV-like N-domain, which lacks the intrachain 

disulfide linkage- the latter being replaced by a salt bridge. However, this type of IgV- 

domain is also seen in a few other immunoglobulin superfamily members notably 

CD2 and CD8; and (ii) the molecules are extensively glycosylated on aspargine 

residues, mainly (if not exclusively) by complex carbohydrate chains (Yamashita et 

al., 1987).

When isolated from liver metastases CEA is a glycoprotein consisting o f 60% 

carbohydrate and a molecular mass from 180-200 kD. CEA has been shown to exhibit 

considerable heterogeneity, which appears to be attributable to variations in its 

carbohydrate side chains. CEA itself shows a more limited tissue expression in normal 

adult tissue than other members of the CEA family. It is expressed in columnar
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epithelial cells and goblet cells in the colon, in mucous neck cells and pyloric mucous 

cells in the stomach, in squamous epithelial cells of the tongue, oesophagus and 

cervix, in secretory epithelia and duct cells of sweat glands and in epithelial cells of 

the prostate (Nap et al., 1992; Hammarstrom and Baranov, 2001). CEA expression in 

the tissues listed above generally commences early in foetal life (9-14 weeks) and 

persists throughout life.

In the colon CEA has been demonstrated by immunoelectron microscopy to localise 

specifically to the apical surface of mature enterocytes with no staining seen at the 

basolateral surface of the enterocytes (Hammarstrom, 1999). It appears to be 

specifically located at the apical glycocalyx/microvillus region of the mature 

enterocytes. This area is made up of microvesicles, which are formed by the blebbing 

of the microvillus membrane and subsequent pinching off. This vesiculation is a 

response to the conditions affecting the microvillus membrane and may serve as a 

means to rapidly remove membrane active agents from the gut luminal surface. Thus, 

CEA is released via CEA-coated vesicles in normal colon. The production and release 

of CEA in the normal adult colon is substantial. Over 24 hours a healthy adult is 

believed to excrete approximately 50-70mg of CEA in faeces, which may even 

underestimate the amount secreted.

The role of CEA in healthy adults remains unknown. The structural similarity of CEA 

to immunoglobulin-related proteins, such as ICAM-1 and ICAM-2, suggested that it 

might act as an adhesion molecule. In vitro experiments have shown that CEA was 

capable of both homophilic (CEA binding to CEA) and heterophilic (CEA binding to 

non-CEA molecules) interactions (Thompson et al., 1991). The fact that cancer 

invasion and metastasis may be caused by alterations in cell adhesion led to the 

hypothesis that CEA may be involved in these processes. Evidence for this role was 

provided by Hostetter, who showed that after transplantation of colorectal tumours 

into nude nice, the number of liver metastases increased from 2% to 48% following 

injection of the mice with CEA (Hostetter et al., 1990). However, to date there is no 

direct evidence that CEA is causally involved in cancer invasion and metastasis.

In normal physiology it seems unlikely that that CEA is involved in intercellular 

adhesions because of its apical localization on polarised cells. It has been suggested
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that CEA may play a role in innate immunity protecting the colon and potentially 

other areas such as the upper alimentary tract, urinary bladder and the skin (sweat 

glands) from microbial attack. CEA has been found to bind certain strains of 

Escherichia Coli and may protect the colon by binding and trapping infectious 

microorganisms, which are subsequently excreted (Hammarstrom and Baranov, 

2001).

CEA is expressed on and secreted by a number of tumours of epithelial origin such as: 

colorectal carcinoma, lung adenocarcinoma, gastric carcinoma, breast carcinoma and 

pancreatic carcinoma. It is considered to be up regulated in certain carcinomas e.g. 

colorectal and gastric carcinomas. However, whether CEA in breast or pancreatic 

carcinomas, for example, represents ectopic expression cannot be resolved at present, 

as it is possible that CEA may be produced by a few normal cells in these tissues but 

at a level below the current threshold of detection.

Unlike the strict apical localisation of CEA in normal colonic epithelium, in colonic 

carcinoma CEA is expressed over the entire cell surface, in intraglandular lumina and 

even in intracellular lumina. This results in ‘shed’ CEA having access to the blood 

and lymphatics through the intercellular spaces as reflected in increased serum levels. 

A key issue with regards to tumour targeting is whether there is a difference between 

tumour CEA and normal CEA. At the genetic level no difference is apparent. In an 

early study it was shown that normal colon CEA was indistinguishable from tumour 

CEA by several immunological, physiochemical and chemical criteria (Fritsche and 

Mach, 1977). Despite this it seems possible that subtle post-translational changes such 

as trimming of the C-terminus after release from the membrane or modifications in 

the carbohydrate side chains, might create differences between tumour and normal 

CEA. A further source of heterogeneity may be that CEA from different organs may 

display different post-translational changes.

1.8.2 Targeting carcinoembryonic antigen (CEA)

CEA was one of the first target antigens for radioimmunolocaiisation of colorectal 

and other tumours of epithelial origin. Targeted therapy against CEA on cancer cells 

initially used monoclonal antibodies raised against it. This approach has shown some
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success for radioimaging and recently for radioimmunotherapy (Behr et a l, 1996; 

Behr et al., 2002). However, there are limitations to their use due to their large size 

and cross-reactivity with various normal tissues (Nap et al., 1992; Yokota et al., 

1992). These limitations result in part from the presence of effector or linking regions 

that are not required for antigen recognition.

This has lead to the development of single chain (scFv) antibodies. scFvs consist of 

the antibody variable heavy (VH) and light (VL) regions linked by a short synthetic 

peptide to form a single molecule of 27 kDa (Huston et al., 1988) (Figure 1.9). scFvs 

have better tumour penetration because they are less than one-fifth of the molecular 

weight of an IgG antibody, whilst retaining full specificity for the antigen. They have 

the further advantage that immunogenecity may be reduced, as protein that is not 

required for antigen binding is not included.

There has been particular interest in the development of scFvs against CEA. MFE-23, 

an scFv against CEA was selected using a combinatorial phage library of 107 scFvs 

generated from the cDNA from the spleen of mice immunized with CEA (Chester et 

al., 1994a). MFE-23 has shown a higher affinity to CEA (Kd of 2.5nM) than a high- 

affinity monoclonal antibody (Kd of 25nM). The specificity of MFE-23 was 

examined against a range of human tissues and the only reactivity seen was weak and 

with normal colon. This is in contrast to many anti-CEA monoclonal antibodies, 

which react against various normal tissues. The ability of MFE-23 to target CEA was 

initially shown by localization of radiolabelled scFv to human colorectal tumour 

xenografts in nude mice (Chester et al., 1994a). A subsequent human clinical study, 

performed in 10 patients with CEA positive tumours, showed that MFE-23 had a 

more efficient tumour targeting capacity than the high-affinity monoclonal antibody 

(Begent et al., 1996). In this study MFE-23 located all known tumour deposits and 

demonstrated advantages over current imaging technology (computerised 

tomography).

One potential clinical use for scFvs is antibody targeted therapy. Antibody directed 

enzyme prodrug therapy (ADEPT) is a two-step system with the potential to treat 

solid tumour deposits. The targeted antibody (or scFv) delivers an enzyme selectively 

to a tumour deposit. When there is a high tumour to plasma ratio of the enzyme a non-
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toxic prodrug is administered. The enzyme (localised to its tumour target) catalyses 

the prodrug to a cytotoxic agent at the tumour sites. MFE-23 has been successfully 

linked to the enzyme carboxypeptidase G2 (CPG2). This enzyme can cleave glutamic 

acid from a variety of prodrugs to release potent nitrogen mustards. It has been shown 

that the MFE-23 :CPG2 fusion protein successfully localises tumour deposits giving 

high tumour; normal tissue ratios of CPG2 in human colon carcinoma xenografts in 

nude mice (Bhatia et al., 2000).

1.8.3 Retroviral targeting to tumour antigens by envelope modification

Targeting to tumour antigens using scFvs provides an attractive option for altering 

retroviral tropism by modification of the retroviral envelope glycoprotein. Insertion of 

an scFv against CEA into the Moloney MLV envelope has been attempted as a way of 

achieving host range extension (Konishi et al., 1998; Khare et al., 2001). The 

chimeric envelopes were successfully incorporated into viral particles with binding to 

CEA expressing cells. MFE23 was fused to ecotropic MMLV and coexpressed with 

wild-type ecotropic envelope in one study achieving a titre of 103 (Konishi et al., 

1998). In another study a different scFv that recognises CEA was developed and 

fused to ecotropic MLV envelope and coexpressed with wild-type ecotropic envelope 

(Khare et a l, 2001). The titre was 104, but co-centrifugation of virus and cells (2000 

ipm for 2 hours) was used in addition to Polybrene to enhance infection.

This level of infection is disappointing when compared to viruses displaying the wild 

type envelope (103*4 versus 107). However, the second retroviral vector showed 

promising efficacy when used to deliver a suicide gene to CEA-positive tumour 

xenografts in nude mice (Khare et a l, 2002). The subcutaneous administration of the 

retroviral vector directly to the xenografts produced tumour suppression with a 70% 

reduction in tumour weight for the treated group as compared to the control group.

As stated earlier these chimeras are probably unable to efficiently induce membrane 

fusion and subsequent penetration of the viral core into the cytosol. This is likely to 

reflect the fact that after binding the scFv is unable to signal the trigger for fusion and 

also that the human target cells do not express the natural viral receptor of the
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backbone envelope. In order to overcome both of these problems we have developed 

envelope chimeras with an amphotropic backbone and also used a protease cleavage 

site to unmask the natural viral receptor after binding. These chimeras will be 

discussed in detail in subsequent chapters. The protease cleavage site chosen is one 

recognised by matrix metalloprotease 2 (MMP-2). The rationale for this is discussed 

below.

A combination of tumour antigen and protease targeting has been used to target 

amphotropic MLV to a melanoma antigen (high-molecular-weight-melanoma- 

associated antigen, HMWMAA) (Martin et al., 1999). It used an scFv against 

HMWMAA, LMH2 (Kupsch et al., 1995), linked to the amphotropic MLV envelope. 

A proline-rich hinge and MMP-2 cleavage site linked the two proteins. This targeted 

vector (LMH2/ProMMP previously named scLPMA) showed a preferential infection 

for HMWMAA-positive cells with a 1000-fold increase in titre over HMWMAA- 

negative cells. It was also able to selectively differentiate between a cell mixture of 

antigen positive and negative cells that were both shown to be protease positive. 

Experiments using human tumour xenografts in nude mice showed that targeting 

could be maintained in vivo using this model (Martin et al., 2002). This targeting 

approach has several features that make it attractive for clinical gene therapy. The 

target cell surface must express both a specific antigen and a specific protease and this 

extra requirement provides an added degree of safety

1.9 M atrix metalloproteases

The matrix metalloproteases (MMPs) constitute a multigene family of which 22 

human homologues have been identified to date (Stemlicht and Werb, 2001). The 

enzymes are structurally related and take their name from a zinc atom in their active 

site. The enzymes range from the well-characterised interstitial collagenase (MMP-1), 

which degrades fibrillar collagens, to the more obscure membrane-type (MT-) MMPs 

whose functions and substrates are yet to be fully elucidated.

Extracellular proteinases are required for numerous developmental and disease-related 

processes. An ability to degrade extracellular proteins is essential for any individual 

cell to interact with its immediate surroundings. MMPs also regulate cell behaviour by
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cleaving cell surface molecules and other non-matrix proteins. They play a central 

role in tissue remodelling associated with growth, development and repair. In these 

physiological processes MMP activity is tightly regulated, but aberrant expression can 

contribute to the pathogenesis of several diseases e.g. rheumatoid arthritis and tumour 

invasion and metastasis. The enzymes are secreted in an inactive proform with an 

amino-terminal domain blocking the active site (Kleiner and Stetler-Stevenson, 1993). 

In nearly all cases the removal of this domain and consequent activation occurs 

extracellularly. Once activated MMPs are tightly controlled by a group of inhibitors, 

‘tissue inhibitors of metalloproteinases’ (TIMPS), of which four have been identified 

to date (Gomez et a l, 1997).

MMPs are generally present in greater amounts and activated more often in and 

around carcinomas than in normal, benign tissues, with the highest levels of 

expression seen in areas of active invasion at the tumour-stroma interface. Significant 

positive correlations have been found between MMP expression and various 

indicators of poor prognosis in many types of cancer including colorectal and gastric 

cancers (Liabakk et a l, 1996; Sier et a l, 1996). In some instances increased MMP 

levels have been shown to be an independent poor prognostic feature of both disease- 

free and overall survival. Several MMPs have been implicated in tumour invasion, 

metastasis and neoangiogenesis including MMPs 1, 2, 3, 9 and 14 (Stemlicht and 

Werb, 2001).

Thus, MMPs are a valid target for anti-cancer therapies. It has been shown that 

overexpression of TIMPs in tumours of various origins leads to reduced tumour 

growth and formation of metastases (McCormick, 2001). More recently, antitumour 

efficacy by in vivo gene transfer of TIMPs has been reported in several clinically 

relevant animal models. For example, in a nude mouse model of colorectal liver 

metastasis, overexpression of TIMP-2 in the liver using an adenoviral vector prior to, 

or following, tumour challenge resulted in 95% reduction in metastasis compared with 

controls (Brand et a l, 2000). As stated previously MMP can be used as a target for 

protease-activatable vectors, such as EGF-displaying amphotropic vectors with an 

(MMP) cleavage site, with selective infection both in vitro and in vivo.
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1.10 Thesis aims

The aims of this thesis were to explore the use of retroviral vectors based on 

amphotropic murine leukaemia virus to target tumour cells. Targeting was attempted 

by modification of the retroviral envelope. The aim of the work described in chapter 3 

was to produce vectors that targeted tumour antigens by receptor cooperation. Work 

described in chapter 4 examined protease targeting of a specific tumour antigen 

(carcinoembryonic antigen) in vitro and in vivo. The ultimate aim of this work is to 

produce targeted retroviral vectors that would be suitable for use in clinical cancer 

gene therapy.
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Chapter 2 

Materials and Methods

2.1 Plasmid preparation and manipulation

2.1.1 Preparation of heat shock competent E coli

1 ml of an overnight culture of E Coli HB101 in Luria Broth (LB) (GibCoBRL) was 

subcultured into 100ml of fresh LB and cultured for 2 hours on a shaker at 37°C. The 

culture was then cooled on ice for 10 minutes and pelleted at 4°C and the supernatant 

then discarded The pellet was resuspended in 30 ml ice-cold transformation buffer 

(250 mM PIPES, 2.5 mM CaCl2.2 H20 , 60mM KC1 dissolved in 250 ml H20 , pH 

adjusted to 6.7 using KOH, then 55mM MnCl2 is added to this solution). The bacteria 

were pelleted and resuspended in 10 ml cold transformation buffer containing 10% 

DMSO and frozen at -80°C in 100-200 pi aliquots.

2.1.2 Introduction of plasmid DNA into E. coli

10-50 ng of plasmid were mixed with 50 pi of heat shock competent E. coli HB101 

and incubated on ice for 10 minutes. The cells were then heat shocked for 90 seconds 

at 42°C, cooled on ice and pelleted. The pellets were resuspended in 20 pi of LB and 

plated on LB-agar + 50 pg/ml ampicillin (Sigma) and incubated at 37°C overnight.

2.1.3 Plasmid DNA mini-preps

Single colonies of E. coli HB101 were picked into 5 ml of LB supplemented with 50 

pg/ml ampicillin and agitated at 37°C overnight. Mini-preps of plasmid DNA were 

produced from 4-5 ml overnight cultures of transformed bacteria using a Concert™ 

Rapid plasma DNA Mini-prep kit (GibCoBRL) as per the manufacturers instruction.
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2.1.4 Restriction enzyme digests

All restriction enzymes were purchased from Promega. 0.5-2 pg of plasmid DNA was 

mixed with 1 pi of enzyme. Digests were performed at 37°C for 2 hours and 10 pi of 

the digest was mixed 6:1 with Orange G loading buffer then loaded on a 1 % 

TAE:agarose (SeaKem) gel containing 0.4 pg/ml ethidium bromide. Gels were run at 

100V and observed under UV using a Syngene gel documentation system. 0.5 pg of a 

commercial DNA ladder (1 kb ladder; Life Technologies) was run as a marker.

2.1.5 Isolation of DNA restriction fragments

DNA fragments were isolated from bands cut from TAE/agarose gels using a 

Concert™ Rapid DNA fragment gel purification kit (GibCoBRL) as per the 

manufacturer’s instructions.

2.1.6 Sub-cloning of DNA fragments

Isolated fragments were mixed at a ratio of 3:1 with vectors linearised by restriction 

enzyme digest. Vector and insert were mixed 1:1 with Takara DNA ligase solution 

and incubated at 15°C for 30 minutes. Ligation solutions were transformed by heat 

shock into E. coli HB101 and subsequently plated onto LB-agar + 50pg/ml 

ampicillin. Resultant colonies were mini-prepped and screened for insert and 

orientation by restriction digest.

2.1.7 Plasmid DNA maxi-preps

Plasmid DNA for transfection was prepared by polyethylene glycol extraction. Single 

colonies of E. coli HB101 carrying the desired plasmid were picked into 5 ml of LB 

supplemented with 50 pg/ml ampicillin (Sigma) and agitated at 37°C for 8 to 10 

hours. 500 pi of bacteria was subcultured into 500 ml of LB + 50 pg/ml ampicillin 

and shaken at 37°C for 16 hours. Bacteria was then harvested by centrifugation (15 

minutes at 4000g), washed in STE and resuspended in 10 ml of ice cold Solution I 

(50 mM glucose, ImM EDTA, 10 mM Tris-HCL (pH 8.0)).
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20 ml of Solution II (0.2 M NaOH, 1% SDS) was added and the cells inverted and left 

to lyse for 5 minutes at room temperature. The mixture was neutralised by adding 15 

ml of Solution III (3M Sodium Acetate buffer (pH 6.0)) and left on ice for 15 minutes. 

Protein/SDS precipitates were removed by centrifugation at 10,000g for 15 minutes at 

4°C. Pellets were washed once in 70% ethanol and re-suspended in 0.5ml of TE (pH 

8.0).

An equal volume of cold 5M LiCl was added to precipitate RNA, the mixture was 

centrifuged as above and the supernatant transferred to an equal volume of 

isopropanol and the resulting precipitate harvested and washed as previously. The 

pellet was resuspended in 0.5 ml of TE pH 8.0 + 20 pg/ml RNase (Sigma) and 

incubated at room temperature for 30 minutes. Supercoiled plasmid DNA was 

precipitated by the addition of an equal volume of 1.6M NaCl, 20% PEG 8000 

(Sigma) solution and harvested by microfuge centrifugation. PEG pellets were 

resuspended in 500 pi TE (pH 8.0), phenolxhloroform extracted twice, ethanol 

precipitated and resuspended in TE. DNA purity was assessed by the ratio of optical 

densities at 260 and 280 nm and was typically >1.75. Plasmids were checked by 

restriction digest, and aliquots diluted to 1 mg/ml and stored at -20°C.

2.1.8 Plasmid DNA transfer into eukaryotic cells

Plasmid transfections were carried out using the liposomal reagent LipoFectamine 

(Invitrogen) as per manufacturers instructions. Cells were seeded in 6-well plates such 

that on the day of transfection they were 60% confluent. On the day of transfection 

cells were washed gently with OptiMEM (GibCoBRL) and 800 pi of OptiMEM left 

in each well. A transfection mixture of 16 pi of plasmid DNA at a concentration of 

0.1 pg/pl, 10 pi of OptiMEM, and 6 pi of LipoFectamine was incubated for 25 

minutes at room temperature before being mixed with 170 pi of OptiMEM and added 

drop by drop to the cells. Cells were incubated at 37°C fro 6 hours, after which time 

the cell supernatants were removed by aspiration and were replaced by normal 

medium. 48 hours later, transfected cells were analysed for gene expression or placed 

in selective medium.
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2.2 Polymerase Chain Reaction

Polymerase chain reactions (PCRs) were set up in 50 pi volumes consisting of 10 pi 

o f 10 x Ex Taq™ buffer (Mg24- concentration 20 mM (Takara Bio Inc)), 8 pi of dNTP 

mixture (2.5 mM each (Takara)), 0.2 pM of each primer (Sigma), template DNA, 

Takara Ex Taq™ (5units/pl) and sterilised distilled water up to 50 pi. PCRs were 

performed using a Hybaid multiblock system. Typical reaction conditions used an 

initial denaturation stage of 94°C for 60 seconds, followed by a 30 cycle stage of 94°C 

for 30 seconds, an annealing stage at the appropriate annealing temperature for 30 

seconds with a polymerisation stage of 72°C for 30 seconds before a final incubation 

at 72°C for 5 minutes. Precautions were taken to avoid false positives including the 

use of appropriate controls for each PCR reaction, water controls, stringent 

preparation of all solutions and careful physical precautions.

2.3 Plasmids

The ALF plasmid (Figure 2.1), which had previously been constructed in the Collins 

lab (Cosset et al., 1995b) is an envelope expression plasmid generated by linking the 

MLV-A env gene (Ott et al., 1990) with the FB29 Friend MLV promoter (Perryman 

et al., 1991). To generate ALF a BglR-Clal fragment containing the env gene was 

cloned into the BamHl and Clal sites of plasmid FB3LPh (Cosset et al., 1995b), 

which also contained the C57 Friend MLV LTR driving the expression of a 

phleomycin resistance gene (Gatignol et al., 1988).

The chimeric envelope expressing plasmids were derived from plasmids designed 

initially to target the epidermal growth factor receptor (EGFR), which had previously 

been constructed (Cosset et al., 1995a). Briefly, the EA plasmid contained a DNA 

fragment encoding EGF introduced at the N terminus of the 4070A surface domain 

(SU) (Cosset et a l, 1995a). EGFPro4070A and EGFPro24070A were constructed by 

inserting differing proline-rich spacers between EGF and the 4070A SU in the EA 

chimera. These Pro linkers were derived from the proline-rich region (Pro) of 4070A 

SU. This region separates the N-terminal receptor binding domain (RBD) and the C- 

terminal domain. Pro is the full proline-rich region, while Pro2 is a truncated version
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Clal (1903)

4070A MLV env polyAphleoC57 LTRFB29 LTR

!
BamHI/Bgin (311)

<--------------------  MLV-Derived Sequences.  >

Figure 2.1 ALF envelope expression plasmid.

Schematic diagram of ALF expression plasmid. The thick dotted line show 
MLV-derived sequences. The red arrows show the restriction sites of the 
respective enzymes.

FB29LTR, FB29 Friend MLV long terminal repeat; C57 LTR, C57 Friend 
MLV long terminal repeat; phleo, phleomycin resistance gene.
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consisting of 9 amino acid that encompasses the first 2 turns of the predicted P-helix 

of full-length Pro (Valsesia-Wittmann et a l, 1997). Constructs expressing LMH2 

(Kupsch et a l , 1995), an scFv which recognises high-molecular-weight melanoma 

associated antigen (HMWMAA), had been constructed in the Collins lab from the 

EGFPro chimeras (Martin et al., 1999). LMH2/Pro and LMH2/Pro2 were made by 

inserting the scFv coding sequence after EGF was removed by digestion with Sfil and 

Notl. LMH2/ProMMP was constructed by insertion of the peptide Pro-Leu-Gly-Leu- 

Trp-Ala as an MMP cleavage site between the Pro linker and the env protein (Martin 

e ta l, 1999).

To construct the MFE23 expressing plasmids the scFv that recognises CEA, MFE23, 

was removed from full length MFE23 (which includes a pelB leader peptide at its N- 

terminus and a C-terminai 11-residue Myc-tag: both removed) (Chester et a l, 1994a) 

by digestion with Sfil and Notl. MFE23/Pro, MFE23/Pro2 and MFE23/ProMMP 

were made by inserting the scFv coding sequence into the respective plasmids 

LMH2/Pro LMH2/Pro2 and LMH2/ProMMP. This was after the removal of the 

coding sequence for LMH2 by digestion with Sfil and Notl.

To construct CEA expressing plasmids the CEA coding sequence of 2,108 nucleotides 

was amplified by PCR from an expressed sequence tag (IMAGE 587714, from the 

UK human genome mapping project resource centre) homologous to the human 

carcinoembryonic antigen.

Primers used, forward: GCGCTGATCACCAGCCATGGAGTCTCCCCTCGCCCC. 

Reverse: GCGCCTCGAGCTATATCAGAGCAACCCCAACC.

This fragment was subcloned into the BamRl-Xhol sites of pcDNA 3.1(+) 

(Invitrogen) to give the plasmid pcDNA3.1-CEA. It was also subcloned into the 

BamRl-Xhol sites of vector plasmid pHR’-CMVLacZ-IRESGFP (Naldini et al., 

1996b; Low et a l, 2001) to give the plasmid pHR’-CMVCEA-IRESGFP. A GFP 

expressing plasmid pHR’ -CMVv-FLIP-IRESGFP was used as a control.
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2.4 Cell culture

2.4.1 Cell lines

TELCeB6 cells are derived from the TE671 cell line (American Tissue Culture 

Collection, ATCC, CRL-8805) and harbour the MFGnlslacZ genome and an MLV- 

Gag-Pol expression plasmid, CeB (Cosset et a l, 1995b). The A375 cell line is a 

human melanoma cell line (ATCC; CRL-1619). The HT1080 cell line is a human 

fibrosarcoma cell line (ATCC; CCL-121). The HT29 cell line is a human colonic 

adenocarcinoma cell line (ATCC; HTB-38). The Mawi cell line is a human colonic 

adenocarcinoma cell line (Baer et a l, 1993) (obtained from C. Porter, Chester Beatty 

Laboratories, Institute of Cancer Research, London). The 293T cell line is a human 

embryonic cell line that expresses the SV40 large T antigen (obtained from M.Calos, 

Stanford University, USA).

All cell lines used were maintained in Dulbecco’s Modified Eagle Medium (DMEM) 

(GibCoBRL) supplemented with 10% Foetal Calf Serum (FCS), Penicillin (100 

units/ml) and Streptomycin (100 pg/ml). Cells were grown at 37°C in a humidified 

incubator at 10% CO2 . Upon confluence cells were washed in Hank’s Balanced salt 

(HBBS) (Gibco™), detached in a minimal volume of Trypsin-EDTA (GibCoBRL) 

and replated at a concentration of 1/5 to 1/10 or at the desired density for transfection 

of infection. All tissue culture ware was purchased from Nunc.

Transient expression of CEA by 293T cells was achieved by LipoFectamine 

transfection of pHR’ -CMVCEA-IRESGFP or pHR’-CMVv-FLIP-IRESGFP as 

described previously. 48 hours post-transfection, efficiency was checked by analysing 

the percentage of green cells, as both plasmids harbour green fluorescent protein 

(GFP). Cells were subsequently lysed for Western blotting to detect CEA or used as 

target cells for infection.
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2.5 Construction of retroviral producer cell lines and infection with recombinant 

viruses

2.5.1 Generation of stable producer cell lines

Envelope expression plasmids MFE23/Pro2, MFE23/Pro, MFE23/ProMMP and ALF 

were transfected into TELCeB6 cells using LipoFectamine. 48 hours later transfected 

cells were selected using normal medium containing phleomycin (Cayla) (50 pg/ml) 

and pools of phleomycin-resistant clones were used for virus production. The 

TELCeB6-MFE23/Pro2 and TELCeB6-MFE23/ProMMP bulk populations were also 

cloned by serial dilution and the clone that produced the highest viral titer was 

identified.

2.5.2 Virus harvesting and concentration

To harvest viruses, producer cells were grown at 37°C until they became confluent 

and then cultured at 32°C for 48 hours with feeding of fresh DMEM supplemented 

with 10% FCS every 24 hours. The medium was then replaced with serum-free 

OptiMEM and supernatant was collected 14 to 16 hours later. The harvested virus was 

filtered through 0.45 pm-pore size filters, and in some cases, concentrated by 

centrifugation at 2,500 x g and 4°C for 12 hours. Concentrated virus was kept frozen 

at -70°C.

2.5.3 Viral titration

Target cells were seeded in 24-well plates at a density of 5 x 104 cells/well 18 hours 

before infection. Viral supernatants were serially diluted in OptiMEM. The viral 

dilutions were either added neat or after incubation with Polybrene (4 pg/ml) or 

LipoFectamine (10 pg/ml). Cells were incubated in the presence of the viruses for 4 

hours at 37°C. The cells were then washed once in OptiMEM and then cultured in 

DMEM-10% FCS for 48 hours.
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Infected target cells were fixed by the addition of 0.5 ml of 2% glutaraldehyde, made 

from a 25% stock (Sigma) in phosphate buffered saline (PBS: 170 mM NaCl, 3.4 mM 

KC1, 10 mM monopotassium phosphate, 1.8 mM disodium phosphate), and incubated 

for 15 minutes at room temperature. Cells were washed in PBS before adding 0.5 ml 

of X-gal buffer (0.01% sodium deoxycholate, 0.02% Nonidet P-40, 2 mM MgCU, 5 

mM potassium ferricyanide, 5 mM potassium ferrocyanide made up in PBS) 

containing X-gal (5-bromo-4-chloro-3-indolyl-(3-D-galactopyranoside) at a 

concentration of 0.64 mg/ml and 20 mM Tris-HCl, pH 8.3 (to inhibit endogenous lacZ 

activity). A 40 mg/ml stock solution of X-gal was made in dimethylformamide (DMF) 

and stored at -20°C. Cells were incubated at 37°C for 2 hours for the substrate to be 

metabolised. Titers of the lacZ pseudotype were determined by counting the number 

of clusters of blue cells. Clusters of blue cells were attributed to a single infection and 

expressed as lacZ infectious units per millilitre (iu/ml) of virus supernatant.

Initial titres were determined using 1, 10 or 100 pi of viruses. Subsequently 0 .1 ,1 ,10, 

or 100 pi of viruses were used depending on initial viral titer with the titer being in 

the linear range for the volume of viruses used in these experiments.

2.5.4 Inhibition of infection by single chain antibody.

To demonstrate that scFv targeted infection required initial binding to the tumour 

antigen blocking experiments were performed using either the relevant scFv or an 

irrelevant scFv control. The two scFvs used for the blocking experiments were 

LMH2, an scFv that recognises high-molecular-weight-melanoma-associated antigen 

(HMWMAA) and MFE23, an scFv that recognises carcinoembryonic antigen (CEA). 

Target cells expressing either HMWMAA or CEA were preincubated with 50 pg/ml 

of LMH2 or MFE23 for 2 hours at 37°C. Viral infections were then performed in the 

presence of 50 pg/ml of LMH2 or MFE23 and Polybrene (4 pg/ml) for 4 hours at 

37°C. After infection cells were washed once in OptiMEM and then cultured in 

DMEM-10% FCS for 48 hours and then X-Gal stained.
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2.5.5 Inhibition of infection by receptor interference

To show that Pit-2 was required for infection receptor interference experiments were 

performed on target cells. A375 and HT29 cells were infected with the replication 

competent amphotropic 1504 MLV strain derived from 293T-MLV-A cells (Hartley 

and Rowe, 1976). These cell lines were deemed to be ‘chronically infected’ after two 

weeks of passage from the addition of the above virus (Jobbagy et al., 2000). Viral 

infections were then performed in the presence of Polybrene (4 pg/ml) for 4 hours at 

37°C. In addition to the 4070A-enveloped and chimeric-enveloped viruses, MLV 

pseudotyped with the gibbon ape leukaemia virus (GALV) envelope glycoprotein was 

used. This virus was harvested from TELCeB6 cells that stably express the GALV 

envelope (Tailor et al., 1993). After infection cells were washed once in OptiMEM, 

cultured in DMEM-10% FCS for 48 hours and then X-Gal stained.

2.5.6 Protease inhibition

To demonstrate that protease cleavage was required for gene delivery by viruses 

expressing the MFE23/ProMMP envelope, infections were performed in the presence 

of tissue inhibitor of metalloproteinase (TIMP)-2 (Stemlicht and Werb, 2001). Viral 

infections were performed with TIMP-2 (at a final concentration of 5 pg/ml) and 

Polybrene (4 pg/ml) for 4 hours at 37°C. After infection cells were washed once in 

OptiMEM, cultured in DMEM-10% FCS for 48 hours and then X-Gal stained.

2.5.7 Infection of mixed cell populations

293T cells were transfected with pHR’-CMVCEA-ERESGFP or pHR’-CMVv-FLIP- 

ERESGFP (vector control). The efficiency of transfection was determined by 

analysing the percentage of green cells, as both plasmids harbour green fluorescent 

protein (GFP). The aim of transfection was to achieve an efficiency of 50% and thus a 

mixed cell population. This was achieved by titrating the amount of plasmid 

transfected and determined by counting four separate microscopy fields. 48 hours 

post-transfection, viral infections were performed in the presence of Polybrene (4 

pg/ml) for 4 hours at 37°C. After infection cells were washed once in OptiMEM,
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cultured in DMEM-10% FCS. On the same day as the infection the cell mixture was 

separated by fluorescent-activated cell sorting (FACS) using an Epics Elite (Coulter) 

flow cytometer into GFP-positive and -negative populations. The cells were replated, 

cultured in DMEM-10% FCS for 48 hours and then X-Gal stained.

2.6 Protein analysis

2.6.1 Preparation of cell lysates

CEA expression by target cells was determined from cell lysates. Target cells were 

incubated in NP-40 lysis buffer (150 mM NaCl, 1.0% NP-40, 50 mM Tris pH 8.0) at 

4°C for 30 minutes with rocking every 5 minutes. The lysates were then removed and 

centrifuged for 10 minutes at 10,000 x g at 4°C to pellet the nuclei. 6x loading buffer 

(375 mM Tris-HCL (pH 6.8) containing 6% SDS, 30% 2-mercaptoethanol, 10% 

glycerol and 0.06% bromophenol blue) was diluted to lx  with the supernatant. 

Samples were heated to 95°C for 5 minutes and either processed immediately or 

stored at -80°C.

2.6.2 Preparation of viral supernatants

Viral supernatant (8ml) was pelleted for analysis by ultracentrifugation in an SW41 

Beckman Rotor (30,000 rpm for 1 hour at 4°C). Pellets were resuspended in 30 pi of 

6x loading buffer diluted in OptiMEM. Samples were heated to 95°C for 5 minutes 

and either processed immediately or stored at -80°C.

2.6.3 Immunoblotting

Supernatant and lysate samples (10-20 pi) were then run on 10-14% polyacrylamide 

(SDS) gels. After protein transfer using semi-dry transfer apparatus and transfer 

buffer (39 mM glycine, 48 mM Tris base, 20% methanol) onto Hybond ECL 

nitrocellulose membranes (Amersham Pharmacia Biotech) total protein was stained 

with Ponceau S to ensure equal loading. Nitrocellulose membranes with blotted 

proteins were blocked for 1-16 hours by gentle agitation in blocking solution (PBS
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containing 0.1% v/v Tween-20 and 5% w/v non-fat milk powder). Membranes were 

then incubated with the appropriate primary antibody (for details of antibodies used 

see table 2.1) diluted in blocking solution with gentle agitation at room temperature 

for 1 hour. The membranes were washed three times for 10 minutes in large volumes 

of PBS-T (PBS containing 0.1% v/v Tween-20). Bound first antibody was detected by 

addition of 10 ml of blocking solution containing a horseradish peroxidase (HRPO) 

conjugated antibody (Table 2.1) and gentle agitation at room temperature for 1 hour. 

The membranes were extensively washed as before and developed using enhanced 

chemiluminescence (ECL: Amersham Pharmacia) as per the manufacturers protocol.

Table 2.1 Antibodies used

Antibody Species Concentration Source

Anti-human CEA Mouse monoclonal 1/100 Dako ltd,

United Kingdom.

Anti-Rauscher 

Leukaemia virus 

(RLV) gp70

Goat polyclonal 1/1000 Quality Biotech 

inc., Camden, N.J.

Anti-Rauscher 

Leukaemia virus 

(RLV) p30

Goat polyclonal 1/10000 Quality Biotech 

inc., Camden, N.J.

HRPO-conjugated 

Anti-mouse IgG

Rabbit polyclonal 1/1000 Dako ltd,

United Kingdom.

HRPO-conjugated 

Anti-goat IgG

Rabbit polyclonal 1/1000 Dako ltd,

United Kingdom.
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2.6.4 Analysis of envelope cleavage by gelatinase A

Accessibility of the MMP cleavage site, in the MFE23/ProMMP chimera, to protease 

cleavage was assessed by treatment of pelleted viruses with activated gelatinase A 

(Boehringer, Mannheim). Viruses were centrifuged at 100,000 x g for 1 hour at 4°C, 

resuspended in 50 pi of 100 mM Tris (pH 7.5), 200 mM NaCl, 1U activated 

gelatinase and then incubated for 6 hours at 37°C. The samples were then analysed by 

immunoblotting as described previously.

2.7 Protease activity

The protease activity of target cells and controls was determined using the fluorogenic 

peptide 2,4 dinitrophenol (DNP)-Pro-Leu-Gly-Leu-Trp-Ala-D-Arg-NH2 (Bachem, 

Switzerland). This peptide contains an MMP cleavage site, which separates the DNP 

group (which acts as a quencher) from the tryptophan, leading to an increase in 

fluorescence with excitation at 280 nm. Target cells were grown to semi-confluency 

and then washed twice in buffer A (50mM Tris [pH 7.5], lOmM CaCb, 0.2M NaCl). 

The DNP-peptide was diluted to 20 pm in buffer A, added to the different target cells 

and incubated at 37°C for 90 minutes. Samples were collected at 15-minute intervals 

and substrate hydrolysis was determined by monitoring the increase in fluorescence 

emission at 346nm using an excitation wavelength of 280nm. Controls were: peptide 

incubated at 37°C in the absence of target cells and peptide incubated with target cells 

at 4°C. Figure 2.2 shows the time course of peptide cleavage and hence increase in 

fluorescence for each cell line.

2.8 Detection of cell surface CEA on target cells.

Target cells were grown to confluence on 10 cm tissue culture plates. Cells were 

washed twice in PBS and detached after incubating at 37°C for 5 minutes in 5 ml of 

versene (GibCoBRL). The mixture was resuspended in PBS and then 10 pi of the 

concentrated cell suspension was added to each slide. The supernatant was removed 

and the slide was allowed to air dry at room temperature. PBS containing 1% w/v 

bovine serum albumin (BSA) was added to the slide and incubated for 15 minutes at
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Figure 2.2 Time course of protease expression by target cells.

Target cells were incubated with dansylated peptide DNP-PLGLWADR-NH2 . 
The cleavage of the peptide at its MMP site separates the DNP group (which 
acts as a quencher) from the tryptophan, leading to an increase in fluorescence 
with excitation at 280nm. Samples were collected at 15-minute intervals and 
substrate hydrolysis was determined by monitoring the increase in fluorescence 
emission at 346nm using an excitation wavelength of 280nm.

Controls were: peptide incubated at 37°C in the absence of target cells and peptide 
incubated with target cells at 4°C.
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room temperature. Slides were washed once with PBS before incubation with the 

primary antibody A5B7 (mouse monoclonal antibody to carcinoembryonic antigen 

(CEA)) (Chester et al., 1994b) diluted to 1/100 with PBS for 2 hours at 4°C. Slides 

were then washed twice in PBS and incubated with the secondary antibody (FITC- 

conjugated rat anti-mouse kappa light chain (Serotec)), diluted to 1/50 with PBS, for 2 

hours at 4°C. After three washes with PBS coverslips were mounted on the cell 

samples with a drop of immunofluorescence mounting medium (Dako). Cells were 

analysed by confocal microscopy (MRC 1024, Bio-Rad equipped with krypton-argon 

laser). Pictures were acquired using Kalman filtration and analysed with lasersharp 

software (Bio-Rad) and Confocal Assistant/CAS software.

2.9 In Vivo Experiments

2.9.1 Establishment of tumours

Tumour xenografts from A375, HT1080, Mawi and HT29 cell lines were established 

in athymic female Balb/c nu/nu mice. Target cells were expanded, washed in HBBS 

and detached in a minimal volume of Trypsin-EDTA. Cells were washed twice with 

HBBS, counted, pelleted and then resuspended in the correct volume of HBBS to give 

a concentration of 5x 106 cells/0.2 ml HBBS. 0.2 mis of this cell mixture was injected 

subcutaneously into the left side of the abdomen.

2.9.2 Intratum oural injections

When the tumours had reached 5-7 mm in diameter they were injected with lethally 

irradiated (40 Gy) producer cells (producing 4070A-enveloped, MFE23/ProMMP- 

enveloped or unenveloped vectors). The producer cells were expanded, washed in 

HBBS and detached in a minimal volume of Trypsin-EDTA. Cells were washed twice 

with HBBS, counted, pelleted and then resuspended in 50 mis HBBS prior to 

irradiation. Lethal irradiation was achieved by irradiating the cells with 40Gy at 4°C. 

After irradiation the cells were pelleted and then resuspended in the correct volume of 

HBBS to give a concentration of lx  106 cells/0.1 ml HBBS. 0.1 ml of this cell mixture 

was injected directly into the tumours on 2 successive days. One week after the last
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producer cell injection the tumours were excised, trimmed and disaggregated before 

incubation with 2 volumes of 5 mg/ml collagenase la  (Sigma) for 2 hours at 37°C 

with occasional agitation. The separated tumour cells were pelleted, washed once in 

HBBS and resuspended in DMEM supplemented with 10% FCS. These suspensions 

were plated in 10cm tissue culture dishes. After 2 hours of incubation, nonadherent 

cells were discarded and adherent tumour cells were incubated overnight before 

staining for p-galactosidase expression. An average of 106 tumour cells were analysed 

for blue nuclear staining as an indication of tumour transduction.

2.9.3 Analysis of vector spreading

Nude mice were injected intraperitoneally with either 107 irradiated (40Gy) 

MFE23/ProMMP or unenveloped producer cells or 106 irradiated (40Gy) amphotropic 

producer cells (all three sets of irradiated producer cells were suspended in 0.2 ml of 

HBBS). The reason for the higher number of MFE23/ProMMP and unenveloped 

producer cells injected was to compensate for the higher titer seen with amphotropic 

vectors. Two weeks after injection the mice were sacrificed and the spleen, liver and 

kidneys were removed and snap frozen at -80°C. DNA was extracted from 5-10 mg of 

tissue using a DNAeasy tissue kit (Qiagen) as per manufacturer’s instructions. 

Proviral analysis was performed by nested PCR using primers that amplify a 480-bp 

DNA fragment located between the 3’ end of the p-galactosidase gene and the 3’ LTR 

of the integrated vector.

External primers were:

LacZl 5 ’ -GC AC AT GGCT GAT ATCGAACGG-3 ’

LTR1 5 ’-GCTTCAGCTGGTGATATTGTTGAG-3 ’

Internal primers were:

LacZ2 5’-ATTGGTGGCGACGACTCCTG-3’

LTR2 5’-AGCCTGGACCACTGATATCCTG-3’
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PCR conditions were 35 cycles of 30 seconds at 94°C, 1 minute at 60°C and 1 minute 

at 72°C. For qualitative analysis, DNA was quantified by the ratio of optical densities 

at 260 and 280 nm in a spectrophotometer (Hitachi, U-1500). 10 pg of DNA 

(approximately 106 mouse cell equivalents) were used for the first PCR reaction 

(LTRl/LacZl) and 1/10 of this reaction was used as template for the second round of 

the nested PCR (LTR2/LacZ2). Semi-quantitative PCR was carried out by serial 

dilutions of the DNA samples. Plasmid DNA harbouring one copy of the MFGnlslacZ 

vector genome was used to determine the sensitivity of the system (1 plasmid = 0.1 

fg).
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Chapter 3

Targeted retroviral infection by receptor cooperation

3.1 Introduction

3.1.1 Overview

This chapter describes the construction and characterisation of retroviral vectors 

designed to target the tumour antigens high-molecular-weight melanoma associated 

antigen (HMWMAA) and carcinoembryonic antigen (CEA) by receptor cooperation. 

Targeted vectors were produced by insertion of single-chain antibodies (scFvs) in the 

normal retroviral surface protein (SU) of amphotropic murine leukaemia virus 

(MLVA). This introduction describes the initial studies examining receptor 

cooperation and the likely mechanisms that underlie it.

3.1.2 Targeting by host-range restriction

Gene therapy protocols would be greatly improved by the availability of targetable 

vectors that could deliver genes to specific target cells or diseases sites. Non-target 

cells should not be infected as gene delivery could be potentially harmful and would 

deplete the pool of vector particles. As unmodified retroviral vectors transduce a 

range of host tissues in vivo (Peng et al., 2001; Martin et a l, 2002), cell surface 

targeting is an attractive way of achieving targeted transduction.

The host range of a retrovirus is partly determined by an amino-terminal domain of 

the envelope protein, responsible for receptor binding (Heard and Danos, 1991; 

Battini et a l , 1995). Amphotropic MLV can infect cells of many species because the 

envelope recognises an epitope present in a phosphate ion transporter (Pit-2) that is 

widely distributed (Miller et al., 1994). This gives it the ability to infect a wide range 

of human target cells. The basis for host-range restriction is the introduction of 

modifications into the retroviral envelope glycoprotein that allow selective infection 

of target cells (Russell and Cosset, 1999). A particular advantage of this strategy of
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targeting is that the natural virus entry pathway is exploited and thus fusion activation 

of the chimeric envelope is more readily achieved. There is also a potential safety 

advantage as the host-range properties of the virus are not expanded and thus the risk 

of developing a more pathogenic strain of the virus from which the vector is derived is 

decreased.

3.1.3 Receptor cooperation

The initial experiments concerning receptor cooperation were described by Cosset and 

colleagues (Valsesia-Wittmann et al., 1996; Valsesia-Wittmann et al., 1997). This 

group constructed envelope chimeras where the amphotropic 4070A Pit-2 binding 

domain was linked to the N terminus of the Moloney murine leukaemia virus 

(MMLV) SU using different proline-rich spacers. The resulting envelope chimeras 

have two receptor binding domains: the 4070A Pit-2 binding domain and the MMLV 

receptor for infection mCAT-1 (an amino acid transporter). They examined the role 

that a variety of different amino acid spacers, placed between the two binding 

domains, played in receptor binding and infection.

The linkers used were derived from the proline-rich region (Pro) of 4070A SU. This 

region separates the N-terminal receptor binding domain (RBD) and the C-terminal 

domain. Pro was initially thought solely to act as a flexible linker but it now appears 

to be a functional domain that influences receptor recognition, stabilises the SU- 

transmembrane (TM) protein interaction and affects virus fusogenecity (Andersen, 

1994; Battini et al., 1995; Lavillette et al., 1998; Lavillette et a l, 2002). The full 

length proline-rich region is 59 amino acids long and predictive structural analysis 

suggests it is organised as a p-tum  polyproline consisting of 11 P-tums (Valsesia- 

Wittmann et al., 1997).Truncated proline-rich spacers were constructed to encompass 

the first 2-4 predicted P-tums respectively (Valsesia-Wittmann et a l, 1997).

The chimeric envelope with no spacer between the two binding domains was able to 

infect cells that expressed either receptor alone or both receptors together (Valsesia- 

Wittmann et al., 1997). The level of infection was considerably lower (approximately 

10,000-fold) than that seen with the wild-type envelopes on cells that expressed both
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receptors (Cearl 13). The insertion of the differing proline-rich linkers was shown to 

affect viral tropism and efficiency of infection. As the length of the proline-rich 

linkers increased the MMLV mCAT-1 binding domain becomes increasingly masked 

with at least three to four P-tums required to mask the MMLV backbone. With the 

full-length 59 amino acid proline-rich linker this masking becomes complete and only 

cells expressing both receptors are permissive to infection. The fact that both 

receptors are needed to allow infection implies that after binding to Pit-2 the envelope 

undergoes a conformational change that reveals the mCAT-1 binding domain and 

permits infection. The level of infection remains lower than seen with wild-type 

envelope (approximately 500-fold) implying that the conformational change that 

occurs following binding to Pit-2 is not 100% efficient. If the arrangement of the 

binding domains is reversed i.e. MMLV mCAT-1 binding domain is fused to the 

4070A envelope backbone a similar situation of receptor cooperation is seen although 

it appears to be less stringent (Valsesia-Wittmann, 2001).

These experiments showed that the composition, length and flexibility of the 

interdomain spacer played a cmcial role in determining two-step receptor cooperation. 

This mechanism of entry that utilises the natural virus entry pathway is attractive for 

the design of retroviral vectors. Initial attempts to target 4070A amphotropic vectors 

to tumour antigens fused an scFv directly to the 4070A MLV-SU with no connecting 

linker (Martin et a l , 1998). Although this vector showed preferential infection of cells 

that displayed both the tumour antigen and Pit-2 masking of the Pit-2 RBD was not 

achieved. The lack of stringency seen with this model has resulted in it not being 

developed further. The use of proline-rich linkers to link the scFv to the 4070A RBD 

may allow true receptor cooperation, i.e. the requirement of both cell surface receptors 

to allow infection. This chapter describes the construction and characterisation of such 

vectors targeted to tumour antigens by receptor cooperation.

3.2 Construction of targeted envelopes

MFE23 (Chester et a l, 1994a), a single-chain antibody (scFv) that recognises 

carcinoembryonic antigen (CEA) was fused to codon 5 of the mature amphotropic 

4070A surface domain (SU) of the envelope glycoprotein by proline-rich linkers
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4070A Env

scFv: LMH2 (HMWMAA) 
MFE23 (CEA)

SU TM

RBD Pro C
codon 5

59 amino acids 

13 amino acids 

9 amino acids

F ig u re  3.1. C o n stru c tio n  o f ta rg e te d  envelopes.

LMH2 and MFE23 scFvs recognising HMWMAA and CEA were fused 
to the N terminus of amphotropic 4070A MLV-SU by using three spacers 
derived from the Pro of 4070A SU. The Pro spacer contains all 59 amino 
acids of Pro, Pro2 and Pro3 are truncated versions that encode the first two 
or three predicted B-turns of Pro. The spacers were introduced in the +5 
position of the 4070A envelope.

RBD, receptor binding domain; TM transmembrane; C Carboxy terminal
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(Figure 3.1). LMH2 (Kupsch et a l, 1995), an scFv which recognises high-molecular- 

weight melanoma associated antigen (HMWMAA) had previously been fused to 

codon 5 of 4070A SU using proline-linkers (Martin et al., 2003) (Figure 3.1). These 

linkers were derived from the proline-rich region (Pro) of 4070A SU. This region 

separates the N-terminal receptor binding domain (RBD) and the C-terminal domain. 

Pro is the full proline-rich region, while Pro2 and Pro3 are truncated versions 

consisting of 9 and 13 amino acids respectively that encompass the first 2 or 3 

predicted P-tums (Valsesia-Wittmann et a l, 1997).

Plasmids expressing the different envelopes or a 4070A envelope expression plasmid 

(ALF) (Cosset et a l, 1995b) were transfected into TELCeB6 cells that harbour the 

MFGnlslacZ vector genome and a murine leukaemia virus (MLV) Gag-Pol expression 

plasmid, CeB (Cosset et a l, 1995b). Transfected cells were then selected with 

phleomycin and supernatant from pools of phleomycin-resistant clones were analysed. 

In order to demonstrate the incorporation of the chimeric envelope glycoproteins into 

retroviral particles, supernatants of the various TELCeB6-tranfected cell lines were 

ultracentrifuged to pellet viral particles. Pellets were then analysed by Western 

blotting for their Gag (p30 CA) and envelope (gp70) protein contents (Figure 3.2). 

The LMH2 chimeras had been previously analysed and been shown to have 

significantly less envelope found in the viral pellet when compared to that of 4070A 

(Martin et a l, 2003). As expected analysis of supernatant from non-transfected 

TELCeB6 cells showed no detectable envelope (labelled No Envelope in figure 3.2). 

The MFE23 chimeras all showed high levels of envelope expression in the viral 

pellets with env-to-capsid ratios at comparable levels to that of 4070A. This 

demonstrates that the insertion of MFE23 coupled to proline linkers at the N terminus 

of the MLV SU did not impair expression, processing and viral incorporation of the 

mutant envelopes. Envelope incorporation of the CEA-targeted chimeras appears to 

be better than that seen with other polypeptides inserted at the +5 position of MLV-A 

such as epidermal growth factor (EGF) (Cosset et a l, 1995a) or other scFvs such as 

LMH2 (Martin et a l, 1999; Martin et a l, 2003). This may reflect the fact that the 

MFE23 chimeras, unlike other N-terminally substituted envelopes, allow correct 

folding and assembly into trimers with successful incorporation into retroviral 

particles.
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gp70 ►

105 kDa 
75 kDa

p30-----►
35 kDa 
30 kDa

F igu re  3.2. T argeted  envelope in c o rp o ra tio n  in  re tro v ira l p artic les.

MFE23-4070A chimera. Concentrated supernatants from TELCeB6 cells 
(No envelope) and TELCeB6 transfected with 4070A, MFE23/Pro or 
MFE23/Pro2 envelopes were separated on a 10% sodium dodecyl sulphate 
polyacrylamide gel, electroblotted, incubated with goat anti-Rauscher 
leukaemia virus SU (gp70) and anti-Rauscher leukaemia virus CA protein 
(p30) antisera followed by anti-goat horseradish peroxidase, and then 
developed with ECL (Amersham).
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3.3 Carcinoembryonic antigen (CEA) expression

Target cells used to determine infection by MFE23 chimeras were two human 

colorectal cell lines (HT29 and Mawi), a human melanoma cell line (A375), a human 

fibrosarcoma cell line (HT1080) and a human embryonal kidney cell line (293T) 

transfected with pHR’-CMVCEA-ERESGFP or an irrelevant vector control (pHR’- 

CMVv-FLIP-IRESGFP). CEA expression of these target cells was characterised by 

Western blotting of cell lysates using a monoclonal mouse anti-human CEA antibody 

(Figure 3.3).

CEA is a glycoprotein with a molecular mass ranging from 180-200 kDa 

(Hammarstrom, 1999). The cell lysates from both colorectal carcinoma cell lines 

show CEA is highly expressed by these cells. The 293T cells transfected with the 

CEA expressing plasmid pHR’ -CMVCEA-IRESGFP also highly express CEA at a 

similar if  not higher level than that of the colorectal carcinoma cell lines. HT1080, 

A375 and 293T transfected with the vector control all showed no evidence of CEA 

expression.

Analysis of CEA by Western blotting of cell lysates determines total expression of 

CEA by the cells concerned. Tumour antigen targeting by altering retroviral envelope 

tropism relies on interactions at the cell surface between the chimeric envelope and 

the new target, the tumour antigen. This system is thus dependent on differential 

expression of tumour antigens at the cell surface. CEA expression at the cell surface 

was determined by immunostaining with an anti-CEA antibody A5B7 (Figure 3.4). 

The differences seen in CEA expression by Western blotting were confirmed by 

immunostaining. HT29 and A375 are shown as representative positive and negative 

cell lines respectively.

Expression of HMWMAA on the target cells had previously been determined using 

LMH2 antibody and fluorescence-activated cell sorting (Kupsch et a l , 1995). This 

showed that A375 (human melanoma cell line) and TE671 (human 

rhabdomyosarcoma cell line) were HMWMAA positive where as B1 (human 

melanoma cell line) and ECV (human endothelial cell line) were HMWMAA negative 

(Martin ef al, 1999).
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Figure 3.3. D etection o f  carcinoem bryonic antigen (CEA )

Target cells were lysed and then run on a 10% sodium dodecyl 
sulphate-polyacrylamide gel, electroblotted, incubated with a 
monoclonal mouse anti-human C EA  antibody (Dako) followed 
by anti-mouse horseradish peroxidase (Dako) and then developed 
with ECL.



A375 HT29

B.

HT29

Figure 3.4 Surface expression of CEA.

A.Immunostaining of A375 and HT29 using anti-CEA antibody A5B7 
(magnification x 10).
B. Magnified image of HT29 (x 40).
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3.4 Targeted infection

Viruses were harvested from the selected producer cells, in some cases concentrated 

at 2,500 x g  at 4°C for 12 hours and titered on the respective cell lines either 

immediately or having been frozen at -70°C. Figure 3.5 shows infection by viruses 

incubated with target cells for 4 hours at 37°C in the presence of Polybrene and then 

washed and analysed by X-gal (5-bromo-4-chloro-3-indoiyl-B-D-galactopyranoside) 

staining after 48 hours (Takeuchi et a l , 1994). Figure 3.5A shows that viruses with 

LMH2 chimeric envelopes and the shorter proline-linkers, Pro2 or Pro3, were able to 

selectively infect HMWMAA-positive cells. The higher titer was seen with 

LMH2/Pro2, has the shorter linker, 9 amino acids encompassing 2 predicted B-tums, 

and was at least 10-fold more infectious on HMWMAA-positive cells than 

LMH2/Pro3. LMH2 with the full-length proline linker, LMH/Pro, was not infectious. 

Its titer was less than 10 on all 4 cell lines and was even lower than virus with no 

envelope (supernatant from TELCeB6 cells). LMH2/Pro2 gave the best titer, up to 

1000 IU/ml unconcentrated and was approximately 100-fold more infectious on 

HMWMAA-positive cells. Viruses with the wild-type 4070A envelope were able to 

infect all 4 cell lines non-selectively at high-titer (ranging from 106 IU/ml to 107 IU/ml 

depending on cell line and infection conditions).

The highest titer with MFE23 chimeric envelopes was also seen in the envelope with 

the shortest linker, MFE23/Pro2 (Figure 3.5B). MFE23/Pro2-enveloped vectors were 

able to selectively infect CEA-expressing cells, with over 10,000 IU/ml on CEA- 

positive cells and approximately 10 IU/ml on CEA-negative cells. Again the chimeric 

envelope with the full length-proline linker, MFE23/Pro, is not infectious with a titer 

of less than 10 on all 4 cell lines. The higher titer seen with MFE23/Pro2 than 

LMH2/Pro2 probably reflects a higher level of envelope incorporation into virions as 

reflected by Western blotting (Figure 3.2). Viruses with the wild-type 4070A 

envelope were able to infect all 4 cell lines non-selectively at high titer (ranging from 

106 IU/ml to 107 IU/ml depending on cell line and infection conditions).

It appears from these experiments that the length of proline-linker is crucial in 

determining level of selective infection when using single-chain antibodies to alter the
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A. V iruses w ith  H M W M A A -targeted  chim eras, 4070A or no envelope w ere added 
(with 4ug ofPolybrene/m l) to H M W M A A  -ve H M W M A A  +ve cell lines as indicated.

B. V iruses w ith  M FE 23-targeted  chim eras, 4070A  or no envelope w ere added (w ith 
4ug o f  Polybrene/m l) to CEA  -ve or +ve cell lines as indicated.

Target cells w ere infected w ith serial dilutions o f  virus. Titer was calculated from  values in 
the range w here the num ber o f  infectious events was directly proportional to the volum e o f  
virus added (as discussed in M aterials and M ethods).
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tropism of the MLVA envelope. We propose that the incorporation of the single chain 

antibody and proline-linker into the retroviral envelope masks the Pit-2 receptor 

binding domain of the wild-type 4070A allowing selective infection of target cells 

expressing the relevant tumour antigen. In this model the binding of the single-chain 

antibodies to their cell surface induces a conformational change within the shorter 

proline-rich linkers, most efficiently with Pro2, that reveals the 4070A Pit-2 receptor 

binding domain and allows subsequent fusion and infection. Thus, the shorter linkers 

are able to transiently mask the Pit-2 RBD, a phenomenon not seen with the full 

length Pro that appears unable to undergo such changes that would reveal the Pit-2 

RBD after binding to the tumour antigen. It is clear that even the MFE23/Pro2 

chimeric envelope is 100 fold less infectious than the wild-type 4070A envelope, 

which implies that the conformational change that follows scFv binding is not 100% 

efficient.

Table 3.1 shows that lipofectamine could enhance the efficiency of transduction of 

CEA-positive cells by MFE23/Pro2-enveloped virus sevenfold without affecting its 

specificity, as has been described for other scFv-targeted viruses (Martin et a l, 1999).

3.5 Requirement of tum our antigen for infection

The mechanism of infection proposed above is reliant on the chimeric envelope 

binding to the relevant tumour antigen before undergoing conformational changes 

unmasking the Pit-2 RBD and allowing subsequent fusion and infection. To 

demonstrate that scFv targeted infection required initial binding to the tumour antigen 

blocking experiments were performed using either the relevant scFv or an irrelevant 

scFv control. Figure 3.6A shows that addition of the appropriate, but not the 

irrelevant, scFv could inhibit targeted infectioa Inhibition of infection of LMH2/Pro2 

by LMH2 to 20% of control titer was achieved. A slightly greater inhibition of 

MFE23/Pro2, 15% of control titer, was achieved using MFE23. Blocking of infection 

with the monovalent scFv is incomplete, presumably because of the higher avidity of 

viral binding. No significant effect on the titer of 4070A-enveloped viruses was seen 

showing that neither scFv affects the interaction of the 4070A RBD with its Pit-2 

receptor.
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A375 HT29

Nil PB UP Nil PB LIP

No Env <4 <4 1.1x102 <4 6.0x101 1.2x102

MFE23/Pro <4 <4 9.0x101 <4 <4 6.0x101

MFE23/Pro2 1.1x102 2.0x101 1.3X102 1.2x104 1.7x104 8.1 x104

4070A 6.0x10® 1.0x107 1.4x107 1.4x10® 6.3x10® 9.0x10®

Table 3.1 Enhancement of receptor cooperation.

M FE23/Pro2 vectors were incubated w ith 4ug o f  Polybrene (PB)/ml or 
lOug o f  lipofectamine (LIP)/ml or w ith no addition (Nil) for 10 min at 
room temperature before addition to the target cells. Results are indicated 
in IU/ml.
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Figure 3.6 Targeted infection requires tumour antigen.

A. Antigen blocking. HMWMAA+ve (A375) and CEA+ve (HT29) were treated 
with LMH2 or MFE23 scFv prior to infection. Infection by virus with 4070A 
envelope and LMH2/Pro2 (left panel) or MFE23/Pro2 (right panel) was then 
measured. Titer is expressed as a percentage of that of untreated cells.

B. Transfection of CEA. 293T cells were transfected with a GFP or CEA expressing 
plasmid. 48 hours after transfection viruses with MFE23-targeted chimeras, 4070A 
or no envelope were added (with 4ug of Polybrene/ml) to each target cell.

94



\

Further evidence to support the requirement of CEA expression by target cells for 

infection by MFE23/Pro2 was provided by the infection of 293T cells transfected with 

pHR’-CMVCEA-ERESGFP or pHR’-CMVv-FLIP-IRESGFP (vector control). The 

efficiency of transfection was determined by analysing the percentage of green cells, 

as both plasmids harbour green fluorescent protein (GFP). Infection was carried out 

48 hours post-transfection when transfection efficiency was greater than 90% as 

determined by counting four separate microscopy fields. Expression of CEA was 

confirmed by Western blotting of lysates of cells transfected with the relevant 

plasmids. Lysates were performed 48 hours post-transfection and confirmed that the 

293T cells transfected with the CEA expressing plasmid pHR’-CMVCEA-IRESGFP 

expressed a high level of CEA comparable to that of CEA-positive colorectal 

carcinoma cell lines (Figure 3.3). 293T cells transfected with the vector control 

showed no evidence of CEA expression.

Figure 3.6B shows that the titer of MFE23/Pro2 was significantly increased (greater 

than 1000 fold) on 293T cells expressing CEA compared to 293T cells not expressing 

CEA. The titer of MFE23/Pro2 on the CEA-expressing 293T cells was similar if  not 

greater than that seen on cells that endogenously express CEA (HT29 and Mawi). The 

titer of non-enveloped, 4070A- and MFE23/Pro-enveloped viruses was unaffected by 

transfection with either of the plasmids (Figure 3.6B). This shows that the differential 

infection seen with MFE23/Pro2 is dependent on CEA expression rather than any 

other feature of the colorectal cells or the transfection procedure itself.

3.6 Requirement of Pit-2 expression for infection

The mechanism of infection proposed is also reliant on the RBD of the 4070A 

backbone of the envelope chimeras mediating infection via its Pit-2 receptor as 

explained previously. To show that Pit-2 was required for infection receptor 

interference experiments were performed Receptor interference occurs in cells 

‘chronically infected’ with one retrovirus. This masks or down-regulates the 

availability of receptors to subsequent infection by another virus that utilises the same 

receptors (Weiss, 1993). Although viral interference is believed to mainly occur at the 

plasma membrane due to competition for receptors, other sites such as the
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endoplasmic reticulum exist where disruption of translocation processes may decrease 

the number and availability of receptors on the host cell surface (Weiss, 1993).

Receptor interference assays were performed using A375 (HMWMAA-positive) and 

HT29 (CEA-positive) cells ‘chronically infected’ (two weeks of passage) with 

replication-competent 4070A MLV (Jobbagy et al., 2000). Figure 3.7 shows that 

transduction of 4070A-infected A375 cells by LMH2/Pro2 and of 4070A-infected 

HT29 cells by MFE23/Pro2 was reduced by approximately 500-fold, similar to the 

reduction of infection by viruses carrying the unmodified 4070A envelope. The titer 

of amphotropic MLV pseudotyped with the GALV envelope, which recognises a 

different surface receptor Pit-1 (Lam et a l, 1996), was unaffected indicating that it is 

the effect on Pit-2 that affects the titer of the targeted viruses and viruses carrying the 

unmodified 4070A envelope.

3.7 Discussion

This series of experiments have shown that it is possible to achieve selective targeting 

to the tumour antigens HMWMAA and CEA by tropism restriction of amphotropic 

MLV. Infection is dependent on cells expressing both tumour antigen and Pit-2 on 

their cell surface, implying that receptor cooperation occurs. The titers achieved with 

the different envelope chimeras shows that the length of the interdomain proline-rich 

spacer has a crucial effect on infectivity. As stated earlier with no linker the Pit-2 

RBD is not masked and the vector is able to infect both tumour antigen positive and 

negative target cells (Martin et a l , 1998). With the full-length Pro linker the level of 

infection is negligible and optimal infection for the chimeras is seen with the 9 amino 

acid Pro2. It appears that Pro2 is able to transiently mask the Pit-2 RBD, which 

becomes accessible after binding to the relevant tumour antigen via the scFv. Thus, an 

optimised interdomain spacer may diminish steric hindrance and favour 

conformational changes that allow infection after initial binding to the tumour 

antigen.

The titer achieved here for MFE23/Pro2 of 104 IU/ml is approximately 1 log higher 

than those reported in a previous study where MFE23 was fused to ecotropic MMLV 

and coexpressed with wild-type ecotropic envelope (Konishi et a l, 1998). Khare and
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Figure 3.7 Targeted infection requires Pit-2.

Pit-2 blocking. HMWMAA +ve (A375) and CEA +ve (HT29) cells were infected with wild type 
amphotropic MLV. After 2 weeks A375, HT29, infected A375/MLVA and HT29/MLVA cells 
were infected with viruses carrying targeted (LMH/Pro2 or MFE23/Pro2) envelopes or 4070A or 
GALV envelopes and their titers were determined.
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colleagues have also developed a chimera in which an scFv that recognises CEA is 

fused to ecotropic MLV envelope and coexpressed with wild-type ecotropic envelope 

(Khare et a l, 2001). The titer that they reported was similar to that of MFE23/Pro2, 

but co-centrifugation of virus and cells (2000 rpm for 2 hours) was used in addition to 

Polybrene to enhance infection.

The titer of MFE23/Pro2 is similar to that which was previously reported for virus 

targeted to HMWMAA by an MMP-cleavable scFv and Pro linker (Martin et a l, 

1999). This virus gave reasonable infection (about 5%) in HMWMAA-positive 

tumour xenografts (Martin et a l, 2002), which suggests that MFE23/Pro2-targeted 

virus will be suitable for experiments in CEA-positive tumour xenografts. This is 

further supported by in vivo experiments from Khare and colleagues. They used the 

retroviral vector described above to deliver a suicide gene to CEA-positive tumour 

xenografts in nude mice (Khare et a l, 2002). The subcutaneous administration of the 

retroviral vector directly to the xenografts produced tumour suppression with a 70% 

reduction in tumour weight for the treated group as compared to the control group.

The level of targeted infection seen with MFE23/Pro2 is characteristic of approaches 

that use retroviral envelope interaction with its natural receptor to trigger efficient 

fusion. Previous strategies have included inverse targeting, where the cells that 

express the target molecule are not infectible (Cosset et a l, 1995a; Fielding et a l, 

1998; Chadwick et a l, 1999), and protease targeting, where infection of the target cell 

requires cleavage of an incorporated domain by a protease (Nilson et a l, 1996; Martin 

et a l, 1999; Peng et a l, 1999). Both of these strategies are limited, either by the type 

of molecules that can be targeted (inverse targeting) or by the requirement for an 

active protease for infection (protease targeting). Targeting by receptor cooperation 

that relies only on the expression of a target molecule and a retroviral receptor may 

provide a more general approach.

Further modifications to improve efficiency could involve engineering scFvs to allow 

efficient envelope incorporation. The level of incorporation of MFE23 was acceptable 

but the level of LMH2 was suboptimal and almost certainly had a detrimental effect 

on infection. It has been demonstrated that receptor cooperation can be achieved using 

different non-viral 0-spiral peptides to act as the interdomain linker (Valsesia-
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Wittmann, 2001). Thus, modifications in composition and length of the P-tum helix 

may optimise conformational changes after initial binding. It is possible that point 

mutations introduced into 4070A envelope may improve its stability and thus improve 

transduction efficiency as has been demonstrated for the ecotropic MLV envelope 

(Zavorotinskaya and Albritton, 2001).
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Chapter 4

Retroviral infection by protease targeting

4.1 Introduction

4.1.1 Overview

This chapter describes the construction and characterisation of retroviral vectors 

designed to target the tumour antigen carcinoembiyonic antigen (CEA) by protease 

targeting. Targeted vectors were produced by insertion of a single-chain antibody 

(scFv) in the retroviral surface protein (SU) of amphotropic murine leukaemia virus 

(MLVA). The scFv was joined to the 4070A SU by a full-length proline linker and a 

matrix metalloprotease (MMP) cleavage site. This introduction includes an overview 

of protease targeting of retroviral vectors explaining the development of this approach 

as well as the rationale that underlies it.

4.1.2 Protease targeting

Protease targeting has become an important way of restricting the host-range of 

retroviral vectors. It is achieved by grafting a blocking domain onto the viral envelope 

protein via a linker containing a protease cleavage site. The block in infection is 

overcome by cleavage at this site, which removes the blocking domain and allows 

infection via the normal receptor pathway. By inserting protease cleavage sites for 

specific cell-surface proteases targeting may be directed to specific proteases on target 

cells rather than cell-surface receptors.

The choice of blocking domain used is important and two broad categories have been 

determined (Russell and Cosset, 1999). The first category consists of high affinity 

ligands that lead to viral sequestration. This was initially shown for vectors displaying 

epidermal growth factor (EGF) (Nilson et al., 1996). Sequestration has subsequently 

been demonstrated for vectors displaying several other ligands such as stem cell factor 

(Fielding et al., 1998), insulin-like growth factor (Chadwick et a l, 1999) and for 

antibodies against EGF receptor and the lymphocyte surface antigen CDw-52 (Russell

100



and Cosset, 1999). This category of blocking domain is not ideal for gene delivery as 

blocking only occurs on receptor-positive target cells. There is a high level of residual 

infection on non-target cells because the blocking domain does not completely stop 

the ability of the SU trimer to attach to its natural Pit-2 receptor. This can be 

confirmed for the EGF-displaying viruses, whose infectivity on EGF-receptor positive 

cells is restored by adding soluble EGF to block the EGF receptor, indicating that the 

displayed EGF domain does not sterically hinder attachment to Pit-2 (Cosset et a l , 

1995a).

It has been shown that trimeric leucine zipper peptides and globular domains that are 

capable of forming homotrimeric interactions, such as tumour necrosis factor or the c- 

terminal domain of CD40 ligand, can efficiently block infection on both target and 

non-target cells (Morling et al., 1997). These homotrimeric polypeptides form the 

second category of blocking domains. Binding assays show that these homotrimers 

are able to block interaction with the natural viral receptor and it is believed that they 

form a homotrimeric cap at the tip of the envelope glycoprotein to which they are 

grafted thus sterically blocking virus attachment (Morling et a l, 1997; Russell and 

Cosset, 1999). This mechanism does not depend upon competitive sequestration as 

blocking is seen on target cells that do not express the cognate receptors for the 

displayed domains. Thus, the block to retroviral infection is more generalised with 

these trimeric polypeptides and they would appear to be more useful for clinically 

relevant protease targeting.

Initial experiments to show proof of principle for protease targeting used vectors 

displaying a factor Xa cleavable EGF domain (Nilson et a l, 1996). These vectors 

showed low levels of infectivity on EGF receptor-positive target cells, but became 

fully infectious for the same target cells after they had been treated with exogenous 

factor Xa. Similar experiments showed that full infectivity could be restored 

following factor Xa treatment of vectors containing a factor Xa cleavable 

homotrimeric blocking domain, such as the trimeric C-terminal domain of the CD40 

ligand (Morling et a l, 1997).

In principle, any protease that does not degrade the envelope glycoprotein can be 

targeted using this strategy and retroviral vectors, which could be activated by
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plasmin and by furin have been demonstrated (Buchholz et a l, 1998; Russell and 

Cosset, 1999).This approach was expanded by developing vectors that displayed 

blocking domains that could be cleaved and activated by what was felt to be a 

more clinically relevant protease: endogenous membrane-associated matrix 

metalloproteases (MMP) (Peng et a l, 1997). The initial vectors linked EGF to the N- 

terminus of the 4070A SU via an MMP cleavable linker. In cell lines that expressed 

both the EGF receptor (EGFR) and MMPs on their cell surface, the vector was able to 

give a 100-fold higher titer than on EGFR-positive, MMP-negative cells. Subsequent 

vectors were developed using the C-terminal domain of the CD40 ligand again linked 

to the N-terminus of the 4070A SU via an MMP cleavable linker (Peng et a l, 1999). 

This vector was also able to preferentially infect MMP-positive cells. In mixed cell 

cultures both vectors were able to discriminate between the two different cell types 

with preferential infection of MMP-positive cells (Peng et a l, 1997; Peng et al, 

1999). This is important as it suggests that MMPs secreted by the target cell do not 

significantly activate the vector and that activation is localised to the surface of the 

target cell and mediated by membrane-bound MMPs. It also appears that a cell-bound 

vector particle will not dissociate from its target cell when proteolytically activated 

because of the multivalent nature of the virus-cell interaction. It seems unlikely that a 

cell-bound vector would be cleaved simultaneously at all its points of attachment and 

as envelope chimeras are sequentially cleaved they will interact with Pit-2 receptors 

on the cell to which the vector is already attached thus ensuring gene delivery to the 

targeted cell.

The EGF targeted vectors were subsequently shown to be able to discriminate in vivo 

between protease-rich and protease-poor tumour xenografts in nude mice after direct 

intratumoural injection (Peng et a l, 1999). These experiments are extremely 

important as they address the concern that protease activation in a tissue culture 

environment might have little relevance to the in vivo situation. It had been postulated 

that increased levels of protease expression in vivo might lead to non-specific 

cleavage or that protease activity might be negated by the local accumulation of 

natural protease inhibitors.

Protease targeting has been used to target specific tumour types by inserting different 

ligands into the retroviral envelope. Successful targeting of melanoma cells was
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achieved by linking an scFv (LMH2 (Kupsch et a l , 1995)) that recognises high- 

molecular-weight melanoma associated antigen (HMWMAA) to the extreme N- 

terminus of 4070A. The full-length proline-rich spacer and a cleavage site for matrix 

metalloproteases was used to link the scFv to the SU (Martin et a l , 1999).The 

blocking domain (scFv, full-length proline-rich linker and MMP cleavage site) seen 

with this model acts similarly to the homotrimeric polypeptides described previously 

that block infection of non-target cells via the Pit-2 receptor binding domain. This 

targeted vector (LMH2/ProMMP previously named scLPMA) showed a preferential 

infection for HMWMAA-positive cells with a 1000-fold increase in titer over 

HMWMAA-negative cells. It was also able to selectively differentiate between a cell 

mixture of antigen positive and negative cells that were both shown to be protease 

positive. This targeting approach has several features that make it attractive for 

clinical gene therapy. The target cell surface must express both a specific antigen and 

a specific protease and this extra requirement provides an added degree of safety. This 

chapter describes the construction and characterisation of vectors designed to target 

carcinoembryonic antigen (CEA) using the protease targeting model of the vector 

described above (LMH2/ProMMP). This chapter will also describe in vivo 

experiments using this vector.

4.2 Construction of targeted envelope

To construct the envelope chimera targeted to CEA, MFE23 (Chester et a l , 1994a) an 

scFv that recognises CEA was fused to codon 5 of the mature amphotropic 4070A 

surface domain (SU) by the full-length (59 amino acid) proline-rich linker (Pro). The 

matrix metalloproteases (MMP) cleavage site PLGLWA (Ye et a l , 1995) was 

introduced between the Pro linker and the envelope protein (Figure 4. l).The envelope 

that this plasmid expresses is called MFE23/ProMMP.

Plasmids expressing the different envelopes or a 4070A envelope expression plasmid 

(ALF) (Cosset et a l , 1995b) were transfected into TELCeB6 cells that harbour the 

MFGnlslacZ vector genome and a murine leukaemia virus (MLV) Gag-Pol expression 

plasmid, CeB (Cosset et a l , 1995b). Transfected cells were then selected with 

phleomycin and supernatant from pools of phleomycin-resistant clones were analysed. 

In order to demonstrate the incorporation of the chimeric envelope glycoproteins into
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4070A Env

MFE23 (CEA)

codon 5

Figure 4.1. Construction of targeted envelope MFE23/ProMMP.

M FE23, an scFv recognising CEA, w as fused to the N  term inus o f  am photropic 4070A  
M LV -SU  by using the pro line-rich  spacer (Pro) derived from  M LV -A  4070A  SU. An 
M M P cleavage site was introduced betw een Pro and the SU o f  4070A.

RBD, receptor binding dom ain; TM , transm em brane; C, carboxy term inal dom ain .
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retroviral particles, supernatants of the various TELCeB6-tranfected cell lines were 

ultracentrifuged to pellet viral particles. Pellets were then analysed by Western 

blotting for their Gag (p30 CA) and envelope (gp70) protein contents (Figure 4.2). As 

expected analysis of supernatant from non-transfected TELCeB6 cells showed no 

detectable envelope (labelled No Envelope in figure 4.2). The MFE23/ProMMP 

chimera showed high levels of envelope expression in the viral pellet with env-to- 

capsid ratios at comparable levels to that of 4070A. This demonstrates that the 

insertion of MFE23 coupled to full-length proline-linker and MMP cleavage site at 

the N terminus of the MLV SU did not impair expression, processing and viral 

incorporation of the mutant envelope. Envelope incorporation of this CEA-targeted 

chimera appears to be better than that seen with other polypeptides, that incorporate 

protease cleavage sites, inserted in the N-terminus of MLV-A. Examples of which 

include: epidermal growth factor (EGF) and C-terminal domain of the CD40 ligand 

both linked via an MMP-cleavable linker (Peng et a l, 1997; Peng et al., 1999), where 

expression is lower than 4070A. The LMH2/ProMMP chimera had been previously 

analysed and shown to have significantly less envelope found in the viral pellet when 

compared to that of 4070A (Martin et al., 1999). The higher level of envelope 

expression seen with MFE23/ProMMP may reflect the fact that the MFE23 chimera, 

unlike other N-terminally substituted envelopes, allows correct folding and assembly 

into trimers with successful incorporation into retroviral particles.

Protease targeting of MFE23/ProMMP is dependent on cleavage of the chimeric 

envelope to the 4070A backbone and subsequent infection via Pit-2. To assess 

whether the cleavage site was accessible to MMPs, MFE23/ProMMP viruses were 

incubated with activated gelatinase A. This treatment reduced the size of the chimeric 

envelope to the size of the unmodified SU (Figure 4.2), demonstrating that the MMP 

cleavage site was cleaved. Cleavage appears to be efficient with all of the chimeric 

envelope reduced to the size of the backbone SU. Incubation of MFE23/Pro, which 

lacks the MMP cleavage site, was unaffected by incubation with gelatinase A showing 

that this treatment doesn’t degrade the envelope glycoprotein. LMH2/ProMMP 

treated with gelatinase A showed a similar result with the chimeric envelope 

successfully cleaved to the size of the unmodified SU (Martin et al., 1999). However, 

some cleavage of LMH2/ProMMP was observed without gelatinase A, which was 

attributed to production of MMPs by the producer TELCeB6 cells. This is an
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Figure 4.2. Targeted envelope incorporation in retroviral particles.

MFE23/4070A chimera. Concentrated supernatants from TELCeB6 cells 
(No envelope) and TELCeB6 transfected with 4070A, MFE23/Pro2, MFE23/Pro 
or MFE23/ProMMP envelopes were separated on a 10% sodium dodecyl sulphate 
polyacrylamide gel, electroblotted, incubated with goat anti-Rauscher 
leukaemia virus SU (gp70) and anti-Rauscher leukaemia virus CA protein 
(p30) antisera followed by anti-goat horseradish peroxidase, and then 
developed with ECL (Amersham).

The last 2 lanes show the effect of treatment of viral supernatants MFE23/ProMMP 
and MFE23/Pro with gelatinase A (as described in Materials and Methods).

106



important point as cleavage by the producer cells to the wild-type envelope will result 

in loss of targeting and infection of non-target cells. Thus, the absence of cleavage of 

MFE23/ProMMP without gelatinase A is potentially advantageous in maintaining the 

titer and specificity of the targeted virus.

4.3 Protease expression by target cells

Target cells used to determine infection by MFE23/ProMMP were two human 

colorectal cell lines (HT29 and Mawi), a human melanoma cell line (A375), a human 

fibrosarcoma cell line (HT1080), a human embryonal kidney cell line (293T) 

transfected with pHR’-CMVCEA-IRESGFP or an irrelevant vector control (pHR’~ 

CMVv-FLIP-IRESGFP). CEA expression by these target cells was characterised by 

Western blotting of cell lysates using a monoclonal mouse anti-human CEA antibody 

and by immunostaining with an anti-CEA antibody A5B7 (as described in chapter 3; 

Figures 3.3 and 3.4).

The level of MMPs capable of cleaving MFE23/ProMMP present at the surface of 

each target cell was determined using the dansylated peptide DNP-PLGLWADR-NH2  

(Stack and Gray, 1989). The cleavage of the peptide at its MMP site separates the 

DNP group (that acts as a quencher) from the tryptophan, leading to an increase in 

fluorescence with excitation at 280nm. A DNP-Peptide buffer was incubated with 

each of the target cells for 90 minutes at 37°C and the change in fluorescence 

measured. All of the cell lines showed similar levels of DNP-Peptide cleavage and 

hence MMP activity (Figure 4.3). Thus, any difference of infectivity on target cells 

was not caused by differences in protease expression. No change in fluorescence was 

seen in the absence of cells or without incubation at 37°C.

4.4 Targeted infection

Viruses were harvested from the selected producer cells, in some cases concentrated 

at 2,500 x g  at 4°C for 12 hours and titered on the respective cell lines either 

immediately or having been frozen at -70°C. Figure 4.4 shows infection by viruses 

incubated with target cells for 4 hours at 37°C in the presence of Polybrene and then 

washed and analysed by X-gal (5-bromo-4-chloro-3-indolyl-B-D-galactopyranoside)
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Figure 4.3 Protease expression by target cells.

Target cells were incubated with dansylated peptide DNP-PLGLWADR-NH2. 
The cleavage o f  the peptide at its MMP site separates the DNP group (which 
acts as a quencher) from the tryptophan, leading to an increase in fluorescence 
with excitation at 280nm. Substrate hydolysis was determined by monitoring 
the increase in fluorescence emission at 346nm using an excitation wavelength 
o f  280nm.
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Figure 4.4 Titers of targeted viruses.

V iruses w ith M FE 23-targeted chim eras, 4070A  or no envelope w ere added (w ith 
4ug o f  Polybrene/m l) to CEA  -ve or +ve cell lines as indicated.

Target cells were infected w ith serial dilutions o f  virus. Titer was calculated from 
values in the range w here the num ber o f  infectious events w as directly proportional 
to the volum e o f  virus added (as described in M aterials and M ethods).
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staining after 48 hours (Takeuchi et a l, 1994). This shows that viruses with the 

MFE23/ProMMP envelope were able to selectively infect CEA-positive cells. The 

highest titer was greater than 105 IU/ml and was approximately 10,000-fold more 

infectious on CEA-positive cells. MFE23/Pro-enveloped viruses were not infectious, 

with a titer less than 10 on all 4 cell lines that was even lower than virus with no 

envelope (supernatant from TELCeB6 cells). Viruses with the wild-type 4070A 

envelope were able to infect all 4 cell lines non-selectively at high-titer (ranging from 

106 IU/ml to 107 IU/ml depending on cell line and infection conditions).

It appears from these experiments that the protease cleavage site is crucial in 

determining selective infection using this model as exemplified by the 10,000-fold or 

greater difference in titer seen between MFE23/Pro and MFE23/ProMMP, which 

differ solely by insertion of the MMP cleavage site in the latter envelope chimera. We 

propose that the incorporation of the single chain antibody and full-length proline 

linker into the retroviral envelope blocks the Pit-2 receptor binding domain of the 

wild-type 4070A backbone and prevents infection. In this model the binding of the 

scFv to the tumour antigen allows the chimeric envelope to undergo a conformational 

change that exposes the MMP cleavage site. Cleavage of the scFv and Pro reveals the 

4070A Pit-2 receptor binding domain and allows subsequent fusion and infection. A 

schematic diagram explaining this mechanism is shown in figure 4.5. Even the 

MFE23/ProMMP chimera is 10-100 fold less infectious than the wild-type 4070A 

envelope, which implies that the process of binding and subsequent cleavage is not 

100% efficient.

Table 4.1 shows that lipofectamine could enhance the efficiency of transduction of 

CEA-positive cells by MFE23/ProMMP-enveloped virus without affecting its 

specificity as described for other scFv-targeted viruses (Martin et al., 1999; Martin et 

al., 2003).

4.5 Requirement of tumour antigen for infection

The mechanism of infection proposed above is dependent on the chimeric envelope 

binding to CEA before undergoing a conformational change that allows proteolytic 

cleavage to unmask the Pit-2 RBD and allow subsequent fusion and infection. To
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Figure 4.5 Proposed m echanism  of infection of M FE23/ProM M P.

1. Retargeted chimeric envelope binds to CEA expressed on target cell surface. 
2 + 3. MMPs on cell surface remove the scFv and Pro by cleavage at the MMP 
cleavage site.
4. Vector binds and enters target cell via Pit-2.
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A375 HT29

Nit PB LIP Nil PB LIP

No Env <4 <4 1.1x102 <4 5.0x101 1.2x102

MFE23/Pro <4 <4 9.0x101 <4 <4 6.0x101

MFE23/ProMMP 1.2X102 3.0x101 1.5X102 1.1x10s 1.8x10' 6.3x10'

4070A 6.0x106 1.0x107 1.4x107 1.4x10' 6.3x10' 9.0x10'

Table 4.1 Enhancement o f protease targeting.

MFE23 targeted vectors were incubated w ith 4ug o f  Polybrene (PB)/ml 
or lOug o f  lipofectamine (LIP)/ml or with no addition (Nil) for 10 min at 
room temperature before addition to the target cells. Results are indicated 
in IU/ml.
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demonstrate that infection required initial binding to CEA blocking experiments were 

performed using either the relevant scFv (MFE23) or an irrelevant control (LMH2). 

Figure 4.6A shows that the addition of the appropriate, but not the irrelevant, scFv 

could inhibit targeted infection. Inhibition of infection was approximately 10% of 

control titer using MFE23. As previously stated blocking with the monovalent scFv is 

incomplete, presumably because of the higher avidity of viral binding. No significant 

effect on the titer of 4070A-enveloped viruses was seen showing that neither scFv 

affects the interaction of the 4070A RBD with its Pit-2 receptor.

Further evidence to support the requirement of CEA expression by target cells for 

infection by MFE23/ProMMP was provided by the infection of 293T cells transfected 

with pHR’-CMVCEA-IRESGFP or pHR’-CMVv-FLIP-IRESGFP (vector control) as 

described in chapter 3. Figure 4.6B shows that the titer of MFE23/ProMMP was 

significantly increased (greater than 10,000 fold) on 293T cells expressing CEA 

compared to 293T cells not expressing CEA. The titer of MFE23/ProMMP on the 

CEA-expressing 293T cells was similar if not greater than that seen on cells that 

endogenously express CEA (HT29 and Mawi). The titer of non-enveloped, 4070A- 

and MFE23/Pro-enveloped viruses was unaffected by transfection with either of the 

plasmids (Figure 4.6B). Figure 4.3 shows that 293T, 293T/GFP and 293T/CEA cell 

lines all express similar levels of protease and thus the differential infection seen with 

MFE23/ProMMP is dependent on CEA expression rather than any other feature of the 

colorectal cells or the transfection procedure itself.

4.6 Requirement of Pit-2 expression for infection

The mechanism of infection proposed is also reliant on the RBD of the 4070A 

backbone of the envelope chimera mediating infection via its Pit-2 receptor after the 

blocking domain has been proteolytically cleaved. To show that Pit-2 was required for 

infection interference experiments were performed as described in chapter 3. Receptor 

interference assays were performed using HT29 (CEA-positive) cells and A375 

(CEA-negative) cells ‘chronically infected’ (two weeks of passage) with replication- 

competent 4070A MLV (Jobbagy et al., 2000). Figure 4.7 shows that transduction of 

4070A-infected HT29 cells by MFE23/ProMMP was reduced by approximately 500- 

fold, similar to the reduction of infection by viruses carrying the unmodified 4070A
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Figure 4.6 Targeted infection requires tumour antigen.

A. Antigen blocking. CEA+ve cells (HT29) were treated with LMH2 or MFE23 
scFv prior to infection. Infection by viruses with 4070A or MFE23/ProMMP 
envelopes (with 4 pg Polybrene/ml) was then measured. Titer is expressed as a 
percentage of that of untreated cells.

B. Transfection of CEA. 293T cells were transfected with a GFP or CEA expressing 
plasmid. 48 hours after transfection viruses with MFE23-targeted chimeras, 4070A 
or no envelope were added (with 4ug of Polybrene/ml) to each target cell.

114



I I 4070A 

WM MFE23/ProMMP

YZV7A GALV

V m x /A ____ m V A
A375 A375/

MLVA
HT29 HT29/

MLVA

Figure 4.7 Targeted infection requires Pit-2.

Pit-2 b locking. H M W M A A  +ve (A 375) and CEA  +ve (H T29) cells w ere infected 
w ith w ild type am photropic MLV. A fter 2 w eeks A 375, H T29, infected A375/M LVA 
and HT29/M LVA cells w ere infected by  viruses expressing  4070A , M FE23/ProM M P 
or GALV envelopes (w ith 4 jig o f  Polybrene/m l) and their titers determ ined.
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envelope. The titer of amphotropic MLV pseudotyped with the GALV envelope, 

which recognises a different surface receptor Pit-1 (Lam et al., 1996), was unaffected 

indicating that it is the effect on Pit-2 that affects the titer of the targeted viruses and 

viruses carrying the unmodified 4070A envelope.

4.7 Protease inhibition

After binding to CEA, MMP cleavage of the chimera is necessary to expose the RBD 

of the 4070A backbone. To demonstrate that protease cleavage was required for gene 

delivery, infections were performed in the presence of tissue inhibitor of 

metalloproteinase (TIMP)-2 (Stemlicht and Werb, 2001). TIMP-2 (at a final 

concentration of 5pg/ml) was added to the viral supernatant prior to infection. Figure

4.8 shows that the inhibition of MMP activity by TIMP-2 decreased the titer of the 

MFE23/ProMMP-enveloped viruses to approximately 15% of control titer. No 

significant effect on the titer of 4070A-enveloped viruses was seen showing that 

MMP activity is not required for their infectivity and that treatment with TIMP-2 does 

not affect the permissiveness of the target cells.

4.8 Infection of mixed cell populations

In order to see whether MFE23/ProMMP-enveloped viruses could discriminate 

between CEA-positive and CEA-negative cells in a heterogeneous mixture of cells the 

following experiments were performed. 293T cells were transfected with pHR’- 

CMVCEA-IRESGFP or pHR’-CMVv-FLIP-IRESGFP (vector control). The 

efficiency of transfection was determined by analysing the percentage of green cells, 

as both plasmids harbour green fluorescent protein (GFP). The aim of transfection 

was to achieve an efficiency of 50% and thus a mixed cell population. This was 

achieved by titrating the amount of plasmid transfected and determined by counting 

four separate microscopy fields. Infection was carried out 48 hours post-transfection. 

On the same day as the infection the cell mixture was separated by flow cytometry 

into GFP-positive and -negative populations. The cells were replated and X-gal 

staining performed 48 hours later.
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Figure 4.8 Targeted infection requires MMP activity.

M M P inhibition. CEA  +ve cells (HT29) w ere treated w ith TIM P-2 at the tim e o f  
infection. Infection  by  viruses w ith  4070A  or M FE 23/ProM M P envelopes 
(w ith 4 jug Polybrene/m l) w as then m easured. T iter is expressed as a percentage 
o f  that o f  untreated cells.
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Expression of CEA was confirmed by Western blotting of lysates of cells transfected 

with the relevant plasmids. Lysates were performed 48 hours post-transfection and 

confirmed that the 293T cells transfected with the CEA expressing plasmid pHR’- 

CMVCEA-IRESGFP expressed a high level of CEA comparable to that of CEA- 

positive colorectal carcinoma cell lines (Figure 3.3). 293T cells transfected with the 

vector control showed no evidence of CEA expression.

Table 4.2 shows that the unmodified 4070A-enveloped viruses infected all of the cell 

lines without selectivity. The MFE23/ProMMP-enveloped viruses infected 36% of the 

CEA-expressing 293T cells but less than 0.1% of the CEA-negative 293T or 

293T/GFP cells. Greater selectivity was seen with the MFE23/ProMMP-enveloped 

viruses than when EGF-displaying or CD40L-displaying vectors were used to infect 

cell mixtures (Peng et a l , 1999). These experiments are important because they imply 

that MFE23/ProMMP viruses become activated at the CEA-positive target cell 

membrane resulting in infection of these cells but not neighbouring cells. Thus, 

commitment to a particular target cell precedes cleavage activation by the cell 

associated protease.

4.9 In vivo experiments

4.9.1 Targeting of tum our xenografts

The ultimate aim of gene therapy is the development of efficient, targeted vectors 

capable of in vivo gene delivery. The efficient in vitro targeting seen with the 

MFE23/ProMMP-enveloped vector led us to believe that it would be suitable for in 

vivo. LMH2/ProMMP had previously been tested in tumour xenografts grown in nude 

mice (Martin et al., 2002) and this series of experiments were highly relevant to the 

design of in vivo experiments for MFE23/ProMMP.

The feasibility of in vivo targeting by LMH2/ProMMP was first assessed by cell 

mixing experiments. Here HMWMAA-positive or -negative tumour cell lines were 

mixed with lethally irradiated producer cells (producing amphotropic vectors, 

LMH2/ProMMP-eneveloped vectors or unenveloped vectors). These cell mixtures 

were injected intradermally into nude mice and after 2 weeks the tumours were
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TRANSFECT: HR/IRESGFP HR/CEA/IRESGFP

/  \ /  \ 
SORT-VE SORT+VE SORT-VE SORT+VE

293T 293T/GFP 293T 293T/GFP/CEA

4070 A 92% 97% 94% 96%

MFE23/ProMMP 0.05% 0.02% 0.03% 36%

No envelope 0.04% 0.08% 0.1% 0.07%

Table 4.2 Infection of mixed cell poulations.

Cell mixtures were obtained by transfection o f  293T cells with HR/IRESGFP 
or HR/CEA/IRESGFP plasmids (as described in Materials and Methods). Cell 
mixtures were infected by viruses expressing 4070A, MFE23/ProMMP or no 
envelope (with 4 jig Polybrene/ml) and then separated by flow cytometry into 
GFP-positive and -negative populations. The cells were replated and X-Gal 
staining performed 48 hours later.
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excised, disaggregated and analysed for p-galactosidase expression. The rationale for 

this experimental approach is that it allows optimised conditions for vector delivery as 

the vector continues to be delivered as the tumour develops. Also as the cells are 

interspersed it aids vector spread throughout the tumour. It is a useful screening 

method to assess the potential of vectors although it obviously has little clinical 

relevance for macroscopic or metastatic disease. Amphotropic vectors showed a very 

high efficiency of transduction (up to 95% of the tumour) for both HMWMAA- 

positive and -negative cell lines. LMH2/ProMMP vectors only transduced the 

HMWMAA-positive tumours with an efficiency of transduction of approximately 

10% of that seen with wild-type amphotropic envelope (Martin et a l, 2002). The 

encouraging results from these cell mixing experiments led to the next series of 

experiments where the retroviral vectors were injected directly into established 

tumour xenografts. Again the LMH2/ProMMP vectors only transduced the 

HMWMAA-positive tumours. However the level of transduction was only 

approximately 3% of the tumours, compared with 10-20% when the same tumours 

were injected with the amphotropic vectors.

These results showed that targeting could be maintained in vivo using this model. 

However, the level of transduction seen by direct intratumoural injection of the 

targeted vector was disappointingly low. In an attempt to improve transduction 

efficiency whilst maintaining relevance to clinical applications it was decided to inject 

lethally irradiated producer cells directly into pre-established tumour xenografts. 

CEA-positive and -negative tumour xenografts were established in nude mice. When 

the tumours had reached 5-7 mm in diameter they were injected with lethally 

irradiated producer cells (producing 4070A-enveloped, MFE23/ProMMP-enveloped 

or unenveloped vectors). One week after producer cell injection the tumours were 

excised, disaggregated and analysed for P-galactosidase expression.

Figure 4.9 shows the percentage of infections seen in the tumour xenografts after 

injection with the different producer cell lines. The 4070A-enveloped vectors showed 

a very high level of transduction in all four cell lines. MFE23/ProMMP vectors 

maintained their selectivity for CEA-positive tumours (HT29 and Mawi) with 

no/minimal infection of the CEA-negative tumours (A375 and HT1080). The
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Figure 4.9 In vivo targeting.

C EA -negative and -positive tum ours w ere estab lished  in nude m ice. L ethally  
irradiated  producer cells producing unm odified  4070A , M FE 23/ProM M P or 
unenveloped vectors were injected into these tum our xenografts. Transduction 
efficiency  is show n as a percen tage o f  tum our cells expressing  the (3- 
galactosidase m arker gene after counting approxim ately 105 cells.
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transduction efficiency was approximately 10% of the targeted tumours. Thus, 

MFE23/ProMMP vectors are able to maintain their specificity and efficiency in vivo 

with transduction efficiencies of approximately 20% of that seen with the 

amphotropic vectors. This was achieved without enhancement agents, such as 

Polybrene or Lipofectamine, which is advantageous as the use of cationic liposomes 

in vivo would be undesirable due to complement activation (Chonn et al., 1991).

4.9.2 Analysis of vector distribution

Targeting using the MFE23/ProMMP model aims to deliver genes selectively to 

CEA-positive tumours and the previous results show that this is achieved with direct 

injection of tumour xenografts. This model also aims to block infection of non-target 

cells, which could be potentially harmful and would deplete the pool of vector 

particles. The results show that MFE23/ProMMP does not infect CEA-negative 

tumour xenografts, but it is necessary to examine other non-target organs using a 

technique that is more sensitive than staining for P-galactosidase. It was initially 

planned to examine organs from the animals infected as above by PCR using 

LacZl/LTRl primers that amplify a vector fragment. However, a previous study had 

shown that transduced tumour cells are likely to be spread to other organs as 

micrometastases (Martin et a l, 2002) and thus this method is unable to differentiate 

vector spread from metastasis in tumour-bearing animals.

An alternative method was developed using irradiated producer cells injected 

intraperitoneally (Martin et a l, 2002). Amphotropic, MFE23/ProMMP or 

unenveloped irradiated producer cells were injected intraperitoneally in nude mice. In 

order to compensate for the higher titer seen with amphotropic vectors ten times as 

many MFE23/ProMMP and unenveloped producer cells were injected. Two weeks 

after injection the mice were sacrificed and the DNA extracted from the spleen, liver 

and kidneys for nested PCR analysis. The nested PCR used primers that amplified a 

480-bp DNA fragment located between the 3’ end of the p-galactosidase gene and the 

3’ LTR of the integrated vector.
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F ig u re  4.10 A nalysis o f  v ec to r sp read .

L ethally  irrad iated  p roducer cells expressing  4070A, M FE 23/ProM M P or no 
envelope w ere in jected  in traperitoneally  in nude m ice. Pro viral analysis w as 
carried  out by nested  PC R  using  prim ers that am plify a 480 bp D N A  fragm ent 
located betw een the 3’ end o f  the (3-galactosidase gene and the 3’ LT R  o f  the 
in tegrated  vector. D N A  from  the spleens, livers and kidneys from  the eight 
individual m ice (labelled A -C) w ere analysed for proviral content. P lasm id D N A  
serial dilutions (from  104 to 1 plasm ids) o f  an M FG nlslacZ vector w ere used to 
determ ine sensitivity.
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Figure 4.10 shows the results of the nested PCR for the three vectors in the three 

organs analysed. This shows that in all three mice injected with amphotropic producer 

cells detectable levels of proviral DNA were seen in the liver and spleen. When the 

kidneys from these mice were analysed they were shown to be positive in two of the 

mice. However, none of the mice injected with MFE23/ProMMP producer cells or 

unenveloped producer cells showed detectable levels of proviral DNA in the spleen, 

liver or kidney.

Semiquantitative analysis of proviral content in spleen, liver and kidney was 

performed to determine the level of amphotropic transduction in these organs. DNA 

from the mouse labelled A in the 4070A group (Figure 4.10) was used. Serial 

dilutions of DNA were used to carry out nested PCR using the same primers (Figure 

4.11). The limit of detection of this assay is 10 copies as shown by the serial dilution 

of MFGnlsLacZ. Thus, from figure 4.11 the likely number of copies of proviral DNA 

per 106 cells can be calculated. For spleen, liver and kidney this is 105, 104 and 103 

copies of proviral DNA per 106 cells respectively. No proviral DNA was detected in 

any organ from mice injected with MFE23/ProMMP (Figure 4.12) or unenveloped 

producer cells. Based on these results and taking into account that the limit of 

detection is 10 copies per 106 cells it appears that MFE23/ProMMP vectors are 

approximately 104 times less likely to spread than amphotropic vectors. It may be 

argued that this effect is partly due to their lower infectivity but this was addressed by 

injecting a higher number of MFE23/ProMMP producer cells into each mouse to 

compensate for their lower titer.

4.10 Discussion

This series of experiments have shown that it is possible to achieve selective targeting 

to carcinoembryonic antigen (CEA) both in vitro and in vivo by tropism restriction of 

amphotropic MLV using this approach. Infection is dependent on cells expressing 

both a specific tumour antigen and a specific protease on their cell surface. This dual 

requirement provides an extra degree of specificity and hence safety as it decreases 

the likelihood that non-target cells will be transduced. The proposed mechanism of 

infection is that after binding to CEA the envelope chimera undergoes a
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F ig u re  4.11 S em i-q u an tita tiv e  analysis  o f p ro v ira l DNA con ten t.

Serial dilutions o f  D N A  from  the spleen, liver and kidney from  m ouse A 
injected  w ith p roducer cells for 4070A -enveloped vectors w ere used for 
nested PCR reactions (as described in figure 4.10).
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conformational change that exposes the MMP cleavage site enabling cleavage to 

occur. Removal of the scFv and proline-rich linker exposes the Pit-2 receptor binding 

domain of the 4070A backbone allowing interaction with Pit-2 and efficient infection 

(Figure 4.5).

The titer achieved here for MFE23/ProMMP of greater than 105 IU/ml is 

approximately 1 log higher than that seen with MFE23/Pro2 as described in chapter 3. 

This is why this vector was chosen for the in vivo experiments that assessed targeting 

of tumour xenografts in nude mice. The titer achieved with MFE23/ProMMP is 2 logs 

higher than that seen in a previous study where MFE23 was fused to ecotropic 

MMLV and co-expressed with wild-type envelope (Konishi et al., 1998). As stated 

previously, Khare and colleagues developed a chimera in which an scFv that 

recognises CEA is fused to ecotropic MMLV envelope and coexpressed with wild- 

type ecotropic envelope (Khare et al., 2001). The titer achieved with this model was 1 

log lower than that seen with MFE23/ProMMP in spite of the fact that co- 

centrifugation of virus and cells was used in addition to Polybrene to enhance 

infection. This vector was used to deliver a suicide gene to CEA-positive tumour 

xenografts in nude mice and was able to produce tumour suppression with a 70% 

reduction in tumour weight for the treated group as compared to the control group 

(Khare et al., 2002). This would suggest that a useful therapeutic effect could be 

achieved by using the MFE23/ProMMP model to deliver suicide genes in vivo. 

Particularly as the effect of gene delivery may be augmented by the bystander effect a 

phenomenon by which the introduced gene can affect neighbouring cells in which it is 

not itself present (Mesnil and Yamasaki, 2000).

The results show that MFE23/ProMMP vectors are able to maintain their specificity 

in vivo. The use of direct injection of producer cells allows transduction of up to 10% 

of the tumour cells, which should be sufficient to produce a reduction in tumour size 

if a suicide gene can be delivered as effectively. This targeted strategy has the added 

advantage that reduced non-target delivery of targeted vectors has been demonstrated 

with a considerable gain in safety over non-targeted vectors. It also demonstrates a 

gain in safety over other targeted strategies. Targeting to HMWMAA using 

LMH2/ProMMP showed that the likelihood of spread was at least 1% of that seen 

with 4070A-enveloped vectors (Martin et al., 2002). Thus, MFE23/ProMMP appears
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to show at least a 100-fold gain in safety over this model. As stated earlier targeting 

using vectors blocking domains that only restrict infection on certain cells such as the 

EGF displaying chimeras will almost certainly infect non-target cells that do not 

express the relevant receptor such as EGFR. This model has shown selective infection 

of MMP-rich tumours in vivo but this study did not assess the extent of non-target cell 

transduction (Peng et al., 1999). Another promising in vivo gene delivery system is 

based on matrix-targeted retroviral vectors (Gordon et al., 2000; Hall et a l, 2000; 

Gordon et al., 2001). This vector-escorting strategy incorporated matrix-targeting 

motifs (i.e. collagen-binding peptides) on amphotropic MLV vector particles. This 

approach demonstrated enhanced vector penetration and transduction of tumour 

nodules after local or systemic delivery with significant tumour regression. However, 

such preferential targeting is unlikely to be highly specific and further experiments of 

vector biodistribution are needed to establish whether the increase of affinity achieved 

is sufficient to significantly reduce the leak of infectivity to non-target cells.

Further modifications to improve efficiency could involve engineering scFvs to allow 

an improvement in envelope incorporation. Changes in scFv to CEA binding may 

allow more efficient post-binding conformational changes and hence improve MMP 

cleavage and infection. It is possible to optimise the MMP cleavage site, which may 

allow increased cleavage after binding to CEA. This can be achieved using retrovirus 

display libraries (Buchholz et al., 1998). This approach was used to optimise the 

protease cleavage site in EGF-bearing chimeras by using replication-competent MLV 

incorporating EGF at the N-terminus of the envelope. A retrovirus display library was 

generated that diversified the seven-residue linker between the envelope glycoprotein 

and EGF. Selective pressure for EGF cleavage was applied by serial passage on EGF 

receptor rich cells. The selected viruses showed wild-type infectivity conferred by 

improved cleavage of their linkage sequences. It is possible that point mutations 

introduced into 4070A envelope may improve its stability and thus improve 

transduction efficiency as has been demonstrated for the ecotropic MLV envelope 

(Zavorotinskaya and Albritton, 2001).
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Chapter 5

Discussion

The goal of cancer gene therapy is to safely deliver genes to a sufficient number of 

target cells that results in tumour regression. In practise considerable obstacles have 

emerged, most notably gene delivery. Thus far the problem has been an inability to 

deliver genes efficiently, safely and to obtain sustained expression. Gene therapy 

protocols would be improved by the availability of targetable vectors that could 

deliver genes to specific target cells or disease sites. Non-target cells should not be 

infected as gene delivery could be potentially harmful e.g. suicide genes, insertional 

mutagenesis and would deplete the pool of vector particles.

5.1 Targeting by envelope modification

This thesis has described work aimed at improving retroviral targeting by 

modifications in the retroviral envelope glycoprotein. In chapter 3 retroviral vectors 

were constructed to achieve selective infection of target cells by receptor cooperation. 

This series of experiments showed that it is possible to achieve selective targeting to 

cells expressing the tumour antigens HMWMAA or CEA by tropism restriction of 

amphotropic MLV. Infection was dependent on cells expressing both the tumour 

antigen and the amphotropic receptor Pit-2. Receptor cooperation was optimised by 

using differing proline-rich linkers between the amphotropic receptor binding site and 

the scFv targeted to the relevant tumour antigen. A 9 amino acid linker (Pro2) proved 

optimal in transiently masking the Pit-2 RBD, which becomes accessible after binding 

to the relevant tumour antigen via the scFv.

Both targeted vectors were able to selectively infect tumour antigen-expressing cells, 

with minimal infection of antigen-negative cells. The higher titer seen with 

MFE23/Pro2 than LMH2/Pro2 (10,000 IU/ml versus 1,000 IU/ml) probably reflected 

a higher level of envelope incorporation into virions. The level of infection seen with 

MFE23/Pro2 is characteristic of approaches that use retroviral envelope interaction 

with its natural receptor to trigger efficient fusion. Targeting by receptor cooperation

129



relies only on the expression of a target molecule and a retroviral receptor. This 

approach may provide a more general approach than more limited methods such as 

inverse targeting (Fielding et a l, 1998).

Future work with this model may initially try to maximise titer in vitro. Modifications 

to improve efficiency could involve engineering scFvs to allow efficient envelope 

incorporation. The level of incorporation of MFE23 was acceptable but the level of 

LMH2 was suboptimal and almost certainly had a detrimental effect on infection. It 

has been demonstrated that receptor cooperation can be achieved using different non- 

viral p-spiral peptides to act as the interdomain linker (Valsesia-Wittmann, 2001). 

Thus, modifications in composition and length of the P-tum helix may optimise 

conformational changes after initial binding. It is possible that point mutations 

introduced into 4070A envelope may improve its stability and thus improve 

transduction efficient (Zavorotinskaya and Albritton, 2001). Once the envelope 

chimera has been optimised the next step will be to test targeting in vivo using human 

tumour xenografts in nude mice. The level of infection seen with MFE23/Pro2 is 

comparable to previous targeting models that showed adequate transduction efficiency 

in vivo (Martin et a l, 1999) and also models that showed a therapeutic benefit (Khare 

et a l, 2002).

In chapter 4 retroviral vectors were constructed to achieve selective infection of target 

cells by protease targeting. This series of experiments showed that it is possible to 

achieve selective targeting to CEA both in vitro and in vivo using this approach. 

Infection is dependent on cells expressing a specific tumour antigen, a specific 

protease and the amphotropic receptor Pit-2. This provides an extra degree of 

specificity and hence safety as it decreases the likelihood that non-target cells will be 

transduced.

The titer of MFE23/ProMMP-enveloped viruses on CEA-positive cells of 105 IU/ml is 

only 10-100-fold less efficient than viruses with unmodified 4070A (titre 106'7 IU/ml). 

This titer compares favourably with other CEA targeted models that have therapeutic 

effects in vivo (Khare et a l, 2002). The results using irradiated producer cells showed 

that this approach allowed the vectors to maintain their specificity in vivo. Direct
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injection of tumour xenografts allowed transduction of up to 10% of tumour cells, 

which should be sufficient to produce a therapeutic effect if a therapeutic gene could 

be delivered as efficiently. Use of this targeted approach has the important advantage 

of a considerable gain in safety over non-targeted vectors. It appears that 

MFE23/ProMMP vectors are approximately 104 times less likely to spread than 

amphotropic vectors. This level of gain in safety has not been demonstrated with any 

other retroviral targeting approach (Peng et al., 1999; Gordon et al., 2000) and is a 

significant advantage of this system.

Further modifications to improve efficiency of the MFE23/ProMMP vector could 

involve engineering scFvs to allow an improvement in envelope incorporation. 

Changes in scFv to CEA binding may allow more efficient post-binding 

conformational changes and hence improve MMP cleavage and infection. It is 

possible to optimise the MMP cleavage site, which may allow increased cleavage 

after binding to CEA. This can be achieved using retrovirus display libraries 

(Buchholz et a l, 1998). Improvements in stability of the 4070A envelope may be 

achieved by point mutations in the envelope itself, which may also improve 

transduction efficiency (Zavorotinskaya and Albritton, 2001). The next key stage in 

the development of this vector will be to see if  it is able to maintain its selectivity of 

transduction when delivering a therapeutic gene, most likely a suicide gene.

5.2 Cell surface targets

To date, the only surface-targeting strategies that have allowed efficient infection by 

retroviral vectors in vivo are those in which the target cell expresses the receptor used 

by the retroviral surface protein (SU) backbone of the envelope chimera (Peng et a l, 

1999; Gordon et al., 2001; Peng et a l, 2001; Martin et a l, 2002). This allows 

successful fusion after retargeted binding. These approaches have limited the tropism 

of amphotropic murine leukaemia virus (MLV-A), which can infect cells of many 

mammals, by modification of the envelope glycoprotein.

The choice of targeted surface molecule appears to play a crucial role in determining 

the infectivity of the new chimera. At one extreme is the attachment of a natural viral 

receptor binding domain to the MLV-A backbone. This has been shown by fusion of
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the ecotropic mCAT-1 binding domain to the N-terminus of MLV-A via differing 

proline spacers (Valsesia-Wittmann et a l, 1997). The new chimeras were able to 

efficiently infect cells displaying both mCAT-1 and Pit-2.

Some targeted cell surface molecules have the ability to abolish infection, even 

though the retroviral receptor (in this case Pit-2) is also displayed at the cell surface. 

This was first described for MLV-A displaying EGF, which were unable to infect 

human cells expressing EGF receptors and Pit-2 (Cosset et a l, 1995a). Inhibition of 

infection is specifically caused by the interaction with the high-affinity EGF receptor 

as competition with soluble EGF can restore infectivity via Pit-2. It is thought that 

some cell surface molecules, such as EGF, induce competitive virus sequestration, 

which abrogates infection. The receptors sequester and/or traffic bound retroviruses to 

cell compartments, which are not compatible with interaction with Pit-2. This 

phenomenon of ‘inhibitory’ receptors has been seen in retroviral vectors targeted 

against other surface molecules. For example, vectors displaying stem cell factor 

(Fielding et a l, 1998), insulin-like growth factor (Chadwick et a l, 1999) and the 

lymphocyte surface antigen CDw-52 9 (Russell and Cosset, 1999). Inverse targeting is 

a strategy that exploits receptor-mediated virus neutralisation allowing selective 

infection of cells not displaying the targeted receptor.

Another surface molecule that falls into the class of molecules that do not favour viral 

infection is the a  folate receptor. This is a high-affinity folate binding protein that is 

over-expressed in 90% of non-mucinous ovarian carcinomas. An scFv was fused at 

the N-terminus of the MLV-A envelope in attempt to target the a  folate receptor, 

however levels of infection were poor (Pizzato et a l, 2001). The results are similar to 

those seen MLV-A targeted to EGF. In this case a different mechanism may explain 

poor infectivity, as only 10% of receptors in ovarian cancer cells are internalised and 

thus sequestration would appear unlikely. It was felt that interaction between the scFv 

and a  folate receptor might interfere with subsequent binding of the MLV-A RBD or 

post-binding events that trigger fusion.

A third class of targeted cell surface molecules would appear to be ‘neutral’ for 

infection i.e. they allow binding but are unable to allow infection directly. Retargeted
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retroviruses remain reliant on the natural retroviral receptor for entry. CEA and 

HMWMAA would both appear to belong to this category of surface molecules. 

Binding to either of them doesn’t abrogate infection by sequestration or other 

methods. Retargeting to this class of receptor is reliant on transiently masking the 

RBD. In our case this was successfully provided by insertion of either a short proline 

linker or a protease cleavage site. Receptor interference studies showed that Pit-2 was 

necessary for infection for both receptor cooperation and protease targeting using this 

class o f surface molecule.

5,3 Safety concerns

Safety issues are currently at the forefront of viral gene therapy protocols. These first 

came to prominence after the death of Jesse Gelsinger, who died in September 1999 

following the administration of a recombinant adenoviral vector containing the 

ornithine transcarbamylase (OTC) gene. The precise cause of his death remains 

unclear but it appears that it resulted from a systemic adenovirus induced shock 

syndrome, cytokine release, acute respiratory distress and multiorgan failure (Verma, 

2000) In the 10 year old history of nearly 400 clinical gene therapy trials involving 

over 4000 patients this was the first death directly attributable to the gene delivery 

vehicle. Quite rightly this has lead to new regulations and guidelines proposed by the 

NIH and FDA to improve both the quality of clinical trials and to protect volunteers 

enrolled in trials particularly all gene therapy protocols.

Of more relevance to retroviral vectors has been the recent report of two cases of T- 

cell leukaemia in patients treated with retroviral gene therapy for X-linked severe 

combined immune deficiency (X-SCID) (2003). X-SCID is an inherited disorder 

characterised by an early block in T and natural killer (NK) lymphocyte 

differentiation. This results in the absence of both T and B cells leading to severe and 

recurrent infections that are usually fatal in the first years of life. Bone marrow 

transplantation (BMT) can be used to successfully treat X-SCID, but it works best 

when there is a fully compatible donor. Unfortunately this is the case in under one 

third of X-SCED children. In unmatched recipients, BMT carries the risk of graft 

failure, graft-versus-host disease, lymphoma and other medical problems.
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The lack of therapeutic options in X-SCID led to the development of the gene therapy 

trial by Fischer and colleagues (Cavazzana-Calvo et al., 2000). Bone marrow stem 

cells were obtained from the affected children, cultured with growth factors and 

transfected on three successive days with a Moloney derived retroviral vector carrying 

the yc gene. 10 out of the first 11 patients achieved effective and life-saving immune 

reconstitution (2003). Thus gene therapy was able to correct the disease phenotype 

and from a clinical perspective the patients may have been considered cured by this 

pioneering treatment.

However, 30 months after treatment one of the patients developed a monoclonal 

gamma-delta T-cell lymphoproliferative disorder (leukaemia like disorder). 

Subsequently a second child has developed a T-cell leukaemia. Both leukaemias 

appear to be caused by insertional mutagenesis i.e. retroviral activation of a cellular 

oncogene at the site of insertion. The gene LM02, located on chromosome 11, is 

normally involved in the control of blood cell proliferation and differentiation and is 

known to be activated in certain types of T-cell leukaemias. Its expression has shown 

to be elevated in both cases.

Multiple factors may have contributed to the development of leukaemia in the patients 

involved in this trial. These include the high level of engraftment and expansion of 

genetically modified cells, unique properties of the haematopoietic stem and 

progenitor cells in the bone marrow of X-SCID patients, the immune deficiency of X- 

SCID patients and/or the transferred gene itself. The gene itself is one that lends itself 

perfectly to gene replacement in that it provides a stimulus to growth and survival but 

this may have contributed to the malignant transformation. Further use of current 

gene-transfer methods for the treatment of X-SCID poses a complex dilemma in the 

consideration of potential risks and benefits.

Insertional mutagenesis had always been considered a potential risk associated with 

the use of retroviral vectors. It is important to recognise that the risks could be 

different for each disease, each therapeutic gene and each class of patient and every 

subsequent gene therapy trial involving the use of retroviral (or other integrating 

vectors) should be preceded by a careful assessment of the risk-benefit ratio. The X-
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SCID case highlights the importance of targeted gene therapy as it may well emerge 

that there are certain in cell types that we do not wish to accidentally transduce such 

as haematopoietic stem cells. Thus, the selective transduction seen with the envelope 

targeted models, particularly the protease targeted model provides an important level 

of safety.

5.4 Cancer gene therapy

The success of gene therapy to treat cancer requires the delivery of genes specifically 

and accurately to sufficient numbers of tumour cells in vivo. To date the majority of 

animal studies using both viral and nonviral vectors have used direct intratumoural 

injection of vectors (Harrington et al., 2002). The vector systems currently being 

developed for most gene therapy applications cannot be produced to levels that are 

sufficient to absorb the losses that will be incurred after systemic administration, 

which is especially true for retroviral vectors. Many vectors are first tested in vivo in 

immunodeficient mice that allow the establishment of human tumour xenografts. 

Even in this situation, in which most of the major immune effects that act to reduce 

viral titers in vivo are absent, the levels of virus that can be administered are often 

insufficient to achieve meaningful levels of tumour infection.

One of the ways in which viral titer is Tost’ in vivo is by non-specific binding and 

adhesion and this has led to extensive efforts such as ours to alter the viral tropism by 

alterations in the envelope glycoproteins (Russell and Cosset, 1999). However, it has 

been shown in vitro that non-specific adhesion of viral particles to the cell surface 

appears to occur before the envelope-receptor interaction (Pizzato et al., 1999). 

Although this interaction does not result in productive infection if it were to occur in 

vivo the reduction in viral titer could be significant.

Thus despite significant advances in the engineering of tropism-determining proteins 

to target vectors for in vivo delivery, it remains to be shown that targeted, recombinant 

retroviral vectors can attain titers that will have a therapeutic value in patients with 

disseminated disease when administered systemically. It seems apparent that a means 

o f protecting these fragile and vulnerable vectors is needed. Ideally the vectors should 

be carried directly to the vicinity of their sites of action and released in an
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environment where the molecular alterations conferring tropism redirection have a 

realistic chance of working. The ideal candidates to deliver tumour-targeted vectors 

would be immune-invisible, tumour-homing cells.

For our tumour antigen targeted MFE23/ProMMP vectors we aimed to protect the 

vectors as well as producing a degree of amplification by using irradiated producer 

cells. The results using irradiated producer cells showed that this approach allowed 

the vectors to maintain their specificity in vivo. Direct injection of tumour xenografts 

allowed transduction of up to 10% of tumour cells, which should be sufficient to 

produce a therapeutic effect if  a therapeutic gene could be delivered as efficiently.

This approach was initially used to treat brain tumours by direct injection of murine 

retroviral producer cells. The aim was to release retrovirus encoding the herpes 

simplex virus thymidine kinase (HSVtk) suicide gene, which would infect 

surrounding tumour cells (the only cells that should be replicating at that site and thus 

be susceptible to C-type retroviral infection) and render them susceptible to the 

prodrug ganciclovir (GCV) (Culver et al., 1992). This would kill the retroviral 

producer cells, the infected cells and bystander tumour cells. This approach proved 

successful in the rat model (Culver et al., 1992), however there was only limited 

success when used to treat human brain tumours (Ram et al., 1997). There was some 

antitumour activity in five smaller tumours (1.4 +/- 0.5 ml) with one patient achieving 

a durable complete response (>220 days), but there appeared to be limited gene 

transfer to tumours suggesting that this effect was due to ‘bystander’ mechanisms 

from the vector-producing cells. The injected producer cells remained stuck in close 

proximity to the injecting needle and tk cDNA transfer by the retroviral vector was 

limited to a few cells away. The response of only very small tumours showed the 

feasibility of this approach, but highlighted the need to improve delivery of the 

therapeutic gene.

The packaging cell lines used in our experiments are developed from an allogeneic 

tumour cell line (TE671; a rhabdomyosarcoma cell line). Ultimately the aim is to use 

these producer cells to deliver our targeted retroviral vectors carrying a therapeutic 

gene, most likely a suicide gene. It is important that the transferred producer cells are 

eventually killed and in our case this should not be a concern as they had been lethally
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irradiated (40 Gy) prior to injection. In future studies, producer cells are likely to 

carry a suicide gene and thus on administration of the prodrug will be killed 

themselves. A mechanism which may well augment the therapeutic effect. Also we 

are using allogeneic tumour cells that will be rejected by an immune competent host. 

The latter point is important as this may greatly reduce its value as a vector delivery 

vehicle and actually prolonging the survival of the allogeneic cell line may become an 

issue. It is important to note that irradiated allogenic tumour cells are already 

clinically used as cancer vaccines (Harrington et al., 2002), thus the concept of using 

tumour cells to treat tumours is not as radical as it may have appeared. This may make 

it easier for their introduction and acceptance into clinical practise.

The ultimate vector carrying cell should home preferentially to the tumour. Once at 

the tumour it should be activated to start vector production, which in turn should be 

targeted to the tumour cell. Such a system has recently been described by Chester and 

colleagues (Chester et al., 2002). This model used T cells to deliver targeted retroviral 

vectors, which were protected until they could be released at high local 

concentrations. The T cells were targeted by complexing an scFv to CEA to the 

intracytoplasmic domain of the T-cell receptor (TCR/CD3). By using this signal from 

T-cell binding to initiate viral production appropriate temporal and spatial production 

of virus is achieved. The virus produced is transcriptionally targeted by placing a 

CEA promoter in the retroviral genome. In this case the HSVtk suicide gene was 

under control of this promoter. This system showed therapeutic, tumour-specific 

vector delivery in models of both local intratumoural and systemic delivery to both 

lung and liver metastases.

This study is not without its limitations. It was performed with human T cells 

attacking human tumour cells in an athymic mouse. An idealised mouse model with 

limited tumour burden was used whose applicability to human treatment remains to be 

established. For any clinical trial in humans, optimising the ratio of injected T cells to 

estimated tumour burden will prove challenging. Despite these drawbacks this is an 

elegant study that shows the potential of human T cells to be used as carriers of 

retroviral vectors.
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Out own vector producing cells may have an element of intrinsic targeting as 

packaging cells express viral envelopes on their surface and thus the chimeric 

envelope that contains an scFv to CEA. Our model does not have the control of the 

timing of vector production as seen with the T cell model described above. However, 

it may be possible to overcome some of the limitations of this system. The CEA 

targeted models have shown selective targeting of colorectal cancer cell lines or 

tumour xenografts. Colorectal cancer is known to commonly metastasise to the liver 

with two-thirds of colorectal cancer patients developing liver metastases during the 

course of their disease (Bengtsson et al., 1981). Patients with liver metastases have a 

poor prognosis with a median survival time of 9-11 months (Bengtsson et al., 1981). 

The best treatment option for isolated metastases is surgery, which has the potential to 

cure the disease. However, only 20-25% of patients who present with hepatic 

metastases are suitable for resection and recurrence after surgery is common (Lorenz 

et a l,  2000). Knowing the likely pattern of relapse in this disease allows treatment 

when there is minimal residual disease and the highest chance of successful therapy.

Treatment options for this group of patients are limited and novel molecular therapies 

are appropriate. It is possible to deliver regional therapies using direct intratumoural 

injection or hepatic arterial infusion and this would be appropriate for cell-based 

vector carriers such as our packaging cell lines. A recent phase I trial in patients with 

metastatic colorectal adenocarcinoma in the liver has assessed the safety of using an 

adenoviral vector carrying HSVtk (Sung et a l, 2001). Sixteen patients received 

intratumoural injections of the adenoviral vector followed by intravenous ganciclovir. 

Toxicities were low and transient showing the feasibility of this approach.

Although gene therapy has failed to live up to initial expectations it sill has the 

potential to become an important part of cancer treatment. It is important to consider 

gene therapy within the context and aims of treatment strategies. With current 

delivery systems, gene therapy is unable to clear large scale disease due to the 

inability to deliver therapeutic genes to sufficient cancer cells. Gene therapy is most 

likely to be effective as adjuvant therapy where it targets minimal residual disease. 

This is a common situation in colorectal cancer where after removal of the bulk 

disease (the primary colorectal tumour) surgically there is a risk of developing 

metastatic disease post-operatively. The liver is a common site for such disease as
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explained earlier and the ideal time to deliver gene therapy may be at or shortly after 

surgery. This situation can be created easily in an animal model where the vector is 

given shortly after tumour cells have been seeded but before metastases develop.

Palliative treatment aims to relieve symptoms and improve the patients’ quality of 

life. Unfortunately, unpleasant side-effects of treatment often outweigh any small 

benefits achieved as radiotherapy and chemotherapy do not specifically target tumour 

cells. Gene therapy may be particularly suited to palliative treatment as it is 

specifically directed at tumour cells and treatment toxicity is thus predicted to be low. 

Very few side-effects have been seen in patients treated with gene therapy to date 

(Somia and Verma, 2000).

If gene therapy for cancer has so far failed to live up to expectations, it is because 

these expectations have been unrealistic. Gene therapy is most likely to find a useful 

place in clinical practise as an adjuvant radical treatment or as a palliative treatment in 

advanced disease. Appropriate preclinical and clinical trials with realistic expectations 

and designed within the context of present treatment strategies should still allow gene 

therapy to show its true value.
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