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Abstr a c t

Inherited photoreceptor dystrophies are a leading cause of blindness and have no 

effective treatment. Despite advances in our understanding of the genetic mechanisms 

underlying this diverse group of conditions, the sequence of events leading from 

genetic miscoding to photoreceptor death by apoptosis are still unknown, although 

influences from other cells within the retina have been implicated. Microglia, the 

macrophages of the central nervous system, have previously been shown to increase in 

number and migrate to the photoreceptor layer to phagocytose apoptotic cell debris. 

However increasing awareness of the cytotoxic potential of microglia, has led me to 

undertake this work with the primary remit of investigating the possible involvement 

of microglia in photoreceptor apoptosis using the rds mouse model of inherited 

photoreceptor degeneration.

Using immunohistochemical and immunofluorescent methods I have 

demonstrated increased microglial numbers in the degenerating rds retina, resulting 

from both in situ proliferation and recruitment from the blood, with migration to the 

outer retinal layers and sub-retinal space. However, by closely scrutinising the period 

of greatest disease activity we have demonstrated that the peak rate of photoreceptor 

apoptosis precedes the peak in microglial numbers by approximately five days, 

suggesting that microglia respond to, rather than cause photoreceptor death. In 

addition, evidence of oxidative damage (a major mechanism of microglial 

cytotoxicity) is absent and depletion of retinal microglia using macrophage-depleting 

clodronate liposomes did not lead to a reduction in the rate of photoreceptor death,
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providing further evidence that microglia are not involved in causing photoreceptor 

apoptosis.

Additional studies with the neuroprotective tetracycline antibiotic, minocycline 

showed that this drug was able to delay the onset of photoreceptor apoptosis in the rds 

mouse, possibly through a direct inhibitory effect on apoptosis and the caspase 

cascade. Delayed apoptosis was associated with a corresponding delay in microglial 

migration to the outer retina.
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C h a p t e r  O n e

I n t r o d u c t io n  

P h o t o r e c e p t o r  D y s t r o p h ie s

The eye is a common site for genetic disease. Inherited photoreceptor dystrophies 

constitute a large proportion of genetic eye disease and form a heterogeneous group of 

conditions differing in their mode of inheritance, pattern of visual loss and clinical 

appearance(Bird 1995). These photoreceptor dystrophies may affect predominantly 

the central retina (macular dystrophies) or, more commonly, the peripheral retina 

(typically presenting as Retinitis Pigmentosa (RP), figure 1.1), depending on the 

extent to which they affect the rod and cone photoreceptors.

Figure 1.1 Colour retinal photographs illustrating the advanced degenerative changes 

in a patient with retinitis pigmentosa. Although the central retina may remain 

relatively spared until the later stages of the disease (a), vascular attenuation and optic 

disc pallor are an indication of the severity of the changes more peripherally (b). The 

classical black ‘bone spicule’ pigmentation corresponds with areas of profound 

atrophy of the neuroretina with migration of retinal pigment epithelium into the inner 

retinal layers.
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The central, or macular, dystrophies affect central vision early, often leaving 

peripheral vision spared until later or even indefinitely. Conversely, RP presents with 

night blindness and progressive restriction of peripheral vision as the condition 

progresses to ultimately involve the macula, resulting in late central visual loss. As a 

group these conditions are a leading cause of blindness with RP affecting between 

1/3000 and 1/5000 people in all ethnic groups (Bunker et al. 1984; Pagon 1988; Haim 

et al. 1992). There is no treatment for RP and other photoreceptor dystrophies and 

although age of onset varies depending on gene defect and inheritance mode, the onset 

of symptoms in RP is before the age of 20 years in 68% of cases(Niemeyer and 

Gurewitsch 1982) and by the age of 50 years over 50% have a visual acuity of 6/60 or 

worse(Marmor 1980) (legal blindness in UK); as such the conditions are costly in 

terms of lost work productivity, need for social support and individual suffering.

Although photoreceptor dystrophies may be part of a broader clinical 

syndrome with involvement of other tissues and organs, such as Usher’s syndrome, 

Refsum’s disease and abetalipoproteinaemia, they are more commonly found as an 

isolated condition inherited in autosomal dominant, autosomal recessive or X-linked 

fashion as single gene disorders. Molecular genetic studies have identified a large 

number of genes involved in photoreceptor dystrophies

(http://www.sph.uth.tmc.edu/retnet/) and, with the help of animal models, much has 

been learnt about the structure and function of the proteins they encode.

These genes may be broadly divided into three classes, according to their 

pattern of expression (Pacione et al. 2003). The first group, which represents the great 

majority of genes involved in photoreceptor degenerations, consists of genes expressed 

predominantly or exclusively in the photoreceptors or underlying retinal pigment 

epithelium (RPE) and their mutations therefore manifest solely in the retina. This
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group includes genes which encode proteins participating in the phototransduction 

cascade (i.e. the conversion of light to an electrical stimulus), proteins responsible for 

the structural integrity of photoreceptors and their outer segments which house the 

visual pigments and proteins involved in the cycling and regeneration of photoreceptor 

outer segments and visual pigments by the RPE. A detailed description of human and 

murine ocular anatomy is given in the appendix.

The second group of genes involved in photoreceptor degenerations are those 

which are ubiquitously or widely expressed and, as a result, retinal degeneration is 

associated with disease in other tissues (multi-organ phenotype, such as Bardet Biedl 

syndromes).

The third group is perhaps the least understood, since it consists of mutations 

in ubiquitously or widely expressed genes which nonetheless lead to disease 

exclusively in the photoreceptors. The reasons for this are not yet clear but the very 

high metabolic rate and protein turn-over in photoreceptors has been suggested to 

make these cells particularly vulnerable to such genetic insults (Pacione et al. 2003). 

This category includes genes involved in pre-mRNA splicing (P R P F autosomal 

dominant RP), phagocytosis (MERTK, autosomal recessive RP and the RCS rat 

model), matrix metalloproteinase inhibition (TIMP 3, Sorsby macular dystrophy), as 

well as others such as RP9 (autosomal dominant RP) whose product have as yet 

unknown function.

Since the first group of genes involved in photoreceptor degenerations (those 

expressed predominantly or exclusively in photoreceptors or the RPE) represent the 

great majority of cases, these mutations are discussed further below:
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Huang et al. 1995), the rod cGMP-gated Cation Channel(Dryja et al. 1995) and 

arrestin(Nakazawa et al. 1998)have also been discovered in RP with recessive 

inheritance.

PHOTON

Cation
channel

Figure 1.2 Schematic depiction of the phototransduction cascade. A photon of light 

induces a conformational change from 11 -cis-retinol to all-trans-retinol within the 

transmembrane rhodopsin protein (RHO). This causes activation of a G protein transducin 

(T) which in turn activates cGMP phosphodiesterase (PDE) which hydrolyses cGMP The 

resulting reduction in intracellular levels of cGMP leads to closure of the cGMP-gated cation 

channel preventing the influx of sodium and calcium ions with hyperpolarisation of the cell.

Mutations affecting photoreceptor outer segment structural proteins

Peripherin/n& (retinal degeneration slow) is an integral membrane glycoprotein that, 

together with its non-glycosylated homologue ROM1, forms a multisubunit 

heterotetramer complex at the rim region of rod outer segment discs (Molday et al. 

1987; Connell et al. 1991). Peripherin/rds appears to be essential for the formation 

and maintenance o f normal photoreceptor outer segments, which contain the visual 

pigments necessary for photon capture. Mutations in peripherin/r£fc have been linked 

to a variety of progressive retinal degenerations, including autosomal dominant RP 

and macular dystrophies (Farrar et al. 1991; Wells et al. 1993). ROM1 is only

RHO, RHO

|cG M P
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well as being responsible for cases of recessive RP and congenital stationary night 

blindness.

Mutations in genes encoding a  and p subunits of photoreceptor cGMP 

phosphodiesterase (cGMP PDE) (McLaughlin et al. 1993; Danciger et al. 1995; 

Huang et al. 1995), the rod cGMP-gated Cation Channel(Dryja et al. 1995) and 

arrestin (Nakazawa et al. 1998) have also been discovered in RP with recessive 

inheritance.

Mutations affecting photoreceptor outer segment structural proteins

Peripherin/tt/s (retinal degeneration slow) is an integral membrane glycoprotein that, 

together with its non-glycosylated homologue ROM1, forms a multisubunit 

heterotetramer complex at the rim region of rod outer segment discs (Molday et al. 

1987; Connell et al. 1991). Peripherin/rJs' appears to be essential for the formation 

and maintenance of normal photoreceptor outer segments, which contain the visual 

pigments necessary for photon capture. Mutations in peripherin/rds have been linked 

to a variety of progressive retinal degenerations, including autosomal dominant RP 

and macular dystrophies (Farrar et al. 1991; Wells et al. 1993). ROM1 is only 

expressed in rods, leaving peripherinJrds to form homotetramers in the discs of cone 

photoreceptors. Mutations in ROM1 are found in digenic forms of RP in which 

patients are heterozygous for mutations in peripherin/r<& and ROM1, although 

isolated, targeted disruption of ROM 1 in mice leads to retinal degeneration (Clarke et 

al. 2000).
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Mutations affecting the metabolism of visual pigments

The series of biochemical steps that provide and recycle the chromophore of 

rhodopsin, 11 -cis retinaldehyde involves the retinal pigment epithelium (RPE), which 

converts both dietary alVtrans retinol (vitamin A) and the phototransduction product 

al]-trans retinaldehyde, back to 11 -cis retinaldehyde for reuse by the photoreceptors. 

This process involves isomerisation via a protein known as RPE 65, as well as other 

RPE proteins employed in the binding and transporting of the chromophores, such as 

cellular retinaldehyde binding protein, both of which are products of genes known to 

be mutated in RP(Maw et al. 1997; Morimura et al. 1998). The removal of 

photoisomerised chromophores from rod photoreceptors involves the ATP-binding 

cassette transporter of rods (ABCR), whose gene is also known to be involved in RP 

(Martinez-Mir et al. 1998).

The rds mouse model

The rds (retinal degeneration slow) or rd2 mouse (recently also termed Prph2Rd2/Rd2) is 

a naturally occurring strain characterised by photoreceptor degeneration resulting from 

a null mutation in the Peripherin/rcfe gene. The mouse was so named after the prior 

discovery of the faster-degenerating rd or rdl (retinal degeneration) mouse which has 

a Tyr347stop mutation in the gene encoding cGMP phosphodiesterase. The rds 

mutation which was first identified in 1978 by van Nie et <z/.(van Nie et al. 1978) and 

later localised to murine chromosome 17(Demant et al. 1979), is now known to be a 

9.2 kb insertion into exon 2 of the peripherin/rcfc gene (Ma et al. 1995). Since the 

gene is expressed exclusively in photoreceptors, photoreceptor degeneration is the 

only phenotypic manifestation of the mutation. The normal gene product,
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Peripherin2/n&, is an integral membrane glycoprotein found at the rim region of rod 

outer segment discs (Molday et al. 1987; Connell et al. 1991). It appears to be 

essential for the formation and maintenance of normal photoreceptor outer segments, 

with homozygous rds'A mice failing to develop these structures, having only 

disorganised stumps {figure 1.3).

Figure 1.3 Sections of wild 

type retina at P30 with well 

developed photoreceptor outer 

segments (a, arrows) and rds retina 

at the same age possessing only 

vestigial stumps (b, arrowhead). 

Haematoxylin, scale bar: 20 jam. 

Microglia stained with F4/80 

(brown)

The earliest detailed description of the retinal histology in rds mice was performed by 

Sanyal et a/.(Sanyal et al. 1980). At birth the retina o f rds'A and wild type mice are 

morphologically indistinguishable, with a single thick nuclear layer that divides into 

the inner and outer nuclear layers at around the 4th postnatal day (P4). By P 11 wild 

type mice have begun to develop a layer of photoreceptor outer segments, which is 

fully formed by P21. In contrast, rds' ' mice never exhibit this layer, with instead an 

accumulation of membrane bound vesicles in the sub-retinal space,(Jansen and Sanyal 

1984) and recognisable thinning of the outer nuclear layer starts at P14 as the 

photoreceptors die. A surge of photoreceptor apoptosis occurring between P14 and 

P19 has been observed by several investigators, with an ongoing lower frequency of 

photoreceptor loss thereafter(Chang et al. 1993; Portera-Cailliau et al. 1994; Ali et al. 

1998). The disease affects the peripheral retina more severely with complete loss of
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photoreceptors by 9 months, whereas more centrally they persist until about one year. 

The inner retinal layers remain relatively spared(Sanyal et al. 1980). The 

electroretinogram (ERG), a method of recording retinal electrical responses to flashes 

of light and thus an indicator of retinal function and visual potential, is severely 

impaired in rds'A mice from birth, and in keeping with the extent of photoreceptor loss, 

is completely undetectable by 1 year(Reuter and Sanyal 1984).

The human rds gene on chromosome 6 has 85% sequence homology with that 

of the mouse(Jordan et al. 1992). The peripherin/rcfc protein is found in the same 

location in human photoreceptors as in the mouse, and in humans mutations in 

peripherin also cause photoreceptor dystrophies such as autosomal dominant RP and 

macular dystrophies (Farrar et al. 1991; Wells et al. 1993). Pathological studies of 

retina from the rds mouse and patients with retinitis pigmentosa share many common 

features; selective loss of photoreceptors with peripheral predilection, relative sparing 

of inner retinal layers and an enhanced microglial/macrophage presence(Sanyal et al. 

1980; Santos et al. 1997; Gupta et al. 2003). So, the rds mouse is a good model for 

human photoreceptor degenerations, having the advantages of both closely related 

aetiology and of common neuronal and non-neuronal retinal cell pathologic features. 

The rate of degeneration is, however much faster and more aggressive than most 

human photoreceptor dystrophies, and this offers both advantages and disadvantages 

in terms of experimental approach, and should be borne in mind when interpreting 

results.
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Mechanisms of photoreceptor cell death

Although knowledge of the underlying genetic basis for photoreceptor dystrophies is 

ever increasing, the precise sequence of cellular events leading from genetic 

miscoding of a protein to the instigation of cell death are, in many instances, unclear.

Many of the genes implicated in RP are exclusively expressed in photoreceptors, and 

as such encode proteins that are non-essential to cells of other tissues. Why, therefore, 

such mutations should lead to photoreceptor death rather than simply loss of function 

is a fundamental question that remains to be answered. Theories abound about the 

causes of photoreceptor death with each mutation, some of which have sound 

scientific basis with supporting experimental evidence (from animal models), while 

others remain largely unsubstantiated. An example of the former is mutations in the 

gene encoding cGMP PDE, where loss of cGMP PDE enzyme activity would lead to 

continuously high concentrations of cGMP within the cell (‘super-dark’ state) with the 

consequently increased conductance through cGMP-gated cation channels resulting in 

massive influxes of Na and Ca . This proposed sequence o f pathological events is 

corroborated by investigations in the rd mouse, which has a null mutation in the gene 

encoding the p subunit of cGMP PDE. Photoreceptors in the mouse have raised levels 

of cGMP prior to cell death(Farber and Lolley 1974; Lolley et al. 1977) and this 

and/or the associated rise in intracellular calcium levels is thought to lead to 

apoptosis(Ulshafer et al. 1980). Investigations using a cation channel blocking agent 

in the rd mouse have shown partial rescue of the photoreceptors(Frasson et al. 1999), 

although others have not been able to verify this(Pearce-Kelling et al. 2001; Pawlyk et 

al. 2002).
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For many other mutations, explanations for photoreceptor death are less 

watertight but include the following theories.

a) Constitutive activation o f  the phototransduction cascade

Continuous exposure of experimental animals to light results in photoreceptor 

degeneration(Fain and Lisman 1993). Certain mutations in rhodopsin(Rim and Oprian

1995) and cGMP gated cation channel(Dryja et al. 1995), may produce a ‘super-light’ 

state in which constitutive activation of phototransduction may lead to cell damage.

b) ‘Clogging’ o f golgi and endoplasmic reticulum

While the product of some mutated rhodopsin genes will associate with 11-cis 

retinaldheyde and integrate with the plasma membrane, many other forms accumulate 

within the endoplasmic reticulum of cells(Sung et al. 1993), possibly leading to 

fundamental disturbance of basic cellular functions. This phenomenon probably 

results from abnormal folding of the mutant rhodopsin.

c) Alteredphotoreceptor-RPE interface

With the functions of the RPE and photoreceptors so intricately intertwined, it can be 

expected that RPE pathology might lead to damage to the overlying photoreceptors. 

Apart from the recycling of photopigments, the RPE has a major phagocytic role and 

is responsible for the clearance o f the continually shed photoreceptor outer segment 

membrane discs. Failure of this process (as occurs in the Royal College of Surgeons 

rat) results in accumulation of debris in the sub-retinal space with death of the 

overlying photoreceptors, possibly due to failure o f the diffusion of essential nutrients 

from the choroid.
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d) Outer segment shortening

Shortening of the photoreceptor outer segment occurs in mutations affecting the 

structural proteins peripherin/KDS and ROM1, and also mutations involving 

rhodopsin, which constitutes around 85% of the total protein in photoreceptor outer 

segments. The Prph2Rdl/R(32 (rds, retinal degeneration slow) mouse has a null mutation 

in the peripherin gene, and consequently the hallmark of homozygous mice (rds/rds) is 

complete failure to develop photoreceptor outer segments(Sanyal et al. 1980) which 

results in death of the photoreceptors. A reduced oxygen demand and closer proximity 

to the highly vascular choroid in the absence of outer segments have been proposed to 

conspire to predispose to oxidative damage(Travis 1998), although there is no 

evidence supporting this hypothesis.

Regardless of the genetic defect and proposed mechanisms leading to photoreceptor 

death, the final, unifying process of cell demise in all animals models studied to date is 

through apoptosis (discussed further in chapter five). Included in this list are the rd, 

rds and rhodopsin mutant mice(Chang et al. 1993; Portera-Cailliau et al. 1994), RCS 

rat(Tso et al. 1994) and albino animals with light-induced photoreceptor damage(Abler 

et al. 1996; Hafezi et al. 1997). Whether this process is also responsible for 

photoreceptor death in human degenerations is unknown, owing to the paucity of 

tissue specimens and the inability to study in vivo processes. However the information 

available from post-mortem studies on human eyes with retinitis pigmentosa reveals 

selective loss of the photoreceptor layer in the early stages(Santos et al. 1997), 

correlating with the findings in animal models.
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Evidence for extrinsic photoreceptor-toxic influences during retinal degeneration

The apoptotic death o f photoreceptors is not restricted to those expressing the mutated 

gene as is evident with respect to loss of cones (containing functionally normal 

photopigments) in humans suffering RP due to rhodopsin mutations. For example, in 

an aggregation chimera produced from wild-type and transgenic mice carrying a 

mutated rhodopsin allele, uniform loss of both wild-type and transgenic photoreceptors 

is observed(Huang et al. 1993), a phenomenon also seen in a mosaic Prph2Rd2fR<n (rds) 

mouse with random expression of wild-type and mutant rds genes(Kedzierski et al.

1998). Similarly, in the Irish Setter which has a null mutation in the P subunit of rod 

cGMP PDE, there is degeneration of both rod photoreceptors with absent PDE activity 

and their neighbouring cones which possess a normal complement of PDE(Suber et al. 

1993).

Although apoptosis is classically described as a process involving individual 

cells, leaving neighbouring cells healthy, theories have been proposed that ‘bystander’ 

damage might result from release of a diffusible toxic factor by dying rods, or 

depletion of a protective/trophic effect normally provided by rods that is lost by their 

demise. Toxic factors might include intracellular substances (such as Ca and ATP) 

spreading through gap junctions between photoreceptors(Ripps 2002) as has been 

demonstrated with calcium fluxes between apoptotic and healthy glia after 

ischaemia(Budd and Lipton 1998; Lin et al. 1998) or extracellular substances such as 

glutamate diffusing across the extracellular space.

Another possibility for such ‘non-cell-autonomous’ photoreceptor death is the 

involvement of other cells within the retina, and in particular the non-neuronal cell 

population, i.e. the glia.
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T h e  G lia l  E l e m e n t s  o f  th e  M a m m a l ia n  R et in a

The mammalian retina possesses two main types o f glia: a modified neuroglia known 

as Muller cells and a myeloid population of specialised tissue macrophage known as 

microglia. Whilst microglia are present throughout the central nervous system (CNS), 

the two predominant populations of neuroglia are the astrocytes and oligodendrocytes. 

In the mammalian retina astrocytes are present, but they are limited to the nerve fibre 

layer, and oligodendrocytes are completely absent.

Muller Cells

The close physical and functional relationship between Muller cells and the neuronal 

population has been extensively studied as summarised by Newman and Reichenbach 

(Newman and Reichenbach 1996). Muller cells, present in all vertebrate retinae, 

assume the roles of astrocytes, ependymal cells and oligodendrocytes. They span the 

retina and, through their intricate arrangement of processes, develop intimate contact 

with all neuronal cell types, allowing a constitutive functional relationship (figure 1.4),

Figure 1.4 The intimate anatomical relationship between Muller cells and the retinal 

neurones allows for their close functional interplay. The figure shows human retinal Muller 

cells (green) stained for glial fibrillary acid protein (GFAP) surrounding retinal ganglion cells. 

Counterstain: DAPI, scale bar: 20 pm.
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Muller cells are involved in neurotransmitter uptake and recycling, homeostasis of 

ionic components and pH of the extra-cellular space, and the provision of both 

metabolic and trophic support. The possibility that these glia are able to recognise 

and are modulated by retinal neuronal activity is given weight by their expression of 

receptors for a variety o f neurotransmitters(Wakakura and Yamamoto 1994; Puro et 

al. 1996; Reichelt et al. 1996) and their sensitivity to extra-cellular K+ (Reichenbach 

et al. 1997). These features give retinal Muller cells credible potential to respond to 

pathological alterations in neuronal behaviour by the withdrawl of metabolic or 

growth factor support, such as fibroblast growth factor(Harada et al. 2000), or the 

release of cytotoxic compounds such as nitric oxide(Goureau et al. 1999; Kobayashi 

et al. 2000).

However it is the other glial presence within the retina, the microglia, that have 

not only a far more established cytotoxic potential but also a more overt and robust 

response to photoreceptor degeneration, and would thus constitute a more likely 

culprit in a non-cell-autonomous model of photoreceptor death.

The Myeloid Presence Within the Central Nervous System and Retina

All organs outside the CNS possess a resident population of myeloid-derived, innate 

immune cells: macrophages and dendritic cells (DCs), which have essential roles in 

host defence through participation in non-specific immune responses and the initiation 

and regulation of adaptive immunity. Dendritic cells are the professional antigen 

presenting cells, whose ability to endocytose antigen, migrate to regional lymph nodes 

and present antigen to naive CD4+ T cells in conjunction with Major
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Histocompatibility Complex (MHC) class II molecules, allows them to initiate a 

primary adaptive immune response.

Macrophages have a broader role than dendritic cells. They have phagocytic 

capability and as such are responsible for removal of macromolecules and apoptotic / 

dying cells. They are also able to recognise common antigenic determinants and 

thereby clear invading pathogens through phagocytosis and the release of cytotoxic 

factors. In addition they, like DCs, are capable of MHC class II expression and 

antigen presentation to T cells, although their repertoire is limited to the initiation of 

secondary immune responses (the re-stimulation of mature T cells) and immune 

regulation.

The CNS has certain characteristics that distinguish it immunologically from 

other tissues: it resides behind the tight endothelial junctions of the blood-brain barrier 

and its parenchyma lacks dendritic cells(Hart and Fabre 1981) and conventional 

lymphatics(Perry 1998). The CNS does, however possess a resident myeloid 

population, namely the parenchymal microglia and perivascular macrophages, both of 

mononuclear phagocyte lineage(Perry et al. 1985; Hickey and Kimura 1988). In 

addition it is now widely accepted that immune surveillance of the CNS and 

cerebrospinal fluid compartment is performed by T cells that may readily cross the 

intact blood brain barrier(Wekerle 1986; Hickey et al. 1991) and by dendritic cells 

residing in the meninges and choroid plexus(McMenamin 1999).

The mouse CNS and retina is populated by blood-borne macrophages during 

ontogeny(Perry et al. 1985), particularly during the late embryonic stages and early 

post-natal period, when they are involved in the phagocytic clearance of redundant 

apoptotic cells generated by neuronal remodelling. In the developing mouse retina 

macrophages enter during in utero life from the vessels on the inner retinal surface,
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their distribution and numbers paralleling the appearance o f apoptotic ganglion cells 

and subsequently apoptotic inner nuclear layer neurons, which they 

phagocytose(Hume et al. 1983). Relative to the loss of inner retinal neurones during 

in utero and early postnatal life, murine photoreceptors are subject to minimal 

developmental apoptosis and as a result macrophages are not found in the outer 

nuclear (photoreceptor) layer(Hume et al. 1983). As the wave of neuronal remodelling 

abates, the number of parenchymal macrophages reduces, and they differentiate into a 

typically complex, ramified, process bearing microglial phenotype, forming a regular 

network in the inner retinal layers, as seen distributed throughout the adult CNS.

In the resting state microglia maintain low-level expression of many surface 

markers common to all macrophage populations, including the macrophage-restricted 

F4/80 marker and receptors for Fc and complement (CR-3/CD1 lb) in the mouse, and 

have a very low rate of turn over with the systemic myeloid pool(Hickey and Kimura 

1988; Perry and Gordon 1991). The perivascular macrophages probably have a higher 

blood replacement rate and, since in the retina, they more readily express MHC 

molecules than their parenchymal counterparts(Provis et al. 1995), they may play a 

constitutive role in T cell dialogue and have antigen presentation capability(Dick

1999).

Although the function of microglia during physiological conditions is still largely 

unknown, their vigorous response to CNS pathology is well recognised and has been 

the subject of much research over the last 20 years.
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M ic r o g l ia  d u r in g  C N S in ju r y

There have been a large number of studies on the responses of microglia to a variety of 

types of CNS injury. Perhaps the simplest of these is the stab injury to the rodent 

brain which causes damage to neuronal and connective tissues, and disrupts the blood- 

brain barrier(Giulian et al. 1989). Reactive microgliosis and recruitment of blood 

borne macrophages are seen with this model where, like macrophages in other sites, 

they participate in tissue repair and the induction of astroglial proliferation and 

neovascularisation; effects that could be inhibited by administration of chloroquine or 

colchicine to attenuate macrophage involvement. Microglia and macrophages may 

mediate stimulation of astroglial proliferation through the release of ILl(Giulian et al. 

1986; Giulian et al. 1988), which may also be involved in the regulation of brain 

development by microglia during ontogeny(Giulian et al. 1988).

More useful when considering microglial responses to neurodegeneration are 

the facial nerve transection and chemical injury models, which leave the blood-brain 

barrier intact and yet cause central neuronal degeneration within the facial nerve 

nucleus in the brain stem(Streit and Kreutzberg 1988; Streit et al. 1989). After 

peripheral neural injury, microglia proliferate(Graeber et al. 1988), adopt a more 

rounded (activated) morphology and migrate to the site of injury, where they up- 

regulate expression of several markers including CR-3 and MHC class I and 

II(Graeber et al. 1988; Streit et al. 1989). An interesting distinction can be drawn 

between microglial behaviour after facial nerve transection (so called sub-lethal 

injury) in which the central neurones survive and eventually regenerate, and the 

injection of a neurotoxin (ricin) into the nerve, which causes lethal injury and central 

motor neuronal death. In the former, microglial responses are restricted to activation 

and proliferation without phagocytosis. In the latter, with central neuronal death,
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microglia rapidly develop phagocytic capability and remove the neuronal debris 

resulting from the lethal injury(Streit and Kreutzberg 1988). So it seems that 

microglia respond to both neuronal injury and neuronal death in a discretional manner, 

with capacity to adapt to the requirements of the pathology.

Since these seminal studies, in vivo and in vitro responses of microglia to 

various stimuli have been extensively examined and a more detailed picture of the 

remarkable functional repertoire of these cells is beginning to emerge.

Influence of the CNS environment on microglial activity

Microglial immune functions are regulated by intrinsic inhibitory factors within the 

CNS. Neurones are thought to constitutively release certain neurotrophins (e.g. brain 

derived neurotrophin, nerve growth factor and neurotrophin-3) that have inhibitory 

effects on microglial MHC class II expression(Neumann et al. 1998), and the recent 

discovery of interaction between neurones and myeloid cells via the CD200 and 

CD200 receptor (CD200-R) axis has introduced a new paradigm in neurone-mediated 

suppression of CNS myeloid activity(Wright et al. 2000). CD200 (also known as 

0X2) is expressed on neurones, endothelium and lymphoid cells and is the ligand for 

CD200-R, which is restricted to cells of myeloid lineage, delivering an inhibitory 

signal. When this signal is missing, as in the CD200 knockout mouse, microglia adopt 

an activated phenotype and a more aggressive response to CNS injury(Hoek et al. 

2000; Broderick et al. 2002).
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Involvement in immune responses

Microglia express receptors for a host of different pro- and anti-inflammatory 

cytokines, including the interferon-y (IFN), tumour necrosis factor-a (TNF-a), 

interleukins (IL) 1 ,4 ,10 ,12 ,13 ,15  and 18 (reviewed by Aloisi(Aloisi 2001) and 

Lee(Lee et al. 2002)) which may be released by T cells during CNS inflammation.

The effects of some of these cytokines on microglia has been determined in vitro, but 

in view of the alteration of microglial phenotype when placed in culture(Becher and 

Antel 1996; Mertsch et al. 2001), the applicability of such studies to the in vivo setting 

is open to debate. Nevertheless, it is clear that the archetypal Thl cytokine IFNy is a 

potent stimulator of microglial activation, enhancing their antimicrobial, pro- 

inflammatory functions(Colton et al. 1992) although antigen presentation capability 

may be enhanced(Vass and Lassmann 1990; Seguin et al. 2003) or reduced(Broderick 

et al. 2000). TNFa and IL-1 (3 also have stimulatory effects on phagocytosis and 

oxidative activity respectively(Smith et al. 1998), while Th2 cytokines such as IL-4, 

IL-10 and TGFP tend to suppress Thl-mediated microglial activation(Frei et al. 1994).

As well as receptors for a large number of cytokines and chemokines, 

microglia are able to secrete a plethora of these molecules(Aloisi 2001). Although 

many of these cytokines are considered pro-inflammatory (e.g. IL-1 and TNFa), much 

interest has been focused recently on the immuno-regulatory function of microglia and 

their production of IL-1 receptor antagonist, IL-10 and transforming growth factor 

beta (TGFp), which have suppressing effects on Thl responses(Martin and Near 1995; 

Bettelli et al. 1998), and potential autocrine regulatory functions(Broderick et al.

2000).

Evidence also suggests that the regulatory effects of microglia may occur 

through antigen presentation to T cells. It is clear that microglia possess, in vivo, the



molecular repertoire to present antigen in conjunction with MHC class II and essential 

co-stimulatory molecules such as CD40, CD80 and CD86 since the expression of these 

are induced during various human CNS disease states and after stimulation in 

vz7n?(Penfold et al. 1993; De Simone et al. 1995; Gerritse et al. 1996; Togo et al.

2000). It is also likely that microglia are able to liaise with T cells in the perivascular 

space since they are a component of the perivascular glia limitans(Lassmann et al.

1991; Provis et al. 1995). However, although stimulated microglia may present antigen 

and induce T cell proliferation in v//ro(Aloisi et al. 1998), they do not have the 

efficiency of dendritic cells in stimulating naive T cells(Aloisi et al. 1999) and there is 

doubt about whether they induce full T cell stimulation in vivo. Ford et al. found that 

while CNS associated macrophages could produce proliferation and full effector 

function in encephalitic myelin basic protein-reactive T cells, CNS microglia could 

induce the T cells to release pro-inflammatory cytokines, but the T cells subsequently 

underwent apoptosis(Ford et al. 1996). This suggests either that microglia can not 

provide the necessary co-stimulatory signals or that inhibitory signals are delivered, 

and may represent a mechanism by which microglia down regulate CNS immune 

responses by auto-reactive T cell clones.

Recognition and phagocytosis of pathogens and apoptotic cells

Macrophages are a major component of the innate immune response, and as such have 

an important role in defence against many pathogens. Pathogens are identified 

through a series of pattern recognition receptors(Janeway and Medzhitov 2002) 

leading to the induction of antimicrobial genes and release of inflammatory cytokines. 

Among these, CD1 lb (complement receptor 3), mannose receptor and the 

lipopolysaccharide (LPS) receptor CD 14 are expressed by microglia (Becher and
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Antel 1996; Linehan et al. 1999), and bacterial LPS has been extensively used to 

activate microglia in vitro and in vivo. In concert with CD1 lb and the mannose 

receptor, microglia express other opsonic receptors such as Fc receptors and other 

complement receptors which instigate targeted phagocytosis (Mosley and Cuzner 

1996).

The phagocytic capacity of macrophages is not restricted to pathogens and, as 

mentioned above, microglia are responsible for the clearance of dead and dying cells 

resulting from developmental remodelling and disease. Apoptotic cells attract 

phagocytes by presenting certain “eat me” signals, including phosphatidylserine and 

altered carbohydrates on their surface(Fadok et al. 2001). Macrophages possess 

receptors, such as the phosphatidylserine receptor(Hoffmann et al. 2001), the 

vitronectin receptor(Fadok et al. 1992) and the scavenger receptor class A(Platt et al.

1996) to enable them to respond to these signals and these have been shown in mice to 

be involved in the phagocytosis of apoptotic photoreceptors by microglia(Hisatomi et 

al. 2003).

It is unclear, however, which signalling pathways convey the message of cell 

injury to distant microglia, thereby initiating their migration to the site of pathology as 

is seen in photoreceptor degenerations. Neuronally derived chemoattractants, and in 

particular the chemokines ffactalkine(Harrison et al. 1998), IL6(Streit et al. 2000) and 

monocyte chemoattractant protein 3(Zhang 2003) have been studied in rodents and 

may play a role in microglial recruitment. It is interesting to note that neuronal 

apoptosis is not a pre-requisite for microglial activation, and indeed in some animal 

models of neurodegeneration microglial activation is seen in response to subtle 

morphological alteration, well before neuronal death occurs(Boillee et al. 2001).
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Microglial involvement in neurodegeneration and cytotoxicity

Of the many molecules produced by activated microglia, several have been shown to 

have neurotoxic properties. These include the cytokines TNFa and IL-1 P(Chao et al. 

1995; Jeohn et al. 1998; Takahashi et al. 2003), free radicals nitric oxide and 

superoxide(Boje and Arora 1992; Chao et al. 1995; Liberatore et al. 1999; Dehmer et 

al. 2000; Liversidge et al. 2002), prostaglandins(Araki et al. 2001) and excitatory 

amino acids(Piani et al. 1992; Giulian 1999) in both humans and rodent models. 

Furthermore, studies of mixed neuronal-glial cultures from rats (Bronstein et al. 1995) 

and mice ((Bronstein et al. 1995; Araki et al. 2001) show that stimulation of microglia 

by LPS leads to neuronal death, whereas LPS itself has no such effect on neuronal 

cultures alone.

The initial link between microglia and the pathogenesis of neurodegenerative 

conditions was made after analysis of brains from patients with Alzheimer’s disease 

(AD) and Parkinson’s disease (PD)(McGeer et al. 1987; McGeer et al. 1988; Rogers 

etal. 1988). In pathology samples from patients with Alzheimer’s disease microglia 

may be found clustered around senile plaques, and when incubated in vitro the plaque 

material (p-Amyloid) is rapidly ingested by microglia and induces their activation and 

release of a neurotoxic factor that is probably an excitatory amino acid(Giulian et al. 

1995; Giulian 1999). Nitric oxide has also been implicated in the pathogenesis of 

Alzheimer’s(Law et al. 2001).

In Parkinson’s disease, large numbers of activated microglia are found in the 

substantia nigra, a finding confirmed in the 1-methyl-4- phenyl-1,2,3,6- 

tetrahydropyridine mouse model of Parkinson disease(Kohutnicka et al. 1998). 

Inhibition of microglial activation and in particular their inducible nitric oxide 

synthase (iNOS) activity in this animal model leads to reduced loss of dopaminergic
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neurones(Du et a l. 2001; Wu et al. 2002), and furthermore, iNOS deficient mice are 

resistant to disease(Liberatore et al. 1999; Dehmer et a l. 2000), although not all 

investigators have confirmed this(Itzhak et a l. 1999).

Several other neuropathologies have since been added to the list of conditions 

with possible pathogenic microglial involvement, including cerebral ischaemia 

(stroke)(Danton and Dietrich 2003), neuronal ceroid lipofuscinoses(Nakanishi et al.

2001)(also known as Batten’s disease) and prion disease(Brown 2001).

Microglial activity during retinal degeneration

Thus, there is an expanding body of evidence supporting the notion that microglia 

may respond to CNS injury in a damaging way, with secretion of cytotoxic factors 

that exacerbate neuronal loss. This concept is therefore o f interest to those studying 

retinal disease, since microglial activation and migration to the injured layer of the 

retina has been recognised for many years, and was noted by Sanyal in his detailed 

descriptions of the retinal pathology in the Prph2Rd2IRd2 (rds) mouse (Sanyal et al. 

1980). He described that photoreceptor degeneration was accompanied by ‘altered 

macrophage activity’ with a migration of large numbers of macrophages (microglia) 

from their normal location in the inner retinal layers, to the outer nuclear layer and 

sub-retinal space, where they had high histochemical activity of the lysosomal 

enzyme N-acetyl-P-glucosaminidase and appeared to be responsible for ‘removing the 

debris of dying cells’. Similar observations have been made in other models of 

inherited photoreceptor degeneration such as the RCS rat(Essner and Gorrin 1979; 

Thanos 1992; Roque et al. 1996) and the rd mouse(Sanyal 1972), in light-induced 

photoreceptor death in albino mice(Ng and Streilein 2001), and also in a recent
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histopathological study of retina from a patient with retinitis pigmentosa(Gupta et al. 

2003).

It seems likely that in these instances microglia have a phagocytic role in 

assisting the over-burdened retinal pigment epithelium in the clearance of apoptotic 

cell debris. Indeed this has been confirmed by ingenious experiments by Thanos, who 

retrogradely stained retinal ganglion cells by application of a fluorescent dye to the 

cut end of the sectioned optic nerve in RCS rats. Microglia were found to 

phagocytose the flourescently labeled, damaged ganglion cells in the inner retina, 

before migrating to the outer retina to undertake phagocytosis of photoreceptor debris 

when these cells subsequently underwent apoptotic cell death(Thanos 1992). This 

sub-retinal phagocytic role has been confirmed by others(Ng and Streilein 2001; 

Hisatomi et al. 2003).

It is possible, however that microglial activation in retinal degenerations may 

be secondary to photoreceptor (or other neuronal) injury and that, once activated, 

microglia may participate in a local inflammatory cascade resulting in the release of 

cytotoxic mediators which exacerbate photoreceptor injury and death, as has been 

suggested in other neurodegenerative conditions discussed above. This concept, in 

the context of retinal microglia, has been applied by some to models of glaucoma with 

several authors suggesting a pathogenic role of microglia on ganglion cells in the 

optic nerve head(Neufeld 1999; Wang et al. 2000; Yuan and Neufeld 2001) through 

TNFa, nitric oxide (NO) and matrix metalloproteinase release. Thanos et al. 

attempted to inhibit the response of retinal microglia to transection of the optic nerve 

in the rat by intravitreal injection of macrophage inhibitory factor (MIF)(Thanos et al. 

1993). They found significant retardation of axotomy-induced ganglion cell 

degradation in the retina of MIF treated eyes and noted morphological changes in the
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microglia. In the same model, stimulation of microglia with intravitreal injection of a 

tetrapeptide macrophage stimulating factor led to increased microglial numbers and 

ganglion cell death was accordingly increased.

There has, however, been remarkably little investigation of the direct cytotoxic 

effects of microglia on photoreceptors during outer retinal degeneration, and the issue 

has probably only been purposefully addressed by two studies(Roque et al. 1999; 

Koike et al. 2003). The first was in a mouse model for neuronal ceroid lipofuscinosis 

(Batten’s disease, lysosomal storage disorder), the Cathepsin D'/_ mouse, in which 

there is rapid neonatal CNS degeneration with particularly prominent apoptotic loss of 

neurones in the thalamus and the photoreceptors(Nakanishi et al. 2001; Koike et al. 

2003). Reactive, activated microglia are found in both areas where they express iNOS 

and have therefore been implicated as mediators of the neuronal and photoreceptor 

apoptosis (through NO production). However, although iNOS inhibitors reduce brain 

neuronal loss and prolong lifespan, they do not affect the rate of photoreceptor 

apoptosis.

The second study was conducted in vitro using retinal microglia isolated from 

the dystrophic RCS rat and a photoreceptor cell line(Roque et al. 1999). They found 

that the culture medium from microglia extracted and cultured for 48 hours, contained 

a heat stable factor that was toxic to the photoreceptors, with a four-fold increase in 

their apoptotic death as compared with basal medium or medium from cultured 

Muller cells. A couple of criticisms may be leveled at this study: firstly all microglia 

adopt a more activated phenotype when placed in culture, so it is difficult to know the 

relevance to the in vivo state. Secondly, because of the difficulty experienced in 

isolating a pure and stable culture of RCS rat photoreceptors, they used a transgenic 

photoreceptor cell line with proliferative capacity (66 lw), quite different from the
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diseased photoreceptors that may have provoked reaction from the microglia in situ, 

and with possibly greater (or lesser) sensitivity to cytotoxic insults.

So, to summarise, although dramatic alterations in microglial behaviour have 

long been recognised as part of photoreceptor degeneration, and increasing evidence 

in other areas of the CNS demonstrates the cytotoxic behaviour of these cells during 

responses to neuropathology, their potential pathogenic role in photoreceptor 

degeneration has been inadequately studied and is unknown. In addition, the 

mechanisms underlying photoreceptor apoptosis in many of the genetic defects 

causing these diseases is also unexplained, although evidence suggests an indirect or 

‘non-cell autonomous’ process. If microglia were involved in the initiation or 

exacerbation of retinal damage in these diseases, then a multitude of therapeutic 

approaches, targeting microglial behaviour, would be made available for a group of 

conditions that have, at present, no treatment.
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Aim s  o f  the w o r k

The objective of this research is to characterise microglial behaviour during 

photoreceptor degeneration, using a naturally occurring mouse model. That microglia 

undertake phagocytic clearance of apoptotic cell debris is not in question and the 

project has not studied this aspect of their behaviour specifically. It is the potential 

cytotoxicity of retinal microglia during photoreceptor degeneration and their influence 

over the disease process that has been the primary area o f interest. In investigating 

this concept, I aimed to learn more about microglial biology in general with potential 

applicability to other pathologies within the CNS.
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Ch apter  Tw o

M aterials and  M ethods  

The Animals

Homozygous rds mice used in this project were bred and housed in the Biological 

Services Unit at the Institute of Ophthalmology, University College London. They 

were bred on a CBA background. Wild-type CBA mice were bred and housed in the 

Animal Unit, School of Medical Sciences, Bristol University. All animals were 

treated in accordance with the Animal License Act (UK).

Animal Sacrifice and fixation of tissues

Mice were terminally anaesthetised with an intra-peritoneal injection of 

Pentobarbitone sodium (Sagatal, 60 mg/ml, Rhone Merieux, GA, USA) and intra- 

cardially perfused with PLP-fixative (2% paraformaldehyde and 0.05% 

glutaraldehyde, preparation described below). Cardiac perfusion was carried out, 

after carefully ensuring the absence of reflex pain responses, by opening of the 

thoracic cage, exposure of the heart, incision of the right atrium followed by needle 

puncture and perfusion of the left ventricle until clear fixative was seen issuing from 

the right atrial incision. Both eyes were enucleated using dissecting forceps and 

scissors, taking care to leave the globe intact with a length of optic nerve attached.

The eyes were then immersed in PLP fixative (2% paraformaldehyde and 0.05% 

glutaraldehyde) for four to six hours, before incubation overnight in 20% sucrose at 4°
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Celsius. Then, after drying with paper tissue the eyes were embedded in OCT 

(Optimal Cutting Temperature compound, Sakura, distributed by R. A. Lamb, 

Eastbourne, UK), snap frozen in liquid nitrogen and stored at -70° Celsius. 

Occasionally the spleen and/or thymus were also taken and were fixed in an identical 

fashion to the eyes.

The method of fixation seemed critical to the preservation of retinal histology 

during sectioning and also of the morphological clarity of microglia during staining. 

One set of rds eyes taken at P24 without perfusion fixation, were snap frozen 

immediately and then fixed as the first step of the immuno-staining run. Retinal 

histological preservation was poor and microglial staining blurred and imprecise 

{figure 2.1)

Figure 2.1 Fixation method was of utmost importance in obtaining clear 

immunohistochemical results. Two retinal sections are shown counterstained with 

haematoxylin and immunohistochemically stained for F4/80 for microglial detection. 

Snap freezing of the tissue without fixation and subsequent fixation in 1 % 

paraformaldehyde prior to staining led to poor histological preservation and smudged 

cellular outlines on immunostaining for the cell surface marker (a). Perfusion fixation 

with PLP fixative followed by further ex-vivo fixation and sucrose cryoprotection 

gave excellent results (b). Scale bar 20 pm.
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Periodate-Lysine-Paraformaldehyde (PLP) fixative preparation

To prepare 300 ml of PLP with 2% paraformaldehyde and 0.05% glutaraldehyde

1) Mix: 112 ml 0.2M L -ly s in e

75 ml 0.2M phosphate buffer pH 7.4 

13 ml water 

Adjust to pH 7.4

2) Prepare separately: 6g paraformaldehyde in 80 ml water

Add 100-150 pi 10M NaOH 

Stir until dissolved

Add 5 ml 0.2M phosphate buffer pH 7.4

Check pH and adjust to 7.4

Adjust to 100 ml with water

Add 640 mg sodium periodate and stir to dissolve

3) Mix both solutions and add 300 pi 50% glutaraldehyde.
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Cutting of Frozen Tissue Sections

Preparation o f  microscope slides

76 mm x 26 mm glass microscope slides were coated with Poly-L-Lysine (Sigma, 

Poole, UK) to ensure adhesion of tissue sections, and thus prevent deterioration and 

loss of sections during the immunohistochemical staining process. The manner of 

coating of the slides is critical to section adhesion, particularly with sections through 

an eye which consist of concentric layers of very thin tissue more prone to detachment 

than homogenous tissues such as spleen and thymus. The manufacturer’s instructions 

on Poly-L-Lysine coating should be followed to the letter and this is described:

A solution of 0.01% Poly-L-Lysine was prepared by diluting 22 ml of 0.1% stock 

solution in 200 ml distilled water. Racks holding 25 slides were immersed in the 

solution for no less than 5 minutes and then dried in a 37° Celsius incubator overnight. 

With this method excellent section adhesion was obtained.

It was found to be critical, however that only 200 slides are used per 200 ml of diluted 

Poly-L-Lysine (0.01%) solution, since the coating efficacy reduces after this number. 

Inadvertent overuse of Poly-L-Lysine solutions (i.e. coating of over 200 slides) led to 

significant problems of section detachment during staining in the early part of the 

project. Furthermore, an alternative method of coating, commonly used for paraffin 

embedded section adhesion, which involves wiping of stock Poly-L-Lysine solution 

over the slides with a tissue was found to lead to inadequate section adhesion. This 

method may be adequate for paraffin embedded sections because they adhere more 

strongly to glass slides.
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Frozen Sectioning

A Reichert-Jung (now Leica Microsystems Nussloch GmbH, Wetzlar, Germany) 

cryostat was used for the cutting of sections from the frozen tissue blocks. Blocks 

were retrieved from the -70°C freezer and allowed to warm to -20°C before mounting 

on a metal plate with further OCT. Sections were cut at -20°C, and after initially 

testing various thicknesses, 12 pm was used as this was found to provide the best 

morphology. Eyes were cut in the antero-posterior plane. Tissue sections were 

collected on the Poly-L-Lysine coated glass microscope slides and allowed to dry for 1 

to 4 hours before staining or storage in sealed containers with silica gel at -70°C. 

Generally only the central portion of the retina (i.e. those sections passing close to or 

through the optic nerve head) was used for immuno-staining and therefore, as much as 

was possible, this was the region of the eye sectioned.

Early in the project, sections were collected sequentially on the slides, such 

that each slide would hold three adjacent sections. This led to redundancy of some 

sections when cell counting was carried out, since it was deemed inappropriate to 

count adjacent sections. Therefore the first and third on each slide could be counted, 

while the second (middle) section could not.

Later, most eyes were cut onto 16 slides with 4 sections per slide. The first

thsection would be applied to slide 1, the second to slide 2 and so on until the 17 

section was applied to slide 1 again. This sequence continued until 64 sections had 

been cut, with each slide having 4 widely distributed non-adjacent sections, giving a 

better representation of the whole tissue and allowing four sections to be counted per 

slide. Care was taken not to count adjacent numbered slides (e.g. slide numbers 3 and

4) for the same immunohistochemical stain.
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Immunohistochemical and Immunofluorescent Staining

Reaeents

Phosphate Buffered Saline (PBS)

Bovine Serum Albumin (BSA, 2% and 0.1% in PBS, Sigma, Poole, UK)

Triton X-100 (Sigma, Poole, UK)

Sodium citrate (BDH, Poole, UK)

Hydrogen peroxide 3% (Sigma, Poole, UK)

Methanol (BDH, Poole, UK)

Elgastat water

Avidin-biotin peroxidase complex (ABC kit, Vector, Burlingame CA, USA) 

Diaminobenzidine peroxidase substrate (DAB, Vector, Burlingame CA, USA) 

3-amino-9-ethylcarbazole peroxidase substrate (AEC, Vector, Burlingame CA, USA) 

Levamisole (Sigma, Poole, UK)

NBT/BCIP (Nitroblue Tetrazolium Chloride / 5-Bromo 4-chloro 3-indolyl phosphate) 

tablets (Roche Diagnostics, Lewes, UK

Gill’s Haematoxylin (number 2, Thermo Shandon, Pittsburg PA, USA)

Histoclear (National Diagnostics, Atlanta GA, USA)

Histomount (National Diagnostics, Atlanta GA, USA)

Vectashield mounting medium with DAPI (4’,6 diamidino-2-phenylindole) (Vector, 

Burlingame CA, USA)

Normal Sera for Blocking Solutions

Unless otherwise stated, normal serum was obtained from Vector. Serum was used 

from the animal in which the secondary antibody was generated, to block unwanted 

binding prior to addition of the primary antibody.
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Primary Antibodies

The primary antibodies used in this project are described in table 2.1 and 2.2. 

Table 2.1: Mouse Myeloid Cell Surface M arkers

Antigen Host Mono/polyclonal Cat No/clone Dilution Source

F4/80 Rat Monoclonal MCAP497/C1:A3-1. 1:50-200 Serotec, Oxford, UK

F4/80:Biotin Rat Monoclonal MCA497B/C1:A3-1. 1:5 Serotec, Oxford, UK

Sialoadhesin Rat Monoclonal MCA884/3d6.112 1:250 Serotec, Oxford, UK

C D llb Rat Monoclonal MCA74G/M1/70. 1:50 Serotec, Oxford, UK

C D llc Hamster Monoclonal MCA1369Z/N418. 1:100 Serotec, Oxford, UK

CD205 Rat Monoclonal MCA949/NLDC-145. 1:10 Serotec, Oxford, UK

MHC class II Rat Monoclonal 556999/M5-114.15.2 1:200 Pharmingen, Oxford, UK
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Table 2.2: Intracellular Markers

Antigen Host Mono/polyclonal Cat No/Clone Dilution Source

iNOS Rabbit Polyclonal AHP30 / 1:2000 Serotec, Oxford, UK

Nitrotyrosine Rabbit Polyclonal 06-284 / 1:200 Upstate Biotech, 
Lake Placid NY, 
USA

Proliferating 
Cell Nuclear 
Antigen 
(PCNA)

Mouse Monoclonal M0879/PC10 1:250 DAKO, Glostrup, 
Denmark

Cleaved 
Caspase 3

Rabbit Polyclonal Aspl75 / 1:200 Cell Signalling 
Technology, Beverly 
MA, USA

Secondary antibodies

For immunohistochemistry, biotinylated secondaries were used and were acquired 

from Vector (Burlingame CA, USA). For immunofluorescence, fluorochrome (FITC 

and TRITC) conjugated secondary antibodies were used from Jackson 

Immunoresearch (West Grove PA, USA). Antibodies not already pre-absorbed for 

mouse, were absorbed by the addition of 20 pi of normal mouse serum per ml of 

diluted secondary antibody.

Protocols

During this project, a large number of variations of immunohistochemical and 

immunofluorescent staining were used, which will be described in each chapter in
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turn. However, the basic techniques used for immunohistochemistry for cell surface 

markers and apoptosis detection by terminal deoxynucleotidyl transferase (TdT)- 

mediated dUTP nick end-labeling (TUNEL) are described here.

Immunohistochemical detection of cell surface markers using a peroxidase-based 

detection system

1) Slides out 30-60 minutes to dry

2) Encircling of sections with ‘Immedge’ hydrophobic pen

3) Wash 20 min in PBS

4) Block endogenous peroxidase activity with 0.3% hydrogen peroxide in 

methanol for 15 min

5) Wash 2x5 min in PBS

6) Blocking serum 1.5% in 2% BSA for 30 min

7) Tip off excess blocking serum and add Primary antibody diluted in 2% PBSA 

for 2 hours at room temperature or overnight at 4°C

8) Wash 2x5 min in PBS

9) Secondary biotinylated antibody diluted 1:200 in 0.1 % BSA

10) Wash 2x5 min in PBS

11) Add ABC for 30 min

12) Wash 2x5 in PBS

13) Add DAB for 2-5 minutes (checking for development)

14) Rinse in PBS then into running water for 3 min

15) Counterstain with haematoxylin

16) Running water for 3 min

17) Dehydrate sections in alcohols: 75% Alcohol 2min, 100% Alcohol 2x2 min

18) Immerse in Histoclear 2x2 min.

19) Apply Histomount and cover with cover slips
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Apoptosis detection by terminal deoxynucleotidyl transferase (TdT)- 

mediated dUTP nick end-labeling (TUNEL)

A: Immunohistochemical detection using In Situ Cell Death Detection Kit, 

TUNEL (Alkaline phosphatase method), Roche Diagnostics, Lewes, UK

1) Slides out 30-60 minutes to dry

2) Encircling of sections with ‘Immedge’ hydrophobic pen

3) Wash 30 min in PBS

4) Permeabilise cells by immersion of slides in 0.1 %Triton X-l 00 in PBS 

containing 0.1% sodium citrate for 2 minutes

5) Wash 2x5 min in PBS

6) Add TUNEL mixture 60 min at 37°C

7) Wash 2x5 min in PBS

8) Add converter solution 30 min at 37°C

9) Wash 3x5 min in PBS

10)NBT/BICP (1 tablet in 10ml of elgastat water containing ImM Levamisole*) 

10 min

11) PBS wash 5 min then running water 2 min

12) Counterstain with methyl green

13) Dehydrate sections in alcohols: 75% Alcohol 2 min, 100% Alcohol 2x2 min

14) Immerse in Histoclear 2x2 min.

15) Apply Histomount and cover with cover slips

16) Allow to dry overnight

* Levamisole, a blocker of endogenous alkaline phosphatase activity within the tissue 

being stained, was found to reduce unwanted background staining.
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B: Immunofluorescent detection using In Situ Cell Death Detection Kit, TUNEL 

TMRred (Tetramethylrhodamine), Roche, Lewes, UK

1) Slides out 30-60 minutes to dry

2) Encircling of sections with ‘Immedge’ hydrophobic pen

3) Wash 30 min in PBS

4) Permeabilise cells by immersion of slides in 0.1 % Triton X-100 in PBS 

containing 0.1% sodium citrate for 2 minutes

5) Wash 2x5 min in PBS

6) Add TUNEL mixture 60 min at 37°C in dark

7) Wash 3x5 min in PBS in dark

8) Mount with Vectashield mounting medium with DAPI and cover with 

coverslip. Stored in dark until viewed by fluorescence microscopy.

Controls

Appropriate negative and positive controls were used in all experiments. Negative 

controls included both slides treated with no primary antibody and also slides treated 

with isotype controls. Isotype controls and positive control tissues used for each 

antibody are detailed in table 2.3 and illustrated in figure 2.2. As much as possible, 

slides stained for a particular marker and to be compared with each other, were 

immunohistochemically processed the same time to avoid variations in staining 

intensities between runs biasing results.
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Figure 2.2 Positive controls, a, F4/80 on splenic macrophages (identical to CD1 lb);

b, sialoadhesin on splenic macrophages; c, MHC class II on splenic leukocytes; d, 

CD I lc on splenic dendritic cells; e, CD205 on thymic dendritic cells; f, CD4 on 

splenic T lymphocytes; g, CD8 on splenic T lymphocytes; h, B220 on splenic B 

lymphocytes; i, PCNA on thymocytes; j, iNOS on thymic dendritic cells; k, 

nitrotyrosine on thymocytes; 1, activated caspase 3 on apoptotic thymocytes; m, 

TUNEL positive (apoptotic) thymocytes. Counterstain: haematoxylin, scale bar: 

200pm (except on e, j and k: 20pm).
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Table 2.3: Isotype and positive controls

Antibody Positive Control Tissue / Cell Isotype negative control

F4/80 Spleen / macrophages Rat IgG2b, Serotec MCA1125

Sialoadhesin Spleen / marginal zone macrophages Rat IgG2a, Serotec MCA 1212

C D llb Spleen / macrophages Rat IgG2b, Serotec MCA1125

C D llc Spleen or thymus / dendritic cells (DCs) Hamster IgG, Serotec MCA1367

CD205 Thymus / DCs Rat IgG2a, Serotec MCA1212

MHC II Spleen / B lymphocytes and DCs Rat IgG2b, Serotec MCA1125

TUNEL Neonatal thymus / apoptotic thymocytes Supplied in TUNEL Kit, Roche

PCNA Neonatal thymus / proliferating cells 
Eye / lens epithelial cells

Negative supplied with MOM kit

Nitrotyrosine Neonatal thymus / thymocytes* Rabbit Ig, Serotec, PRABP01

iNOS Neonatal thymus / DCs* Rabbit Ig, Serotec, PRABP01

Caspase 3 Neonatal thymus / apoptotic thymocytes Rabbit Ig, DAKO, X0903

* Dendritic cells within the neonatal thymus effect clonal deletion of autoreactive 

thymocytes through NO(Tai et al. 1997; Aiello et al. 2000), and thus thymus from 

P14 mice was used as a positive control for iNOS and for nitrotyrosine (found in 

thymocytes undergoing NO-mediated apoptosis).
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Microscopy and Quantification

All retinal sections that underwent immuno-staining were analysed by light or 

fluorescent microscopy. Data collected during this research was predominantly in the 

form of cell numbers counted in retinal sections. For this purpose, slides were coded 

so as to blind the observers to the type of the tissue and the antibody used. Three 

observers were used during the project: Professor Andrew Dick (supervisor), Dr 

Conor Murphy (research colleague) and Dr Edward Hughes. Distinct criteria and 

parameters were first defined for cell counting and are listed below. In retrospect the 

gold standard of quantification would have involved some estimation of intra- and 

inter-observer error, which should be less than 10%. This was not done but inter­

observer error will not have been an issue in individual experiments since a single 

observer was assigned an entire experiment, and therefore counted all the slides for 

both treated and control animals.

Sections counted

Two to eight non-adjacent sections per antibody, per eye were counted depending on 

the experiment (this will be elaborated upon in each chapter). Only sections with 

adequate histological preservation were used.

Resion counted

For the majority of markers, positively stained cells were counted in the most central 

1.2 mm length of retina in the section (centred in the optic nerve head or posterior 

pole of the eye). This length of retina was measured using an eye-piece graticule 

measuring 300 pm, four lengths of which were used as the target region (figure 2.3).
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This ensured that bias resulting from regional variations in cell density was 

minimised.

For two double immunofluorescent experiments, F4/80 / TUNEL and TUNEL 

/ Proliferating Cell Nuclear Antigen (PCNA), the entire retinal section was counted 

and results expressed and cells per mm2. The area of each retinal section was 

measured using an image analysis system (Quantimet; Leica Cambridge, Cambridge, 

UK).

Denotes length 
of retina counted

Lens

0.6 mm

Retina
Optic Nerve Head

Figure 2.3 Schematic depiction of the region of retina analysed during most cell 

counts.

Defining a positive cell

All observers adhered to the same criteria for identifying cells that were positively 

stained. In the case of retinal microglia, the marked increase in their number and their 

ramified morphology precluded any attempts at counting cell numbers within the 

retinal parenchyma. As sub-retinal microglia were rounded, individual cell counts 

could be obtained, which corresponded to the semi-quantitatively assessed increase in
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microglial numbers throughout the retina. Furthermore the sub-retinal space has been 

deemed by previous observers to be the destination of microglia as they migrate 

through the retina during retinal degeneration (towards the site of injury), so the 

counting of cells specifically in this location was considered to provide a good 

indication of the microglial response. Positively stained microglia were counted if 

they contained a nucleus or had a large enough area of cytoplasm to do so. Small 

segments and tufts of positively stained cytoplasm/membrane were not counted 

(figure 2.4a).

In the case of TUNEL staining, a photoreceptor nucleus (i.e. a nucleus 

residing in the outer nuclear layer) was counted as positive if it was densely stained 

and had evidence o f staining throughout the nucleus. Nuclei that were encircled by a 

ring of peripheral staining without central nuclear staining were not counted {figure 

2.4b).

Figure 2.4 Defining a positive cell. Positively stained sub-retinal microglia were 

counted if they contained a nucleus or were large enough to do so (a, arrow). Tufts of 

positively stained membrane/cytoplasm were not counted (a, box). For TUNEL 

stained tissue, nuclei within the outer nuclear layer were counted if the were 

positively stained throughout the nucleus (b, arrows). A perinuclear halo was not 

considered to represent a TUNEL-positive cell (b, arrowheads).
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Data Analysis and Statistics

Cell count data were entered into Microsoft Excel spread sheets. A mean cell count 

for each eye was obtained by taking the mean of the counts obtained from sections 

counted from that tissue. A mean of these means was then taken to give a value 

representative of a group of eyes with common features (e.g. same time point, same 

intervention etc.). Data are expressed as mean number o f cell/unit length or area +/- 

standard error of the mean (SEM), and an independent samples T-test was used to 

determine statistical significance of differences between groups, where normality of 

the data was assumed and p<0.05 was considered significant. For this purpose a 

statistics package from SPSS (Chicago IL, USA) was used.
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Ch apter  Three

A  D e s c r ip t iv e  S tu d y  o f  M ic r o g l i a l  B e h a v io u r  D u r in g  

R e t in a l  D e g e n e r a t io n  in  t h e  r d s  M o u se

The first phase of this research was to describe the changes in microglial phenotype 

and activity during photoreceptor degeneration in the rds mouse. In the past the 

prodigious microglial reaction during photoreceptor degeneration has been noted, but 

there has been no detailed investigation of their functionality in these circumstances 

beyond a well characterised phagocytic role. Furthermore, although the temporal 

characteristics of photoreceptor apoptosis in this and other mouse models have been 

described(Chang et al. 1993; Portera-Cailliau et al. 1994), this has never been closely 

compared to the chronology of microglial activity. The earliest reports by Chang et al 

and Portera-Cailliau et al, documenting apoptosis as the mechanism of photoreceptor 

death in rds mice, noted a monophasic peak in photoreceptor death at P I6-18 in rds 

mice, a finding since corroborated by other investigators studying the rds model(Ali et 

al. 1998). Should microglia be responsible for, or contributing to, photoreceptor 

demise one would expect that the peak in microglial activity should coincide with or 

directly precede any peak in photoreceptor apoptosis.

In this section we have therefore characterised the time course of microglial 

numbers, cell surface markers and markers of potential cytotoxicity during the most 

active phase of photoreceptor degeneration. Since the major mechanism of microglial 

cytotoxicity is through the production of nitric oxide (NO) and reactive oxygen 

species, we have concentrated on the ability of microglia to produce NO (through
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inducible nitric oxide synthase, iNOS) and oxidative protein damage as indicated by 

nitrotyrosine accumulation in target tissue.

In terms of cell surface markers, it is well described that microglia are able to 

rapidly up-regulate their expression of certain molecules when activated, and while 

there is no specific marker of microglial ‘activation’ per se, knowledge of the 

functions of some of these markers provides clues to the behaviour of the microglia 

bearing them. The markers used are described below.

F4/80, first described by Austyn and Gordon(Austyn and Gordon 1981). The F4/80 

antibody is a mouse macrophage-specific rat monoclonal IgG2b. The antigen 

recognised by this antibody is a 160kD glycoprotein with unknown function (the 

knockout mouse has normal phenotype(McKnight and Gordon 1998)), although it has 

some structural similarities to epidermal growth factor (EGF) and the family of Tm7 

(seven transmembrane domain) hormone receptors(McKnight et al. 1996; Hume et al.

2002). There is significant (68%) sequence homology between the F4/80 antigen and 

human EGF module-containing mucin-like hormone receptor 1 (ERM1) and this is 

thought to be the possible human homologue of F4/80(McKnight and Gordon 1998). 

The epitope that F4/80 recognises has the advantage of being considerably resistant to 

fixative and, as a result the antibody has been extensively used as a marker of murine 

macrophages, including microglia of the CNS and retina(Hume et al. 1983; Perry and 

Gordon 1991).

Sialoadhesin, a member of the immunoglobulin superfamily and also known as 

CD 169, is one of a group of macrophage-restricted cell surface sialic acid receptor 

proteins named siglecs (reviewed by Munday et <a/(Munday et al. 1999)) which has a 

high degree of conservation between rodents and humans. Although sialoadhesin is
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not thought to be a phagocytic receptor(Crocker and Gordon 1986), its expression may 

facilitate other phagocytic receptors(Munday et al. 1999) and mediate cell-cell and 

cell-matrix interactions(van den Berg et al. 2001). Sialoadhesin is expressed on a 

discreet subset of macrophages mainly in secondary lymphoid organs. In the mouse 

spleen it is present only on macrophages in the marginal zone (figure 2.3), which may 

be involved in antigen handling and lymphocyte interactions(Martinez-Pomares et al. 

1996; Steiniger et al. 1997; Geijtenbeek et al. 2002). Sialoadhesin is also expressed in 

other tissues under physiological conditions in both humans and mice, such as liver, 

gut and lung, and it is highly expressed in the inflamed joints of patients with 

rheumatoid arthritis(Hartnell et al. 2001). It is however notably absent, in both 

humans and mice, from CNS parenchymal microglia which reside behind the 

protection of the blood-brain barrier(Perry et al. 1992; Hartnell et al. 2001); and there 

is evidence that contact with a serum agent is a prerequisite of sialoadhesin 

expression(Crocker et al. 1988; Perry et al. 1992).

C D llb , also known as the complement receptor 3, is a p integrin that functions as a 

myeloid cell phagocytic receptor for complement opsonised particles and for direct 

interaction with some microbes (e.g. mycobacterium tuberculosis)(Gordon 2002). It is 

also involved in the clearance of apoptotic cells by macrophages and the recruitment 

of myeloid cells to sites of inflammation through binding to ligands such as 

intercellular adhesion molecule (ICAM-l)(Diamond et al. 1990).

C D llc , also known as complement receptor 4, is another p integrin involved in inter­

cellular adhesion and endothelial trans-migration, and is often used as a marker of 

dendritic cells, which are the predominant cell type expressing this 

molecule(0'Doherty et al. 1994; De La Rosa et al. 2003). It may however also be
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expressed on other myeloid cells such as monocytes, macrophages(Mevorach et al. 

1998; Rezzonico et al. 2000) and microglia, especially when the latter are 

activated(Ulvestad et al. 1994; Dick et al. 1997; Schermer and Humpel 2002).

MHC class II, the key molecule of antigen presentation, may be expressed 

constitutively by human and rodent microglia(Lassmann et al. 1991; Penfold et al. 

1993), but this is usually at low levels until inflammatory conditions prevail, during 

which microglia up-regulate their expression of MHC class II ten to twenty- 

fold(Sedgwick et al. 1998). As discussed in the introduction, the expression of MHC 

class II molecules by parenchymal microglia may provide for an immunoregulatory 

role rather than invoking primary immune responses.

CD205, also known as DEC205, is an endocytic receptor on dendritic cells 

(particularly the ‘lymphoid’ subset) and thymic epithelial cells(Jiang et al. 1995) that 

is involved in antigen processing. Like CD1 lc  it is used as a marker of dendritic cells, 

but unlike CD1 lc, there are no reports of CD205 expression by microglia or 

macrophages.

PCNA (proliferating cell nuclear antigen), also known as cyclin, is a 36 kDa

auxilliary protein for DNA polymerase 8, tethering the enzyme to its substrate by 

encircling the DNA and thereby increasing the processivity of the polymerase action.

It is expressed by vertebrate cells undergoing DNA replication in S phase of the cell 

cycle but is absent or at nearly undetectable levels in resting cells (in G0 phase)(Celis 

et al. 1987). Consequently it is now widely used as a marker of cell division in a 

variety of tissues and species, including murine microglia(Sedgwick et al. 1998).
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iNOS. The nitric oxide synthase (NOS) isoenzymes are responsible for catalysing the 

production of nitric oxide (NO) from L-arginine. NO has a wide repertoire of biologic 

functions, and when released by endothelium (eNOS) and neurones (nNOS) it has 

important effects as a regulator of vascular tone and as a neurotransmitter respectively. 

It is however the inducible isoenzyme (iNOS) found in many cells but most 

prominently in macrophages and other myeloid derived cells that is of interest in terms 

of cytotoxicity. Whilst iNOS and NO are cornerstones of the innate immune system 

with vital defence roles against bacteria, fungi and tumours, NO also has unwanted, 

damaging effects on tissues and mediates cellular apoptosis through the production of 

DNA strand breaks(Muhl et al. 1996; Brune et al. 1999). Microglia readily upregulate 

expression of iNOS and production of NO under certain pro-inflammatory 

conditions(Possel et al. 2000) and evidence suggests that this leads to exacerbation of 

degenerative CNS disease(Liberatore et al. 1999; Law et al. 2001). Furthermore, after 

pharmacological inhibition of iNOS and in iNOS deficient mice, reduced neuronal loss 

is seen in both degenerative and inflammatory CNS disease(Nakanishi et al. 2001; 

Sasaki et al. 2001) and during experimental uveitis in rats(Thillaye-Goldenberg et al. 

2000; Liversidge et al. 2002).

Nitrotyrosine. Tyrosine nitration is a covalent protein modification resulting from the 

addition of a nitro (-NO2) group onto tyrosine residues, with nitric oxide providing the 

source of nitrogen(Ischiropoulos 1998). Anti-nitrotyrosine antibodies have been used 

extensively in a wide variety of tissues to detect NO and ROS mediated protein 

damage.
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M e th o d s

Experimental design

A panel of antibodies were applied to whole eye sections from rds mice aged 8,14,16, 

17,19,21, 30 and 40 days (P8, P I4, etc). These time points cover the most aggressive 

phase of photoreceptor loss in the rds mouse. Three eyes were used for the P8, PI 4, 

P30 and P40 time points, and four eyes for the time points spanning peak disease 

activity: PI 6, P I7, P I9, P21. At least two non-adjacent sections per eye were counted 

for each stain. TUNEL detection of photoreceptor apoptosis was performed and 

compared with microglial activity in the same eyes. For MHC class II staining two 

eyes were used per time point.

Eyes from wild type CBA mice aged P8, P I4, P21, P30 were also analysed 

with some stains for comparison with the rds. In particular, quantitative comparison 

was made at these time points for the presence of proliferating (dividing) microglia as 

detected by double staining for F4/80 and PCNA. For TUNEL staining only one wild 

type eye was used for P I4, P21 and P30.

In addition two eyes from P3 CBA wild type and rds mice were analysed for 

microglial markers F4/80 and CD1 lb. Although initially TUNEL was used at this 

time point, quantitation of photoreceptor apoptosis was not possible due to the 

unification of the nuclear layers at this stage of development.

Immunostaining protocols

Single colour immunohistochemistry was employed as described in the previous 

chapter. For these experiments, the alkaline phosphatase immunohistochemical
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TUNEL method was used. Variations on the protocols described above were as 

follows:

iNOS and nitrotyrosine

5% PBSA used as diluent for primary and secondary antibodies. Incubation times: 

Block 60 minutes, 1° antibody 30 minutes, 2° antibody 15 minutes.

Reason: to reduce background staining.

F4/80 / Sialoadhesin two colour immunofluorescence

1) Slides out 30-60 minutes to dry

2) Encircling of sections with ‘Immedge’ hydrophobic pen

3) Wash 30 min in PBS

4) Blocking serum (goat, 15ul/ml 2% PBSA) 30 min

5) Tip off excess and add Primary antibody (Sialoadhesin) diluted in 2% PBSA 

overnight at 4°C

6) Wash 2x5 min in PBS

7) Goat anti rat FITC diluted in 0.1 % PBSA 60 min

8) Wash 2x5 min in PBS

9) Biotinylated F4/80 primary in 2% PBSA for 2 hours

10) Wash 2x5 min in PBS

11) Streptavidin-TRITC 1:100 in 0.1% PBSA 60 min

12) Wash 2x5 min in PBS

13)DAPImount
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F4/80 / PCNA two colour immunohistochemistry

The PCNA antibody is a mouse monoclonal IgG. To reduce background staining of 

endogenous immunoglobulin while using this antibody on mouse tissue, a special kit 

from Vector, the MOM (mouse-on-mouse) kit was employed in this protocol.

1) Slides out 30-60 minutes to dry

2) Encircling of sections with ‘Immedge’ hydrophobic pen

3) Wash 30 min in PBS

4) Block endogenous peroxidase activity with 0.3% hydrogen peroxide in 

methanol for 15 min

5) Wash 2x5 min in PBS

6) Blocking serum 1.5% in 2% BSA for 30 min

7) Tip off excess blocking serum and add Primary antibody diluted in 2% PBSA 

overnight at 4°C

8) Wash 2x5 min in PBS

9) Secondary biotinylated antibody diluted 1:200 in 0.1 % BSA

10) Wash 2x5 min in PBS

11) Add ABC for 30 min

12) Wash 2x5 in PBS

13) Add AEC for 30 minutes (checking for development)

14) Rinse in PBS 3 minutes then into running water briefly

15) Avidin block 15 min

16) Brief wash in PBS

17) Biotin block 15 min

18) Wash 2x5 min in PBS

19) Add 0.2% Triton-X 100 in PBS to slides for 1 minute to permeabilise

20) Wash 2x5 min in PBS

21) Vector MOM kit blocking serum 60 min

22) Wash 2x2 min in PBS

23) Add MOM diluent 5 min

24) Tip off excess and add mouse-anti-mouse antibody diluted in MOM diluent 

for 30 min

25) Wash 2x2 min in PBS
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26) Add secondary antibody from MOM kit for 10 min

27) Wash 2x5 min in PBS

28) Add ABC for 30 min

29) Wash 2x5 min in PBS

30) Add DAB for approximately 90 secs (checking for development)

31) Rinse in PBS then into running water 2 min

32) Dip in haematoxylin, then running water 3 min

33) Aqueous mount (Dakomount, DAKO)*

*AEC is a red, alcohol-soluble substrate so alcohol dehydration is not possible.
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R esults

General observations

The histopathological hallmarks of the rds model are the absence of photoreceptor 

outer segments and gradual thinning of the retina due to loss of photoreceptor from the 

outer nuclear layer. In the wild type outer segments are seen from about P12 and 

increase in length until fully formed at about one month.

Time Course Of Photoreceptor Apoptosis

TUNEL staining revealed a significant peak in photoreceptor apoptosis on P16 (table 

3.1 and figure 3.1, 3.2), in keeping previous findings(Portera-Cailliau et al. 1994; Ali 

et al. 1998). Only scattered apoptotic photoreceptors were present at P8 and after 

P21, when there is a level of continued photoreceptor apoptosis not seen in the wild 

type. There was significantly more apoptosis at P16 compared to P21 (24.2+/- 5.2 

and 7.6+/-1.4 respectively, p=0.04) and at P I7 compared to P21 (15.8 +/- 2.6 and 

7.6+/-1.4 respectively, p=0.04).
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Age Mean number 
apoptotic 

photoreceptors 
per 1.2mm retina

Standard
Deviation

Standard 
Error of the 

Mean

P8 3.5 2.78 1.61

P14 8.4 2.69 1.56

P16 24.2 10.37 5.19

P17 15.8 5.12 2.56

P19 10.6 5.43 2.71

P21 7.6 2.86 1.43

P30 2.7 1.97 1.14

P40 1.9 1.54 0.89

Table 3.1: Number of apoptotic photoreceptors in rds retina
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Figure 3.1. Time-course of photoreceptor apoptosis (TUNEL positivity - mean +/- 

SEM). Apoptotic rate peaks at the 16th post natal day (PI6), significantly higher than 

at P21 (* p=0.020).
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Figure 3.2 Immunohistochemical TUNEL staining of retina at P 16, the peak of 

photoreceptor apoptosis in rds mice. Dark blue stained nuclei in the outer nuclear 

layer (TUNEL positive) are undergoing apoptosis. Counterstain: methyl green, scale 

bar: 100pm.

In the wild type only very occasional apoptotic photoreceptors were found at P14 

(approximately 3 per entire retina) but none were found at later times, confirming 

previous findings (Hume et al. 1983), although a recent study on wild type C57B1/6J 

mice found this ‘developmental’ photoreceptor loss to be more substantial at around 

P 16 with infrequent photoreceptor apoptosis continuing after 1 month(Mervin and



Increase in retinal and sub-retinal microglia during rds degeneration

At P3 no difference between wild type and rds mice could be found in terms of retinal 

morphology or microglial numbers. The retina at this age contains a ganglion cell 

layer and another common nuclear layer (figure 3.3a,b) which divides to become the 

inner and outer nuclear layer by P8.

Figure 3.3 F4/80 immunohistochemistry at P3 in wild type (rds identical). The 

retina is still undergoing the final stages of development, with separation of the 

nuclear layer yet to occur. Hyaloid remnants are seen within the vitreous cavity near 

the optic nerve head, with a dense infiltration of macrophages within this 

embryological tissue (a). A modest infiltration of microglia (brown) is seen, 

predominantly in the inner retina, with occasional microglia within the common 

nuclear layer (b). Choroidal and scleral macrophages are also seen beneath the retinal 

pigment epithelium. Counterstain: haematoxylin, scale bar: (a) = 200pm, (b) = 20pm.

In wild type and rds animals microglia expressing F4/80 and CD1 lb were found 

predominantly in the inner retinal layers, with a few scattered within the common 

nuclear layer. In the wild type at later time points microglia were found only in the 

inner retinal layers, and, although initially in slightly increased numbers, a steady 

state is reached at around P21 when their numbers are few {figure 3.4). In the rds
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mouse however, even as early as P8 microglia were present in greater numbers in the 

inner retinal layers and were also seen in the outer layers and in the sub-retinal space 

(7.1 +/- 1.0) (figure 3.4). The number of retinal microglia rose markedly and their 

distribution during the time course suggested that there was a migration from the inner 

to the outer retina, where their numbers peaked at P21 (20.3 +/- 2.7) and thereafter fell 

away. At P21 the outer retinal surface was often coated with a lining of cells adherent 

to the vestigial photoreceptor outer segments. By P30 the number of parenchymal 

and sub-retinal microglia is reduced (figure 3.4) but are still present at P40. The time- 

course of microglial numbers is shown in table 3.2 and the temporal relationship to 

photoreceptor apoptosis in figure 3.5 which shows that there is a distinct pattern of an 

apoptotic peak preceding maximal microglial numbers by at least five days. The 

number of sub-retinal microglia at P21 is significantly greater than at PI 6 (p<0.01), 

P17 (p<0.01) and P19 (p<0.05).

P<0.01

P<0.01

P<0.05__r
i— _► 

 ►

Table 3.2 Number of Sub-retinal Microglia in rds Retina

Age Mean number sub- 
retinal microglia per 

1.2mm retina

Standard
Deviation

Standard 
E rro r of the 

Mean

P8 7.1 1.0 0.6

P14 6.9 0.8 0.5

P16 10.8 4.1 2.0

P17 10.9 3.8 1.9

P19 10.6 2.6 1.3

P21 20.3 2.7 1.4

P30 7.9 3.0 1.7

P40 7.9 1.9 1.1
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Figure 3.4 (opposite) Comparison of distribution and numbers of F4/80-positive 

(brown) retinal microglia in wild type and rds mice aged P8-P30. Microglia appear to 

migrate from the inner to the outer retinal layers during rds photoreceptor 

degeneration and may be seen in the sub-retinal space as early as P8. Their numbers 

peak at P21, when th ey  form an almost continuous layer of cells adherent to the 

vestigial photoreceptor outer segments. Sub-retinal microglia are not seen in the wild 

type and by P21, very few microglia remain and are restricted to the inner layers. A 

decent layer of photoreceptor outer segments is seen in the wild type by P21, but not 

in the rds retina. Counterstain: haematoxylin, scale bar: 20pm.
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Figure 3.5. Temporal relationship between photoreceptor apoptosis and sub-retinal 

microglial numbers (mean +/- SEM). TUNEL staining of photoreceptors peaks at P16 

while microglial numbers (stained for F4/80) peak at P21. Microglial numbers at P21 

were significantly higher than at P I6, P I7 and P I9. * p<0.05, ** p<0.01 relate to 

microglial numbers when compared with P21.

Changes in microglial morphology

Four distinct morphological identities can be found for cells expressing F4/80. 

Associated with blood vessels in the inner retinal layers there were elongated cells 

which were curved and slender; these are likely to be the perivascular macrophages or 

cells entering the retina from the intravascular compartment {figure 3.6a). Within the 

plexiform layers parenchymal microglia adopted a typically ramified, highly arborised 

form {figure 3.6b), which has in the past been ascribed to a ‘resting’ state. The
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processes of such ramified microglia were often extremely complex and might span 

60 pm or more. En route from the inner retinal layers to the outer retina and sub- 

retinal space the microglia are required to cross the inner and outer nuclear layers, and 

during this transit they assumed a rod-like morphology, with few processes, often 

extending from the aspect of a nuclear layer to the outer (figure 3.6c). Finally, in the 

sub-retinal space microglia became more rounded and amoeboid in appearance (figure 

3.6d,e), this morphology is thought to be associated with an activated and highly 

phagocytic state. In accordance with this, sub-retinal microglia/macrophages could 

often be seen to contain phagocytosed pigment granules shed by the RPE (figure 3.6J).
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Figure 3.6 a-d represent the four distinct morphological appearances of retinal 

microglia during rds degeneration. Curved, smooth cells were found in the inner retinal 

layers, often near blood vessels (a). Highly complex, ramified cells were found within 

the plexiform layers (b). Rod shaped microglia could be seen crossing the nuclear layers 

(c) while in the sub-retinal space an ‘amoeboid’, rounded morphology was adopted (d, e) 

where they could occasionally be seen to have phagocytosed pigment from the retinal 

pigment epithelium (f). Counterstain: haematoxylin, scale bar: 20pm.
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Expression of cell surface markers by microglia

Following the observation that there is a dramatic increase in microglia numbers and 

in particular, sub-retinal microglia with an activated morphology, we wished to assess 

if  there was any change in phenotype indicating alterations in cellular activity. 

Macrophages display marked heterogeneity. They adapt to the local environment 

which regulates their development, differentiation, proliferation and activation. 

Monoclonal antibodies directed against cell surface antigens can highlight changes in 

macrophage function.

Throughout the examined time-course (P8-P40), microglia in both wild-type 

and rds retina express F4/80 and CD1 lb. MHC class II expression was found 

extremely infrequently and only on microglia in close proximity to the optic nerve 

head at P I6. CD1 lc, a marker found on highly activated microglia and on dendritic 

cells, was only weakly expressed by a very small number o f sub-retinal cells at the 

later time-points (P30 and P40) {Figure 3.7). The dendritic cell marker CD205 

(DEC205) was not detected at any stage in the time-course.

Figure 3.7 Very occasional weakly CD1 lc positive sub retinal cells could be found. 

Counterstain: haematoxylin, scale bar: 20pm.
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Sialoadhesin (CD 169) was absent from microglia in the wild type retina at all 

time points (excluding macrophages in the hyaloid remnants at P3) (figure 3.8a-c). 

This is consistent with current opinion on the distribution of sialoadhesin positive 

macrophages(Perry et al. 1992). However at P3 sialoadhesin was expressed by 

macrophages in hyaloid remnants at the optic nerve head (figure 3.8a). At later times 

this optic nerve head sialoadhesin expression disappears but some microglia within 

the retrobulbar nerve continue to express sialoadhesin. In the rds retina, no 

sialoadhesin expression was found at P8 despite increased microglial numbers (figure 

3.8d). Indeed, only at PI 6 can a significant number of sialoadhesin positive 

macrophages be detected (2.0 +/- 2.2) contributing about 20% of the microglial 

population. At PI 6 the emergence of sialoadhesin positivity was seen predominantly 

in the inner retinal layers and around the vessels of the optic nerve head (figure 3.8e- 

g). By P21 sialoadhesin expression was florid and widespread, with approximately 

40% of microglia expressing this marker (8.9 +/- 4.3) (table 3.3 and figure 3.8h, 3.9). 

Two-colour immunofluorescence confirmed that all sialoadhesin expressing microglia 

also expressed F4/80(figure 3.10). By P40 few microglia expressed sialoadhesin 

(figure 3.8i).
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Figure 3.8 Apart from at the early stages of post-natal development when 

macrophages destroying hyaloid remnants expressed sialoadhesin (a), this marker was 

absent from the normal (wild type) retina (b, P3; c, P21). Sialoadhesin positive 

microglia (brown) could, however be seen in rds retina from P14 (d) to P16 (e-g), 

when they appeared to originate from the inner retinal layers and the blood vessels 

within the optic nerve head (e,f). By P21 there was florid and widespread expression 

of sialoadhesin from the inner retinal layers to the sub-retinal space (g). This had 

almost disappeared by P40 (h). Counterstain: haematoxylin, scale bar 20pm (except 

a, e: 200pm).
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Age Mean number sub- 
retinal sialoadhesin+ 
microglia per 1.2mm 

retina

Standard
Deviation

Standard 
Error of the 

Mean

P8 0.1 0.14 0.08

P14 0.4 0.4 0.2

P16 2.0 2.2 1.1

P17 3.1 3.0 1.5

P19 6.9 2.5 1.3

P21 8.9 4.3 2.1

P30 3.8 2.6 1.5

P40 0.7 0.6 0.3

Table 3.3 Number of Sialoadhesin Positive Microglia in rds Retina
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Figure 3.9. Sialoadhesin expression by sub-retinal rds microglia (mean +/- SEM). As 

with F4/80, peak expression occurs at P21, significantly greater than at P16 (* p<0.05).
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Figure 3.10 Two colour immunofluorescent staining for F4/80 (red) and sialoadhesin 

(green) demonstrating dual expression of these markers. Counterstain: DAPI, scale 

bar: 20pm.

No evidence of Nitric Oxide-mediated oxidative damage in rds retina

The production of nitric oxide (NO) and reactive oxygen species (ROS) is a major 

source of tissue damage following macrophage and/or microglial activation. Using 

polyclonal antibodies to inducible nitric oxide synthase (iNOS), the enzyme 

responsible for NO production, and nitrotyrosine, a marker of oxidative protein 

damage, I investigated the role of these molecules in rds retinal degeneration.

Thymus from 14 day old mice was used as a positive control for both iNOS 

(expressed by thymic dendritic cells effecting clonal deletion of autoreactive 

thymocytes through NO(Tai et al. 1997; Aiello et al. 2000)) and for nitrotyrosine, 

found in thymocytes undergoing NO-mediated apoptosis {figure 2.2). No microglia 

expressed iNOS at any point in the time course studied including the period of
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greatest microglial activity. In addition to this, no nitrotyrosine was detectable in the 

photoreceptors or any other cell in rds retina.

rds microglia proliferate in situ

Microglial numbers may rise in response to CNS pathology via in situ proliferation 

(Sedgwick et al. 1998) or by recruitment of monocytes from the circulation (Ling and 

Leong 1987; Giulian et al. 1989). An antibody to PCNA was used to determine the 

contribution of in situ proliferation to the increased numbers of retinal microglia. As 

well as neonatal thymus, an additional positive control was lens epithelial cells within 

each whole eye section, which allowed for an internal control for the strength of the 

PCNA staining. Lens epithelial cells undergo continual mitosis throughout life, but 

are particularly active in utero and in the neonatal period {figure 3.11a).

Double-staining of microglia with F4/80 and PCNA identified dividing 

microglia and showed that in both wild-type and rds mice proliferating retinal 

microglia could be found at P8 in the inner retinal layers {figure 3.11b, 3.12 and table 

3.4). These proliferating cells were often found in clusters in the ganglion cell layer. 

By P I4, very few proliferating microglia are present in the wild type and none were 

found after this time-point, reflecting the general reduction in microglial numbers. 

However there is sustained microglial proliferation in the rds retina at P14 and P21, 

when proliferating microglia can be found in the outer plexiform layer and on the 

outer retinal surface {figure 3.1 lc,d). Microglial proliferation in the rds model 

thereafter subsides and is minimal by P30.
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Figure 3.11 Two colour immunohistochemistry for PCNA (black/grey) and F4/80 

(red). A convenient internal positive control were lens epithelial cells (black nuclei, 

a). Proliferating (double-positive) microglia could be found in clusters in the inner 

retinal layers at P8 (b) in both wild type and rds retina. At later time points in rds 

mice, they could be found in the outer plexiform layer (c) and sub retinal space (d, 

two non-proliferating microglia (blue nuclei) and one proliferating microglia (black 

nucleus)). Counterstain: haematoxylin, scale bar: 20pm.
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Age wild type rds

P8 10.0 10.3

P14 0.4 11.2

P21 0 10.0

P30 0 0.3

Table 3.4 Mean Number of PCNA / F4/80 Positive (proliferating) Microglia / 
mm2 in rds and Wild Type Retina
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Figure 3.12. Comparison of retinal microglial proliferation (PCNA positivity, mean 

+/- SEM) in wild type and rds mice. Microglial proliferation is seen at P8 in rds and 

wild type equally, but while this is sustained in rds until P21, it is nearly absent by P14 

in wild type mice.
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D is c u s s io n

The pattern of photoreceptor death in the rds mouse

A dramatic wave of photoreceptor apoptosis shortly after birth is a phenomenon 

recognised by others in their study of this and other mouse models of outer retinal 

degeneration, such as the rd mouse(Portera-Cailliau et al. 1994). In this study, in 

keeping with previous reports, I found the zenith of apoptosis to occur at P16 in the 

rds mouse. As a result o f this cull, 50% of photoreceptors are lost by P42(Sarra et al. 

2001) . There is no accepted explanation for this phenomenon, but clearly in this 

model the timing occurs shortly after the opening of the lids and the production of 

opsin (both occurring at around P10-12)(Usukura and Bok 1987; Schalken et al.

1990), suggesting that phototoxicity of some sort may be implicated. Since all the 

photoreceptors have the same genetic defect, why some photoreceptors should die and 

others survive until months later is a mystery. It is not the case that rods die early and 

cones die later in this model, Sanyal et al. observed in the central retina, simultaneous 

demise of both types of photoreceptor. Mathematical analysis of the kinetics of 

photoreceptor death in this and other inherited retinal degenerations fails to support a 

theory that accumulation of toxic products leads to eventual cellular demise(Clarke et 

al. 2000). The exponential decay in rate of photoreceptor death suggests that 

genetically defective photoreceptors are susceptible to sporadic insults which lead to 

random apoptosis, initially at greater frequency due to the larger number of cells 

available.

Therefore, as this dichotomy of survival time can not be explained by intrinsic 

photoreceptor differences, we must look for extrinsic reasons such as their location
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within the outer nuclear layer. It was consistently observed following TUNEL (and 

Caspase 3) staining that the majority of the photoreceptor nuclei undergoing apoptosis 

at the peak time points were located at the inner aspect of the ONL {figures 2.4b, 5.4,

5.7a+b), and this raises the possibility that closer proximity to cells of the inner retinal 

layers, or greater distance from the choroid/RPE may be critical in dictating the fate of 

the photoreceptors. It may be possible that the more centripetal photoreceptor cell 

bodies are more prone to photic damage since incident light strikes them first.

The effect of light withdrawl and high intensity constant light conditions on 

albino and pigmented wild type and rds homozygotes was investigated by Sanyal and 

Hawkins(Sanyal and Hawkins 1986). Albino mice of both wild and rds genotypes 

underwent accelerated photoreceptor degeneration in the presence of continuous light 

exposure, signifying a natural and now well documented sensitivity of the albino 

photoreceptor. However neither wild type nor rds of pigmented background sustained 

increased photoreceptor loss in such conditions. Interestingly, rearing in total darkness 

had no protective effect on rds photoreceptors even in albino mice. Light therefore 

seems to be, at most, a trivial factor in the degeneration of this particular genetically 

defective photoreceptor.

Shortening of the outer segments in some models of photoreceptor 

degeneration led Travis et al to propose that increased proximity to the choroid led to 

photoreceptor death from oxidative damage. The pattern of photoreceptor loss 

observed in this work contradicts this hypothesis, since it is the photoreceptors furthest 

from the choroid that appear to die most frequently, raising the question whether it is 

in fact hypoxic stress that results in the demise of the most centripetal photoreceptors. 

Mervin and Stone have found that the low-level apoptosis of photoreceptors during
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post natal development in the mouse is exacerbated by hypoxia and reduced by 50% in 

hyperoxic conditions(Mervin and Stone 2002), indicating that distance from the 

oxygen-rich choriocapillaris may well be an important determinant in photoreceptor 

apoptosis.

Microglial numbers and morphology in relation to photoreceptor apoptosis

Previous studies on animal models of photoreceptor degeneration have demonstrated 

microglial activity at approximately the same time as the phase of most rapid loss of 

photoreceptors. These findings can be interpreted in two ways: either as a phagocytic 

response to photoreceptor apoptosis, with microglia being attracted to the outer retina 

by unspecified chemotactic factors (released as a result of neuronal injury) to engage 

in the clearance of dead and dying cells, a phenomenon extensively studied within the 

CNS. Alternatively, the approximate coincidence of microglial activity with a surge 

of photoreceptor death, in conjunction with a knowledge of their cytotoxic potential, 

introduces the possibility that microglia are instrumental in, or at least contributing to, 

the apoptotic loss of photoreceptors.

By closely scrutinising the period of greatest disease activity in the rds mouse I 

have demonstrated that the peak rate of photoreceptor apoptosis (PI 6 in this set of 

experiments) precedes the peak in microglial numbers by at approximately 5 days. 

These novel findings indicate that microglia are unlikely to be the perpetrators of 

photoreceptor death, in which case one would expect that the maximal microglial 

activity would exactly coincide with or even precede maximal photoreceptor 

apoptosis.
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It is possible however, that although not involved in the initial wave of 

photoreceptor cell death, an exuberant microglial response both potentiates and 

perpetuates the disease process. A self-perpetuating process of microglial cytotoxic 

activity, as is proposed in other models of CNS disease, may be one of the reasons 

why replacement of the missing peripherin gene by sub-retinal gene delivery has no 

discemable beneficial effect on the long term rate of photoreceptor loss in the rds 

mouse (Sarra et al. 2001). However, as photoreceptor apoptosis declines, so too (after 

a lag period) do microglial numbers, until only few are seen in the sub-retinal space by 

P40.

The comparison of apoptotic photoreceptors and microglial numbers therefore 

supports the hypothesis that microglia respond to, rather than induce photoreceptor 

injury and death, by migrating to regions where apoptosis is taking place to undertake 

phagocytosis of dead and dying cells to maintain tissue homeostasis. Following the 

peak of apoptosis the demand for cell debris clean-up is reduced and microglial 

numbers accordingly decline.

Microglial morphology varied according to location within the retina rather 

than in relation to the extent of photoreceptor apoptosis and microglial activity.

Indeed, all four recognised morphological types could be identified throughout the 

time course studied in rds retina. Although different morphologies have, in the past 

been attributed to different activation states with amoeboid and ramified representing 

activation and resting respectively, it is possible that retinal microglia adopt a 

morphology depending on their surrounding cellular and extracellular environment 

rather than microglial function. For example, the crossing of a nuclear layer might be 

easier if  the cells adopt a rod or spear shape. Microglia in the sub-retinal space are 

amoeboid in shape. This may be the morphology they adapt in the absence of
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neuronal contact (i.e. similar to a tissue macrophage), or it may indeed be an 

indication, as suggested in the literature, that sub-retinal microglia are the most 

‘activated’ and phagocytic.

Ceil surface marker expression

As expected, microglia readily expressed both F4/80 and CD1 lb in the degenerating 

retina. Since little is known about the function of F4/80 we cannot draw conclusions 

from the presence of this marker, but the strong presence of CD1 lb, which as 

previously discussed may be involved in the clearance of apoptotic cells, is in keeping 

with the clean-up’ role of microglia. CD1 lc  (a marker of dendritic cells and activated 

macrophages/microglia) was generally not expressed, although faint staining could be 

seen on a very small number of sub-retinal microglia at P30. Although this marker 

may be present on dendritic cells, their presence in this condition in the sub-retinal 

space seems unlikely and the absence of the dendritic cell marker CD205 supports 

this.

The pattern of sialoadhesin expression by rds microglia is of great interest. 

Sialoadhesin is a member of a group of macrophage-restricted cell surface sialic acid 

receptors termed siglecs. The function of sialoadhesin and other siglecs is yet to be 

fully characterised, but cell-matrix and cell-cell interactions and in particular adhesion 

to lymphocytes have been noted(van den Berg et al. 1992). CD45 has been identified 

as a T cell counter receptor for sialoadhesin(van den Berg et al. 2001) and the presence 

of sialoadhesin on macrophages in the splenic marginal zone, which may be involved 

in antigen handling (Martinez-Pomares et al. 1996; Steiniger et al. 1997; Geijtenbeek
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et al. 2002) suggests a possible role in the bridging of innate and adaptive immunity. 

The presence of sialoadhesin on a proportion (40%) of microglia at P21 may therefore 

imply some up-regulation of T cell interaction capability. However microglia were 

almost always MHC class II negative.

Another explanation for the presence of sialoadhesin positive microglia in rds 

retina is that the expansion of microglial numbers involves recruitment of myeloid 

precursors from the blood, and that these blood derived elements represent the 

sialoadhesin positive microglial faction. The observation that sialoadhesin positivity 

originates from the inner retina and around blood vessels supports this notion, but on 

the other hand, it has been found that monocytes do not express sialoadhesin(Hartnell 

et al. 2001).

The observation of sialoadhesin-positive microglia might also be explained by 

blood-retinal barrier breakdown. In the healthy CNS and retina, microglia being 

protected by the blood-brain-barrier are sialoadhesin negative (sialoadhesin was not 

present in wild type retina). During the early stages of retinal degeneration in the rds 

mouse when there is already significantly increased microglial activity there was no 

sialoadhesin expression but by P21 nearly half the microglia were sialoadhesin- 

positive. In view of the findings of Perry et al, that contact with serum is required for 

sialoadhesin expression(Crocker et al. 1988; Perry et al. 1992) one possible 

explanation of our findings is that there is break-down of the blood-retinal barrier, 

leading to exposure of microglia to serum proteins. Breakdown of the blood-retinal 

barrier in retinal dystrophies, as has long been suggested in retinitis 

pigmentosa(Fishman et al. 1981), has implications for future gene therapeutic 

strategies where evasion of systemic immune responses is of paramount importance.
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It is hoped that the anatomical and immunological properties of the eye will be 

advantageous, yet exaggerated systemic immune responses can be found when 

injecting into the sub-retinal space of a dystrophic murine retina when compared with 

normal mice(Suber et al. 2001).

In situ proliferation contributes to increased microglial numbers

Under normal conditions parenchymal microglia are a stable population of cells with 

little or no turnover (Hickey et al. 1992). In the retina of wild type animals microglial 

proliferation is restricted to a short period (P8-P14) when there is neuronal 

remodelling in the inner retinal layers(Hume et al. 1983; Mervin and Stone 2002).

The source of the increased pool of microglia seen in CNS disease has been 

disputed: proliferation in situ or recruitment from blood? Our findings demonstrate 

that microglia in the rds mouse proliferate in situ in far greater numbers than wild type 

at day 14 and 21 post natal (PI4 and P21) but to the same extent at P8. Although 

proliferating microglia were found only in the inner retinal layers in the wild type, by 

P21 they were situated throughout rds retina, including in the sub-retinal space. 

Maximal proliferation in the rds retina occurs before the greatest microglial presence 

so this phenomenon cannot be explained merely by greater cell numbers. As with the 

burst of microglial proliferation around P8 in wild type animals, once the stimulus of 

cell death has abated microglial proliferation declines.

However the presence o f microglial proliferation does not exclude additional 

recruitment of myeloid precursors from blood. Indeed, without preventing one or the
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other, it is impossible to quantify the contribution each make to the overall expansion 

of the microglial population. This will be discussed further in the next chapter.

Lack of oxidative damage and iNOS

The importance of iNOS and NO in macrophage and microglia-induced tissue 

damage in the context of disease exacerbation has been discussed. Within activated 

macrophages, L-arginine may be metabolised via iNOS to NO or via arginase to urea, 

and the activation phenotype dictates which pathway is followed. iNOS upregulation 

and NO release are considered part of a spectrum of phenotypic alterations seen with 

‘classical’ activation of macrophages induced by bacterial LPS and IFNy released by 

Thl lymphocytes and natural killer cells. Classical activation of macrophages is seen 

during acute inflammation and leads to the release of pro-inflammatory cytokines 

(IL6, IL1, TNFa) as well as NO, and the upregulation of MHC class II expression. 

Alternative activation, a concept introduced by Gordon and colleagues(Stein et al. 

1992) and reviewed by Gordon(Gordon 2003) and Goerdt and Orfanos(Goerdt and 

Orfanos 1999), is induced by Th2 lymphocyte-associated cytokines IL4 and IL13, and 

involves an up-regulation of the macrophage mannose receptor and other scavenger 

receptors with enhanced endocytosis and phagocytosis. There is also an up-regulation 

of MHC class II expression and such alternatively activated macrophages maybe able 

to induce differentiation of naive T cells into a Th2 phenotype(Cua and Stohlman

1997). In alternatively activated macrophages arginase activity predominates over 

iNOS, which is down-regulated, so it seems that the arginase/iNOS balance is 

competitively regulated in the context of Thl vs Th2-driven responses(Munder et al.

1998).
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The lack of iNOS expression by microglia during rds retinal degeneration is 

supported by the absence of nitrotyrosine in the dying photoreceptors, and taken 

together these findings eliminate a major mechanism of microglial cytotoxicity. 

Furthermore, in view of such florid microglial activity, their phagocytic role and the 

lack of iNOS expression, it might be deduced that rds retinal microglia are activated in 

an ‘alternative’ manner with reduced cytotoxic and enhanced immunomodulatory 

functions. Indeed, some investigators have found that the ingestion of (non­

opsonized) apoptotic cells by macrophages leads to their down-regulation of 

‘classical’ activation phenotype with reduced pro-inflammatory cytokine release 

(including the potentially cytotoxic IL-ip and TNFa), and enhances secretion of the 

immunoregulatory Transforming Growth Factor-pl (TGF-pi)(Fadok et al. 1998; 

Barker et al. 1999). Furthermore, addition of apoptotic cells to bacterial LPS- 

stimulated lungs reduces pro-inflammatory cytokine levels and inflammatory cell 

counts, an effect which may be blocked by neutralizing antibodies to TGF-pi (Huynh 

et al. 2002).

So in terms of our neurodegenerative model, research on bone marrow-derived 

macrophages implies that in their role of phagocytosis of non-opsonized apoptotic 

photoreceptors, microglia would adopt an alternative activation phenotype and tend to 

suppress inflammatory responses.

Summary

The data presented in this chapter provide circumstantial evidence that microglia 

respond to, rather than induce photoreceptor apoptosis in the rds mouse. In addition, I
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have demonstrated that the expansion of retinal microglial numbers in response to 

photoreceptor death is at least partly generated by in situ proliferation. Microglial 

sialoadhesin expression may indicate blood retinal barrier breakdown and the absence 

of iNOS and nitrotyrosine eliminates a major mechanism of microglial cytotoxicity. 

However, as discussed earlier, several mechanisms of microglial cytotoxicity have 

been described including the release of cytokines(Chao et al. 1995; Jeohn et al. 1998), 

prostaglandins(Araki et al. 2001) and excitatory amino acids(Piani et al. 1992; Giulian

1999) and although unlikely in view of the temporal relationship between microglial 

activity and photoreceptor death, a cytotoxic role for microglial in the rds model can 

not be ruled out on the basis of these findings alone.
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Ch a pter  Four

The  Use o f  Clo dro nate  Liposom es to  Deplete  

R etin a l  M icroglia

To clarify whether microglia exert a cytotoxic effect in the rds model of retinal 

degeneration, a radical approach was adopted: microglial depletion in order to observe 

any effect upon the rate o f photoreceptor apoptosis. If microglia are responsible for 

cytotoxicity, then a significant reduction in their numbers might result in a significant 

decrease in photoreceptor apoptosis. On the other hand, if  microglia confer a 

protective effect, perhaps through the maintenance of extracellular homeostasis then 

their depletion would be expected to increase photoreceptor cell death.

Clodronate Liposomes

Prior to the mid 1980’s, the experimental approaches for in vivo selective removal of 

macrophages included the administration of silica and asbestos(Pomeroy and Filice

1988). However neither technique resulted in very thorough depletion effects. 

Liposome encapsulated dichloromethylene diphosphonate (CI2MDP, clodronate), 

developed by van Rooijen is much more effective at depleting macrophages and has 

been widely used in the study of macrophages and inflammatory disease(Van Rooijen

1989). Clodronate is a member of a family of drugs called bisphosphonates {figure 

4.1), several of which are in current clinical use for the treatment of osteoporosis, 

hypercalcaemia and other conditions involving pathologic bone resorption including 

multiple myeloma(Ashcroft et al. 2003). Bisphosphonates have calcium chelating 

properties, inhibit osteoclast activity and have been shown to inhibit macrophage
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migration(Stevenson and Stevenson 1986). Generally they have poor bioavailability 

after oral administration and are excreted unmetabolised by the kidney. They persist 

in plasma only very briefly owing to rapid uptake by the skeleton (these drugs avidly 

bind hydroxyapatite in bone), and in the case of clodronate the plasma half life in 

humans and rodents is 90 minutes(Lin 1996).

O  C l o
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Figure 4.1. Chemical Structure of Dichloromethylene Diphosphonate 

(Clodronate)

Liposome-encapsulation of clodronate has allowed specific targeting of macrophages, 

whose phagocytic nature leads them to ingest the liposomes, whereas other cells are 

prevented from accessing the enclosed drug. Once within the cytoplasm of the 

macrophage, phospholipase-containing lysosomes fuse with the phagosome and break 

down the liposomal membranes encasing the drug, thereby releasing it into the 

cell(Van Rooijen and Sanders 1994). High concentrations of the drug within 

macrophages leads to their apoptosis(van Rooijen et al. 1996) through an as yet 

undefined mechanism. Although calcium chelation resulting in depletion of 

intracellular calcium would be a logical cause, some other bisphosphonates do not 

have the same toxic effect(van Rooijen and Kors 1989) and furthermore, neither does 

the calcium chelator ethylenediaminetetraacetic acid (EDTA) (van Rooijen et al.



1996). Calcium replacement in cells treated with clodronate in vitro marginally 

reduces its cytotoxic effect but increases its migration inhibitory effect(Stevenson and 

Stevenson 1986). It has been suggested that the two chlorine groups (figure 4.1) may 

contribute to the cytotoxicity of clodronate, but since many other non-toxic agents 

have chlorine groups this is unlikely to be the sole apoptosis-inducing feature. PBS- 

containing liposomes and free clodronate have no macrophage-depleting effect(van 

Rooijen and van Nieuwmegen 1984).

The effect of liposomal clodronate depends on its site of administration. 

Intravenously administered in rodents, it will effectively clear both liver and spleen of 

almost all macrophages, with those in the splenic marginal zone (metallophilic 

macrophages) being particularly sensitive and taking up to two weeks to repopulate 

after a single injection(van Rooijen et al. 1989; Van Rooijen et al. 1990). Intra­

tracheal/nasal administration depletes macrophages in the lungs(Thepen et al. 1989; 

Cheung et al. 2000), injection into the ventricles of the brain removes meningeal and 

perivascular macrophages(Polfliet et al. 2001) and subcutaneous foot pad 

administration leads to macrophage depletion in draining politeal lymph 

nodes(Delemarre et al. 1990).

Intra-peritoneal administration, the only systemic route available to me in the 

study of neonatal mice (tail vein cannulation almost impossible) had originally been 

thought only to clear the peritoneum(Van Rooijen 1989) but has more recently been 

shown to have an additional systemic depletion effect similar to intravenous 

administration(Biewenga et al. 1995).

Through the depletion of the systemic myeloid reserve, liposomal clodronate 

administered both intravenously and intraperitoneally has also been successfully used 

to prevent recruitment of macrophages/monocytes in models of inflammatory disease
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including those affecting the CNS and eye(Forrester et al. 1998; Pouvreau et al. 1998; 

Tran et al. 1998; Koennecke et al. 1999; Baatz et al. 2001). Most studies of the 

effects of liposomal clodronate administration on CNS and ocular inflammation have 

made the assumption that prevention of macrophage recruitment is the mechanism of 

tissue macrophage depletion, rather than an effect on macrophages in situ, because 

liposomses are assumed not to cross the blood-brain barrier. It is worth noting 

however that in most of these conditions the blood-brain barrier will be compromised.

In studies of experimental autoimmune uveoretinitis (EAU), although reduced 

infiltrate of the anterior chamber has been noted after liposomal treatment(Pouvreau et 

al. 1998; Baatz et al. 2001), mixed reports of the success of depletion of macrophages 

from the retina can be found. Pouvreau et al found no diminution in macrophage 

infiltrate in retina during endotoxin induced uveoretinitis (despite good response in 

iris and ciliary body and to some extent the choroid)(Pouvreau et al. 1998), but 

Forrester et al noted a marked attenuation of chorioretinal infiltrate and clinical 

parameters during retinal extract induced EAU(Forrester et al. 1998). The main 

reason for this discrepancy probably relates to the severity of retinal involvement in 

the two models, which was mild in the former (endotoxin induced) and severe in the 

latter (retinal extract induced).

It was unclear whether it would be possible to deplete the developing, 

degenerating retina of microglia. Bauer et al observed a reduction in the number of 

spinal cord ED1+ resident microglia with systemic administration of clodronate 

liposomes during experimental allergic encephalomyelitis (EAE) in the rat(Bauer et 

al. 1995). Comparison was made to control EAE rats only and not nai've animals, so it 

was unclear whether microglial numbers had been reduced to normal levels or even 

lower, but it was noted that although spleen sections from clodronate liposomes-
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treated animals contained numerous apoptotic macrophages, no microglia were 

undergoing apoptosis within the CNS parenchyma, implying that depletion was not 

occurring in situ.

Cogniscent of the increase in retinal microglial numbers in the early post-natal 

period associated with development and tissue remodelling, I decided to initiate 

clodronate liposomes treatment as early as possible after birth. With this approach I 

hoped to maintain low levels of retinal microglia until the key time points of PI 6 and 

P21, representing the peak in photoreceptor apoptosis and microglial numbers 

respectively, as determined by work shown in the previous chapter.
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M a t e r ia l s  a n d  M e th o d s

Materials

Clodronate liposomes were acquired from the laboratory of Dr Nico van Rooijen, 

Department of Molecular Cell Biology, Research Institute of Immunology & 

Inflammation, Vrije Universiteit Van der Boechorststraat, Amsterdam, The 

Netherlands and ordered via their website(http://www.clodronateliposomes.com.). 

Detailed description of the preparation of multilamellar liposomes containing 

dichloromethylene-diphosphonate (CL2MDP) (Clodronate, a kind gift of Roche 

Diagnostics GmbH, Mannheim, Germany) may be found in a review article by Dr van 

Rooijen, 1989(Van Rooijen and Sanders 1994), but a brief outline follows.

75 mg of phosphatidylcholine (Lipoid KC, Ludwigshafen, Germany) and 11 

mg of cholesterol (Sigma, Poole, UK) were dissolved in 20 mg methanol/chloroform 

(1:1). The organic phase was removed by low vacuum rotary evaporation (37°C), and 

the lipid film was dispersed in 10 ml of phosphate buffered saline (PBS) for the 

preparation of PBS-containing liposomes (PBS-Lip). To enclose the CL2MDP, 2.5 g 

of Clodronate were dissolved in 10 ml of PBS in which the lipid film was dispersed 

and the preparations were kept for 2 h at room temperature, sonicated for 3 min, and 

resuspended in 4 ml of PBS. Each 2 ml of CL2MDP-Liposomes (CL2MDP-Lip) 

suspension contained 10 mg of clodronate. In this manner clodronate would be 

enclosed in multiple layers of phospholipid bilayers (multilamellar liposomes).

PBS-containing liposomes were not used in control animals, since there is 

evidence that they induce and then inhibit macrophage

phagocytosis(http://www.clodronateliposomes.com.), thereby not proving a true 

control. Control animals therefore received no injection. Clodronate liposomes were
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stored at 4°C under nitrogen for up to one month after preparation. Storage for longer 

than this period is said to compromise efficacy due to leeching of clodronate out of the 

liposomes(http://www.clodronateliposomes.com.). Prior to use, since the liposomes 

had often settled, they were resuspended by gentle shaking and warmed to room 

temperature to reduce stress to the injected animals.

Experimental design

Four experimental designs were used in the process of developing the method for 

microglial depletion. All protocols involved intraperitoneal injection of clodronate 

liposomes commencing from P2. Doses of clodronate liposomes are given as pi per 

gram of animal weight. Each animal was weighed prior to injection to ensure 

consistent dosing. As a guideline, P2 mice weighed approximately 2g and by P21 

weight had increased to approximately lOg. At time points where histology was to be 

performed, animals were killed and tissue taken as described in chapter two. Both 

eyes and the spleen were taken from control and treated animals for 

immunohistochemical analysis. Unless otherwise stated, only one eye per animal was 

used for immunostaining.

93

http://www.clodronateliposomes.com


Experiment 1: (Pilot study) January 2002 

Dose l O p l / g

Frequency Every 5-6 days

Time points analysed P5, P8, P16, P19, P21

Number of animals P5: 1, P8-P21: 2 each

Controls Previously analysed eyes

Experiment 2: February/March 2002

Dose 20 pi / g

Frequency Every 2 days

Time points analysed P8, P I6, P21

Number of animals P8:l, P16:3, P21:3

Controls Uninjected mice from a parallel litter

Experiment 3: June 2002

Dose 20 pi / g

Frequency Every 2 days

Time points analysed P I6, P21

Number of animals treated P16:5, P21:2

Controls Uninjected mice from a parallel litter

NB a further two animals per time point in this experiment were left un-injected until 

two days prior to sacrifice when they then received liposomes daily for those two 

days.
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Experiment 4: July/August 2002

Dose 20pl / g

Frequency Every 2 days

Time points analysed PI6

Number of animals treated 6

Controls 6 uninjected littermates

Immunohistochemistry

Tissue was fixed, embedded and sectioned as described in chapter two. Spleen and 

retinal sections from treated and control mice were analysed for macrophage markers 

F4/80 and sialoadhesin to confirm macrophage/microglial depletion (method 

described in chapter two). Retinal sections were also stained with the TUNEL, 

initially by the alkaline phosphatase method, then by fluorescent TUNEL TMR, in 

order to determine photoreceptor apoptosis (methods described in chapter two). In 

addition, to determine the extent of microglial apoptosis within the retina after 

clodronate liposomes treatment, double immunofluorescent labelling for TUNEL and 

F4/80 was performed as described below. At least six non-adjacent retinal sections 

were counted per stain per eye as described before.
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F4/80 / TUNEL two colour immunofluorescence

1) Slides out 30-60 minutes to dry

2) Encircling of sections with ‘Immedge’ hydrophobic pen

3) Wash 30 min in PBS

4) Blocking serum (goat, 15ul/ml 2% PBSA) 30 min

5) Tip off excess and add Primary antibody (F4/80) diluted in 2% PBSA 

overnight at 4°C

6) Wash 2x5 min in PBS

7) Goat anti rat FITC diluted in 0.1 % PBSA 60 min

8) Wash 2x5 min in PBS

9) Permeabilise in Triton x-100 for 2 minutes

10) Wash 2x5 min

11) TUNEL-TMR for 1 hour at 37°C

12) Wash 3x5 min

13) DAPI mount

96



R esu lts

E x p e r i m e n t  1: Pilot study

Design Summary: 10 |nl/g clodronate liposomes every 5-6 days 

The spleen from one animal was analysed at P5 (three days after the initial clodronate 

liposomes injection to determine extent of macrophage depletion. Marked depletion 

of F4/80 positive cells was observed in comparison with an untreated P21 mouse 

(figure 4.2a,b). One further animal was analysed at P8 (six days after the initial 

injection). This revealed that the spleen was nearly fully replenished with F4/80 

positive cells (figure 4.2c) although sialoadhesin depletion was still profound.

Figure 4.2 Immunohistochemical detection of the macrophage surface marker F4/80 

in the spleen. In contrast to the normal dense population of (brown stained) F4/80 

positive macrophages occupying, predominantly the inter-follicular regions (a), three 

days after a single intraperitoneal injection of clodronate liposomes at P2, the spleen 

is profoundly depleted of these cells (b). Six days after the clodronate liposomes 

treatment (P8) repopulation of macrophages bearing F4/80 is almost complete (c). 

Counterstain: haematoxylin, scale bar: 200pm.

97



There was some evidence of microglial depletion in the retina at P8 with slightly 

reduced inner retinal microglia in comparison with previously analysed eyes (from 

untreated animals) and no sub-retinal microglia were present (in contrast with eyes 

from untreated P8 rds mice, figure4.3). At later time points (P I6, P I9, P21) there 

appeared to be no significant effect on the numbers of retinal microglia.
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Figure 4.3 Fewer retinal microglia were seen at P8 after a single injection of 

clodronate liposomes at P2 (a), when compared with an untreated animal from a 

parallel litter (b). Xouvxcpaxaiv: r|a8paio^ij/A,iv, a ya kz  Pap: 20pm.
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These results suggested that the clodronate liposomes can be effective at depleting the 

systemic myeloid pool, but this effect was much reduced by 6 days post-injection. 

Although there was some suggestion of retinal microglial depletion in one eye at P8, 

the results from later time points and the rapid splenic repopulation indicated that 

more frequent injections might be required. For that reason subsequent experiments 

were conducted using an increased frequency of clodronate liposomes injections; 

given on alternate days.
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E x p e r im e n t s  2 + 3: Optimisation of protocol for depletion or retinal microglia

Design summary: 20 pl/g clodronate liposomes every 2 days 

Experiment 2

A single animal was analysed at P8 to confirm splenic macrophage depletion with the 

new batch of clodronate liposomes. At PI 6, no significant depletion of F4/80 positive 

retinal microglia was observed in comparison to uninjected controls from an age- 

matched litter (not counted). Furthermore, splenic F4/80 depletion was not profound 

at this time point.

At P21 however, dramatic depletion of both splenic and retinal F4/80 and 

sialoadhesin positive cells was noted in comparison with P21 controls from an age- 

matched litter (figure 4.4a-d). The results of cell counts for P21 were pooled with 

P21 animals in experiment 3 and will thus be presented together below.
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Figure 4.4 Demonstration of the effect of continued, alternate day administration of 

clodronate liposomes on splenic macrophages. At both P16 and P21 time points 

splenic depletion for F4/80 (a, normal; b, clodronate liposomes-treated) and 

sialoadhesin (c, normal; d, clodronate liposomes-treated) was confirmed in each 

animal. Counterstain: haematoxylin, scale bar: 200pm.
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There are a number of possible explanations why P16 showed minimal 

depletion compared with P21. The first possibility is that clodronate liposomes 

penetrate the retina and deplete retinal microglia in situ, but only after some 

breakdown of the blood retinal barrier occurring after PI 6. However, in view of the 

reduced depletion of spleen at PI 6, it seemed more likely that there had been a failure 

in the efficacy of the clodronate liposomes. Two possible reasons for this existed:

a) Due to unforeseen circumstances (a delay in the delivery of fresh clodronate 

liposomes), an injection was not possible on P I4, but was given on P I5 

instead (a three day interval). If an alternate day interval was critical, then this 

delay may explain the reduced affect at P I6.

b) The liposomes used at the start of the experiment were at the end of their one 

month life and were replaced with a fresh batch on P I5. Reduced efficacy in 

the first half of the experiment may have been due to leeching of clodronate 

out of the liposomes.

For these reasons the experiment was repeated with fresh liposomes throughout and a 

strict alternate day injection programme.

Experiment 3

Splenic macrophage depletion was confirmed in each animal at P16 and P21. 

Comparison between untreated mice from an age-matched litter showed significant 

depletion (by >60%) of F4/80 positive retinal microglia in the treated group at P16 

{table 4.1, figure 4.5, 4.6 a+b). Although only sub-retinal microglia were counted (see 

chapter two), retinal microglial numbers appeared to be reduced throughout the retina.

Time point: P16, Marker: F4/80
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Animal Controls Liposome-treated

1 14.1 0.5

2 14.2 5.3

3 16.6 4.8

4 19.0 10 1

5 13.7 7.2

Mean 15.5 5.6 P <  0.001

SD 2.3 3.5

SEM 1.0 1.6

Table 4.1 Comparison of mean number of sub-retinal microglia (F4/80

positive) per 1.2 mm retina in clodronate liposomes-treated and 

control mice at P I6.
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Figure 4.5. Treatment with clodronate liposomes resulted in a greater than 60% 

reduction in the number of sub-retinal F4/80 positive microglia at PI 6 and P21.

*p<0.001, **p<0.0001.
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Figure 4.6 Clodronate liposomes-mediated depletion of retinal microglia (F4/80, 

brown), a and c show the normal complement of retinal microglia in rds mice at PI 6 

and P21 respectively. After alternate day clodronate liposomes treatment, markedly 

reduced microglial numbers were seen at both time points (b, P I6; d, P21). 

Counterstain: haematoxylin, scale bar: 20pm.

Although sialoadhesin expression on retinal microglia at P I6 is limited in control rds 

mice, in clodronate liposomes treated animals it was virtually non-existent at this time 

{table 4.2, figure 4.7).
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Time point: P16, Marker: sialoadhesin

Animal Controls Liposome-treated

1 3.1 0

2 2.6 0

3 2.4 0

4 12.2 0.3

5 0.3 0

Mean 4.3 0.1 NS

SD 4.9 0.1

SEM 2.2 0.1

Table 4.2 Comparison of mean number of sub-retinal microglia

(sialoadhesin positive) per 1.2 mm retina in clodronate liposome- 

treated and control mice at P16.
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Figure 4.7. Treatment with clodronate liposomes reduced sialoadhesin expression at 

P16 to almost undetectable levels and caused an 85% reduction in the number of

sialoadhesin positive sub-retinal microglia at P21. *p<0.005.
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At P21 in this experiment, as with the previous one, good depletion of retinal and 

splenic myeloid cells was achieved in clodronate liposomes treated animals (figure 

4.6c+d). Cell counts were pooled with those from experiment 2 and are shown in 

table 4.3 and figure 4.5. Overall a >60% reduction in microglial numbers was seen 

with clodronate liposome treatment.

Time point: P21, Marker: F4/80

Animal Controls Liposome-treated

1 20.4 10.3

2 19.0 8.7

3 18.3 3.7

4 18.8 5.3

5 23.8 9.5

Mean 20.1 7.5 P< 0.0001

SD 2.2 2.9

SEM 1.0 1.3

Table 4.3 Comparison of mean number of sub-retinal microglia (F4/80 

positive) per 1.2 mm retina in clodronate liposome-treated and 

control mice at P21.
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The depletion effect on sialoadhesin-expressing retinal microglia at P21 was even 

more profound with an 85% reduction in their numbers as shown by figures 4.7, 

4.8a,b and table 4.4.

Time point: P21, Marker: sialoadhesin

Animal Controls Liposome-treated

1 12.1 2.1

2 10.5 1.8

3 10.8 0.4

4 8.4 1.7

5 16.5 2.3

Mean 11.6 1.7 P < 0.005

SD 3.0 0.7

SEM 1.4 0.3

Table 4.4 Comparison of mean number of sub-retinal microglia

(sialoadhesin positive) per 1.2 mm retina in clodronate liposomes- 

treated and control mice at P21.
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Figure 4.8 Even more profound depletion of sialoadhesin-expressing microglia 

(brown) was seen with clodronate liposomes administration. At P21 in the control rds 

mice, retinal microglial sialoadhesin expression was widespread (a), whereas in 

clodronate liposomes-treated animals at the same age sialoadhesin was almost 

completely absent. Counterstain: haematoxylin, scale bar: 20pm.

In contrast to the successful depletion of retinal microglia with alternate day 

clodronate liposomes injections from P2, animals receiving injections only on the two 

days preceding sacrifice had at best only a partial effect (not formally counted) at both 

P I6 (injected on P14 and P I5) and P21 (injected on P19 and P20). The depleting 

effect on sialoadhesin expression, however, after only two days of clodronate 

liposomes, was quite marked at P21 (only one eye counted).

Experiment 3: Effect of microglial depletion on photoreceptor apoptosis

Having established a protocol for depleting retinal microglia, TUNEL was used to 

determine any effect this depletion might have on photoreceptor apoptosis. P16 eyes
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were analysed by the alkaline phosphatase TUNEL method, whereas for P21 the 

fluorescent method was used. The reasons for this are detailed below.

TUNEL staining at P16 showed a non-significant reduction in photoreceptor 

apoptosis in clodronate liposomes treated mice (19.4 +/-1.1 and 14.4 +/- 9.6 in 

controls and treated mice respectively, table 4.5 and figure 4.9).

Figure 4.9. After microglial depletion with clodronate liposomes, reduced 

photoreceptor apoptosis was seen at PI 6, compared with the untreated age-matched 

litter (not significant).
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Time point: P16, Marker: TUNEL (alk phos)

Animal Controls Liposome-treated

1 18.5 8.5

2 18.2 31 0

3 17.0 14.5

4 19.9 10.1

5 23.6 7.9

Mean 19.4 14.1

SD 2.5 9.6

SEM 1.1 4.3

Table 4.5 Comparison of mean number of TUNEL positive photoreceptors 

per 1.2 mm retina in clodronate liposome-treated and control mice 

at P16.

The shaded data value (mouse 2 in clodronate liposomes treated group) was noted to 

be an eccentric value, without which a statistically significant difference between the 

groups would exist. The value was verified by repeat staining of this and the other 

eye of this animal. In considering the reason for this widely outlying data point it 

became apparent that due to the rapid nature of the surge of photoreceptor apoptosis at 

around PI 5-18 from very low to very high levels within 24 hours or so, even a slight 

difference in age between the two litters might result in differences in TUNEL 

scoring. This outlying data value might have represented the most advanced
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individual in the litter in terms of development, and it is conceivable that within 12 

hours, the remainder of the litter would have risen to such high values.

So, presented with this argument, the study design of the clodronate liposomes 

experiments to this point were deemed flawed in their use of a separate age-matched 

litter for controls, particularly when analysing PI 6, at which time the rate of change of 

photoreceptor apoptosis rate is so high that small differences between litter ages might 

result in significant differences in levels of photoreceptor apoptosis. Therefore it was 

decided to repeat the experiment for P I6 using untreated siblings as controls (see 

experiment 4).

In the course of this experiment, for the purposes of double immunofluorescent 

labelling for TUNEL and F4/80 it was noted that the fluorescent TUNEL TMR 

method provided much cleaner staining than its alkaline phosphatase counterpart.

The numbers of apoptotic photoreceptors detected were also higher with this method. 

For these reasons the fluorescent TUNEL TMR method was used for all subsequent 

TUNEL analysis, including the P21 eyes for this clodronate liposome experiment 3. 

TUNEL staining demonstrated a significant increase in photoreceptor apoptosis after 

retinal microglial depletion with clodronate liposomes at P21 (14.3 +/-1.5 and 23.6 

+/- 3.0 for control and treated mice respectively, p<0.05). The data are shown in table 

4.6 and figure 4.10.
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Time point: P21, Marker: TUNEL (TMR)

Animal Controls Liposome-treated

1 9.9 33.4

2 14.6 15.9

3 16.1 20.2

4 18.4 21.1

5 12.8 27.1

Mean 14.3 23.6 p < 0.05

SD 3.2 6.8

SEM 1.5 3.0

Table 4.6 Mean numbers of apoptotic photoreceptors per 1.2mm retina in 

clodronate liposomes-treated and control mice at P21.

The difference however between these two groups, which only just reached 

significance, has to be considered potentially artifactual due to the lack of sibling 

controls for this experiment, as discussed above.

112



30.0
*

Q.TO

O
Q.

^  10.0

0.0

Untreated Liposome-treated

Figure 4.10 An increase in the number of TUNEL positive photoreceptors was seen 

after microglial depletion with clodronate liposomes at P21. p<0.05.

E x p e r im e n t  4: Microglial depletion at P I6 with littermate controls

Design summary: 20 pl/g clodronate liposomes every two days. Sibling controls.

Splenic macrophage depletion was confirmed in each animal. Clodronate liposomes 

treatment again led to a significant depletion of retinal microglia in treated mice when 

compared with their untreated littermates (controls: 8.1 +/- 0.5, liposome-treated: 3.0 

+/- 0.9, p<0.005. Table 4.7 and figure 4.1 la,b and 4.12). One animal from the 

treatment group had a mean value of 7.4 microglia per 1.2 mm retina and was deemed 

to have had failed depletion. That individual was therefore excluded from the data set.
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Figure 4.11 Clodronate liposomes-mediated depletion of retinal microglia (F4/80, 

brown) at P I6 in experiment 4. Littermate controls had significantly more retinal 

microglia (a) than their clodronate liposomes-treated siblings (b). Counterstain: 

haematoxylin, scale bar: 20pm.

Time point: P16, Marker: F4/80

Animal Sibling Controls Liposome-treated

1 7.9 0.8

2 7.2 0.9

3 9.2 4.4

4 7.4 4.9

5 7.3 3.8

6 9.8
Mean 8.1 3.0 p< 0.005

SD 1.1 2.0

SEM 0.5 0.9

Table 4.7 Mean numbers of sub-retinal microglia (F4/80) in clodronate 

liposomes-treated and sibling control mice at P16.
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Figure 4.12. Clodronate liposomes treatment depleted sub-retinal retinal microglia 

(F4/80) by >60% compared with untreated littermates at P I6. This, however, resulted 

in no change in rate of photoreceptor apoptosis. * p<0.005.

Despite marked (63%) depletion of retinal microglia in the treatment group, no 

difference was seen in photoreceptor apoptosis between clodronate liposomes-treated 

animals and their littermate controls (table 4.8 and figure 4.12). Indeed, even in 

animals whose microglia had been depleted to profoundly low levels, photoreceptor 

apoptosis was not influenced (table 4.8). For example, animal 2 in the treated group 

has slightly greater photoreceptor apoptosis than control animal number 3, despite 

having only 10% the complement of microglia.
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Controls Liposome-treated

Animal Microglial
Numbers

Photoreceptor
Apoptosis

Microglial
Numbers

Photoreceptor
Apoptosis

1 7.9 62.6 0.8 40.0

2 7.2 47.1 0.9 45.4

3 9.2 42.1 4.4 42.5

4 7.4 49.4 4.9 44.5

5 7.3 45.8 3.8 49.8

6 9.8 43.1

Table 4.8 Comparison between mean microglial numbers and mean

photoreceptor apoptosis within treated animals and littermate 

controls at PI 6.

Retinal Microglial Apoptosis

To deduce the mechanism of retinal microglial depletion I compared the number of 

apoptotic microglia in liposome-treated and control retina, on the premise that if  the 

liposomal clodronate was crossing the blood-retinal barrier and acting in situ, more 

apoptotic microglia would be seen in treated retinas. TUNEL and F4/80 double 

immunofluorescent labelling was used on eyes from experiments 3 (P21) and 4 (PI6). 

Very few apoptotic microglia {figure 4.14) were found in either treated or control

9  9retina (treated 0.4/mm +/-0.3, controls 0.3/mm +/-0.1, not significant. Table 4.9, 

figure 4.13), implying that the depleting effect on retinal microglia is mediated by 

preventing recruitment of systemic myeloid cells to the retina.
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P16 P21

Animal Controls Liposome-
treated

Controls Liposome-
treated

1 0 0 1.3 0

2 0.7 0.3 0.4 0

3 0 0.6 0 0

4 0.6 0 0 0

5 0.6 1.6 0 1.5

6 0 0

Table 4.9 Mean number of apoptotic retinal microglia per mm retina in 

clodronate liposomes-treated and control mice.
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Figure 4.13. No difference was found between clodronate liposomes-treated and 

control mice in the number of apoptotic retinal microglia.
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Figure 4.13 Two colour immunofluorescence for F4/80 (green, cell surface) and 

TUNEL (red, nucleus) demonstrating scarce apoptotic retinal microglia in both 

clodronate liposomes-treated and control mice, a and c show apoptotic microglia on 

outer and inner retinal surfaces respectively. Nuclear staining with DAPI (blue) is 

overlaid on the same images in b and d. Scale bar: 20pm.
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D isc u ssio n

The findings of the four clodronate liposomes experiments provide insight into the 

biological mechanisms of photoreceptor apoptosis and degeneration, microglial 

responses to CNS injury and of the clodronate liposomes themselves. The 

experiments represent, to my knowledge, the first successful depletion of microglia 

from the retina during retinal degeneration.

Mechanism of action in this model

Four key pieces of evidence indicate that intraperitoneally administered clodronate 

liposomes reduce the number of retinal microglia during rds degeneration by 

preventing recruitment of myeloid precursors from the systemic pool, rather than by an 

in situ action on the resident microglia.

• Firstly, and of fundamental importance is that I (and many others) have 

documented a profound depletion effect systemically (spleen). This effect 

seems to have been stronger and longer lasting on sialoadhesin positive 

macrophages normally resident in the marginal (perifollicular) zones of the 

spleen.

• Secondly, there appears to be no induction of microglial apoptosis within the 

retina of clodronate liposomes-treated mice at both PI 6 and P21. It is 

unknown whether the eventual decline of microglial numbers at later time 

points results from in situ apoptosis later on or migration out of the eye.

• Thirdly, injection of clodronate liposomes only on the two days preceding 

analysis (as opposed to alternate days from P2) has only a mild, if  any
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depletion effect. If clodronate liposomes were penetrating the retina one would 

expect to see as potent an effect as with chronic administration. The fact that 

only chronic, continued administration works implies that maintaining the 

systemically depleted state, continues to prevent recruitment to the retina.

• Fourthly, the almost complete absence of sialoadhesin expressing microglia 

from clodronate liposomes-treated mice. Immunohistochemical staining 

suggests that the emergence of sialoadhesin expression within the retina of rds 

mice is attributable to recruited macrophages, since sialoadhesin positivity is 

initially observed around the retinal vessels at P I6. Furthermore, although P21 

animals receiving clodronate liposomes only on the two days preceding 

analysis had poor depletion of F4/80 positive microglia, sialoadhesin 

expression appeared to be far more profoundly reduced, to levels nearly equal 

to those seen with chronic alternate day administration (only formally assessed 

in one tissue sample). A possible explanation for this is that sialoadhesin 

positivity is lost from recruited microglia after a couple of days within the 

retina. Two days of clodronate liposomes administration may have prevented 

the recruitment of fresh (sialoadhesin expressing) myeloid cells during that 

period but not for long enough to significantly reduce overall retinal microglial 

numbers.

Prevention of recruitment of myeloid cells to the CNS and eye during inflammatory 

pathologies has been studied before with the use of clodronate liposomes. Most 

notably, Bauer et al used this approach in the setting of experimental allergic 

encephalomyelitis (EAE, a model of demyelinating CNS disease) in rats. They noted
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a marked reduction in the numbers of both infiltrating macrophages and resident 

microglia within the spinal cord of EAE rats treated with clodronate liposomes in 

comparison to control EAE rats. No indication was given of how microglia levels in 

the cord of clodronate liposomes treated EAE rats compared to normal rats (in the 

absence of EAE), but since no apoptotic microglia were found in situ in the cord, it 

was suggested that the liposomes were not acting directly on the resident cells. It is 

known that microglia proliferate in situ in response to neuropathology (chapter 3 and 

(Streit and Kreutzberg 1988; Sedgwick et al. 1998)), so one might expect if  clodronate 

liposomes had no effect on the resident microglia, that numbers of these cells would 

be greater in EAE than in physiological conditions, even after systemic myeloid 

depletion.

Ischaemic brain insults also result in up-regulated microglial activity and the effect of 

clodronate liposomes on this process was studied by Schroeter et al{Schroeter et al. 

1997; Schroeter et al. 2001). Prevention of recruitment of systemic myeloid cells led 

to a marked reduction in microglial numbers in the region of photochemically induced 

infarction, although in the early stages the lesion characteristics did not differ from un­

depleted animals, suggesting that resident microglia undertake the initial response to 

injury, but that recruitment is also required to manifest the full microglial response to 

CNS injury.

We demonstrated in experiments presented in chapter three that enhanced 

microglial proliferation occurs within the retina of rds mice. The experiments 

presented in this chapter demonstrate that prevention of recruitment of myeloid cells 

significantly attenuates the microglial response indicating that recruitment is a 

substantial component of the microglial expansion seen during retinal degeneration.
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Clearly the proliferation capacity of resident microglia is inadequate to propagate the 

numbers required and is unable to compensate for the withdrawal of recruited support 

from the systemic circulation.

Thus, a combination of in situ proliferation and recruitment from the blood 

appears to be a consistent feature of microglial responses throughout the brain, spinal 

cord and retina, regardless of the invoking pathology (inflammatory, ischaemic or 

degenerative).

Retinal microglial involvement in photoreceptor degeneration

The main purpose of the experiments described in this chapter was the assessment of 

the effect that microglial depletion had on photoreceptor apoptosis. The most robust 

data that was obtained was from experiment four, since this involved the use of 

littermate controls. No alteration to the rate of photoreceptor death was observed 

despite >60% depletion of microglia at the height of photoreceptor apoptosis. 

Furthermore, no correlation existed between microglial numbers and photoreceptor 

apoptosis within individual retinas. Although an increased amount of photoreceptor 

apoptosis was observed in experiment two/three with clodronate liposomes treatment 

at P21, this effect only just achieved significance and, more importantly littermate 

controls were not used. The potential differences between litters in terms of disease 

severity casts doubt over the validity of the finding, and one cannot exclude the 

possibility that small variations in the ages of treated and control animals accounted 

for the difference in levels of apoptosis.
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No evidence has been found for a microglial cytotoxic effect (in which case 

photoreceptor apoptosis should have been reduced with depletion of microglia) and in 

conjunction with the findings outlined in chapter three, the findings of the clodronate 

liposome experiments indicate this role is extremely unlikely. Furthermore there was 

some suggestion that microglial activity might even be protective. Whilst additional 

experiments (using littermate controls) would be required to confirm this, there are a 

number of possible reasons why this might be the case:

• the withdrawal of tissue homeostasis and microglia-derived trophic factors

• a build up of sub-retinal debris preventing oxygenation from the choroid and 

the diffusion of nutrients. This is an important consideration since it has not 

been possible to quantify the relative contributions of the retinal pigment 

epithelium (RPE) and infiltrating microglia to the removal of apoptotic debris 

from the sub-retinal space. If indeed the main role of microglia in the outer 

retina and sub-retinal space in this model is a phagocytic one with the purpose 

of clearing up cellular remains, then depletion of microglia could significantly 

over-burden the phagocytic capacity of the RPE and lead to accumulation of 

material in the sub-retinal space as occurs in the RCS rat.

• the failure of phagocytosis of apoptotic cells prior to their lysis, leading to local 

accumulation of toxic substances such as ILlp and free radicals that maybe 

released by dying cells and cause ‘contagious apoptosis’(Friedlander 2003).
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Ch a pter  Five

Th e  Effect  of M inocycline  on  Photo recepto r

D eg eneratio n

During literature review of the subject of microglial cytotoxicity, searching for 

methods of inhibiting microglia in vivo, I became interested in studies utilising 

minocycline to manipulate microglial responses to neurodegeneration. Minocycline is 

a semi-synthetic, second generation tetracycline antibiotic first introduced in the early 

1970s. Despite a broad spectrum o f antibacterial action, its clinical use has been 

limited mainly to the treatment of acne, but it has also been used with good effect in a 

wide variety of infections including atypical respiratory infections, sexually 

transmitted diseases, meningococcal prophylaxis and periodontal disease(Brogden et 

al. 1975). It has excellent bioavailability after oral administration, is cleared by both 

liver metabolism and excretion unchanged in the urine and has a serum half life of 12 

to 16 hours after a single dose, increasing on repeated administration. Unlike other 

tetracyclines it benefits from excellent penetration of the blood-brain barrier (owing to 

its lipophilicity) and has recently been shown to have a remarkable neuroprotective 

role in models of neurodegeneration(Chen et al. 2000; Du et al. 2001; Sanchez Mejia 

et al. 2001; Wu et al. 2002; Zhu et al. 2002) and brain ischaemia (Yijanheikki et al.

1999; Arvin et al. 2002). The mechanism of this apparent neuroprotective property is 

not yet fully defined, but evidence suggests that it may arise through two separate 

mechanisms, distinct from the drug’s antibiotic attributes. The first of these 

mechanisms is a proposed direct anti-apoptotic effect, possibly acting on the caspase 

cascade or further up-stream in the apoptotic pathway.
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Caspases are the central executioners in apoptosis, and are highly conserved 

through evolution, being found in humans down to insects and nematodes. About 

twelve caspases exist, the majority of which are involved in apoptosis, during which 

they cleave specific sites on vital cell proteins usually causing disassembly, but 

occasionally activating them as in the case of nucleases that then go on to fragment 

the nuclear DNA(Hengartner 2000; Yuan and Yankner 2000; Friedlander 2003).

Caspases normally lie redundant within the cytoplasm and require cleavage for 

activation. This is closely regulated by upstream mechanisms which fall into two 

basic categories of apoptosis initiation {figure 5.1). The mitochondrial pathway 

results from internal cellular insults such as DNA damage, which leads to activation 

of a pro-apoptotic member of the bcl2  family that causes release of cytochrome c and 

other mediators, such as apoptosis inducing factor, from mitochondria. Cytochrome c 

then forms an ‘apoptosome’ with procaspase 9 and Apafl which in turn leads to 

activation of caspase 9 which cleaves caspase 3 into activated p i2 and p i7 subunits.

The cell death receptor pathway requires activation of cell surface receptors 

such as CD95 (Fas) and the TNFa receptor, which bind to and cleave procaspase 8 . 

Activated caspase 8  then cleaves caspase 3 and Bid with the latter acting as a bridge 

between the two pathways by then inducing mitochondrial cytochrome c release.

Both pathways converge at caspase 3 activation, which is a key step in the execution 

of apoptosis and plays a major role in the both developmental (physiological) and 

pathological apoptosis. For example, caspase 3-null mice have severe defects in 

developmental neuronal cell death with the development of a variety of hyperplasias 

and disorganized cell deployment in the brain resulting in perinatal death(Kuida et al. 

1996). In these mice retinal development was also markedly affected, with the 

development of ectopic masses of neuroretinal tissue (all layers involved), growing
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into the vitreous cavity and compressing the lens, indicating the importance of 

this enzyme in development and remodelling of the retina. Interestingly in these 

caspase 3-null mice, other cells outside the CNS, such as thymocytes had normal 

apoptosis thresholds in response to pro-apoptotic ligands like Fas, when compared to 

wild types, suggesting a differential of importance of caspase 3 as an executioner of 

apoptosis in different tissues, with a dominant role within the brain and retina. In 

keeping with this, caspase 3 has been shown to have a particularly important role in 

photoreceptor apoptosis during models of retinal degeneration(Liu et al. 1999; Tezel 

and Wax 1999; Jomary et al. 2001; Kim et al. 2002).

e -F L iP

Figure 5.1 Schematic depiction of the two major apoptotic pathways: via binding of 

cell death receptors e.g. by Fas and TNFa (left hand side) and via mitochondrial 

pathway with release of proapoptotic factors such as cytochrome c and apoptosis 

inducing factor (AIF) in response to internal cellular injury such as DNA damage 

(right hand side). The two paths are bridged by the process of Bid cleavage and 

converge on the fundamental execution step of caspase 3 activation. From 

Hengartner M.O. The Biochemistry of Apoptosis. Nature 2000: 407; 770-776.
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It should be noted that some species differences exist in the molecular 

mechanisms of apoptosis and that therefore not all rodent work can correlate directly 

with human disease. An example of this is caspase 12 which is believed to play a key 

role in murine apoptosis (Nakagawa et al. 2000) but in humans is involved in 

proteolytic events in inflammatory cascades such as cytokine maturation (Saleh et al. 

2004). However, in this work I have focussed on caspase 3 which is an important 

apoptosis executioner in both rodents and humans.

The elucidation of the biochemistry of apoptosis has led to the development of 

caspase inhibitors which have been tested in a variety of animal models in an attempt 

to reduce pathological apoptosis. In the eye, specific inhibitors of caspases 1 and 3 

have had mixed success in the treatment of ganglion cell and photoreceptor apoptosis 

of various aetiologies including ischaemic, toxic and genetic insults(Chaudhary et al. 

1999; Katai et al. 1999; Katai and Yoshimura 1999; Lam et al. 1999; Lam et al. 1999; 

Liu et al. 1999; Yoshizawa et al. 2000; Yoshizawa et al. 2002).

Marked inhibition of caspase 3 up-regulation and activation has also been 

demonstrated in studies documenting the neuroprotective effect of minocycline, both 

after brain ischaemia(Arvin et al. 2002) and during neurodegeneration (a mouse 

model of Huntington’s disease)(Chen et al. 2000), and although its precise primary 

target was not found, it was shown not to act directly as a caspase enzyme 

inhibitor(Chen et al. 2000). More recently work by Zhu and Friedlander et al has 

demonstrated that minocycline probably works by inhibiting release of cytochrome c 

from mitochondria. They showed this at three distinct levels: in vivo during 

neurodegenerative and brain ischaemic models, during cell based death models and 

also by using cell-free mitochondrial preparations in which minocycline prevented 

Bid- and calcium-induced cytochrome c release(Zhu et al. 2002).
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Another observation during minocycline-mediated neuroprotection has been 

the inhibition of microglial activity with reduced expression of iNOS and 

IL1 P(Yijanheikki et al. 1999; Du et al. 2001; Wu et al. 2002) and this has led to the 

proposal of a second mechanism of neuroprotection: through prevention of microglial 

cytotoxicity. It is difficult in vivo, however, to discern direct inhibition of microglial 

activation from consecutive reduction in the activity of these cells as a result of 

minocycline-mediated neuronal rescue. Nevertheless, Tikka et al have demonstrated 

direct microglial inhibition by minocycline in vz7ro(Tikka et al. 2001; Tikka and 

Koistinaho 2001). They showed that in both mixed spinal cord and microglial 

cultures and pure microglial cultures, excitotoxins kainate and glutamate induced 

microglial p38 mitogen-activated protein kinase (MAPK) activity and proliferation as 

well as the release of NO and ILlp from microglia, which were cytotoxic to the spinal 

cord neurones. Minocycline inhibited the up-regulation of p38MAPK and 

proliferation of microglia and their release of NO and ILlp, with consequent rescue of 

the neurons, a result which could be mimicked by a pure p38MAPK inhibitor but not 

by a P44/42MAPK inhibitor. They concluded that minocycline prevents microglial 

activation through inhibition of p38MAPK.

We decided to test the effect of minocycline administration in rds mice, to 

ascertain whether neuroprotective effects observed in the brain could be conferred on 

photoreceptors. To our knowledge its effect on retinal disease had not been 

previously studied and, having characterised microglial behaviour and photoreceptor 

apoptosis me hoped to determine the mechanism of any beneficial effect provided by 

the drug.
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M a t e r ia l  a n d  m e t h o d s

Materials

Minocycline hydrochloride (C23H27N3O7 • HC1, Mw 493.9) was obtained from Sigma, 

Poole, UK (product number M9511) in crystalline form and subsequently dissolved in 

distilled water.

Other materials used are described in previous chapters.

Experimental design

50mg/kg minocycline hydrochloride was injected intraperitoneally into rds mice daily 

from P2 until sacrifice, with un-injected littermates providing controls. The dose o f 

minocycline was chosen after review of articles using minocycline for 

neuroprotection(Arvin et al. 2002). Mice were sacrificed and spleen and eyes taken as 

described above at P I6 , P I8 , P21, P24, P27 for immunohistochemical and 

immunofluorescent analysis. Table 5.1 details the numbers of mice used per time 

point.

Time
Point

Number of Animals
Minocycline-

treated
Un-treated
littermates

P16 6 6

P18 5 5

P21 5 4

P24 5 5

P27 4 3

Table 5.1 Numbers of control and treated animals used per time point.
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Immunohistochemical and immunofluorescent staining 

Assessment of retinal microglial numbers (F4/80) and extent of photoreceptor 

apoptosis (fluorescent TUNEL TMR) was performed as described above. Further 

immunohistochemistry was employed to determine the extent of photoreceptor 

caspase 3 activation using a polyclonal antibody (Asp 175, Cell Signalling 

Technology, Beverly MA, USA) against the larger cleaved (activated) subunit 

(17/19kDa) of caspase 3. The antibody does not recognise full length (inactive) 

caspase 3 or other cleaved caspases. Both single colour immunohistochemistry and 

immunofluorescence and two colour immunofluorescence (TUNEL/Caspase 3) were 

employed for activated caspase 3 detection and the methods are described below. For 

all three stains (F4/80, TUNEL and caspase 3) eight non-adjacent retinal sections per 

eye were counted as described before.

Single Colour Immunohistochemistrv/Immunofluorescence

1) Slides out 30-60 minutes to dry

2) Encircling of sections with ‘Immedge’ hydrophobic pen

3) Wash 30 min in PBS

4) Block endogenous peroxidase activity with 0.3% hydrogen peroxide in 

methanol for 15 min (not for immunofluorescence)

5) Wash 2x5 min in PBS

6 ) Wash 2x5 min PBS/0.1% Triton-XlOO

7) Blocking serum (goat, 15ul/ml PBSA+ 0.1%Triton-X 100) 30 min

8 ) Tip off excess blocking serum and add caspase 3 antibody diluted in 2% 

PBSA/0.1% Triton-XlOO overnight @ 4°C

9) Wash 2x5 min in PBS

10) Add biotinylated goat anti rabbit 2° antibody (5ul/ml in 0.1% PBS A) 30 min

11) Wash 2x5 min in PBS

12) i) ABC 30 min or ii)Streptavidin TRITC 1 hour
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13) Wash 2x5 min in PBS

14) i) DAB 3 minutes or ii)DAPI mount

15) Rinse in PBS then into running water 3 min

16) Haematoxylin dip

17) Running water 3 min, distilled H20 1 min, 75% Alcohol 2 min, 100% Alcohol 

2x2 min, Histoclear 2x2 min.

18) Histomount

Two colour immuofluorescence (TUNEL / Activated Caspase 3)

1) Slides out 30-60 minutes to dry

2) Encircling of sections with ‘Immedge’ hydrophobic pen

3) Wash 2x5 min PBS/0.1 % Triton-Xl 00

4) Blocking serum (goat, 15ul/ml PBSA+ 0.1%Triton-X 100) 30 min

5) Tip off excess blocking serum and add caspase 3 antibody diluted in 2% 

PBSA/0.1% Triton-XlOO overnight @ 4°C

6 ) Wash 2x5 min in PBS/0.1 % Triton-Xl 00

7) Goat anti rabbit FITC 2° antibody (1:10 in 0.1% PBSA/0.1% Triton-XlOO) 60 

min

8 ) Wash 2x5min in PBS/0.1% Triton-XlOO

9) TUNEL-TMR for 1 hour at 37°C

10) Wash 3x5 min in PBS

11)DAPI mount

Outer Nuclear Layer thickness measurement

To determine any potential neuroprotective effect of minocycline, as well as 

comparing numbers of apoptotic and activated caspase 3-expressing photoreceptors 

between treated and control animals, the thickness of the outer nuclear layer (ONL) at 

P27 was measured, giving an indication of the number of surviving photoreceptors. 

This was performed on a Leica fluorescent inverted microscope using Leica Qfluoro 

image analysis software. A box was drawn around a length of ONL either side of the
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optic nerve head at a distance of both 200 pm and 600 (am as shown in figure 5.2. 

The area of the box was divided by its length to give the mean thickness of that 

sample of ONL. For this purpose, only retinal sections passing directly through the 

optic nerve head were analysed and three non-adjacent sections per eye were used.

Figure 5.2 Measurement of outer nuclear layer (ONL) thickness at P27. Only retinal 

sections passing through the optic nerve head were used (as shown). Using image 

analysis software, boxes were drawn around the ONL at 200pm and 600pm either 

side of the optic nerve head, and the area within the box divided by its length. 

Counterstain: DAPI, scale bar: 100pm.
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R e su l t s

In order to examine whether administration of minocycline influenced the course of 

photoreceptor degeneration in the rds mouse, sections of retina from mice treated with 

daily intraperitoneal minocycline were analysed and compared with untreated 

littermates.

Minocycline reduces photoreceptor apoptosis at PI6

During these experiments, photoreceptor apoptosis peaked at P I 8  in control and 

treated mice, two days later than found in experiments detailed in chapters three and 

four. This differences may be attributable to variability in disease expression between 

litters and also inaccuracy in the determination of the precise age of the litters. 

Administration of minocycline produced a profound (65%) reduction in the extent of 

photoreceptor apoptosis at P I6  (treated: 15.1 +/- 2.6, controls: 44.1 +/- 3.1, p<0.0005) 

but this effect was not sustained {table 5.2 and figures 5.3, 5.4). By PI 8 , the extent of 

photoreceptor apoptosis was the same in treated and control animals, suggesting that 

minocycline delayed, rather than prevented apoptosis, although me did not see a 

compensatory increase in apoptosis in the treated group at later time points. However, 

me analysed time points at three day intervals from P18-P27, and it may be that 

photoreceptor apoptosis was significantly higher in the minocycline-treated animals at 

points between those analysed.
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Apoptotic photoreceptors/1.2mm retina (+/-SEM)

Time
Point

Un-treated littermates M inocycline-treated

P16 44.1 (+/- 3.1) 15.1 (+/- 2.6) p<0.0001

P18 69.6 (+/- 3.9) 66.2 (+/- 4.0) ns

P21 25.7 (+/- 8.0) 26.1 (+/- 4.4) ns

P24 8 . 8  (+/- 0.7) 13.3 (+/- 2.3) ns

P27 11.1 (+/- 1.7) 9.4 (+/- 0.8) ns

Table 5.2 Mean number apoptotic photoreceptors per 1.2mm retina in 

minocycline-treated and control mice.
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Figure 5.3. Extent of photoreceptor apoptosis (TUNEL) in minocycline-treated rds 

mice and littermate controls. Marked reduction in photoreceptor apoptosis at P16 was 

seen with minocycline treatment, although this effect was not sustained. * p<0.0001.
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Figure 5.4 Immunofluorescent TUNEL (red nuclear stain) staining demonstrated a 

dramatic reduction in the number of apoptotic photoreceptors in P 16 rds mice treated 

with minocycline (b, d) in comparison with controls (a, c). The effect was evident 

throughout the retina (a and b show mid-peripheral retina, c and d are centred on the 

optic nerve head). Counterstain: DAPI, scale bar: 100pm. Brackets denote the outer 

nuclear layer.

The hypothesis that photoreceptor apoptosis is merely delayed, rather than prevented 

(in some photoreceptors) with minocycline treatment is supported by ONL 

measurements at P27. These were used to establish whether the observed beneficial 

effect of minocycline treatment at PI 6 translated to an overall reduction in the number 

of photoreceptors lost. There was no difference between ONL thickness at 200pm and
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600pm from the optic nerve head in treated and control animals (table 5.3 and figures 

5.2, 5.5), indicating that by P27, minocycline treatment had not reduced the total 

number of photoreceptors lost.

Distance from 
Optic Nerve 

Head

ONL thickness al P27 (pm +/-SEM)

Un-treated littermates Minocycline-treated

2 0 0  pm 55.5 (+/- 3.4) 54.7 (+/- 3.1)

600 pm 52.2 (+/- 2.4) 49.9 (+/- 0.7)

Table 5.3 Comparison of ONL thickness at P27 between minocycline- 

treated and untreated mice.
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Figure 5.5. No difference was found between ONL thickness in minocycline-treated 

and control rds mice at P27.
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The effect of minocycline on photoreceptor apoptosis, as detected by TUNEL, was 

mirrored by the effect on activation of caspase 3 in photoreceptors (table 5.4 and 

figures 5.6, 5.7a,b) with a similar 60% inhibition at P I6  (treated: 16.9 +/- 1.7, 

controls: 42.0 +/- 3.9, p<0.001) but no effect at later time points. Double staining for 

TUNEL and activated caspase 3 revealed that the great majority of apoptotic 

photoreceptors were positive for both markers simultaneously (figure 5.7c-f).
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Time
Point

Activated caspase 3-expressing 
photoreceptors/1.2mm retina (+/-SEM)

Un-treated littermates Minocycline-treated

P16 42.0 (+/- 3.9) 16.9 (+/- 1.7) p<0.0005

P18 52.7 (+/- 9.0) 55.2 (+/- 5.1) ns

P21 19.7 (+/- 8.2) 14.5 (+/- 3.6) ns

P24 5.3 (+/- 0.9) 5.7 (+/- 1.6) ns

P27 5.1 (+/-1.5) 3.9 (+/- 0.8) ns

Table 5.4 Mean number of photoreceptors expressing activated caspase 3 in 

minocycline-treated and control rds mice.
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Figure 5.6. Number of activated caspase 3-expressing photoreceptors in minocycline- 

treated and control mice. Mirroring the TUNEL scoring, at P16 a profound reduction 

in activated caspase 3 expression is seen with minocycline treatment, but this 

reduction is short-lived, with no difference seen at later times. *p<0.0005
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Figure 5.7 In accordance with the reduced TUNEL scoring of the ONL at PI 6 with 

minocycline treatment, photoreceptor expression of activated caspase 3 (brown 

cytoplasmic staining) was also markedly attenuated in minocycline-treated rds mice 

(a) compared with their untreated littermates (b). Two colour immunofluorescence 

for activated caspase 3 (green, cytoplasm) and TUNEL (red, nucleus) revealed that 

the great majority of TUNEL-positive photoreceptors also expressed activated 

caspase 3 and vice-versa (c, arrows and d-f). There were, however occasional 

photoreceptors positive only for caspase 3 (c, large arrowhead) or only for TUNEL (c, 

small arrowheads). Activated caspase 3 staining could occasionally be made out to be 

particularly intense in round cytoplasmic collections, possibly lysosomes (d, e). 

Counterstain: DAPI, scale bar: 20pm.
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Minocycline treatment delays the microglial response

Minocycline-treated mice had a 52% reduction in sub-retinal microglial numbers at 

P16 (treated: 5.2 +/- 0.7, controls: 10.9 +/-1.5, p<0.01. Table 5.5 and figure 5.8) and 

microglial numbers peaked later (P24) than in controls (P21). As was observed in 

earlier experiments (chapter three), in both treated and control groups microglial 

numbers peaked several days after the time of maximal photoreceptor apoptosis. 

Analysis of splenic sections showed no difference between minocycline-treated and 

control mice for F4/80 positivity.

Time
Point

Sub-retinal microglia (F4/80) / 1.2 mm retina

Un-treated littermates Minocycline-treated

P16 10.9 (+/- 1.5) 5.2 (+/- 0.7) p<0 .0 1

P18 8.7 (+/- 1.2) 12.4 (+/- 1.9) ns

P21 16.4 (+ /-1.1) 16.6 (+/- 0.6) ns

P24 6.2 (+/-1.0) 18.4 (+/- 3.4) p<0.05

P27 4.8 (+/- 0.8) 6.6 (+/-1.3) ns

Table 5.5 Mean numbers of sub-retinal microglia in minocycline-treated and 

untreated control rds mice.
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Figure 5.8. Minocycline treatment resulted in reduced sub-retinal microglial numbers 

at P I6, and number peaked later (at P24) than in controls (at P21). Therefore 

minocycline appears to delay the microglial response, with delayed ingress and 

delayed egress. *p<0.05, **p<0.01
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D iscussion

The beneficial effect of minocycline and its mechanism

Minocycline treatment appears to delay the onset of both photoreceptor apoptosis and 

microglial activation in this model of inherited photoreceptor degeneration, although 

there was no effect on the thickness of the outer nuclear layer at the end of the 

experiment (P27), indicating that photoreceptors were not ultimately saved.

The findings of the minocycline experiment may be explained by two hypotheses: 

either that minocycline treatment exerts a direct inhibitory effect on photoreceptor 

apoptosis, perhaps through an action on the caspase cascade or its regulators. This 

might result in less photoreceptor death and thereby lessen the stimulus for the 

microglial response to injury, accounting for the observed delay in microglial up- 

regulation. Alternatively minocycline treatment might suppress microglia directly 

and thereby reduce photoreceptor death from microglial cytotoxicity.

Three main points contradict the second hypothesis:

• As shown in chapter three and in the results presented here, microglial activity 

reaches a peak 3-5 days after the peak in photoreceptor apoptosis and 8  days 

after the time of reduced photoreceptor apoptosis with minocycline treatment. 

This temporal relationship is not consistent with a microglial role in 

photoreceptor apoptosis in the early stages of rds degeneration. Furthermore, 

if  microglia were responsible for photoreceptor death, then we might expect 

that the delayed peak in microglial numbers seen following minocycline 

administration would be associated with a delayed peak in photoreceptor 

apoptosis. This is not the case -  the peak is at P I8  in both control and 

treatment groups.
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•  As shown in chapter three, no evidence of microglia-mediated oxidative 

damage can be found in rds retina.

• Most importantly, since the clodronate liposomes experiment (chapter four) 

revealed that an even greater reduction in microglial numbers at P16 than that 

seen following minocycline administration had no effect on photoreceptor 

apoptosis, it is unlikely that a direct effect on microglia accounts for the 

effects on photoreceptor apoptosis.

Therefore, the second hypothesis as a mechanism for minocycline-mediated delay in 

photoreceptor apoptosis may be rejected in this model. Clearly, rejection of the 

second hypothesis in this model does not exclude its applicability to other 

neurodegenerative models such as MPTP-induced Parkinson’s disease in the 

mouse(Du et al. 2001).

A direct action of minocycline on apoptosis or its initiating mechanisms is supported 

(but not proven) by the observed reduction in caspase 3 activation seen after 

minocycline treatment, which almost exactly matched the profile of TUNEL 

positivity. Specific caspase 3 inhibitors such as Ac-DEVD-CHO have been tested in 

various models of retinal pathology. Yoshizawa et al. demonstrated in rats treated 

with the photoreceptor toxin N-Methyl N-nitrosurea (MNU, a direct acting alkylating 

agent), a 45% reduction in the extent of retinal damage, with significantly reduced 

photoreceptor death in those receiving concomitant intravitreal Ac-DEVD-CHO 

(Yoshizawa et al. 2000). Similar protection has been conferred, with the same 

caspase 3 inhibitor, on retinal ganglion cells after optic nerve transection (35%
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protection)(Chaudhary et al. 1999) and inner nuclear layer neurons (60% protection) 

after retinal ischaemia(Katai and Yoshimura 1999). Other caspase inhibitors have 

also been employed intravitreally, including a broad spectrum peptidyl caspase 

inhibitor (YVAD-CMK) which protects inner retinal neurons from ischaemia- 

reperfusion injury and damage mediated by intravitreally injected excitotoxins(Lam et 

al. 1999; Lam et al. 1999).

The outcome has been somewhat different, however, when caspase inhibitors 

have been used to prevent photoreceptor death in models of inherited outer retinal 

degeneration. Intraperitoneally administered Ac-DEVD-CHO had only a transient 

effect in rd mice, with no amelioration of disease in the longer term(Yoshizawa et al. 

2002) as was the case with intravitreal injection of the caspase 1 inhibitor, Ac-YVAD- 

CHO in RCS rats(Katai et al. 1999). An exception to this is a report of an irreversible 

caspase 3 inhibitor (z-DEVD-frnk) partially rescuing photoreceptors in transgenic rats 

with a rhodopsin mutation after a single intravitreal administration at P9(Liu et al.

1999). There was a sustained reduction in photoreceptor loss, such that by P20 when 

the ONL of untreated rats was one nucleus thick, it was four of five nuclei thick in 

those treated with the caspase 3 inhibitor mice at P20 (12 nuclei thick in wild types). 

The difference between these three studies may relate to the efficacy of the three 

drugs. Although all three are considered potent inhibitors of their target enzyme, Ac- 

DEVD-CHO and Ac-YVAD-CHO are reversible inhibitors, while z-DEVD-fink is 

irreversible. Although the study on rd mice by Yoshizawa et al did treat the animals 

with alternate day intraperitoneal administration of Ac-DEVD-CHO over the ten day 

study period, it may be that with longer lasting insults arising from genetic disease, 

irreversible inhibition of caspase is required.
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The success of caspase inhibitors to treat retinal disease is paralleled by their 

use in models of brain disease, such as the ALS mouse model(Li et al. 2000), the rat 

brain ischaemia model(Han et al. 2002; Mouw et al. 2002) and a mechanical spinal 

cord injury model(Li et al. 2000). Furthermore caspase 1 deficient mice are resistant 

to Huntington’s disease and mechanical spinal cord injury(Ona et al. 1999; Li et al. 

2000). So, since caspase inhibitors have similar neuroprotective effects to 

minocycline in similar brain models the proposed mechanism of action of 

minocycline through prevention of caspase activation (as discussed at the beginning 

of this chapter) seems plausible.

The transient delay in photoreceptor apoptosis in the rds mouse is 

disappointing when compared to the success seen following administration of 

minocycline in brain ischaemia models in which sustained protection from injury is 

seen(Yijanheikki et al. 1999; Arvin et al. 2002). Both Yijanheikki et al and Arvin et 

al demonstrated an impressive (70-76%) reduction in cortical infarct size after 

temporary occlusion of the internal carotid artery in rats treated with minocycline in 

comparison with untreated controls. As with the use of caspase inhibitors in models 

retinal disease, in which pathologies resulting from temporary insults respond better 

than genetic defects, minocycline has less profound effects in chronic degenerative 

brain models such as ALS and Huntington’s disease, in which symptom onset is 

delayed and survival extended by only 10-14%(Chen et al. 2000; Zhu et al. 2002).

Perhaps the limited efficacy of minocycline for the treatment of inherited 

neuropathies should be expected, particularly if minocycline acts on the execution of 

apoptosis. It seems unlikely that apoptosis can be indefinitely held at bay by 

pharmacological means when the cellular injury is continuous. Any clinical 

neuroprotective benefit of drugs such as minocycline will probably be realised in
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conditions featuring transient cellular insults, such as ishaemia, trauma and toxins. In 

these situations short term inhibition of apoptosis may be enough to protect cells until 

the stimulus has passed. The brain infarct/ischaemia models indicate that this might 

be the case. The penumbra surrounding the central zone of necrotic cell death in an 

infarct may be reduced in size following administration of apoptosis 

inhibitors(Friedlander 2003), indicating that cells in this region are not irreversibly 

damaged and maybe ‘rescued’.

In contrast genetic cellular lesions such as that seen in the photoreceptors of 

the rds mouse are less likely to be significantly improved by such treatment 

approaches. However, human outer retinal degenerations are rarely as severe as the 

rds phenotype, and it may be that more substantial and clinically relevant delay in 

disease progression would be conferred on human RP which progresses over decades 

rather than days. There would be important considerations, nevertheless, in 

contemplating chronic adminstration of a drug such as minocycline which has long 

term safety concerns including vestibular and gastro-intestinal disturbances, rashes 

and drug-induced autoimmune diseases such as systemic lupus erythematosis and 

hepatitis. There are, nonetheless, clinical trials in progress assessing the benefit of 

minocycline in patients with ALS and Huntington’s disease, and no doubt trials of its 

efficacy in stroke will shortly follow.
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Ch apter  Six

Gen eral  Discussion

The primary goal of this project was to determine whether microglia exert a cytotoxic 

effect on photoreceptors in the rds model of inherited retinal degeneration. Although 

there is evidence in other neurodegenerative conditions that activation of microglia is 

detrimental and causes tissue damage, the findings of this research do not support this 

concept in the context of inherited retinal degeneration. This is the first detailed 

description of the relative temporal aspects of photoreceptor apoptosis and microglial 

numbers(Hughes et al. 2003). The chronological profiles of photoreceptor apoptosis, 

with a monophasic peak at P I6-18; and microglial numbers and sub-retinal location, 

peaking several days later at around P21 are consistent with microglia responding to, 

rather than initiating photoreceptor apoptosis. In support of this is the absence of 

oxidative damage within rds mouse retina as demonstrated by the absence of iNOS 

and nitrotyrosine expression throughout the time course studied. In addition, the 

clodronate liposome experiment has shown that even a significant depletion of retinal 

microglia does not ameliorate photoreceptor apoptosis, as might be expected if  these 

cells exerted a cytotoxic effect.

Microglia are clearly involved in the pathological processes of photoreceptor 

degeneration and as previously discussed, their phagocytic role has been demonstrated 

in several models of retinal degeneration(Sanyal 1972; Sanyal et al. 1980; Thanos 

1992; Roque et al. 1996; Ng and Streilein 2001). Phagocytosis of photoreceptors 

undergoing apoptosis is probably crucial to the maintenance of tissue homeostasis and 

the prevention of release of noxious cell contents(Savill et al. 1993; Savill and Fadok
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2000). Indeed, it could be argued that any potential photoreceptor salvage with 

clodronate liposomes-mediated microglial depletion might be counteracted by the 

detrimental results of inadequate apoptotic cell clearance. This does, however, 

become a somewhat circular argument, since if  microglia were responsible for 

photoreceptor death, their depletion would lead to fewer apoptotic cells and less 

demand for phagocytic clear-up. Nevertheless, three distinct findings presented in this 

thesis argue against microglia cytotoxicity in photoreceptor degeneration, and in 

concert provide strong evidence against this role in the rds mouse model.

The possibility that microglia might in fact exert a protective influence on 

photoreceptors during retinal degeneration has been suggested by findings in this 

project. The slight increase in photoreceptor apoptosis at P21 after clodronate 

liposomes-induced retinal microglial depletion, suggests that the ingress of microglia 

to the outer retinal layers is in some way responsible for the slowing of photoreceptor 

loss. In other words, without the microglial response, photoreceptor apoptosis might 

proceed unchecked at the rate seen at P16-P18 until all photoreceptors were lost by 

P40. Unfortunately this experiment was methodologically flawed (lack of sibling 

controls), but this should be an area of further study and in the first instance, the 

experiment should be repeated with the same design except that untreated littermates 

should be used as controls.

Sialoadhesin

The expression of sialoadhesin on microglia during the peak of microglial activity is 

an interesting finding. Since the function of sialoadhesin is still not fully defined, the 

importance of its presence is uncertain but it may imply blood-retinal barrier
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breakdown which has implications for future sub-retinal gene therapeutic strategies 

where evasion of systemic immune responses is of utmost importance. Furthermore, 

the observation that sialoadhesin-expressing cells seem to arise from the inner retinal 

layers in which retinal blood vessels are located, and from the vessels of the optic 

nerve head suggests that they represent a population of cells recruited from the 

systemic circulation. Weight is added to this notion by the clodronate liposomes 

experiments which, as discussed, appeared to prevent recruitment of myeloid cells and 

were particularly effective in eradicating sialoadhesin-positive microglia from the 

retina.

Macrophage depletion

Liposomal clodronate is clearly a very valuable research tool in the evaluation of 

macrophages and microglia and its use in this model served the intended purpose of 

determining the effect of profoundly reduced microglial numbers on photoreceptor 

apoptosis. The ability of the drug to markedly reduce retinal microglial numbers 

through prevention of recruitment provides valuable information about microglial 

biology: namely that a microglial response to photoreceptor injury involves both 

proliferation and recruitment from blood, with recruitment appearing to be the most 

important in terms of numbers produced. Microglia were not completely eradicated, 

and it may be argued that a 60-65% reduction in microglial numbers may not impair 

cytotoxicity to the same extent if the remaining microglia were capable of up- 

regulating their production of noxious mediators. However, in models of CNS 

inflammatory disease microglial/macrophage depletion (but not eradication) with 

clodronate liposomes has had beneficial effects on extent of tissue damage and clinical
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parameters, indicating that a reduction in their numbers has a significant effect on 

macrophage and microglial functionality during disease states(Bauer et al. 1995; 

Forrester et al. 1998; Tran et al. 1998).

CD200

Another potential method for determining the role of microglia in 

photoreceptor degeneration would be to deliver an activating or disinhibiting signal 

and observe the effect on the progress of the retinal degeneration. As discussed in 

chapter one, the CD200-R is a myeloid-restricted cell surface receptor, whose ligand 

(CD200), expressed on lymphocytes, endothelium and neurons, has an inhibitory 

effect on macrophages and microglia and serves to dampen down and regulate 

myeloid cell activation. CD200 knockout mice have a constitutive level of microglial 

activation and accelerated CNS inflammatory disease(Hoek et al. 2000; Broderick et 

al. 2002). Back-crossing of CD200 knockout C57/B16 mice with rds mice is currently 

being undertaken at the Institute of Ophthalmology, London. With this back-cross, it 

will be possible to observe the effect of deregulated and exaggerated microglial 

function on photoreceptor degeneration. However, since constitutive iNOS expression 

appears to be a feature of CD200‘/' microglia, it may be that the activation profile of 

microglia in this mouse may sway more towards the ‘classical’ type than the 

‘alternative’ type seen in CD200+/+ rds mouse (see chapter3, discussion).
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The location of apoptotic photoreceptors

The observation that the majority of apoptotic photoreceptors nuclei are located in the 

inner part of the ONL is not, as far as I am aware, a finding published by other 

research groups. This phenomenon may have relevance to the mechanisms underlying 

photoreceptor death and therefore merits further investigation. Formal assessment of 

this in different animal models of photoreceptor degeneration would indicate whether 

this is characteristic of a peripherin mutation alone, or represents a broader 

susceptibility of centripetal photoreceptors regardless of genetic defect. The possible 

reasons for enhanced susceptibility to apoptosis in this location were discussed in 

chapter 3, and an oxygen gradient from the choroid may be a factor with centripetal 

photoreceptors occupying a watershed position between the inner retinal circulation 

and the choriocapillaris. Therefore experiments similar to those used by Mervin and 

Stone, with the effect of oxygen levels set at 21% (normoxic), 10 or 11% (hypoxic) or 

70% (hyperoxic) on the rate of photoreceptor apoptosis observed(Mervin and Stone 

2 0 0 2 ), may provide insight into the cause of this phenomenon.

The signal for microglial activation and migration

Several things remain unclear about microglial biology in retinal degeneration. It has 

been proposed that the recognition and phagocytosis of an apoptotic cell by 

macrophages requires cell-cell contact via receptors for ligands expressed on apoptotic 

cells such phosphatidyl serine and exposed sugars, yet in the absence o f degeneration, 

microglia reside in the inner retinal layers, well away from the photoreceptors. What 

then is the signal for microglial migration? Although not assessed during this work,
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some investigators have found that microglial activation occurs prior to neuronal 

apoptosis, during the stage of neuronal dysfimction(Boillee et al. 2001). A diffusible 

chemotactic factor released by injured, pre-apoptotic neurons seems likely and 

ffactalkine(Harrison et al. 1998), IL6 (Streit et al. 2000) and monocyte chemoattractant 

protein 3(Zhang 2003) have been studied in rodents and found to have a possible role 

in microglial recruitment.

This would be another interesting area of further study. Using the techniques 

outlined in this study, it would be interesting to analyse microglial activation between 

P3 and P10 in both rds and wild type mice in order to determine whether microglial 

behaviour (i.e. migration to the sub-retinal space) in rds mice diverges from the 

normal prior to the wave of photoreceptor apoptosis. If this is the case then it can be 

assumed that pre-apoptotic signalling is occuring to attract microglia to the ONL. 

Further investigation of the chemoattractants involved would also be desirable. This 

might include a comparison between rds and wild types of the quantities of 

chemokines such as macrophage chemoattractant protein by ELISA of homogenised 

retina. If raised levels of chemokines are found in rds retina, then the next step would 

be to determine whether there is production of these within photoreceptors or nearby 

cells. This might be done by three methods; in situ hybridisation on retinal sections, 

isolation of photoreceptors and rt-PCR, demonstrating (by ELISA of supernatant) the 

release of chemokines by a photoreceptor cell line in culture after stressing stimuli.

In this project me have demonstrated that the increased number of microglia 

seen in the rds mouse retina are generated by both in situ proliferation and recruitment 

from the systemic pool, but the eventual fate of microglia is unclear. Retinal 

microglial numbers declined rapidly after P21 in line with the reduced rate of
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photoreceptor apoptosis, yet very few apoptotic microglia were found at PI 6  and P21. 

From these studies me cannot exclude that at later time points, when microglial 

numbers are on the decline, apoptotic microglia would be found, but this was not 

investigated. Alternatively, rather than dying in situ, microglia may migrate from the 

retina either into the blood via the retinal or choroidal circulation, or to regional lymph 

nodes. Since there is a lack of conventional lymphatic drainage from the internal 

ocular structures(Perry 1998; Streilein 2003), the blood stream route seems more 

likely. In view of the possible immunoregulatory role of microglia (induced in 

macrophages by ingestion of apoptotic cells(Fadok et al. 1998; Barker et al. 1999)), 

this migration (if it existed) with potential subsequent contact with cells of the 

adaptive immune system, might serve to regulate T cell responses against self antigens 

exposed by blood-retinal barrier breakdown, or against ‘ neo-autoantigens ’ created by 

the cleavage of cellular proteins during apoptosis.

Minocycline

The effect of minocycline administration on the progress of rds photoreceptor 

degeneration was interesting because it was able to delay photoreceptor apoptosis, but 

disappointing because the delay was brief, with no long term beneficial effect in terms 

of photoreceptor loss. More benefit may be realised from minocycline treatment in 

conditions such as retinal ischaemia and toxic injury, as has been found with specific 

caspase inhibitors, with which significant retinal neuronal rescue has been achieved 

after such transient insults. Retinal ischaemia may be induced in rats by raising the 

intraocular pressure to 11 OmmHg for 60 minutes using a needle introduced to the 

anterior chamber and connected to a saline column(Katai and Yoshimura 1999; Lam et
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al. 1999). The effect o f intraperitoneal minocycline treatment during and after 

ischaemia on the rate of apoptosis of retinal ganglion cells would easily be observed 

by immunohistochemical TUNEL techniques and subsequently functional benefits 

may be estimated by visually evoked cerebral potentials.

Further mechanistic information about the neuroprotective effect of 

minocycline would also be desirable. Levels of caspases 1, 3 and 8 , cytochrome c and 

both full-length and cleaved Bid in ganglion cells could be detected 

immunohistochemically on retinal sections and by western blotting of retinal cytosolic 

ffactions(Jomary et al. 2001; Zhu et al. 2002) (see figure 5.1). Should significant 

rescue of retinal ganglion cells and retinal function occur with minocycline, then a 

case would be made for the short-term use of this agent during and after retinal 

ischaemic events in patients, avoiding the potential problems of chronic administration 

of minocycline (chapter 5, discussion).

The question remains to be answered, whether pharmacological treatment is 

ever likely benefit patients with inherited photoreceptor degenerations. This will no 

doubt depend upon the genetic mutation, as exemplified by the rd mouse, whose 

phosphodiesterase mutation with subsequent continual opening of the cGMP gated 

cation channel, may be amenable to effective treatment with calcium channel blockers 

already in clinical use for cardiovascular conditions(Frasson et al. 1999). However the 

majority of mutations underlying human photoreceptor degeneration do not have such 

simple mechanistic rationale for photoreceptor death and dysfunction, and until the 

unclear pathways from genetic miscoding to apoptosis are elucidated, pharmacological 

intervention is likely only to delay, rather than prevent disease progression. Most RP
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patients see perfectly well in their youth, only to slowly lose sight later. The 

implication is that despite their genetic mutation, the photoreceptors initially survive 

and perform their function of phototransduction, but, after a variable period succumb 

to apoptosis. Perhaps with greater trophic support from growth factors, these 

photoreceptors could be encouraged to survive and function past their predestined time 

of demise. For example Brain-derived Neurotrophic Factor (BDNF) and Ciliary 

Neurotrophic Factor (CNTF) have both been shown to prolong the survival of 

degenerative photoreceptors(LaVail et al. 1998; Caffe et al. 2001; Liang et al. 2001; 

Okoye et al. 2003), yet surprisingly neurotrophin receptors (tyrosine kinase receptors: 

TrkA, B, C and the p75NTR ) are thought to be absent from photoreceptors themselves 

in rodents(Ugolini et al. 1995; Harada et al. 2000; Harada et al. 2002).

Work by Harada et al. has unravelled some of the complexities of the provision 

of trophic support by Muller cells to the outer retina. They found that in light induced 

photoreceptor degeneration in rats, expression of the TrkC and p75NTR neurotrophin 

receptors are up-regulated on different parts of Muller cells, with TrkC localising to 

the inner retinal aspect and p75NTR to the outer retina in and around the ONL.

Blockade of the p75NTR led to increased bFGF production by Muller cells and 

protected photoreceptors from light-induced apoptosis. In addition p75NTR knockout 

mice were similarly protected against light damage. Conversely, blockade of TrkC led 

to reduced bFGF production and enhanced photoreceptor death, demonstrating that 

Muller cells have the ability, through the production of growth factors such as bFGF 

and regulated by neurotrophins, to determine photoreceptor survival in pathological 

conditions(Harada et al. 2000). More recent work by these authors has demonstrated 

that microglia, through the production of neurotrophins including Nerve Growth 

Factor (NGF) and neurotrophin 3 (NT-3) maybe the regulators of Muller cell bFGF
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release. Indeed, medium from cultures of retinal microglia from light-reared animals 

led to a significant reduction in Muller cell bFGF production, an effect that could be 

blocked by anti p75NTR antibodies but not by Trk blockers(Harada et al. 2002) 

implying that NGF was the factor responsible for inhibition of bFGF release. 

Paradoxically, exogenous NT-3 was shown to increase Muller cell bFGF production 

through Trk receptors, so while microglia in light-reared animals produced increased 

levels of a variety of neurotrophins (including both NT-3 and NGF), the overall effect 

on photoreceptors, may ultimately be dictated by the differential up-regulation of 

neurotrophin receptors on different parts of Muller cells. Clearly the complexities of 

these microglial-glial interactions need to be unravelled further before concrete 

conclusions about the relative protective or damaging effects of this interplay can be 

made, but therapeutic options for promoting photoreceptor survival are increasing as 

this line of research progresses.
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A p p e n d i x

A n a t o m y  o f  t h e  Po st e r io r  S e g m e n t  o f  th e  Eye 

H u m a n  A n a to m y

The posterior segment of the eye consists of the wall of the globe and its contents, 

posterior to the lens, overall comprising 4/5 the volume of the eye {figure A.l).

Normal Eye

Cornea

Ciliary b od y  -|^
r  Pars plicata

Pars plana

Vitreous

Sclera

Choroid

Figure A.l Schematic depiction of the anatomy of the human eye (not to scale). 

Artist: Geraldine Murphy.

The outer layer of the wall is the sclera; a tough, collagenous and largely acellular 

protective coat that overlies the choroid posteriorly and ciliary body anteriorly. The
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choroid is highly vascular and possesses a capillary network (choriocapillaris) serving 

the metabolic demands of the adjacent outer retina. The ciliary body is composed of 

two continuous segments: the pars plana, which is a direct continuation of the choroid, 

and the pars plicata which is responsible for the anchoring of the lens and the 

production of the aqeous humour that bathes the anterior segment. The retina lies 

between the inner-most layer of the choroid (the retinal pigment epithelium) and the 

vitreous gel which fills the posterior segment. The retinal pigment epithelium is 

involved in the recycling of visual pigments and its tight junctions form the outer 

blood-retinal barrier.

The retina

The retina is a thin layer of nervous tissue with a surface area of about 266mm2 (Bron 

1997). It is approximately 0.5mm thick around the optic nerve, gradually thinning to 

0.1mm at the extreme periphery (ora serrata) where it meets the pars plana of the 

ciliary body. The neurons of the retina are organized into discreet layers with the 

photoreceptors outermost (in contact with the retinal pigment epithelium) and the 

ganglion cells and nerve fibre layer innermost (figure A. 2). The centre of the retina is 

termed the macula where the densest population of cone photoreceptors (responsible 

for colour vision and fine visual discrimination) is found. This 3 mm2 area 

corresponds to the area at the centre of the visual field which is responsible for fine 

visual discrimination and colour vision. At the centre of the macula lies the fovea 

which is occupied exclusively by cone photoreceptors. Damage to this area has 

profound impact on visual acuity. More peripherally the photoreceptors are 

predominantly rods providing visual field, motion detection and night vision.

158



e p it C m - ^ g ^ ^

photoreceptors d/A jM|[li» j 
outer

nuclear l a y e r ^ f f t ^ $ j ^

outer 
plexiform layer.g

Inner -►!?< 
nuclear layer

Inner — 
plexiform layer $

ganglion 
cell layer 9

TJ0  *- amacrine cells!p
f j f  4-ganglion cells

t&y —ganglion cell

horizontal cells 
bipolar cells

rods & cones

axons

Figure A.2 Schematic depiction of retinal neuronal anatomic relationships. 

Uppermost in the picture is the retinal pigment epithelium, which is the innermost part 

of the choroid and forms the outer blood-retinal barrier. The adjacent photoreceptors, 

whose cell bodies reside in the outer nuclear layer, synapse with bipolar cells which 

make synaptic contact with several different cell types including ganglion cells 

(vertical transmission), and horizontal and amacrine cells (horizontal neuronal 

processing).

The vasculature of the retina stems from the central retinal artery (a branch of the 

ophthalmic artery), and drains via the central retinal vein. These enter and leave the 

eye via the optic nerve and divide within the optic nerve head to form four major 

arcades: superotemporal, superonasal, inferotemporal and inferonasal. These vessels 

branch out on the surface of the retina and within the nerve fibre layer before 

penetrating the inner retina to form capillary complexes serving the inner half of the 

retina, the outer half being served by the choriocapillaris. The central 0.35mm of the

159



retina is avascular (foveal avascular zone). Tight endothelial junctions in the retinal 

capillaries form the inner blood retinal barrier.

Mouse Ocular Anatomy

Subtle differences exist between mice and humans in the anatomy of the posterior 

segment. The first, and most obvious is that owing to the increased proportions of the 

mouse lens (relative to the rest of the eye), the vitreous cavity occupies a smaller 

percentage of the eye contents. The retina of the mouse is far more rod-dominated 

than in humans with rod photoreceptors outnumbering cones even at the centre of the 

retina although there is a relative increase in cone density centrally(Jeon 1998). 

Although the mouse does not possess a foveal pit, there is a concentration of cones 

around the centre of the retina, although not as exaggerated as in the human. All the 

other cell types seen in human retinas, including bipolar horizontal, amacrine, 

ganglion and Muller cells are also represented in the mouse.
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