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Abstract

Kaposi’s sarcoma (KS)-associated herpesvirus (KSHV) was discovered in 1994. 

KSHV is associated with at least three types of human cancer; KS, an endothelial 

tumour, and two lymphoproliferative disorders, primary effusion lymphoma (PEL) 

and a variant of multicentric Castleman’s disease (MCD). In KSHV, the genes 

expressed in latency have been implicated in cell transformation. One of a cluster of 

three latency-associated genes, that regulate proliferation and apoptosis, encodes a 

viral FLICE inhibitory protein (vFLIP) in open reading frame 71 (ORF71). Two roles 

have been proposed for vFLIP; when expressed in heterologous cells it both blocks 

Fas-mediated apoptosis and activates the NF-kB pathway by interaction with IkB 

kinase (IKK). Given the two contrasting roles assigned to vFLIP, the aim of this study 

was to determine the function of vFLIP in KSHV-infected cells. vFLIP was therefore 

immunoprecipitated from PEL cells and four associated proteins were identified by 

mass spectrometry: IKK components IKKa, p, y and the chaperone, Hsp90. Using gel 

filtration, a single population of vFLIP in the cytoplasm of PEL cells co-eluted and 

co-precipitated with an activated IKK complex. An inhibitor of Hsp90, geldanamycin, 

inhibited vFLIP-induced IKK activity and killed PEL cells, inferring that vFLIP 

activation of NF-kB contributes to PEL survival. In a yeast-two-hybrid screen, our 

collaborators identified IKKy as an interacting partner of vFLIP. Fragments of IKKy 

were expressed in mammalian cells and bacteria, and the central portion of IKKy 

(amino acids 150-272) was identified as the vFLIP binding region. Finally, it is 

suggested that vFLIP activates the alternative pathway of NF-kB activation, leading 

to processing of p i00 and generation of p52. This process is phosphorylation 

dependent and results in nuclear translocation of RelB and p52. A possible 

mechanism of action is suggested by the physical interaction between pl00/p52 and 

vFLIP. These data strongly support an important role for vFLIP in NF-kB activation. 

This may be crucial for cell transformation by KSHV, for survival of infected cells 

and for the maintenance of latency.
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CHAPTER 1 

Introduction

This study concerns the function of Kaposi’s sarcoma-associated herpesvirus (KSHV) 

vFLIP (viral Fas-associated death domain [FADD]-like IL-1 converting enzyme 

{FLICE}-inhibitory protein). This protein was considered to block apoptosis directly, 

but has also been shown to activate the transcription factor NF-kB. vFLIP is a 

candidate-transforming factor for KSHV. The first section of this chapter will review 

the biology of KSHV, concentrating on other KSHV genes that have important roles 

in viral pathogenesis and oncogenesis. The second section will deal with the NF-kB 

pathway and its regulation. These sections provide the context for an account of 

vFLIP function, which comprises the third and final section.
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1.2 Kaposi’s sarcoma-associated herpesvirus (KSHV)

1.2.1 Discovery of KSHV

In 1981, a highly aggressive form of Kaposi’s sarcoma (KS) was identified as part of 

the new AIDS epidemic and was termed “epidemic KS” (Borkovic et al, 1981; 

Gottlieb et al, 1981). Previously a rare disorder, the Hungarian dermatologist Moritz 

Kaposi first described the angiomatous neoplasm affecting elderly men of 

Mediterranean or Jewish descent that later became known as “classical KS” in 1872 

(Kaposi 1872). Two other epidemiological forms of KS are recognised: endemic KS 

in equatorial Africa and iatrogenic or post-transplant KS. The AIDS epidemic drew 

attention to KS and epidemiological studies of human immunodeficiency virus (HIV)- 

infected populations revealed a transmissible agent as the most likely cause of KS 

(Weiss et al, 1986; Beral 1991). The breakthrough in confirming the infectious nature 

of KS came in 1994, when Chang and co-workers used representational difference 

analysis to identify two DNA fragments that were uniquely present in the diseased 

tissue of an AIDS-KS patient (Chang et al, 1994). The 330 and 631 bp fragments 

were found to have significant amino acid identity to the capsid and tegument proteins 

of two gammaherpesviruses, Epstein-Barr virus (EBV) and herpesvirus saimiri 

(HVS), both capable of cell transformation. Soon after, DNA belonging to the novel 

KS-associated herpesvirus (KSHV) was detected in cells derived from patients with 

primary effusion lymphoma (PEL), a rare lymphoma of B cells normally associated 

with AIDS (Cesarman et al, 1995a; Cesarman et al, 1995b). PEL cells support 

continuous KSHV infection in culture and provided a vital research tool (Moore et al, 

1996b), enabling nucleotide sequencing (Russo et al, 1996) and visualisation of 

herpesvirus-like KSHV virions by electron microscopy (Said et al, 1996; Orenstein et 

al, 1997). The near complete KSHV genome was also sequenced from a KS biopsy 

(Neipel et al, 1998). Together, these data confirmed the classification of KSHV as the 

eighth human herpesvirus (HHV-8).
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1.2.2 Viral taxonomy

Herpesvirus taxonomy was traditionally based upon virion structure and cell tropism, 

but is now largely determined by genomic structure and sequence (Davison 2002). 

Using these criteria, KSHV has been assigned membership of the y-herpesvirus sub­

family. The y-herpesviruses are further divided into two genera: the y-1 or 

lymphocrytoviruses of which EBV is the prototype member and the y-2 or 

rhadinoviruses of which HVS is the classic prototype (Fickenscher et al, 2001; Moore 

et al, 2001). An artist’s impression of the herpesvirus evolutionary tree is shown in 

Fig. 1.1. KSHV is currently the only human member of the rhadinovirus genus, its 

closest human relative being EBV (McGeoch et al, 1999; Montague et al, 2000; Alba 

et al, 2001). The human herpesviruses are listed in Table 1.1.

1.2.3 Virion structure

The herpesvirus virion is characteristically large, 200-250 nm in diameter, with a 

thick-walled nucleocapsid that is surrounded by a proteinaceous layer called the 

tegument (Steven et al, 1997). In turn, the tegument is surrounded by a lipid envelope 

bilayer that is derived from the host cell membrane and is studded with viral 

glycoproteins (Rixon 1993; Gibson 1996; Homa et al, 1997). The genome of the virus 

is packaged as linearised double-stranded DNA at the core of this structure in liquid- 

crystalline form (Booy et al, 1991). The three-dimensional structure of the KSHV 

capsid has been solved by computer reconstruction of cryogenic electron microscope 

images to reveal an icosahedral lattice composed of pentons, hexons and triplexes 

(Wu et al, 2000).
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Figure 1.1. Herpesvirus evolutionary tree.

An artist’s impression of the herpesvirus evolutionary tree (Davison, 2002). Each 
branch leads to a herpesvirus subfamily (a, p and y) and from thence to genera 
(al, a2, etc.). Individual examples are given for each genera, including each of the 
human herpesviruses, which are listed in Table 1.1 below. Abbreviations for the 
non-human herpesviruses include SW, simian varicella virus; EHV-1, -4, equine 
herpesvirus; PRV, pseudorabiesvirus; MDV, Marek's disease virus; ILTV, infectious 
laryngotracheitis virus; MCMV, murine cytomegalovirus; E1HV-1, elephant 
endotheliotropic herpesvirus; MHV4, murine herpesvirus 68; HVS, herpesvirus 
saimiri; RRV, rhesus rhadinovirus.

Common name Human
herpesvirus

Disease associations

Herpes-simplex virus-1 (HSV-1) HHV-1 Oropharangeal herpes 
Genital herpes

Herpes-simplex virus-2 (HSV-2) HHV-2 Genital herpes
Varicella-zoster virus (VZV) HHV-3 Varicella (chicken pox) 

Zoster (shingles)
Epstein-Barr virus (EBV) HHV-4 Infectious mononucleosis 

Nasopharyngeal carcinoma 
Post-transplant lymphoproliferative 
disorder
AIDS-related lymphoma 
Burkitt’s lymphoma 
Hodgkin’s disease

Human cytomegalovirus (HCMV) HHV-5 CMV-mononucleosis 
CMV retinitis
Cytomegalic inclusion disease of the 
newborn

Human herpesvirus-6 HHV-6 Exanthem subitum (6th disease)
Human herpesvirus-7 HHV-7 Exanthem subitum (6th disease)
Kaposi’s sarcoma-associated HHV-8 Kaposi’s sarcoma
herpesvirus (KSHV) Primary effusion lymphoma 

Multicentric Castleman’s disease

Table 1.1. Human herpesviruses and their disease associations.
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1.2.4 Genomic organisation

The KSHV genome consists of a long central portion of coding DNA with low GC 

content (L-DNA) flanked by multiple terminal repeats with high GC content in excess 

of 84% (H-DNA) (Russo et al, 1996; Schulz 1998). Similar to other rhadinoviruses, 

the L-DNA of KSHV comprises of 140.5 kb of “unique” DNA containing at least 85 

open reading frames (ORFs) (Russo et al, 1996; Moore et al, 1996b; Neipel et al, 

1997). The coding DNA is flanked by two 801 bp terminal repeats (Russo et al,

1996), to give a total size estimated by Gardella gel of 170 kb (Renne et al, 1996a). 

The genome bears remarkable similarity to that of HVS, and the nomenclature of 

KSHV genes is derived from HVS, as the prototype rhadinovirus. The two viruses 

share 66 homologous genes upon which this nomenclature is based. Within KSHV, 

these genes are numbered consecutively from left to right across the genome and 

given the prefix “ORF”. Interspaced within this structure are genes originally thought 

to be unique to KSHV, designated K1 to K15. However, K3 (MIR1), K5 (MIR2), K7 

(vIAP) and K13 (vFLIP) have subsequently been found to have homologues and some 

additional unique genes have been added (including K4.1, K4.2, K8.1, K10.1, K10.5, 

Kl l . l ,  K14.1). Approximately half of the genes encoded by KSHV have now been 

ascribed a function, largely on the basis of sequence similarity to genes of known 

function (Jenner et al, 2002; Holzerlandt et al, 2002). Amongst these genes are a 

striking number that have been pirated from the host, including viral homologues of 

interleukin-6, Bcl-2, cyclin D, a G protein-coupled receptor and cFLIP. It has been 

proposed that many of these “pirated” genes were acquired because they allow the 

virus to directly manipulate the host cellular machinery (Neipel et al, 1997; Moore et 

al, 1998; Choi et al, 2001). The structure of the KSHV episome is depicted in Fig. 1.2.
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Figure 1.2. Structure of the KSHV episome.

Numbers outside of the episome represent nucleotide base pairs in kilobases (kb). 
Numbers within the episome indicate KSHV-encoded ORFs. Novel ORFs not 
present in other herpesviruses were designated K1 to K15. ORFs encoded on the 
forward strand are shown as arrows pointing clockwise, anticlockwise arrows 
indicate ORFs encoded on the reverse strand. Annotations outside the episome 
indicate putative function for each ORF, genes with cellular homologues are 
shown in bold. TR, terminal repeat; vCBP, viral complement binding protein; 
ssDBP, single-stranded DNA binding protein; gB, glycoprotein B; DNA Pol, DNA 
polymerase; vIL-6, viral interleukin-6; DHFR, dihydrofolate reductase; vMIP, viral 
macrophage inflammatory protein; nut-1 nuclear tRNA-like transcript; vBcl-2, 
viral B cell leukaemia-2; TK, thymidine kinase; TS, thymidine synthase; gH, 
glycoprotein H; gM, glycoprotein M; UDG, uracil DNA glucosidase; gL, 
glycoprotein L; vFLIP, viral FLIP; vcyc, viral cyclin; cGPCR, viral G-protein- 
coupled receptor, (taken from Sharp and Boshoff, 2000)
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1.2.5 Diseases associated with KSHV

1.2.5.1 Kaposi’s sarcoma

KS is a multi-centric lesion, characterised by three stages. The initial lesion (patch 

stage) is composed of granulation-like tissue with an inflammatory cell infiltrate of T 

cells, monocyte-macrophages and dendritic cells (Regezi et al, 1993; MacPhail et al, 

1996; Fiorelli et al, 1998). These cells produce Th-1 type cytokines. As explained 

below, these cytokines are thought to activate endothelial cells to acquire the 

characteristic KS ‘spindle cell’ phenotype (Miles et al, 1990; Sturzl et al, 1995; 

Sirianni et al, 1998; Fiorelli et al, 1998). As the lesion develops to plaque stage, the 

initially sparse spindle cells expand throughout the dermis and create irregular 

vascular channels containing red blood cells. Spindle cells arranged in sheets 

predominate in the final lesions (nodular stage) and are considered to be the 

transformed cell type (Boshoff et al, 2001).

The precise origin of spindle cells is not known. The majority express endothelial 

markers, such as CD31 and CD34 (Weich et al, 1991; Sturzl et al, 1992). Many also 

express markers suggesting lymphatic origin, including vascular endothelial growth 

factor (VEGF-3) receptor-3 and podoplanin (Jussila et al, 1998; Dupin et al, 1999; 

Weninger et al, 1999). However, some cells are more characteristic of smooth muscle, 

macrophages and dendritic cells (Nickoloff et al, 1989; Sturzl et al, 1992; Uccini et al, 

1994). These data, and in particular the extensive expression of VEGF-3, suggest that 

KS spindle cells probably belong to an endothelial precursor that can differentiate into 

lymphatic cells. Interestingly, although KSHV can transform primary human 

endothelial cells in vitro (Flore et al, 1998), KSHV genomes were not found in every 

transformed cell. A paracrine contribution, in which viral gene products and cytokines 

expressed in one cell can affect the growth characteristics of neighbouring cells, is 

therefore thought to be important in spindle cell formation and tumourigenesis (Dupin 

et al, 1999). Both spindle cells and the infiltrating inflammatory cells express high 

levels of cellular IL-6 (cIL-6), basic fibroblast growth factor (bFGF), VEGF, IL-ip, 

TNFa and IFNy (Salahuddin et al, 1988; Miles et al, 1990; Fiorelli et al, 1998). cIL-6 

promotes growth of KS cells in vitro (Miles et al, 1990), and IFNy induces a spindle

23



cell-like phenotype in endothelial cells (Fiorelli et al, 1998) and also reactivates latent 

virus (Chang et al, 2000). VEGF functions in synergy with bFGF as a KS cell growth 

factor, enhancing the development of KS-like lesions when human AIDS-KS cells 

were injected into mice (Ensoli et al, 1989).

Only 10% of spindle cells are KSHV positive in the early patch lesions (Dupin et al, 

1999), but the vast majority of spindle cells are KSHV-infected in late stage nodular 

tumours (Boshoff et al, 1995; Staskus et al, 1997; Sturzl et al, 1997; Dupin et al, 

1999). These data infer that, like many tumours, KS begins as a polyclonal 

hyperplasia in which infected cells have a growth advantage. This conclusion is 

supported by analyses of tumour clonality. Studies of X chromosome inactivation 

patterns suggest that both monoclonal and polyclonal patterns of inactivation exist 

(Rabkin et al, 1995; Delabesse et al, 1997; Rabkin et al, 1997). A study of size 

heterogeneity in KSHV terminal repeats in nodular lesions demonstrated monoclonal, 

oligoclonal and polyclonal patterns of infection, implying that KSHV infection 

preceded tumour expansion (Judde et al, 2000).

1.2.5.2 Primary effusion lymphoma

First recognised in AIDS patients before the discovery of KSHV, primary effusion 

lymphoma (PEL) is a rare malignant effusion of the peritoneal, pleural or cardiac 

cavities. Hence, PEL was originally termed body cavity-based lymphoma (BCBL) 

(Knowles et al, 1989). The lymphoma cells combine features of immunoblastic and 

anaplastic large cell lymphomas (Gaidano et al, 1996). They display a large 

cytoplasm, irregular and pleomorphic nuclei with prominent nucleoli and significant 

size heterogeneity (Schulz 2001). The cells are generally of B cell origin, although 

rare cases of KSHV-positive PEL expressing T cell markers have been described 

(Said et al, 1999). Immunoglobulin locus rearrangement and patterns of 

immunoglobulin light chain expression demonstrate a monoclonal origin in most 

cases (Knowles et al, 1989; Cesarman et al, 1995b). Although they express very few 

markers of B cell differentiation, some activation markers including CD30, CD38, 

CD71 and epithelial membrane antigen are often present. A recent study, using 

microarrays to group B cell tumours by comparing their expression profiles, found 

that PEL gene expression was most similar to that of plasma cell tumours (Jenner et
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al, 2003). These data support previous observations that PEL cells frequently express 

CD 138 (Gaidano et al, 1997), an adhesion molecule whose expression is largely 

restricted to pre-B cells and plasma cells.

The KSHV genome is present at 50-150 copies per cell in the nuclei of PEL 

(Cesarman et al, 1995b; Arvanitakis et al, 1996; Renne et al, 1996a; Gessain et al,

1997), and PEL is a distinct neoplasm that is strongly associated with KSHV infection 

(Pastore et al, 1995; Carbone et al, 1996; Karcher et al, 1997). Nonethesless, co- 

infection with EBV is found in most PEL cases (Cesarman et al, 1995a; Cesarman et 

al, 1995b) and PEL is rarely found in the absence of AIDS. Thus EBV infection and 

immunosuppression probably contribute to the pathogenesis of PEL. However, the 

expression of EBV latent genes such as EBNA 2, EBNA 3 and LMP1 is restricted in 

these cells (Horenstein et al, 1997; Szekely et al, 1998; Callahan et al, 1999), making 

it less likely that EBV is driving their proliferation. Furthermore, examples of PEL 

containing only KSHV have been reported, from which cell lines have been derived 

(Arvanitakis et al, 1996; Said et al, 1996; Boshoff et al, 1998; Carbone et al, 1998; 

Carbone et al, 2000). When injected into nude mice, such cells can induce PEL-like 

lymphomas (Said et al, 1996; Boshoff et al, 1998). PEL is unusual amongst B cell 

malignancies in the absence of an association with any consistent genetic lesion such 

as mutations of genes encoding c-myc, ras or p53 (Cesarman et al, 1995a; Karcher et 

al, 1997; Gaidano et al, 1999). The absence of a common mutation, and the discovery 

of PEL in the absence of EBV support the concept that KSHV is directly responsible 

for transformation in these lymphomas.

1.2.5.3 Multicentric Castleman disease (MCD)

KSHV is variably found in a rare angiolymphoproliferative disorder termed 

multicentric Castleman disease (MCD) (Soulier et al, 1995; Corbellino et al, 1996). 

KSHV is found in more than 90% of AIDS patients with MCD but only 40% of HIV- 

seronegative MCD patients (Grandadam et al, 1997). In affected lymph nodes, KSHV 

is found in cells termed plasmablasts belonging to the B cell lineage that localise to 

the mantle zone of B cell follicles (Dupin et al, 1999; Katano et al, 2000). Since the 

presence of plasmablasts in MCD is specifically associated with KSHV infection, a 

distinct plasmablastic variant of MCD is recognised (Dupin et al, 2000). In some
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cases of plasmablastic MCD, lymphoma can develop. Unlike PEL cells, co-infection 

with EBV has not been detected in plasmablasts (Dupin et al, 2000; Du et al, 2001).

1.2.6 Patterns of gene expression in KSHV

A biphasic life cycle is a common feature of herpesviruses (Cohrs et al, 2001). For 

neurotropic a-herpesviruses such as herpes simplex virus-1 (HSV-1), the initial lytic 

and productive infection of epithelial cells is followed by a quiescent and non­

productive latent infection of neuronal cells. The virus thus establishes life-long 

infection of the dorsal root ganglia from where it can be periodically reactivated. The 

prototype P-herpesvirus, human cytomegalovirus (HCMV), establishes latency in 

myeloid progenitor cells of the bone marrow, and can be reactivated with particularly 

serious consequences in AIDS and transplant patients. The lymphotropic y- 

herpesviruses, like EBV and KSHV, also establish latency in B cells and certain 

epithelial cells. Distinct patterns of gene expression, consistent with latent and lytic 

phases of infection have been observed in both KS lesions (Staskus et al, 1997) and 

PEL cells (Zhong et al, 1996; Renne et al, 2001). Latency serves two important 

purposes, in allowing the virus to establish persistent infection and to avoid immune 

surveillance. Furthermore, since lytic replication inevitably kills the host cell, the 

genes expressed during the lytic phase cannot be directly involved in transformation 

of the infected cell. The genes expressed in latency are therefore predicted to play a 

major role in the tumourigenesis associated with KSHV infection (Chang et al, 

1996a).

Various chemicals, including tetradecanoyl phorbal acetate (TPA) and w-butyrate, can 

induce viral lytic replication in PEL cell lines (Arvanitakis et al, 1996; Renne et al, 

1996b), and these chemicals have been used to assign KSHV genes to lytic and latent 

phases. The first genome-wide analysis of KSHV gene expression was made using the 

BC-1 PEL cell line (EBV and KSHV infected) (Sarid et al, 1998). Using DNA probes 

across the viral genome, Northern analysis was made of cells during normal culture 

(i.e. latent infection) and following TPA treatment (Sarid et al, 1998). On this basis, 

the genes were divided into three classes:
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Class I Expressed in normal culture and unaffected by TPA treatment

Class II Expressed in normal culture but upregulated by TPA treatment

Class III Expressed only upon TPA treatment

This study was the first to recognise the Class I “latency associated cluster” of LANA, 

vcyclin and vFLIP (Sarid et al, 1998). The latent classification of this cluster has been 

confirmed by their expression in a range of KSHV-infected tissues (Davis et al, 1997; 

Dittmer et al, 1998; Low et al, 2001), and their functions are discussed in greater 

detail elsewhere (Section 1.2.7.1). The Class II genes included small polyadenylated 

RNAs and most of the pirated viral genes (viral cytokines and signal transduction 

genes) (Sarid et al, 1998). The Class III genes largely consisted of viral structural and 

replication-associated genes. The kaposin (K12) gene was also identified as Class III 

(Sarid et al, 1998). However, in-situ hybridisation (ISH) applied to spindle cell 

populations demonstrated expression of kaposin in >85% of spindle cells, and 

confirmed its classification as a latent gene (Section 1.2.7.4) (Staskus et al, 1997). 

Most recently, microarrays have been used to study the kinetics of gene expression 

during induction of lytic replication (Jenner et al, 2001; Paulose-Murphy et al, 2001). 

These studies have largely confirmed the original classifications, and have provided a 

powerful means to assign gene function based on their expression profile and an 

understanding of the stages of the herpesvirus lifecycle.
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1.2.7. KSHV latent genes implicated in viral pathogenesis

Seven KSHV genes are expressed during latent infection. All have the ability to 

modulate growth of infected cells and may therefore have a role in viral 

transformation and pathogenesis (Table 1.2).

1.2.7.1 The latency associated cluster

The adjacent ORFs: 71, 72 and 73 encode vFLIP, vcyclin and the latent nuclear 

antigen (LANA) respectively. Transcribed as two differentially spliced and 

polycistronic mRNAs from the same locus, the expression of these genes is controlled 

by a single promoter (Cesarman et al, 1996; Dittmer et al, 1998; Bieleski et al, 2001; 

Grundhoff et al, 2001). Latent transcript 1 (LT1) encodes LANA, vcyclin and vFLIP 

and LT2 encodes vcyclin and vFLIP (Talbot et al, 1999; Grundhoff et al, 2001; Low 

et al, 2001; Renne et al, 2001). LANA is translated from LT1, while both vFLIP and 

vcyclin are translated from LT2 (Section 1.4.7) by means of an internal ribosome 

entry site (IRES) (Fig. 1.3) (Bieleski et al, 2001; Grundhoff et al, 2001; Low et al, 

2001). The promoter region is bi-directional, regulating constitutive expression of 

LT1 and LT2 to the left and expression of the lytic genes, K14 and vGPCR, to the 

right (Dittmer et al, 1998; Sarid et al, 1999; Talbot et al, 1999; Jeong et al, 2001). The 

functions of LANA and vcyclin are described below, while the role of vFLIP is 

explained in greater detail in Section 1.4.

28



110 
I__

120 
J ___

130 
J ___

140kb

65 66 67 68 69 K12 71 72 73 K14 74 K15

M AIM  II

vFLIP vcyclin LANA

L T 1-5.3 k b -4- V
LT2 - 1.7kb 7X

IRES

Figure 1.3. Transcription of the latent genes ORF 71, 72 and 73.

Map of the left end of the KSHV genome showing the alternative splicing of latent 
transcripts 71, 72 and 73 (taken from Bieleski et al, 2001). The coding direction of 
these genes is reversed because they are transcribed from the oppposite strand. 
Two spliced transcripts are observed in PEL cell lines: LT1 is tricistronic, 
containing vFLIP, vcyclin and LANA and LT2 is bicistronic encoding vFLIP and 
vcyclin. vFLIP is expressed from LT2 by virtue of an interal ribosome entry site 
(IRES).
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1.2.7.2 Latency associated nuclear antigen (LANA)

LANA is a large multi-domain nuclear protein with diverse biological function. 

Immunoblot analysis using KS patient sera detected a LANA doublet of 222-224 kDa 

in latently infected KSHV-positive cell lines (Gao et al, 1996a; Gao et al, 1996b). The 

protein consists of 1,162 amino acids with three domains: (i) a proline rich N-terminal 

domain; (ii) an acidic internal repeat region; and (iii) the C-terminus which is 

responsible for the distinctive nuclear speckling pattern observed upon 

immunofluorescence assay (IFA) for LANA (Schwam et al, 2000). LANA interacts 

directly with host DNA and chromatin proteins to tether the viral episome to the host 

genome (Ballestas et al, 1999; Cotter et al, 1999; Szekely et al, 1999). During mitosis, 

this ensures efficient segregation of viral episomes to the daughter cells. LANA is 

therefore essential for the persistence of the viral episome during latency (Ballestas et 

al, 1999). LANA binds the viral episome at two 17 bp direct repeats found within the 

viral terminal repeats at the putative origin of replication (Ballestas et al, 2001; Garber 

et al, 2002; Lim et al, 2002). LANA also associates with Origin Recognition Complex 

(ORC) 1 and 2. These proteins are proposed to bind to the origins of DNA replication; 

the implication being that LANA has a role in viral replication.

In addition to these functions, LANA is capable of both activating and repressing 

transcription, through a variety of protein-protein and protein-DNA interactions 

(Renne et al, 2001; Jeong et al, 2001; Lim et al, 2002; An et al, 2002). LANA 

specifically activates the AP-1 response element to induce expression of cIL-6 (An et 

al, 2002; An et al, 2003a). These data are of particular significance in view of the 

importance of IL-6 in KSHV-associated disease (Sections 1.2.8.4; 1.4.7). LANA 

activates the HIV-1 LTR (Hyun et al, 2001) and its own promoter (Jeong et al, 2001). 

It can also enhance Sp-1-mediated activation of telomerase reverse transcriptase 

promoter elements (Knight et al, 2001). Since telomerase can stabilise telomere 

length, and its increased expression is associated with the immortalisation of cancer 

cells (Kim et al, 1994), these data imply a role for LANA in maintaining the 

proliferative potential of KSHV-infected cells. A LANA truncation mutant (803-990 

amino acids) binds the hypophosphorylated form of retinoblastoma protein (pRb) in 

transfected cells to facilitate transactivation of promoters dependent on the pRb-E2F 

complex (Radkov et al, 2000). The pocket domain of pRb mediates this interaction,
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and the data suggest that LANA competes with E2F for binding to this domain, with 

the consequence that E2F is released from pRb inhibition to activate genes involved 

in progression through the G1 cell cycle check-point. Such a mechanism may explain 

the cooperation between LANA and H-ras in transformation of primary rat embryo 

fibroblasts (Radkov et al, 2000). LANA also interacts with the p53 tumour suppressor 

to repress both its transcriptional and apoptotic activity (Friborg, Jr. et al, 1999). Since 

the p53 pathway can activate apoptosis in response to aberrant E2F activity, this 

interaction may also be required for transformation by LANA. In this respect, LANA 

function resembles that of viral oncogenes such as the simian virus 40 (SV40) large T 

antigen and E6/E7 of human papilloma virus (HPV).

The acetylation state of histone proteins can regulate the activity of adjacent 

promoters (Wolffe 1996; Giles 1998), since increased acetylation promotes an open 

chromatin structure allowing transcription factors and other components of the 

transcriptional machinery to access DNA regulatory elements (Korzus et al, 1998; 

Blobel 2000). Acetylation is carried out by histone acetylase (HAT) enzymes, and one 

of the best known activators of HATs is a protein called cAMP-response element- 

binding protein CREB)-binding protein (CBP). LANA binds CBP (Lim et al, 2001) to 

repress its transcriptional activity. LANA also interacts with RING3 and DEK1 (Platt 

et al, 1999), activating transcription factor (ATF)-4/CREB2 (Lim et al, 2000), and 

members of the mSin3 corepressor complex (Krithivas et al, 2000) and modulates the 

transcriptional activities mediated by these proteins. The interactions between LANA 

and chromatin remodelling proteins indicate a role for LANA in regulating global 

transcriptional activity of the infected cell.

Recently, an entirely novel function for LANA in deregulating P-catenin activity has 

been described (Fujimuro et al, 2003). When p-catenin accumulates, it is thought to 

enter the nucleus and activate transcription factors of the Lef and Tef family. Among 

target genes of Lef and Tef are Myc, Jun and cyclin D1 (He et al, 1998; Tetsu et al, 

1999; Ben Ze'ev et al, 2000; Barker et al, 2000). Under normal circumstances, P- 

catenin is rapidly degraded, but Wnt can activate a signalling pathway to suppress 

proteasomal degradation of p-catenin. LANA binds and redistributes an upstream 

inhibitory component of this pathway, GSK-3P, leading to p-catenin accumulation.

31



Significantly, deletion of a small C-terminal region abrogated LANA binding to GSK- 

3p and prevented LANA stimulation of S-phase entry (Fujimuro et al, 2003). In the 

context of a variety of cancers that show aberrant p-catenin activity (Korinek et al, 

1997), these data provide further evidence of transcriptional regulation by LANA that 

may be important in KSHV-associated pathogenesis.

1.2.7.3 viral Cyclin (vcyclin)

Like HVS, KSHV encodes a viral cyclin (vcyclin) that is homologous to cellular D- 

type cyclins, having 32% identity and 54% similarity to cyclin D2 (Russo et al, 1996; 

Chang et al, 1996b; Li et al, 1997). It shares a number of functional properties with its 

cellular counterparts: it binds and activates cdk6 and these complexes phosphorylate 

pRb, and promote cell cycle progression (Godden-Kent et al, 1997; Li et al, 1997). 

However, unlike the cellular D-type cyclins, the activity of vcyclin/cdk6 complexes 

cannot be limited by the CDK inhibitors pl6INKa, p21CIP1 and p27KIP1 (Swanton et al, 

1997). The resistance of viral cyclins to p27KJP1 inhibition has been explained by 

structural studies of murine herpesvirus 68 (MHV4)-encoded vcyclin (Card et al,

2000). These data demonstrate specific amino acid and conformational variations 

within viral cyclins that render the p27KIP1 binding site non-functional (Card et al, 

2000).

vcyclin/cdk6 complexes have a wider range of target substrates than cellular cyclin 

D2/cdk6. For example, vcyclin/cdk6 complexes phosphorylate substrates of cyclin E- 

cdk2 including histone HI, Id-2, and cdc25 (Ellis et al, 1999; Mann et al, 1999). 

vcyclin/cdk6 also phosphorylates the cdk2 substrate, p27KIP1, resulting in its 

degradation by the 26S proteasome and relieving p27KIP1-induced cell cycle arrest 

(Ellis et al, 1999; Mann et al, 1999). vcyclin/cdk6 also phosphorylates cellular Bcl-2, 

leading to apoptosis in cells expressing elevated levels of cdk6 (Ojala et al, 1999; 

Ojala et al, 2000). Interestingly, apoptosis was suppressed by co-expression of the 

viral lytic protein vBcl-2 (Section 1.2.8.4) but not cellular Bcl-2 (Ojala et al, 1999). 

vcyclin induces p53-dependent growth arrest in primary cells, but causes lymphomas 

in p53-null mice (Verschuren et al, 2002). Since LANA can disrupt p53 function and 

is expressed in conjunction with vcyclin, this may explain how the virus can benefit 

from a protein that is apparently pro-apoptotic.

32



Finally, vcyclin has been shown to mimic a function of cyclin A/cdk2 complexes and 

drive initiation of DNA replication in vitro (Laman et al, 2001). Using yeast-two- 

hybrid technology, this study identified ORC1 as an interacting partner of the vcyclin 

belonging to HVS. ORC1 interacts with a protein called cell division cycle (CDC) 6, 

which functions in pre-replication assembly and the initiation of DNA replication, 

events that are both regulated by cyclinA/cdk2 phosphorylation (Coverley et al,

2002). In complex with cdk6, vcyclin and HVS-cyclin phosphorylated both ORC1 

and CDC6 in vitro, with the implication that vcyclin may stimulate the initiation of 

host genome replication (Laman et al, 2001). It is tempting to speculate that vcyclin 

also co-operates with LANA in ensuring replication of the latent viral genome (Hu et 

al, 2002).

1.2.7.4 Kaposin

Protein expression from the region encoding ORF K12 is complex and not completely 

understood (Sadler et al, 1999; Kliche et al, 2001). The T0.7 transcript is the most 

abundantly expressed transcript in KSHV latent infection, and was originally 

described as 0.7 kb, originating just upstream from K12 (Zhong et al, 1996). ISH 

analysis detected this transcript in the majority of KS spindle cells (Staskus et al, 

1997), and in PEL cells (Sturzl et al, 1997). However, subsequent work detected 

larger K12 transcripts of 1.2-2.5 kb (Sadler et al, 1999). The larger transcripts 

originate upstream of the 0.7 kb transcript, and include two GC-rich direct repeat 

sequences called DR1 and DR2. The number of repeats is highly variable, explaining 

the heterogeneity of K12 transcripts (Sadler et al, 1999). These transcripts have Class 

III expression profile: being expressed in latency and upregulated upon TPA 

treatment (Sadler et al, 1999). Variant translational initiation from CUG and GUG 

codons within these transcripts gives rise to kaposin B and C in vitro, and although 

kaposin B was abundantly expressed in the PEL cell line BCBL-1 (Sadler et al, 1999), 

their function is not known. All transcripts contain the ORF K12 encoding the 60 

amino acid hydrophobic membrane protein termed kaposin A (Russo et al, 1996; 

Sadler et al, 1999). Heterologous expression of kaposin A in rat-3 and NIH3T3 cells 

induces focus formation, and in NIH3T3 cells triggers anchorage independent growth 

and loss of contact inhibition (Muralidhar et al, 1998). Rat-3 cells expressing kaposin
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A are tumourigenic in athymic nude mice, forming highly vascular sarcomas upon 

subcutaneous injection (Kliche et al, 2001). The transforming functions of kaposin A 

are mediated by a direct interaction with the guanine nucleotide exchange factor 

cytohesin-1 that regulates integrin activity (Kliche et al, 2001).

1.2.7.5 K15

Situated at the right end of the unique coding region, K15 is the positional homologue 

of the EBV gene, LMP 2A. The K15 gene consists of eight differentially spliced 

exons that encode a C-terminal cytoplasmic domain linked to a variable number of 

transmembrane domains (Glenn et al, 1999; Poole et al, 1999; Choi et al, 2000). 

Northern blot analysis showed weak K15 expression in PEL cells that was 

upregulated upon TPA treatment (Glenn et al, 1999; Choi et al, 2000). Latent protein 

expression has been confirmed in PEL cells and MCD (Sharp et al, 2002). The 

cytoplasmic domain of K15 contains a number of putative domains associated with 

signal transduction including: an SH2 domain, an SH3 domain and a TRAF-binding 

site (Glenn et al, 1999; Poole et al, 1999; Choi et al, 2000). In reporter assays, K15 

strongly activated mitogen-activated protein kinase (MAPK) and weakly activated 

NF-kB pathways (Brinkmann et al, 2003). Yeast-two-hybrid analysis identified Hax-1 

as an interacting partner of K15. This interaction was confirmed in vivo, and may play 

a role in inhibition of apoptosis (Sharp et al, 2002).

1.2.7.6 vIRF3

KSHV encodes four homologues of cellular interferon (IFN) regulatory factor (IRF) 

(K9MRF1, K11.1MRF2, K10.5/K10.6/LANA2MRF3, K10.1/vIRF4) (Section 

1.2.8.6) (Jenner et al, 2002). ORF K10.5 encodes vIRF3, a protein that is latently 

expressed in KSHV-infected B cells, but not KS tissue (Rivas et al, 2001). It inhibits 

p53-dependent transactivation and apoptosis (Rivas et al, 2001), and also prevents 

apoptosis triggered by double-stranded RNA (dsRNA)-activated serine-threonine 

protein kinase (PKR) (see below) (Esteban et al, 2003). These data suggest a role for 

vIRF3 in protection of infected haematopoietic cells from immune surveillance in 

latency. The function of vIRF3 is probably related to deregulation of the immune 

system to promote survival of infected cells.
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1.2.8 KSHV lytic genes implicated in viral pathogenesis

The latent genes of KSHV have important effects on growth-regulation and survival, 

suggesting a significant contribution to viral pathogenesis (Table 1.2). However, 

several lines of evidence also indicate a role for lytic reactivation in the development 

of KS. First, increased viral load is associated with progression to KS and is 

predictive of clinical outcome (Ambroziak et al, 1995; Whitby et al, 1995; Quinlivan 

et al, 2002). Second, treatment of AIDS-KS patients with ganciclovir, a drug that is 

active against KSHV lytic replication but not latent virus, reduces KS risk (Martin et 

al, 1999). Furthermore, regression of AIDS-KS due to highly active anti-retroviral 

therapy (HAART) is associated with reduced KSHV viral load (Sirianni et al, 1998; 

Wilkinson et al, 2002). Third, post-transplant KS usually results from reactivation of 

latent virus (Frances et al, 2000; Jenkins et al, 2002). Fourth, most KS spindle cells 

and MCD plasmablasts sustain latent KSHV infection, but in up to 20% the virus 

undergoes spontaneous reactivation (Zhong et al, 1996; Staskus et al, 1997; Staskus et 

al, 1999). Together, these data suggest that lytic reactivation is required to enhance 

the dissemination of virus and, as discussed below, may also modulate growth 

through paracrine mechanisms as a result of lytic gene expression.

1.2.8.1 K1

K1 is situated at the far left of the unique coding region. Its position is the equivalent 

of two herpesvirus oncogenes: STP of HVS (Jung et al, 1999) and LMP1 of EBV 

(Eliopoulos et al, 2001). Indeed, although K1 and STP do not share sequence 

homology, K1 substitutes for STP in immortalisation of common marmoset 

lymphocytes by a recombinant HVS (Lee et al, 1998). However, it should be noted 

that Tip, a related transforming gene belonging to HVS, was not removed from the 

recombinant virus. Nonetheless, K1 did independently induce focus formation in Rat- 

1 cells (Lee et al, 1998). Northern analyses report K1 transcripts expressed in PEL 

cell lines that are upregulated following TPA treatment (Lagunoff et al, 1999; 

Samaniego et al, 2001), and in KS tumour cells (Samaniego et al, 2001). A recent 

study using monoclonal antibodies raised against K1 confirmed early lytic expression 

in PEL cells and in MCD tissue, but K1 was not detected in KS samples (Lee et al,
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2003). These data suggest there is an essential difference between K1 and STP/LMP1, 

because both are expressed in latency.

K1 is a transmembrane glycoprotein that resembles a single-domain Ig superfamily 

receptor. In fact, K1 binds to the heavy chains of the B cell receptor and prevents their 

expression on the plasma membrane (Lee et al, 2000). This function may indirectly 

prevent the display of KSHV viral antigens on B cell MHC class II, and may therefore 

represent an immune escape strategy of the virus. K1 also constitutively activates B 

cell signalling pathways via its C-terminal immunoreceptor tyrosine-based motif 

(ITAM) to stimulate nuclear factor of T cells (NFAT) (Lagunoff et al, 1999) and NF- 

kB activation (Samaniego et al, 2001; Prakash et al, 2002). Transfected K1 activates 

NF-kB in reporter based assays (Samaniego et al, 2001), while B lymphocytes from 

transgenic mice expressing K1 show increased NF-kB activity and the mice develop 

tumours that resemble spindle cell sarcomas (Prakash et al, 2002). Importantly, K1 

contains two highly variable regions, which are used to classify the virus into four 

clades (A,B,C and D) (Hayward 1999; Zong et al, 1999; McGeoch 2001). 

Intriguingly, these regions were found to be targeted by CTL, and maybe subject to 

positive selection (Stebbing et al, 2003). From these data, it was inferred that K1 

might act as an immune decoy, providing some evolutionary advantage to the virus.

1.2.8.2 Viral G-protein coupled receptor (vGPCR)

ORF 74 encodes a chemokine receptor homologue; viral G-protein coupled receptor 

(vGPCR) that has sequence similarity to the IL-8 receptor, CXCR2. It is expressed in 

the early lytic phase (Kirshner et al, 1999). Unlike its cellular counterparts, vGPCR 

signalling is constitutively active (Arvanitakis et al, 1997), but can be modulated by 

chemokine binding (Geras-Raaka et al, 1998; Gershengom et al, 1998; Rosenkilde et 

al, 1999). vGPCR activates multiple signalling pathways, including the 

phosphoinositide-inositol triphosphate-protein kinase C (PKC) pathway leading to 

JNK/SAP activation (Arvanitakis et al, 1997; Sodhi et al, 2000), and the PI3-K/Akt 

pathway leading to NF-kB activation (Pati et al, 2001). Other groups have confirmed 

NF-kB activation by vGPCR in a variety of cell lines relevant to KSHV infection 

(Schwarz et al, 2001; Couty et al, 2001), leading to expression of NF-KB-dependent
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genes including pro-angiogenic factors (VEGF), chemokines (IL-1 (3, IL-6, TNFa) 

and adhesion molecules (VCAM, ICAM-1, E-selectin) (Schwarz et al, 2001; Pati et 

al, 2001; Couty et al, 2001). vGPCR also activates NFAT (Pati et al, 2003), related 

adhesion focal tyrosine kinase (RAFTK) and lyn (Munshi et al, 1999).

Functional studies have revealed the extent to which vGPCR can modulate cell 

growth through activation of such signalling pathways. vGPCR transforms NIH3T3 

cells (Bais et al, 1998), it enhances survival of primary endothelial cells (Couty et al, 

2001; Montaner et al, 2001) and furthermore, vGPCR can immortalise human 

umbilical vein endothelial cells (HUVECs) (Bais et al, 2003). Transgenic mice 

expressing vGPCR develop multiple tumours that resemble KS lesions (Yang et al, 

2000; Guo et al, 2003). Intriguingly, when the vGPCR transgene was controlled by a 

CD4 (primarily T cell) promoter, expression of vGPCR in the KS-like tumours was 

largely restricted to infiltrating T cells (Yang et al, 2000). These data support the 

concept that a paracrine component is important in the pathogenesis of KS tumours 

(Section 1.2.5.1). Significantly, the effects of vGPCR upon cell signalling pathways 

could be reconstituted in PEL cells and resulted in increased production of vIL-6 (see 

below) and VEGF (Cannon et al, 2003). It seems likely that vGPCR is an important 

component in KSHV-associated disease. In particular, it may act in a paracrine 

manner in concert with latent KSHV genes expressed in neighbouring cells (Montaner 

et al, 2003).

1.2.8.3 viral IL-6 (vIL-6)

cIL-6 functions as a growth factor for all KSHV-associated neoplasms (Miles et al, 

1990; Screpanti et al, 1996; Asou et al, 1998), and high levels of cIL-6 have been 

observed in the tissues of patients with each of the KSHV-associated neoplasms 

(Ensoli et al, 1989; Leger-Ravet et al, 1991; Foussat et al, 1999). These observations 

suggest that cIL-6 is an important component of KSHV-associated pathogenesis. It is 

therefore interesting that the virus encodes a homologue of cIL-6. The viral IL-6 (vIL- 

6) is encoded by ORF K2 and has significant identity to cIL-6. The cIL-6 receptor 

consists of two subunits, gpl30 and IL-6Ra, and cIL-6 has an absolute requirement 

for both subunits (Taga et al, 1997). However, vIL-6 requires only gpl30 (Molden et 

al, 1997; Wan et al, 1999). This may allow for a broader spectrum of target cells since
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IL-6Ra has a restricted expression profile and is downregulated by the IFN response, 

while gpl30 is ubiquitously expressed (Taga et al, 1997). Structural studies have 

revealed essential differences in the way cIL-6 and vIL-6 interact with the receptor to 

explain these observations (Chow et al, 2001). vIL-6 stimulates growth in IL-6- 

dependent B cell lines (Moore et al, 1996a), and activates JAK/STAT and Ras-MAPK 

pathways (Molden et al, 1997; Osborne et al, 1999). vIL-6 is also an autocrine growth 

factor for PEL cells (Foussat et al, 1999), that protects against the cytostatic effects of 

IFNa (Chatterjee et al, 2002) and stimulates production of VEGF (Liu et al, 2001). 

When injected into nude mice, NIH3T3 cells stably expressing vIL-6 induce tumours 

that are more-highly vascularised than control cell-induced tumours (Aoki et al,

1999). vIL-6 may therefore be an important gene in KSHV-associated pathogenesis.

1.2.8.4 Viral Bcl-2 (vBcl-2)

ORF 16 encodes a viral homologue of human Bcl-2, vBcl-2. (Sarid et al, 1997). The 

Bcl-2 family regulate apoptosis and thus play an important role in tissue homeostasis, 

embryogenesis and the immune respone (Chao et al, 1998). Cellular Bcl-2 prevents 

apoptosis through heterodimerisation with pro-apoptotic family members such as Bad, 

Bak and Bax in order to maintain mitochondrial integrity (Section 1.4.2). vBcl-2 is 

also anti-apoptotic, inhibiting apoptosis induced by vcyclin (Section 1.2.7.3) (Ojala et 

al, 1999), but interactions between vBcl-2 and cellular Bcl-2 family members have 

been difficult to prove (Cheng et al, 1997). One possible explanation for the anti- 

apoptotic function of Bcl-2 is suggested by the interaction between vBcl-2 and Diva, a 

pro-apoptotic protein that binds the caspase-9 regulator Apaf-1. vBcl-2 was found to 

antagonise the pro-apoptotic function of Diva (Inohara et al, 1998). Studies in 

adenovirus and baculovirus have helped to explain why viruses might employ 

strategies to prevent or delay apoptosis. These data demonstrated that virus-induced 

apoptosis was accompanied by a marked decrease in virus titre (Pilder et al, 1984; 

Clem et al, 1991; Clem et al, 1993). The inference being that, by delaying apoptosis, a 

virus might prevent premature lysis that would normally abort production of progeny 

virus. Furthermore, anti-apoptotic genes delay phagocytosis of the infected cell by 

antigen presenting cells (Koyama et al, 2000), and impede the immune response, thus 

maximising the window for viral replication.
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1.2.8.5 Viral inhibitor of apoptosis protein (vIAP)

ORF K7 encodes viral inhibitor of apoptosis protein (vIAP) that is a homologue of the 

human survivin protein, survivinA-Ex3 (Wang et al, 2002). vIAP localises to the 

mictochondria (Wang et al, 2002), where it inhibits apoptosis through multiple stimuli 

including Fas, TRAIL, Bax, TNFa plus cyclohexamide, staurosporine and cermide 

(Wang et al, 2002; Feng et al, 2002). Mechanistically, vIAP bridges an interaction 

between cellular Bcl-2 and caspase-3 to inhibit caspase-3 activation (Wang et al, 

2002). It therefore serves as an anti-apoptotic adaptor protein. vIAP also appears to 

control cytosolic Ca2+ concentration through a direct interaction with calcium- 

modulating cyclophilin ligand (CAML). By increasing cytosolic Ca2+, vIAP was 

found to protect cells from mitochondrial damage and apoptosis (Feng et al, 2002).

1.2.8.6 vIRFl, vIRF2 and vIRF4

KSHV encodes three lytically expressed vIRFs. The IRFs are a family of transcription 

factors that regulate INF signal transduction through binding to interferon-stimulated 

response elements in the promoter of interferon-responsive genes. The IFNs represent 

an important part of the innate immune system antiviral strategy, stimulating the 

expression of a number of antiviral genes. Among these genes is PKR, a key mediator 

of antiviral and antiproliferative effects (Clemens et al, 1997). ORF K11.5 encodes 

viral-IRF2 (Burysek et al, 1999b), and vIRF2 can physically interact with PKR to 

block the antiviral effects of IFN (Burysek et al, 2001). vIRF2 also binds to the kB- 

consensus sequence and inhibits NF-kB activation, and interacts with RelA and p300 

(Burysek et al, 1999b). K9 encodes vIRFl, which directly interacts with cellular IRF1 

and IRF3 (Burysek et al, 1999a), p300 (Burysek et al, 1999a; Li et al, 2000), CRB 

(Seo et al, 2000) and p53 (Nakamura et al, 2001). Through effects on transcription 

mediated via these interactions, vIRFl is able to transform NIH3T3 and Rat-1 cells 

(Gao et al, 1997; Li et al, 1998). vIRFl is also a powerful antagonist of cellular IFN- 

mediated gene expression and antiviral effect (Zimring et al, 1998), and may also be 

important in regulating KSHV gene expression. Finally, vIRF4 is encoded within 

K10.1 and also subverts IFN signalling (Jenner et al, 2002).
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ORF G ene product Function Cell transformation NF-kB activation Expression pattern

K1 Down-regulates BCR and 

constitutively activates B cell 

signalling pathways.

Transform ation in HVS. Focus 

formation in Rat-1 cells. Tum ours in 

transgenic mice.

Dem onstrated via reporter based assays 

and increased expression in transgenic 

mice.

Lytic

ORF 4 Viral com plem ent 

binding protein 

(vCBP)

Inhibits the com plem ent com ponent o f  

innate immune response (Spiller et al., 

2003).

Lytic

K2 vIL-6 Growth factor. Activates g p l3 0  

independently o f  IL-6R.

- - Lytic

K.3 and K5 M odulator o f  

Im mune recognition 

(M IR) 1 and M IR 2

D ow n-regulate im m unoregulatory 

m olecules such as MHC I (Ishido et 

al., 2000).

Lytic

K4, K4.1 and 

K6

Viral m acrophage 

inflammatory 

proteins (vM IPs)

H om ologues o f  human M IP la , 

inducing angiogenesis and binding 

both CC and CXC receptors (Choi et 

al., 2001).

Lytic

K7 vIAP Inhibits apoptosis. - - Lytic

ORF 16 vBcl-2 Inhibits apoptosis. - - Lytic

K9 vIR Fl Deregulates IRF-m ediated 

transcription. Binds p53 and CBP.

Transform s NIH3T3 and Rat-1 cells. " Lytic

K10.1 vlRF4 Deregulates IRF-mediated 

transcription.

Lytic

K10.5/K10.6

/LANA2

vIRF3 Deregulates IRF-mediated 

transcription.

“ Latent

K l l . l vlRF2 Deregulates IRF-mediated 

transcription.

" Inhibits N F-kB binding to kB sequence Lytic

K12 Kaposin A Binds cytohesin-1. Transform s Rat-3 and NIH3T3 cells. - Latent

C ontinued



ORF 71

ORF 72 

ORF 73

ORF 74

K14

K15

vFLIP Inhibits apoptosis. Binds IKKy. Transform s R a t-1 and NIH3T3 cells.

vcyclin

LANA

vGPCR

Constitutively active cyclin D homologue. Induces lym phom as in p53-null

DNA replication. mice.

Tethers viral episome. Antagonises p53 and Transform s primary rats

em bryofibroblasts in conjunction 

with Ras.

Im mortalisation o f  HUVECs.

pRb. Regulates transcription.

Constitutively activates multiple 

transcription factors including JN K/SA P, Tumours in transgenic mice. 

N FA T and N F-kB.

Viral OX-2 (vO x- Activates production o f  inflammatory 

2) cytokines (IL -1P, T N F a, IL-6) (Chung et

al., 2002).

Inhibits BCR signalling. Binds TRAFs and 

HAX-1.

Binds IKKy to persistently activate IKK. 

Dem onstrated via reporter assays, kinase 

assays and EMSAs.

Activates via PI3-K/Akt pathway. Up- 

regulates expression o f  N F-xB -dependent 

genes.

Activation dem onstrated reporter based 

assays.

Latent

Latent

Latent

Lytic

Lytic

Latent

Table 1.2. KSHV genes involved in viral pathogenesis, highlighting those capable o f NF-kB activation and cell transformation.

Table is based on experim ental data referenced in the text if  not in the table. Adapted from Choi et al, 2001.



1.3 Regulation of NF-kB transcription factors

1.3.1 Rel and IkB protein families

Nuclear factor of kB (NF-kB) is the collective term for a group of dimeric 

transcription factors that regulate the expression of a wide range of genes involved in 

development, innate and adaptive immunity, and cellular survival. This set of genes 

includes an array of cytokines and adhesion molecules. It also includes molecules 

involved in the adaptive immune response and in migration, differentiation and 

maturation of lymphocytes. Finally, it contains genes that regulate cell growth and 

apoptosis (for review see (Pahl 1999) and (Ghosh et al, 2002)).

NF-kB was first discovered in 1986, as a protein binding the enhancer element within 

the kappa immunoglobulin (Ig) light-chain gene in B cells (Sen et al, 1986b). Soon 

afterwards, the same authors demonstrated NF-kB as an inducible transcription factor 

in a range of other cells (Sen et al, 1986a). NF-kB dimers are composed of different 

combinations of the five mammalian reticuloendotheliosis (Rel) family proteins. The 

Rel family (Fig. 1.4) share a conserved Rel homology domain (RHD) of 300 amino 

acids, which resembles two Ig domains (May et al, 1997). The RHD mediates the 

DNA binding and dimerisation of NF-kB subunits, and is also the binding domain for 

a family of inhibitory proteins, termed IkB (Ghosh et al, 1998). The IkB family 

(Fig. 1.4) share a domain containing six or seven ankyrin repeats, through which they 

bind the RHDs (Whiteside et al, 1997). Two classes of Rel proteins are recognised. 

Class I members (RelA/p65, RelB and c-Rel) are synthesised as mature molecules, 

and class II members (pl05/NF-KBl and pl00/NF-KB2) are synthesised as large 

precursor proteins containing an N-terminal RHD and a C-terminal ankyrin repeat 

domain. Prior to processing, p i05 and p i00 function as iKB-like molecules (Rice et 

al, 1992; Mercurio et al, 1993; Dobrzanski et al, 1995; Solan et al, 2002). Proteolysis 

cleaves their C-terminus to produce mature NF-kB subunits (p50 and p52 

respectively) (Whiteside et al, 1997).
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Figure 1.4. Schematic representation of the NF-kB/REL and IkB protein families.

The number of amino acids in each protein is listed on the right. The double lines 
in pl05 and plOO indicate the C-terminus, following processing, of p50 and p52 
respectively; LZ, leucine zipper; GRR, glycine rich region; DD, death domain, 
(adapted from Karin and Ben-Neriah, 2000)
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1.3.2 NF-kB dimers

NF-kB is now known to exist in most cell types, binding to the common consensus 

sequence 5’-GGGRNNYYCC-3’ (where R is purine and Y is pyrimidine) (Kunsch et 

al, 1992; Parry et al, 1994), that may regulate more than 150 genes (Pahl 1999). The 

RelA/p50 heterodimer is the most abundant NF-kB complex, but most combinations 

of NF-kB homo- and heterodimers have been described in vivo (Molitor et al, 1990; 

Kang et al, 1992; Ganchi et al, 1993; Parry et al, 1994; Hansen et al, 1994a). The one 

exception being RelB, which only forms heterdimers with p50 and p52 (Ryseck et al, 

1992; Ryseck et al, 1995). Most dimers are transcriptionally active, however p50 and 

p52 lack the variable C-terminal transactivation domain that is present in RelA, RelB 

and c-Rel (Ghosh et al, 1998). Some data suggest that p50 and p52 homodimers are 

transcriptionally repressive (Kang et al, 1992; Plaksin et al, 1993; Brown et al, 1994; 

Hansen et al, 1994a; Hansen et al, 1994b), and this may be through passive occupancy 

of kB sites, competition with other NF-kB complexes (May et al, 1997) or through 

the recruitment of specific corepressor complexes (Zhong et al, 2002). However, p50 

and p52 homodimers also bind specifically to the IicB-like proto-oncogene, Bcl-3, to 

form transcriptionally active complexes (Fujita et al, 1993; Bours et al, 1993). 

Interestingly, p52:Bcl-3 complexes bind the cyclin D1 promoter and stimulate cyclin 

D1 expression to potentiate G1 transition in human epithelial breast cells 

(Westerheide et al, 2001).

The various NF-kB dimers have different affinity for kB binding sites, allowing for 

the differential regulation of a wide range of genes (May et al, 1997). The first NF- 

kB:DNA crystal structure was solved for the p50 homodimer (Ghosh et al, 1995; 

Muller et al, 1995), demonstrating the DNA trapped between the folds of the RHD
m

domains, which have been likened to butterfly wings. Contact with DNA is made by 

10 loops at the tips of (3-strands, mediating a strong but flexible interaction (May et al,

1997). Once bound to the promoter, NF-kB initiates transcription through the 

assembly of larger nucleoprotein complexes, termed enhanceosomes (Thanos et al, 

1995). Studies on the IFN-p promoters have advanced understanding of this multistep 

process, which involves the assembly of DNA remodelling enzymes, sequence
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specific transcription factors and co-activator proteins. The enhancer element of the 

IFN-(3 gene contains three domains, termed positive regulatory domains (PRDs) 

(Thanos et al, 1993). This enhancer is bound by three transcription factors, NF-kB, 

ATF-2/c-jun and IRF proteins that recognise PRDII, PRDIV and PRDIII-1, 

respectively. The DNA-remodelling protein HMG I(Y) binds the central region of 

PRDII (Thanos et al, 1992), and bends the DNA to allow binding of NF-kB and ATF- 

2/c-Jun (Yie et al, 1999). Further protein-protein interactions recruit IRF, general 

transcription factors and the co-activator p300/CBP into the complex (Munshi et al,

1998). Co-activators are non-DNA binding proteins that couple transcription factors 

to the basal transcription machinery and induce chromatin remodelling (Blobel 2000) 

(Section 1.2.7.2). The process of chromatin remodelling is the first step in promoter 

activation. It is therefore significant that Rel A directly recruits p300/CBP through an 

interaction with its C-terminal transactivation domain (Perkins et al, 1997; 

Wadgaonkar et al, 1999).

Two distinct pathways regulate the transcriptional activity of NF-kB. The first applies 

to dimers composed of RelA, c-Rel and p50, and is termed the classical or canonical 

pathway. The archetype for this pathway was proposed following the discovery that 

latent NF-kB DNA-binding activity could be activated by treating cells with 

deoxycholate (Baeuerle et al, 1988). This led to the isolation of the inhibitory 

proteins, hcBa and (3, that bind NF-kB and are thought to mask nuclear localisation 

signals (NLS) within the RHD (Whiteside et al, 1997). The simplest model for the 

classical pathway is that NF-kB is released when upstream signals induce proteolytic 

degradation of these inhibitory proteins (Henkel et al, 1993). NF-kB dimers then 

migrate to the nucleus and activate transcription. The second, or alternative pathway, 

controls the processing of pi 00. RelB is preferentially sequestered by full-length pi 00 

(Dobrzanski et al, 1995; Solan et al, 2002), and specific stimuli can activate partial 

processing of p i00 to release RelB heterodimers, and also generate p52. The 

regulation of these two pathways is the subject of the remainder of this section.
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1.3.3 Classical NF-kB pathway

The classical pathway (Fig. 1.5), leading to the degradation of the small IkB s (hcBa, 

IidBp and IkB s) can be activated by a variety of proinflammatory stimuli including 

bacterial LPS, negative strand viruses, ds-RNA, immunostimulatory sequences (ISS) 

of DNA, TNFa, IL-1 and antigens (Ghosh et al, 2002). It should be noted that, in 

some cases, both classical and alternative pathways are activated by the same stimulus 

(Section 1.3.4.3). Stimuli of the classical pathway trigger the activation of a specific 

IkB kinase (IKK) complex, which phosphorylates IkB proteins at two N-terminal 

residues (Ser32 and 36 for IkB oc and Seri9 and Ser23 for IkBP) (DiDonato et al, 

1997; Mercurio et al, 1997; Regnier et al, 1997; Woronicz et al, 1997; Zandi et al, 

1997). Importantly, a mutant of IkB oc containing serine to alanine substitutions at 

positions 32 and 36, functions as a potent dominant negative inhibitor of the classical 

pathway, referred to as the super-repressor (Roff et al, 1996). Phosphorylated IkB is 

recognised by P-TrCP receptor protein and targeted for poly-ubiquitination at two 

major N-terminal arginine acceptor sites, by an E3 ubiquitin ligase enzyme (Alkalay 

et al, 1995b; Yaron et al, 1997). Phosphorylated and ubiquitinated IkB is thus targeted 

for degradation by the 26S proteosome (Brown et al, 1995; Chen et al, 1995). This 

process is rapid, such that all IkBcx can be degraded within a few minutes (DiDonato 

et al, 1995; Alkalay et al, 1995a). The classical pathway therefore ensures a rapid 

response that is crucial for effective inflammatory and immunoregulatory processes.
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Figure 1.5. A model for the classical pathway of NF-kB activation.

The classical pathway involves activation of the IKK complex via membrane- 
bound receptors of the TNF-R superfamily. Phosphorylation of short IkB 
molecules by IKK targets these inhibitor molecules for ubiquination by the SCF 
ubiquitin ligase complex and processing by the 26S proteasome. NF-kB dimers are 
released and translocate to the nucleus to regulate transcription of kB dependent 
genes.
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In addition to the IKK complex, several other modes of regulation exist in the 

classical pathway. For example, de novo IkBoc was found to enter the nucleus and 

export NF-kB dimers (Brown et al, 1993; Sun et al, 1993; Chiao et al, 1994; 

Arenzana-Seisdedos et al, 1995), thereby limiting the NF-kB response. Another 

mechanism of regulation lies in the phosphorylation of NF-kB subunits to modify 

their transcriptional activity. Such a mechanism of control was first demonstrated for 

RelA following cellular stimulation (Naumann et al, 1994; Neumann et al, 1995), and 

subsequently shown for RelB and c-Rel. Such cytokine-inducible phosphorylation 

may regulate NF-kB recruitment of the enhanceosome (Ghosh et al, 2002). Further 

fine-tuning of the transcriptional activity of NF-kB may occur through ubiquitination, 

acetylation and the addition of the small ubiquitin-like modifier (SUMO) to key 

components within the NF-kB pathway (Freiman et al, 2003).

1.3.3.2 The IkB Kinase (IKK) complex

All known proinflammatory stimuli converge on the IKK complex (Ghosh et al, 

2002). IKK is highly regulated, and in many respects holds the key to regulation of 

the entire NF-kB pathway. Discovery of IKK was therefore a major break-through in 

understanding NF-kB signalling. This discovery was driven by the knowledge that 

IkB degradation required specific stimulus-dependent phosphorylation. Using 

chromatography, Didonato et al, purified a 900 kDa protein kinase complex from the 

extracts of TNF-treated HeLa cells (DiDonato et al, 1997). This complex had all the 

hallmarks of a physiological IkB kinase: it was specific for hcBa; was able to 

discriminate against a mutant with threonine substitutions; and was rapidly activated 

by proinflammatory cytokines (DiDonato et al, 1997). Two polypeptides that coeluted 

with this IKK activity were identified by microsequencing, and cDNA cloning, as two 

closely related protein kinases, IKKa (IKK1) and IKK|3 (IKK2) (DiDonato et al, 

1997; Zandi et al, 1997). Concurrent experiments by Mercurio et al, yielded identical 

results (Mercurio et al, 1997). IKKa had previously been identified as a putative 

serine threonine kinase, termed conserved helix-loop-helix ubiquitous kinase (CHUK) 

(Connelly et al, 1995). At the same time, Regnier et al, identified CHUK as an 

interacting partner of NF-kB inducing kinase (NIK), with specific kinase activity 

towards IkB (Regnier et al, 1997). A third component, termed IKKy, was discovered
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soon afterwards by further purification and sequencing of IKK (Rothwarf et al, 1998). 

The mouse homologue of IKKy was identified by complementation cloning, as a 

factor, termed NF-kB essential factor (NEMO), that could restore NF-kB activation in 

two cell lines defective in this activity (Yamaoka et al, 1998). IKKy is also known as 

IKK-associated protein (IKKAP1) (Mercurio et al, 1999) and 14.7 interacting protein 

(FIP-3) (Li et al, 1999c).

IKKa and IKKp are the catalytic components of the IKK complex. They are highly 

homologous proteins of 85 and 87 kDa respectively, sharing 50% identity and more 

than 70% similarity. IKKy is non-catalytic, but essential for the assembly and 

activation of the high molecular weight IKK complex (Rothwarf et al, 1998; 

Yamaoka et al, 1998; Rudolph et al, 2000; Li et al, 2001). The N-terminus of IKKy 

contains the binding site for the IKKa/p catalytic subunits, and this is probably within 

the first 100 amino acids although conflicting results have been published as to the 

precise location (Rothwarf et al, 1998; Mercurio et al, 1999; May et al, 2000; Poyet et 

al, 2000; Ye et al, 2000). IKKa and IKKp dimerize via C-terminal leucine zipper 

motifs (Mercurio et al, 1997; Woronicz et al, 1997; Zandi et al, 1997), and associate 

with IKKy via a motif in their extreme C-terminus (May et al, 2000; Hu et al, 2001). 

Both interactions are essential for IKK activity. The C-terminus of IKKy is 

specifically required for IKK activation via pro-inflammatory stimuli (Rothwarf et al, 

1998; Yamaoka et al, 1998; Makris et al, 2002; Ghosh et al, 2002). These data suggest 

that IKKy may bridge interactions between IKK and upstream activators, since 

truncations and mutations within the C-terminus do not affect IKK complex assembly 

but do prevent its activation (Rothwarf et al, 1999). However, the precise role of IKKy 

in activation of IKK has not yet been fully explained. More recently, the chaperone 

protein Hsp90 and a cochaperone called Cdc37 have been identified as additional 

components of the IKK complex (Chen et al, 2002). Hsp90 is unusual amongst 

chaperone proteins in its substrate specificity for enzymes involved in signal 

transduction. Established substrates include steroid hormone receptors (Picard et al, 

1990), and a variety of protein kinases (Fisher et al, 2000; Sato et al, 2000; Goes et al,

2001). These proteins depend on Hsp90 for their maturation and stability (Maloney et 

al, 2002). A role for Hsp90 in maintaining the IKK complex is therefore consistent 

with its known range of functions.
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1.3.3.3 The functions of IKKa and IKKP

Phosphorylation appears to control the activity of the IKK complex, since protein 

phosphatases 2a (Fu et al, 2003) and 2cp (Prajapati et al, 2003) inactivated IKK in 

vitro, and treatment of cells with the phosphatase inhibitor, okadaic acid, resulted in 

complex activation (DiDonato et al, 1997). Consistent with these data, an activation 

loop in IKKa and IKKp was phosphorylated at two specific serine residues in 

response to TNFa and IL-1 (Delhase et al, 1999). Serine to alanine substitution of 

these residues in the IKKp subunit resulted in a dominant negative mutant, while 

mutation to glutamate produced a constitutively active molecule (Mercurio et al,

1997). However, the same substitutions in IKKa had no effect on activation of the 

complex by TNFa or IL-1, but did inhibit RANK-induced expression of cyclin D1 

and proliferation in mammary epithelial cells (Cao et al, 2001). Genetic experiments 

have also highlighted essential differences between the two catalytic subunits. 

Disruption of IKKp (Tanaka et al, 1999; Li et al, 1999b; Li et al, 1999d) and IKKy 

(Makris et al, 2000; Rudolph et al, 2000; Schmidt-Supprian et al, 2000) loci in mice 

resulted in embryonic lethality with severe liver degeneration, which was highly 

analogous to the p65'7' phenotype (Beg et al, 1995). IKKp'7' and IKKy'7' mice were 

refractory to NF-kB activation by proinflammatory stimuli. In contrast, IKKa'7' mice 

died perinatally with severe morphogenetic defects in keratinocyte proliferation and 

differentiation, but IkB degradation by proinflammatory stimuli was virtually 

unaffected (Hu et al, 1999; Takeda et al, 1999; Li et al, 1999a). Despite normal IkB 

degradation and nuclear translocation of NF-kB, IKKa'7' mice were deficient in 

inducing several NF-KB-dependent mRNAs in response to IL-1 and TNFa (Li et al, 

1999a; Li et al, 2002). Recent work has shown the nuclear recruitment of IKKa, 

where it bound to the promoter regions of NF-kB responsive genes in conjunction 

with RelA and CBP, following cytokine treatment of cells (Yamamoto et al, 2003; 

Anest et al, 2003). IKKa promoted chromatin acetylation via specific 

phosphorylation of Histone 3 (Yamamoto et al, 2003; Anest et al, 2003). This 

function was antagonised by IKKy, which was also found to shuttle between 

cytoplasm and nucleus and compete with RelA and IKKa for binding to CBP (Verma 

et al, 2003). IKKa would therefore seem to have an important downstream role in
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augmenting NF-icB-dependent gene expression, while activation loop phosphorylation 

of IKKp is required to liberate NF-kB dimers from IkB inhibition.

1.3.3.4 Activation and Regulation of IKK

Although it is clear that the classical pathway of NF-kB involves IKKp 

phosphorylation and activation, it is not yet understood how this signal is transduced. 

The pathway is best characterised for TNFa, which recruited the IKK complex to the 

TNFR1 upon receptor binding (Devin et al, 2000; Zhang et al, 2000; Chen et al, 

2002). Genetic experiments have identified critical molecules in this process, 

including TRAF2 (Kelliher et al, 1998; Tada et al, 2001), TRAF5 (Tada et al, 2001) 

and the protein kinase RIP1 (Devin et al, 2000). TRAF2 and TRAF5 are proposed to 

recruit IKK, while RIP1 induces its activation, although the kinase activity of RIP 1 

was dispensable (Devin et al, 2000). Although these data fail to explain exactly how 

the IKK complex is activated, it seems most likely that IKKp is either phosphorylated 

by upstream kinases that may be recruited by the C-terminus of IKKy, or that a 

transautophosphorylation mechanism is responsible for its activation (see below).

Key elements of another important pathway that is required for B cell and T cell 

receptor-mediated activation of IKK have recently been elucidated (Yu et al, 2003). 

Using germline inactivation in mice, two groups demonstrated that a protein called 

mucosa-associated lymphoid tissue (MALTl)/paracaspase (MPC) is an essential 

regulator of NF-kB in lymphoid cells (Ruland et al, 2003; Ruefli-Brasse et al, 2003). 

The T cell receptor (TCR) signalling pathway activates IKK via two caspase- 

recruitment domain (CARD)-containing adaptor proteins, termed CARMA1 and Bcl- 

10 (Thome et al, 2003). Since CARD-containing proteins are involved in apoptotic 

pathways (Section 1.4.6), these proteins were initially assumed to mediate apoptosis. 

However, Bel-10'7' mice had normal apoptotic responses but were immunodeficient 

and resistant to antigen receptor-mediated NF-kB activation (Ruland et al, 2001). 

Subsequently, Carmal was found to interact with Bel-10 (Gaide et al, 2001; Bertin et 

al, 2001), and the Carmal-deficient (Hara et al, 2003) and MPC-deficient mice 

(Ruland et al, 2003; Ruefli-Brasse et al, 2003) were found to have a similar phenotype 

to Bel-1 O'7' mice. MPC contains an N-terminal death domain (DD), two Ig-like
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domains and a C-terminal caspase-like domain. Chromosomal translocation of MPC 

[t( 11; 18)(q21 ;q21)] (Wotherspoon et al, 2002), like Bcl-10 [t(l: 14)(p22;q32)] (Willis 

et al, 1999; Zhang et al, 1999), is associated with MALT B cell lymophoma, 

suggesting the two molecules may be components of a common signalling pathway. 

The most recent data confirm this speculation, and suggest that MPC functions 

downstream of Bcl-10 (Ruland et al, 2003; Ruefli-Brasse et al, 2003), which in turn 

lies downstream of Carmal (Thome et al, 2003). Importantly, inactivation of MPC 

did not affect the alternative pathway of NF-kB activation (Ruland et al, 2003), 

suggesting these signalling components may be specific to antigen receptor mediated 

activation of the classical pathway.

On the basis of overexpression studies, many candidate IKKp kinases have been 

suggested (Ghosh et al, 2002), but only three have stood the test of genetic ablation or 

RNAi. MAP/ERK kinase kinase (MEKK) 3'1' MEFs were defective in TNFa- and IL- 

1-mediated IKK activation, and MEKK3 was found to function downstream of RIP 1 

and TRAF2 (Yang et al, 2001). In contrast, zeta protein kinase C (£PKC) was found 

to be important in TNFa-mediated IKK activation in mouse lung cells but not in 

MEFs (Leitges et al, 2001). The MAP3 kinase, transforming growth factor [TGF]-p- 

activated kinase (TAK)-l was shown to be critical in IL-1- and TNFa-induced 

activation of NF-kB in HeLa cells using RNAi (Takaesu et al, 2003). These data 

support in vitro observations that TAK1 could activate IKK via a novel ubiquitination 

mechanism (Deng et al, 2000; Wang et al, 2001). An ubiquitin-conjugating complex 

containing Ubcl3 and Uevl, termed TRAF6-regulated IKK activator (TRIKA) 1, was 

biochemically purified and found to ubiquinate TRAF6 on lysine 63, leading to its 

activation. TRAF6 was then able to activate a second complex, TRIKA2, containing 

TAK1, TAB1 and TAB2, which in turn activated IKK. Intriguingly, ubiquitination of 

IKKp (Carter et al, 2003) and IKKy (Tang et al, 2003) has recently been suggested to 

activate IKK, and a deubiquitinating (DUB) enzyme, termed CYLD, was shown to 

negatively regulate IKK (Brummelkamp et al, 2003; Trompouki et al, 2003; 

Kovalenko et al, 2003). However, it is not clear whether these observations are 

connected to the ubiquitin-related activity of TAK1. In summary, accumulating 

evidence suggests that several different mechanisms exist to activate IKK, depending 

on cell type and stimulus.
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The second mechanism by which IKKp may be activated is via induced proximity 

and transautophosphorylation. It has been shown that enforced oligomerisation of the 

N-terminus of IKKy, or truncated IKKa and IKKp mutants lacking their C-terminus, 

can activate IKK, and it is proposed that RIP1 may mediate the oligomeristation of 

IKK in vivo (Poyet et al, 2000; Inohara et al, 2000). Overexpression of active IKKp 

leads to activation via autophosphorylation (Zandi et al, 1998), and it is suggested that 

the ability of IKKp to oligomerise and transautophosphorylate is essential for IKK 

activation (Tang et al, 2003). It is also possible that the two mechanisms are not 

mutually exclusive. The most recent data suggest that IKKy interacts with IKKa and 

IKKp as a tetramer (Tegethoff et al, 2003), which hold the kinase subunits in position. 

It seems possible that post-translational modification (be it ubiquitination and/or 

phosphorylation) of IKK subunits might trigger a conformational change within the 

complex that facilitates IKKp autophosphorylation. Crystal structure analysis of 

inactive and active IKK complexes may reveal answers to this question.
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1.3.4 Alternative NF-kB pathway

The alternative pathway regulates the processing of p i00 (Fig. 1.6). This discovery 

derived from the observation that germline inactivation of the nfkb2/pl00 gene 

(Franzoso et al, 1998; Caamano et al, 1998) resulted in a phenotype that bore 

remarkable similarity to NIK'7' (Yin et al, 2001) and aly/aly (Koike et al, 1996) mice. 

These mice are characterised by the systemic absence of lymph nodes and Peyer’s 

patches, disorganised splenic and thymic architectures, lack of germinal centres and 

defective B cell-mediated responses resulting in immunodeficiency. Since the 

alymphoplasia (aly) phenotype is attributed to a Gly855-to-Arg substitution in the C 

terminus of NIK (Shinkura et al, 1999), this suggested that NIK might have a role in 

pi 00 processing (Xiao et al, 2001b). Overexpression of NIK was subsequently shown 

to induce the processing of p i00, a function which was inhibited by the aly mutation 

(Xiao et al, 2001b). Soon afterwards, Senftleben et al, demonstrated a role for IKKa 

in this pathway using IKKa'7' haematopoietic stem cells to reconstitute lethally 

irradiated mice (Senftleben et al, 2001; Kaisho et al, 2001). These chimeras displayed 

similar defects in B cell maturation and lymphoid architecture to those of aly/aly, 

NIK'7' and nfKb2'7' mice. Moreover, B cells derived from IKKa'7" mice exhibited a 

specific deficiency in p i00 processing that could not be rescued by the ectopic 

expression of NIK (Senftleben et al, 2001). In vitro kinase assays suggested that 

IKKa can phosphorylate p i00 directly, leading to ubiquitin-dependent generation of 

p52 (Senftleben et al, 2001). These data implied the existence of a specific pathway, 

with IKKa lying downstream of NIK, which regulates pi 00 processing.
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Figure 1.6. A model for the alternative pathway of NF-kB activation.

The alternative pathway involves activation of NIK and IKKa protein kinases via 
membrane-bound receptors of the TNF-R superfamily. Phosphorylation by IKKa 
marks plOO for ubiquination by the SCF ubiquitin ligase complex and partial 
processing by the 26S proteasome. NF-kB dimers containing RelB are released and 
p52 is generated from the processing, liberated dimers are thought to be free to 
translocate to the nucleus.

55



1.3.4.2 plOO processing

Unlike the constitutive processing of p i05, the processing of p i00 is tightly regulated 

(Betts et al, 1996; Heusch et al, 1999). The lack of constitutive p i00 processing has 

been attributed to a processing inhibitory domain (PID) located within a death domain 

(DD) at the C-terminus, since p i00 truncation mutants lacking the DD/PID are 

constitutively processed (Xiao et al, 2001b). It is therefore interesting that genetic 

alterations of the nfi<b2 gene that are associated with lymphoid neoplasms have been 

shown to generate proteins that lack this region (Rayet et al, 1999). Processing of 

plOO is also regulated by a glycine-rich region (GRR) at amino acid 346-377 (Heusch 

et al, 1999). Translocation of this GRR alters the site of proteasomal processing 

(Heusch et al, 1999). Like the small IkB proteins, inducible phosphorylation of p i00 

upon two C-terminal serine residues (S866 and S870) leads to ubiquitination (Fong et 

al, 2002a; Fong et al, 2002b). The DD of p i00 is required for the phosphorylation- 

induced recruitment of p-transducing repeat-containing protein (P-TrCP), a 

component of the SKPl-cullin-F box (SCF) ubiquitin ligase complex which catalyses 

p i00 polyubiquitination (Fong et al, 2002a). Yeast two-hybrid analysis identified S9, 

a component of the 19S subcomplex of the 26S proteasome, as an interacting partner 

of the C-terminus of p i00 (Fong et al, 2002b). In mammalian cells, this interaction 

was NIK-inducible and led to the partial processing of pi 00 to generate p52.

1.3.4.3 Activation of the alternative pathway

Four receptors belonging to the TNF receptor superfamily have been shown to induce 

p i00 processing. B-cell activating factor (BAFF) is critical for the development and 

survival of peripheral B cells (Schiemann et al, 2001; Gross et al, 2001). BAFF 

receptor 3 (BR3) is the only specific receptor for BAFF and has been shown to induce 

p i00 processing (Claudio et al, 2002; Kayagaki et al, 2002). Interestingly, transgene 

mediated overexpression of BAFF leads to B cell hyperplasia and a systemic lupus 

erythematous-like condition in mice (Mackay et al, 1999; Gross et al, 2000; Khare et 

al, 2000). Lymphotoxin-P receptor (LTpR) signalling also induced p i00 processing 

(Saitoh et al, 2002; Dejardin et al, 2002; Muller et al, 2003; Mordmuller et al, 2003). 

LTpR is expressed on stromal cells, and a crucial role for this receptor in the 

development of lymphoid tissue has been suggested by genetic ablation in mice,
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which fail to form lymph nodes and Peyer’s patches (Shakhov et al, 2001). CD40 is

expressed on B cells and triggers their clonal expansion and differentiation

(Calderhead et al, 2000). CD40 ligation also induces p i00 processing (Coope et al,

2002). Finally, TNF-like weak inducer of apoptosis (TWEAK), is expressed on

human monocytes, and was also found to induce the alternative NF-kB pathway

(Saitoh et al, 2003). These data suggest that the alternative pathway activates a

transcriptional programme that is essential to B cell function. There were four

essential similarities between the induction of p i00 by these receptor:ligand

interactions. First, genetic experiments have demonstrated that IKKy and IKKp were

not required for p i00 processing, indicating that this pathway was functional in the
#

absence of a classical IKK complex. Second, p i00 processing was translation- 

dependent, indicating a requirement for de novo protein synthesis. Third, in each case 

the kinase activities of IKKa and NIK were essential. Fourth, both classical and 

alternative pathways were activated by these stimuli (see below).

Using time course assays in MEFs, Muller et al, made a series of observations to 

highlight the essential differences between the classical and alternative pathways 

(Muller et al, 2003). In this study, TNFa treatment induced immediate degradation of 

iKBa that was considered to be indicative of classical pathway activation, but p i00 

and p52 levels were unaffected. In contrast, although LTpR agonistic antibody 

induced some early IicBa degradation, p i00 was found to decrease after 4h and this 

was matched by an increase in p52. This late processing of pi 00 was considered to be 

indicative of alternative pathway activation. EMSA supershift and 

nucleancytoplasmic fractionation assays were used to analyse nuclear NF-kB dimers 

during the LTpR response. RelA-containing dimers dominated in the nucleus during 

the early time points, but were replaced by RelB-containing dimers at later time 

points. The authors used MEFs with single gene deletions to isolate each pathway. 

Thus, IKKy'7' and IKKP'7' cells were permissive for p i00 processing and RelB dimers 

were observed in the nucleus, but IKBa degradation and translocation of RelA at early 

time points did not occur in these cells. Using IKKa'7' and aly/aly mice, signigicant 

levels of RelA translocation were found, but dimers containing RelB were not 

observed. These data correlate well with reports of distinct patterns of gene 

expression in IKKa'7' and IKKp'7' mice (Senftleben et al, 2001; Dejardin et al, 2002).
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Thus, expression of proinflammatory molecules (including macrophage inflammatory 

factor (MIP)-ip, MIP2 and VCAM-1) was dependent on IKKp, while the expression 

of secondary lymphoid tissue chemokine (SLC), B lymphocyte chemoattractant 

(BLC), Ebl-1-ligand chemokine (ELC) and BAFF were dependent on IKKa (Dejardin 

et al, 2002). Together, these data suggest that the alternative and classical pathways 

can operate independently. Furthermore, the two are distinct in molecular mechanism, 

in time course and also in the specific NF-kB dimers and therefore genes that are 

activated. The data suggest that p i00 processing activates’ RelB transcriptional 

activation, and this is consistent with the function of p i00 as a specific inhibitor of 

RelB-containing dimers (Solan et al, 2002). Further analysis will be required to 

explain why this pathway is dependent on protein expression. It is possible that 

expression of an essential factor is necessary, or that processing is linked to the de 

novo expression of p i00. Since p i00 expression is activated by the classical pathway 

(Liptay et al, 1994; Sun et al, 1994), this may explain the delay in activating the 

alternative pathway.

1.3.4.4 Viral activation of the alternative pathway

Two viral oncoproteins have been shown to activate both classical and alternative NF- 

kB pathways: Tax of Human T cell leukaemia virus (HTLV)-l, and LMP1 of EBV. 

HTLV-1 is associated with an acute T-cell malignancy termed, adult T-cell leukaemia 

(ATL) (Poiesz et al, 1980; Yoshida et al, 1982), while EBV is the etiological agent for 

a number of neoplastic diseases including Burkitt’s lymphoma, classical Hodgkin’s 

lymphoma and nasopharyngeal carcinoma (Table 1.1). LMP1 is a membrane- 

associated protein with six hydrophobic transmembrane domains and a C-terminus of 

200 amino acids (Hatzivassiliou et al, 2002). It is one of five latent genes essential for 

transformation of B cells by EBV (Kaye et al, 1995). LMP1 transformed Rat-1 

fibroblasts (Wang et al, 1985), and induced lymphomas when expressed under control 

of Ig heavy chain and enhancer promoter in transgenic mice (Kulwichit et al, 1998). 

LMP1 is a functional homologue of CD40 (Zimber-Strobl et al, 1996; Kilger et al,

1998), but has ligand-independent constitutive activity (Gires et al, 1997). Via its C- 

terminus, LMP1 activates both NF-kB and AP-1 transcription factors, and this 

domain is required for transformation by LMP1 (Eliopoulos et al, 2001). The 

activation of NF-kB is proposed to be critical for the transforming activity of LMP1
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(Izumi et al, 1997), and this conclusion is supported by the observation that the IkBo, 

super-repressor prevented LMP1-mediated transformation of Rat-1 cells (He et al,

2000). Two sub-domains in the C-terminus of LMP1, termed carboxy-terminal 

activating regions (CTARs), are responsible for recruiting adaptor molecules and 

activating NF-kB (Huen et al, 1995; Mitchell et al, 1995; Devergne et al, 1996). 

Recent experiments using point mutants have isolated the function of each CTAR: 

CTAR1 was responsible for triggering IicBa phosphorylation, and therefore the 

classical pathway, and CTAR2 was required for induction of p i00 processing and 

RelB:p52 nuclear translocation (Saito et al, 2003; Atkinson et al, 2003; Eliopoulos et 

al, 2003). In other respects, LMP1 activation of the alternative pathway resembled 

that of CD40 and the other TNFRs, including the requirement of NIK and IKKa, for 

protein synthesis, and for proteasomal activity.

Tax is likely to be the oncogenic component of HTLV-1, inducing transformation of 

CD4+ve cord blood cells in vitro (Grassmann et al, 1992) and soft tissue tumours in 

transgenic mice when expressed under control of the HTLV-1 LTR (Nerenberg et al, 

1987). Tax also potently induced the aberrant expression of a large number of cellular 

genes (Ressler et al, 1996), many of which are regulated via NF-kB (Sun et al, 1999). 

Furthermore, Tax activated NF-kB through a direct interaction with IKKy (Harhaj et 

al, 1999; Jin et al, 1999; Chu et al, 1999; Xiao et al, 2000) that induced persistent IKK 

activity (Geleziunas et al, 1998; Uhlik et al, 1998; Yin et al, 1998; Chu et al, 1998). 

Various lines of evidence suggest that this NF-kB activation is critical for 

transformation by Tax. First, a tax mutant defective in NF-kB activation was unable 

to immortalise primary human T cell in vitro (Robek et al, 1999). Second, 

overexpression of pi 00 together with Tax blocked the ability of Tax to transform Rat- 

1 cells (Yamaoka et al, 1996). Third, protection against growth-factor-withdrawal- 

mediated apoptosis by Tax correlated with NF-kB activity (Iwanaga et al, 1999; 

Tsukahara et al, 1999). Fourth, an inhibitor of IkB phosphorylation, termed Bay 11- 

7082, induced apoptosis in HTLV-1 infected cells (Mori et al, 2002). The fact that co­

expression of p i00 could block Tax-mediated transformation is particularly 

interesting, and suggests that the IkB function of p i00 can block transformation. 

Subsequently, Tax has been demonstrated to induce p i00 processing (Xiao et al, 

2001a). However, Tax activation of the alternative pathway is unorthodox. In contrast
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to other known activators of p i00 processing, Tax functioned independently of NIK 

but required IKKy. Tax bound directly to both p i00 and IKKy, seeming to bridge an 

interaction between the two proteins that served to recruit p i00 to IKKa (which was 

essential for processing), which in turn induced phosphorylation-dependent 

ubiquitination and processing of pi 00 .
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1.4 KSHV-encoded vFLIP 
*

1.4.1 Introduction

KSHV ORF71 encodes vFLIP. To explain the discovery and function of vFLIP it is 

helpful to understand the pathways involved in apoptosis.

1.4.2 Apoptosis and the caspase family

Apoptosis, or programmed cell death is an essential process for the survival of all 

multi-cellular organisms. Apoptotic death allows the removal of old, damaged or 

superfluous cells and is central to many important processes, including regulation of 

the immune system, embryonic development and metamorphosis. Apoptosis is a 

highly regulated process characterised by cytoskeleton disruption, shrinking of cells, 

condensation of nuclei and intemucleosomal degradation of DNA (Kerr et al, 1972). 

The ordered series of biochemical events that culminate in apoptosis can be triggered 

either at the cell membrane (extrinsic pathway) or through various forms of 

intracellular stress (intrinsic pathway). In each case, large multi-protein complexes are 

formed and a family of proteins called caspases are activated (Bratton et al, 2000). 

The caspase family was discovered through homology to the pro-apoptotic gene, ced- 

3, encoded by the nematode worm, Caenorhabditis elegans (Yuan et al, 1993; Xue et 

al, 1996). The first to be identified was interleukin-1(3 converting enzyme (ICE) 

(Thomberry et al, 1992; Cerretti et al, 1992). The caspases are aspartate-specific 

cysteine proteases that are synthesised as zymogens. At least 14 members of the 

caspase family are now recognised and divided into three subgroups on the basis of 

their structure and function (Alnemri et al, 1996). Group I (caspase-1, -4, -5, -11, -12, 

-13, and -14) are ICE-related and involved in the inflammatory response. Group II 

(caspase-2, -3, and -7) and group III (caspase-6 , -8, -9, and -10) are directly involved 

in apoptosis. Group III are known as ‘initiator’ caspases that are recruited to upstream 

signalling complexes by virtue of their long pro-domains. The group II, or ‘effector’ 

caspases, are the substrates for the initiator caspases. Once activated by cleavage,
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these enzymes cleave structural and regulatory proteins within the cell and are 

responsible for many of the dramatic morphological features of apoptosis.

The group III caspases receive and amplify the apoptotic signal. Their activation 

therefore represents a crucial step in the commitment of a cell to apoptosis. The 

intrinsic pathway (Fig. 1.7) is activated to eliminate cells in response to ionising 

radiation, cytotoxic drugs, growth factor withdrawal and other forms of intracellular 

damage (Boatright et al, 2003). Such stimuli lead to the permeabilisation of the 

mitochondrial outer membrane and subsequent release of cytochrome c and other 

cytocidal proteins. Also released are Smac/Diablo and Omi/HtrA2, which prevent the 

IAPs (see below) from inhibiting capase activity. Important regulators of the intrinsic 

pathway are the Bcl-2 family members, which are broadly divided into two categories 

according to whether they promote or inhibit apoptosis (for review see (Adams 

2003),(Kuwana et al, 2003) and (Newmeyer et al, 2003)). When released, cytochrome 

c forms a 700 kDa complex called the apoptosome (Acehan et al, 2002), containing 

apoptotic protease-activating factor 1 (Apaf-1), procaspase-9 and dATP/ATP. 

Caspase-9 is activated within the apoptosome and initiates the caspase cascade (Cain 

et al, 1999; Zou et al, 1999). By contrast, the extrinsic pathway (Fig. 1.7) is required 

for the removal of superfluous cells during development, immune system regulation 

and removal of tumour cells by cytotoxic T cells. It involves the activation of capase- 

8 via specialised membrane-associated receptors, belonging to a subset of the tumour 

necrosis factor receptor (TNFR) family termed death receptors (DRs). The DRs and 

extrinsic pathway are described in more detail below.

To prevent uncontrolled apoptosis resulting in tissue damage and disease, apoptosis is 

regulated by at least three groups of inhibitors. It is pertinent that KSHV encodes one 

member of each family. First, the inhibitor of apoptosis (IAP) family bind directly to 

caspases-3, -6 , -7 and -9 to inhibit their function. KSHV encodes vIAP/K7 (Section 

1.2.8 .5). Second, the anti-apoptotic Bcl-2 family members regulate the intrinsic 

pathway of apoptosis. KSHV encodes vBcl-2 (Section 1.2.8.4). The third is the FLIP 

family, and vFLIP encoded by KSHV is focus of this section.
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Figure 1.7. Overview of caspase activation by intrinsic and extrinsic pathways.

Engagement of either the extrinsic or the intrinsic death pathways leads to the 
activation of the initiator caspases by dimerization at multiprotein complexes. In 
the extrinsic pathway, the DISC is the site of activation for caspase-8 and caspase- 
10. The active sites are represented by orange stars. Stimulation of the intrinsic 
pathway leads to activation of caspase-9 at the apoptosome. Caspase-9 is shown as 
having one active site as seen in its crystal structure. However, the number of 
active sites in vivo is unknown. Following activation, the initiator caspases then 
cleave and activate the executioner caspases-3 and -7. (taken from Boatright and 
Salvesen, 2003)
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1.4.3 Death receptor mediated apoptosis

The DR family includes TNFR1, CD95 (Fas/Apo-1), TNF-related apoptosis- 

mediating protein (TRAMP; also DR3), TNF-related apoptosis-inducing ligand 

receptor 1 (TRAIL-R1; DR4), TRAIL-R2 (DR5), DR6 , nerve growth factor receptor 

(NGF-R) and ectodermal dysplasia receptor (EDA-R). These proteins are 

characterised by their N-terminal cysteine-rich domains (CDRs) that determine ligand 

specificity (Bodmer et al, 2002), and by a distinctive stretch of 60-70 amino acids in 

the C-terminus termed the death domain (DD) that is essential for the induction of 

apoptosis (Ashkenazi et al, 1998). Signalling through Fas has been particularly well 

characterised. Triggering of the receptor upon engagement of its ligand (CD95L) 

results in receptor trimerisation and DD-mediated recruitment of the adaptor 

molecular, FADD. In turn, FADD recruits caspase-8 or caspase-10 via a homophilic 

death effector domain (DED) interaction to form the so-called death-inducing 

signalling complex (DISC) (Scaffidi et al, 1999a). Within the DISC, induced 

proximity stimulates autoproteolytic cleavage of the initiator caspases to release the 

active subunits that cleave and activate the effector caspases. Cellular FLIP (cFLIP) is 

recruited to the DISC to inhibit the release of active caspase-8 subunits (Irmler et al, 

1997) and thus blocks apoptosis (Section 1.4.5).

The molecular mechanisms controlling TNFR1-mediated apoptosis are more 

complex. In particular, confusion has arisen over the ability of TNFR1 to activate 

both apoptosis and proliferative/pro-survival pathways. However, a model has 

recently been proposed by Micheau and Tschopp, which may clarify some of the 

previous confusion (Micheau et al, 2003). Using time course and fractionation assays, 

they demonstrate the sequential formation of two distinct signalling complexes. Upon 

receptor engagement, complex I composed of TNFR1, TNFR-associated death 

domain (TRADD), receptor interacting protein (RIP), TNFR-associated factor 

(TRAF) 2, and c-IAPl forms at the membrane and transduces a signal activating NF- 

kB. Complex I formation appears to be transient, for within an hour TRADD, RIP and 

TRAF2 dissociate from TNFR1 and the receptor undergoes endocytosis (Jones et al,

1999). Complex II (the DISC), consisting of TRADD, FADD, caspase-8 and variable 

levels of cFLIPl (Section 1.4.5) and cIAPl subsequently forms in the cytosol. The

64



authors argue that the levels of cIAPl, and in particular cFLIPl, dictate whether this 

DISC is able to induce apoptosis or not (Micheau et al, 2003). Since the expression of 

both anti-apoptotic proteins is regulated by NF-kB (Wang et al, 1998; Micheau et al, 

2001; Kreuz et al, 2001), the successful transduction of signals through complex I 

blocks complex II and apoptosis. Conversely, in cells sensitive to TNF-mediated 

apoptosis, the signal activating NF-kB is not productive of cFLIPl , and so caspase-8 

becomes activated. These data are complemented by the recent observation that 

caspase-8 is not activated at the membrane associated TNFR1 signalling complex 

(Harper et al, 2003). Together, these data highlight the close relationship that exists 

between the N F-kB and apoptotic pathways. They also imply that cFLIPl is a key 

regulator in deciding whether a cell should commence programmed death.

1.4.4 Discovery of the FLIP family as inhibitors of apoptosis

The FLIP family was discovered in 1997 through data-base mining to identify viral 

genes containing DEDs and therefore related to apoptosis (Bertin et al, 1997; Thome 

et al, 1997; Hu et al, 1997a). The first FLIP genes were discovered within two 

oncogenic y-herpesviruses and a human poxvirus associated with benign neoplasms of 

the skin: ORF71 of HVS (HVS-FLIP), ORF E8 of equine herpesvirus 2 (EHV-2) and 

ORF MC159L of molluscum contagiosum virus (MVC) respectively. The herpesvirus 

proteins are similar to the prodomain of caspase-8, consisting of two DED domains 

with an intervening short linker, while MC159L contains an extended C-terminus. 

Initial experiments transfected these viral FLIP proteins into cells to demonstrate 

protection against CD95- and TNFRl-induced apoptosis (Bertin et al, 1997; Thome et 

al, 1997; Hu et al, 1997a). Bertin et al, demonstrated E8 binding to caspase-8 and 

MC159L binding to FADD (Bertin et al, 1997). Hu et al, reported similar interactions 

and showed the protective effect of E8 and MC159L against TRADD and FADD, but 

not caspase-8 overexpression (Hu et al, 1997a). Finally, Thome et al, reported that E8, 

MC159L and HVS-FLIP are recruited to the DISC via interactions with FADD 

(Thome et al, 1997). In these experiments, co-expressed viral FLIP proteins were 

associated with an incomplete DISC that contained normal levels of CD95 and 

FADD, but reduced levels of procaspase-8 and activated caspase-8 (Thome et al, 

1997). The viral FLIPs were proposed to protect infected cells from premature
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apoptosis by preventing caspase-8 maturation, and therefore enhance lytic production 

of virus. Thome et al, identified ORF71 of KSHV as a FLIP homologue but did not 

perform functional studies with this protein (Thome et al, 1997).

1.4.5 Cellular FLIP

The cellular homologue, cFLIP, was subsequently identified (Irmler et al, 1997). It 

has also been termed CASH (caspase homologue) (Goltsev et al, 1997), casper 

(caspase-eight-related) (Shu et al, 1997), CLARP (caspase-like apoptosis-regulatory 

protein) (Inohara et al, 1997), FLAME-1 (FADD-like antiapoptotic molecule) 

(Srinivasula et al, 1997), I-FLICE (inhibitor of FLICE) (Hu et al, 1997b), MRIT 

(MACH-related inducer of toxicity) (Han et al, 1997) and usurpin (usurps caspase-8 

and inhibits cell death) (Rasper et al, 1998). Several differentially spliced forms of 

cFLIP exist, but only two forms have been identified as proteins in vivo: short cFLIP 

(cFLIPs) of 26 kDa and long cFLIP (cFLIPl) of 55 kDa. cFLIPs is similar in structure 

to the herpesvirus FLIP proteins with an extended C-terminus of 20 amino acids. The 

N-terminus of cFLIPl is identical to that of cFLIPs, but the C-terminus consists of a 

caspase-homologous domain that is catalytically inactive and contains cysteine and 

histidine residue substitutions within the enzymatic active site (Irmler et al, 1997; 

Rasper et al, 1998). In overall structure, cFLIPl is therefore similar to caspase-8 and - 

10. Like caspase-8 and -10, cFLIPl also contains an aspartic acid cleavage site (Asp- 

341) (Srinivasula et al, 1997) that is processed in vivo in the context of Fas-induced 

apoptosis (Scaffidi et al, 1999b; Krueger et al, 2001).

Both forms of cFLIP are recruited to the DISC and interfere with the function of 

caspase-8 , although their mechanism of action is different. Like the viral FLIPs, 

cFLIPs is recruited by FADD and prevents the processing and release of active 

caspase-8 (Krueger et al, 2001). The role of cFLIPl is more controversial. cFLIPl 

binds directly to caspase-8 via DED and caspase domains (Han et al, 1997; Irmler et 

al, 1997; Srinivasula et al, 1997; Rasper et al, 1998), and both proteins are partially 

processed at the DISC (Scaffidi et al, 1999b; Krueger et al, 2001). Counterintuitively, 

overexpression of cFLIPl induced a cytocidal effect in some studies (Goltsev et al, 

1997; Han et al, 1997; Inohara et al, 1997; Irmler et al, 1997; Shu et al, 1997).
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Furthermore, the phenotype of cFLIP'7' mice (Yeh et al, 2000) is strikingly similar to 

that of caspase 8"/_ (Varfolomeev et al, 1998) and FADD'7' (Yeh et al, 1998) mice. 

These mice all died at E l0.5-11.5 with impaired heart development and 

haemorrhaging, suggesting that cFLIP shares function with caspase-8 and FADD, 

rather than antagonising their activity. However, many studies have also demonstrated 

that in overexpression both forms of cFLIP were protective against apoptosis induced 

by DRs including Fas, TNFR1, TRAIL-R1, TRAIL-R2 and TRAMP (Goltsev et al, 

1997; Irmler et al, 1997; Srinivasula et al, 1997; Schneider et al, 1997; Hu et al, 

1997b; Rasper et al, 1998). These data are supported by the observation that MEFs 

from cFLIP 7' mice (deficient in cFLIPl and cFLIPs) show increased sensitivity to 

CD95-induced apoptosis (Yeh et al, 2000), and that specific RNAi targeting of 

cFLIPs renders cells sensitive to TRAIL-mediated apoptosis (Siegmund et al, 2002). 

Although the majority of reports concur that cFLIPs is antiapoptotic, opinion remains 

divided over cFLIPl. Perhaps the most conclusive evidence, to date, demonstrated 

that cFLIPl forms catalytically active heterodimeric complexes with caspase-8 

(Micheau et al, 2002), and that physiological levels of cFLIPl enhance caspase-8 

activation (Chang et al, 2002). Chang et al, also demonstrated that inhibition of 

apoptosis by cFLIPl only occurred at higher levels of expression that are sometimes 

associated with tumours.

cFLIP also activates N F -kB, a function for which the DEDs are required (Chaudhary 

et al, 2000; Hu et al, 2000; Kataoka et al, 2000). In Jurkat cells, Fas stimulation 

induced the recruitment of cFLIPl to the receptor where cFLIP interacted with 

TRAF1 and 2 and with kinases, RIP and Raf-1, leading to activation of N F -kB and 

Erk (Kataoka et al, 2000). The functional consequence was production of IL-2. 

Recently, cFLIPl was shown to bind p i05 and inhibit its processing when expressed 

heterologously in 293T cells (Li et al, 2003). Both the DEDs and the caspase domain 

interacted with p i05, although only the caspase domain could inhibit p i05 

processing. Furthermore, overexpression of pi 05 enhanced cFLIPL-induced apoptosis 

and inhibited cFLIPL-induced N F -kB activation (Li et al, 2003). This discovery adds 

a further layer of complexity to the relationship between FLIP proteins, apotosis and 

the NF-kB pathway.
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1.4.6 vFLIP structure and homology

vFLIP is 188 amino acids in length, with an apparent molecular weight of 23 kDa. It 

is a bipartite molecule composed of two DEDs of approximately 90 amino acids each 

with an intervening linker domain. DEDs belong to the DD superfamily (Weber et al,

2001) that includes the DD, caspase recruitment domain (CARD) and pyrin domain 

families (Fairbrother et al, 2001). These domains form strong homophilic interactions 

and play a pivotal role in apoptotic signal transduction by recruiting adaptor and 

effector molecules. They are essential to the formation of both the DISC and 

apoptosome. Although members of the DD superfamily share only 5-25% sequence 

similarity, structural studies have revealed a common fold: six antiparallel, 

amphipathic a-helices (Huang et al, 1996; Liepinsh et al, 1997; Eberstadt et al, 1998; 

Sukits et al, 2001; Kaufmann et al, 2002). The majority of DEDs share a conserved 

RXDL motif within the a-helix 6 (Fig. 1.8), which is essential for protection against 

DR-mediated apoptosis by MC159L (Garvey et al, 2002). Kaufmann et al, observed 

significant diversity within a-helix 3 (Fig. 1.8), and proposed a sub-division of DEDs 

into two classes (Kaufmann et al, 2002). Class I possess basic residues in a-helix 3 

and include the DED of FADD, both DEDs of caspase-8 and the C-terminal DED of 

cFLIP. In class II, the a-helix 3 is shortened or absent. Members of class II include 

most of the viral FLIP DEDs and the N-terminal DED of cFLIP (Kaufmann et al,

2002). Mutations within a-helix 3 of the DED of FADD influence the recruitment of 

cFLIP and caspase-8 to the DISC (Kaufmann et al, 2002). Both DEDs of vFLIP fall 

into class II (Fig. 1.8). A predicted model for the second vFLIP DED is shown in Fig. 

1.9.
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Figure 1.8. Structure-based alignment of DEDs.

Class I DEDs (A) and class II DEDs (B) are aligned to demonstrate key features 
(taken from Kaufmann et al, 2002). The heterogeneous nature of helix 3 (boxed) is 
shown. Positions of FADD-DED a-helices are indicated. Residue F25, the basic 
stretch and the RXDL motif are indicated by a brace. Consensus sequences are 
shown (h: hydrophobic, +: basic, acidic, c: charged). H, Homo sapiens; M, Mus 
musculus; P, Sus scrofa; B, Bos taurus; R, Rattus norvegicus.
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absent a-helix  3

Figure 1.9. Model of vFLIP second DED.

The structure of vFLIP second DED was predicted according to 3d-pssm (Kelley et 
al, 2000). This method uses structural alignment of homologous proteins with 
known three-dimensional structure to predict structural equivalence for residues 
in a polypeptide of unknown structure. This predicted structure was based upon 
that of the DD of FADD (Eberstadt et al, 1998), with which it shares significant 
homology. Each a-helix is shown in colour and labelled. However, 3d-pssm was 
unable to predict structure for the region equivalent to a-helix 3 in the FADD-DD. 
This observation may support primary sequence analysis demonstrating 
significant heterogeneity within the a-helix 3 of different DEDs (Kaufmann et al, 
2002).
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The family of FLIP proteins has grown as increasing numbers of viral genomic 

sequences have been published. At present, viral FLIP proteins are exclusive to the y- 

2-herpesvirus lineage, with the notable exception of MCV (Senkevich et al, 1996). 

The independent acquisition of a FLIP gene by this unrelated oncogenic virus points 

to the importance of FLIP. To date, the set of herpesviruses encoding a viral FLIP 

includes: KSHV (Russo et al, 1996; Neipel et al, 1998), HVS (Albrecht et al, 1992), 

EHV-2 (Telford et al, 1995), bovine herpesvirus 4 (BoHV4) (Zimmermann et al, 

2001), herpesvirus ateles (HVA) (Albrecht 2000) and rhesus rhadinovirus (RRV) 

(Alexander et al, 2000). The family Herpesviridae currently boasts approximately 120 

members, but it is likely that this represents only a fraction of the total number of 

herpesviruses in existence (Davison 2002). As more herpesviruses are discovered and 

sequenced, it seems certain that more viral FLIP proteins will also be discovered. 

Interestingly, EBV does not encode a FLIP protein despite being closely related to 

KSHV. It is therefore likely that the acquisition of FLIP is a relatively recent event in 

herpesvirus evolution. Furthermore, vFLIP is not found in every y-2-herpesvirus, 

since murine herpesvirus-68 (MHV-68) (Virgin et al, 1997) and alcelaphine 

herpesvirus-1 (AHV) (Ensser et al, 1997) do not encode a FLIP gene. It is not clear 

whether these viruses diverged from the other y-2-herpesviruses before the acquisition 

of FLIP, or whether they acquired the gene from a common ancestor and subsequently 

lost it.

1.4.7 The function of vFLIP

vFLIP is expressed from a bicistronic mRNA by means of an IRES that is located 

within the vcyclin ORF (Section 1.2.7.1). IRES elements are found in a few 

eukaryotic mRNAs that encode growth factors (e.g. VEGF), oncogenes (e.g. c-myc) 

and an inhibitor of apoptosis (XIAP) (Bieleski et al, 2001). The IRES elements seem 

to ensure efficient translation of mRNA throughout the cell cycle, and particularly 

during G2/M phase when there is a general loss of cap-dependent translation 

(Bonneau et al, 1987; Huang et al, 1991). It is suggested that IRES-mediated 

expression of vFLIP guarantees protein expression at times during the cell cycle when 

translation is limited (Bieleski et al, 2001). The fact that KSHV has acquired such a
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mechanism to regulate the expression of vFLIP points to an important role for this 

protein in KSHV infection.

By analogy with other viral FLIPs, vFLIP has been suggested to block DR-mediated 

apoptosis (Thome et al, 1997). Indeed, overexpression of vFLIP in HeLa cells blocks 

procaspase-8 cleavage and reduces caspase-3 and caspase-8 activity (Belanger et al,

2001). These data are consistent with the ability of vFLIP to promote tumour growth 

when expressed in a Fas-sensitive B cell lymphoma line injected into 

immunocompetent mice (Djerbi et al, 1999). Interestingly, the growth advantage 

conferred by vFLIP was not apparent when cells were injected into immunodeficient 

mice, suggesting that vFLIP protects against immune rejection of KSHV-infected 

cells (Djerbi et al, 1999). Similarly, experiments using a different mouse model 

demonstrated that cFLIP can directly mediate escape from T cell immunity in vivo 

(Medema et al, 1999). These experiments defined a new class of tumour progression 

factor (Djerbi et al, 1999), implying a role for vFLIP in KSHV-mediated oncogenesis.

More recently, vFLIP has been implicated in the regulation of transcriptional 

pathways. Chaudhary et al, first demonstrated the activation of NF-kB driven reporter 

constructs in 293T cells by vFLIP, but not E8 or MC159L (Chaudhary et al, 1999). 

The level of NF-kB activation was modest (7-fold) in this initial report. However, 

using less DNA, others and I have routinely demonstrated > 100-fold activation of NF- 

kB by vFLIP (An et al, 2003b)(Fig. 4.5). Moreover, An et al, contradict the finding by 

Chaudhary et al, that vFLIP does not activate the JNK/AP1 pathway (An et al, 

2003b). The activation of both NF-kB and JNK/AP1 pathways by vFLIP was shown 

to drive cIL-6 expression (An et al, 2003b) in synergy with LANA (Section 1.2.7.2). 

In view of the essential function cIL-6 is thought to play in KSHV-associated 

neoplasms (Section 1.2.8.3), this observation alone implies an important role for 

vFLIP in KSHV pathobiology. Subsequently, Chaudhary and colleagues have shown 

that vFLIP-induced NF-kB activation protects against growth factor withdrawal- 

induced apoptosis (Sun et al, 2003a), although vFLIP had no significant effect against 

TNF-mediated apoptosis (Matta et al, 2002; Sun et al, 2003a). This is surprising, in 

view of previous observations that HVS-FLIP, E8 and MC159L do inhibit DR- 

mediated apoptosis, but afford no protection against growth factor withdrawal-
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induced apoptosis (Thome et al, 1997). The inference being that vFLIP may have a 

different biological function to other FLIP proteins, both viral and cellular.

Chaudhary and colleagues have recently shown that vFLIP can transform Rat-1 and 

Balb/3T3 cells (Sun et al, 2003b). Expression of vFLIP, but not E8 or MC159L, in 

these cells led to loss of contact inhibition, growth in soft agar and formation of 

tumours in nude mice (Sun et al, 2003b). These features of transformation were 

abrogated by use of NF-kB inhibitors including lactacystin, aspirin, phenylarsine, 

arsenic trioxide and the IkB(x super-repressor, implying an essential role for NF-kB in 

vFLIP-induced transformation (Sun et al, 2003b). Furthermore, using site-directed 

mutagenesis, the transforming efficiency of vFLIP mutants was found to correlate 

with their ability to activate NF-kB (Sun et al, 2003b). At a molecular level, the 

ability of vFLIP to activate NF-kB has now been partially explained. Concurrent with 

the work presented in this thesis, it was demonstrated that vFLIP interacts with and 

activates the IKK complex when expressed in a non-small-cell lung carcinoma cell 

line (Liu et al, 2002). Using cells with single gene deletions, the NF-KB-inducing 

activity of vFLIP has been shown to depend upon all three IKK subunits (Matta et al,

2003). In support of these data, it is shown in Chapters 3 and 4 that vFLIP contacts 

IKKy directly to activate IKK, and that the majority of endogenous vFLIP is 

associated with IKK in a KSHV-infected PEL cell line. Interestingly, a number of 

other DED-containing proteins have been shown to activate NF-kB including 

caspase-8, caspase-10, cFLIP and FADD (Chaudhary et al, 2000; Hu et al, 2000; 

Kataoka et al, 2000; Shikama et al, 2003). At present it is not clear how these proteins 

activate NF-kB, and there is no evidence to suggest that they activate NF-kB via an 

interaction with IKKy.

NF-kB is a potent mediator of apoptosis through the regulated expression of proteins 

that control the apoptotic threshold (Section 1.4.3). Activation of NF-kB may 

therefore account for the anti-apoptotic properties of vFLIP (Djerbi et al, 1999; 

Belanger et al, 2001). Perhaps the most persuasive evidence that NF-kB prevents 

apoptosis was the observation that ablation of TNFa (Doi et al, 1999) or TNFR1 

(Rosenfeld et al, 2000; Alcamo et al, 2001) could rescue the lethal phenotype of 

RelA-deficient mice (Beg et al, 1995). These mice die due to extensive hepatic
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apoptosis, and these observations suggest that RelA protects against TNFa-mediated 

apoptosis. Furthermore, MEFs derived from RelA'7' (Beg et al, 1996) and IKKp"7' 

mice (Tanaka et al, 1999; Li et al, 1999b; Li et al, 1999d) show increased sensitivity 

to TNFa-mediated apoptosis in vitro. Expression of the IkB a  super-repressor both in 

vitro (Wang et al, 1996) and in vivo (Wang et al, 1999) reverses resistance to 

apoptosis induced by chemotherapeutic agents in some cancers, suggesting a role for 

NF-kB in regulating other forms of apoptosis. Interestingly, vFLIP-mediated 

resistance to growth factor withdrawal-mediated apoptosis was dependent on NF-kB 

(Sun et al, 2003a). Anti-apoptotic genes regulated by NF-kB include members of the 

anti-apoptotic Bcl-2 family (Bcl-2, B c1-Xl, Bfl-1), the IAP family (XIAP, cIAPl, 

cIAP2) and cFLIP (Section 1.4.3) (Burstein et al, 2003).

Significantly, NF-kB activity is high in PEL cell lines (Keller et al, 2000; Liu et al,

2002) and primary tumour specimens (Keller et al, 2000). Furthermore, inhibition of 

NF-kB using the specific inhibitor of IicBa phosphorylation, Bayl 1-7082, triggers 

apoptosis in KSHV-infected PEL cells (Keller et al, 2000), suggesting that NF-kB 

activity is essential for their survival. In addition to vFLIP, KSHV is known to encode 

three proteins with the potential to activate NF-kB: vGPCR, K1 and K15 (Table 1.2). 

However, vGPCR and K1 are lytic proteins, and K15 activated NF-kB only weakly 

(4-fold) in overexpression (Brinkmann et al, 2003). As the only potent activator of 

NF-kB expressed in latently infected PEL cells, vFLIP is the most likely molecular 

source of the NF-kB activity observed in latent KSHV infection.
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1.5 Aims of this study.

vFLIP is one of seven known latent genes expressed by KSHV that regulate viral 

latent infection and may be essential for KSHV-mediated cell transformation. At the 

time this study was initiated, published data relating directly to the function of vFLIP 

were scarce. One study described NF-kB activation by vFLIP in transient 

overexpression (Chaudhary et al, 1999), and another study defined vFLIP as a tumour 

progression factor that inhibited Fas-mediated apoptosis (Djerbi et al, 1999). Other 

viral FLIP proteins block apoptosis directly by preventing caspase-8 maturation. 

Despite a lack of direct evidence, vFLIP was therefore generally considered to 

function as a direct inhibitor of DISC activity.

The scope of this project was to study the molecular interactions of vFLIP in KSHV- 

infected PEL cells, and to pursue the pathways of cellular signal transduction affected 

by vFLIP. This thesis therefore sets out to describe in detail the molecular 

characteristics of vFLIP. Chapter 3 describes the discovery that vFLIP associates with 

and activates IKK in PEL cells. Chapter 4 focuses on the direct interaction between 

vFLIP and IKKy. In Chapter 5, it is suggested that vFLIP stimulates the alternative 

pathway of NF-kB activation. Finally, in Chapter 6 these results are brought together 

to update the current understanding of vFLIP function and to suggest how vFLIP may 

contribute to the pathogenesis and cell transformation associated with KSHV 

infection.
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CHAPTER 2 

Materials and Methods

2.1 Buffers and solutions.

Deoxynucleotide 
triphosphate mix (dNTPs)

100 mM deoxyadenosine triphosphate (dATP), 
deoxythymidine triphosphate (dTTP), deoxyguanosine 
triphosphate (dGTP) and deoxycytidine triphosphate (dCTP)

6x DNA loading buffer 60 mM Tris pH 7.4, 6 mM ethylenediaminetetraacetic acid 
(EDTA) (pH 8.0), 30% (v:v) glycerol, 0.25% (w:v) Orange G

Glutathione elution buffer 10 mM reduced glutathione in 50 mM Tris pH 8.0
Luria-Bertani (LB) agar 1% (w:v) bacto typtone, 0.5% (w:v) bacto yeast, 0.5% (w:v) 

sodium chloride (NaCl), pH 7.0 with 15g/L bacto-agar
Luria-Bertani (LB) broth 1% (w:v) bacto typtone, 0.5% (w:v) bacto yeast, 0.5% (w:v) 

NaCl, pH 7.0
Kinase reaction buffer 20 mM HEPES pH 7.6, 50 mM NaCl, 10 mM magnesium 

chloride (MgCl), 2 mM Dithiothreitol (DTT), 20 pM ATP, 
0.1 mM sodium vanadate (Na3V04), 20 mM P- 
glycerophosphate (PGP) and protease inhibitor mix (PIM) 
(Roche)

Kinase wash buffer 20 mM HEPES pH 7.6, 50 mM NaCl, 20 mM PGP, 1 mM 
Na2V04, 0.5 mM DTT, 1 mM phenylmethylsulfonyl fluoride 
(PMSF) and PIM

Non-denaturing 
polyacrylamide gel

4% (v:v) acrylamide (29 acrylamide: 1 bis), 0.25x TBE, 
polymerised with 0.06% (w:v) ammonium persulphate (APS) 
and 0.16% (v:v) tetramethylethylenediamine (TEMED)

Nonidet P-40 (NP40) lysis 
buffer

20 mM Tris pH 7.5, 150 mM NaCl, 0.2% (v:v) NP40, 1 mM 
EDTA, 1 mM ethylenedioxy nitrilotetraacetate (EGTA), 1 
mM DTT, 20 mM sodium fluoride (NaF),
1 mM sodium pyrophosphate (Na^Oy), 1 mM Na3V0 4, 5% 
(v:v) glycerol, 1 mM PMSF and PIM

Nuclear lysis buffer 20 mM HEPES pH 7.6, 0.2 mM EDTA, 0.1 mM EGTA, 25% 
(v:v) glycerol, 0.42 mM NaCl, 1 mM DTT, 20 mM NaF, 1 
mM Na4P20 2, 1 mM Na3V04, 1 mM PMSF and PIM

2x Parker buffer 8% (v:v) ficoll, 40 mM Hepes pH 7.9, 100 mM KC1, 2 mM 
EDTA, 1 mM DTT

Phosphate-buffered saline 
(PBS)

137 mM NaCL, 2 mM potassium chloride (KC1), 10 mM 
sodium hydrogen phosphate (dibasic), 2 mM potassium 
hydrogen (dibasic), pH 7.4

Polyacrylamide resolving gel 12% (v:v) acrylamide (37.5 acrylamide: 1 bis), 125 mM Tris 
pH 8.8, 0.1% (w:v) sodium dodecyl sulphate (SDS), 
polymerised with 0.05% (w:v) APS and 0.1% (v:v) TEMED

Polyacrylamide stacking gel 5% (v:v) acrylamide (37.5 acrylamide: 1 bis), 125 mM Tris 
pH 6.8, 0.1% (w:v) SDS, polymerised with 0.05% (w:v) APS 
and 0.1% (v:v) TEMED

6x Protein sample buffer 6% (w:v) SDS, 125 mM Tris pH 6.8, 36% (v:v) glycerol, 15% 
(v:v) 3-mercaptoethanol with bromophenol blue
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Radioimmuno-precipitation 
(RIPA) lysis buffer

150 mM NaCl, 50 mM Tris pH 7.5, 1% (v:v) Triton, 0.5% 
(w:v) sodium deoxycholate (DOC), 0.1% (w:v) SDS,
1 mM EDTA, 1 mM EGTA, 1 mM DTT, 20 mM NaF,
1 mM Na4P20 7, 1 mM N3VO4, 1 mM PMSF and PIM

SDS-polyacrylamide gel 
electrophoresis (PAGE) 
running buffer

25 mM Tris pH 8.5, 200 mM glycine, 0.1% (w:v) SDS

Transformation buffer 250mM PIPES, 2.5mM calcium chlorohydrate (CaCl2.2H20), 
60 mM KC1, adjusted to pH 6.7 using potassium hydroxide 
(KOH) before addition of 55 mM manganese chloride 
(MnCl2)

1 x T ris-acetate-EDT A 
(TAE)

40 mM Tris pH 7.8, 20 mM sodium acetate, 1 mM EDTA

5x Tris-borate-EDTA (TBE) 450 mM Tris pH 8.0, 450 mM boric acid, 10 mM EDTA

Table 2.1. Constituents of buffers and solutions

2.2 Subcloning and plasmid preparation.

Subcloning is the process whereby a specific fragment of DNA is transferred from 

one plasmid to another. The methods utilised in this process are described in Section 

2 .2 .

2.2.1 Preparation of heat-shock competent E. coli.

lml of an overnight culture of E. coli HB101 or FB810 in LB (GibCoBRL) was 

subcultured into 100ml of fresh LB and shaken for 2h at 37°C. The culture was put on 

ice for 10 min, and then pelleted at 4°C and the supernatant discarded. The pellet was 

resuspended in 30ml ice-cold transformation buffer. The bacteria were pelleted and 

resuspended in 10ml ice-cold transformation buffer containing 10% DMSO and then 

frozen at -80°C in aliquots.

2.2.2 Transformation of heat-shock competent E. Coli.

10-50ng of plasmid were incubated on ice with 50pl of heat shock competent E. coli 

HB101 or FB810 for 5 min. The bacteria were then shocked for 90s at 42°C and 

cooled on ice. 600pl warm LB was added and the bacteria were incubated for 30 min
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at 37°C before pelleting. Pellets were resuspended in 50pi and plated onto LB-agar 

containing the appropriate antibiotic and incubated overnight at 37°C.

2.2.3 Plasmid DNA mini-preps.

To obtain small quantities (5-25 pg) of plasmid DNA, mini-preps were produced from 

l-5ml overnight cultures of transformed bacteria using a Concert™ Rapid Plasmid 

DNA Mini-prep kit (GibCoBRL) as per the manufacturer’s instructions.

2.2.4 Plasmid DNA midi-preps.

Larger quantities (200pg) of pure plasmid DNA were extracted from a 100ml 

bacterial culture. Midi-preps were produced from this culture using the Plasmid Midi 

Kit (Qiagen) as per the manufacturer’s instructions. The concentration of purified 

DNA was calculated from the UV absorbance at 260 nm using a UV 

spectrophotometer (Camlab). An absorbance of 1cm'1 was taken to be equivalent to 

50 pg.ml*1 DNA.

2.2.5 Polymerase chain reaction (PCR) amplification.

PCR was performed to generate each IKKy fragment from an expressed sequence tag, 

and the fragment encoding IicBa wild-type from pGEX-KT-IicBa, and the fragment 

encoding IicBa S32A/S36A from RSV IxBa MSS using a Hybaid thermal cycler. 

Primers are listed in Table 2.2. The constituents of each reaction were:

DNA (25ng) 2 pi

Primers (lOOpM) 2 pi each

Takara PCR buffer 5 pi

dNTPs lp l

Takara TaqEx 0.5 pi
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Distilled water 37.5 jj.1

The product yield for all PCR reactions to amplify IKKy fragments was poor. 

Following optimisation, 4% DMSO was added to these PCR reactions to enhance 

yield.

The reaction conditions were:

1. 94°C 2 min

2. 94°C 30 Sec

3. 58°C 25 Sec

4. 72°C 30 Sec

5. Steps 2-4 an additional 30 times

6 . 72°C 5 min

Amplified
fragement

Forward (F) and reverse (R) primer sequence

IKKy 1-150 F: GCGCGGATCCATGAATAGGCACCTCTGGAA 
R: GCGCCTCGAGTCAGAGCAAGGACGTGCAGCTG

IKKy 1-272 F: GCGCGGATCCATGAATAGGCACCTCTGGAA 
R: GCGCCTCGAGTCACTCCTCGGCCTGCTGGA

IKKy 1-419 F: GCGCGGATCCATGAATAGGCACCTCTGGAA 
R: GCGCCTCGAGCTACTCAATGCACTCCATG

IKKy 150-272 F: GCGCGGATCCCTCGGGGAGCTGCAGGAG 
R: GCGCCTCGAGTCACTCCTCGGCCTGCTGGA

IKKy 150-419 F: GCGCGGATCCCTCGGGGAGCTGCAGGAG 
R: GCGCCTCGAGCTACTCAATGCACTCCATG

IkBcx. 1-54 F: GCGCAAGCTTAATGTTCCAGGCGGCCGAG 
R: GCGCAGATCTTGAGAGGCGGATCTCCTGCA

Table 2.2. PCR primers.

2.2.6 Restriction enzyme digests.

Restriction enzyme digests were used to create sticky ends for ligation of PCR 

products into plasmids, and to subsequently screen for correct insert and orientation. 

All restriction enzymes were purchased from Promega and used as per manufacturer’s 

instructions. The reaction was stopped by the addition of the appropriate volume of 6x 

DNA loading buffer.
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2.2.7 Agrose gel electrophoresis.

The products of PCR amplification and restriction enzyme digests were separated on 

the basis of size by electrophoresis on a 1% agrose gel containing 0.5pg/ml ethidium 

bromide in TAE. When necessary, specific bands were excised with a scalpel and 

DNA subsequently extracted using a Concert™ Rapid DNA fragment gel purification 

kit (GibCoBRL) as per the manufacturer’s instructions.

2.2.8 Ligations.

Using a weight ratio of 1 vector:4 insert, 5 pi of vector plus insert were mixed with 

5 pi of Takara DNA ligase solution for a final volume of lOpl and incubated at 16°C 

for 2h. Ligation solutions were transformed by heat shock into E. coli and plated onto 

LB-agar (Section 2.1.3). Single colonies were picked and plasmid DNA was prepared 

by mini-prep (Section 2.1.4) for screening by restriction enzyme digest and then 

sequencing by I. Gerrard at the Windeyer Institute sequencing service.

2.3 Plasmids.

2.3.1 Mammalian expression plasmids.

PCR primers (Table 2.2) were used to amplify and subclone IKKy fragments into 

pcDNA4 (Invitrogen) (Sections 2.2; 4.2). pcDNA3.1-HA-pl05 and pcDNA3.1-Myc- 

plOO were kind gifts from S. Ley (Mill Hill, UK). The pGL2 promoter vector 

(Promega) with 3 copies of an NF-kB concensus binding site upstream of firefly 

luciferase was obtained from S. Wotton (UCL, UK). The plasmid RSV IkBoc MSS 

super-repressor (Section 1.3.3) was a kind gift from N. Perkins (Dundee, UK) and 

was used to subclone the N-terminal fragment of IkB oi-S32A/S36A into pGEX-KT 

(Section 2.3.2).
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2.3.2 E. Coli expression plasmids.

The plasmid pGEX-KT-IicBa was a kind gift from N. Perkins (Dundee, UK). To 

obtain GST-IkBoc fusion proteins containing only the N-terminal 1-54 amino acids of 

IicBa wild-type and IicBa-S32A/S36A, PCR primers (Table 2.2) were used to amplify 

and subclone this domain into pGEX-KT. GST-fusion IKKy mutants were constructed 

by PCR amplification and subcloning of fragments from pcDNA4-IKKy.

2.3.3 HIV-1 based plasmids

HIV-1 based plasmids were kindly provided by D. Trono (Geneva, Switzerland) and 

are described elsewhere (Naldini et al, 1996; Zufferey et al, 1997). The packaging 

plasmid pHCMVAR8.1 expresses gag, pol, tat, and rev and does not express the 

accessory genes vif, vpr, vpu or nef (Zufferey et al, 1997) (Fig. 2.1). The vector 

plasmid pHR’-hCMV-eGFP contains the reporter gene, enhanced green fluorescent 

protein (eGFP), under the control of the human cytomegalovirus (hCMV) immediate 

early promoter. This plasmid was modified within our laboratory to express both 

vFLIP and eGFP from the internal ribosome entry site (IRES) of 

encephalomyocarditis virus (EMCV) (Fig. 2.1). The pMD-G plasmid encodes the 

vesicular stomatitis virus G (VSV-G) envelope glycoprotein (Zufferey et al, 1997) 

(Fig. 2.1). The Tax expression plasmid pHR’-hCMV-Tax-IRES-eGFP was a gift from 

A. Godfrey (UCL, UK).
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pHCMVAR8.91 Packaging plasmid

RRE - PolyA
ta t + revl ta t + revl

hCMV gag-pol

pHR'-hCMV-vFLIP-IRES-eGFP Vector plasmid

LTR RRE hCMV vFLIP IRES eGFP LTR

pM D-G Envelope plasmid

hCMV VSV-G PolyA

Figure 2.1. HIV packing, vector and envelope plasmids.

Transcription of gag-pol in pHCMVAR8.91 is controlled by hCMV. pHCMVAR8.91 
also encodes tat and rev. Transcription of the pHR'hCMV-vFLIP-IRES-eGFP vector 
transcript is controlled by the LTR at the 5' end and terminates in the 3' LTR. The 
transgene cassette, encoding vFLIP and eGFP, is controlled by the internal hCMV 
promoter. The positions of the packaging signal (VF) and rev responsive elements 
(RRE) are shown. Transcription of the VSV-G envelope is also controlled by hCMV. 
Regions encoding protein products within the mRNA are shown in grey and 
regions encoding ds-acting elements in white.
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2.4 Cell culture techniques.

2.4.1 Cell lines, cell culture and reagents.

Cell culture medium and serum were obtained from GibCoBRL. Human embryonic 

kidney (HEK) 293T cells were cultured in Dulbecco’s modified Eagle’s medium 

(DMEM) with 10% foetal calf serum (FCS), penicillin and streptomycin in a 10% 

CO2 humidified incubator at 37°C. Cells were split 1:10 every 3-4 days to ensure 

optimal cycling. Human B cell lines included the KSHV-transformed and EBV 

negative PEL cell line, BC3 (Arvanitakis et al, 1996)(Section 1.2.5.2), and the 

anablastic diffuse large B cell lymphoma cell line, DEL (Barbey et al, 1990). Human 

CD3+ve Jurkat 3T8 T cells and their IKKy-deficient derivative, 8321 (He et al, 2002), 

were obtained from S. Ley (Mill Hill, UK) by kind permission from A. Ting (New 

York, USA). All non-adherent cell lines were cultured in Roswell Park Memorial 

Institute (RPMI) 1640 medium with 10% FCS, penicillin and streptomycin in a 5% 

CO2 humidified incubator at 37°C, and cell density was kept within the range 1x 10s- 

lxlO6 cells/ml. 293T and BC3 cells were treated with 0.5 pM Geldanamycin (GA) 

(Calbiochem) dissolved in DMSO or an equal volume of DMSO in serum free 

medium for 16h or 48h before lysis as described in Chapter 3. 293T cells were treated 

with lOng/ml TNFa (Sigma) before lysis as described in Sections 3.5 and 4.4.

2.4.2 Lipofectamine-mediated transfection.

Plasmid DNA was introduced into 293T cells using lipofectamine (GibCoBRL). Cells 

were plated at lxlO6 cells per well in 6-well plates 24h before transfection. On the day 

of transfection, 16pl of plasmid DNA (mass is stated in results chapters) was added to 

lOjul of OptiMEM and 6pl of lipofectamine for each well. This mixture was incubated 

at 24°C for 30 min while cells were washed twice and left in 0.8ml of OptiMEM 

(GibCoBRL). A further 200pl of OptiMEM was added to the cocktail containing 

DNA and lipofectamine and the final volume of 232pl was mixed by pipetting and
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then added dropwise to each well. Cells were incubated for 6h at 37°C before the 

transfection mixture was removed and replaced with DMEM and 10% FCS.

2.4.3 Virus production and harvesting.

HIV-1 based vectors, referred to as lentivirus, were used to transduce 293T, DEL, 

3T8 and 8321 cell lines. Lentivirus was produced using a three plasmid transient 

transfection system as described previously (Naldini et al, 1996; Zufferey et al, 1997) 

(Fig. 2.1). 24h before transfection, lxlO7 293T cells were plated into 20cm plates. 

Using a weight ratio of 3:2:1 of vector to packaging to envelope plasmids (Section 

2.3.3), cells were transfected exactly as described in Section 2.4.2, except that all 

volumes were scaled up by a factor of 10. After 6h incubation at 37°C, the cells were 

washed and grown in OptiMEM for 48h at 32°C for optimal virus recovery. 

Supernatants were harvested, passed through a 45-pM-pore-size filter, and 

concentrated by low-speed centrifugation using a 100 kDa cut-off filter column 

(Millipore). The virus was then aliquoted and stored at -80°C prior to use.

2.4.4 Titrating viral supernatants and infecting tissue culture cells with viral 

supernatants.

For titration of viral supernatants, 293T cells were plated at lxl 05 per well in 24-well 

plates 24h before infection. On the day of infection, virus supernatant was serially 

diluted in OptiMEM and added to wells. The cells were incubated overnight. The 

virus was then washed off the cells and replaced with DMEM and 10% FCS. Cells 

were cultured for 7 days post infection, until infected cells displayed uniform 

cytoplasmic eGFP. Uninfected cells were passed through a FACSCaliber and 

analysed using CELL QUEST software (Becton Dickinson, Franklin Lakes, USA) to 

determine side vs. forward scatter characteristics and select the region in which live 

cells could be found. For each infection, lxlO4 cells in this region were recorded and 

analysed for eGFP expression. The side scatter vs. green fluorescence (FL-1) plot of 

uninfected cells determines the region in which cells not expressing eGFP fall. A gate 

was placed in FL-1 to record the percentage of cells with higher fluorescence than the 

uninfected controls. Virus titre (infectious units/ml) was calculated from the
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percentage of cells infected and the number of cells per well on the day of infection 

using the equation: (%-infected cells x number of cells at infection / 100) x dilution 

factor.

293T cells were infected for experimental purposes exactly as described above using 

multiplicity of infection (MOI) as stated in Fig. 3.6. For infection of DEL and Jurkat 

cell lines, 5xl04 cells were pelleted and resuspended in 1ml OptiMEM containing 

virus at an MOI of 20. After 6h cells were washed and cultured as described. For all 

cells, transduction efficiency was measured exactly as described above for 293T cells.

2.4.5 Cell viability assays.

The viability of BC3 cell populations was measured directly by haemocytometer 

using a light microscope to assess morphology and light-diffracting properties of each 

cell. Data were collected in triplicate and average values plotted with error bars 

calculated as the standard error of the mean (SEM). For annexinV/propidium-iodide 

binding assays, lxlO6 cells were washed once in cold phosphate buffered saline (PBS) 

before staining with TACS™ AnnexinV-FITC Apoptosis detection kit (R&D systems) 

as per the manufacturer’s instructions. Analysis was performed by FACScan using 

CELL QUEST software. Side scatter vs. forward scatter was used to gate the region 

containing live cells, and lx l04 cells within this region were recorded to determine 

the percentage of annexinV (FL-1) and propidium (FL-2) staining.

2.5 Preparation of GST-fusion proteins in E. coli.

The pGEX-KT- I k B a, pGEX-KT-IicBa-S32A/S36A and pGEX-KT-IKKy expression 

constructs were transformed into E. coli, FB810, which contain an accessory plasmid 

expressing lysozyme. Cultures were grown to an optical density (OD) of 0.6 before 

induction with O.lmM isopropyl-D-thiogalactopyranoside for 3h at 37°C. The cells 

were washed twice in ice-cold PBS and pelleted. Pellets were frozen at -20°C and 

thawed to release lysozyme by resuspension in lysis buffer (PBS supplemented with 

0.2% NP40 and PIM). The suspension was sonicated for 30 sec and incubated at 4°C
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for 30 min before centrifugation. The soluble extract was incubated with glutathione- 

sepharose 4B matrix (Amersham) for 30 min at room temperature. The matrix was 

pelleted and washed three times with PBS. Finally, GST-IKKy mutant-proteins bound 

to the matrix were used directly in pull-down assays (Section 2.6.4), while GST-IkBoi 

fusion proteins were eluted from the matrix using glutathione elution buffer, assayed 

for protein concentration (Section 2.6.2) and stored in aliquots at -80°C prior to use.

2.6 Analysis of mammalian cell extracts.

2.6.1 Preparation of cell extracts.

Cells were washed in PBS, pelleted and resuspended in either RIPA lysis buffer or 

NP40 lysis buffer as stated in results chapters. The suspension was incubated at 4°C 

for 30 min before insoluble material was removed by centrifugation at 4°C. At this 

point aliquots were removed for protein assay (Section 2.6.2). The supernatants were 

either used as described below, or the appropriate quantity of 6x protein sample buffer 

was added. These samples were then heated to 95°C for 4 min and stored at -80°C 

until required.

2.6.2 Protein assay.

Total protein per sample was estimated using the Bio-Rad Protein Assay based on the 

method of Bradford (Bradford 1976). This method is compatible with buffers 

containing 0.1% SDS. Sufficient Bio-Rad dye reagent was diluted 1:5 in H2O. 5pl and 

lOpl of each sample were resuspended in 1ml of the diluted dye, vortexed and 

incubated at 24°C for 5 min. Total protein content was then determined by measuring 

the optical density (OD) at 595nm and comparison with BSA protein standard 

(Promega).
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2.6.3 Identification of proteins interacting with vFLIP by mass spectrometry 

analysis.

2.6.3.1 Large-scale immunoprecipitation.

The anti-vFLIP 6/14 monoclonal rat antibody (Low et al, 2001), and control rat IgG 

were covalently coupled to NHS-activated sepharose 4B resin (Amersham) for batch 

immunoprecipitation. The antibodies were first concentrated to 4mg/ml by low-speed 

centrifugation using 100 kDa cut-off filter columns (Millipore). lmg of antibody was 

coupled to 0.5ml resin in an equal volume of coupling buffer (0.2M NaHCCh, 0.5M 

NaCl, pH 8.3) by incubation overnight at 4°C. The resin was washed and deactivated 

by alternating washes in buffer A (0.5M ethanolamine, 0.5M NaCl, pH 8.3) and 

buffer B (0.1M acetate, 0.5M NaCl, pH4); two washes in A, then two in B, repeated 

three times. Cell extract was prepared from lx l010 BC3 cells and divided equally 

between vFLIP and control resins for incubation at 4°C for 2hr. The resin was washed 

three times in high salt lysis buffer (lysis buffer with 500mM NaCl) and lOOpl of lx 

sample buffer lacking (3-mercaptoethanol was added to elute immunoprecipitated 

proteins. The sample buffer was removed from the resin and (3-mercaptoethanol was 

added, and the samples were heated to 95°C for 4 min. The samples were then divided 

9:1 between two 12% polyacrylamide gels (Fig. 3.1). The gel containing 90% of the 

sample was stained with Colloidal Blue Coomassie staining kit (Invitrogen) as per the 

manufacturer’s instructions. The gel containing 10% of the lysate was stained using 

the Shevchenko-Hochstrasse method of silver staining.

2.6.3.2 In-gel digest.

Protein bands of interest were excised from Coomasssie stained gels. SDS and 

Coomasssie were extracted from the gel slices with solution A (200mM ammonium 

bicarbonate, 50% acetonitrile). The gel slices were reduced in DTT (20mM DTT in 

solution A) and washed in solution A. Cysteine residues in the proteins were alkylated 

in iodoacetamide (5mM iodoacetamide in solution A) and gel slices were washed in 

solution A. The gel slices were dehydrated in acetonitrile and sent for mass 

spectrometry analysis to our collaborators at the National Institute of Medical
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Research, Mill Hill. At Mill Hill, the gel slices were reswollen in a minimal volume of 

2ng/pl trypsin (Promega) in 5mM ammonium bicarbonate for in-gel digestion. 

Peptide mass fingerprinting was performed exactly as described by Field et al (Field 

et al, 2003).

2.6.4 Small-scale immunoprecipitation and GST-pull down.

Cytoplasmic extracts were incubated either with 1.5pg of antibody and 20pl protein- 

G/sepharose (Sigma) or with GST-IKKy truncation mutants pre-bound to glutathione 

sepharose 4B matrix. The complexes were washed three times in lysis buffer and all 

liquid was removed. Precipitated proteins were either used in kinase assays (Section 

2.5.6) or eluted from the matrix by addition of 30pl of sample buffer, heated to 95°C 

for 4 min and then stored at -80°C prior to use.

2.6.5 Gel filtration.

Cytoplasmic extracts from 2xl07-2xl08 cells were centrifuged at lx l05g for lh at 

4°C. lOOpl of the supernatant was loaded on a Superose 6 PC 3.2/30 column 

(Amersham) previously equilibrated in modified lysis buffer (20mM Tris-HCl pH 7.5, 

150mM NaCl, 0.2% NP40, 5% glycerol). The fractionation was performed using an 

LKBipseparation unit (Amersham) controlled using Smart Manager 5.1 software. The 

flow rate of the column was maintained at 40pl.min'1 and 22 fractions of 100 pi each 

were collected. 25 pi were separated by acrylamide gel for immunoblotting (Section 

2.6.8), whereas 50 pi of each fraction was used for kinase assay (Section 2.6.6). The 

column was calibrated in modified lysis buffer using protein standards: thyroglobin 

(669 kDa), ferritin (440 kDa) and catalase (232 kDa) (Amersham).

2.6.6 Kinase assay.

Kinase assays using the anti-vFLIP antibody to isolate IkB kinase activity were 

performed based on the method of Didonato (DiDonato 2000). 50pl of each column



fraction or 100-200jj.g of cytoplasmic extract were incubated for 2 h at 4°C with anti- 

vFLIP antibody and protein-G sepharose. Immune complexes were precipitated and 

washed three times in 0.5ml of high salt lysis buffer (lysis buffer with 500 mM salt). 

Immune complexes were washed a further two times in kinase wash buffer before all 

buffer was removed and 40pl kinase reaction buffer was added. To each reaction, 

0.5pl of P32-y-ATP and lpg of wildtype IkBcx-1-54 or mutant IkBcc-1-54-S32A/S36A 

GST fusion protein was added. The reactions were incubated at 30°C for 30 min and 

stopped by addition of sample buffer and heated to 95°C for 4 min. The samples were 

separated by SDS-PAGE and the radiolabelled phosphoproteins were visualised by 

autoradiography.

For kinase assays using the anti-IKKp antibody (Santa Cruz-8330), an additional pre­

clearance step was included in the protocol. The cytoplasmic extract was incubated 

for lh at 4°C with 1.5pg normal rabbit serum and 20pl protein-G sepharose. Immune 

complexes were precipitated and the soluble fraction was incubated with 1.5pg anti- 

IKKp antibody for 2hr. The remaining protocol was performed exactly as described 

above.

2.6.7 Preparation of nuclear and cytoplasmic fractions.

Cells were washed in cold PBS, pelleted and resuspended in cold NP40 lysis buffer 

lacking NP40. Following 15 min incubation at 4°C, NP40 was added to a final 

concentration of 0.6%. The tubes were mixed by vortex and incubated for a further 4 

min. The lysate was then underlayered with lysis buffer containing 30% sucrose and 

centrifuged for 5 min at 4°C. The supernatant was removed as ‘cytoplasmic extract’, 

assayed for protein concentration and stored at -80°C. The nuclei were washed twice 

by overlayering and removing lysis buffer and then resuspended in nuclear lysis 

buffer. Nuclear proteins were released using 3 freeze-thaw cycles by transferring the 

tubes from liquid nitrogen to a 37°C water bath. The supernatant, following 

centrifugation for 10 min at 4°C, was diluted 1:2 in lysis buffer, assayed for protein 

concentration, and stored at -80°C as ‘nuclear extract’.
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2.6.8 SDS-poIyacrylamide gel electrophoresis (SDS-PAGE) and immunoblot 

analysis.

Proteins were separated by SDS-PAGE and transferred to hybond ECL nitrocellulose 

membranes (Amersham) for immunoblot analysis. All blots were incubated overnight 

at 4°C in blocking solution (PBS containing 2.5% low-fat milk and 0.1% Tween 20) 

and incubated with primary antibody for lh in blocking solution. The only exception 

being the anti-Tax antibody, where 5% BSA was used in place of milk in the blocking 

solution. Primary antibodies are listed in Table 2.3. Bound antibodies were detected 

with appropriate peroxidase-conjugated secondary antibodies (1:2000 dilution) and 

visualised by chemiluminescence reagents (Amersham).

Antigen/Reference Source Dilution Supplier

Haemagglutinin (HA) Rat mAb 1:1000 Roche (867-423)
tag
IicBa Rabbit pAb 1:200 Santa Cruz (SC-371)

IKKa Rabbit pAb 1:1000 Cell Signalling Technology
(2682)

IKK (3 Goat pAb 1:200 Santa Cruz (SC-7330)

IKKy Rabbit pAb 1:200 Santa Cruz (SC-8330)

pl00/p52 Rabbit pAb 1:1000 Gift: S. Ley (Mill Hill, UK)

pl00/p52 Mouse mAb 1:1000 Upstate Biotech (05-361)

RelB Rabbit pAb 1:200 Santa Cruz (SC-226)

Spl Rabbit pAb 1:200 Santa Cruz (SC-59)

TAT-1 tubulin Mouse mAb 1:1000 Gift: S. Ley (Mill Hill, UK)
(Woods et al, 1989)
Tax Mouse mAb 1:1000 Gift: Y.Tanaka (Okinawa,
(Tanaka et al, 1991) Japan)
VCyclin Rat mAb 1:100 Gift: S. Mittnacht (Imperial,

UK)
vFLIP 6/14 Rat mAb 1:100 Gift: W.Low (UCL, UK)
(Low et al, 2001)
Xpress tag Mouse mAb 1:5000 Invitrogen (46-0528)

Table 2.3. Primary antibodies.
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2.6.9 Electrophoretic mobility shift assay (EMSA).

2.6.9.1 Radioactive labelling of oligonucleotide probes.

NF-kB consensus (SC-2505) and NF-kB mutant (SC-2511) oligonucleotides were 

purchased from Santa Cruz. T4 polynucleotide kinase (PNK) (Promega) was used to 

catalyse the transfer of the y-phosphate group from ATP to the 5’-hydroxyl terminus 

of each DNA molecule. The constituents of each reaction were:

DNA (10 pmol) 39 pi

Kinase 1 Ox buffer 5 pi

y-32P-dNTP 5 |il

T4 PNK 1 |il

The reaction was incubated at 37°C for 10 min and then stopped by addition of 2pi 

0.5M EDTA. Labelled DNA was purified used Chroma Spin™ columns (Clontech) as 

per the manufacturer’s instructions and stored at -20°C prior to use.

2.6.9.2 EMSA and supershift.

The binding reactions were carried out at 24°C for 15 min. The constituents of each 

binding reaction were:

2x Parker buffer 1 Opl

Poly dldC (Pharmacia) lOng.pf1 1 pi

Nuclear extract 5 or 7.5pg

Labelled probe 1 pi

Distilled water to 20 pi

For supershift analyses, nuclear extracts were pre-incubated with antibodies for 30 

min on ice prior to adding the probe. The anti-p50 (06-886) and anti-p52 antibodies 

(05-361) were purchased from UBI, and the anti-RelB antibody (SC-226 C-19) was 

purchased from Santa Cruz. A non-denaturing acrylamide gel was pre-run for lh
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before samples were loaded and run at 7.5 volts.cm'1 at 24°C. Bandshifts were 

visualised by autoradiography.

2.6.10 Luciferase based reporter assays.

To assay NF-kB activity, 293T cells in 24-well plates were transiently co-transfected 

with 80ng of pGL2 promoter vector and either vFLIP or Tax, or stimulated with 

TNFa as stated. At 48h post-transfection, cells were washed in PBS and lysed in 

reporter lysis buffer (Promega). Luciferase activities were measured by luminometer 

in cleared lysates with the luciferase assay system (Promega) as per the 

manufacturer’s instructions. NF-kB activity was calculated as fold induction 

compared to that of empty vector transfected controls.
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CHAPTER 3 

vFLIP binds and activates IKK in PELs

3.1 Introduction

Two roles have been proposed for vFLIP in KSHV infection: inhibition of DR- 

mediated apoptosis and activation of NF-kB (Section 1.4.7). Concurrent with the 

work described in this thesis, Liu et al described the interaction between vFLIP and 

the IKK complex and the activation of the IKK complex when vFLIP was ectopically 

expressed in a non-small-cell lung carcinoma cell line (Liu et al, 2002). This chapter 

focuses on the functions and biochemical properties of endogenous vFLIP in the PEL 

cell line, BC3 (Section 2.4.1).

3.2 Mass spectrometry identification of proteins interacting with 

vFLIP in BC3 cells

vFLIP was purified from BC3 cells by immunoprecipitation using the monoclonal 

anti-vFLIP antibody 6/14 (Low et al, 2001). 5x109 cells were lysed in 0.2% NP40 

detergent to release cytoplasmic proteins but minimise disruption of protein 

interactions, lmg of antibody coupled to sepharose beads was sufficient to deplete 

vFLIP from this lysate (data not shown). The immune complexes were washed in high 

salt buffer (0.5M NaCl), and proteins that co-immunoprecipitated with vFLIP but 

were not precipitated by a control rat antibody were excised and identified by mass 

spectrometry. Fig. 3.1 shows that five proteins were identified in the vFLIP lane but 

not in the control lane. All five proteins were clear matches with high Mascot scores 

(Perkins et al, 1999). Three of these proteins were identified as the core components 

(IKKa, IKKp and IKKy) of the IKK complex. The band containing IKKa was also 

found to contain the chaperone protein, Hsp90, which has recently been identified as 

an additional component of the IKK complex (Section 1.3.3.2). The fifth protein was 

identified as vFLIP. Since vFLIP was recovered from the immunoprecipitation at 

similar levels to the IKK components, it is unlikely that these proteins were 

contaminants.
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Figure 3.1. Identification of proteins interacting with vFLIP in a KSHV infected 
cell line.

Cytoplasmic extract (0.2% NP40 buffer) from the KSHV-infected PEL cell line BC3 
(5x10 cells per track) was immunoprecipitated using a rat IgG control or the anti- 
vFLIP monoclonal 6/14 antibody, and then run on a 12% SDS-polyacrylamide gel.
(A) Silver stain of tracks containing 10% of the immunoprecipitated protein. (B) 
Colloidal Coomassie stain of part of a parallel pair of tracks containing 90% of the 
immunoprecipitated protein. Bands detected in the vFLIP immunoprecipitate, but 
not the control, were excised from the Coomassie stained gel and identified by 
mass spectrometry as indicated.



3.3 Analysis of the endogenous vFLIP-IKK complex

Biochemical analysis has defined the IKK complex as a 700-900 kDa multi-protein 

complex (Section 1.3.3.2). Gel filtration analysis was therefore used to examine the 

distribution of vFLIP protein in BC3 cells. The cell extract was eluted into 22 

fractions using a Superose 6 column, and analysed by immunoblot. Fig. 3.2 

demonstrates the presence of vFLIP in a high molecular weight protein complex at a 

peak corresponding to an exclusion size of 700 kDa. The three components of the 

IKK complex (IKKa, IKKp and IKKy) were co-eluted with vFLIP. Although vFLIP 

has a predicted molecular weight of 23 kDa, vFLIP was not detected in any smaller 

molecular weight fractions. The KSHV vcyclin protein is of similar molecular weight 

to vFLIP (predicted 28 kDa) and was observed in fractions 11 and 12, consistent with 

a molecular weight of less than 150 kDa.

95



669 kDa 440 kDa 232 kDa

IKKa

IKKP

IKKy

vFLIP

0 —  — > mu

0 ...... « * r
— «*n» —«=

0
0 ----------------------

— 1
Input 3 11 13

Fraction no.

Figure 3.2. Analysis of the vFLIP-IKK complex by gel filtration.

Cytoplasmic extract (0.2% NP40 buffer) from BC3 cells (2xl08) was subjected to gel 
filtration on a Superose 6 column. Fractions were then analysed by immunoblot 
using anti-IKKa, p and y, anti-vFLIP and anti-vCyclin antibodies. The elution 
volume of protein standards is indicated.

96



Gel filtration experiments therefore suggest a single population of soluble vFLIP in 

BC3 cells. These data imply that the main function of vFLIP in these cells is to bind 

IKK. However, it remained possible that a proportion of the vFLIP in this high 

molecular weight complex was not IKK associated. To address this question, the 

IKKy immunoprecipitate from BC3 cells was analysed by immunoblot to determine 

the proportion of IKKy-associated vFLIP. Fig. 3.3.A demonstrates that all the 

detectable vFLIP in BC3 cell lysate was associated with IKKy, since 

immunoprecipitation using the anti-IKKy antibody could completely deplete vFLIP 

from the cell lysate, but did not affect IkBol.

The methodology for the identification of IKK components in complex with vFLIP 

(Fig. 3.1) included three washes of the immune complexes in 0.5M NaCl (see 

Materials and Methods). To further assess the stability of the vFLIP-IKK complex, 

equal proportions of anti-vFLIP immunoprecipitate were subjected to three washes 

with either the lysis buffer alone, the buffer containing 1% Triton X-100 or the buffer 

containing 2M urea (Fig. 3.3.B). Immunoblotting analyses show that the association 

of vFLIP with IKK is resistant to both detergent and denaturing washes. These results 

demonstrate the stability of the vFLIP-IKK complex in high salt, detergent and 

denaturing conditions, implying that the association between vFLIP and the IKK 

complex is strong.
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Figure 3.3. Further analysis of vFLIP-IKK.

(A) Cytoplasmic extract (0.2% NP40 buffer) from 5xl06 BC3 cells was 
immunoprecipitated using an anti-IKKy antibody. The immunoprecipitate (IKKy 
IP) and 5% of both the original extract (Total) and the supernatant from the 
immunoprecipitation (Supernatant) were then analysed by immunoblot with anti- 
vFLIP and anti-IicBa antibodies.
(B) Cytoplasmic extract (0.2% NP40 buffer) from lxlO7 BC3 cells was 
immunoprecipitated using the anti-vFLIP antibody. Equal portions of immune 
complex were washed three times in lysis buffer alone (Isotonic) or the buffer 
containing either 1% Triton X-100 (Triton) or 2.0M urea (Urea) and analysed by 
immunoblot with anti-IKKp and anti-vFLIP antibodies.
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3.4 vFLIP has associated kinase activity in BC3 cells

Superose 6 fractions were also analysed for IicBa kinase activity associated with 

vFLIP (Fig. 3.4.A). Fractions were immunoprecipitated using the anti-vFLIP antibody 

and immune complexes were subjected to in vitro kinase assay. The substrate for this 

reaction was an N-terminal IicBa fragment (amino acids 1-54) fused to GST 

(Sections 2.3.2; 2.5), since full-length GST-IicBa was phosphorylated non- 

specifically (data not shown), probably due to phosphorylation sites in the C-terminal 

portion of the protein (DiDonato et al, 1997; Zandi et al, 1997). Kinase activity was 

found to be associated with vFLIP in fractions 4-7, with the major peak in fraction 5, 

identical to the distribution by immunoblot of vFLIP and IKK in Fig. 3.2. Fig. 3.4.B 

demonstrates the specificity of this kinase assay. Immune complexes precipitated 

using an isotype-matched control rat antibody did not have an associated kinase 

activity, and the vFLIP immune complex was not able to phosphorylate GST-IicBa- 

S32A/S36A, a mutant containing point mutations at the inducible phosphorylation 

sites (Sections 2.3.2; 2.5).
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Figure 3.4. vFLIP has associated kinase activity.

(A) Superose 6 fractions from BC3 cells, as described in Figure 3.2, were 
immunoprecipitated with the anti-vFLIP antibody and the immune complexes 
were incubated for 0.5h with GST-IkBcx and y-P 2-ATP. Radiolabelled proteins 
were resolved on an SDS-polyacrylamide gel and visualised by autoradiography.
(B) Cytoplasmic extracts from BC3 cells were immuno-predpitated using the anti- 
vFLIP antibody or an isotype-matched control. The immune complexes were 
incubated for 0.5h with wildtype or mutant (S32A/S36A) GST-IkBcx substrates and 
Y-P32-ATP. Radiolabelled proteins were resolved on an SDS-polyacrylamide gel 
and visualised by autoradiography (upper panel). The lower panel shows a 
Coomassie stained gel of the GST-IicBa in each reaction.
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3.5 vFLIP in heterologous cells

In the context of KSHV infection, other viral proteins might cooperate with vFLIP to 

activate IKK (Table 1.2). The DEL cell line (Section 2.4.1), a KSHV negative and 

EBV negative B cell line, was chosen to investigate whether vFLIP alone was 

sufficient to activate the IKK complex. DEL cells were transduced with a lentiviral 

vector expressing both vFLIP fused to an N-terminal HA epitope tag (HA-vFLIP) and 

GFP. However, Fig. 3.5.A shows that HA-vFLIP did not co-elute with IKK in 

transduced DEL cells when lysates were subjected to gel filtration (cf. Fig. 3.2). To 

examine whether the failure of HA-vFLIP to bind IKK was cell specific or due to the 

HA epitope tag, 293T cells (Section 2.4.1) were transduced with lentivirus encoding 

either GFP, HA-vFLIP and GFP, or wild-type vFLIP and GFP, and were compared to 

BC3 cells. Fig. 3.5.B shows that IKKp and IKK activity were associated with wild- 

type vFLIP in both BC3 and the transduced 293T cells. However, HA-vFLIP was not 

able to immunoprecipitate IKKp or an associated kinase activity. It seems likely that 

the HA epitope induces a conformational change in vFLIP that prevents its physical 

interaction with IKK.

293T cells provide an efficient and accessible system in which to model vFLIP 

activation of IKK. They possess no detectable IKK kinase activity or NF-kB 

transcriptional activity in the absence of exogenous stimulation, such as TNF. Since 

the level of expression of proteins containing DED domains can affect their behaviour 

(Boldin et al, 1996; Han et al, 1997; Shu et al, 1997; Chang et al, 2002), 293T cells 

were used to investigate the level of expression that is required for vFLIP to activate 

the IKK complex. 293T cells were infected with a range of MOI from 0.1 to 5 

infectious units per cell of lentivirus expressing vFLIP and GFP or GFP alone. vFLIP 

expression and its associated kinase activity in these cells was compared to that of 

endogenous vFLIP from the same number of BC3 cells (Fig. 3.6.A). As an example, 

the cells in Lane 6 express similar levels of vFLIP to the BC3 cells. FACScan analysis 

indicates 25% efficiency of transduction in these cells. The level of vFLIP expression 

in these cells is therefore not more than four-fold greater than BC3. The implication is 

that vFLIP can activate IKK independently and that the degree of activation is not
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dissimilar to that found in BC3 cells. These data are consistent with concurrent results 

published by Chaudhary and colleagues (Liu et al, 2002).

TNFa is a potent but transient activator of IKK in 293T cells (DiDonato et al, 1997; 

Zandi et al, 1997). TNFa was used to stimulate IKK in 293T cells infected with 

lentivirus encoding either vFLIP and GFP or GFP alone. Kinase activity was 

measured using an anti-IKKp antibody to purify the IKK complex. Fig. 3.6.B shows 

that 293T cells expressing vFLIP at two weeks post-infection contain a higher basal 

level of kinase activity than could be achieved using TNFa. These cells were cultured 

with no obvious change in the level of kinase activity associated with vFLIP. It is 

concluded that vFLIP activation of IKK is both potent, and is resistant to the normal 

feedback mechanisms which rapidly down-regulate IKK activation following 

physiological stimulation.
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Figure 3.5. Analysis of N-terminal HA tagged vFLIP.

(A) The KSHV negative PEL cell line, DEL, was transduced with lentivirus 
encoding GFP and vFLIP fused to an N-terminal HA eptitope tag (HA-vFLIP). 
Cytoplasmic extract (0.2% NP40 buffer) from 2xl08 cells was subjected to gel 
filtration on a Superose 6 column. Fractions were then analysed by immunoblot 
using anti-IKKp and anti-vFLIP antibodies.
(B) Cell lysates (0.2% NP40 buffer) from 1x10' BC3 cells or 293T cells infected with 
lentivirus encoding either GFP alone, HA-vFLIP plus GFP or wildtype vFLIP plus 
GFP were immunoprecipitated with the vFLIP antibody. 50% of the immune 
complexes from each cell line was subjected to immunoblot using antibodies to 
detect vFLIP and co-purified IKKp. The remaining 50% was assayed for IicBa 
kinase activity (lower panel).
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Figure 3.6. vFLIP activation of IKK is independent of KSHV- or B cell 
associated co-factors.

(A) Cell lysates (0.2% NP40 buffer) from 1x10' BC3 cells or 293T cells infected 
with lentivirus encoding either GFP or vFLIP plus GFP at a range of MOI were 
immunopredpitated using the anti-vFLIP antibody. The multiplicity of infection 
(M.O.I) is indictated below. 50% of the immune complexes from each cell line was 
analysed by immunoblot using the anti-vFLIP antibody (top panel), and the 
remaining 50% was assayed for IkBoc kinase activity (central panel). Transduction 
effidency was measured by FACScan analysis of cells expressing GFP (lower 
panel).
(B) 5xl06 293T cells infected with lentivirus encoding either GFP, or vFLIP plus 
GFP at two weeks post-infection were either treated or not with lOng/ml TNFa for 
10 min. Cell lysates (0.2% NP40 buffer) were immunopredpitated with the anti- 
IKKp antibody and assayed for IicBa kinase activity.
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3.6 Activity of the vFLIP-IKK complex depends on Hsp90

Hsp90 has been previously shown to interact with the kinase domains of IKKa and 

IKKp (Chen et al, 2002). The benzoquinone ansamycin anti-tumour agent, 

geldanamycin (GA), interacts with Hsp90 to inhibit its normal functions (Whitesell et 

al, 1994). Chen et al, demonstrated that GA treatment disrupted the IKK complex 

leading to the dissociation of IKKy and prevented TNF-induced IKK activation (Chen 

et al, 2002). GA was therefore used to investigate the role of Hsp90 in the vFLIP-IKK 

complex in 293T cells. The cells were treated with 0.5 pM GA in serum free medium 

for 16h. Gel filtration showed that there was no change in the size of the vFLIP 

complex upon treatment with GA (Fig. 3.7.A, B). There was also no change in the 

levels of IKKa, IKKp (data not shown) or IKKy (Fig. 3.7.A, B) expression, and there 

was no significant change in the dissociation of IKKy from the complex in control 

cells expressing GFP alone (Fig. 3.7.C). Although vFLIP was observed in lower 

fractions in both control and GA-treated cells, this finding was attributed to vFLIP 

being expressed in excess of the IKK components. However, the IKK activity 

associated with vFLIP in cells treated with GA was significantly reduced (Fig. 3.7.B). 

The activity of the vFLIP-IKK complex is therefore dependent on Hsp90.
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Figure 3.7. The vFLIP-IKK kinase activity is inhibited by geldanamycin.

Cytoplasmic extract (0.2% NP40 buffer) from lxlO8 293T cells transduced with a 
lentivirus encoding either vFLIP plus GFP (A,B) or GFP alone (C) and then treated 
with DMSO or 0.5(iM geldanamycin (GA) for 15h was subjected to gel filtration on 
a Superose 6 column. Fractions were analysed by immunoblot using anti-IKKy or 
anti-vFLIP antibodies; in A and B fractions were also immunopredpitated with the 
anti-vFLIP antibody and immune complexes were assayed for IkBoi kinase 
activity.
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3.7 GA effect on IKK and survival in BC3 cells

Constitutive activation of NF-kB is associated with KSHV infection in PEL cells 

(Keller et al, 2000; Sun et al, 2003a). These cells undergo apoptosis when challenged 

with the inhibitor of cytokine-inducible IicBa phoshorylation, Bay 11-7082 (Keller et 

al, 2000). To evaluate the effect of GA on KSVH-infected cells, BC3 were treated for 

16h with 0.5 pM GA and vFLIP-associated kinase activity was measured. Fig. 3.8.A 

shows that GA significantly inhibited the kinase activity associated with vFLIP 

compared to control cells. At 48h, this concentration of GA also caused loss of 

viability of BC3 cells (Fig. 3.8.B). As an example, 72% of GA-treated cells were dead 

at 48h, compared with 35% of control cells treated with DMSO in serum-free 

medium. To investigate the mechanism of cell death, cells were stained with Annexin 

V and propidium iodide. Early stage apoptosis is distinguished by the translocation of 

phosphatidyl serine (PS) from the cytosolic to the outer surface of the cytoplasmic 

membrane (Fadok et al, 1992). Annexin V binds PS (Zhang et al, 1997) and therefore 

identifies early apoptotic cells (Koopman et al, 1994; Zhang et al, 1997; van Engeland 

et al, 1998). Annexin V also binds necrotic cells, but these cells are permeable to 

propidium iodide (PI). Since early apoptotic cells are impermeable to PI, use of 

annexin V in conjunction with PI allows for differentiation between early apoptotic 

cells (annexin V positive), late apoptotic or necrotic cells (PI and annexin V positive) 

and viable cells (unstained) (Vermes et al, 1995). Treatment with GA caused a 

significant increase in double positive cells (Fig. 3.9). This result does not clearly 

define the mechanism of cell death in these cells.
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Figure 3.8. BC3 cells are killed by geldanamycin.

(A) Cytoplasmic extracts from 5xl06 BC3 cells treated with DMSO or 0.5pM GA 
f o r  15h were immunoprecipitated using the anti-vFLIP antibody and the IkBoc 
kinase activity of the immune complexes was measured.
(B) The viability of BC3 cells treated with increasing concentrations of GA for 48h 
was m easured using a haemocytometer to count the num ber of live and dead cells 
and calculate the percentage of dead cells. Standard error of the mean (SEM) error 
bars are calculated on the basis of triplicate counts.
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Figure 3.9. Cell death in BC3 cells treated with geldanamycin evaluated by 
propidium iodide/annexin V staining.

(A) The viability of BC3 cells treated with two concentrations of GA or equivalent 
DMSO at 48h was measured by propidium iodide (PI)/ annexin V stain followed 
by FACScan analysis. In each graph, the lower left quadrant represents live 
unstained cells, the lower right quadrant represents single stained early apoptotic 
cells, and the upper right represents double stained late apoptotic cells. These data 
are reproduced in bar chart format (B).
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3.8 Discussion

This chapter focuses on the physical interactions and biochemical properties of KSHV 

vFLIP in latently infected PEL cells. Chaudhary and colleagues, have recently 

demonstrated that vFLIP associates with and activates IKK when expressed in human 

non-small cell lung carcinoma cells (Liu et al, 2002). However, by analogy with other 

FLIP proteins, KSHV vFLIP is anticipated to inhibit pro-caspase-8 maturation. The 

data presented in this thesis support the observations made by Chaudhary et al, and 

extends their conclusions to a KSHV-infected PEL cell line. Using 

immunoprecipitation and gel filtration, vFLIP is demonstrated to associate with an 

activated IKK complex in BC3 cells. At the level of detection by immunoblot, the 

majority of vFLIP exists as a highly stable complex with IKK. This implies that 

activation of IKK is the primary role for vFLIP in latently infected PEL cells.

A number of candidate KSHV genes have been put forward to explain the constitutive 

NF-kB activation observed in KSHV infection of B cells (Section 1.4.7; Table 1.2). 

The observation that vFLIP-IKK is constitutively active in BC3 cells lends 

considerable weight to the argument that vFLIP is responsible. This argument is 

further supported by observations that vFLIP binds and activates IKK in 293T cells 

(Fig. 3.5) and other non-lymphoid cells (Liu et al, 2002). The lentivirus system 

enabled the stable expression of vFLIP at near-physiological levels in 293T cells, and 

the level of kinase activity measured in vitro was similar to that found in BC3 cells. It 

is concluded that vFLIP is able to activate the NF-kB pathway independently of 

KSHV- and B cell associated co-factors with a potency that may be sufficient to 

account for the level of NF-kB activation that is observed in KSHV-infected PEL 

cells.

In most cell types, IKK activity is found to peak at 5-15 min. At 30 min, activity is 

reduced by 75% and it decreases further over the next 90 min (DiDonato et al, 1997; 

Zandi et al, 1997; Delhase et al, 1999). The initial down-regulation of IKK is due to 

phosphorylation of residues in the C-terminus of IKKa and IKK(3 (Delhase et al,

1999). Since substitution of 10 serine residues in the C-terminus of IKKp for alanine
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led to a four-fold increase in the length of time that IKK activity was sustained, while 

glutamic acid substitution for the same residues significantly inhibited TNFa-induced 

activity (Delhase et al, 1999). In contrast to the transient activation of IKK by TNFa, 

the level of vFLIP-induced kinase activity in 293T cells remained constant over a 

period of weeks in culture. This indicates that the vFLIP-IKK complex is somehow 

refractory to the normal feedback mechanisms that regulate IKK activity.

In addition to the IKK subunits, we found Hsp90 to be associated with vFLIP in BC3 

cells. This is consistent with a previous report that Hsp90 and a co-chaperone, Cdc37, 

are additional components of the IKK complex (Chen et al, 2002). This study 

demonstrated a physiological role for Hsp90 and Cdc37 in TNFa-dependent 

activation of IKK, showing that GA prevented membrane recruitment and activation 

of IKK upon TNFa treatment. In another study, GA induced the degradation of RIP 

(Lewis et al, 2000), a kinase essential for TNF-induced NF-kB activation (Kelliher et 

al, 1998). GA also inhibited the activity of the vFLIP-IKK complex, although the 

dissociation of IKKy from the complex reported by Chen et al, was not observed 

(Chen et al, 2002). These data demonstrate a second mode of IKK activation that can 

be inhibited by GA, and support a role for Hsp90 in the IKK complex. Consistent 

with the inhibition of NF-kB in PEL cells (Keller et al, 2000), GA also induced death 

in BC3 cells. This implies that vFLIP activation of IKK is essential for the survival of 

BC3 cells. Indeed, Sun et al, have shown that vFLIP activation of NF-kB protects 

against growth factor withdrawal-induced apoptosis in a leukaemic cell line (Sun et 

al, 2003a). However, a recent publication by Brown et al (Brown et al, 2003), 

suggests an alternative explanation. This study demonstrates that NF-kB inhibits the 

activation of lytic promoters in three herpesviruses: KSHV, EBV and MHV68. Upon 

treatment with Bay 11-7082 (section 1.4.7), these viruses initiate lytic protein 

synthesis (Brown et al, 2003). It is therefore possible that lytic reactivation of KSHV 

is responsible for the cell death seen in these experiments.
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CHAPTER 4 

Characterising the association between vFLIP and IKK. 

4.1 Introduction

4.1.1 Overview

Since the core components of IKK exist as a large and stable complex in mammalian 

cells, it was impossible to predict which component was required by vFLIP to contact 

IKK. This chapter describes the direct physical association between vFLIP and the 

IKKy subunit of IKK.

4.1.2 The IKKy subunit

IKKy/NEMO was discovered in a genetic complementation assay as a cellular factor 

that restored NF-kB activation in cells resistant to normal stimulation of the pathway 

(Yamaoka et al, 1998). IKKy was also isolated independently as a component of the 

high molecular weight IKK complex (Rothwarf et al, 1998; Mercurio et al, 1999), and 

as a factor binding to adenovirus E3-14.7K protein (Li et al, 1999c). It is a highly 

conserved glutamine-rich protein, and in humans contains 419 amino acids. Structural 

predictions indicate a C-terminal zinc finger, and five extended coiled-coil regions, of 

which the second and fifth from the N-terminus contain leucine zipper motifs (LZ1 

and LZ2, respectively), predicted according to Lupas et al (Lupas et al, 1991; Chu et 

al, 1999) (Fig. 4.1.A). The role of IKKy is described in more detail in Section 1.3.3.2.
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Figure 4.1. Yeast-two-hybrid data suggest a direct interaction between vFLIP 
and IKKy.

A human placental cDNA library was screened for proteins interacting with a 
vFLIP bait using yeast-two-hybrid technology by our collaborators at Hybrigenics. 
(A) A schematic representation of IKKy with the putative minumum domain 
required for the interaction (B) and a list of the six independent fusions of IKKy 
that were identified (C). Black boxes indicate coiled-coil regions (CCR), white 
boxes indicate the CCRs containing leucine zipper motifs essential for the 
interaction of HTLV-1 Tax with IKKy and the grey box indicates a zinc finger motif 
(ZF).



4.1.3 Genetic analysis of IKKy

Single copy deletion of IKKy in mice results in the death of male mice and an 

inflammatory condition in females characterised by granulocyte infiltration of the 

skin, with both hyperproliferation and increased apoptosis of karatinocytes (Makris et 

al, 2000; Schmidt-Supprian et al, 2000). Homozygous deletion of IKKy is lethal at 

E12.5-13.0 in female mice. IKKy is the only component of the IKK complex linked to 

human disease, mutations within the IKKy gene being associated with two X-linked 

human disorders. Familial incontinentia pigmenti (IP) causes granulocyte infiltration 

of the skin in females and male prenatal lethality. An identical genomic deletion 

within IKKy, that causes protein truncation and eliminates IKK activity, accounts for 

90% of all cases of IP (Smahi et al, 2000; Aradhya et al, 2001). Hypohidrotic 

ectodermal dysplasia with immune deficiency (HED-ID) is X-linked recessive, and 

normally benign in comparison to IP. HED-ID is often associated with mutations in 

the zinc finger of IKKy (Zonana et al, 2000; Jain et al, 2001; Doffinger et al, 2001). 

These mutations impair, but do not generally abolish NF-kB activation, and this may 

explain why HED-ID is less severe than IP. These genetic studies highlight the critical 

role of IKKy in regulating the IKK complex and NF-kB pathway.

4.1.4 IKKy interacting proteins.

At least six proteins are known to interact with IKKy. Receptor interacting protein 

(RIP) is an adaptor protein that associates with TNF-receptor 1 (TNFR1) and is 

required for NF-kB activation via this receptor (Ting et al, 1996; Kelliher et al, 1998). 

RIP contains three domains: an N-terminal kinase domain, an intermediate domain, 

and a C-terminal death domain. RIP interacts with IKKy (Li et al, 1999c; Zhang et al, 

2000; Ye et al, 2000) via its intermediate domain (Zhang et al, 2000), and it has been 

proposed that RIP stimulates the oligomerisation of IKKy to activate IKK (Poyet et al, 

2000). Another protein, A20, can inhibit the TNFR1 signalling pathway leading to 

apoptosis (He et al, 2002), and has been reported to interact with IKKy (Zhang et al,

2000). However, He et al, demonstrate normal anti-apoptotic activity of A20 in a
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IKKy-deficient Jurkat cell line, inferring that the IKKy-A20 interaction is not required 

for this activity (He et al, 2002). Most recently, the familial cylindromatosis tumour 

suppressor, CYLD, has been shown to interact with IKKy (Section 1.3.3.4). Three 

independent studies reported that CYLD functions as a de-ubiquitinating (DUB) 

enzyme with specificity towards TRAF2. Bridging an interaction between IKKy and 

TRAF2, CYLD was shown to negatively regulate IKK activation by TRAF2 and 

various TNF receptors to inhibit NF-kB. Intriguingly, loss of DUB activity through 

CYLP truncation is associated with oncogenesis (Brummelkamp et al, 2003; 

Trompouki et al, 2003; Kovalenko et al, 2003).

IKKy is also the point of access to the NF-kB pathway for three viral proteins. It was 

cloned as a factor, designated FIP-3, that binds to adenovirus protein Ad E3-14.7K 

and prevents the cytolytic effects of TNFa (Li et al, 1999c). Since the TNFa- 

mediated immune response and NF-kB activation is important for clearing adenovirus 

(Gooding 1994; Elkon et al, 1997; Morelli et al, 2000), this interaction may modulate 

the NF-kB pathway as part of a viral defence strategy (Friedman et al, 2002). ORF 

E10 of EHV-2 encodes viral CARD-like apoptotic protein (vCLAP) (Srinivasula et al, 

1999; Koseki et al, 1999; Costanzo et al, 1999; Thome et al, 1999), the homologue of 

cellular Bel-10 (Section 1.3.3.4) (Srinivasula et al, 1999). Like Bel-10, vCLAP 

contains two domains, an N-terminal CARD and a novel C-terminal domain (CTD), 

and can induce both apoptosis and NF-kB activation (Srinivasula et al, 1999; Koseki 

et al, 1999; Costanzo et al, 1999). vCLAP interacts with the C-terminus of IKKy via 

its CTD, inducing persistent activation of IKK (Poyet et al, 2001). The Tax 

transforming protein of HTLV-1 also physically associates with IKKy (Fig. 4.1) and 

activates IKK (Section 1.3.4.4). HTLV-1 is an oncogenic retrovirus etiologically 

associated with the development of the acute T cell malignancy, adult T-cell 

leukaemia (Poiesz et al, 1980; Yoshida et al, 1982). As a viral protein capable of 

activating NF-kB and associated with viral transformation of lymphoid cells, Tax 

represents the most interesting model for the function of vFLIP.
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4.2 Yeast-two-hybrid data.

A yeast-two-hybrid screen was performed by collaborators at Hybrigenics to identify 

proteins capable of interacting with vFLIP, and 14 IKKy clones were identified 

including six independent fusions (Fig. 4.1.C). These data strongly suggested a direct 

interaction between vFLIP and IKKy, because the IKK complex has not been 

described in yeast (Epinat et al, 1997). The minimum common sequence between the 

six independent fusions suggested that the domain in IKKy required for contact with 

vFLIP is between amino acids 173-269, composed of the third coiled-coil region 

(CCR3) and the first section of CCR4 (Fig. 4.1.A, B).

4.3 Cloning of IKKy

IKKy mutants (Fig. 4.2.A) were constructed with an N-terminal Xpress tag by PCR 

amplification from an expressed sequence tag and cloning into mammalian expression 

vector pcDNA 4C (Fig. 4.2.B).
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Figure 4.2. Generation of IKKy truncation mutants.

IKKy truncation mutants (A) were generated by PCR amplification of a human 
expressed sequence tag and subsequent cloning of the DNA fragments into the 
pcDNA4 mammalian expression vector (B) downstream of the Xpress Epitope tag 
using the Bam HI and Xho I sites indicated.
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4.4 vFLIP interaction with IKKy mutants

Co-immunoprecipitation was used to confirm the domain in IKKy that mediates its 

interaction with vFLIP. 293T cells were co-transfected with the IKKy mutants and 

with or without vFLIP. Using the anti-vFLIP antibody, Fig. 4.3 shows that all the 

IKKy fragments, with the exception of Ml (amino acids 1-150), co- 

immunoprecipitated with vFLIP. This suggested the minimum interacting domain to 

be amino acids 150-272 of IKKy. However, the level of vFLIP in cells co-expressing 

the Ml mutant was consistently lower (Fig. 4.3 and data not shown). I therefore made 

the same mutants as GST fusion proteins expressed in bacteria, and examined their 

ability to interact with vFLIP from equal proportions of transfected 293T cell lysate. 

Using glutathione coupled sepharose to purify the GST fusions, Fig. 4.4 shows that all 

the GST-IKKy fragments, with the exception of Ml bound vFLIP. Thus confirming 

the minimum vFLIP interacting domain as amino acids 150-272 of IKKy. It follows 

that the increased levels of vFLIP observed when vFLIP was co-expressed with 

mutants containing this domain may be explained by the stabilising effect of this 

interaction.
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Figure 4.3. Interaction of Xpress tagged IKKy truncation mutants with vFLIP.

lxlO6 293T cells were co-transfected with vectors (lpg each) encoding IKKy 
truncation mutants and either vFLIP or empty vector. Cell lysates (0.2% NP40 
buffer) at 48h were immuno-precipitated using the anti-vFLIP antibody and 
analysed by immunoblot using an anti-Xpress antibody. This gel was 
representative of three experiments which produced almost identical results.
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Figure 4.4. Interaction of GST tagged IKKy truncation mutants with vFLIP.

lxlO7 293T cells were transfected with vFLIP (5pg). GST tagged IKKy mutants 
synthesised in E. coli were incubated with equal proportions of the 293T cell lysate 
(0.2% NP40 buffer) for 2h before purification using glutathione sepharose. Co­
purification of vFLIP (Pull Down) and 5% of the remaining supernatant 
(Supemant) were analysed by immunoblot using an anti-vFLIP antibody. The 
levels of GST-tagged mutants were monitored by Coomassie stain (GST Input). 
This gel was representative of two experiments which produced almost identical 
results.
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4.5 IKKy mutants inhibit NF-kB activation

Luciferase reporter assays were used to compare the functional effects of co­

expressing vFLIP with either M4 (the vFLIP-interacting domain of IKKy) or ML 

293T cells were co-transfected with three plasmids: a reporter plasmid containing 3 

copies of the kB response element upstream of luciferase, vFLIP, and increasing 

amounts of the Xpress-tagged mutants or empty vector. Fig. 4.5.A shows that co­

expression of both Ml and M4 with vFLIP led to significant and dose-dependent 

inhibition of NF-kB activity. Since Ml does not interact with vFLIP, it was not 

expected to inhibit vFLIP. However, Ml contains the IKKa/p binding domain of 

IKKy. It may therefore act as a general inhibitor of NF-kB activation, consistent with 

the ability of the IKKy-binding domain of IKKa/p to block NF-kB activation (May et 

al, 2000; May et al, 2002). To test this hypothesis, the luciferase assay was used to 

examine inhibition of Tax- and TNFa-induced NF-kB activation by Ml and M4. Fig. 

4.5.B shows that Ml potently inhibited Tax, while M4 had little influence on NF-kB 

activation by Tax. The result with TNFa was not as clear; although Ml strongly 

inhibited NF-kB activation again, M4 did partially reduce NF-kB activation by TNFa 

(Fig. 4.5.C). These data demonstrate that the Ml IKKy fragment can inhibit NF-kB 

activation induced by vFLIP, Tax and TNFa. The M4 fragment appears to act as 

dominant negative inhibitor of vFLIP-induced NF-kB activation with some degree of 

specificity. The ability of the N-terminal domain of IKKy to inhibit NF-kB activation 

in reporter based assays was recently confirmed by another group (Tegethoff et al, 

2003).
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Figure 4.5. IKKy mutants inhibit vFLIP-induced NF-kB activation.

lxlO5 293T cells were co-transfected with a luciferase reporter plasmid (80ng) 
containing four NF-kB binding sites upstream of the luciferase gene and varying 
amounts of IKKy mutants Ml (1-150), M4 (150-272) or empty vector. Cells were 
also transfected with 0.2pg of either vFLIP (A) or Tax (B) or stimulated with 
lOng/ml TNFa for 2h (C) to activate NF-kB. Luciferase activity was measured by 
luminometer at 48h post-transfection. The data are plotted as fold basal activity in 
mock-transfected controls. Error bars are calculated on duplicate samples.



4.6 IKKy mutants compete with endogenous IKKy

To test whether the IKKy mutants compete with endogenous IKKy for binding to 

vFLIP, 293T cells were co-transfected with vFLIP and either empty vector, Ml, M2, 

M4 or M5. The anti-vFLIP antibody was used to immunoprecipitate vFLIP, and 

immune complexes were analysed for the co-purification of endogenous IKKy. Fig. 

4.6 shows that co-purification of endogenous IKKy was blocked when vFLIP was co­

expressed with all mutants containing amino acids 150-272. Since M4 lacks the 

IKKa/p binding domain, this fragment may sequester vFLIP in a complex that cannot 

be activated. This may explain the mechanism by which M4 blocks vFLIP-induced 

NF-kB activation (Fig. 4.5.A). Although the association between endogenous IKKy 

and vFLIP was not disturbed by Ml, the level of vFLIP expression was consistently 

reduced whenever co-expressed with Ml in comparison to empty vector. This 

observation could not be explained.
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Figure 4.6. IKKy mutants containing amino acids 150-272 compete with 
endogenous IKKy for binding to vFLIP.

lxlO6 293T cells were co-transfected with expression vectors (lpg each) encoding 
IKKy truncation mutants (Ml, M2, M4 and M5) or empty vector and either vFLIP 
or empty vector. Cell lysates (0.2% NP40 buffer) at 48h were immunopredpitated 
using an anti-vFLIP antibody and analysed by immunoblot for co-purification of 
endogenous IKKy.
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4.7 IKKy-deficient Jurkat cells

4.7.1 8321 cells express a truncated IKKy protein

Jurkat 3T8 T cells and a 3T8 derivative with a reported deficiency in IKKy (Section 

2.4.1), termed 8321, were used to examine the role of IKKy in vFLIP-induced 

activation of IKK and NF-kB. In summary, to derive the 8321 cells, the 3T8 cells 

were sequentially transfected by He and colleagues, with two reporter genes to 

express human CD 14 and rat Thyl under control of the NF-kB enhancer element, and 

mutagenesis was performed using the alkylating agent, ICR191 (Ting et al, 1996). 

Clonal cell lines with defects in the NF-kB pathway were obtained from the pool of 

negatively enriched cells that failed to express CD 14 or Thyl (He et al, 2002). The 

8321 clone failed to activate NF-kB in response to TNFa, phorbal myristate acetate 

(PMA) and phytohaemagglutinin (PHA). A monoclonal antibody raised against His- 

tagged full-length IKKy (Imgenex IMG-324) was used to demonstrate loss of IKKy 

expression in 8321 cells (He et al, 2002). However, using a polyclonal rabbit antibody 

raised against the full-length IKKy protein (Santa Cruz SC-8330), a truncated species 

of IKKy was observed to associate with vFLIP when the 8321 mutant was infected 

with lentivirus encoding vFLIP (Fig. 4.7). The association between vFLIP and full 

length IKKy in BC3 cells and lentivirus-infected 3T8 cells is also shown. The 

discrepancy between these data is probably explained by the use of different 

antibodies to detect IKKy.
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Figure 4.7. vFLIP interacts with a truncated species of IKKy in Jurkat cells with 
deficient NF-kB signalling.

BC3 cells, parental Jurkat Cells (3T8) and a Jurkat derivative (8321) previously 
reported to have a deficiency in IKKy were used in this experiment. Both Jurkat 
3T8 and Jurkat 8321 cells were infected with a lentivirus encoding vFLIP plus GFP. 
1x10 cells from each cell line were lysed (0.2% NP40 buffer), lysates were then 
immunoprecipitated using the anti-vFLIP antibody. 50% of the 
immunopredpitated protein was analysed by immunoblot using anti-IKKy and 
anti-vFLIP antibodies. The remaining 50% was assayed for IkBoc kinase activity 
(see Figure 4.8). Cross reacting IgG bands are labelled (IgG).
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4.7.2 Functional activity of vFLIP in IKKy-mutant Jurkat cells

The observation that the 8321 cells express a truncated IKKy fragment was 

unexpected. Kinase assays and electrophorectic mobility shift assays (EMSAs) were 

therefore used to examine the activation of N F-kB by vFLIP in these cells. Kinase 

assays were performed using the anti-vFLIP antibody to isolate the vFLIP-complex 

from lentivirus-infected 3T8 and 8321 Jurkats and from BC3 cells. Kinase activity 

associated with vFLIP was found in each cell line (Fig. 4.8), although the level of 

kinase activity was substantially greater in BC3 cells. This may be attributed to the 

relative levels of vFLIP expression (Fig. 4.7). The vFLIP immune complex in each 

cell line was not able to phosphorylate a mutant GST-IkB cc substrate, confirming the 

substrate specificity of this assay.

EMSAs were performed on the nuclear extracts of BC3, 3T8 and 8321 cells to assess 

downstream activation of the NF-kB pathway and confirm proper signal transduction. 

Fig. 4.9 shows that in both 3T8 and 8321 Jurkats, a major N F-kB binding complex 

was induced by vFLIP expression. An identical shifted band is found in the BC3 track 

(Fig.4.9). The specificity of kB binding was analysed using a mutant kB 

oligonucleotide probe, and by competition with 100-fold unlabelled kB 

oligonucleotide. These data indicate that the IKKy truncation found in 8321 Jurkat 

cells does not affect the ability of vFLIP to activate the N F-kB pathway.
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Figure 4.8. vFLIP activates IKK in Jurkat 3T8 and 8321 cells.

(A) Cell lysates (0.2% NP40 buffer) from BC3, and Jurkat 3T8 and 8321 cells 
infected with a lentivirus encoding vFLIP plus GFP (1x10 cells) were 
immunoprecipitated using the anti-vFLIP antibody (see Figure 4.7). The immune 
complexes were incubated with either wildtype or mutant (S32A/S36A) GST-IicBa 
substrates, and labelled proteins were detected by autoradiography. The levels of 
GST-tagged substrates were monitored by Coomassie stain (B).
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Figure 4.9. vFLIP activates nuclear proteins that bind kB consensus response 
elements in Jurkat 3T8 and 8321 cells.

(A) EMSAs were performed using total nuclear extracts (7.5pg per track) prepared 
from BC3 and from Jurkat (3T8 and 8321) cells either uninfected or infected with 
lentivirus encoding vFLIP^plus GFP or GFP alone. N F-kB binding activity was 
determined using a y-P -labelled oligonucleotide probe containing the kB 
response element (labelled consensus) and specificity was monitored using a 
labelled control probe (mutant) and by competition with 100-fold unlabelled 
consensus oligonucleotide (unlabelled consensus). (B) The sequences of the 
consensus and mutant oligonucleotides are shown. The single base pair 
substitution of the mutant probe is marked.
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4.8 Discussion.

This chapter focuses on the role of IKKy in vFLIP activation of the NF-kB pathway. 

The central region of IKKy, between amino acids 150 and 272, is shown to be 

essential for the vFLIP interaction. This is in contrast to the leucine zipper regions 

required for the Tax-IKKy interaction (Fig. 4.1.A). Deletions of LZ1 abolish the 

binding of Tax to IKKy, whereas mutants lacking LZ2 show reduced binding to Tax 

(Xiao et al, 2000). The vFLIP binding region does not overlap with either region. 

From these data it can be inferred that the structurally unrelated viral proteins Tax and 

vFLIP have evolved distinct mechanisms to bind IKKy and thereby activate IKKy.

vFLIP is also shown to activate NF-kB in a mutant Jurkat cell line, 8321, known to be 

refractory to stimulation by TNFa, PM A and PFLA (He et al, 2002). These cells are 

shown to express a truncated IKKy protein that associates with vFLIP and supports 

normal levels of IKK activity and NF-kB DNA binding activity. The same cells had 

previously been used to show that A20 could protect from TNFa-mediated apoptosis 

(Section 4.1.4), apparently in the absence of IKKy (He et al, 2002). These data were 

interpreted to suggest that the A20-IKKy interaction is not required for A20-mediated 

protection against apoptosis. The data presented here cast doubt on this explanation. 

Since vFLIP-induced NF-kB activity appears to be normal in 8321 cells, the 

implication is that A20 might also activate IKK and thus protect these cells from 

TNFa-mediated apoptosis. He et al, did not, for example, assay for A20-associated 

IKK activity or for NF-kB activation in A20-transfected cells. The possibility that 

A20 may also activate IKK in 8321 cells cannot be ruled out.

Although currently a matter for speculation, the IKKy mutant expressed by 8321 cells 

is most likely to contain a C-terminus truncation because the N-terminus and 

intermediate domains are probably intact. This inference is made because the N- 

terminus contains the IKKa/p-binding domain and is required for IKK activation, and 

the intermediate domain is required for association with vFLIP. Interestingly, this 

implies that vFLIP may not require the IKKy C-terminus for activation of IKK. This
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is in direct contrast to a number of other known stimuli. Cloning of this truncated 

IKKy protein will reveal the location of the genetic mutation and may shed light on 

the mechanism of vFLIP-induced IKK activation. With further experimentation, it 

may be possible to define the minimum domain of IKKy that is required for vFLIP- 

induced IKK activity.
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CHAPTER 5 

vFLIP induces plOO processing

5.1 Introduction

The alternative pathway of NF-kB activation induces the processing of p i00 to 

generate p52 (Section 1.3.4.1). This pathway involves the phosphorylation of p i00 

via NIK and IKKa, leading to its ubiquitylation through the SCF ubiquitin ligase 

complex and subsequent processing to p52 (Sections 1.3.4.1; 1.3.4.2). This process is 

tightly regulated (Xiao et al, 2001b) for good reason; chromosomal translocations at 

the 10q24 locus that truncate the C-terminus of p i00 leading to aberrant processing 

are associated with lymphomas (Fracchiolla et al, 1993; Thakur et al, 1994; Chang et 

al, 1995), and genetically manipulated mice expressing p52, but not p i00, develop 

gastric and lymphoid hyperplasia (Ishikawa et al, 1997). Physiological stimuli that 

regulate the processing of p i00 to p52 include BAFF ligand, CD40 activation, 

lymphotoxin (3, lipopolysaccharide and TWEAK (Section 1.4.3.3). Without exception, 

all have important roles in the development and regulation of the immune system, and 

in particular B cell function. It is therefore of great interest that deregulated p i00 

processing has been found in leukaemic T cells transformed by HTLV-1, in which 

Tax induces the processing, and that the EBV transforming protein, LMP1, is also 

able to induce p i00 processing (Section 1.3.4.4). Constitutive NF-kB activation 

within infected lymphoid cells is central to the transforming activity of both viral 

oncoproteins (Section 1.3.4.4). As a constitutive activator of NF-kB expressed by a 

lymphotropic and oncogenic virus, I speculated that vFLIP might also activate this 

alternative pathway.
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5.2 DNA input affects the processing of plOO but not p!05

Although the processing of p i05 is largely constitutive (Lin et al, 1998; Lin et al, 

2000), constitutive processing of p i00 is limited. However, upon expression of 

exogenous p i00 in 293T cells, significant p52 generation was observed in the absence 

of any stimuli (Fig. 5.1 and data not shown). To assess the contribution of 

overexpression to this observation, the quantity of transfected p i00 and p i05 

expression vectors was titrated. As expected, higher levels of input DNA led to 

increased expression of both pi 00 and pi 05 (Fig. 5.1). Fig. 5. l.A shows that p52 was 

undetectable when 0.1 pg of p i00 was transfected per well. With 0.5pg input DNA 

per well, p52 was observed, although at a lower level than p i00. A further increase in 

the amount of transfected DNA did not increase the level of p52 (Fig. 5.l.A). By 

contrast, the ratio of p50 to pl05 was close to 1:1 at all levels of input DNA (Fig. 

5.1.B). These data demonstrate that processing of exogenous p i00 can be associated 

with overexpression. For subsequent experiments, the level of p i00 input was 

therefore maintained at 0.1 pg per well, unless otherwise stated.

5.3 vFLIP induces p52 production in transfected 293T cells

To examine whether vFLIP regulates the processing of p i00 to p52, 293T cells were 

co-transfected with p i00 and either vFLIP, empty vector or Tax. For comparison, a 

similar experiment was performed using p i05. Fig. 5.2.A shows that, in the absence 

of vFLIP or Tax, p i00 was clearly expressed but no p52 was detected. As expected, 

Tax expression induced a significant increase in p52 levels (Xiao et al, 2001a). 

Transfection of vFLIP led to a similar increase in p52 levels. Co-expression of vFLIP 

with p i00 therefore stimulates p52 accumulation. However, because p i00 levels were 

not affected by either vFLIP or Tax expression, it is not possible to say whether this is 

due to increased p i00 processing. By contrast, co-expression of vFLIP with p i05 did 

not increase the accumulation of p50 (Fig. 5.2.B). Interestingly, since these 

experiments were performed, it has been reported that cFLIPl both associates with 

and prevents the processing of p i05 (Li et al, 2003). Whether these observations are 

related to the effect of vFLIP on pl00/p52 is not yet clear.
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Figure 5.1. The affect of varying the DNA plasmid input on constitutive 
processing of plOO and pl05.

lxlO6 293T cells were transfected w ith 0, 0.1, 0.5 or 1.0 pg of pcDNA3.1 encoding 
either plOO (A) or H A-pl05 (B). Cell lysates (RIPA buffer) at 48h were assayed for 
protein concentration by the Bradford m ethod and 20gg of lysate were loaded in 
each track. The processing of plOO to p52, and  of pl05 to p50 was analysed by 
im m unoblotting using a rabbit polyclonal anti-plOO antibody raised against 
residues 1-15 of hum an p i 00 (See Table 2.3), and an anti-HA antibody as 
indicated.
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Figure 5.2. Co-expression of vFLIP increases the generation of p52, but not of 
p50.

lxlO6 293T cells were co-transfected with expression vectors encoding plOO (O.lpg) 
and either vFLIP, Tax or empty vector (lgg each) (A) and with HA-pl05 (0.1 pg) 
and either vFLIP or empty vector (lpg) (B). 20ug of lysate (RIPA buffer) at 48h 
was analysed by immunoblotting using a commercial mouse monoclonal anti- 
plOO antibody generated using GST fused to residues 1-444 of human plOO (See 
Table 2.3), and an anti-H A antibody as indicated.
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5.4 vFLIP-induced p52 accumulation requires plOO serines 866/870

Processing of p i00 to p52 by NIK (Xiao et al, 2001b), CD40 (Coope et al, 2002) and 

Tax (Xiao et al, 2001a) requires two serines (S866 and S870) in the C-terminus of 

plOO (Fig. 5.3.A). To determine whether these residues are required for vFLIP- 

induced p52 accumulation, 293T cells were co-transfected with either wild-type p i00 

or a mutant pl00-S866A/S870A containing serine to alanine mutations at these 

residues and vFLIP, Tax or empty vector. vFLIP induced a reproducible increase in 

levels of exogenous p52 in wild-type-plOO-transfected cells but not in cells 

transfected with pl00-S866A/S870A (Fig. 5.3.B). This implies that serines 866 and 

870 of p i00 are required for the vFLIP-induced production of p52. In the context of 

previous reports that the phosphorylation of pi 00 by IKKa at these serine residues is 

associated with p i00 ubiquitylation and processing, these data are consistent with, but 

do not prove, vFLIP-induced processing of pi 00.

5.5 vFLIP physically associates with p i00

The mechanism of Tax-induced p i00 processing has been partially explained by the 

ability of Tax to bind p i00 (Beraud et al, 1994) and recruit it to the IKK complex 

(Xiao et al, 2001a). Since vFLIP, like Tax, binds directly to IKKy (Chapter 4), it was 

an intriguing possibility that vFLIP might also contact p i00. Co-immunoprecipitation 

was used to examine whether vFLIP interacts with p i00. 293T cells were transfected 

with lpg of plOO (wild-type plOO or pl00-S866A/S870A) and either vFLIP, Tax or 

empty vector, and the polyclonal anti-plOO antibody was used to immunoprecipitate 

p i00. Fig. 5.4 demonstrates that vFLIP and Tax both physically associate with wild- 

type p i00 and the mutant pl00-S866A/S870A. Although less than 5% of vFLIP was 

routinely observed to interact with p i00 in this overexpression system, vFLIP was not 

immunoprecipitated by the antibody alone. These data indicate that vFLIP and p i00 

can physically associate, and that the association does not depend upon serines 866 

and 870.
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Figure 5.3. vFLIP-induced p52 accumulation requires plOO serines 866 and 870.

A) Schematic picture of p i00. The two serine residues (S866A and S870A) in the C- 
terminus of pi 00 required for NIK-induced processing to p52 are indicated.
B) lxlO6 293T cells were co-transfected with vectors encoding vFLIP or Tax (lpg 
each) and plOO wildtype (Wt) or plOO S866A/S870A (Mut) (O.lpg each). 20pg of 
cell lysate (RIPA buffer) at 48h were immunoblotted using the monoclonal anti- 
pl00/p52, anti-vFLIP and anti-Tax antibodies. NS indicates a non-specific band.
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Figure 5.4. Interaction of vFLIP with plOO

lxlO6 293T cells were co-transfected with l|ig of indicated plOO expression vectors 
(Wt or Mut S866A/S870A) and either vFLIP (A) or Tax (B) (lpg each). Cell lysates 
(0.2% NP40 buffer) at 48h were immunoprecipitated using the rabbit polyclonal 
anti-pl00/p52 antibody. Immune complexes and 5% of the remaining supernatant 
were analysed by immunoblot using the monoclonal anti-pl00/p52, anti-vFLIP 
and anti-Tax antibodies. Low levels of endogenous plOO were isolated by IP (A - 
lane 8; B - lane 4).
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5.6 vFLIP interacts with plOO in BC3 cells

Expression of pi 00 is upregulated during B cell development (Senftleben et al, 2001) 

and high levels of p i00 are found in many mature B cell lines (Liou et al, 1994). 

Generation of p52 also occurs during B cell maturation (Claudio et al, 2002; Coope et 

al, 2002), and p52 accumulation is found in a variety of B cell lymphomas (Hacker et 

al, 2002). Fig 5.5 shows that both plOO and p52 are present in the KSHV-infected 

BC3 cell line. Fig. 5.5 also demonstrates the interaction between endogenous vFLIP 

and p i00. A small proportion of vFLIP was observed to associate with p i00. This is 

in contrast to the majority of vFLIP that associates with IKKy (Fig. 3.3A). The 

association between Tax and p i00 is thought to recruit p i00 to the IKK complex 

(Xiao et al, 2001a), however it was not possible to determine whether the pi 00- 

associated vFLIP was also bound to IKKy (data not shown). These data demonstrate 

the expression of both vFLIP and p i00 in the context of KSHV infection, and show 

the interaction between these two proteins under physiological conditions.
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Figure 5.5. Physical association of endogenous plOO and vFLIP.

Cytoplasmic extract (0.2% NP40 buffer) from 5xl06 BC3 cells was 
immunoprecipitated using the polyclonal anti-pl00/p52 antibody. The 
immunoprecipitate (IP pl00/p52) and 5% of both the original extract (Total Lysate) 
and the supernatant from the immunoprecipitation (Supernatant) were then 
analysed by immunoblot using the anti-vFLIP and the monoclonal pl00/p52 
antibodies. See Figs. 3.3. A and 5.4.B for comparison.

140



5.7 vFLIP induces plOO expression and p52 generation in Jurkat cells

To avoid the constitutive pl00/p52 expression found in many B cell lines, Jurkat 3T8 

T cells (Section 2.4.1) were used to investigate vFLIP induction of pi 00 processing in 

a lymphoid cell line. Xiao et al, demonstrated that both Tax and mitogen stimulation 

increased p i00 expression in Jurkat cells, however only Tax led to increased p52 

generation (Xiao et al, 2001a). Jurkat 3T8 cells were therefore infected with lentivirus 

encoding either vFLIP and GFP or GFP alone, followed by analysis of endogenous 

p52 generation. Expression of vFLIP led to a significant increase in p i00 expression 

and to the accumulation of p52 (Fig. 5.6). The aberrant expression of p i00 and p52 

was also detected in the Jurkat 8321 cell line that expresses a truncated IKKy (Figs. 

4.7; 5.6). The increase in p i00 expression is consistent with previous studies 

demonstrating the NF-kB2 gene as an NF-kB target (Liptay et al, 1994; Sun et al,

1994). In these studies, activation of NF-kB was associated with p i00, but not p52 

expression. Low levels of p i00 and undetectable p52 expression were observed in 

uninfected and GFP-infected cells. The generation of p i00 indicates activation of the 

classical pathway by vFLIP, while the accumulation of p52 suggests p i00 processing 

(Section 1.4.3.3). These data are therefore consistent with the activation of both 

classical and alternative pathways of NF-kB by vFLIP.
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Figure 5.6. vFLIP induces plOO expression and p52 generation in Jurkat 3T8 and 
8321 cells.

6
5x10 parental Jurkat (3T8) or a Jurkat derivative (8321) encoding a truncated IKKy 
were either not infected or transduced with a lentivirus encoding either GFP alone 
or vFLIP plus GFP. 20pg of cell lysate (RIPA buffer) was analysed by immunoblot 
using the monoclonal anti-pl00/p52 and anti-vFLIP antibodies. Transduction 
efficiency was measured by FACScan analysis of cells expressing GFP.
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5.8 vFLIP expression promotes nuclear translocation of p52 and 

RelB

Previous studies have demonstrated that NF-kB dimers containing RelB are 

specifically sequestered in the cytoplasm by p i00 (Solan et al, 2002). The 

transcriptional activity of RelB is specifically inhibited by p i00 (Dobrzanski et al,

1995), and RelB is retained in the cytosol of breast cancer cell lines by pi 00 (Dejardin 

et al, 1995). Solan et al, further demonstrated that RelB was associated in the 

cytoplasm with p i00 and not other IkB molecules, and that p i00 processing resulted 

in nuclear translocation of RelB (Solan et al, 2002). It follows that the nuclear 

translocation of RelB is a surrogate marker for p i00 processing. Immunoblotting of 

nuclear and cytoplasmic extracts from BC3 or Jurkat 3T8 cells confirmed that vFLIP 

expression is associated with an increase in nuclear RelB (Fig. 5.7). Levels of nuclear 

p52 were also found to increase with the expression of vFLIP in 3T8 cells, although 

levels of nuclear RelB and p52 were significantly higher in BC3 cells (Fig. 5.7). This 

may be attributable to the lower levels of vFLIP expression in 3T8 cells (Fig. 5.6). 

Immunoblotting for tubulin (cytoplasmic marker) and Spl (nuclear marker) 

confirmed cell fractionation and protein loading. These data imply that vFLIP induces 

processing of pi 00 to release RelB.

5.9 vFLIP induces KB-binding complexes composed largely of p50

EMSA supershifts were performed to investigate whether the vFLIP-induced nuclear 

RelB and p52 detected by immunoblot corresponded with an increase in kB binding 

complexes containing RelB and p52. However, Fig. 5.8 revealed a predominance of 

p50-containing complexes in both BC3 and Jurkat 3T8 cells expressing vFLIP. This is 

consistent with earlier reports that p50 is the principal NF-kB DNA binding activity 

induced by KSHV infection and vFLIP expression (Keller et al, 2000; Liu et al, 

2002). No supershift was observed on addition of antibodies to RelB or p52 to the 

EMSA, although low levels of p52 and RelB were found within the nucleus. It is not 

clear whether this is due to the inhibitory effect of p i00 found in the nucleus, to 

insufficient levels of RelB and p52, or to the limitations of the EMSA assay in 

detecting p52 and RelB dimers with the same efficiency as p50 dimers.
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Figure 5.7. vFLIP expression induces nuclear translocation of p52 and RelB.

Nuclear and cytoplasmic extracts were prepared from 5xl06 BC3 and Jurkat 3T8 
cells not infected or infected with lentivirus encoding either GFP or vFLIP plus 
GFP. 20pg of cytoplasmic extract (2%) and 30pg of nuclear extract (10%) were 
analysed by im munoblotting using the monoclonal anti-pl00/p52, anti-RelB, anti- 
Spl and anti-tubulin  antibodies. Transduction efficiency was m easured by 
FACScan analysis of cells expressing GFP.
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Figure 5.8. The protein/DNA complexes induced by vFLIP expression that bind 
kB response elements are largely composed of p50.

EMSAs were performed using total nuclear extracts (5pg) prepared from BC3 and 
from Jurkat 3T8 cells infected with lentivirus encoding vFLIP plus GFP, either 
w ith (as indicated) or w ithout (-) supershifting antibodies recognising complexes 
containing p50, p52 or RelB proteins. The position of the supershifted complexes 
is shown (bracket).
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5.10 Discussion

The processing of p i00 and generation of p52 are essential to the development of the 

immune system. B cell maturation and the formation of secondary lymphoid 

structures do not occur in the absence of this pathway (Franzoso et al, 1998; Caamano 

et al, 1998), and a number of cellular receptors that stimulate this process have now 

been identified (Hacker et al, 2002). Two viruses, EBV and HTLV-1, encode proteins 

that modulate this pathway (Xiao et al, 2001a; Saito et al, 2003), and it is tempting to 

speculate that this has a specific role in allowing the viruses to regulate differentiation 

of infected cells to their own advantage. In this chapter, data have been presented 

suggesting that via vFLIP, KSHV also activates the alternative pathway of NF-kB 

activation. Co-expression of vFLIP and p i00 in 293T cells and expression of vFLIP 

in Jurkat 3T8 and 8321 cells led to p52 accumulation. However, it remains possible 

that p52 accumulates as a direct result of increased p i00 expression via vFLIP 

activation of the classical pathway, rather than through a true processing event. In 

support of the argument for processing is the fact that expression of exogenous p i00 

(driven by a CMV promoter) could not be influenced by vFLIP activation of the 

classical NF-kB pathway, and although it remains possible that upregulation of 

endogenous plOO imitated the effect of overexpression (Fig. 5.1), endogenous plOO 

remained below the limit of detection in these experiments. In addition, vFLIP- 

induced p52 generation was dependent on serine residues S866 and S870 of plOO. 

These residues are required for processing of p i00 by NIK, CD40 and Tax (Xiao et 

al, 2001a; Xiao et al, 2001b; Coope et al, 2002), and these data are therefore 

consistent with the model that vFLIP can induce the processing of p i00 to generate 

p52.

The physical association between vFLIP and p i00 provides a possible mechanism for 

these observations, although further experiments will help to support these data. For 

example, it will be interesting to define the domain of interaction required for p i00 to 

interact with vFLIP, and it will also be important to know whether IKKy is essential 

for the apparent processing of p i00. To this end, experiments were performed in the 

IKKy-deficient Jurkat 8321 cell line. However, this cell line was found to express a 

truncated IKKy (Fig. 4.7) and to have normal NF-kB activation in response to vFLIP
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expression (Figs. 4.8; 4.9). Experiments were also performed in MEF cell lines 

derived from genetically modified mice deficient in IKKa, (3 and y, and in the murine 

pre-B-cell line 70Z/3 and its IKKy-deficient mutant 1.3E2. However, neither p i00 

upregulation nor p52 accumulation could be demonstrated in either the wild-type or 

mutant murine cells (data not shown). Since p i00 expression and p52 generation was 

observed in Jurkat cells, and p52 accumulation could be demonstrated in 293T cells, 

the activation of p i00 processing by vFLIP may depend on its expression in a human 

cell line.

Although analysis of nuclear and cytoplasmic fractions revealed an increase in 

nuclear RelB and p52 in Jurkat cells expressing vFLIP, the levels detected by 

immunoblot were low. Re-infecting these cells with lentivirus to achieve greater cell 

numbers expressing vFLIP may help to clarify this result, but it will also be essential 

to perform pulse-chase experiments to define whether p i00 is truly processed in cells 

containing KSHV and vFLIP. The failure to observe kB binding complexes 

containing RelB or p52 is perhaps not surprising given their low expression levels. 

This result may also reflect limitations of the EMSA as an assay. EMSAs are not 

quantitative and the intensity of bands does not necessarily correlate with amount of 

nuclear protein. In addition, different NF-kB dimers bind the kB consensus element 

with different affinity, and p52 homodimers in particular bind more weakly than 

many other NF-kB subunits to the commonly used consensus sequences (Fujita et al, 

1992; Duckett et al, 1993).

Important questions regarding vFLIP as an activator of pi 00 processing still remain. 

The alternative pathway of N F-kB activation, where p i00 processing leads to the 

release of RelB- and p52-containing complexes, is distinct in a number of ways from 

the classical pathway, that degrades small IkB molecules to release RelA:p50 dimers 

(Muller et al, 2003; Saccani et al, 2003). Time course experiments demonstrate that 

RelB-p52 complexes appear at later time points following an N F-kB activating 

stimulus (Muller et al, 2003; Saccani et al, 2003), and the two pathways can be 

examined independently by using cells deficient in the non-redundant components of 

each, by using inhibitors of protein synthesis that only block the alternative pathway 

and by using the IkB super-repressor that specifically inhibits the classical pathway.
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Such experiments will prove invaluable in consolidating the existing data on vFLIP, 

and may help to explain how vFLIP is able to trigger the constitutive activation NF- 

kB.

Activation of the alternative pathway may also have an important role in viral 

oncogenesis. In fact, p i00 was initially identified as Lyt-10, a gene involved in the B 

cell lymphoma-associated translocation, t(10;14)(q24;q32) (Neri et al, 1991). Such 

translocations have been shown to cause C-terminal truncation of p i00 (Section 5.1). 

C-terminal truncation mutants lost their IicB-like activity and function as constitutive 

transcriptional activators (Chang et al, 1995). Unlike p52 and p i00, overexpression of 

such mutants in MEFs led to a transformed phenotype (Ciana et al, 1997). 

Interestingly, the p52 co-activator protein Bcl-3 (Section 1.3.2), was also identified 

though study of chromosome translocations in chronic lymphocytic leukaemia 

(Perkins 2003). Since the overexpression of pi 00 prevented the transformation of rat 

embryo fibroblasts by Tax (Yamaoka et al, 1996), it would be interesting to see 

whether p i00 also blocks transformation of Rat-1 cells by vFLIP (Sun et al, 2003b). 

The significance of p i00 processing in survival and proliferation of KSHV-infected 

cells might also be tested by introducing wild-type and processing-resistant forms of 

p i00 into PEL cell lines. Finally, it will of interest to determine whether Bcl-3 has a 

role in the vFLIP-induced NF-kB activation.
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Summary of Results

Chapter 3.

• vFLIP is constitutively associated with an activated IKK complex, 

containing IKKa, p and y and Hsp90, in KSHV-infected BC3 cells.

• vFLIP can be depleted from BC3 extract by immunoprecipitation using 

IKKy antibody, suggesting this interaction is the primary function of 

vFLIP.

• vFLIP persistently activates IKK in heterologous cells (confirming data 

published by Chaudhary et al), implying that vFLIP alone can activate NF- 

kB.

• vFLIP-induced IKK activity can be inhibited by GA, suggesting that the 

activity of this complex depends on Hsp90.

• GA causes cell death in BC3 cells.

Chapter 4.

• vFLIP binds directly to IKKy, the minimum IKKy domain required for this 

interaction being amino acids 150-272.

• An IKKy mutant consisting of amino acids 150-272 inhibits vFLIP-induced 

NF-kB activity in reporter-based assays.

• IKKy truncation mutants containing the minimum domain of interaction 

compete with endogenous IKKy for binding to vFLIP.

• vFLIP activates NF-kB in Jurkat cells expressing an IKKy truncation 

mutant that are refractory to other stimuli.

Chapter 5.

• vFLIP stimulates p52 accumulation in transfected 293T cells, implying that 

the alternative pathway of NF-kB is activated.

• vFLIP-induced p52 accumulation requires p i00 serines 866 and 877, 

suggesting that this process is phosphorylation dependent.
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• vFLIP associates with p i00, suggesting a possible mechanism for p52 

accumulation.

• vFLIP induces both p i00 and p52 accumulation in Jurkat cells, suggesting 

that both classical and alternative pathways of NF-kB are activated.

• vFLIP promotes nuclear translocation of p52 and RelB in Jurkat cells, 

suggesting that p i00 is specifically processed.
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Chapter 6 

Discussion and future directions

6.1 Function of vFLIP

The work presented in this thesis is based upon the observation that vFLIP associated 

with and activated IKK in a transformed PEL cell line. The data suggest that 

activation of NF-kB via IKK is the major function of vFLIP in KSHV infection. 

Further analysis showed that IKK activation is mediated via IKKy, and that vFLIP 

activates the alternative pathway of NF-kB. However, it remains possible that the 

observations made by Belanger et al, demonstrating the interaction between vFLIP 

and procaspase-8 (Belanger et al, 2001), do occur in vivo at certain points in the virus 

life-cycle. In partial support of these data is the finding that PEL express TNFR1 and 

Fas, but are resistant to TNF- and Fas-mediated apoptosis, although vFLIP could not 

be found at the DISC (Low and Collins, unpublished). Furthermore, vFLIP protected 

B lymphoma cells from Fas-mediated apoptosis by inhibiting caspase activation. 

vFLIP also permitted clonal outgrowth of these cells in the presence of Fas ligand in 

vitro, and enhanced tumour growth in vivo (Djerbi et al, 1999). The question therefore 

remains as to whether vFLIP primarily activates IKK or inhibits caspase-8, and two 

possible explanations are proposed to reconcile these results. First, contact with the 

DISC occurs through stimulus-dependent translocation of vFLIP from IKK to the 

DISC. Second, the interaction with caspase-8 is an artefact of overexpression, and the 

NF-icB-dependent expression of anti-apoptotic genes like cFLIP is responsible for the 

inhibition of apoptosis (Sections 6.3;6.4). The data presented here and from the 

published studies of Chaudhary and colleagues (Section 1.4.7) support the second 

explanation. However, given the precedent set by other FLIP proteins that do interact 

with the DISC, it will be difficult to prove that the function of vFLIP in vivo is 

exclusively related to the activation of NF-kB. This chapter explores some of the 

other questions concerning the function of vFLIP that remain unanswered.
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6.2 How does vFLIP activate NF-kB?

Although I have shown that vFLIP contacts IKKy directly, it is not clear how this 

leads to IKK activation. The most likely mechanisms for activation of IKK involve 

either the recruitment of upstream activators or the transautophopshorylation of the 

kinase subunits (Section 1.3.3.4). On the basis of several assumptions (Section 4.8), I 

speculated that vFLIP is able to activate the IKK complex in the absence of the IKKy 

C-terminus. Previous investigators have suggested that the C-terminus is required for 

recruitment of upstream activators. If this speculation is correct, vFLIP is the only 

stimulus capable of activating IKK in absence of the IKKy C-terminus. From this, it 

may be inferred that vFLIP does not require upstream activators to induce IKK 

activity. In this case, activation might occur through changes in the conformation of 

the IKK complex caused directly by the binding of vFLIP to IKK. An alternative 

explanation is that vFLIP itself recruits an upstream regulator, thereby circumventing 

the requirement for the C-terminus. However, no evidence of vFLIP binding to 

potential regulatory proteins was found in either mass spectrometry or yeast-two- 

hydrid analyses. Furthermore, Matta et al, have shown that one of the more likely 

candidates, RIP1, is dispensable for vFLIP-induced activation of IKK (Matta et al, 

2003). It is hoped to gain a better understanding of the vFLIP-IKKy interaction 

through analysis of the crystal structure of vFLIP-IKKy complexes. A second, closely 

related question concerns the ability of vFLIP to induce a persistent state of activation 

within the IKK complex, a property shared by Tax. It was recently reported that Tax 

interacts with serine/threonine protein phosphatase 2A (PP2A) (Fu et al, 2003). In 

vitro studies suggest that Tax inhibits the ability of PP2A to de-phosphorylate IKK, 

thereby contributing to a state of persistent IKK activity. In view of other NF-kB- 

related properties shared by these viral proteins, it would be interesting to know 

whether vFLIP possesses a similar function.

6.3 Why does KSHV express vFLIP to activate NF-kB?

Many viruses employ strategies to mimic cellular activation signals and subvert 

intracellular signalling to their own advantage (for review see (Santoro et al, 2003) 

and (Hiscott et al, 2001)). Perhaps the most relevant example to KSHV is EBV, which
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encodes LMP1 to mimic CD40 signalling, thereby rescuing infected B cells from 

apoptosis and driving their proliferation (Thorley-Lawson 2001). By expression of 

genes like LMP1, EBV seems capable of driving the differentiation of naive B cells 

towards a memory B cell phenotype. Latently infected memory B cells thus form a 

reservoir for latent virus, allowing EBV to persist for the lifetime of the host. The 

precursor cell type for KSHV infection is not yet known, and the endpoint of infected 

B cell differentiation is probably the post-germinal centre plasmablast (Jenner et al, 

2003). However, it seems likely that similar principles apply to KSHV, whereby the 

virus imitates critical cellular signalling pathways during the development of the 

infected cell that steer differentiation towards a long-lived B cell phenotype. Implicit 

within this concept is sophisticated viral gene expression, which would enable the 

virus to deliver the appropriate survival signal at the correct moment. Activation of 

NF-kB is probably one of a number of strategies that KSHV uses to drive cell 

proliferation, survival and differentiation of infected cells. Although the precise role 

of NF-kB in B cell differentiation is not yet clear, genetic experiments in mice do 

suggest a fundamental role in B cell maturation. Parsparakis et al, demonstrated the 

absence of mature B cells in mice with B-lineage-specific disruption of IKKy and 

IKKp loci (Pasparakis et al, 2002). Likewise, Kaisho et al, demonstrated a specific 

loss of mature B cells in lethally irradiated mice reconstituted with IKKa'A stem cells 

(Kaisho et al, 2001). This phenotype was partially reversed by transgene expression of 

Bcl-2, suggesting that IKKa mediates expression of genes required for the survival 

and development of B cells. In vitro data are also persuasive, Kim et al, demonstrated 

the essential nature of IKKy in the survival of B cells derived from embryonic stem 

cells that were induced to differentiate in the presence of bone marrow cells in vitro 

(Kim et al, 2003). Knockout studies described in Section 1.3.4 have also defined a 

crucial role for the alternative pathway in secondary lymphoid organogenesis and B 

cell maturation. It is therefore tempting to speculate that by expressing vFLIP, KSHV 

is able to tap into NF-xB-dependent gene expression programmes and influence the 

fate of the infected cell.

However, these studies highlight an essential limitation of the work presented in this 

thesis. In vivo, EBV can express three different programmes of latent gene expression 

that seem tailored towards the differentiation state and location of the infected cell

153



(Thorley-Lawson 2001). The process of KSHV-driven differentiation must also be 

dynamic, but the work presented here concentrates on the role of vFLIP in the context 

of a transformed PEL cell line in culture. It would therefore be interesting to express 

vFLIP in primary B cells, endothelial cells and their precursors. Such experiments 

might include in vitro models of lymphoid cell development (as above) to ascertain 

the effect of vFLIP on differentiation and maturation in these cells. Furthermore, it is 

conceivable that vFLIP activates a very specific selection of NF-kB responsive genes 

(perhaps avoiding those involved in the immune response); microarray experiments 

would help to pinpoint the genes that respond to vFLIP transactivation. Indeed, 

through the activation of NF-KB-dependent genes, vFLIP might be argued to protect 

cells from apoptosis, to increase their rate of proliferation and to alter their state of 

differentiation (see below). The balance of gene expression may also change 

according to stage of infection, cell type and differentiation. Therefore, understanding 

the profile of NF-kB target genes would provide further clues as to the precise role of 

vFLIP.

An interesting feature of vFLIP activation of NF-kB is the number of “pirated” genes 

encoded by KSHV whose cellular homologue is regulated by NF-kB. cFLIP is a good 

example (Micheau et al, 2001; Kreuz et al, 2001). Other such genes that may be 

regulated by vFLIP, via NF-kB, include cyclin D1 (Guttridge et al, 1999; Hinz et al, 

1999), cIL-6 (An et al, 2003b), cIAP (Wang et al, 1998) and Bcl-2 homologues, Al 

and B c1-Xl (Karin et al, 2002b). Interestingly, the corresponding viral proteins, 

vFLIP, vcyclin, vIL-6, vIAP and vBcl-2 respectively, all possess a range of functions 

that overlaps with, but often exceeds those of their cellular homologues (Sections 

1.2.7; 1.2.8). It seems logical that the virus should avoid duplication of gene function, 

and up-regulation of the cellular genes via vFLIP may have provided evolutionary 

space for the viral homologues to develop novel functions. For example, if vFLIP 

does transactivate the expression of anti-apoptotic genes via NF-kB, the ability to 

bind caspase-8 and prevent DR-mediated apoptosis would seem functionally 

redundant. These observations may support the argument that vFLIP is solely an 

activator of NF-kB and does not participate at the DISC.
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NF-kB and, by implication, vFLIP may also play a role in regulating viral gene 

expression. For example, the HSV-1 genome was found to contain kB consensus sites 

(Rong et al, 1992), and NF-kB has been shown to enhance viral replication through 

activation of viral gene expression (Patel et al, 1998; Amici et al, 2001). Conversely, 

NF-kB was recently suggested to maintain viral latency through repression of viral 

gene expression (Brown et al, 2003). In y-herpesviruses, lytic replication involves a 

cascade of viral gene expression, comprising the sequential activation of immediate 

early, early and late genes (West et al, 2003). In KSHV, ORF50 encodes the viral 

regulator of transcriptional activation (RTA). RTA is sufficient to initiate the lytic 

phase and viral replication (Lukac et al, 1998; Sun et al, 1998), and is considered to 

be a key mediator of the switch from latent to lytic programmes of gene expression. It 

is therefore interesting that overexpression of RelA inhibited replication of MHV68 

and prevented activation of the lytic promoters belonging to MHV68, EBV and 

KSHV (Brown et al, 2003). Furthermore, inhibition of NF-kB using Bayl 1-7082 

(Section 1.4.7) led to the expression of proteins identical to those induced by TPA in 

KSHV-infected cells. These data suggest that NF-kB represses viral entry into lytic 

phase, and support previous observations showing that transfection of RelA 

antagonised the ability of RTA to transactivate some promoters, including the cIL-6 

promoter (Roan et al, 2002). However, both studies are limited by the use of RelA 

alone to mimic NF-kB activity. It would be interesting to know whether vFLIP, as an 

activator of NF-kB in KSHV infection, can prevent lytic promoter activation and 

antagonise RTA. It would also be of interest to know whether other viral genes are 

NF-kB responsive.

6.4 Does vFLIP participate in KSHV-mediated cell transformation?

Although KSHV encodes a number of genes with oncogenic properties, only vcyclin, 

LANA and Kaposin A are expressed in latency (Table 1.2). Recent data described by 

Chaudhary and colleagues, and in this thesis make a strong argument that vFLIP may 

also have a role in the transforming ability of KSHV. Its latent expression has been 

demonstrated in PEL cell lines by immunoblot (Low et al, 2001), and in KS spindle 

cells by ISH analysis (Sturzl et al, 1999), it transformed cells in vitro (Sun et al, 

2003b) and it induced aberrant NF-kB activity (Chaudhary et al, 1999). Furthermore,
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RNAi targeting of vFLIP in BC3 cells lead to their apoptosis, although the expression 

of vcyclin was also reduced (Guasparri and Cesarman, unpublished). However, some 

data are inconsistent with vFLIP as a transforming factor for KSHV. Thus, HSV-FLIP 

was found to be dispensable in HVS transformation of human and simian T cells in 

vitro, and in HVS induction of T cell lymphomas in vivo (Glykofrydes et al, 2000). 

By analogy, these observations suggest that vFLIP is not required for KSHV 

transformation. However, direct comparison between the two viral proteins is not 

valid for a number of reasons. First, vFLIP is latent (Dittmer et al, 1998; Sarid et al, 

1998; Sturzl et al, 1999; Jenner et al, 2001; Low et al, 2001) while HVS-FLIP (like 

HVS-cyclin) is expressed in late lytic phase (Thome et al, 1997), implying different 

roles in the viral life cycle and biology. Second, HVS expresses two latent proteins 

not encoded by KSHV, Tip and StpC (Neipel et al, 1998), that activate NF-kB and are 

both essential and sufficient for transformation (Yoon et al, 1997; Lee et al, 1999; 

Merlo et al, 2001). Third, the infected cells in KSHV-associated diseases are not T 

cells and the local environment of viral and cellular factors is therefore likely to 

differ. Fourth, transformation by vFLIP seems to depend upon its ability to activate 

NF-kB, and there is no evidence that HVS-FLIP activates NF-kB.

N F-kB has been found to have an important role in the development of certain 

cancers. The fact that vFLIP activates N F-kB therefore supports the concept that 

vFLIP has a role in KSHV-mediated transformation. Interestingly, Chaudhary and 

colleagues found N F-kB activity to be essential for vFLIP-mediated cell 

transformation (Sun et al, 2003b). It is therefore relevant that constitutive activation of 

N F-kB is found in a variety of lymphoid malignancies (Gilmore et al, 1996; Mosialos 

1997; Karin et al, 2002a), and that N F-kB has also been implicated in the 

pathogenesis of solid tumours (Karin et al, 2002a). For example, there is good 

evidence that constitutive N F-kB activity is an important event in the development of 

breast cancer (Karin et al, 2002a). There are three classes of genes regulated by NF- 

kB that might contribute to tumourigenesis in KSHV infection: those stimulating cell 

proliferation, those inhibiting apoptosis and those that promote angiogenesis and 

metastasis (Karin et al, 2002a). N F-kB controls proliferation through regulated 

expression of growth factors such as IL-2 (Hoyos et al, 1989; Lai et al, 1995) and IL-6 

(Libermann et al, 1990; Shimizu et al, 1990). This may be important in all KSHV-
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associated neoplasms, where paracrine and autocrine activation of cell proliferation 

are thought to be essential (Sections 1.2.5; 1.2.8.4). Cyclin D may also be an NF-kB  

target (see above), contributing to the influence that N F-kB exerts on the cell cycle. 

N F -kB also regulates the expression of a variety of anti-apoptotic genes and can 

inhibit apoptosis induced by a number of different stimuli (Section 1.4.7). In the 

context of KSHV infection, this may allow immune escape of infected cells, and also 

prevent the death of aberrantly proliferating cells that would otherwise be eliminated 

by checkpoints on cell division (Evan et al, 2001; Karin et al, 2002a). Angiogenesis is 

a particular characteristic of KS (Section 1.2.4.1); it is therefore interesting that 

transfection of the iKBa-super-repressor into human ovarian cell lines blocked 

production of IL-8 and VEGF (both angiogenic chemokines) and suppressed 

angiogenesis in vivo (Huang et al, 2000). Finally, kB binding sites have been 

identified in the promoters of several genes that promote metastasis such as matrix 

metalloproteinases and chemokines (Pahl 1999; Karin et al, 2002a). In summary, NF- 

kB regulates the expression of a variety of genes that are potentially involved in 

oncogenesis. If KSHV-associated oncogenesis were dependent upon the expression of 

such genes, N F-kB inhibitors may provide a useful therapeutic intervention for 

£ s h v  -associated disease.

When considering the role of vFLIP in KSHV-mediated oncogenesis, the two most 

relevant parallels are Tax and LMP1. Both viral proteins stimulate NF-kB activation 

via alternative and classical pathways. Both are fundamental to viral transformation of 

infected cells, and there is strong evidence to suggest that cell transformation is 

dependent upon their ability to activate NF-kB (Section 1.3.4.4). vFLIP shares many 

characteristics with Tax and LMP1, and this strengthens the argument that vFLIP may 

represent a novel oncogenic gene responsible for KSHV-mediated transformation. 

However, it is striking that the expression of vFLIP is so closely linked to that of 

vcyclin and LANA. These three adjacent genes share the same promoter, and vcyclin 

and vFLIP are expressed from a single bicistronic message (Section 1.2.7.1). LANA 

in particular has numerous roles in regulating transcription (Section 1.2.7.2), and it 

has already been shown that LANA and vFLIP co-operate in inducing the expression 

of IL-6 (An et al, 2003b). It seems likely that vFLIP, vcyclin and LANA may work in
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concert to control the infected cell, and so it follows that all three may be required for 

KSHV oncogenesis.
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S u m m a ry
When expressed in heterologous cells, the viral FLIP 
protein (vFLIP) of Kaposi’s-sarcoma-associated
herpesvirus (KSHV) has been reported both to block Fas- 
mediated apoptosis and to activate the NF-kB activation 
pathway by interaction with IkB kinase (IKK). In a yeast- 
two-hybrid screen, we identified IKKy as an interacting 
partner of vFLIP. We expressed fragments of IKKy in 
mammalian cells and bacteria, and identified the central 
CCR3/4 (amino acids 150-272) as the vFLIP binding 
region. To investigate the proteins interacting with vFLIP 
in a KSHV-infected primary effusion lymphoma (PEL) cell 
line, we immunoprecipitated vFLIP and identified four

In tro d u c tio n
Kaposi’s-sarcoma-associated herpesvirus (KSHV) encodes a 
viral FLIP protein (vFLIP) in open reading frame 71 (Orf71). 
vFLIP is expressed as one of a cluster o f three latency 
associated genes that regulate proliferation and apoptosis 
(Dittmer et al., 1998; Fakhari et al., 2002; Jenner et al., 2001). 
The genes encoding LANA, vCyclin and vFLIP are transcribed 
as two differently spliced, polycistronic mRNAs; LT1 is 
translated to produce LANA and LT2 produces both vCyclin 
and vFLIP using an internal ribosome entry site (Grundhoff et 
al., 2001; Low et al., 2001; Renne et al., 2001; Talbot et al.,
1999). vCyclin forms a complex with cyclin-dependent kinase 
6 (CDK6) that is resistant to inhibition by CDK inhibitors 
(Chang et al., 1996; Godden-Kent et al., 1997; Swanton et al., 
1997). LANA is responsible for maintaining the viral episome 
and interacts with p53 and pRb to interfere with their activity 
(Ballestas et al., 1999; Cotter et al., 1999; Friborg et al., 1999; 
Radkov et al., 2000).

Two roles have been proposed for vFLIP. By analogy with 
FLIP proteins expressed by herpesvirus saimiri, equine 
herpesvirus and molluscum contagiosum poxvirus, it has been 
suggested that vFLIP blocks Fas-mediated apoptosis (Bertin et 
al., 1997; Hu et al., 1997; Thome et al., 1997). Indeed, vFLIP 
inhibits procaspase-8 cleavage after Fas triggering (Belanger et 
al., 2001) and is able to promote tumour growth when 
expressed in a Fas-sensitive B cell lymphom a cell line (Djerbi 
et al., 1999). More recently, vFLIP protein has been implicated 
in the activation of the transcription factor NF-kB. vFLIP can 
activate NF-KB-driven reporter constructs in 293T cells

associated proteins by mass spectrometry: IKK
components IKKa, (3 and y, and the chaperone, Hsp90. 
Using gel filtration chromatography, we demonstrated that 
a single population of vFLIP in the cytoplasm of PEL cells 
co-eluted and co-precipitated with an activated IKK 
complex. An inhibitor of Hsp90, geldanamycin, inhibited 
IKK’s kinase activity induced by vFLIP and killed PEL 
cells, suggesting that vFLIP activation of IKK contributes 
to PEL cell survival.

K ey w ords: KSHV, vFLIP, IK K , H sp90

(Chaudhary et al., 1999), and also interacts with and activates 
the central kinase of the N F-kB signalling pathway, IkB kinase 
(IKK) when ectopically expressed in a non-small-cell lung 
carcinoma cell line (Liu et al., 2002).

Many signals for NF-kB activation converge on the 
cytokine-inducible protein kinase complex IKK. The complex 
contains two catalytic components, IK K a and IKKJ3 (also 
called IKK1 and IKK2) (DiDonato et al., 1997; Mercurio et 
al., 1997; Zandi et al., 1997; Regnier et al., 1997), and a 
regulatory subunit, IKKy (Rothwarf et al., 1998) [also called 
NF-kB essential modulator (NEMO) (Yamaoka et al., 1998), 
IKK-associated protein 1 (IKKAP1) (Mercurio et al., 1999) 
and 14.7-interacting protein (FIP-3) (Li et al., 1999)]. IK K a 
and IKK(3 are homologous proteins o f 85 kDa and 87 kDa, 
respectively, with 50% sequence identity. IKKy is necessary for 
activation o f IK K a and IKK|3 (Makris et al., 2000); 
heterodimers of IK K a and IKK(3 are bound by four IKKy 
molecules to form a large complex (Tegethoff et al., 2003). 
Recently, the chaperone protein Hsp90 and a co-chaperone 
(Cdc37) have been identified as additional .components of the 
IKK complex (Chen et al., 2002).

KSHV infection is associated with three proliferative 
disorders in immune-compromised patients: Kaposi’s sarcoma 
(KS), primary effusion lymphoma (PEL) (a proliferation of 
immature B cells) and a variant of multicentric Castleman’s 
disease (MCD) (Boshoff et al., 2002; Cesarman et al., 1995; 
Moore et al., 1996; Soulier et al., 1995). In KSHV-infected 
PEL cells, the NF-kB pathway is constitutively active (Liu et 
al., 2002; Keller et al., 2000) and the cells undergo apoptosis
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when challenged with the inhibitor of cytokine-inducible IkB cx 
phosphorylation, Bay 11-7082 (Keller et al., 2000). This 
suggested a role for constitutive N F-kB activation in the 
survival of these cells. Given the two contrasting roles 
previously assigned to vFLIP, we set out to investigate which 
proteins interact with vFLIP in KSHV-infected PEL cells.

M a te r ia ls  a n d  M e th o d s
Plasmids
W ild -type  and  m utan t IkBoc (S32A /S 36A ) p lasm id s w ere generous 
g ifts from  N. P erk ins (D undee, U K ). G lu ta th ione-S -transferase  
(GST)-IkBoc fu sio n  p ro te ins con ta in ing  th e  first N -term inal 54  am ino  
ac ids o f  w ild -ty p e  an d  m utan t IkBoc w ere  co n stru c ted  in pG E X -K T . 
H IV -1-based  p lasm id s w ere k indly  p rov ided  by D. T rono  (G eneva, 
S w itzerland ) and  are d escribed  elsew here  (N ald in i e t al., 1996; 
Z ufferey  e t a l., 1997). T he vector, pH R '-C M V -eG F P  con ta ins a 
cy tom egalov irus (C M V )-driven  em erald  g reen  fluorescen t p ro te in  
(eG F P ). To co n s tru c t a  vector exp ressing  b o th  v F L IP  and  eGFP, a 
sequence  con ta in in g  E M C V  IRES and eG F P  w as am plified  by  PC R  
and  in tro d u ced  into the Xhol site o f  pH R C M V -L acZ  to  p roduce 
pH R C M V -L acZ -IR E S-eG F P . T he LacZ gen e  w as then  rep laced  w ith 
vFLIP. IK K y  tru n ca tio n  m utants w ere genera ted  b y  P C R  am plifica tion  
o f  a  hu m an  ex p ressed  sequence tag  and  su b seq u en t c lon ing  o f  the 
D N A  frag m en ts  in to  the pcD N A 4 m am m alian  expression  vector 
(Inv itrogen ) d ow nstream  o f  an  X press ep ito p e  tag  o r in to  p G E X -K T  
dow n stream  o f  GST.

Cell lines and lentiviral transduction
T he K S H V -infected  P E L  cell line, B C 3, w as g row n in R P M I1640  
w ith  10% foetal c a lf  serum  (FC S), p en ic illin  and  strep tom ycin  a t 37°C  
in 5%  C O 2 . 2 9 3 T  cells w ere m ain ta ined  in D u lb ecco ’s m odified  
E a g le ’s m ed iu m  w ith  10% FC S , p en ic illin  and  strep tom ycin  at 37°C  
in 10% C O 2 . L en tiv iru s encod ing  vF L IP  an d  G F P  o r G F P  a lone  w as 
p ro d u ced  using  a tran sien t transfec tion  o f  2 93T  cells as described  
p rev iously  (N eil e t a l., 2001; Z ufferey  e t a l., 1997). 2 93T  cells w ere 
tran sd u ced  w ith  each  v irus and the efficiency  o f  cell transduction  
m easu red  by  FA C Scan analysis o f  eG F P  positive  ce lls . C e lls w ere 
trea ted  w ith  0 .5 p M  geldanam ycin  (G A ) (C alb iochem ) d isso lved  
in D M S O  o r  an  equal vo lum e o f  D M SO  in se ru m -free  m edium  fo r 
16 hours.

Large-scale immunoprecipitation
A n ti-v F L IP  6 /14  ra t m onoclonal an tibody  (L ow  et a l., 2001) and 
con tro l ra t Ig G  w ere  covalen tly  coup led  to  N H S -activa ted  S epharose  
4B resin  (A m ersham ). lx lO 10 BC 3 cells w ere  w ashed  in PBS and 
incu b a ted  fo r  30  m inu tes at 4°C  in 10 m l lysis b u ffer [20 m M  Tris- 
HC1 pH  7 .5 , 150 m M  N aC l, 0 .2%  N P-40, 10% g lycero l, 1 m M  PM S F  
and p ro tease  in h ib ito r cock ta il (R oche)]. T h e  ly sa te  w as cen trifuged  
at 16,000 g  fo r  10 m inu tes and then  the cy top lasm ic  ex trac t w as 
d iv ided  eq u a lly  betw een  vF L IP  and con tro l resin s fo r  incubation  at 
4 °C  fo r  2 hours. T he resin  w as w ashed  th ree tim es in lysis buffer w ith 
500 m M  N aC l and  100 p i SD S-PA G E sam ple  buffer lack ing  (3- 
m ercap toethano l w as added  to elu te  im m uno p rec ip ita ted  p ro te ins. T he 
sam ple  b u ffer w as rem oved  from  the resin  and  (3-m ercaptoethanol w as 
added  and  th e  sam ples w ere heated  to 9 5 °C  fo r  4  m inu tes. T he 
sam ples w ere  d iv id ed  9:1 betw een tw o 12%  S D S-PA G E  gels. T he gel 
con ta in in g  90%  o f  the  sam ple w as sta ined  w ith  a  C o llo idal B lue 
C oo m assie  sta in ing  k it (Invitrogen). T he gel co n ta in in g  10% o f  the 
sam ple w as sta ined  usin g  silver.

In-gel digest
P ro te in  b an d s o f  in te rest w ere excised  from  the  C o o m assie  sta ined  gel

and  ex trac ted  w ith  200  m M  am m onium  b icarb o n a te  /  50%  
aceton itrile , red u ced  w ith 20  m M  D T T  and then  a lky la ted  in 5 m M  
io doacetam ide  an d  dehydrated . T he gel slices w ere  sw ollen  in a 
m in im al volum e o f  2 ng  p H  trypsin  (P rom ega) in 5 m M  am m onium  
b icarbonate  fo r in -gel d igestion . P ep tide m ass fingerp rin ting  w as 
p erfo rm ed  using  a  Reflex III tim e-of-fligh t m ass spec tro m eter (B ruker 
D alton ik ) w ith  a n itrogen  laser and a  S cou t-384  p robe, to ob tain  
positive ion m ass spectra  o f  d igested  p ro te in  w ith  pu lsed  ion 
ex trac tion  in reflec tron  m ode. A n acce le ra ting  vo ltage  o f  26 kV  w as 
u sed  w ith  d e tec to r b ias ga ting  set to 2 kV  and  m ass cu t-o ff  o f  mlz = 
650. M atrix  surfaces w ere p repared  using  rec ry sta llised  a -cy an o -4 - 
h y d roxycinam m ic ac id  and  n itrocellu lose  u sing  the fast evaporation  
m ethod  (V orm  e t al., 1994). 0 .4  p i  o f  d igestion  supe rnatan t w as 
d eposited  on the  m atrix  surface and allow ed  to  dry  p rio r  to  desa lting  
w ith  w ater. P ep tide  m ass fingerprin ts thus ob ta in ed  w ere  searched  
against the  non -red u n d an t p ro tein  database o f  the N ational C entre  fo r 
B io techno logy  In form ation  (N C B I) u sing  the  p ro g ram  M A SC O T  
(P erk ins et al., 1999).

Yeast two-hybrid interaction
P ro te in s in terac ting  w ith  vF L IP  w ere iden tified  using  h igh  th roughput 
y eas t-tw o-hybrid  analysis at H ybrigen ics (Paris). T he vF L IP  bait w as 
constructed  as a  L exA , C -term ina l fusion  in the  pB 27  p lasm id  derived  
from  the o rig ina l pB T M 116  (Vojtek e t al., 1995). To genera te  an 
exp ression  library , a random ly  prim ed  cD N A  lib ra ry  fro m  hum an 
p lacen ta  po ly (A + ) R N A  w as constructed  and  in se rted  in to  the pP 6  
p lasm id  derived  from  pA C T 2 (R ain  et al., 2001). T he lib ra ry  w as then 
transfo rm ed  in to  y east an d  107 independen t y east co lon ies w ere 
co llec ted , p o o led  and sto red  at -8 0 °C  in aliquo ts. T h e  screen  w as 
p erfo rm ed  to  ensu re  that a t least 5 x l0 7 in terac tions w ere tested . T he 
m ating  p ro toco l has been  described  elsew here  (F ro m o n t-R ac in e  e t al.,
2002). T he sc reen ing  cond itions w ere o p tim ized  fo r  vF L IP  b a it using  
a  test screen  b efo re  p erfo rm ing  the fu ll-s ize  sc reen ing . F o r all the 
se lected  clones, L acZ  activ ity  w as m easured  in a  sem iquan tita tive  X- 
G al overlay  assay. T he prey  fragm ents o f  the  positive  c lones w ere 
am plified  by P C R , analysed  on  agarose gel, and  se quenced  at th e ir 5 ' 
an d  3 ' ju n c tio n s  on  a  PE 3700  sequencer. T he resu ltin g  sequences w ere 
then  used  to iden tify  the correspond ing  gene  in th e  G en B an k  database 
(N C B I) using  an  au tom ated  B last analysis p rocedure . C lones ob ta ined  
m any tim es in d ifferen t sc reens against the  sam e lib ra ries w ere 
d iscoun ted  as fa lse  positives.

Gel filtration
2 x 1 0 7-2 x 1 0 8 ce lls  w ere incubated  in ly sis buffer (25 m M  T ris-H C l 
pH  7 .6 , 150 m M  N aC l, 1 m M  EGTA, 1 m M  D TT, 0 .2%  N P -40 , 5%  
g lycero l, 1 m M  N a 3V 0 4 , 10 m M  (3-glycerophosphate, 5 m M  NaF, 1 
m M  P M S F  an d  p ro tease  inh ib ito r cock tail) fo r 30  m inu tes a t 4°C . T he 
ex tract w as cen trifu g ed  at 100,000 g  fo r 1 hour at 4 °C . 100 pi o f  the 
supernatan t w as loaded  on  a  S uperose 6  P C  3 .2 /30  co lum n  
(A m ersham ) p rev io u sly  equ ilib ra ted  in B uffer B (25 m M  T ris-H C l pH  
7.6, 150 m M  N aC l, 0 .2%  N P -40 , 5%  g lycero l). T h e  frac tio n a tio n  w as 
p erfo rm ed  using  an L K B :pS epara tion  un it (A m ersham ) con tro lled  
using  S m art M a n ag er 5.1 softw are. T he flow ra te  o f  the co lum n  w as 
m ain ta ined  at 4 0  pi m i n 1 and 22 frac tions o f  100 pi each  w ere 
co llec ted . 25 pi o f  each  frac tio n  w ere separa ted  by  SD S-PA G E  gel fo r 
im m unoblo t, w hereas 50 pi o f  each frac tio n  w as u sed  fo r  k inase 
assays. T he co lum n  w as ca lib ra ted  in  B uffer B using  pro te in  
standards: th y rog lobu lin  (669 kD a), ferritin  (440  kD a) and  catalase 
(232 kD a) (A m ersham ).

Small-scale immunoprecipitation, GST pull down and 
immunoblotting
C ytop lasm ic  ex trac ts  from  transfec ted  293T  cells w ere  incubated  
e ither w ith  1.5 p g  o f  vF L IP  an tibody  and 20 p i p ro te in -G /S epharose
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(S igm a) o r  w ith  G S T -IK K y truncation  m utan ts p re-bound  to 
g lu ta th ione  S epharose  4B  (A m ersham ) fo r  2 hours at 4°C . T he 
com plexes w ere w ashed  th ree tim es in w ash  bu ffe r [20 m M  T ris-H C l 
pH  7 .5, 500  m M  N aC l, 0 .2%  N P -40 , 10% g lycero l, 1 m M  P M S F  and

F ig . 1. vF L IP  in teracts d irec tly  w ith  the IK K y  subun it o f  the IK K  
com plex . A  hum an p lacen tal cD N A  lib rary  w as sc reened  fo r p ro teins 
in terac ting  w ith  a  vF L IP  bait u sing  yeas t-tw o-hybrid  technology.
(A ) A  schem atic  rep resen ta tion  o f  IK K y w ith  a  list o f  the six 
in d ependen t fusions o f  IK K y (B). B lack  boxes ind icate  co iled-co il 
reg ions (C C R ), w hite  boxes ind ica te  th e  leucine  z ipper dom ains (LZ) 
essen tia l fo r in terac tion  o f  HTLV-1 Tax w ith  IK K y and the grey  box 
ind ica tes a  z inc  finger m o tif  (ZF). T he N -term inus o f  IK K y is 
responsib le  fo r in terac tion  w ith  IK K a  and (3, w hereas th e  C -term inus 
is requ ired  fo r  activation  o f  the  IK K  com plex . T runcation  m utants o f  
IK K y, g enera ted  as X press tag  o r  G S T  fusions, are  show n (C).
(D ) T he in terac tion  o f  X press tag g ed  IK K y tru n ca tio n  m utan ts w ith  
vF L IP  w hen  bo th  are overexp ressed  in 2 93T  cells. C e ll ly sa te s w ere 
im m unoprec ip ita ted  using  an an ti-v F L IP  an tibody  and analysed  by 
im m unob lo t p ro b ed  w ith  an an ti-X press an tibody. (E) In terac tion  o f  
vF L IP  transien tly  exp ressed  in 293T  cells w ith  G S T  fusion  IK K y 
m utants.

p ro tease  inh ib ito r cock ta il (R oche)]. P ro te ins w ere separa ted  by  
e lec trophoresis on  a  12% S D S -po ly ac ry lam id e  gel then  tran sfe rred  to 
H ybond  E C L  n itrocellu lose  m em branes (A m ersham ) fo r im m unob lo t 
analysis. B lo ts w ere incubated  overn igh t at 4 °C  in b lo ck in g  solu tion  
(PB S con ta in ing  5%  low -fat m ilk  and  0 .1%  Tw een 20) and then 
incubated  w ith  p rim ary  an tibody  fo r  1 hour. P rim ary  an tibod ies: anti- 
v F L IP  6 /14  an tibody  (1 :100  d ilu tion ), an ti-X press (1 :5000  d ilu tion) 
(Inv itrogen  46 -05 2 8 ), a n ti- IK K a  rabb it p o lyclonal (1 :1000  d ilu tion) 
(C ell S ignalling  T echnology  2682), an ti-IK K p  go a t p o lyclonal (1 :200 
d ilu tion ) [San ta  C ruz  (SC )-7330], an ti-IK K y  rabb it po lyclonal (1 :200 
d ilu tion ) (S C -8330) and  an ti-vC yclin  ra t m onoclonal (1 :100  d ilu tion) 
(g ift from  S. M ittnach t, Institu te  o f  C ancer R esearch , L ondon , U K ). 
B ound  an tibod ies w ere detec ted  w ith  p erox idase-con jugated  
secondary  an tibod ies (1 :2000  d ilu tion ) an d  v isua lized  using  
e lec tro ch em ica l lum inescence  (E C L ) (A m ersham ).

kB a kinase assay
F o r k in ase  a ssay s , 5 0  (il o f  each  co lu m n  fra c tio n  o r  100-200 (ig o f  
cy to p la sm ic  ex trac t w ere  in cu b a ted  fo r  2 h o u rs at 4 °C  w ith  1.5 (ig 
an tib o d y  an d  p ro te in -G /S ep h aro se . F o r k in ase  a ssay s u sin g  anti- 
IK K P  an tibody , an  add itio n a l p re -c le a ran c e  step  o f  1 h o u r at 4 °C  
w ith  1.5 |ig  no rm al rab b it se rum  an d  20  (il p ro te in -G /S e p h a ro se  w as 
inc lu d ed . Im m u n e  co m p lex es w ere  w ash ed  th ree  tim es in 0 .5  m l 
h igh  sa lt b u ffe r  (25 m M  T ris-H C l pH  7 .6 , 5 0 0  m M  N aC l, 1 m M  
EG TA , 1 m M  D TT, 0 .2 %  N P -40 , 5%  g ly cero l, 1 m M  N a 3V 0 4> 10 
m M  |3 -g lycerophosphate , 5 m M  N aF, 1 m M  P M S F  an d  p ro tease  
in h ib ito r  co ck ta il) . Im m u n e  co m p lex es w ere  th en  w ash ed  a fu rth er 
tw o  tim es in k in a se  w ash b u ffe r (20  m M  H E PE S  pH  7 .6 , 50  m M  
N aC l, 20  m M  |3 -g lycerophosphate , 0 .5  m M  D TT, 1 m M  P M SF) 
b efo re  4 0  (il k in ase  reac tio n  bu ffe r (20  m M  H E PE S  pH  7 .6 , 50  m M  
N aC l, 10 m M  M gC l, 2 m M  D TT, 20  |iM  ATP, 0.1 m M  N a2V 0 4 and  
p ro tease  in h ib ito r  co ck ta il)  w as ad d ed . 0 .5  (il o f  P 32-y-A TP an d  1 (ig 
o f  w ild -ty p e  lK B a _ l-5 4  o r  m u tan t lK B a _ l-5 4  (S 3 2 A /S 3 6 A ) G S T  
fu s io n  p ro te in  w as add ed  to  each  reac tio n , w h ich  w ere  in cu b a ted  at 
30°C  fo r 30  m in u tes and  th en  sto p p ed  by the ad d itio n  o f  SD S-PA G E  
sam p le  buffer. T he sam p les w ere  se p a ra te d  by  12%  SD S -P A G E  and  
ra d io lab e lled  p h o sp h o p ro te in s  w ere v isu a lize d  b y  au to rad io g rap h y .

Cell viability assays
T he viab ility  o f  B C 3 p opu la tions w as m easu red  d irec tly  by 
haem ocytom etry . For an n ex in -V /p rop id ium -iod ide  b ind ing  assays, 
106 ce lls w ere w ashed  once  in co ld  PB S  before sta in ing  w ith TACS™  
A nnexinV -FIT C  A pop tosis de tec tion  kit (R & D  S ystem s) and  analysis 
w ith  a F A C S C aliber using  C ellQ u est so ftw are (B ecton  D ick inson , 
F rank lin  L akes, N J).
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B Gel Filtration Immunoblot

Heavy Chain

105 -

IKKa

— IKKy

Light Chain

— vFLIP

Fig. 2. Iden tifica tion  o f  p ro teins 
in terac ting  w ith  v F L IP  in a 
K S H V -infec ted  B -cell line. 
P ro te ins w ere  im m unoprec ip ita ted  
from  the  K S H V -infec ted  P E L  cell 
line B C 3 using  a  ra t IgG  con tro l o r 
the an ti-v F L IP  m onoclonal 
an tibody  6 /14  and  then  run  on a 
12% S D S -p o ly ac ry lam id e  gel.
(A ) S ilver sta in  o f  tracks 
con ta in in g  10% o f  the 
im m u n o p rec ip ita ted  pro tein .
(B) C o llo idal C o o m assie  sta in  o f  
part o f  a para lle l p a ir  o f  tracks 
con ta in ing  90%  o f  the 
im m u n o p rec ip ita ted  p rotein .
B ands d e tec ted  in  th e  vF L IP  
im m u n o p rec ip ita te , bu t not the

con tro l, w ere  ex c ised  from  the C oom assie  s ta ined  gel and  identified  
by  m ass spec tro m etry  as indicated .

R e s u l ts
vFLIP interacts with the y subunit of the IKK complex 
A yeast-two-hybrid screen was performed to identify proteins 
capable of interacting with vFLIP. 14 IKKy clones were 
identified, including six independent fusions (Fig. IB). This 
suggests a direct interaction between vFLIP and IKKy, because 
the IKK complex has not been described in yeast (Epinat et al., 
1997). The minimum common sequence between the six 
independent fusions suggested that the domain in IKKy required 
for contact with vFLIP is between amino acids 173-272, in the 
third coiled-coil region (CCR3) and first section of CCR4 (Fig. 
1 A,B). IKKy mutants (Fig. 1C) were therefore constructed with 
an N-terminal Xpress tag and co-transfected with or without 
vFLIP in 293T cells. Fig. ID  shows that all IKKy fragments, 
with the exception of amino acids 1-150, co-immunoprecipitated 
with vFLIP, which mapped the minimum interacting domain to 
amino acids 150-272 of IKKy. However, the level of vFLIP in 
the cells expressing amino acids 1-150 of IKKy was consistently 
lower (Fig. ID  and data not shown), perhaps because interaction 
with IKKy stabilized vFLIP. We therefore made the same 
mutants as GST fusion proteins and examined their ability to 
bind vFLIP in lysate from transfected 293T cells. Fig. IE  shows 
that all GST-IKKy fragments with the exception of amino acids 
1-150 bound vFLIP, confirming the minimum vFLIP interacting 
domain as amino acids 150-272 of IKKy.

Endogenous vFLIP is associated with an activated IKK 
complex
To identify proteins interacting with the endogenous vFLIP in
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Fig. 3. A naly sis  o f  the  vFLIP- 
IK K  com p lex  in a  K SHV- 
in fec ted  B -cell line.
(A ) C y to p lasm ic  ex trac t from  
B C 3 cells w as sub jec ted  to  gel 
filtration  on a  S uperose  6 
co lum n , then  ffac tions w ere 
an a ly sed  by  im m u n o b lo t w ith  
a n ti- IK K a , P o r  y, an ti-vF L IP  

and an ti-vC yclin  an tibod ies. F rac tions w ere  a lso  im m uno p rec ip ita ted  
w ith  the  an ti-v F L IP  an tibody  6 /14  and IkB oc k inase  activ ity  w as 
m easu red . T h e  e lu tion  vo lum e o f  p ro tein  s tandards is ind icated .
(B ) C y top lasm ic  ex trac ts from  BC3 cells w ere  im m uno p rec ip ita ted  
using  the  an ti-v F L IP  an tibody  o r an iso ty p e-m atch ed  con tro l. T he 
im m une com plexes w ere incubated  w ith  w ild -ty p e  o r m u tan t 
(S 32A /S 36A ) G ST -Ik B oc substra tes. T h e  low er pan e l show s a 
C oom assie  sta ined  gel o f  the  G ST-Ik B a  in each  reaction .
(C ) C y top lasm ic  ex trac t from  BC 3 cells w as im m uno p rec ip ita ted  
using  an an ti-IK K y  antibody. E quivalent p rop o rtio n s o f  the o rig inal 
ex trac t (Total lysa te ), the supernatan t from  the  im m unop rec ip ita tio n  
(Supernatan t) an d  the  im m unoprec ip ita te  (IK K yIP) w ere  then  
ana ly sed  b y  im m u n o b lo t w ith  an ti-vFL IP  and  a n ti- lK B a  an tibod ies.

cells infected with KSHV, we purified vFLIP from BC3 PEL 
cells by immunoprecipitation. Proteins that co- 
immunoprecipitated with vFLIP but were not precipitated by a 
control rat antibody were excised and identified by mass 
spectrometry. Fig. 2 shows that five proteins including vFLIP 
were identified in the vFLIP lane but not in the control lane. All 
five proteins were clear matches with high M ascot scores 
(Perkins et al., 1999). Three of these proteins were identified as 
the core components (IK K a, IKK(3 and IKKy) of IKK. The
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band containing IK K a was also found to contain the chaperone 
protein, Hsp90, which has recently been identified as an 
additional component of the IKK complex (Chen et al., 2002).

Fig. 3A shows that all the soluble vFLIP in BC3 cells is 
present in a high molecular weight protein complex. The three 
components of the IKK complex (IK K a, IKK(3 and IKKy) 
eluted from the Superose 6 column in the same fractions as 
vFLIP. The Superose 6 fractions were also analysed for IicBa 
kinase activity associated with vFLIP (Fig. 3A, bottom). 
Kinase activity was found in fractions 4-7, with the major peak 
in fraction 5, identical to the distribution o f vFLIP and IKK. 
Fig. 3B demonstrates the specificity o f the kinase assay. 
Immune complexes precipitated using an isotype-matched 
control antibody did not have an associated kinase activity and 
the vFLIP immune complex was not able to phosphorylate a 
mutant GST-IicBa containing point mutations at the two IKK 
targets in IxB a, S32A and S36A. Fig. 3C shows that all 
detectable vFLIP in BC3 cell lysate is associated with IKKy, 
because immunoprecipitation with an anti-IKKy antibody 
depleted vFLIP from cell lysate, but did not affect IxB a.

Activity of the vFLIP-IKK complex depends upon Hsp90 
In KSHV-infected B cells, other viral or cellular proteins might 
co-operate with vFLIP to activate IKK. To investigate whether 
vFLIP expressed at a similar level to that in BC3 cells was 
sufficient to activate the IKK complex, we transduced 293T 
cells with a lentiviral vector expressing both vFLIP and GFP. 
Fig. 4A shows that IKKy and activated IKK were associated 
with vFLIP in the transduced 293T cells. Anti-vFLIP antibody 
also co-immunoprecipitated IK K a and IKKy in these cells 
(data not shown).

669 kDa

I
440 kDa 232 kDa

I I
IKKy

IKKy

DMSO

Input 3 9
GA

13
Fraction no.

Fig. 4. T he v F L IP -IK K  k inase activ ity  is inh ib ited  by geldanam ycin . 
C y top lasm ic  ex trac t from  2 93T  cells transd u ced  w ith  a len tiv irus 
enco d in g  e ith er vF L IP  plus G F P  (A ,B ) o r G F P  a lone  (C ) and then 
trea ted  w ith  D M S O  o r g eldanam ycin  (G A ), as in d ica ted , w as 
sub jec ted  to  gel filtration  on a  S uperose  6 co lum n . F ractions w ere 
an a ly sed  by im m unob lo t w ith  an ti-v F L IP  o r  an ti-IK K y  an tibod ies; in 
A  and B frac tions w ere  also  im m u n o p rec ip ita ted  w ith  th e  an ti-vFL IP  
an tibody  6 /14 and  Ix B a  k inase  activ ity  w as m easured .

To investigate the role of Hsp90 in the vFLIP-IKK complex, 
we used the nucleotide analogue GA, which inhibits the 
function of Hsp90 (Whitesell et al., 1994). We found no change 
in the size of the vFLIP-IKK complex (Fig. 4B) or the inactive 
IKK complex in control 293T cells (Fig. 4C), or on the levels 
of IK K a, IKKp or IKKy expression (data not shown) upon GA 
treatment. We did observe vFLIP in lower fractions in both 
control and GA-treated cells, and attribute this to vFLIP being 
in excess of the IKK components. However, IKK activity 
associated with vFLIP in GA treated cells was significantly 
reduced (Fig. 4B). The activity of the vFLIP-IKK complex is 
therefore dependent on Hsp90.

GA kills PEL cells
We then examined whether GA could inhibit IKK activity and 
cause death of KSHV-infected BC3 cells. Fig. 5A shows that 
0.5 |J,M GA inhibited activity of the vFLIP-IKK complex in 
BC3 cells. This concentration of GA also caused a loss in 
viability of BC3 cells: after 48 hours, 72% of GA-treated cells 
were dead, compared with 35% of the control BC3 cells treated 
with DMSO in serum-free medium (Fig. 5B). Cell death 
induced by GA might be either apoptosis or necrosis, because 
the dying cells stained with Annexin-V (Koopman et al., 1994), 
which identifies cells that have lost phosphatidylserine polarity 
in the plasma membrane, and with propidium iodide, which 
detects loss in plasma membrane integrity (Fig. 5C,D).

D is c u s s io n
This study focuses on the role of KSHV vFLIP in latently 
infected PEL cells. Chaudhary and co-workers have 
demonstrated that vFLIP associates with the IKK complex and 
activates NF-kB reporter constructs when expressed in non­
lymphoid cells (Chaudhary et al., 1999; Liu et al., 2002). Our 
data support their observations and extends their conclusion to 
a KSHV-infected PEL cell line. We used a rat monoclonal 
antibody to immunoprecipitate vFLIP from a PEL cell line 
(BC3) and demonstrated that vFLIP protein associates with and 
activates the IKK complex. All the soluble vFLIP in these cells 
co-elutes with active IKK on a gel filtration column and co-
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Kinase Assay - BC3 B BC3 Cell Death

Fig. 5. B C 3 cells are  k illed  by 
g eld an am y cin  (G A ). (A ) C ytop lasm ic 
ex trac ts from  B C 3 cells  trea ted  w ith 
D M S O  o r  G A  w ere  im m unoprec ip ita ted  
u sing  th e  an ti-v F L IP  an tibody  and their 
G S T -lK B a k inase  activ ity  m easured . T he 
v iab ility  o f  B C 3 cells  treated  w ith 
in creasin g  concen tra tio n s o f  G A  or 
equ ivalen t D M S O  w as evaluated  by  
h aem o cy to m ete r (B ) and by p rop id ium  
iod ide  (P I)/an n ex in  V  sta in  fo llow ed  by 
F A C S can  an a ly sis  (C ) at 48 hours. In 
each  o f  th e  fo u r g raphs in C , the low er 
left q u ad ran t rep re sen ts  live unsta ined  
cells, th e  low er rig h t quadran t represen ts 
sing le  sta ined  early  apopto tic  cells, the 
u p p er rig h t rep resen ts  doub le  sta ined, late 
apop to tic  ce lls , and  the  up p er left 
rep resen ts  necro tic  cells. (D) G raphical 
rep resen ta tio n  o f  the  d ata  in C.
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A nnexin V

precipitates with IKKy. vFLIP might activate IKK by 
recruitment of an upstream activator such as a member of the 
mitogen-activated protein kinase kinase kinase family (Karin 
et al., 2000). However, IK K a and IKK(3 can autophosphorylate 
the IKK activation loop when overexpressed in mammalian 
cells (Woronicz et al., 1997). vFLIP might therefore induce a 
conformational change in the complex, inducing 
autophosphorylation and autoactivation.

We also demonstrated that vFLIP directly contacts IKKy, 
which is analogous to the function of the Tax protein of human 
T-cell leukaem ia virus type 1 (HTLV-1). Transformation of T 
cells by HTLV-1 is mediated by the regulatory protein Tax, 
which stimulates expression of various genes regulated by NF- 
kB (Sun and Ballard, 1999). Tax has been shown to stimulate 
IKK activity (Chu et al., 1998; Geleziunas et al., 1998; Uhlik 
et al., 1998; Yin et al., 1998) by binding directly to IKKy (Chu 
et al., 1999; Harhaj et al., 1999; Jin et al., 1999; Xiao et al.,
2000). IKKy is predicted to contain five m ajor coiled-coil 
domains (Rothwarf et al., 1998; Sun et al., 2000), of which the 
second and fifth from the N-terminus contain leucine zipper 
motifs (LZ1 and LZ2, respectively) (Fig. 1). Deletions of LZ1 
abolish the binding of Tax to IKKy, whereas mutants lacking 
LZ2 show reduced Tax-IKKy interaction (Xiao et al., 2001). 
By contrast, our data demonstrate that a region of IKKy 
including CCR3 and CCR4, between amino acids 150 and 272, 
is crucial for vFLIP interaction. This shows that the structurally 
unrelated viral proteins Tax and vFLIP have evolved distinct 
mechanisms to bind IKKy and thereby activate IKK.

Constitutive activation of NF-kB is a common feature of 
viruses that transform lymphoid cells. Among the 
gammaherpesviruses, the latent membrane protein 1 (LMP-1) 
of Epstein-Barr virus activates the NF-kB pathway by TRADD 
and TRAF recruitment to its cytoplasmic tail (Farrell, 1998). 
K15, the LMP-1 homologue encoded by KSHV, can interact

with TRAFs (Glenn et al., 1999) but its role in NF-kB 
activation in KSHV-infected cells remains unclear. Orf74 of 
KSHV encodes a constitutively active chemokine receptor 
homologue that activates NF-kB (Schwarz et al., 2001) but 
Orf74 is not latently expressed in KSHV-infected PEL cells 
(Chiou et al., 2002). However, the K1 transmembrane protein 
is expressed in PEL cells and has been implicated in NF-kB 
activation by transgenic mouse experiments (Prakash et al.,
2002). KSHV might therefore use multiple, possibly co­
operative, strategies to activate NF-kB in different target cells 
and at various points in the viral life cycle. It is intriguing that 
a third gammaherpesvirus, herpesvirus saimiri, activates NF- 
kB by co-operative action of two saimiri-specific transforming 
proteins, Tip and StpC (Lee et al., 1999; M erlo et al., 2001; 
Yoon et al., 1997).

In addition to the IKK subunits, we found Hsp90 associated 
with vFLIP in BC3 cells. This is consistent with a previous 
report that Hsp90 and a co-chaperone, Cdc37, are additional 
components o f the IKK complex (Chen et al., 2002). This 
previous study demonstrated that the Hsp90 inhibitor GA 
prevented both TNF-induced membrane recruitment of the 
IKK complex to TNF-R1 and TNF-induced IKK activation 
(Chen et al., 2002). GA also inhibited activity o f the vFLJP- 
IKK complex, although we did not observe the dissociation of 
IKKy from the IKK complex reported by Chen et al. (Chen et 
al., 2002). Consistent with the inhibition of vFLIP-IKK 
activity, GA also induced death of BC3 cells. This suggests that 
vFLIP activation o f IKK is crucial in the maintenance of BC3 
cell survival. vFLIP activation of the NF-kB pathway has also 
been shown to inhibit apoptosis when vFLIP was ectopically 
expressed in a human leukaemic cell line (Sun et al., 2003). 
GA analogues are promising anticancer agents because Hsp90 
is crucial for maintaining the function of several oncogenic 
proteins (Maloney et al., 2002). Our data suggest that they
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niitoht also be effective in the treatment of KSHV-related 
lignancies.
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