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A bstract

For hydrogen-like nuclei (HLN) such as the proton or muon, the quantum zero point 
energy cannot be ignored. The main objectives of this thesis were to identify practical 
ways to model this quantatively, and hence i) to gain an understanding of interactions 
between the HLN and its environment, and ii) to use this understanding to evaluate 
the wavefunction of such a nucleus within an electronic structure calculation.

Several features of the HLN-electron interactions were studied analytically by as­
suming their interaction to be harmonic in nature. It was shown that the accurate 
modelling of the HLN-electron correlation was extremely important in the evaluation 
of the HLN wavefunction.

A parametrised correlation model (PCM) was developed, and was shown to accu­
rately reproduce the effective potential energy surface experienced by the HLN when 
HLN-electron correlation was included.The required parameters showed a simple HLN 
mass dependence.

The PCM was used to study DNA base molecule adducts formed by addition of a 
single HLN. The relative stability of these adducts was shown to be dependent on the 
mass of the HLN, and the inclusion of HLN-electron correlation was shown to lead to 
a stabilisation of the C-X bonds relative to the N-X and O-X bonds.

The PCM was used to study the interaction of H and Mu with the diamond dopants 
sulphur and phosphorus. The PCM correctly predicted differences between the HLN 
wavefunctions in crystalline and molecular environments. The HLN-electron correla­
tion energy was shown to be large enough to cause the phosphorus-muonium defect 
complex formation energy to become positive.

HLN-impurity-vacancy complexes in diamond were studied using the PCM, and it 
was found that the lowest energy state was obtained by the HLN saturating a carbon 
dangling bond, irrespective of the impurity species. It was concluded that the HLN 
would be effectively localised at a single site.
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Chapter 1 

Introduction

1.1 The Muon: Production and Properties

The muon, fi+, has for decades been used in the study of both crystalline solids 

and organic radicals. It is typically generated via the decay of the pion, 7r+, 

through the parity-violating weak interaction

7T+ -»> f l + +  1/^, (1 .1)

where is the muon neutrino. Theoretical studies conducted during the 1950’s 

[77] showed that conservation of both linear and angular momentum dictated 

that the spin of a muon generated via this decay would be polarised antiparallel 

to its linear momentum, and it was this property which allowed pioneers in the 

field of n SR (muon spin rotation, relaxation, and resonance) to use the muon as a 

probe of the local magnetic structure of materials [44, 46]. By firing high energy 

protons into (typically) carbon or beryllium targets, large numbers of pions can 

be created, and hence a beam of muons with up to 100% spin polarisation can 

be generated. This alone, however, is not enough to make the muon a useful 

probe. Fortunately, it is also radioactive, with a lifetime r M ~  2.2 /zs, decaying 

via the process
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where ve is the electron neutrino, and the muon antineutrino. The decay 

positrons of Equation 1.2 are emitted preferentially in the direction of the in­

stantaneous spin polarisation of the muon at the time of its decay. It is the 

detection of these decay positrons which forms the basis of the /iSR technique, 

which will be discussed in more detail later in this chapter.

As a charged particle, the muon will trap electron density (at least in semi­

conductors and insulators), and so it is more realistic to consider the muon and 

its trapped electron density as a light (Mp/M M ~  9) pseudoisotope of hydrogen. 

The extremely large mass ratio between the muon and the proton presents a 

unique tool with which to study isotope dependent properties.

Following standard nomenclature, the diamagnetic state (//+) will be referred 

to as Mu+, whilst the paramagnetic state will be referred to as Mu°.

It should also be noted that another diamagnetic state of muonium can exist, 

Mu-  =  [/.L+e~e~], although experimentally the two are extremely hard to distin­

guish. For example, in Silicon, where the host nuclei have no nuclear moment, 

differentiating between Mu+ and Mu-  is virtually impossible, although for other 

semiconductors, in particular the ‘III-V’ compounds such as GaAs, where nu­

clear quadrupoles are present, the avoided level crossing resonance technique has 

been applied in order to identify both the Mu-  [19] and Mu+ centres [25].

1.2 Experim ental techniques

The experimental techniques of nuclear magnetic resonance (NMR), electron 

spin resonance (ESR), and /zSR spectroscopies are closely related. For systems 

within which the muon forms a diamagnetic state, NMR is the most appropriate 

analogue, with the interaction of the muon spin with the local magnetic field 

being the measured quantity, whereas when the muon forms a paramagnetic
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state, comparisons with ESR axe more appropriate, since in this case it is the 

interaction between the muon and electron spins which is of primary interest.

1.2.1 N M R  Spectroscopy

NMR spectroscopy is based upon the principle that the spins of nuclei can be 

aligned with an external static magnetic field, and then reversed through the 

application of an alternating field. Although the technique applies to other 

nuclei, we will consider here only the proton. The energy of a proton with spin 

projection raj in a magnetic field of magnitude B  is given by

Emi = -gNVNm i B i (1-3)

where is the proton g-factor, fiN is the nuclear magneton, and mj assumes 

the value of The resonance condition for the transition of a proton from its 

lower to higher spin state is then given by

hv =  gNVNB - (1-4)

Experimental results are obtained by either varying the magnetic field over a 

small range and monitoring the absorption of radiation of frequency v, or by 

keeping the magnetic field fixed, and monitoring the absorption of radiation 

over a range of frequencies. In what follows, when we refer to an NMR or ESR 

spectrum, this is to be interpreted as a plot as a function of B.

In practice, the local magnetic field experienced by the proton differs from the 

external field due to interactions with the electron density, and so information 

regarding the electronic structure of a system can be obtained via interpretation 

of NMR spectra. There is further information contained in a typical NMR 

spectrum, however, which cannot be identified with electron-proton interactions. 

This is the fine  structure of the spectrum, and is due to spin-spin interactions
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between the protons in a given system. This component of the spectrum can be 

used to infer details of the nuclear structure of the system.

1.2.2 E SR  Spectroscopy

The energy of an electron in an applied field of magnitude B  can be defined in 

an analogous way to that of a proton. The energy of the electron is given by

Ems =  gê BB m s, (1-5)

where in this case fiB is the Bohr magneton, and so the resonance condition is 

given by

hv =  ge\iBB. (1.6)

It should be noted that since the Bohr magneton is approximately 2000 times 

larger than the nuclear magneton, so the resonance frequency for a given ap­

plied field is higher by the same ratio, and so applied fields are typically much 

smaller in ESR spectroscopy than in its NMR counterpart for the same resonant 

frequency.

ESR spectroscopy is applied to systems containing unpaired electrons, since 

the spin transitions associated with the resonance frequency v are forbidden by 

the Pauli exclusion principle for closed shell systems. Typical resonance frequen­

cies are in the microwave region, and ESR spectra are obtained by monitoring

the absorption of this microwave radiation as the applied magnetic field, J5, 

is varied. Experimentally it is observed that different systems come into reso­

nance at different frequencies, and this is again due to the local magnetic field 

experienced by the unpaired electron differing from the externally applied field, 

interpretable through an understanding of the electronic structure of the system. 

Further structure is observed in the ESR spectra, the hyperfine structure asso­
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ciated with spin-spin interactions between the unpaired electron and the nuclei 

in the system. Again only the proton will be considered here. Typically, half 

of the protons in a given system will have the ^-component of their spin given 

by m i = 1, and half by raj =  This leads to an alteration of the electron 

energy, which can now be defined as

H =  gefiBB m s +  /iA0m5m/ (1.7)

Since ms  can take the values ± |,so  there will be splitting of the electron energy. 

This implies that half of the system will resonate when the applied field satisfies

B  = hu ±  hA°
9e9'B •̂9e9'B

=  —  ±  4  (1 .8 )
9e9'B ^

and so the ESR spectrum shows two lines separated by a magnetic field of mag­

nitude A. Again more than one hyperfine splitting can be observed in a spectrum 

if inequivalent protons are present in a system, since the local electronic struc­

ture can vary. The ESR spectrum can therefore be used to understand the 

electronic structure of a given system, in particular allowing a coarse mapping 

of the molecular orbital occupied by the unpaired electron.

1.2.3 yuSR Spectroscopy

As previously stated, fiSR stands for muon spin rotation, relaxation, and reso­

nance. These refer to the various experimental techniques which can be used to 

detect features of the muon decay, and thereby infer information about a system 

of interest. Reviews of these techniques can be found, for example [119].
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Figure 1.1: Precession of muon spin sM about a magnetic field B 

Tranverse field M uon Spin R otation (TF-/iSR)

In TF-/iSR, a magnetic field is applied perpendicular to the initial spin polarisa­

tion of the muon beam, causing the muon spin to precess about this field with a 

frequency, proportional to the magnitude of the local field B it experiences. 

This frequency is known as the Larmor frequency (see Figure 1.1), given by

where 7  ̂ =  gyLe/2m^L. Typical TF-//SR spectra are shown in Figure 1.2. These 

are in fact the Fourier transforms of the measured spectra, and reveal the pre­

cession frequencies of the muons implanted in the sample. Hyperfine coupling 

constants can be obtained directly from these spectra.

Longitudinal field M uon Spin Relaxation (LF-/iSR)

In LF-//SR, a magnetic field is applied parallel to the initial spin polarisation of 

the muon beam. In this case, the time-evolution of the muon spin polarisation

(1.9)
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Figure 1.2 : Fourier transform of transverse field /xSR spectra of SiC>2 and Si 
(reproduced from [13])

along its original direction is monitored. As the applied field is increased, so the 

polarisation of the incident beam can be recaptured, giving information about 

the hyperfine structure of the system. Muon spin relaxation measurements can 

also be performed in the absence of an applied field, and this is known as Zero 

Field Muon Spin Relaxation (ZF-/iSR). ZF-/1SR is a very sensitive technique 

which allows the detection of weak internal magnetic fields in a system. ZF- 

/iSR has the advantage over other magnetic resonance techniques in that no 

external field is required, and so can be considered as a technique unique to 

fiSK. Figures 1.3 and 1.4 show simulated and experimentally obtained LF-//SR 

spectra.
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Figure 1.3: Simulated longitudinal field /iSR spectra for normal (Mu^) and 
anomalous (Mu^c) muonium in silicon (reproduced from [27]).
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Figure 1.4: Experimental longitudinal field /iSR spectra for normal and anom­
alous muonium in polycrystalline silicon (reproduced from [27]). At T — 15K, 
the reduction in repolarization at B  ~  3400G predicted in Figure 1.3 can be 
clearly seen. Note that Figure 1.3 is plotted on logarithmic scale, whilst Figure
1.4 is plotted on a linear scale.
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Figure 1.5: Avoided level crossing /^SR spectrum of muonium in heavily doped 
n-type GaAs, characterising the quadrupole interactions of Ga and As nuclei 
neighbouring the muon (reproduced from [20]).

Avoided Level Crossing Resonance (ALC-^SR)

Muon spin resonance techniques bear more in common with traditional magnetic 

resonance techniques such as ESR and NMR. A magnetic field is applied parallel 

to the initial muon spin polarisation, and a radio-frequency field as applied to 

perturb the muon spin. In ALC-/iSR, this RF-field is tuned so that the muon 

Zeeman splitting is in resonance with the combined Zeeman and quadrupolar 

splitting of a neighbouring spins system. At resonance, the energy of the com­

bined spin system is unchanged by a spin ‘flip-flop’ between the muon and a 

neighbouring spin, and the muon spin polarisation is reduced via this mecha­

nism. Figure 1.5 shows an example of an ALC-/iSR spectrum.
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General Points

When there is significant electron spin density in the vicinity of the muon, infor­

mation about the local environment is obtained principally through the isotropic 

hyperfine interaction

A  =  “ Iw eT e T /x  l^e(0)|2 S/z.Se. (1.10)

The magnitude of this interaction can be seen to be proportional to the electron 

spin density at the muon, and so is often referred to as the contact interaction. 

The vacuum-state value for this interaction is A0 = 4.46 GHz.

The measured quantity in any fiSR experiment is the distribution of the emit­

ted decay positrons, which is used to infer information about the local magnetic 

environment. The muon decay is a three body process (see Equation 1.2), and 

so the energies of the decay positrons may vary. The angular distribution can 

be modelled as a function of angle and positron energy,

P(E, 9) = 1 +  a{E) cos(<9), (1.11)

where a(E) is the asymmetry parameter, and is a measure of the degree to which 

the linear momentum of the decay positron is correlated to the instantaneous 

spin polarisation of the muon at the time of its decay. Figure 1.6 shows P(E, 6) 

for the most energetic decay positrons, for which a(E) = 1. The energy av­

eraged angular distribution function, for which a(E) = shows a much less 

pronounced angular dependence. This asymmetry in the energy of the decay 

positrons is essential to the understanding of fiSR spectra. Further information 

on experimental techniques can be found in [24, 112].
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Figure 1.6: P (E,0) for the highest energy energy decay positrons, for which 
a(E)=1

1.3 P revious W ork

Although the theoretical frameworks for the self-consistent evaluation of elec­

tronic structure were developed much earlier, the very weak computing power 

available before the 1970’s meant that these techniques could only be applied 

to very simple systems, and often with extreme approximations, although these 

methods could often be trusted for qualitatively accurate results. It was from 

the 1970’s onwards that significant computational power became more widely 

available, and this marked a rapid increase in the amount of research into this 

area. This section gives an overview of the theoretical work which has been 

carried out into the behaviour of muonium and hydrogen (in addition to heavier 

isotopes) in molecular and solid state systems, for which the specific theoretical 

techniques mentioned are considered in detail in Section 2.1. It is not intended 

to be an exhaustive review, but gives an account of previously completed work 

with direct or indirect relevance to this thesis. Since much of the work carried
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out experimentally (particularly in fiSR) has been on open-shell systems, so this 

has dictated that much of the theroretical work has been carried out on such 

systems. Many different theoretical techniques and approximations are used, 

and the more common ones are discussed in detail in Chapter 2. For further 

details, see [137] and references therein. The level of approximation used can 

significantly affect the quality of the results obtained, and the reader should bear 

this in mind when comparing results discussed here.

1.3.1 H ydrogen and M uonium  in M olecular System s

Saebp, Radom, and Schaefer [116] have performed unrestricted Hartree-Fock 

(UHF) calculations of the two radicals of formaldehyde, the methoxy and hy- 

droxymethyl radicals, and found the latter to be more stable by 0.217 eV, in 

agreement with experiment. More recently, Valladares et al have studied 

the behaviour of implanted muons in organic radicals using a semi-empirical, 

Hartree-Fock based method known as intermediate neglect of differential over­

lap (INDO), and observed that in each of the four cases studied , 3-quinolyl 

nitronyl nitroxide (3-QNNN), para-pyridyl nitronyl nitroxide (p-PYNN), phenyl 

nitronyl nitroxide (PNN), and para-nitrophenyl nitronyl nitroxide (p-NPNN), 

the most stable binding site for the muon was a carbon atom joining two N-0 

groups. The stability of these sites varied between ~  0.3 — 1.3 eV. Jeong et al 

[69] have performed UHF calculations on muonated radicals of p-NPNN, and as­

sign the experimentally observed /iSR signals to the nitrogen and oxygen binding 

sites of the pair of NO groups. The same authors [6 8 ] have performed UHF cal­

culations on muonated radicals of p-Cl-Ph-CH=N-TEMPO (an abbreviation of 

4-(p-chlorobenzylideneamino)-2,2,6,6-tetramethylpiperidin-l-yloxyl). From the 

theoretical hyperfine coupling constants obtained in these calculations, they con-
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elude that the most likely binding sites for the muon are the chlorine and oxygen 

sites. Brier et al [11] have performed UHF calculations on the bi-Ph-CH=N- 

TEMP O (p-biphenylmethyleneamino- 2,2,6,6-tetramethylpiperidin- 1-yloxyl) and 

4-Pyr-CH=N-TEMPO (4-pyridylmethyleneamino-2,2,6,6-tetramethylpiperidin-l- 

yloxyl) radicals along with their muonated analogues. They predict that the 

lowest energy site for hydrogen in the former is the azomethine nitrogen site, 

whilst the lowest energy site in the latter is the pyridyl nitrogen site. Muonium 

was found to bond most strongly to oxygen in both systems.

Claxton et al [2 1 ] have studied the residual isotope effect (see Section 5.2), 

which characterises the difference in the hyperfine coupling constants for the 

muon and proton due to their vibrational motion in a given system. In partic­

ular, they studied the hydroxyl and ethyl radicals using a UHF method, and 

predict an effect of 24% in the former, and 16% in the latter system. Buttar 

and Webster [15] have performed UHF calculations on isotopomers of the ethyl 

radical. They predict a residual isotope effect of 15%, and an increase in bond 

length of C-Mu over C-H of 2.9%. Webster [135] has used a UHF method to 

consider the vibrational effects of isotopomers of the formyl radical, and calcu­

lates a residual isotope effect of 18%, and the same increase in bond length as 

for the formyl radical of 2.9%. Yu et al [138] have varied the C-H bond length 

in the cyclohexadienyl radical and its muonated analogue so that theoretically 

calculated hyperfine coupling constants calculated using INDO agreed with ex­

periment, and found a bond length increase of 4.3% allowed this. Roduner and 

Reid [111] have studied the same systems using a diatomic Morse potential to 

predict a bond length increase of 4.9%. Subsequent INDO calculation gave a 

residual isotope effect of 30.0%. Valladares et al [128] have compared classical 

and quantum motion of a hydrogen-like nucleus (HLN) in the same systems,
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using a discretized imaginary-time path-integral approach to describe the quan­

tum motion of the HLN. Using the electronic structure obtained from INDO 

calculations, they predict a residual isotope effect of 49.2%, and an increase in 

bond-length of 3.5%. Using the electronic structure obtained from complete ne­

glect of differential overlap (CNDO) calculations they predict a residual isotope 

effect of 48.8% and a bond length increase of 3.3%. The experimental value of 

the residual isotope effect quoted here is 2 0 .6 %.

Percival et al. [98] have performed both restricted Hartree Fock (RHF) and 

density functional theory (DFT) calculations, with the latter incorporating the 

B3LYP exchange-correlation functional, to study the free radical formed by ad­

dition of H and Mu to pyrene. Experimental results from the same paper suggest 

that of the potential radicals which can be formed by addition to pyrene, two 

are formed readily, whilst a third is formed with in low abundance. Assuming a 

residual isotope effect of 2 0 %, hyperfine constants were calculated and used to 

identify the 3 radicals observed experimentally, with accuracies > 97%. Macrae 

[82] has calculated hyperfine coupling constants and measured relative stabilities 

of the radicals formed by addition to the molecule TTF at both the UHF and 

ROHF (Restricted open Hartree-Fock) level. In TTF, the adduct formed by 

addition to the central carbon atom was found to be the most stable, although 

only by r\j 0.16 eV, and this stability was observed to be very sensitive to the 

molecular geometry. A low hyperfine coupling constant observed experimentally 

was tentatively assigned to this radical. Calculations were also attempted on 

radicals formed by addition to TCNQ, but little was able to be deduced due 

to the extreme sensitivity of this system to the basis set and model chemistry 

used. Macrae and Carmichael [83] have performed DFT calculations using the 

B3LYP model chemistry to compare and contrast adducts formed by addition
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to C = 0  and C=S bonds in small molecular radicals. They found that although 

ketone and thioketone H (or Mu) adducts display similar hyperfine structure, in 

thioamides the interactions are fundamentally different. Oganesyan et al. [95] 

have performed DFT calculations, using the local density approximation (LDA) 

to evaluate the electron exchange-correlation energy, to study the adducts that 

can be formed by addition to the four DNA base molecules. Hyperfine cou­

pling constants were calculated for all possible adducts, and good agreement 

was achieved between these calculations and the small amount of experimental 

data on these systems. It is also claimed that the theoretically calculated cou­

pling constants are in good agreement with experimental data obtained by the 

same group, however these results have yet to be published. Cammarere et al. 

[16] have performed UHF calculations on the heme group of cytochrome c in 

order to identify binding sites for fi+. They find that the most stable sites for 

fi+ axe at the nitrogen and carbon of the pyrrole rings, with the former being 

more stable by 1.87 eV. They conclude that the theoretically calculated Knight 

shifts1 should be experimentally observable.

Percival and Wlodek [97] have performed modified neglect of differential over­

lap (MNDO) on radicals formed by muonium addition to buckminsterfullerene, 

and conclude that the two experimentally observed fiSR precession signals can 

be attributed to Mu@C60, a free atom state inside the fullerene, and exo-CeoMu, 

a radical formed by addition on the outside of the molecule, with the latter being 

the more stable. This conclusion is supported by Estreicher et al. [38] who have 

performed DFT calculations on the same systems. Claxton and Cox [22] have 

performed both UHF and ROHF calculations on these systems, as well as smaller

xThe Knight shift is a measure of the change in muon (or proton) resonant frequencies due 
to interaction with a local magtnetic field. It is usually associated with the NMR spectra of 
metallic compounds.
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clusters of a similar structure. They conclude that exo-CeoMu saturates a C=C 

bond, and that the distortion of the structure is very localised, and note that 

the chemical nature of the radical bears many similarities to the ethyl radical. 

Boxwell et al. [9] have performed restricted open shell Hartree-Fock (ROHF) 

calculations on the CeoH and its muonated isotopomer, and predict a residual 

isotope effect of 6 .6 %, compared to the experimental value of 9.0%. Donzelli et 

al. [32] argue that UHF calculations show that an endohedral adduct (i.e. an 

adduct in which the muon is bonded to the inside of the fullerene cage) can form, 

with a hyperfine coupling constant in good agreement with experiment. The en­

ergy of this adduct was found to be within 0.1 eV of the energy of Mu@Ceo, 

but zero-point effects of the muon were not considered. Subsequent calculations 

by the same authors [33] confirm the exohedral adduct to be the lowest energy 

structure by 3.8 eV, and predict a residual isotope effect of 8.0%.

The results discussed in this section show the diverse range of Mu and H con­

taining systems to which theoretical modelling has been applied, and highlights 

the fact that the quantum nature of the particle under consideration can result 

in significant deviations from classical theory. This suggests that the incorpo­

ration of quantum effects into a theoretical model would provide useful insights 

into the validity of assuming muonium to be a light analogue of hydrogen.

1.3.2 H ydrogen and M uonium  in D iam ond and Silicon  
Diamond

Goss [51] has recently published a review of the current position regarding the 

simulation of hydrogen-related defects in diamond, and a summary of calcula­

tions on isolated hydrogen and muonium in diamond can be seen in Table 1.1.

Sahoo et al [118] have performed UHF calculations on muonium in small
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diamond clusters, and conclude from total energy calculations that ‘normal’ muo­

nium (i.e. the defect responsible for the isotropic hyperfine interaction observed 

in fiSK spectra of diamond crystals) is localised at the tetrahedral (T), rather 

than the hexagonal (H), interstitial site. The zero-point energy of the muon is 

calculated to be 0.48 eV, with the barrier between adjacent T-centres being 0.83 

eV, and so the authors conclude that tunnelling events would be very rare. The 

vibrationally averaged hyperfine coupling constant was calculated to be within 

10% of the experimentally accepted value at T, although, as was pointed out by 

Estreicher et al. [35], these results are cluster-size dependent. Mainwood and 

Stoneham [81] have performed CNDO calculations on hydrogen and muonium in 

larger diamond clusters. They infer that in both neutral and positively charged 

systems, the HLN traps electron density, although there may be an energy cost 

in the formation of this neutral state in the positively charged system. They 

find a local maximum at the T site, and a minimum at the H site. The zero 

point energy of a proton at the H-centre is calculated to be 0.17 eV, a value 

too high for hydrogen to be trapped at this site, since a saddle point lies just 

0.125 eV above this minimum. They postulate that deuterium may have one 

localised level at the H-centre. Estreicher et al. [35] have used UHF and partial 

retention of diatomic differential overlap (PRDDO) methods to study surface 

effects in diamond clusters of varying sizes. They find that if the C-H bond 

length for the hydrogen used to terminate the cluster varies between 1.09 A (the 

separation that gives the equilibrium geometry), and 1.545 A (the physical C-C 

bond length in diamond), then the relative stability of the T-centre with respect 

to the H-centre falls from 2.1 eV to 0.9 eV. They also report a (rather large) 

value of 1.17 eV for the zero-point energy of the muon at the T-centre. They 

conclude surface effects are relatively small if the C-H bond length is set to 1.09



1. Introduction 29

Author Method Particle Site Barrier (eV) ZPE (eV) Stability (eV)

[118] UHF rji* 0.83 (T) 0.48 N /R

[81] CNDO P H* N /R 0.17 0.125 (SP)

[35] PRDDO rji* N /R 1.17 0.9 (H)

[36] PRDDO classical BC 2.4 (T) 

2.1 (H)

N /R 2.7 (T)

[114] TBMD classical ET N /R N /R 1.4 (BC) 

1.9 (T)

Table 1.1: Summary of previous calculations on isolated H and Mu in diamond. 
N /R  means that the property was not reported by the authors. An asterisk indi­
cates that the authors did not consider the bond-centred geometry. In columns 
four and six, T =  tetrahedral site, H =  hexagonal site, SP =  saddle point, BC 
=  bond centre, and ET =  Equilateral Triangle site.

A. The same authors [36] have also studied the relative stability of the T and 

H-centres with respect to the electronic basis set. In all cases the T-centre was 

found to be the more stable, and so all energies quoted here are those of the 

H-centre relative to the T-centre. Using a STO-3G basis set, the stability was 

calculated to be 2 .2 2  eV, a 3-21G set gave a stability of 1.65 eV, a 4-31G set gave 

a stability of 1.48 eV, a 3-21G* set gave a stability of 1.35 eV, and a 4-31G* set 

gave a stability of 1.25 eV. They also find that it costs 7.8 eV to implant a muon 

at the T-centre, and report that full relaxation of the nearest and next-nearest 

neighbours of the muon results in a lowering of the barrier between T-centres of 

0.17 eV, but has little effect on the vibrational wavefunction of the muon. They 

are unable to reproduce the experimentally observed hyperfine coupling constant 

for normal muonium.

Estle et al [34] have performed PRDDO calculations on diamond clusters 

in order to investigate the location of ‘anomalous’ muonium (i.e. the defect 

centre which gives rise to the anisotropic hyperfine coupling, with low contact
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interaction, and [111] symmetry). They agreed with the proposal by Cox and 

Symons [23] that the location for anomalous muonium (Mu*) is at the bond 

centre (BC) location, with an associated large lattice deformation. They report 

a minimum in the total energy for a muon at the bond centre when the nearest 

neighbour carbons are relaxed to give a C-C bond length 42% larger than the 

standard bond length of 1.545 A. This minimum is 2.7 eV lower than for the 

muon at the T-centre, and is some 16.6 eV lower than the BC configuration 

with no lattice distortion. A barrier of 2.4 eV (2.1 eV) is calculated between the 

BC and T (H) centre. Calculated hyperfine couplings were approximately four 

times too large. Saada, Adler, and Kalish [114] have performed tight binding 

molecular dynamics (TBMD) simulations on hydrogen in diamond and predict 

the BC site to be lower in energy than the T-centre by 0.5 eV, with an increase 

of the nearest neighbor C-C bond length of 52% but also report a new, lower 

energy site with six-fold symmetry about the C-C bond, which they term the 

ET site. Hydrogen at this site causes the C-C bond to dilate by 43%, and is 

found to be 1.4 eV lower than the BC site, and a simulated annealing procedure 

ensures that (at this level of theory at least) this site is a global minimum of the 

total energy. The stability of this structure has since been shown by Kanai et 

al. [72] and Goss et al. [50] to be an artifact of the method.

Mehandru et al. [85] have used the semi-empirical atom-superposition and 

electron-delocalisation molecular orbital (ASED-MO) technique to study the 

hydrogen-vacancy complex in diamond. They predict a binding energy of 5.3 

eV for hydrogen saturating one of the dangling bonds due to the vacancy, but 

did not include relaxation around the vacancy. Breuer and Briddon [12] have 

performed DFT-LDA calculations on the boron-hydrogen (BH) complex in dia­

mond. They find a minimum energy site along the [001] direction, with the BC
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site 0.7 eV higher. Mehandru and Anderson [8 6 ] have performed (ASED-MO) 

calculations on the nitrogen-hydrogen (NH) complex, and find the BC-site to be 

the most stable, with a binding energy of 1.49 eV.

Nishimatsu et al. [93] have performed DFT calculations using LDA to ap­

proximate the exchange-correlation energy in order to study hydrogen as a lone 

defect and as part of the sulphur-hydrogen (SH) and phosphorus-hydrogen (PH) 

complexes in diamond. They find the BC site to be the most stable, with the 

T site 0.95 eV higher in energy, the antibonding (AB) site 0.99 eV higher, and 

the H site 1.52 eV higher. For both of the complexes, the most stable site for 

hydrogen was found to be the AB site around the substitutional impurity. In the 

PH complex, the hydrogen passivates the donor level, while for the SH complex, 

the presence of hydrogen results in a shallower singly occupied donor level, as op­

posed to a deeper double donor level in its absence. They predict a stretch mode 

(assuming the heavier particle to be fixed) with vibrational frequency is = 2668 

cm- 1  for the PH complex, and is = 2787 cm- 1  for the SH complex.

Silicon

For recent reviews of hydrogen and other point defects in Silicon see Estreicher 

[39, 40]. A summary of results obtained for isolated hydrogen and muonium in 

silicon can be seen in Table 1.2.

Mainwood and Stoneham [81] have performed CNDO calculations on silicon 

clusters, and find the T-centre to be the most stable site, but with the H-centre 

only 0.052 eV higher in the absence of lattice relaxation, but an outward relax­

ation of the six nearest neighbours of only 1% results in the centres becoming 

essentially degenerate. They conclude that no localised neutral state of hydrogen 

in silicon exists. Estreicher [37] has performed PRDDO and UHF calculations
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on hydrogen in silicon clusters, and finds the BC site to be the most stable, when 

a relaxation of the two nearest neighbours of 34% is included. This site is found 

to be ~0.9 eV lower than the T site when using basis sets which result in a min­

imum at this site. The energy of the H site is found to be 0.59 eV above the T 

site, and the barrier is expected to be low enough for rapid diffusion of hydrogen 

between T and H to occur, in agreement with Mainwood and Stoneham [81] who 

did not consider the BC site. Chang and Chadi [18] have performed DFT-LDA 

calculations on silicon supercells with various hydrogen defects. They find that 

hydrogen is only most stable at the BC site when a negatively charged Si-H-Si 

complex is formed, with the T-centre being the most stable for the neutral state, 

with a predicted binding energy of 1.1 eV. Herring et al. [62] have performed 

DFT-LDA calculations on silicon supercells in order to study the importance of 

charge states in hydrogen incorporation. They find that, assuming the Fermi 

level to be at the bottom of the conduction band, H° is most stable at the BC 

site, as is H+. H-  is most stable at the T-centre. They find no metastable state 

for H°, and so conclude that the transition H_ —► H° at some non-equilibrium 

geometry results in a rapid change of site from T to BC, and that there is a 

‘negative-[ /’ positioning of the donor and acceptor levels. Here U can be defined 

as

7 7   7?^/+ TP~ / 0

U ~  BC T/BC*

and can be more clearly interpreted in relation to Figure 1.7. As can be seen, U 

measures the difference in ionisation energy between the negatively charged and 

neutral states, and that between the neutral and positively charged states.

Boucher and DeLeo [8 ] have performed TBMD calculations on hydrogen in 

silicon supercells. Using parameters derived from the silane environment, they 

find the T-centre to be most stable, but on adjustment of these parameters find
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Figure 1.7: The relative energies and geometries for hydrogen/muonium charge 
states leading to positive or negative values of U.

a global minimum at the BC site, with a Si-H-Si distance of 3.06 A, a dilation 

of 30.2%, with an adiabatic barrier between neighbouring BC sites of 0.23 eV, 

although they note that the adiabatic picture is not expected to be valid. They 

also note that the amplitude of the Si-Si stretch mode is not large enough for the 

BC to become energetically stable, and so postulate an anti-bonding ‘precursor’ 

site for H which stretches the associated Si-Si bond, allowing the BC energy 

minimum to manifest itself.

Tuttle and Van de Walle [126] have performed DFT-LDA calculations in 

order to study the behaviour the Si-H bond in the vicinity of large vacancies. A 

system was created to ensure only one Si dangling bond was available. It was 

found that hydrogen fully passivated this dangling bond, and that the energy 

of this configuration is 2.6 eV higher than the BC configuration of an otherwise 

perfect crystal. Assuming the Si to be fixed, the Si-H stretch mode was found 

to have a vibrational frequency of 1970 cm-1, consistent with that found at the 

Si surface [73]. The antibonding site is also found to be a local minimum, 1.2 

eV higher in energy than the bonding site, and with a stretch mode frequency
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Author Method Stable Site Barrier (eV) ZPE (eV) Stability (eV)

[81] CNDO N /R N /R <0.052

[34] PRDDO BC N /R N /R 0.9 (T)

[18] LDA BC (H~) N /R N /R N /R

T (H°) N /R N /R N /R

[60] LDA BC (H°, H+ ) N /R N /R N /R

T ( H - ) N /R N /R N /R

[8] TBMD BC 0.23 (BC) N /R N /R

[107] PIMC BC (c) N /R N /R 1.22

T(q) N /R 0.11 ( f j+) N /R

[66] PIMC T N /R 0.11 (JA+) N /R

[104] GGA T N /R 0.28 (/i+ ) N?R

Table 1.2: Summary of previous calculations on isolated H and Mu in silicon. 
N /R means that the property was not reported by the authors. An asterisk in­
dicates that the authors did not consider the bond-centred geometry. In column 
three, c =  classical particle, q =  quantum particle. In columns three and six, T 
=  tetrahedral site and BC =  bond centre.

of 1790 cm-1. The BC site for the Si-Si bond involving the unsaturated silicon 

is found to be 1.75 eV higher than the bonding site. The barriers to transverse 

motion appear to be so low as to be unable to localise H at this site.

In a previously cited paper [18], Chang and Chadi find a BC site to be most 

stable for the BH complex in silicon, with a binding energy of 2.5 eV. They 

find the AB site of a nearest neighbour Si to be the most stable configura­

tion for the PH complex, in agreement with Johnson et al. [70], and predict a 

binding energy of 2.0 eV. KorpJs et al. [75] have used the PRDDO method to 

investigate hydrogen complexes in silicon. They found that both B and P act 

as strong traps for one interstitial hydrogen, the resulting complexes are likely 

to be traps for additional hydrogens, and this does not result in the formation 

of H2 . Luchsinger et al. [80] have performed DFT-LDA calculation in order to
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study the vibrational modes of hydrogen in the PH complex in silicon. The 

equilibrium geometry was found to be at the AB site of the Si in a Si-P bond. 

Assuming that the adiabatic potential energy surface can be decoupled into a 

bond-axial mode, and a high symmetry transverse mode, vibrational frequencies 

of 1631 cm- 1  for the stretch mode and 843 cm- 1  for the transverse mode are 

found. If coupling of these vibrational modes is included, a slight lowering of 

these frequencies is found. Hoffmann et al [63] have performed DFT-LDA in 

order to study carbon-hydrogen (CH) complex in silicon clusters. They find that 

the minimum energy of this complex is obtained when the interstitial hydrogen 

is located at the bond centre between a silicon and substitutional carbon. This 

configuration is stable by ~0.2 eV when compared to other possible complex 

configurations, with this stability being reduced to 0.1 eV when zero-point ef­

fects are taken into account. Xu [136] has performed tight-binding calculations of 

various phosphorus-hydrogen complexes in silicon supercells. He finds that none 

of the complexes studied introduce states into the band gap, and that the role of 

hydrogen in each of the systems is to passivate the band gap states introduced 

by the Si dangling bonds. The phosphorus has the effect of lowering the energies 

of the dangling bonds, and thus of the corresponding defect states.

Ramfres and Herrero [107] have performed Feynman path-integral Monte 

Carlo (PIMC) calculations on hydrogen and muonium in silicon in order to study 

the quantum mechanical differences between the two, based on a potential en­

ergy surface (PES) calculated by Van de Walle et al [127]. For a point impurity 

(i.e. a classical proton or muon), they find the BC site to be most stable by 

1.22 eV, a stretch mode frequency for this configuration of 2230 cm-1, and a 

dilation of the nearest neighbour Si-Si bond of 0.3 A, in general agreement with 

other work. They find that once the finite mass of the defect is included, two
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distinct spatial locations of the muon are present in the temperature range of 

50-100 K, as opposed to a single location for the proton and deuteron. The muon 

in these locations exhibits the properties associated with Mu and Mu*. Mu* is 

found to be of higher energy than Mu over this range of temperatures, and is 

not found at temperatures >100 K, in disagreement with experiment. The zero 

point energies for d, p, and /i+ at the BC site are found to be 0 .1 0 0 , 0.142, and

0.440 eV respectively. The zero point energy (ZPE) of fi+ in Mu is found to 

be 0.11 eV. They conclude that Mu is a highly delocalised state in silicon. Ien- 

aga and Tsuneyuki [6 6 ] have performed PIMC calculations on silicon supercells 

containing a quantum-mechanically described impurity, again using the PES of 

[127]. They assume a double Born-Oppenheimer approximation, decoupling the 

electronic motion from that of the impurity and the host lattice, and decoupling 

the motion of the impurity from that of the lattice. They find two minima in the 

total energy for an impurity of muon mass, one corresponding to a muon at the 

T-centre (ZPE =  0.11 eV), and the other corresponding to a muon at the BC site 

(ZPE =  0.47 eV). However, and again in disagreement with experiment, they 

predict Mu to be stable at T, rather than BC, and do not consider temperature 

dependent effects. They find a ZPE of 0.14 eV for the proton at the BC cen­

tre, the only energy minimum present when considering an impurity of proton 

mass. Miyake et al. [8 8 ] have performed first-principles path-integral molecular 

dynamics (FP-PIMD) calculations in order to study the quantum distributions 

of the muon and proton in silicon at 200 K. The interatomic potentials used 

here are based on DFT calculations using the generalised gradient approxima­

tion (GGA) to approximate the electronic exchange-correlation energy. They 

find that the muon localises in a single cage at the T-centre, and ascribe this 

localisation to the formation of a small polaron state. The proton (and also a
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point impurity) is found to be distributed between two Si atoms in the [0 0 1 ] 

direction from their common nearest neighbour, the ‘C-centre’. They conclude 

that when quantum effects are taken into account, the lower ZPE of the muon 

at the T-centre compared to elsewhere is enough to counteract the fact that 

the T-centre is a local maximum of the PES. Porter et al. [104] have performed 

DFT-LDA and DFT-GGA calculations on silicon supercells in order to study the 

differences in the quantum distributions of the muon and proton. They apply a 

double BO approximation in order to decouple electronic, impurity, and lattice 

degrees of freedom. They find that zero-point effects play only a very small role 

in lattice relaxation, even at the BC site, accounting for just 0 .0 1  A of the total 

relaxation. They find the ZPE of the muon at the BC site to be 0.63 eV, and the 

corresponding ZPE of the proton to be 0.20 eV. At the T-centre, the muon ZPE 

was found to be 0.28 eV, and that of the proton to be 0.09 eV. They predict that 

at the BC site, both the muon and proton could have excited states, but at the 

T-centre, only the proton has a low enough ZPE to allow an excited state. They 

again conclude that, when quantum effects are included, the T-centre becomes 

the more stable site for both the muon and proton.

Herrero [60] has performed PIMC simulations in order to study the thermally 

assisted tunnelling of hydrogen in silicon. He finds that at temperatures above 40 

K, the proton is localised at the C-centre. Below this temperature, a probability 

density displaying two well-defined maxima appears, with these maxima tending 

towards the BC site as T —► 0. The probability distribution for the deuteron 

remains localised at C, even at low temperatures. The Arrhenius plot associated 

with the proton diffusion shows a distinct change in gradient at temperature 

of ~80 K, this being the transition temperature calculated here between semi- 

classical motion over an effective barrier and quantum tunnelling through the
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barrier. Noya, Herrero, and Ramirez [94] have performed PIMC calculations in 

order to study the thermally assisted tunneling of the BH complex in silicon. 

At a temperature of 100 K, both the hydrogen and boron remain localised, 

the hydrogen at the C site. At 30 K however, a double maximum is observed 

in both the hydrogen and boron probability distributions, indicating that the 

entire complex, rather than just the hydrogen, is tunnelling. The corresponding 

Arrhenius plot reveals a change in gradient at ~60 K. No deviation is found for 

the BD complex.

As in the previous section, the results discussed here show that quantitatively 

different behaviour is predicted in some systems when muonium is compared 

hydrogen. Here the lighter mass, and hence greater vibrational energy of the 

muon can be sufficient to cause classically calculated globl energy minima to 

become higher in energy than surrounding local minima. Again a model which 

includes this vibrational motion in a self-consistent manner would be a useful 

tool with which to study such systems.

1.4 Aim s of This Thesis

Although many authors have studied the proton and muon in solid state and 

molecular systems, the vast majority have ignored the quantum effects present 

due to the their finite mass. Those studies which include these quantum effects 

require computationally intensive calculations to be performed, restricting the 

systems that can be studied in both number and size. The aim of this the­

sis is to investigate the interactions of the hydrogen-like nucleus (HLN) with 

the electronic and nuclear components of various systems, and to identify the 

relevant features of these interactions in order to accurately evaluate the HLN 

wavefunction within the self-consistent field method. This method of evaluation
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would greatly reduce the computational effort required to study the effects of 

including the quantum nature of the HLN on the properties of a given system. 

Furthermore, this thesis is concerned with the invetsigating the validity of the 

assumption that muonium can be treated as as a light analogue of hydrogen.



Chapter 2 

Theoretical Techniques

Whilst experiment is very useful for understanding the properties of systems 

of interest, theoretical modelling can be used in a different role. The role of 

theorist is to identify the important features of a given problem, to build a 

suitable model incorporating these features, and to use this model to either 

verify experimental results, or predict new phenomena. For the purposes of this 

thesis, we require a quantum mechanical description of the hydrogen-like nucleus. 

Before specifying how this is done, it is worth reviewing the methods available 

for obtaining a quantum-mechanical description of the electronic structure of the 

system in terms of its nuclear and electronic degrees of freedom.

2.1 M ethods o f Electronic Structure Calcula­
tion

The ultimate goal of an electronic structure calculation is to solve the many 

body Schrodinger equation for a system of n interacting particles. In practice 

however, approximations need to be made in order to attempt this, and typically 

the variational method is employed. This method allows an approximate solution 

to the Schrodinger equation to be obtained by minimising the energy of a model 

system through the optimisation of a set of variational parameters.

40
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In obtaining the minimum electronic energy of a system of interest, there 

are two main approaches that can be employed; those that attempt to minimise 

the energy in terms of a wavefunction, \f(r,R), and those attempting the same 

task in terms of a functional of the particle density, p(r,R). These two general 

methods will be examined in more detail in Sections 2.1.1 and 2.1.2, but first 

it is worth considering two popular approximations employed in order to make 

the solution to this general problem more tractable. We shall examine these 

approximations from the perspective of a wavefunction-based approach, although 

they apply equally to the density functional method.

The Born-Oppenheimer Approximation

\k(r,R) can, in principle, be obtained exactly via solution of the Schrodinger 

equation,

f to ( r ,R )  =  £M (r,R), (2.1)

where H  is the Hamiltonian operator of the system, and E  is the energy of the 

system. However, Equation 2.1 quickly becomes intractable for all but highly 

specific Hamiltonians, such as that describing the coupled harmonic oscillators, 

for which the exact n-body wavefunction can be obtained. To allow highly 

accurate approximations to ^ (r , R) to be made using numerical methods, Born 

and Oppenheimer proposed [7] that a decoupling of the electronic and nuclear 

degrees of freedom,

*(r,R ) = 3?(R)V>(r;R), (2.2)

would allow for a solution of the Schrodinger equation which would be function­

ally dependent on the electronic coordinates of the system, but only parametri­

cally dependent on the nuclear coordinates, a greatly simplified problem. The 

justification of this approximation lies in the large ratio of the masses of the
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nucleons and electrons. This ratio is typically ~104, meaning that the kinetic 

energy of an electron would be some 1 0 0  times greater than that of a typical 

nucleon, and so, assuming that the electronic system adapts to the new nuclear 

configuration rapidly, the nuclear motion is effectively frozen during the time 

period required for this adaptation to take place. The Born-Oppenheimer ap­

proximation is actually more severe than this, assuming the nucleons to be of 

infinite mass (and therefore with no kinetic energy), but has been shown to be 

highly valid for large nucleon to electron mass ratios. It should be noted that this 

approximation is not a requirement for the solution of the Schrodinger equation, 

and indeed methods which do not make this approximation exist, for example 

the path integral Monte-Carlo method [48].

The Linear Combination of Atomic Orbitals M ethod

A further simplification is the linear combination of atomic orbitals (LCAO) 

method. This method assumes that a given electronic wavefunction can be 

described.by a linear combination of basis functions

n 

i=  1

where the {(f) n e e d  not be orthogonal. This approximation allows a set of 

variational parameters (the c ^ ’s) to be defined. The energy of a given system 

can then be minimised via variation of these parameters. This approximation 

is conducive to numerical energy minimisation, as it allows the problem to be 

recast as a matrix mechanics problem, for which many computational techniques 

have been developed.
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2.1.1 Hartree-Fock Theory

Assuming that the Born-Oppenheimer approximation has been made, the prob­

lem remains of solving the electronic Schrodinger equation for a given nuclear 

configuration. The exact solution to this Schrodinger equation is a many body 

wavefunction, although in general the equation is intractable. An approximate 

solution can be constructed, however, if it is assumed that an n-electron wave­

function can be well approximated by the product of n 1-electron wavefunctions,

i.e.

^(ri,r2,. .. ,rn) =  ^ l {Yl )ip2{T2) . . ^ n{vn). (2.4)

This is the Hartree approximation [58]. This approximation alone however, does 

not ensure that the constructed wavefunction obeys the same quantum mechan­

ical principles as the true n-body wavefunction. The simplest method for con­

structing a wavefunction which obeys the antisymmetry principle employs what 

are known as Slater determinants [121]. For a 2 n electron system, the many- 

electron wavefunction can be approximated as

<£l(riMl) ¥7l(rl) (̂l) -  <Pn(rl)£(l)
y>i(r2H 2 ) ^ ( r 2)^(2 ) ...

V>(ri,r2,...,r n) =  TVv (2.5)

<£i(r 2n)a(2 n)  ipn(r2n)l3(2n)

where TV̂  is a normalisation factor, and the product (pn(rm)a(m) is a spin-orbital, 

allowing for the distribution of 2 n electrons across n spatial orbitals (although 

it should be noted that an even number of electrons is not a requirement of 

this approach). The properties of the determinant of a matrix ensure that the 

sign of the wavefunction changes under exchange of any two rows, and that the 

determinant of the matrix, and hence the wavefunction, is zero if any two rows
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are identical, as required.

Hartree-Fock theory is an ab-initio1 theory which uses the variational method 

to minimise the electronic energy of a system described by a single Slater de­

terminant. It first makes the LCAO approximation, with the set of variational 

coefficients associated with an molecular orbital described by the set of para­

meters {cifj}. The set of orbitals { < define the basis functions of the system. 

The system of interest is subjected to the constraint

^   ̂c ip,cji'Sfj,v =  &iji ( 2 - 6 )

ILV

where is an overlap matrix element, and Sij  is the Kronecker

delta function. This constraint ensures that the calculated eigenfunctions of the 

system are orthonormal. The electronic energy expectation can now be evaluated 

[103], and written in terms of atomic orbitals as

e = £  + i  Y l  (p. ^  -  - W ,  -  P ? A )  (H A n) , (2.7)
l*v fii/Xr)

where

(H ^ ? )  =  J  J  r i ) ^ ( r i) lr i - r 2 r 1 0 l ( r 2)0 l7(r2)d3rid 3r 2 , (2 .8 )

and P°v are density matrix and spin density matrix elements respectively, 

formed from the variational coefficients as
occ

= (2-9)
i

and

pi»  = pZ, + p !L- (2 -i°)
xThe term ab-initio is generally used to describe a method which relies on nothing other

than the positions and charges of the atomic species, along with the fundamental physical
constants, in order to evaluate the ground state electronic structure. It should be noted, 
however, that density functional theory is also often considered to be an ab-initio theory, even 
though the exchange-correlation energy is evaluated using a parametrised formula.
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Determinants which allow a system to be described in this way are known as unre­

stricted single determinants, and allow separate molecular orbitals to be defined 

for o-spin and /3-spin electrons. This gives rise to the unrestricted Hartree-Fock 

method, UHF.

The variational method is employed here to minimise the electronic energy 

through variation of the cf ,̂ subject to the constraint of Equation 2.6. This 

treatment leads to the coupled equations [103]

£  -  £“V )  =  0  (2 .1 1 a)

E  (*& " =  0  (2 .1 1 b)

where Fa is the Fock Hamiltonian matrix for cr-spin electrons, with elements 

given by

+  E  [Pxr, {pv I Ar,) -  P Z, (rn I Ai/)] . (2 .1 2 )
Xrj

Here, H ^  are the one-electron core Hamiltonian matrix elements, which can be 

written in atomic units (where e = m e = h = 47T£o =  1 ) as

I  v j 2 \  ions

= ( ^ ( r e) ~ 2 ~  M re))  ||U ~ r e|_1| (2-13)
' ' i

where

(fi\\ri -  re|-1 | v) =  J  </>M( re) ||ri -  re|_1| <f>„(re)d3re. (2.14)

The second term on the RHS of Equation 2.12 measures the Coulomb interaction 

between the charge distributions and whereas the final term defines 

the exchange interaction, measuring the possible lowering of energy due to the 

exchange of electrons of identical spins, a purely quantum mechanical effect. 

Although Hartree-Fock theory treats electron exchange fully, it is mean-field 

theory, i.e. each of the electrons experiences only the average potential field due
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to the other electrons in the system. It ignores the instantaneous electrostatic 

interactions between electrons, more commonly known as electron correlation. 

This will be considered further in the following section.

Equation 2.11a can be written in matrix form as

F a • ca =  £a • S • ca, (2.15)

and similarly for Equation 2.11b. These equations are known as the Roothaan 

equations [55, 113]. These equations collectively form a generalised eigenvalue 

problem, the solution of which would give as eigenvectors the molecular orbitals 

of the system, and as eigenvalues the energies of these orbitals. Unfortunately, 

the solution of Equation 2.15 requires full knowledge of the cfM, which in general 

is unavailable, and so the self-consistent field (SCF) approach is employed. In 

the SCF approach, an initial density matrix is constructed, often using a very 

simple semi-empirical method such as extended Htickel theory [65]. This density 

matrix is used to form an initial Fock matrix, and the energy of the system is 

calculated. The resulting LCAO coefficients are then used to form a new density 

matrix, and the process is repeated until the energy of the system converges to 

within a given tolerance.

E lectron  C orrelation  and  P e rtu rb a tio n  Theory

Hartree-Fock theory, being a mean-field theory, only partially accounts for the 

electron correlation energy, in that there is an effective repulsion due to the ex­

change interaction. This leads to electrons of the same spin being found further 

apart than electrons of differing spin, and this in turn leads to the Hartree-Fock 

energy being lower than the Hartree energy, which does not contain an exchange 

term. However, the total electron correlation gives a greater contribution than
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the exchange contribution alone2, and so perturbational methods have been de­

veloped to account for this. Moller-Plessett (MP) perturbation theory [89] can 

be applied to obtain an approximation to this correlation energy. As with per­

turbation methods in general, different orders of MP perturbation theory can be 

applied. Therefore an nth order perturbation treatment is referred to as MPn, 

and higher orders correspond (in principle) to higher accuracy. Perturbation the­

ory, however, rapidly becomes more computationally expensive than HF theory 

itself. For a system containing N  basis functions, HF calculations scale as AT4, 

MP2 as iV5, and MP4 as N 7. For this reason, it is uncommon to find perturbar 

tional treatments higher than MP2 theory being applied to any but very small 

systems. In MP2, the perturbation to the energy is given by

where i , j, a, and b correspond to occupied and virtual orbitals in the molecular 

basis, en is the one-electron eigenvalue corresponding to the nth orbital, and 

(ai\bj) is a two-electron integral in the molecular basis. MP2 can often account 

for up to 80% of the total correlation energy.

2.1.2 D en sity  Functional Theory

It can be shown that any physically observable quantity can be calculated (in 

principle) if the wavefunction of a system can be evaluated exactly. However, 

the n-body wavefunction is in general a very complicated mathematical object, 

a function of 3n position space variables and n spin variables, whereas most

2The correlation energy can be broken down into two terms; ‘dynamic’ and ‘static’ cor­
relation. Of interest when studying the interactions between a hydrogen-like nucleus and an
electronic system will be the former, which accounts for the fact that charged particles experi­
ence a stronger interaction than that given by a mean field approximation as their trajectories
take them into close proximity with each other.

(2 .16)



2. Theoretical Techniques 48

operators corresponding to experimental observables are dependent on only one 

or two particles, or up to 6  position space and 2 spin variables. This implies that 

much of the information contained in the n-body wavefunction is extraneous. 

The ground-state electron density can be described in terms of the ground-state 

wavefunction,

P(r) = ±
i—1

and it has been shown [64] that full knowledge of this ground-state density is 

sufficient to calculate any ground-state observable. Furthermore, a variational 

principle can be defined in terms of the density

E M r)] > Ee\po(r)], (2.18)

allowing similar minimisation techniques to those of Hartree-Fock theory to be 

applied. Density functional theory (DFT) [64, 74] defines a method for calcu­

lating this ground state density directly, and (in principle at least) implicitly in­

cludes the correlation energy neglected in Hartree-Fock based methods by means 

of an exchange-correlation functional. To understand how this is achieved it is 

first worth noting that a single Slater determinant of the form of Equation 2.5 

can be looked upon as the exact wavefunction of a system of n non — interacting 

electrons. For this system, a Hamiltonian can be written as

5 « = 4 E v ' + i > ® ( r‘)> (2 -19)
i~ \  i= 1

where Ve is an effective potential in which the electrons move. The kinetic energy 

of a system described by this Hamiltonian can be evaluated exactly, and a set of 

eigenfunctions, ip%Nj, can be obtained. These ip%NI are known as the Kohn-Sham 

(KS) orbitals.

/ / ■ ■ ■ /  V>*(ri, r 2, ..., r n)£ ( r i - r )^ ( r i , r2, ..., rn)dridr2-• -dr„, (2.17)
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This non-interacting system is connected to the real one of physical interest 

by choosing the external potential such that the non-interacting ground-state

electron density Pwj(r) of the system exactly equals that of the real system, i.e.

n

PNi(r) ~  Y .  \Pn i \ — Po(r)- (2.20)
i = l

Now, the kinetic energy of the real system cannot be evaluated exactly, since 

it will be dependent on exchange-correlation effects, and so will be included 

in the exchange-correlation functional. The total electronic energy of the real 

system, in the absence of nuclei, can be written

E M  r)] =  2V,Mr)] +  Ap(r)\ + EXcW>],  (2 .2 1 )

where T^i[p(r)] is the kinetic energy term in the Hamiltonian of Equation 2.19, 

and «/[p(r)] measures the potential energy of the electron density,

JW )\ = |  J J  ffiyglrindra. (2-22)

The exchange-correlation functional Exc[p(?)\ can then be defined as

ExcW)\ =  (rM r)l -  7V/[p(r)l) +  (SeMr)] -  JM r)])

=  T*Mr)] +  ENC[p(r)], (2.23)

where T r [p (t )] is the residual part of the true kinetic energy not included in

T n i [p(r)], and E n c [p (r)] is a measure of the non-classical contribution to the

potential energy of the system.

T n i [p {r)] does not have a simple form in terms of the density p(r) since it is 

defined through the Hamiltonian of Equation 2.19 as

2V,[p(r)] =  - l £ (tp]b  |V 2| tfK3) , (2.24)
1 = 1
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however, the total energy of the real, interacting system (excluding Exc[p(r)D 

can also be written in similar terms, with EXe [p(r )] measuring the potential 

energy between the electron density and the nuclei in the system;

E\p( r)] =  Ts [p{ r)] + J[p{ r)] +  ENe[p{ r)] + Ex c [p{ r)]

=  Ts [p(r)] +  ^ J J  idr2 +  J  VNep(r)dr +  Ex c [p{r)\

= —j ^ ^ , ( <Pk s \ ^ 2\ (Pk s )
i= 1

+ 5 i C  J J  f e ( ri ) |2 ^ | ¥ 4 s ( r2)|2* id r 2

TTL 71 a
~ k V s ( r i) |2<iri +  f e [p (r ) ] .  (2.25)

A = 1  i = l  J  1A

The condition which must be fulfilled by the KS orbitals under the constraint 

{Pk s I^k s ) = &ij can be obtained variationally [96], giving

+  J  ̂ ^ dr2 “  +  V x c (r i))  <Pks( t i )  =  ei¥>irs(ri). (2-26)

and so the effective potential Ve of Equation 2.19 can be defined as

Ve(fi) =  f  ^ - d i 2 -  j r  —  + vxc{vi). (2.27)
J r 12 “  r lA

Since we have no knowledge of the form of the exchange-correlation energy EXc,

we also have no knowledge of the corresponding potential. Therefore, this po­

tential is simply defined as

Vx c  =  (2.28)
d p

In practice, DFT requires assumptions to be made regarding the particle density 

in order to approximate this exchange-correlation contribution. The most simple 

(yet highly successful) approximation is the local density approximation (LDA), 

or for open-shell systems, the local spin density approximation (LSD). In this
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approximation the exchange-correlation functional is assumed to be of the form 

E xcV aM .P/sM ] =  J  P(T)Exc(pa(r), Pp(r))ar, (2.29)

where £xc(pa(r)i Pp(r)) is the exchange correlation energy per particle of an 

homogeneous electron gas. p(r) weights this energy by the probability that an 

electron is actually at the point r. Highly accurate Monte-Carlo calculations 

[17] have been performed in order to ascertain £xc  for various electron densities, 

and sophisticated interpolation methods have been employed [132, 100] to give 

approximate analytical expressions for sxc{p{?))-

Although LSD has proved successful in the determination of equilibrium 

geometries, harmonic vibrational frequencies, and charge moments, it has well- 

known deficiencies in the prediction of atomization energies (leading to over­

estimation of binding energies) and excitation energies. Attempts to improve on 

LSD have involved application of the generalised gradient approximation (GGA), 

which considers not only the contribution to E xc  due to the electron density at 

a given point in space, but also the deviations from this contribution due to the 

fact that this density is not constant throughout space. The GGA exchange- 

correlation functional can be written in a rather general way as

■E xcW r), P/j(r)] =  J  f  (pa(r), pp( r), Vpa{ r), Vpe( r)) dr. (2.30)

In practice, E xcA is divided into exchange and correlation components, with the 

correlation term often containing empirical parameters obtained from reference 

systems. Typically, GGA exchange-correlation functionals use Becke’s exchange 

functional [6 ], and combine it with the correlation functionals of Perdew [99] or 

Lee, Yang, and Parr [78].
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2.1.3 A pproxim ate SCF m ethods

Both Hartree-Fock and density functional theory require 0 [N 4] two electron 

integrals (where N  is the number of basis functions) to be evaluated per self- 

consistency cycle, making calculations on large systems very computationally 

expensive. Because of this, approximate methods have been devised to reduce 

the computational cost of such calculations. In general, these approaches have 

been developed as approximations to the Hartree-Fock method, since DFT meth­

ods have only become popular with the advent of larger computational power. 

The earliest approximate SCF-based method was devised by Pople, Santry, and 

Segal [101], and is known as the complete neglect of differential overlap method, 

or CNDO. In this semi-empirical method, the overlap matrix of Equation 2.15 is 

replaced by the identity matrix, reducing the generalised eigenvalue problem to 

a standard one. Furthermore, two electron integrals are set to zero except in the 

case where the probability distribution for a given electron can be described in 

terms of a single basis function. These non-zero integrals are then parametrised 

to be only dependent on the species of the host nuclei. Off-diagonal core Hamil­

tonian matrix elements are made proportional to the overlap matrix. These 

approximations greatly reduce the computational cost of performing SCF calcu­

lations, and have been widely used in the decades since their introduction. It 

should be noted that although CNDO was originally derived from the Roothaan 

equations, Lindholm and Lundqvist [79] have shown that it can also be derived 

from the Kohn-Sham equations.

Improvements on CNDO include intermediate neglect of differential overlap 

(INDO) [102], and neglect of diatomic differential overlap (NNDO) [14], which 

are both based on similar approximations to CNDO, but retain more of the two-



2. Theoretical Techniques 53

electron contribution to the Hamiltonian. Another popular approximation is 

known as the partial retention of differential diatomic overlap, or PRDDO [53], 

which, although parametrised, is not semi-empirical. It is given special mention 

here as it has been shown to consistently and accurately reproduce energies, 

wavefunctions, and geometries obtained from minimal basis set HF calculations 

[53, 54, 84].

These methods, though highly successful, are now becoming less often used. 

In contrast, more sophisticated methods are being increasingly employed as the 

necessary computational resources become available.

2.1 .4  O ther M ethods

The Hartree-Fock approximation assumes that the many-body wavefunction can 

be described by a single Slater determinant of the form of Equation 2.5, but, as 

discussed previously, this method ignores the effects of electron correlation. A

method of including these effects is configuration interaction (Cl), which de­

scribes the exact many-body wavefunction in terms of a linear combination of 

Slater determinants, i.e.
N ci

V’ =  E C' ^ -  (2-31)
7 = 0

Here, ip0 is the Slater determinant obtained by populating the N  lowest energy 

solution to the Roothaan equations, and all other 'ipn are formed by exciting 

electrons from these lowest energy states into higher energy, virtual states. In 

the case Co =  1 and Cn = 0, n > 0, we retrieve the Hartree-Fock approximation.

The variational method can be applied [122] and yields the eigenvalue prob­

lem

H • C =  A O • C, (2.32)
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where

Hkj  = (*K  H tPj ) (2.33a)

Ok j  = <iM i’j) 
(ip H i!>)

(2.33b)

A = (2.33c)

It should be noted that the solution to Equation 2.32 can be obtained directly 

(rather than using an iterative approach as in HF theory), since all the ma­

trix elements can be obtained from the solution to the Roothaan equations. In 

practice, however, the Cl method is computational expensive, and so often only 

singly and doubly excited determinants are used, although other excitations can 

be included if the physics of the problem clearly neccesitates it.

Path integral Monte-Carlo (PIMC) methods are based on the Feynman path- 

integral interpretation of quantum mechanics [42]. It can be shown [42] that the 

partition function required for the evaluation of the expectation value of an 

observable of a single quantum particle at a finite temperature is formally equiv­

alent to a classical partition function of a cyclic chain of P  classical particles 

coupled harmonically, in the limit P —> oo. This fact allows classical simula­

tion methods, and in particular Monte-Carlo methods, to be applied to finite 

temperature quantum mechanical problems. In practice, P  is typically < 32, 

and so the partition function obtained is an approximation to the true partition 

function. However, the PIMC method is in principle capable of an exact solution 

(including correlation) to the Schrodinger equation at finite temperatures. This 

method has still not been widely adopted, partly due to the fact that immense 

computational power is required for PIMC calculations. Miyake et al. [8 8 ] re­

port calculation times of 0.5 —2 CPU months using the 128 CPU Hitachi SR2201 

supercomputer for PIMC calculations on 16 atom silicon supercells containing
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one hydrogen or muonium impurity, and with P  <32.

2.2 Evaluation of the H ydrogen—like Nuclear 
W avefunction

For the calculations presented in this thesis, the hydrogen-like nuleus (HLN) 

is modelled as a heavy, positively charged electron, with the basis set of the 

system being extended to accommodate this new distinguishable particle. The 

basis set associated with the HLN is defined to be orthogonal to the electron 

basis set (i.e. the overlap between electron and HLN basis functions is defined 

to be zero). This ensures that the Hamiltonian matrix for the many-body system 

containing an HLN adopts a block diagonal form. The basis set chosen for the 

HLN was a local basis, composed of Gaussian functions, and the reasons for this 

are three-fold. Firstly, the HLN is expected to be highly localised, and so a plane 

wave basis set would have to be large to reflect this. Secondly, the efficient and 

(in principle) exact evaluation of the two particle, four-centre integrals required 

in a full ab-initio calculation using a local basis is only possible if the basis set 

is composed of Gaussians. Thirdly, the potential energy surfaces on which the 

HLN moves will be expected to be at least approximately harmonic in nature, 

and so the Gaussian, which is the general form of the solution to the harmonic 

oscillator Schrodinger equation, is a natural choice.

Since the HLN is a distinguishable particle, there can be no exchange inter­

action with the electronic components of the system. There can, however, be 

electron-HLN correlation effects that will be ignored in the Hartree-Fock approx­

imation. These effects will be considered in detail in Chapter 4, but the general
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form for the Hamiltonian matrix elements will be given by

/ \ *0715 £lec
H\ a N = U>\   ^ ) + X l <5<(Allr i _ r e l~1| <7) - X ! P7‘' ( A<TI7I' ) +V^

' ' i ~f,v
(2.34)

where 7  and z/ cycle through the electron basis functions, P^v is the associ­

ated electron density matrix element, and Vx represents the contribution to the 

matrix element from electron-HLN correlation.

2.3 Evaluation o f M olecular Integrals in a Gau­
ssian Basis

Although well-established commercial programs which implement the methods 

described in Section 2.1 already exist, the quantum mechanical modelling of 

the hydrogen-like nucleus in this thesis required additional code to be written 

and incorporated into these programs. Although in principle existing code from 

these programs could be used for the evaluation of the required molecular inte­

grals, it was decided that in an attempt to maintain a well-defined separation 

between a given commercial program and the additional code developed for the 

requirements of this thesis, new code would be written for the evaluation of the 

integrals. In this manner, it was hoped that the code could be relatively easily 

transferred between programs.

Detailed accounts of the methods required for the evaluation of the molecular 

integrals are few and far between, although they do exist [26]. It will therefore 

be a useful reference to outline the methods used here. In addition, some of 

the problems that can occur in the implementation of these methods will be 

considered, since it would appear that these are not mentioned in the literature.
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2.3.1 Prelim inaries

There are some basic mathematical concepts and techniques which prove useful 

in the evaluation of molecular integrals. These are the Gamma function, the 

Gaussian product theorem, and the Laplace transform.

T he G am m a Function

The Gamma function is a generalisation of the factorial function, and is defined

these terms can be recast, via application of the Laplace transform, into a form 

which allows the integrals to be evaluated using quadrature methods. The 

Laplace transform is defined by

as

(2.35)
o

and has the following properties

T ( n + 1 ) =  nT(n).

T(l) =  1 (2.36a)

(2.36b)

(2.36c)

It will be shown that the Gamma function can be used for the evaluation of

both the overlap and kinetic energy integrals, in addition to being of use in the 

following section.

T he Laplace Transform

The Coulomb integrals, by definition, contain terms of the form |r — rp| \  and

oo
(2.37)

o
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Setting t =  |r — rp\2 and g(p) = p I gives
oo

C (|r -  rp|2) =  f  p~i exp [ -  |r -  rp |2 p] dp. (2.38)

o
Making the substitution u = |r — rp\ p allows the integral to be written in the 

form of a Gamma function;
oo

C (|r — rp|2) =  |r — rp | _1 J u ~ i  exp [—u] du
o

and so finally

r  — r„l =1 = - ^ = J  p 2 exp [ -  |r  -  rp|2 p] dp.

(2.39)

(2.40)

T he G aussian P ro d u c t Theorem

The Gaussian product theorem states that the product of two (or more) Gaus- 

sians is itself a Gaussian. This can be verified by considering

exp [~a(r -  rA)2] x exp [~P(r -  r s )2] =  K  exp [~7 (r -  r P)2] (2.41)

where

7 =  a  + 1$

K  = exp
7

r P =

This result can be generalised to treat Gaussians more familiar to electronic 

structure calculations, of the form

Ga (r) =  N a ( x  -  x a ) 1a  (y -  yA)mA (z -  z a ) Ua exp [~a(r  -  r A)2] . (2.42)
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Boys [10] has shown that the {I a , rriAi ^ a } of Equation 2.42 are closely related 

to the angular momentum quantum numbers. Now,

(x -  Xa)‘A = ((x -  Xp) +  (xp -  XA))1a

=  E  ( ^ )  (Xp ~ xA Ia~'a (x -  xp),A (2.43)
lA=0

where xp  is arbitrary, and (j*) is a binomial coefficient. This can be extended(l  A
j u p  c l l u i u i e n j ,  ciiiu . \

to give

lA Ja—ia{x -  xa )1a (X -  xb )1b = (XP -  Xa )
M=o \ lA'

x ( l * )  (xp -  x B)‘a- ia (x -  xp)iA+iB

*A=0 *5=0
Ia+Ib 

X ^ ( l -  Xp)kx
hx —0

Ia+Ib
= ^ 2  fkx(lA,lB, xAi x B)(x -  Xp)kx (2.44)

kx—0

where

f k x ( l A , l B , X A , X B ) = ti) Cb) X̂p ~ X̂ lA tA X̂p ~ XB l̂B tB ’ 2̂‘45̂iA=o»B=o
for the remainder of this section, fkx(lA,lB,XA,xB) will be reduced to fkx for 

brevity. Using the procedure defined above for the y and z components of Equa­

tion 2.41 yields
Ia+Ib mA+ms

GA(r)GB(r) =  k n a n b ^ 2  f kx( x - x p ) kx ^ 2  fkv( y - y p ) kv
kx=  0 ky =0

n-A+nB
x ^ 2  ~ zp)kze x p [ - j { r - r P)2] (2.46)

kz= 0

and the Gaussian product theorem takes on its most general form.
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2.3.2 R ys Quadrature

Rys quadrature is a numerical method for evaluating integrals of the form

i

1 = J  t2mexp [ -X i2] dt. (2.47)
0

It will be shown in sections 2.3.5 and 2.3.6 that both the potential energy and 

Coulomb integrals can be reduced to this form, and so successful evaluation 

of Equation 2.47 will be sufficient for the evaluation of all necessary molecular 

integrals.

Rys quadrature, like any quadrature method, uses a set of polynomials or­

thogonal with respect to a certain weight function and over a certain range of 

integration. For the case of the Rys polynomials, Rn (.X , t), the weight function 

is

W(X, t) = exp [~Xt2] , (2.48)

and the range of integration is 0 < t < 1 . Any set of polynomials, orthogonal 

with respect to the weight function W  (x ) over the interval a < x < b, have the 

following property [28];

r
/ p\  (x ) W  (x ) dx = E  +  e, (2.49)

a J'=1

where p\ (x) is a polynomial of order A in x, and e is a measure of the error 

in the numerical procedure e =  0 ifn  > A/2, and so the evaluation of a given 

integral can be exact using this method. Xj is the j th  abscissa of the nth order 

polynomial, and ujj is an associated weight. For the ‘classical’ orthogonal poly­

nomials, such as the Legendre, Hermite, or Chebychev polynomials, there are 

well known analytical expressions for obtaining these weights and abscissas (see, 

for example, Section 4.5 of [105]), but no such analytical method is known for the
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Rys polynomials. Before this point is addressed, however, the construction of 

the Rys polynomials themselves will be considered. This is most easily achieved 

by constructing the set of polynomials Jn(X, t), orthogonal with respect to the 

same weight function as the Rn (X,t) , but over the interval — 1 < t < 1. The 

Jn(X, t) are related to the Rn (X , t ) via

Rn{X,t)  = ^/2J2n{X,t),  (2.50)

and so it can be seen that the Rn (X , t) are the set of even Rys polynomials, and 

can be thought of as functions of t2.

Any set of monic orthogonal polynomials satisfy a three-term recurrence re­

lationship [125], and this relationship will be easier to apply using the Jn(X,t).  

The recurrence relationship is

Jn+l(X, t) = ( t -  an)Jn{X , t) -  (3nJn-l(X , t), (2.51)

where

_  fU * (X , t )W (x , t )d t  
Q" “  f  J*(X,t)W(x,t)dt  (2'52a)

f  4 ( x , t ) w ( x , t ) d t  
A* =  J J l . 1{ x , t ) w ( x , t)dt' (2-52b)

with initial values /50 =  f W ( X ,  t)dt, J0 = 1 , and J_i =  0. The recursion coeffi­

cients were calculated following the recommendation of Sagar and Smith [117].

This involves application of Fejer quadrature [47], for which the analytical form

of the abscissas, and weights, are given by
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0 .0 2  n

0 .01 -

o  0.00
1.0

- 0.01 -

- 0 .02 -

-0.03J

Figure 2.1: Rys polynomials ^(10,2), n — 1, 2, 3, 4, 5

0.06 n

0.04-

0 .02 -

0.00
1.0

- 0 .02 -

-0.04-J

Figure 2.2: Rys polynomials Rs(X,t), X  = 2.5, 5, 10, 20
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Equations 2.53a and 2.53b, along with Equation 2.49 can then be used to numer­

ically evaluate an and f3n, with N  being increased until convergence is achieved. 

The Jn(X,t),  and hence the Rn(X,t ), can then be calculated using Equation 

2.51, and the Rys abscissas and weights can be evaluated using standard tech­

niques [105]. Figures 2.1 and 2.2 show the dependence of the Rys polynomials 

on n and X.

2.3.3 T he Overlap Integrals

The overlap integrals take the form
OO

S a b  = J  GA(r)GB(r)dr
— OO

= (Ga IGb ), (2,54)

where G/v(x) take the form of Equation 2.42. Applying the Gaussian product

theorem of section 2.3.1 yields

Sab = K N ANBUxUyUz (2.55)

where
°° (ll+ll)

^ 2  fa* fa _  qp)2kq exp [- 7 fa ~  qp)2] dq- (2-56)
kq= 0

Here, terms for which kq is odd have been dropped since these terms correspond 

to odd functions, and so their contribution over the range of integration will be 

zero. Now, making use of the standard integral
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gives

u ^ = r A 1/2(l^ ) h k,(2kq - m (2.58)
(27)*

and so S a b  can be evaluated. A similar procedure can be applied to obtain the

normalisation constants, giving

1 =  r_7rN3/2 (21* -  i)!!(2/» -  1)!!(2^ -  1)!!
N \  V2a ) (4a)

2.3 .4  T he K inetic Energy Integrals

(2.59)

The kinetic energy integrals are defined as

G b (t )

=  2 (VC?A(r)|VGB(r)>.

Noting that the kinetic energy operator is spatially separable, i.e.

(2.60)

r p  _ r p x  , r p y  . r p z
J-AB — J-AB +  1 A B  +  1 AB^ (2.61)

where
d_

dx G b (t ) ) ,

and similarly for T \ B and T fB. Simplifying the notation to

G A (T) =  \rA ,pA ,FA )

(2.62)

(2.63)

gives

and so

d_
dx Ga {r) =  lxA \lxA ~  1,1% Ta ) ~  2 a  \lxA + 1 , l \ ,  TA) , (2.64)

rp x  
1 A B W b (lXA -  1- Ct. 1aWb -  1- lyB, 1%) + 4a/3 (lXA + 1,JJ, Ta \Ixb + 1 , »l> 

-2/JZJ <£ -  1, l\ , +  1, II, I%). (2.65)
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Similar results can be obtained for T \B and T |B, and so Equation 2.60 can be 

evaluated.

2.3.5 T he P oten tia l Energy Integrals

In atomic units, the potential energy integrals have the form

Vc = (Ga(r) ||r -  r d -1! GB(r)) , (2.66)

and measure the potential energy between a point charge at vc and the charge 

density defined by G a {t ) G b (t ).  Using the Laplace transform, and twice applying 

the Gaussian product theorem, allows the integral to be written as
oo

Vc = KN̂ B J  A(p)p-1/2JxJyJzdp, (2.67)

where
Oa+'S )/2 “

Jx = ^ 2  h kx ( x -  xQ)2k* exp [-B (x -  x q ) 2 ] dx
l   n  Jkx= 0

(lxA+lxB) /  2
_ /T ry /2  h k x {% kx — I)-

r t p  'A(p) =  exp y - —  (rp  -  rc y

7 =  OL +  P

9  =  7  +  p

ax  a +  fixB +  pxc
=   ~e----------

a r A +  p r B 
r p  =  --------------- ,

7

and Jy> J z i V q ,  z q  are defined similarly. Making the substitution t 2 =  p/  (p +  7 ) ,  

and noting that 0  =  7 /  (1  — t2), gives

C\  _  +2 \ \  1 / 2  ( 1a + 1b ) / 2 .  _  2 \  k x

g  ( — )  h kx(2kx — 1 )!! (2 .6 8 )
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and
1

Va = 2K̂ 3 /  ( l ^ )  (2-69)
o

Letting Ix = (7 / ( 1  -  t2))1/2 Jx gives

Vc = 2itK^ aNb J  A{t)IxIyhdt. (2.70)
0

Now, Ix is a polynomial of order l \  + lxB in t, and similarly for Iy and Iz, therefore 

IxIyIz is a polynomial P\(t) of order A in £, where

A = lxA + lxB + rA + t?B + lzA + l%, (2.71)

and so

Vc = 2vKNaNb j  Px(t) exp [-X i2] dt, (2.72)
T «/

0

where X  =  7  (rp — re )2. Equation 2.72 is of the form to which Rys quadrature 

can be directly applied, allowing Vc to be evaluated exactly.

2.3 .6  T he Coulom b Integrals

In atomic units, the Coulomb integrals are of the form

00 0 0

Ic = J  J  GA(r1)GB{T1)\r1-T 2 \~1Gc(r2 )GD(r2)dr1dr2

— 0 0  — 0 0

=  (AB\CD),  (2.73)

and measure the average potential energy between two charge densities described 

by the coordinates r i and T2 respectively. Applying the Laplace transform, and 

the Gaussian product theorem to GaGb and GcGd  gives

Ic = K ab K cd NaNb NqNd

7 *

0 0

J  p -^ 2VxVyUt dp, (2.74)
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where

Ux = J  J  (x 1 -  X a T a  ( x i  -  X b ) 1*  ( x 2 -  XcT0 (x2 -  x d ) IXd

-oo —oo

exp [~p(xi -  x2)2 -  £1 (xi -  xP)2 -  e2 (x2 -  x q ) 2] dridr2

£\ — OL +  (3 

£ 2  =  7  +  8

ax a +  (3xbxP =

x q

£ 1
7 x c  +  SxD 

£2

Applying the Gaussian product theorem twice more gives

Op (rP -  rQ)2
- % f p 1/̂2exp

6 + p JxJyJzdp, (2.75)

where 0 = £\£2/  (£1 +  £2)5 and K N  =  K abK cdNa N b NqN d . Maldng the trans­

formation t2 = p/{0 +  p) , Jx can be evaluated as

Jx --
Ti-2 \ 1/2^ /2 (2kX2 -  1)!! X  X  ( l c

V1V2

\ v -̂  / <>c \ / Id
)  t (2 t)2) ^

X

kx2 —0 ' '2 / ic=0

(L-io-iD)/3 f  (2kxi -  1)!! /  P  X i c + i D - i c - i D

E
fcxi —0 (2 %)' 'a;!

(2.76)

where

l A  IB I c - i c l D —i D  / /  \  / ;  \  / ;  • \  /

■ e e e e  i  :
iA= 0 iB=0 j c =0 j D=  0 \ A /  \ B /  \  JC' /  \

X ( * !  -  X B ) l° - iB ( X !  -  X l ) lC~ iC~ iC  ( S l  -  X 2 ) lD~ i D ~ jD

Id — / _  x
(® i -  x a )

3 d  J
Ia—ia

(2.77)
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kxi — ia +  Ib +  j c  +  3d

L  =  IA +  Ib  +  l c  +  I'D

, P£  2r)\ -  £i + TZ7~P +  £ 2 

r\2 =  p + e2
-  {lXC +  SxD +  E2Xp) t2Xl =   ; b Xp

£ i  +  £2
_  8(xc - x D) ( l - t 2)

Xl ^  +  C
. .  _  7 (* d  -  i c ) ( l  -  i 2) , _
X2 -  ------------ w --------- + XD■

Letting Ix =  y/7]1r}2Jx, and similarly for Jy and Jz gives

2 K N  / / *  
h  = (£ £ )3 /2  ( - J  J  I J y h  exp [ -X t2] dt, (2.78)

where X  = 9 (rp — tq)2 , and, with IxIyIz being an even polynomial in t, Rys 

quadrature can be directly applied.

C om putational Considerations

Although the formulae given in Sections 2.3.3 - 2.3.6 are sufficient to evaluate all 

molecular integrals needed in a self-consistent field calculation, there are some 

computational factors which should be considered. In particular, for relatively 

small basis sets, such as the 6-31G set used throughout this thesis, angular 

momenta numbers are never larger than ln = 1 , and so the computationally 

costly multiple summations required for the evaluation of the 1-dimensional in­

tegrals In can be reduced dramatically, and in some cases removed altogether. 

In addition, symmetries in the basis function can be exploited to rapidly iden­

tify non-contributing integrals. Finally the limiting behaviour of terms of the 

form m  =  (xp — xa)1a~%a, which arise during application of the Gaussian prod­

uct theorem, should be considered. For xa — xp, it can be readily seen that
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Xp — XA — 0 , and so, for Ia ~ ^ a = 0 , indeterminate values of m  are encountered. 

The limiting behaviour is easily seen to be that, for I a — ia =  0, m  —> 1 as 

xp — XA —► 0 .

The numerical accuracy of the solutions to the molecular integrals presented 

in Sections 2.3.3 - 2.3.6 were verified using Mathematica, and found to be accu­

rate to ~  12  decimal places.

2.4 Herring’s Formula in Three Dim ensions

Herring’s formula was originally derived [61] for the purpose of obtaining a zeroth 

order approximation to the singlet-triplet splitting in the H2 molecule. The same 

approach can be used to obtain an estimate of the tunnel-splitting energy in a 

symmetric double potential well. This energy is a measure of the splitting be­

tween the lowest energy states in the presence of a finite barrier between the two 

wells, and can be related to the probability of a tunnelling event occurring [87]. 

The original derivation of Herring’s formula only considers a one-dimensional po­

tential, but this thesis requires a three-dimensional version of the formula. This 

formula can then be used to estimate the tunnel-splitting energy of a hydrogen­

like nucleus in the presence of more than one identical potential energy minima. 

The following two sections show the derivation these forms of Herring’s formula 

for the first time.

2.4.1 The Double Potential Well

The derivation presented here follows that of Landau and Lifshitz [76], but ex­

tends the approach to encompass three dimensions. Consider the two functions
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ifA = 7 !  V’ ^  ~~ ^  ’ (2.79b)

where there is a plane of symmetry between cpL and (pR. These functions rep­

resent the zeroth order approximation to ground and first excited states of the 

symmetric double potential well, and it is assumed that the product VlVr 1S van“ 

ishingly small everywhere. Under this approximation, two Schrodinger equations 

can be defined. In atomic units, these are

V 2(pR(x, y , z) + 2m(ER -  U)ipR = 0 (2.80a)

V V 5 (x, y, z) +  2m(Es -  U)ips =  0, (2.80b)

where m  is the mass of the tunnelling particle, U represents the double potential 

well, Er gives the energy of the particle when confined to one well, and Es  

gives the energy of the symmetric ground state described by Equation 2.79a. 

Multiplying Equation 2.80a by (ps , Equation 2.80b by tpR, and rearranging yields

Vs V 2<Pr ~  <Pr V2<PS = “ 2 m (ER -  Es )(pR(ps - (2.81)

With no loss of generality, the system can be rotated so that the plane of sym­

metry between (pL and cpR is the y — z plane, and the plane intersects the x-axis 

at x  =  0. In this case we have the relationship

<PRfay,z) = <pL{-x ,y , z ) .  (2.82)

Equation 2.81 is valid over all space, and so there is freedom in the range of 

integration used to evaluate ER — ER- Choosing the ranges 0 < £ < oo, — oo < 

y < oo, —oo < z < oo gives
oo oo oo

/ / /  (<PsV12Vr -  <Pr V2<Ps ) dx dv dz
—oo —oo 0

oo oo oo

=  —2  m(ER — Es) f f j  (pRipsdx dy dz- (2.83)
-oo  —oo 0
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Now, since <PlVr is vanishingly small everywhere,

Vr Vs  ~  ~ ^ f R & L Vr )

V2 A (2.84)

and so the right hand side of Equation 2.83 can be evaluated as

oo oo oo oo oo oo

2 m(ER — Es) J  J  J  Vr Vs  dx  d y  d z  ~  V2m(En — Es) I I I  (f2R dx  d y  d z
—oo —oo 0 —oo — oo 0

= V2m(ER — Es)- (2.85)

The left hand side of Equation 2.83 can be rewritten

oo oo oo

/ / /  {<Ps V 2(Pr -  <Pr V 2<Ps ) d x d y d z  

d2VR

—oo —oo 0 
oo oo oo

—oo —oo 0
dx2 ™  ™  dx2

R ~ ‘  ^ 1 d x d y d z ,

& < P s \  , (& <P r .. ..  Q2Vs+  I - ttttVs  -  Vr 'dy2 dy2

(  &V..
V~9l ^ s  -  9 r  d z 2

(2.86)

and the first term on the right hand side of Equation 2.86 can be evaluated by 

considering the one dimensional integral

d2ifR d2(ps  i ,
V s  ~  Vr - ^ t  I dx =dx2 dx2

9Vr
dx V s  ~  Vr

dvs
dx

oo

- I
x=0

dVRdi£s_ _  dVs d v R 
dx dx dx dx

dx

®Vr
dx V s  ~  Vr

dl£s
dx

(2.87)
x=0

Since cps  is a symmetric function with respect to a:,

d y s
dx

= 0 (2.88)
x = 0
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and

V ŝl:c=0 — ^2 ^Pl \x=Q +  {P r \x= q)

= V2(pR\x=Q. (2.89)

This gives
oo oo  oo

9 Vr Vs -  f s ^ z r  ) dxdydz ̂ dx2 rH dx2
—oo —oo 0

oo oo

=  - V 2  J  J  <pR( 0 , y , z ) ^ ^ 1̂ -d y d z ,  (2.90)
—oo —oo

where the notation is obvious. The second and third terms can be evaluated in 

a similar manner;
oo oo oo

I I I  & lps-'fiR̂ ) dxdydz
—oo —oo 0

m _ _ y= —oo
- o o  0 \  y 0

=  0, (2.91)

and so Equation 2.83 can be rewritten as
oo oo

(Er  — Es) = ~  j  J  VK(0 , y , z ) ^ M A dydz. (2.92)
— OO — OO

A similar equation to Equation 2.80b can be defined for <pA, yielding (EA—ER) =  

— (Es — ER), and so the tunnel-splitting energy AE  can be written as
oo oo

A E  =  Ea -  Es =  J  J  M O , y, z ) 9^ ^ ’z '> dy dz. (2.93)
—oo —oo

The time evolution of the wavefunction of a particle localised in one of the wells
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can be written in atomic units as [87]

<p(x,y,z,t) = exp ~ 2 ^ s +  ^A)t

V s  +  VA cos ( +  s i n ( M t j < (2.95)
%/2 V 2 /  V2 V 2

and so it can be clearly seen that after a period given by

r  =  2 tt/A £  (2.96)

the particle has tunnelled from the original well into the other, and back again. A 

tunnelling frequency can therefore be associated with the tunnel splitting energy.

2.4.2 T he Triple P otentia l W ell

A three-dimensional version of Herrings formula can also be derived for the 

case of a particle tunnelling between three identical potentials located on the 

vertices of a equilateral triangle. Again, the ground state and lowest energy 

excited states can be constructed as linear combinations of the localised functions 

corresponding to the solution of the single potential well Schrodinger equation. 

These states are

(fs = +  (2.97a)

P̂ai = - ^ [ v a(x , y , z ) ~Vb(x , y , z )\ (2.97b)

VA2 = ^ b a ( a7»2/^ )  +  ^ f e 2/ ^ ) - 2 ^ c(a;,2/,^)]. (2.97c)

The derivation of the tunnel-splitting energy in this case will be made much 

easier by first considering the nature of the splitting about the ground state

energy, Eo, of a particle localised in one of the wells. In the case of the double

potential well, the nature of the splitting is easily seen to be symmetric about
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E0 since, from Equations ?? and ??, it can be seen that the expectation values 

of the Hamiltonian are given by

Es =

= Eq +  J  

Ea = \ { { p L 

— Eq ~ J,

H

H <Pl ) +  \<Pr

H

H

W  + 2 (<£l H

H

»

»
(2.98a)

where \ p L 

is given by

H V i } /  — P r H

(2.98b)

ipR ) =  Eo, and the tunnel-splitting energy, AE,

(2.99)A E  — 2 J  — 2 (^pL H  .

Applying the same procedure to the triple well, we obtain

Es = 5 ((^  E  {f>a) + E Vb) + E  'Pc)
+2 (<pa H ipb̂  +  2 5  </>c)  +  2 ^ 6  -&| V c ) )

= £ 0 +  27 (2 .1 0 0 a)

E A 1  =  ^  ( ( v o  8  V o )  +  (v& ^  V i , ) - 2 (V o  #  V i ) )

=  £ 0 -  ■/ (2 .1 0 0 b)

S A2 =  1 ((vo 8  <pa)  +  i f  <ft) +  4 H  v c)

+2  

=  Eq — J,

H ^c) - 2 ( < ^ 6 ■»
(2 .1 0 0 c)

and so it can be seen that in the case of the triple well, the tunnel splitting is not 

symmetric about the ground state, but consists of a ground state 2 J  below the 

single well ground-state, with a doubly degenerate 1st excited state of energy J  

above the ground state.
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Equation 2.100b has the same form as Equation 2.98b, and so a pair of 

Schrodinger equations analogous to Equations 2.80a and 2.80b can be con­

structed for the triple well. The energy separation between E q  and the excited 

states will be identical to that for the double well, since the potential U  is elim­

inated in Equation 2.81. The energy difference between Eq and the symmetric 

ground state is double the magnitude of this, and so the tunnel splitting energy 

can be written as
oo oo

A E  =  E A1 -  E s  =  Em  -  E s  =  £  J  J  <fiR ( 0 ,y , z )dv’* ^ y ' z '> dy dz. (2 .1 0 1 )
—oo —oo

Equation 2.101 shows an amplification of the tunnel-splitting energy, and hence 

the tunneling rate of a particle in a triple potential well compared to that in a 

double well. This amplification can be attributed to the fact that there are two 

distinct diffusion pathways in the triple well system, and so during the vibrational 

motion of a particle trapped in a single well, a higher proportion of tunnelling 

events can occur.

The time evolution of the three well system is not as a simple as that of the 

two well system. Here, a particle initially localised in any one given well will 

never localise completely in any other well. However, it is still correct to say 

that if a particle is localised in any given well at t =  0 , then the particle will 

continue to localise in this well with the period given by Equation 2.96, and so 

a tunnelling frequency can still be associated with the tunnel-splitting energy.

As will be shown in Section 3.3, A E  is a very good approximation to the exact 

tunnel-splitting energy for physically realistic ips and cpR. Herring’s formula is 

particularly useful in that it allows an evaluation of the tunnel splitting energy 

using only the symmetric ground state. Since the accurate evaluation of excited 

states is very difficult using self-consistent field techniques, Herring’s formula
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becomes very valuable here. Herring’s formula is also useful in models where 

the electronic motion cannot be correlated to that of a tunnelling hydrogen-like 

nucleus, such as in the parametrised correlation model presented later in this 

thesis.



Chapter 3 

Analytical Examples; The 
Harmonic Oscillator

The harmonic oscillator is a powerful analytical tool in quantum mechanics, with 

a Hamiltonian for which the Schrodinger equation has straightforward yet non­

trivial solutions. Intractable problems, simplified and recast in a form to which 

these solutions can be applied, can be used to reveal general physical proper­

ties of systems of interest. For example, this approach has been used to better 

understand the errors introduced by the application of the Bom-Oppenheimer 

and Hartree-Fock approximations [91, 92]. In this chapter, the harmonic os­

cillator will be used to illustrate physical phenomena relevant to this thesis. 

Firstly, it will be used to study the behaviour of the variational method when 

isotropic functions are used to model anisotropic functions. Secondly, the har­

monic oscillator will be used to derive exact analytical expressions for the one 

tunnel-splitting energy, allowing a critical study of Herring’s formula [61] to be 

made. Finally, and of most importance, the calculations of [92] will be extended 

to allow a detailed study of the behaviour of the electron-nuclear correlation 

energy as a function of nuclear mass, of great importance in the remainder of 

this thesis.

77
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3.1 General Solution to the Harmonic Oscilla­
tor Schrodinger Equation

In three dimensions the harmonic oscillator Hamiltonian is defined (in atomic 

units) as

** = ~ ^ m  +  \ m ^ x2 +  U)yy2 +  “ t*2}' t3,1)

This can separated into three one-dimensional Hamiltonians, corresponding to 

simple harmonic motion in that dimension. For each of these we have the 

Schrodinger equation

~ 2 m H 5  +  = (3'2)

and the solution to this equation gives an infinite set of eigenstates of equally 

spaced energies

<pn(i) = NnHn(y/ai) exp[-m 2], Eni =  ( n  +  (3.3)

in atomic units, where Hn (y/ai) is the Hermite polynomial of degree n. Of par­

ticular interest is the ground state harmonic oscillator wavefunction, a Gaussian 

function given by

/ m j \ i
Vo W =  {— ) exP

m ud 21
E0 =  (3.4)2

Gaussians are often used as the primitive basis functions in electronic structure 

calculations. These functions allows for the exact evaluation of four centre, two 

particle integrals, a necessary requirement in ab initio calculations.

3.2 The Variational M ethod

In this section, the quality of an isotropic two dimensional harmonic oscillator 

wavefunction (i.e. one for which u x =  ujy) as an approximation to an anisotropic
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wavefunction (for which u x u y), will be discussed. We take as our starting 

point Equations 3.2 and 3.4. Applying the variational method with a trial wave­

function (p (x) = exp [—ax2] would yield the exact ground state wavefunction, 

with a = mu/2.  Now consider the two dimensional harmonic oscillator, with 

the Hamiltonian

= -L (S +w)+j  + ^  ■ (3-5)

The ground state for this Hamiltonian is given by

. N / m \  2 / vi r m  / o o\l u x u y , N
<£o (X’2/)= ^ J  { u x U y ) * e x p (uxx + u yy )  , E0 = ---- — S (3.6)

allowing different degrees of localisation in the x and y directions. If an isotropic 

trial wavefunction
i mu

(*2 +  y2)

is used, then the energy of this function Et > E0, is given by

Et = ( v t (x,y) H <pt ( x , y ) /

(3.7)

(3.8)

Now, both the Hamiltonian and the trial wavefunction can be separated into 

their respective x  and y components, and so

Et =  Etx + Ety = (ipt (x) Hx ipt (x)^ +  (y) Hy <pt (y . (3.9)

These expectation values can also be separated into kinetic and potential energy 

terms, giving

Ttx — —

Tty

u
4
u
4

V -  mVtx — .4u  
u 2

\ r  — V
ty ~  4u

(3.10a)

(3.10b)

(3.10c)

(3.10d)
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giving

and

Et -  —  (2u? + uj2x +  u 2y) ,

Et — Eq — —  ((a; — lox)2 +  (a; — ujv)2) .

Et is minimised by finding

—  = 1 -  —  +U)2) =  0 ,(fa 4/.i2 \ ^ ^ x ^ ^ y )

which is satisfied by

4cj2

uj =
6J 2 +  UJ2 1 y

(3.11)

(3.12)

(3.13)

(3.14)

Figure 3.1 shows the variation of oj, and therefore of the energy, of the isotropic

2 .On

0.4-

0 .2 -

0.0
0.0 0.2 0.4 0.6 0.8 1.0

A (a.u)

Figure 3.1: Comparison of lj, ujx, and u y as functions of A
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approximation to the anisotropic wavefunction as the difference between u x and 

ujy is increased. Letting

u x =  o;m + A, (3.15a)

u y =  u m -  A, (3.15b)

gives

u  =  + A 2, (3.16)

and it can be clearly seen that as the difference between ujx and ujv  increases, 

so the variationally optimal frequency uj  favours the higher frequency ujx . This 

feature of the variational method shows that in a system where the potential 

energy is not an isotropic function, e.g. in the case of the potential energy 

along and across a molecular bond, the variational energy will be minimised by

a function favouring the more localising potential. This further implies that with

a small basis set, but one which adequately spans the parameter space of each 

potentials well, it would be expected that the more energetic components of a 

given state would be better approximated.

3.3 The Tunnel Splitting Energy

Consider the ID potential energy function

V{x) = \muj2 (\x\ — x0)2 . (3.17)£

This function (see Figure 3.2) describes a double potential well separated by

a barrier of height Vo =  \muj2x §. A sensible set of trial wavefunctions would

therefore be

<P+(X ) =  /2( i ^  S a s  ̂ ( ‘P a ( ^ )  +  <Pb ( * ) )  (3-18a)

V - i ? )  =  /2(! \  S a b ) ~  'P b ^  (3.18b)
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where

(T)3<Pa (.x ) = ( —  I exp

P bW  =  ( ~ ) ‘ exP

- - m u  (x -  x0}‘ 

- ^ m u  (x +  x0y

(3.19a)

(3.19b)

and

S a b  =  J  <-Pa{x ) V b { x ) d x • ( 3-20)

(p+ and ip_ are therefore the symmetric and antisymmetric combinations of the 

exact solutions to the Schrodinger equation for the harmonic oscillator potentials 

V(x) = \ m u 2 (x  ±  xq)2 . In the limit xo —> oo, ip+ and are the exact solutions 

to the Schrodinger equation for the potential of Equation 3.17. The tunnel 

splitting energy A E  is defined as

A E  =  E— — Ej (3.21)

where

E -  = (y>+ 

E-  = (<p-

V + )

<P-

TJ 1 d2 \  2 f\ \ \ 2

H  = - 2 ^ d *  + 2mU1 (|X|" X0) '

(3.22a)

(3.22b)

(3.23)

The Hamiltonian can, of course, be separated into kinetic and potential energy 

contributions and so the tunnel splitting energy can be expressed as

A E  = A T  + A V  = (T_ -  T+) +  (V_ -  V+). (3.24)

Letting x  =  VrnoJXo, the kinetic energy term is given by 

S a bA T  =
-  S a b )

u x 2ex p[x2] 
exp[2 x2] -  1 ’

J dx —
m( 1 S a b ) !  ¥ a {x W b {x ) d x

(3.25)
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V(X)

V(0)  =  \ m ( o zx {

x o0

Figure 3.2: The double potential well described by Equation 3.17. 

and the potential energy term by

AV =  —2 m u  J  (|z| — Xo)2 ipA [ x ) y B {x)  d x

2u x  (exp[x2] ~ 1) 2ujx2 exp[x2] (1 - 2  erf [x])
a/tF exp[2x2] -  1 exp[2x2] — 1

This gives for the tunnel splitting energy

* p  X 2ux2 exp[x2](l-e rf[x ]) .  .

yjn 1 + exp[x2] exp[2x2] -  1

For large x, (^o (mw)”5), Equation 3.27 reduces to

AE =  ^  exp[-x2], (3.28)y/TT

which equals the value for the tunnel splitting (in a.u.) given by Herring’s 

formula [61]

A E  =  ^ ( 0 ) ^ ( 0 ) .  (3.29)m
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Method AE  (a.u.) A E  (eV)

Numerical 
Analytical 
Herring’s Formula

2.364 x 10" 4 

2.320 x 10“ 4 

2.322 x 10~ 4

6.433 x 10" 3 

6.318 x 10" 3 

6.314 x 10~ 3

Table 3.1: Tunnel splitting energy for the double harmonic potential well

Figure 3.3 shows the two lowest energy numerical solutions to the Schrodinger 

equation for the potential of Equation 3.17 with u  = 0.01 a.u., m = 206.7683 

a.u., and x0 — 1.5 a.u. This value of m  is the muon mass, and the values of u  

and xo are those for which physically realistic energies can be obtained. Table

3.1 shows the tunnel splitting energy for this system as calculated numerically, 

and using Equations 3.27 and 3.28. This shows that Herring’s formula is a 

good approximation to the analytical tunnel splitting energy for the parameters 

described above. Furthermore, Table 3.1 shows that the basis chosen for these 

calculations is highly accurate. Figure 3.4 shows how Equations 3.27 and 3.28 

behave with u  = 0.01 a.u. and m = 206.7683 a.u. as Xq is varied. As x0 —► 0, 

and the potential barrier tends to zero, the analytical solution gives AE  =  0 .0 1  

a.u. This is in fact the difference in energy between the first excited and ground 

states, as would be expected since the double harmonic well reverts to a single 

harmonic well in the limit xo —► 0. Figure 3.4 also shows the zero point energy 

and barrier height for this system, and a tunnel splitting energy can only be 

defined for this system when the barrier height is greater than the zero point 

energy, which occurs for x  > 1- F°r values of x ^  1-5, Herring’s formula gives a 

good estimate of the tunnel splitting energy. In Section 2.4, Herring’s formula is 

derived in three dimensions, but in this case, since the eigenvalues of the system 

are separable, the contributions to the energy in the y and z directions cancel.
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Figure 3.3: Symmetric (<p+) and antisymmetic (</?_) wavefunctions for the double 
harmonic potential well. The potential energy surface V(x) is shown as a guide 
to the eye

0.015-,
Barrier Height 
Exact
Herring's Formula 
Zero-Point Energy

0.010

<ur"
w 0.005-

0.000
0 2 31

/Kau.)

Figure 3.4: Comparison of the exact tunnel-splitting energy and that calculated 
using Herring’s formula
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3.4 The Correlation Energy

The correlation energy cannot be evaluated analytically for particles interacting 

through a Coulombic potential. However, as shown by Moshinsky and Kittel 

[92], if the particles are coupled harmonically, then the correlation energy can be 

calculated exactly. Furthermore, the total energy of the system can be evaluated 

within the Hartree-Fock framework, allowing for a quantitative analysis of the 

error induced using this approximation. The starting point for this calculation 

is the Hamiltonian

#  =  - S - ^ + ^ + ^ + I ( r i " r2)2- (3-30)

The solution to the Schrodinger equation for this Hamiltonian describes two par­

ticles of masses mi and m2 respectively, moving in a common harmonic potential 

of spring constant k, and coupled via the parameter 7 . The following sections 

present the exact and Hartree-Fock solutions to the Schrodinger equation for 

this Hamiltonian.

3.4.1 E xact Solution

To solve the equation

He <Pe (t1i r 2) =  Ee <-Pe (ti> r2), (3.31)

where He is that of Equation 3.30, the Hamiltonian must first be diagonalised.

Making the transformation of variables

r[ =  y/miri (3.32a)

r'2 = y/m^r2 (3.32b)
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transforms the Hamiltonian to

£  = _ V f _ V ?  k T„ * * 1
2 2 2m i 1 2m2 2 2 ^ J (3.33)

The coefficients of the potential energy term can be expressed in matrix form as

Cv —
fc + 7
2m\ 2 /̂77117712

- 7 fe + 7
2-^77117712 27712

with eigenvectors r^  and rB given by

where

1 (2{mi — m2)(fc +  7 ) +  <7 j  , 
fA =  —   r x +  r 2^  v 'n

1 / 2(mi -  m2)(A; +  7 ) -  <r_, ,
=  —  ------------------------------r x +  r 2

nB \  r)

nA = \ / l  +
(2 (777,1 -  m 2)(k +  7 ) +  o)d

nB = \ / l  +
(2(7771 -  rn2)(k +  7 ) -  cr)'

a = \J  4(7771 +  rn2)2(k + j ) 2 — 1 6 A;77ii7772(A; +  2 7 )

7/ =  4^/777177727-

(3.34a)

(3.34b)

(3.35a)

(3.35b)

(3.35c)

(3.35d)

The potential energy term of Equation 3.33 is diagonalised by this transformation 

to rA and r#  and can be written as

V(rA,rB) = i kAr \  +  ^ k B r%,

where

kA

kB

(7771+  7772)(A; + 7 ) 0 - - X
2777i 7772<J

(777i +  7772)(A: +  7)(7 +  X 
2rriim2a 1

(3.36)

(3.37a)

(3.37b)



3. Analytical Examples; The Harmonic Oscillator 88

with

X =  (2 (rai -  m2)2(k +  7 ) 2 +  8 m im 27 2) 

The Hamiltonian can then be written as

(3.38)

He =  Ha + Hb 
V2. 1
2 2= — i r  +  7\kA?A

v2 1 
-7r  +  o ^ r | -

and the Schrodinger equation has a solution of the form

ipE(rA,TB) = Va{*a)Vb(?b),

where

V a ( t a )  = ( ^ )  exp

<P b{*b )  = ( ) exp

\ f k ^ 2A
2

(3.39)

(3.40)

(3.41a)

(3.41b)

and and iV# are normalisation constants. Transforming back to the original 

coordinates gives for the final wavefunction

where

^ ( r i ,  r 2) =  N12 exp [ -  (an r j +  a 22r^ +  a i2ri • r2)] ,

“ 22 = \ l r ^ ( {2~'Sa)K  + {2 + '9 a ) m

and

01 2  =
2 x/m 1m27

C - +  C+ :

(mi — m 2)k
(mi +  m 2)2{k +  7 ) 2 -  4A;(mim2)(A; +  2 7 )

C+ =  \ / 2 ( r o i  +  m 2)(fc +  7 )  +  o

C_ = y/2(mi +  m 2){k +  7 ) -  a.

(3.42)

(3.43)

(3.44)

(3.45)

(3.46a)

(3.46b)

(3.46c)
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Although unwieldy, these terms are presented in full here to allow verification 

of certain limiting cases. Under the condition mi =  m2 =  m, Equation 3.42 

simplifies to

^ ( r x, r 2) =  A12 exp - i  ^Vkrn(ri +  r 2) 2 +  y/(k  +  2 7 )m(ri -  r 2)2) j , (3.47)

in agreement with [91]. In the limit 7  —> 0, where particles 1 and 2 decouple, 

Equation 3.42 simplifies to

^ ( r ! ,r 2) =  ATi2exp (v'fcmirj +  y/krrhrfjj , (3.48)

as would be expected since the Hamiltonian of Equation 3.30 separates in this 

limit.

The energy of the two-particle system described by Equation 3.42 can now 

be evaluated, and is given by

Ee =  2  ( v ^ a  +  V W )

-  v A s K * ^ - ) -  ( !4 9 )

3.4.2 Hartree-Fock Solution

Under the Hartree-Fock approximation, it is assumed from the outset that the

two particle wavefunction can be written as the product of two one particle

wavefunctions, i.e.

V h f ( t  1> r 2 )  = < £ i ( r i ) ^ 2 ( r 2 ) -  (3.50)

The particles satisfy the equations

^ f V i ( r i )  =  £iPi(ri) (3.51a)

# £ W r 2) = £2<P2(t2)- (3.51b)
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where

H i  »> =
2mi +

Expanding the integral gives

/ <£n(r n )  (ri -  r n ) 2 (pn(rn)drn - / V>n(rn)r2<^(rn)drn

+ If  J & ( Tn)< Pn(?n)drn

- 2 r t J  tp*(Tn)Tn<pn(Tn)dTn

= Cn +  r z, (3.53)

assuming that the particles are localised at r  =  0 , which is ensured by the 

presence of the external potential. Equations 3.51a and 3.51b then reduce to

72

(_S  + ̂ +7)r0 ^ l(ri) = (ei -  i r )  ^  (3-54)

+ \  (fc +  7) 4 )  (ftifo) =  ( ^ 2  -  ^ f )  ¥>2(r 2)- (3-55)2777,2

The full ground state solution in the Hartree-Fock approximation is then given 

by
3
4 ,k —)- 7  -

r 2) =  (  o -  ) (777,1777,2)® X
71"

exp V ^ + 7  (V” ir l +  V™2r 2) (3.56)

which, in the limit 7  —> 0 , simplifies to

/  fc  \  4 3

^ i / F ( r l7  r 2> =  ( ^  J ( t77,1 777,2 )  8 e x p - i  +  V « ) |  » (3-57)

in agreement with Equation 3.48. This is to be expected, since in this limit the 

particles are decoupled, and so only experience the external potential.
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The energy of the two-particle system described by Equation 3.56 can now 

be evaluated, and is given by

E HF =  +
HF 2___

=  f \ F - ± 2 (v'SH +  V ^ ) -  (3-58)2 V mi7712

similarities between Equations 3.49 and 3.58 can be observed, but little simpli­

fication is possible when the correlation energy Ec = Ehf — Ee is evaluated. 

Therefore, in Section 3.4.4, the exact and Hartree-Fock energies will be calcu­

lated numerically in order for the dependence of the correlation energy on particle 

mass to be identified. It can be seen, however, that if m2 >  mi, both Ee and 

Ehf show a m ^ 2 dependence, and so the correlation energy would be expected 

to have the same form.

3.4.3 Com parison o f th e W avefunctions

Figure 3.5 shows the variation of the overlap {(-Pe \{Ph f ) with the ratio of the 

coupling of the particles to each other and to the environment, 7 /k.

As can be seen, the Hartree-Fock wavefunction is least accurate for m2 =  

mM, i.e. the approximation becomes better as the heavier particle increases in 

mass. This is to be expected since a heavier particle will have a more localised 

wavefunction, and so less kinetic energy. This implies that the correlation energy 

ignored in the Hartree-Fock approximation will be smaller since this energy term 

arises from the correlated motion of the two particles. If one particle is static, this 

term is zero. The difference between the exact and Hartree-Fock wavefunctions 

is shown in Figure 3.6. These plots were generated for 7  =  1, k = 0.1, values 

that will be shown in Section 3.4.4 to give wavefunctions with physically realistic 

energies. It should be noted that for clarity the wavefunctions have been plotted
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~m =206.7683 a.u. 
m =  1836.6451 a.u. 
m = 3670.4830 a.u.

0.9-

0 . 8 -

i f 07:
Uj

^  0.6 -

0.5-

0.4-

0 10 20 30 40 50
y / k

Figure 3.5: Variation of the overlap (y>E\(PHF) with 7 A  f°r m 2 = mp, m<i}

over all four quadrants of the r x — r 2 plane. In fact the wavefunctions are 

only defined for r l7 r2 > 0. As can be seen, the exact wavefunction shows the 

correlated motion of the two particles, which manifests itself as an increase in the 

two-particle density along the ri =  r 2 axis when compared to the uncorrelated 

Hartree-Fock wavefunction. This correlation can be seen graphically to diminish 

as the ratio of the particle masses increases, as discussed above.

3 .4 .4  C om p arison  o f  th e  S y stem  E nergies

The overlaps shown in Figure 3.5 are independent of the values of k and 7 , 

and only depend upon their ratio. The energies, however, are dependent on the 

specific values of k and 7 , and so realistic estimates of these parameters must be 

made to ensure that the correlation energies calculated are themselves physically
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Figure 3.6: Comparison of exact (a,c,e) and Hartree-Fock (b,d,f) wavefunctions 
for m2 = Trip (a,b), m 2 = mp (c,d), and m2 = m<± (e,f)
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realistic. The coupling parameter 7  can be estimated by finding

( ve  H Ve ) u ~ 0-5-fc=0
(3.59)

This gives the coupling between the two particles that, in the absence of an ex­

ternal potential, gives the energy of the electronic ground state for the hydrogen 

atom. This approximation makes the valid assumption that the kinetic energy 

of the heavier particle is negligible in comparison to other energies. In the limit 

that 7712 —► 0 0  (and the kinetic energy of the heavier particle tends to zero), 

then, setting r 2 =  0 ,

(pE =  exp

and, with k = 0 ;

y /m ii

1V f X o 
=  ~ 2 m i  2

The expectation value of Equation 3.59 is then given by

(3.60)

(3.61)

(3.62)

Setting this equal to E  =  0.5, and solving for 7  gives

7  =  AE2mi 

= 1 . (3.63)

This value for 7  can be used, along with experimental data, to estimate a value 

for A:. A typical zero-point energy for a particle of mass m = m M would be 

ZPEp  ~  0.02 a.u. This zero-point energy can be evaluated, with 7  =  1, for a 

range of values of k , and furthermore, 7  can itself be varied to ensure that the 

value obtained for k is robust against inaccuracy in the value of 7 , which could 

arise, for example, if the electron density associated with the nucleus is less than 

unity. Table 3.2 summarises these calculations, and suggests that k = 0.1 is a
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Figure 3.7: Variation of the correlation energy Ec with coupling parameter and 
particle mass

good approximation. The exact, Hartree-Fock, and correlation energies can now 

be evaluated. Table 3.3 gives these energies. For completeness, energies for a 

range of environment couplings have been calculated, in addition to energies for 

the uncoupled system, for which the correlation energy is zero. The variation of 

the correlation energy with coupling parameter and particle mass can be seen 

in Figure 3.7. Irrespective of the coupling parameters, the correlation energy is 

related to the mass of the heavier particle by

Ec  oc ——f, (3.64)
m |

as expected. Such a simple relationship suggests that something correspondingly 

simple may be apparent when a Coulombic interaction replaces the harmonic one, 

although the actual power dependence may differ.

It can be seen in Table 3.3 that the correlation energy is small when compared



3. Analytical Examples; The Harmonic Oscillator 96

7 k Z P E p (a.u.)

1 0.5 0.0418
1 0 .1 0.0189
1 0.05 0.0134

0.5 0.5 0.0409
0.5 0 .1 0.0189
0.5 0.05 0.0133
0 .1 0.5 0.0385
0 .1 0 .1 0.0183
0 .1 0.05 0.0132

Table 3.2: Variation of ZPEp with k and 7

7 k m2 (a.u.) Ee (a.u.) Ehf (a.u.) Ec  (a.u.)
1 1 2.25029 2.26885 0.01856
1 1 mp 2.16433 2.17082 0.00649
1 1 m d 2.15172 2.15634 0.00462
1 0.5 mp 1.93422 1.96488 0.03066
1 0.5 mp 1.86929 1.87998 0.01069
1 0.5 m d 1.85983 1.86744 0.00761
1 0 .1 mp 1.62185 1.68262 0.06078
1 0 .1 mp 1.58886 1.60992 0.02107
1 0 .1 m d 1.58421 1.59918 0.01497
0 1 mp 1.60432 1.60432 0

0 1 mp 1.53500 1.53500 0

0 1 md 1.52476 1.52476 0

Table 3.3: Exact, Hartree-Fock, and correlation energies for different values of k 
and 7
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7 k 7712 (a.u.) Z P E e (a.u.) Z P E hf (a.u.)
1 1 rrip 0.0579 0.0738
1 1 rrip 0 .0 2 0 1 0.0247
1 1 md 0.0144 0.0175
1 0.5 Trip 0.0418 0.0639
1 0.5 rrip 0.0146 0.0214
1 0.5 TTld 0.0105 0.0152
1 0 .1 rrip 0.0189 0.0547
1 0 .1 Trip 0.0066 0.0184
1 0 .1 m d 0.0048 0.0130

Table 3.4: Exact and Hartree-Fock zero-point energies for different values of k 
and 7

to the total system energy. Of more interest is a comparison of the exact and 

Hartree-Fock zero-point energies of the heavier particle, where the importance of 

correlation effects is highlighted. These energies are shown in Table 3.4. For 7  =  

1, k =  0.5, the exact zero-point energy is approximately three times that of the 

Hartree-Fock case. Since this energy is directly proportional to the vibrational 

frequency of the particle, this shows that vibrational frequencies of particles of 

mass 102 — 103 a.u. will be over-estimated by a factor of three in the Hartree- 

Fock approximation. The degree of this overlocalisation of the particle can be 

seen in Figure 3.8. Interestingly, the effect of correlation on a particle of electron 

mass is much less pronounced, suggesting that the Hartree-Fock approximation 

is sufficiently accurate to allow the evaluation of electron densities, even when 

the electron is allowed to interact with a quantum-mechanically described HLN.

The results presented in this chapter will be of great use when a self-consistent 

field model is used to evaluate the HLN wavefunction when the HLN is cou­

pled to the electron density through the Coulomb interaction. The information 

gained regarding the behaviour of variational method will allow a more appro-
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Figure 3.8: Exact and Hartree-Fock radial probability distributions for a) m2 =  
mM, b) m2 =  mp, and c) m2 =  m&. The overlocalisation of the Hartree-Fock 
distributions can be clearly seen.
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Figure 3.9: Exact and Hartree-Fock radial probability distribution for a par­
ticle of electron mass harmonically coupled to a particle of muon mass. The 
overlocalisation seen in Figure 3.8 is much less pronounced here, with the curve 
representing the exact distribution being covered by that representing the HF 
solution.
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priate basis set to be chosen for the SCF calculations. The tunnel-splitting en­

ergy calculations ensures that Herring’s formula can be trusted to give accurate 

tunnel-splitting energies (assuming the wavefunctions are themselves accurate). 

Finally, the calculations regarding the correlation energies suggests that similar 

features and trends may be present in the Coulombic model, and illustrates the 

huge correlation effects that are present when particles of such different masses 

interact.



Chapter 4

A Parametrised Correlation 
M odel

4.1 Anharm onicity in the potential

When attempting to solve the Schrodinger equation for the hydrogen-like nu­

cleus (HLN), a description of the potential energy experienced by the particle is 

required. The total energy of a 1-D system can be expanded in a Taylor series 

about the equilibrium position of the nucleus xq as

V(x) = V(x0) +  ( * - x0)V'{xa) +  ( z ~2Xo)V "(x0) +  V"'(x0) +... (4.1)

in which the terms first order in displacement vanish since the force on the par­

ticle is equal to zero at the equilibrium geometry. The retention of only the 

second order term leads to the harmonic approximation, for which the ground 

state solution to the Schrodinger equation takes the form of Equation 3.4. If 

other terms in the potential energy are retained, solutions become more compli­

cated, and in general the Schrodinger equation becomes intractable. These other 

terms describe the anharmonicity in the potential energy surface, and of most in­

terest here are the odd terms in V(x) which give an asymmetric potential energy 

surface. This is typically the case for a model potential describing the variation 

in energy along a bond between two nuclei. Figure 4.1 shows the effect of this

100
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anharmonicity on both the eigenfunctions and energies of a particle. The asym­

metry in the potential is reflected in an asymmetry in the eigenfunction, leading 

to a mass dependent increase in the equilibrium bond length. The energies of 

these states are also affected, with the energy separation between successively 

higher states tending to zero as the dissociation energy Ed is approached.

Two approaches can be taken in choosing localised basis sets to describe this 

asymmetric wavefunction. A single centre approach can be taken, in which the 

asymmetry of the wavefunction is modelled by using basis functions with angular 

momentum numbers lx > 0  (where x gives the bond direction), or alternatively, a 

multi-centre approach can be taken using only spherically symmetric Gaussians. 

In this approach the basis consists of a set of functions positioned on more than 

one centre along the bond. A linear combination of these basis functions is then 

used to model the asymmetry.

4.2 Hartree-Fock Calculations on the Reference 
System s

Before the parametrised correlation model is presented, it is worth considering 

the results of Hartree-Fock calculations made on the set of reference systems used 

for the parametrisation. These calculations were made using Gaussian 98 [45] 

at the unrestricted Hartree-Fock level, using a 6-31G basis set. The calculations 

essentially take the form presented in Section 2.1.1. Modifications to Gaussian 

98 have been made in order to allow the evaluation of the two-particle integrals 

between distinguishable particles, using the integration methods described in 

Section 2.3.2. These modifications allow the matrix elements of Equation 2.34 

(assuming Vx =  0) to be evaluated, and standard routines [105] have been 

used to allow the resulting eigenvalue equation to be solved. This yields both
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Figure 4.1: The five lowest energy levels of (a) the Morse and (b) the harmonic 
potential. Here the wavefunction is plotted as a function of position.
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System ehf (a.u.) Z P E hf System eHF (a.u.) Z P  Ehf

C2HMu -0.90508 1.473 CH3MuN -0.91695 1.493
c 2h 2 -0.98220 0.562 c h 4n -0.99543 0.570
c 2h d -0.99360 0.342 c h 3d n -1.00696 0.344

C2H2Mu -0.97335 1.519 CH4MuN -0.93767 1.509
c 2h 3 -1.05255 0.572 c h 5n -1.01696 0.574

c 2h 2d -1.06410 0.345 c h 4d n -1.02854 0.345
C2H3Mu -0.97934 1.532 MuO -0.82171 1.461

c 2h 4 -1.05917 0.575 HO -0.89938 0.569
c 2h 3d -1.07077 0.346 DO -0.91090 0.344

C2H4Mu -0.99205 1.522 HMuO -0.85507 1.454
c 2h 5 -1.07132 0.572 H20 -0.93234 0.566

c 2h 4d -1.08288 0.345 HDO -0.94381 0.343
H2MuN -0.93188 1.497 CHMu02 -0.79236 1.411

h 3n -1.01060 0.571 c h 2o 2 -0.86759 0.556
h 2d n -1.02214 0.345 c h d o 2 -0.87892 0.340

CH2MuN -0.90702 1.518 CH3MuO -0.86346 1.462
c h 3n -0.98678 0.576 c h 4o -0.94106 0.568

c h 2d n -0.99840 0.346 c h 3d o -0.95256 0.344

Table 4.1: Hartree-Fock eigenvalues and zero-point energies for the hydrogen-like 
nuclei in the parametrisation reference systems. Quoted energies are in eV

the energy and wavefunction of the HLN, from which various properties can be 

found, including the zero-point energy and extension in bond length. The HLN 

basis set used for these calculations (and for all other calculations in this thesis) 

were two sets of spherically-symmetric Gaussians, centred on two positions along 

the bond (see Section 4.4), with exponents {25.0, 10.0, 4.0, 1 .2 , 0.4}, found to 

give energies converged to 0.01 eV. The results of these Hartree-Fock calculations 

can be seen in Table 4.1. As will be shown in Section 4.4, the Hartree-Fock HLN 

wavefunction exhibits the overlocalisation observed in the analytical calculations 

of Section 3.4.4.
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Figure 4.2: Reference systems for the parametrisation of the correlation model, 
a i-iv) C-X bond, b i-iv) N-X bond, c i-iv) O-X bond
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4.3 The M odel

The problem at hand is one of evaluating the correlation energy between the 

hydrogen-like nucleus and the electron density. The correlation energy is de­

fined as the difference between the Hartree-Fock energy and the true ground 

state energy. Since the Hartree-Fock energy is a variational approximation to 

the true ground state energy, it becomes obvious that the correlation energy will 

be negative. In the case of electron-electron correlation this energy represents 

the instantaneous electrostatic repulsion experienced by the electrons which is 

ignored in Hartree-Fock theory, a mean field approximation. The correlation 

energy between the hydrogen-like nucleus and the electron density, however, 

represents the degree to which the nuclei’s trapped electron density follows the 

motion of the heavier, slower HLN. We can use this fact to obtain an upper and 

lower bound on the correlation energy. In the Hartree-Fock approximation, the 

HLN and the electron density are assumed to be completely uncorrelated, and so 

the energy associated with their interaction is an averaged one. In contrast, the 

Born-Oppenheimer approximation assumes the heavier particle (in this case the 

HLN) to be static, and so therefore the motion of the electron density is fully cor­

related to it. The true correlated interaction energy must therefore lie between 

these two values, which will be referred to as V^HF>̂ and V^BO\  Figure 4.3 shows 

how the Hartree-Fock (calculated using Equation 2.8) and Born-Oppenheimer 

(calculated using Equation 2.14) potential energies vary as a function of particle 

separation for a fixed particle mass ratio (in this case the muon-electron mass ra­

tio). The HF curve was generated by assuming that the muon could be described 

by a Gaussian, chosen so that the zero-point energy of the muon was equal to 

0.5 eV. The BO curve was generated by assuming the muon to be point-like.
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In both cases a Gaussian was also used to describe the electron wavefunction, 

chosen such that the electron zero-point energy was equal to 0.5 y/m ^/m e ~  7.2 

eV . As can be seen, the difference between the two potentials rapidly drops to 

zero, implying that the effects of correlation are only important for the electron 

density in close proximity (~ 1  A) to the hydrogen-like nucleus. In terms of elec­

tronic basis functions, this means that correlation effects would only appear to 

be important for matrix elements where the associated electron density is at least 

partially centred at the HLN site. Since the effects of HLN-electron correlation

Separation (a.u.)
0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

- 0 .2 -

-0.4-

P  - 0 . 6 -

cs
ST -0 .8 -

- 1. 2 -

-1.4 J

Figure 4.3: Variation of the Born-Oppenheimer and Hartree-Fock potential en­
ergies as a function of particle separation

are only important over a short range, the total potential energy experienced 

by the HLN in the Hartree-Fock approximation can be approximately separated 

into two components. One component, Vl , corresponds to the combined po-
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tential energy contributions from the other nuclei in the system, and from the 

electron density at a distance such that correlation effects are unimportant (i.e.

portional to some power of x, where x is the direction in which the HLN is bound 

to the system. The other contribution, Vgr, corresponds to the potential energy

Since in the HF approximation this electron density is not free to follow the mo­

tion of HLN, this contribution is responsible for the overlocalisation of the HLN 

wavefunction, and, from the calculations of Section 4.2, can be well described by

In the HF approximation, the HLN Hamiltonian matrix elements take the form

and r e/i =  |re — r^l . An analogous term in the BO approximation does not exist, 

since the HLN probability density, ^^(r/i)y?CT(r//), is represented by a Dirac delta 

function, ^(r^), and so doesn’t have any degree of delocalisation. However, if 

the HLN density is described by functions with well defined maxima at their 

centre, such as spherically symmetric Gaussians, then an approximate Born- 

Oppenheimer potential V^BO\  can be defined;

r M — r e| > 1 A). This contribution can be described by a function inversely pro-

experienced by the HLN due to the electron density for which |rM — re| < lA.

a function proportional to (r — rM)2n. The potential energy experienced by the 

HLN in the HF approximation can then be written

V <.HF) ~ V L + 7s.

(4.2)

where
elec.

elec.
(4.4)
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where S \a is an overlap matrix element,and here rM corresponds to the site on 

which the HLN basis functions are centred, and not a variable of integration. 

An important point here is that Equation 4.4 is also the long distance limiting 

behaviour of V ^ F\  i.e.

lim v i r  =  v g ° > . (4.5)
r e/i

Before going any further, an important point must be made. Since functions 

with well defined maxima at their centre are required for the approximation of 

Equation 4.4 to be valid, and the intention here is to build a model potential using 

this approximation, the types of basis functions that can be used are restricted to 

those with zero angular momentum. To model asymmetry in the potential then 

requires more than one basis centre to be placed on the potential energy surface 

along the direction of the asymmetry. However, severe numerical problems are 

caused by the large non-diagonal overlap matrix elements present when multiple 

centres axe placed in close proximity to each other. These problems do not 

manifest themselves when only two centres are placed in close proximity, and 

so this approach essentially restricts the HLN basis set to be distributed over 

no more than two sites per potential well. It is also worth noting that off- 

diagonal matrix elements involving basis functions on different centres can still 

be described using the approximation of Equation 4.4 since the Gaussian product 

theorem (cf. Section 2.3.1) ensures that a Gaussian function localised between 

these two centres can be defined.

We can now consider the model potential that can be constructed from a 

linear combination of V^B°^ and V^HF\  i.e.

vc  = aV^BO) + p v (HF), (4.6)

and the effect such a model potential would have on the HLN wavefunction. In
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the limit a = 0 , /? = 1 , Vc reduces to V^HF\  whilst in the opposite case (a =  1 , 

>0 =  0 ), the potential energy becomes proportional to the overlap matrix, giving

e - S - C  =  H C

= (K + V) • C 

= (K + 77S) • C

K • C =  (e +  77) • S • C (4.7)

The ground state of the HLN in a system described by such a model potential 

would be obtained by either adopting the most diffuse form allowed by the basis 

set, or by attempting to assume a plane wave solution. Neither of these cases is a 

good representation of the true potential, expected to be approximately Morse­

like along the bond, and harmonic, yet significantly less confining than the HF 

potential, normal to the bond. A more useful form for the model potential would 

be

V c  =  /<V<BO> +  (1 -  f c)V ^ H F \  (4.8)

where f c can be varied. It can be seen quite clearly that the effect of increasing 

f c would be to effectively reduce the curvature of the potential energy surface 

normal to the bond, since V^B°^ is only weakly dependent on the degree of 

localisation of the HLN density associated with a given matrix element. This 

is the effect that would be expected if HLN-electron correlation effects were 

included. The effect that increasing f c would have on the potential energy along 

the bond, however, is less clear. It would appear upon first inspection that V c  

would be a poor approximation to a Morse potential, but, as will be shown, only 

a small region of the Morse potential need be well described in order to obtain an 

accurate component of the HLN wavefunction along the bond. Figure 4.4 shows
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Figure 4.4: The Morse potential, and series expansions

successively higher order series-expansions of the Morse potential. Although 

the ‘tail’ of the function is very badly described by even a 10th order expansion, 

around the minimum the function is well described by only a 4th or 6th order 

expansion. The general form of the Morse potential is given by

VM(x) = De (1 -  exp [-fix])2 -  De, (4.9)

and values of De = 0.4 a.u., = 0.75 a.u. describe a function for which the

solution to the one dimensional Schrodinger equation for a particle of muon 

mass yields a zero-point energy of 0.308 eV, and a bond length increase of 0.031 

A, comparable to values found numerically in the subsequent sections. Table

4.2 gives the corresponding values for series expansions of the Morse potential, 

along with those obtained from a numerical interpolation of the function over the



4. A Param etrised Correlation Model 111

Function Z P E  (eV) Ax  (A)
Morse 0.308 0.031

2nd Order 0.317 0.000

4th Order 0.311 0.030
6th Order 0.308 0.031

Interpolation 0.308 0.031

Table 4.2: Zero-point energies and bond length increases for the muon in various 
approximations to the Morse potential

rw (x)( a.u.)
-0.90-1

-0.96-

- 1 . 0 0 -

-1.5 - 1.0 -0.5 0.0 0.5 1.0

2.5-,

0.5-

-1.5 - 1.0 -0.5 0.0 0.5 1.0
x(a.u.) x (a.u.)

2Figure 4.5: Ve/ i  and |<p0| , obtained for various values of f c, for the muon in 
C2H4MU. Numerical reference calculations are shown in bold black.

range —1.5 < x < 1.0 a.u. The results presented in Table 4.2 suggest that if the 

PES can be modelled well over the range —1.5 < x < 1.0 (where the minimum 

of the energy is at x = 0), then accurate wavefunctions can be calculated. For 

the model potential of Equation 4.8, the effective potential experienced by the 

HLN can be obtained after a SCF calculation has been performed by evaluating

(Eq -  K)(po
Vsf f .  =

<Po
(4.10)

where ip0 is the ground state HLN wavefunction obtained from the SCF calcu­

lation, and E0 is the corresponding eigenvalue. Figures 4.5 and 4.6 show V#// 

and |</?0| for various values of / c, obtained for the muon in the system C2H4MU.
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Figure 4.6: As Figure 4.5, over a more accurate range of / c.

fc Z P E  (eV) Ax (A) fc Z P E  (eV) Ax (A)
0.800 0.327 0.195 0.661 0.517 0.054
0.600 0.672 0.035 0.664 0.509 0.055
0.400 1.041 0.014 0.667 0.501 0.057
0.200 1.307 0.007 0.670 0.491 0.063
0.000 1.524 0.004 0.673 0.478 0.071

Numerical 0.497 0.051 Numerical 0.497 0.051

Table 4.3: zero-point energies and bond length increases for the muon in C2H4MU

More details of this calculation are given in Section 4.4.2. As can be seen, for 

the case f c = 0, corresponding to HF-approximation, the curvature of the PES is 

far too pronounced, and the corresponding probability density is over-localised. 

In contrast, the model seems to break down by the time f c is reduced to 0.4. 

For values of f c ~  0.667, good agreement is obtained for both Vs/f  over the 

required range and |<̂ 0|2 • Table 4.3 shows the zero-point energies and bond 

length increases corresponding to the results presented in Figures 4.5 and 4.6. 

Again, good agreement with the numerical reference calculations is obtained us­

ing f c ~  0.667. This suggests that the model potential of Equation 4.8 is a good 

candidate to model the correlated interaction between the HLN and the electron
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density in a given system. Using this model potential, the HLN Hamiltonian 

matrix elements are given by

-V ?
Hx, = r t ( r  J lPir(Tt‘) ) + fcV(BO) +  (1 -  f c)V^HF\  (4.11)

f c can be considered to be a ‘correlation factor’, which controls the degree to 

which the Hartree-Fock and Born-Oppenheimer potentials are mixed. In effect, 

f c controls the degree to which the motion of the electron density is correlated 

to that of the hydrogen-like nucleus, with, as previously stated, f c = 0  corre­

sponding to the Hartree-Fock approximation with no correlation, and f c = 1 

corresponding to the Born-Oppenheimer approximation, with complete correla­

tion. This factor would be expected to be dependent on the mass of the nucleus, 

since the vibrational motion of a more massive particle will have a smaller am­

plitude, and so will appear more point-like to the electron density. It would also 

be expected to be dependent on the chemical environment experienced by the 

hydrogen-like nucleus, although it is not obvious that a direct physical property 

of the system could be used to define this dependency. A set of reference systems 

were therefore used in an attempt to parametrise this model.

Throughout this section, it has been assumed that the effects of HLN-electron 

correlation do not alter the electron density. Although this sounds rather dras­

tic, it has been shown [104], that the effect of HLN-electron correlation on the 

electron density when considering interstitial defects is crystalline silicon is in­

deed very small. Furthermore, the results presented in Section 3.4.4 show that 

when the HLN is coupled harmonically to the electron the difference between the 

electronic components of the Hartree-Fock and exact wavefunction is negligible. 

This suggests that the approximation made here is valid.
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4.4 Param etrisation of the Model; Test System s

There is a large body of experimental data for molecular systems containing Mu, 

H, and D, and much work, both experimental and theoretical, has been com­

pleted on the behaviour of these hydrogen-like nuclei in small organic molecules. 

In many of these systems, the HLN interacts with the system through C-X, N- 

X, and O-X bonds, where X={Mu, H, D}. The parametrisation of the model 

presented here focuses on the quantum-mechanical features of these bonds. Suc­

cessful parametrisation of systems containing these bonds would illustrate the 

behavior of the correlation factor, / c, with respect to nuclear mass and bond 

type, and would potentially allow predictive use of the model in both larger 

systems containing these bonds, and other systems such as crystalline systems 

containing defect complexes.

4.4.1 R eference C alculations

The parametrised model was implemented in Gaussian 98 [45], and calculations 

were made in a similar manner to that described in Section 4.2 but incorpo­

rating the new model potential in place of the Hartree-Fock one. The same 

software was employed to make the reference calculations. These reference cal­

culations were made by first assuming that the vibrational motion of the HLN 

could be decoupled into a motion along the bond, and two orthogonal motions 

normal to the bond. The potential energy surface on which the HLN moves 

could then be described as V(x,y ,z )  = Vx(x) +  Vy{y) +  Vz{z). These one di­

mensional potential energy surfaces were then sampled by evaluating the total 

electronic energy of a given system as the position of the HLN (assumed here to 

be point-like) was moved from its equilibrium geometry in one of the orthogo­

nal directions. These calculations were used to construct three one-dimensional
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potential energy surfaces consisting of approximately 50 points each for which 

the HLN Schrodinger equation could be numerically solved, using the ‘shooting 

method’. In this method, the HLN wavefunction is assumed to be zero with 

an arbitrary first derivative at a point far from the potential energy minimum, 

and its corresponding energy is varied iteratively until a converged solution is 

achieved. This occurs when the wavefunction has the expected physical prop­

erties, i.e. the wavefunction and its first derivative are continuous, the function 

vanishes at large distances from the minimum, i.e.

lim ip(i) = 0, (4-12)
i—>±oo

and further variation in the energy results in no significant variation in the 

wavefunction. The numerical wavefunction can then be used to calculate physical 

properties of the HLN, which can in turn be used for the parametrisation of the 

model. The properties chosen for the parametrisation were the zero-point energy 

of the nucleus both along (ZPEX) and across (ZPEyjZ) a given bond, and the 

isotope dependent variation of the bond length, A x  = (p \x\ p).

4.4.2 T he C -X  B ond

The reference systems chosen for the parametrisation of the C-X bond were 

C2HX, C2H2X, C2H3X, and C2H4X, isotopomers of acetylene, the vinyl radi­

cal, ethylene, and the ethyl radical respectively. The results of the reference 

calculations can be seen in Table 4.4.

The model was parametrised by attempting to obtain as close agreement as 

possible with the reference calculations through the variation of / c, whilst keeping 

the HLN basis set unchanged. One of the basis centres used in the calculations 

was located at the classical equilibrium position of the HLN, and the other at a
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System ZPEX ZPEy ZPE* ZPEj'0t. A x  (A)
C2HMu 0.312 0.088 0.090 0.490 0.043

c 2h 2 0 .1 0 0.026 0.026 0.152 0.016
c 2h d 0.073 0.017 0.017 0.107 0 .0 1 1

C2H2Mu 0.271 0 .1 2 0 0.082 0.473 0.050
c 2h 3 0.097 0.040 0.023 0.160 0.015

c 2h 2d 0.069 0.028 0.015 0 .1 1 2 0 .0 1 0

C2H3Mu 0.288 0.128 0 .1 1 0 0.526 0.046
c 2h 4 0.097 0.040 0.030 0.167 0.016

c 2h 3d 0.068 0.028 0 .0 2 1 0.117 0.013
C2H4Mu 0.269 0 .1 1 0 0.118 0.497 0.051

c 2h 5 0.093 0.038 0.040 0.171 0.017
C2H4D 0.066 0.027 0.028 0 .1 2 1 0 .0 1 2

Table 4.4: Results of the C-X bond reference calculations. Quoted energies are 
in eV

distance of ~0.3 A from the first, in the direction of the bond. The sensitivity 

of the zero-point energy and A x  to this separation was found to be very small 

about this value. Table 4.5 shows the variation in the correlation factor, as well 

as the optimised zero-point energies and increases in bond length, for the twelve 

systems. Although the calculated zero-point energies are in good agreement with 

the reference calculations, A x  is underestimated for the heavier nuclei. These 

parameters for / c, however, ensure a larger overlap with the wavefunctions of the 

reference calculations, and attempts to obtain better agreement in the variation 

of the bond length results in an over-emphasised tail in the wavefunction. It 

is possible that this underestimation of A x  is associated with the use of the 

variational method, which gives more reliable energies than wavefunctions.

It was shown in Section 3.4.4 that, over the HLN mass range considered 

here, the correlation energy was found to be directly proportional to m_1//2, 

and so the behaviour of the correlation factor as a function of nuclear mass
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System fc ZPEW  (eV) Ax (A)

C 2 HM u 0.670 0.493 0.053
c 2h 2 0.770 0.157 0 .0 1 0

c 2h d 0.794 0 .1 0 1 0.009
C 2 H 2 Mu 0.675 0.468 0.058

c 2h 3 0.757 0.163 0 .0 1 0

c 2h 2d 0.778 0.116 0.008
C 2 H 3 Mu 0.655 0.524 0.048

c 2h 4 0.757 0.166 0 .0 1 0

c 2h 3d 0.778 0 .1 2 0 0.007
Q 2H 4 MU 0.667 0.501 0.052

c 2h 5 0.758 0.174 0.009
c 2h 4d 0.781 0.123 0.007

Table 4.5: Optimal values of / c, along with the corresponding zero-point energies 
and increases in bond length for the C-X bond reference systems

was investigated. Figure 4.7 illustrates this behaviour, and suggests that the 

correlation factor could be fitted to a function of the form

f c ( m ) = K ~ —t ,  (4-13)7714

with the values of kc = 0.888, gc = 0.850. This gives for the correlation factors 

for the three nuclear masses in a C-X bond;

f £  = 0.663 

f £  =  0.758 

f a  = 0.779

These factors can now be reapplied to the reference systems to compare with 

the reference calculations. The correlation energy term can also be calculated as 

the difference between the eigenvalues calculated in the parametrised correlation 

model and those calculated within the Hartree-Fock framework. The results of 

these calculations can be seen in Table 4.6.



4. A Param etrised Correlation Model 118

0.80 n

*
0.76-

0 .72-

0 .6 8 -

0.64-

0 .0 +-//-■----- 1------  i------- i---- ----- i---- ----- 1
0.0 0.12 0.16 0 2 0  0 2 4  0 2 8

*1'4 / \ m (a. u.)

Figure 4.7: Dependence of f c on nuclear mass in the C-X bond reference systems

If the zero-point energies calculated using the parametrised model are com­

pared with those at the Hartree-Fock level (see Table 4.1), then a reduction to 

approximately one third of the HF values is again observed, as seen in Section 

3.4.4. Figure 4.8 shows the dependence of the correlation energy upon nuclear 

mass. In contrast to the calculations of Section 3.4.4, the correlation energy 

is seen here to be proportional to m-1/2. These results suggest that, although 

the effect of the correlation on the HLN wavefunction is largely independent 

of the nature of the interaction between the nucleus and the electron density 

(i.e. harmonic and Coulombic interactions show the same general features), the 

correlation energy itself is sensitive to the nature of the interaction.

Finally, examples of the wavefunctions calculated using the parametrised 

model for the C-X bond are presented. The probability densities shown in Figure 

4.9 are those calculated for a hydrogen-like nucleus in the isotopomers of the ethyl 

radical. The agreement along the bond (i.e. the ^-component) is excellent, but
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System Z P E C (eV) Z P E r
Z P E m A x c  (A) A x c / A x N Ec  (eV)

C2HMu 0.510 1.041 0.050 1.163 -1.699
c 2h 2 0.204 1.342 0.005 0.312 -0.592
c 2h d 0.181 1.692 0 .0 0 2 0.182 -0.447

C2H2Mu 0.498 1.060 0.052 1.040 -1.797
c 2h 3 0.157 0.981 0 .0 1 0 0.667 -0.649

c 2h 2d 0.103 0.920 0.009 0.900 -0.518
C2H3Mu 0.503 0.967 0.052 1.130 -1.807

c 2h 4 0.161 0.964 0 .0 1 0 0.625 -0.651
c 2h 3d 0.106 0.906 0.009 0.692 -0.522

C2H4Mu 0.511 1 .0 2 2 0.050 0.980 -1.784
c 2h 5 0.175 1.023 0.008 0.471 -0.641

C2H4D 0.142 1.174 0.005 0.417 -0.497

Table 4.6: Zero-point energies, increases in bond lengths and correlation energies 
as calculated using the parametrised correlation model for the C-X bond

the localisation across the bond is still overestimated, the reasons for this are 

twofold. Firstly, as was shown in Section 3.2, the higher energy components 

would be expected to be better approximated using the variational method, and 

secondly, the two basis centres along the bond used in the parametrised model 

give a much higher degree of flexibility in the basis set along the bond.

If the components of the probability density across the bond are approxi­

mated by Gaussians, then the exponent is approximately 25% too large for the 

muon, 33% too large for the proton, and 40% too large for the deuteron. This 

corresponds to the same magnitude increases in the vibrational frequency uj of 

the particles, and since for the harmonic oscillator the zero-point energy in­

creases linearly with cj, so the energies are overestimated by the same amount. 

The zero-point energy across the bond accounts for approximately 35% of the 

total zero point energy, and so the overlocalisation across the bond would be 

expected to introduce an error in the energy of between ~ 1 0 % for the muon and
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Figure 4.8: Variation of the correlation energy, Ec , with nuclear mass for the 
parametrised C-X bond

~15% for the deuteron.

4 .4 .3  T h e  N -X  B on d

For the parametrisation of the N-X bond, the same computational methods were 

applied as in Section 4.4.2. The reference systems used in the parametrisation 

were H2XN, CH2XN, CH3XN, CH4XN, isotopomers of ammonia, methanimine, 

the amino-methyl radical, and methylamine. Results of the numerical reference 

calculations are shown in Table 4.7.

The zero-point energies for the hydrogen-like nucleus in the N-X bond refer­

ence systems are approximately 10% larger than those in the C-X bond reference 

systems, and there is a corresponding reduction in A x , which in combination sug-
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Figure 4.9: Probability densities along (x) and normal to (y, z) the bond for a) a 
muon in C2H4MU, b) a proton in C2H5, and c) a deuteron in C2H4D. Numerical 
calculations in black, parametrised model calculations in red.

gest a greater degree of localisation of the nuclear wavefunction. As before f c 

was varied to find the optimal values for the zero-point energy and Ax for each 

of the test system. Table 4.8 summarises these calculations.

Figure 4.10 shows the variation of f c with nuclear mass. Again the ra-1 /4 

dependence of f c is clearly evident, and allows for a fit of the form given by 

Equation 4.13. The fitted correlation factors for the N-X bond are

f Z  = 0.627

C  =  0.745 

f Z  = 0.771,
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System ZPEX ZPEy ZPE, ZPEiTot. A x  (A)

H2MuN 0.340 0.129 0.091 0.560 0.042
h 3n 0.117 0.043 0.026 0.186 0 .0 1 2

h 2d n 0.084 0.030 0.017 0.131 0.008
CH2MuN 0.312 0.124 0.106 0.542 0.047

c h 3n 0.108 0.040 0.034 0.182 0.015
c h 2d n 0.077 0.028 0.025 0.130 0 .0 1 0

CH3MuN 0.321 0.142 0.079 0.542 0.045
c h 4n 0 .1 1 2 0.046 0 .0 2 1 0.179 0.015

c h 3d n 0.078 0.033 0.013 0.124 0 .0 1 0

CH4MuN 0.330 0 .1 1 1 0 .1 2 0 0.561 0.043
c h 5n 0.114 0.035 0.038 0.187 0.015

c h 4d n 0.081 0.024 0.027 0.132 0 .0 1 0

Table 4.7: Results of the N-X bond reference calculations. Quoted energies are 
in eV

and Table 4.9 gives the bond length increases, in addition to the zero-point and 

correlation energies, for the HLN in the N-X bond reference systems calculated 

using the parametrised model with the parameters defined above. It can be seen 

for the first time, in the case of CH2DN, that the parametrised model breaks 

down, predicting too small a zero-point energy, and too large a bond length in­

crease. This breakdown becomes even more apparent in Figure 4.11 which shows 

the dependence of the correlation energy on the nuclear mass. For three of the 

four sets of test systems the m - 1 / 2 dependence of Ec  is again clearly seen, and 

even for the remaining set CH2XN, the dependence is clear for X={Mu, H}. The 

large discrepancy in the CH2DN results suggests that the model may be very 

sensitive to the parametrisation when the HLN is of large mass. In principle, 

thresholding could be introduced within the code to compare the Hartree-Fock 

and parametrised model eigenvalues to alert the user to deviations from ex­

pected behaviour. Figure 4.12 shows the results of calculations made using the
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System fc ZPETot. (eV) A x  (A)
H2MuN 0.623 0.559 0.043

h 3n 0.747 0.183 0.008
h 2d n 0.772 0.131 0.006

CH2MuN 0.622 0.541 0.045
c h 3n 0.737 0.182 0.008

c h 2d n 0.760 0.134 0.006
CH3MuN 0.635 0.541 0.045

c h 4n 0.754 0.180 0.008
c h 3d n 0.779 0.129 0.006

CH4MuN 0.628 0.553 0.044
c h 5n 0.748 0.185 0.008

c h 4d n 0.773 0.130 0.006

Table 4.8: Optimal values for / c, along with the corresponding zero-point ener­
gies and increases in bond length for the N-X bond reference systems

System Z PE c  (eV) Z P E r
ZPE\r A x c  (A) A xc/ A xn Ec  (eV)

H2MuN 0.549 0.980 0.044 1.048 -1.622
h 3n 0.193 1.038 0.007 0.583 -0.593

h 2d n 0.141 1.076 0.005 0.625 -0.460
CH2MuN 0.528 0.974 0.047 1 .0 0 0 -1.683

c h 3n 0.131 0.720 0.015 1 .0 0 0 -0.634
c h 2d n 0.033 0.254 0.058 5.800 -2.294

CH3MuN 0.560 1.033 0.043 0.956 -1.595
c h 4n 0.215 1 .2 0 1 0.005 0.333 -0.579

c h 3d n 0.179 1.443 0 .0 0 2 0 .2 0 0 -0.446
CH4MuN 0.555 0.989 0.043 1 .0 0 0 -1.630

c h 5n 0.198 1.059 0.006 0.400 -0.595
c h 4d n 0.149 1.129 0.004 0.400 -0.463

Table 4.9: Zero-point energies, increases in bond lengths and correlation energies 
as calculated using the parametrised correlation model for the N-X bond
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Figure 4.12: Probability densities along (x ) and normal to (y,z) the bond for 
a) a muon in CH4M11N, b) a proton in CH5N, and c) a deuteron in CH4DN. 
Numerical calculations in black, parametrised model calculations in red.

parametrised model for the HLN in the isotopomers of methylamine.

4 .4 .4  T h e  O -X  B o n d

The reference systems used in the parametrisation of the O-X bond were XO, 

HXO, CHXO2, and CH3XO, isotopomers of the hydroxyl radical, water, formic 

acid, and methanol respectively. The results of the reference calculations can be 

seen in Table 4.10.

The differences in the zero-point energies between the isotopomers of the 

hydroxyl radical and those of water suggest that it may be difficult for a para-
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System ZPEX ZPEy ZPE* ZPE^oi. A x  (A)

MuO 0.32 0.08 0.08 0.48 0.052
HO 0.113 0 .0 2 0 0 .0 2 0 0.153 0.016
DO 0.080 0.013 0.013 0.106 0 .0 1 1

HMuO 0.39 0.14 0.09 0.62 0.046
H20 0.134 0.044 0.024 0 .2 0 2 0.016
HDO 0.094 0.031 0.015 0.140 0 .0 1 1

CHMu02 0.34 0 .1 2 0.09 0.55 0.047
c h 2o 2 0.116 0.040 0.026 0.182 0.018
c h d o 2 0.082 0.028 0.017 0.127 0.013

CH3MuO 0.347 0.129 0.080 0.556 0.045
CH40 0 .1 2 0 0.042 0 .0 2 0 0.181 0.014

CH3DO 0.085 0.029 0.013 0.127 0 .0 1 0

Table 4.10: Results o the O-X bond reference calculations Quoted energies are 
in eV

metrised model to correctly predict these zero-point energies although, as the 

test systems become larger, so the variation in the zero-point energies becomes 

smaller. The optimal values for f c , along with the corresponding zero-point 

energies and increases in bond length, are presented in Table 4.11.

Figure 4.14 shows the variation of f c  with nuclear mass. Again the m _1//4 de­

pendence is seen, and so the m - 1 / 2 dependence in the correlation energy would 

be expected. The difference in the gradients of the curves in Figure 4.14 re­

flects the large difference in the zero-point energies, but nevertheless, correlation 

factors for the O-X bond can still be a calculated, and take the values

f °J  CfA = 0.585

f 0J  CfA =  0.715

f 0J  CfA =  0.744.

Table 4.12 shows the zero-point energies, increases in bond length, and cor-
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System f c ZPEW  (eV) Ax (A)

MuO 0.605 0.482 0.053
HO 0.710 0.170 0 .0 1 0

DO 0.735 0.108 0.009
HMuO 0.558 0.620 0.035

H20 0.714 0.204 0.007
HDO 0.744 0.138 0.006

CHMu02 0.575 0.563 0.042
c h 2o 2 0.719 0.185 0.008
c h d o 2 0.748 0.125 0.007

CH3MuO 0.589 0.554 0.046
c h 4o 0.721 0.184 0.008

c h 3d o 0.747 0.131 0.006

Table 4.11: Optimal values for f c , along with the corresponding zero-point en­
ergies and increases in bond length for the O-X bond reference systems

System Z P E C (eV) ZPEn
Z P E n Axc  (A) Axc/A xat Ec  (eV)

MuO 0.532 1.108 0.046 0.885 -1.549
HO 0.139 0.908 0.013 0.813 -0.592
DO 0.037 0.349 0.044 4.000 -0.506

HMuO 0.556 0.897 0.043 0.935 -1.502
h 2o 0 .2 0 0 0.990 0.007 0.438 -0.555
HDO 0.138 0.986 0.005 0.455 -0.436

CHMu02 0.540 0.982 0.044 0.936 -1.462
c h 2o 2 0 .2 0 1 1.104 0.006 0.333 -0.537
c h d o 2 0.155 1 .2 2 0 0.004 0.308 -0.414

CH3MuO 0.564 1.014 0.042 0.933 -1.501
CH4O 0 .2 1 0 1.160 0.006 0.429 -0.554

c h 3d o 0.156 1.229 0.004 0.400 -0.433

Table 4.12: Zero-point energies, increases in bond lengths and correlation ener­
gies as calculated using the parametrised correlation model for the O-X bond
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Figure 4.13: Probability densities along (x) and normal to (y, z) the bond for 
a) a muon in CH3MUO, b) a proton in CH40, and c) a deuteron in C2H3DO. 
Numerical results in black, parametrised model results in red.

relation energies calculated using the parametrised model with the parameters 

defined above. Figure 4.15 shows the behaviour of the correlation energy with 

nuclear mass. Again, a deviation from the expected behaviour is observed

for DO. Comparison with Table 4.15 shows that the parametrised model also 

fails to accurately predict the zero-point energy for this system. This is fur­

ther evidence that systems for which the parametrised model fails will be easily 

identifiable. Figure 4.13 shows the probabilities calculated for the HLN in the 

isotopomers of methanol using the parametrised correlation model.
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Chapter 5 

A Study of DNA Base M olecule 
Adducts

DNA has received much study during the 50 years since its double-helical struc­

ture was identified by James Watson and Francis Crick [134]. Of great impor­

tance was the discovery of the detrimental effects to health resulting from the 

attack of base molecules by free radicals, including atomic hydrogen [31, 56]. 

More recently, attention has turned to novel applications of the unique proper­

ties of DNA in areas as diverse as nanotechnology [139] and biocomputation [1]. 

These applications are possible due to the structure and self-replicating proper­

ties of DNA. DNA is formed of two helices hydrogen-bonded together via four 

base molecules; the pyrimidines, cytosine and thymine, and the purines, guanine 

and adenine. Figure 5.1 shows the only stable combinations of base molecule 

pairs, namely the cytosine-guanine (CG), and the adenine-thymine (AT) pair. 

The fact that these are the only base pairs formed in nature means that for a 

given single strand of DNA, there is only one matching complimentary strand, 

and herein lies the basic mechanism of self-replication. The bond energy in each 

base pair is ~  k s T  and, although a chain of ~  20 — 30 base pairs is stable 

at physiological temperatures, the work that must be done to separate the two

130
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Figure 5.1: DNA base pairs, (a) The cytosine-guanine (CG) pair, and (b) the 
adenine-thymine (AT) pair. The pyrimidines are on the left of the figure, the 
purines on the right. The broken lines indicate hydrogen bonds.

strands pair by pair can be achieved by enzymes without breaking the cova­

lently bonded backbone. Then, using free base molecules, each strand can be 

reconstructed into a new chain. However, since such small amounts of energy 

are required for these processes to occur, alteration to the base molecules via 

attack by free radicals can cause errors in the replicating process, leading to 

base-pair mismatch, bond breakage, and cleavage of the phosphate backbone. 

Previous work, both experimental and theoretical, has been carried out on the 

nature of radicals formed by hydrogen and muonium addition to these base pairs 

[4, 95, 131], but this chapter presents the first calculations on all possible hydro- 

gen/muonium binding sites which include the quantum-mechanical properties of
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the adduct forming particle, allowing isotope dependent effects to be studied.

5.1 Energies o f the Adducts

In this section the potential hydrogen/muonium binding sites are identified for 

each of the four base molecules. Using the parametrised correlation model de­

scribed in Chapter 4, unrestricted Hartree-Fock calculations were performed, 

again using the modified version of Gaussian 98, with electron correlation ener­

gies being calculated using Moller-Plessett perturbation theory at the MP4 level. 

The total energies obtained via these calculations are compared to identify the 

most stable adducts, which should be experimentally observable.

5.1.1 C ytosine

Figure 5.2 shows the cytosine molecule, with the six potential binding sites num­

bered. In cytosine, four of the potential adducts are formed by addition to an 

unsaturated carbon atom, one by addition to an unsaturated nitrogen atom, and 

one by addition to an unsaturated oxygen atom. The geometries of each of the 

six adducts were optimised at the MP4 level of theory, with the adduct parti­

cle being represented by a point charge. The calculated structures were then 

used to evaluate the total energies within the parametrised correlation model. 

It was shown in Sections 4.3 and 3.4 that the effects of correlation between the 

hydrogen-like nucleus and the electron density results in only a small change 

in the electron density distribution, and so the error incurred in using a point 

charge for the geometry optimisation was expected to be small. It should be 

borne in mind however, that the energy differences between adducts may also be 

very small, and since the error introduced by using a point charge in the geom­

etry optimisation was dependent on the atom with which the HLN had formed
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Figure 5.2: The cytosine molecule, with the six potential binding sites marked. 
In this and the following figures, white atoms represent hydrogen, grey carbon, 
blue nitrogen, and red oxygen.

a bond (due to the fact that the correlation energy is dependent on the type of 

bond formed), differences in total energies between adducts formed by addition 

to different atoms should be treated with caution if the difference is small. Table 

5.1 shows the zero-point energy and energy eigenvalue of the hydrogen-like nu­

cleus, along with the total energy of the system relative to the lowest energy 

structure. Classical total energies, E ^ \  are also given. The nomenclature used 

here is n-H-cytosine for the hydrocytosine adduct formed by addition at the site 

marked n in Figure 5.2, and n-Mu-cytosine for the muonated isotopomer of this 

adduct. This nomenclature will be used throughout the remainder of this chap­

ter. As can be seen, the inclusion of quantum effects stabilises the C-X bond 

relative to the N-X and O-X bonds, and stabilises the N-X bond relative to the 

O-X bond. However, the adduct formed by addition to the unsaturated nitrogen 

atom is energetically most stable.

Figure 5.3 shows the molecular structure of each of the three lowest energy
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Adduct ZPEp  (eV) (a.u.) (eV) E $} (eV)

1-Mu-cytosine 0.520 -1.01656 0.339 0.458
2-Mu-cytosine 0.525 -0.99796 0.068 0 .2 0 0

3-Mu-cytosine 0.529 -1.03023 1.464 1.558
4-Mu-cytosine 0.528 -1.02961 1.437 1.526
5-Mu-cytosine 0.570 -0.94074 0 .0 0 0 0 .0 0 0

6 -Mu-cytosine 0.546 -0.87030 0.871 0.852

Adduct Z P E p (eV) £p (a.u.) (eV) E ^  (eV)

1-H-cytosine 0.190 -1.05539 0.426 0.458
2-H-cytosine 0 .2 0 1 -1.03634 0.164 0 .2 0 0

3-H-cytosine 0.205 -1.06987 1.537 1.558
4-H-cytosine 0.205 -1.06898 1.507 1.526
5-H-cytosine 0.235 -0.98279 0 .0 0 0 0 .0 0 0

6 -H-cytosine 0 .2 1 0 -0.91253 0.857 0.852

Table 5.1: Energies of the six adducts formed by addition to cytosine. In order, 
these are the HLN zero-point energy, the ground state HLN eigenvalue, and the 
total energy of the system relative to the most stable adduct. Energies are given 
for a quantum muon (//), quantum proton (p), and classical particle (c).

adducts of cytosine. For the lowest energy adduct, 5-X-cytosine, there is very 

little deformation of the six member ring, and so the delocalised electron density 

around this ring remains relatively unaffected. The amino group is rotated so 

as to be perpendicular to the plane of the ring. In 2-X-cytosine, a large, twisted 

deformation of the ring can be observed, with the amino group flattening and 

aligning to the deformation of the ring. Finally, in 1-X-cytosine, the ring struc­

ture is again largely unaffected, with the amino group flattening and aligning 

to the ring. From 7r-electron theory, the six electron system is disturbed by the 

formation of an adduct, leaving a five orbital structure. Since nitrogen is more 

electronegative than carbon, it would be expected that adduct formation via 

saturation of carbon bonds would be energetically the most stable. However, in
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(a) 5-X-cytosine

(b) 2-X-cytosine (c) 1-X-cytosine

Figure 5.3: The three lowest energy adducts in order of increasing energy, formed 
by the addition of hydrogen/ muonium to the cytosine molecule. H/Mu is repre­
sented by the atom shaded gold.

the case of cytosine, there is large deformation of the ring associated with adduct 

formation in 2-X-cytosine, which presumably lowers the bonding energy in the 

ring, and raises the total energy of the system above that of the adduct formed 

at the nitrogen.

5 .1 .2  T h ym in e

Figure 5.4 shows the thymine molecule with the six potential hydrogen/muonium 

binding sites numbered. In this case, four of the adducts are formed by addition
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W

Figure 5.4: The thymine molecule, with the six potential binding sites marked.

to an unsaturated carbon molecule, and two by addition to an unsaturated oxy­

gen molecule. Calculations were performed in the same manner as described in 

Section 5.1.1, and Table 5.2 summarises the results. In this case, addition to an 

unsaturated carbon yields the most stable adduct, and again the stabilisation of 

the C-X bond relative to the O-X bond is observed when quantum effects are 

included.

Figure 5.5 shows the two lowest energy adducts of the thymine molecule. 

For the lowest energy adduct, there is a large deformation of the six member 

ring structure, but this deformation is localised to the atom at which the adduct 

is formed and its nearest neighbours. The methyl group rotates to a staggered 

formation relative to the adduct particle. For the next lowest energy adduct, 

there is very little deformation of the molecule, with the hydrogens associated 

with the carbon saturated by addition of the adduct particle forming the ex­

pected structure. It may be expected that the 7r-electron system is more greatly 

disturbed in the formation of 1-X-thymine than in 2-X-thymine.
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Adduct ZPEp (eV) (a.u.) E {S ] (eV) E P  (eV)
1-Mu-thymine 0.522 -1.00616 0.107 0.106
2-Mu-thymine 0.533 -1.00106 0.000 0.000

3-Mu-thymine 0.529 -0.99540 1.174 1.155
4-Mu-thymine 0.530 -0.98523 1.547 1.518
5-Mu-thymine 0.553 -0.87023 0.991 0.840
6-Mu-thymine 0.555 -0.88074 1.377 1.230

Adduct ZPEp (eV) e p  (a.u.) E P  (eV) E f i  (eV)
1-H-thymine 0.194 -1.04520 0.106 0.106
2-H-thymine 0.209 -1.04003 0.000 0.000

3-H-thymine 0.207 -1.03320 1.164 1.155
4-H-thymine 0.209 -1.02471 1.530 1.518
5-H-thymine 0.207 -0.91335 0.876 0.840
6-H-thymine 0.208 -0.92319 1.264 1.230

Table 5.2: Energies of the six adducts formed by addition to thymine. In order, 
these are the HLN zero-point energy, the total HLN energy, and the total en­
ergy of the system relative to the most stable adduct. Energies are given for a 
quantum muon, quantum proton, and classical particle

(a) 2-X-thymine (b) 1-X-thymine

Figure 5.5: The two lowest energy adducts in order of increasing energy, formed 
by the addition of hydrogen/muonium to the thymine molecule.
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5.1.3 G uanine

Guanine and adenine, the purine molecules in their respective DNA base pairs, 

have a double ring structure, a six member ring (similar in structure to those 

of cytosine and thymine) attached along a double carbon bond to a five mem­

ber ring. This results in eight potential hydrogen/muonium binding sites, which 

can be seen numbered in Figure 5.6, which shows the guanine molecule. Table

5.3 shows the results of the single point energy calculations performed on these 

adducts. Again the C-X bond is stabilised relative O-X bond when quantum me­

chanical effects are included, and the lowest energy adduct, formed by addition 

to an unsaturated carbon, is stabilised relative to all other adducts, including 

those formed by addition to other unsaturated carbons, by the inclusion of these 

effects. An interesting new feature also appears in these calculations, the 7- 

H-guanine adduct is stable relative to 1- and 2-H-guanine in both the classical 

and quantum cases, but for the fighter muon, 1- and 2-Mu-guanine are both 

stabilised relative to 7-Mu-guanine. All three of these adducts are significantly 

higher in energy than the most stable adduct, and so would not be expected to 

be observed experimentally, but nevertheless, these calculations show that the 

inclusion of quantum mechanical effects are particularly important for a particle 

as fight as the muon.

Figure 5.7 shows the two lowest energy adducts of guanine. For the lowest 

energy adduct, there is very little deformation of the molecular structure, with 

only the expected tetrahedral rearrangement of the C-H bonds on the saturated 

carbon to accommodate the adduct particle observed. For the next lowest energy 

adduct, there is some local deformation of the five member ring structure at 

the carbon nearest to the now saturated nitrogen, along with a tilting of the
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Figure 5.6: The guanine molecule, with the eight potential binding sites marked.

Adduct Z P EM (eV) en (a.u.) E ^  (eV) Eg* (eV)
1-Mu-guanine 0.530 -1.03452 0.697 0.677
2-Mu-guanine 0.534 -1.01518 0.712 0.702
3-Mu-guanine 0.529 -1.01323 1.161 1.139
4-Mu-guanine 0.528 -1.02732 0.751 0.715
5-Mu-guanine 0.517 -1.02925 0.000 0.000

6-Mu-guanine 0.560 -0.95445 0.466 0.358
7-Mu-guanine 0.565 -0.90905 0.735 0.620
8-Mu-guanine 0.551 -0.89979 0.943 0.792

Adduct ZPEp (eV) Ep (a.u.) E ^  (eV) E ^  (eV)
1-H-guanine 0.205 -1.07249 0.684 0.677
2-H-guanine 0.214 -1.05466 0.708 0.702
3-H-guanine 0.208 -1.04828 1.149 1.139
4-H-guanine 0.200 -1.06553 0.728 0.715
5-H-guanine 0.189 -1.06706 0.000 0.000

6-H-guanine 0.224 -0.99524 0.386 0.358
7-H-guanine 0.228 -0.94991 0.650 0.620
8-H-guanine 0.208 -0.94170 0.832 0.792

Table 5.3: Energies of the eight adducts formed by addition to guanine. In 
order, these are the HLN zero-point energy, the total HLN energy, and the total 
energy of the system relative to the most stable adduct. Energies are given for 
a quantum muon, quantum proton, and classical particle
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(a) 5-X-guanine (b) 6 -X-guanine

Figure 5.7: The two lowest energy adducts in order of increasing energy, formed 
by the addition of hydrogen/muonium to the guanine molecule.

respective C-X and N-X bonds out of the plane of the ring.

5 .1 .4  A d en in e

The final DNA base molecule adenine also has the two ring structure observed 

in guanine, along with the eight potential hydrogen/muonium binding sites. In 

this case, five of the adducts are formed by addition to unsaturated carbon, two 

by addition to an unsaturated nitrogen, and one by addition to an unsaturated 

oxygen. Figure 5.8 shows the adenine molecule, with the potential binding sites 

numbered. Table 5.4 summarises the results of calculations performed on these 

systems. Again the most stable adduct, formed by addition to an unsaturated 

carbon, is stabilised by the inclusion of quantum mechanical effects, and again 

these effects result in a classically less stable adduct, 2-Mu-adenine, becoming 

stabilised relative to 7-Mu-adenine. In this case however, this relative stabilisa­

tion is also predicted at the proton mass. The energies are again significantly 

higher than those of the most stable adduct, and so this is not expected be 

experimentally observable.
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Figure 5.8: The adenine molecule, with the eight potential binding sites marked.

Adduct ZPEp (eV) £ft (a.u.) (eV) E (eV)
1-Mu-adenine 0.529 -1.01792 1.351 1.340
2-Mu-adenine 0.535 -1.01236 0.675 0.666

3-Mu-adenine 0.529 -1.03796 1.147 1.127
4-Mu-adenine 0.518 -1.03649 0.388 0.388
5-Mu-adenine 0.516 -1.01960 0.000 0.000

6-Mu-adenine 0.564 -0.94966 1.108 0.988
7-Mu-adenine 0.559 -0.93551 0.769 0.657
8-Mu-adenine 0.555 -0.93872 1.952 1.843

Adduct ZPEp (eV) £p (a.u.) E ^  (eV) E {t } (eV)
1-H-adenine 0.205 -1.05596 1.345 1.340
2-H-adenine 0.214 -1.05219 0.671 0.666

3-H-adenine 0.203 -1.07630 1.134 1.127
4-H-adenine 0.193 -1.07424 0.388 0.388
5-H-adenine 0.187 -1.05737 0.000 0.000
6-H-adenine 0.224 -0.99064 1.017 0.988
7-H-adenine 0.214 -0.97630 0.681 0.657
8-H-adenine 0.211 -0.97839 1.868 1.843

Table 5.4: Energies of the eight adducts formed by addition to adenine. In 
order, these are the HLN zero-point energy, the total HLN energy, and the total 
energy of the system relative to the most stable adduct. Energies are given for 
a quantum muon, quantum proton, and classical particle
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(b) 4-X-adenine(a) 5-X-adenine

Figure 5.9: The two lowest energy adducts in order of increasing energy, formed 
by the addition of hydrogen/muonium to the adenine molecule.

Figure 5.9 shows the two most stable adducts of adenine, but as can be seen, 

there is very little deformation of molecular structure upon formation of the 

adduct.

5.2 H yperfine C ouplings

The hyperfine interaction is a manifestation of spin-spin coupling between the 

hydrogen-like nucleus and the electron density. Of most interest here is the 

isotropic or Fermi contact interaction, A. If the hydrogen-like nucleus is assumed 

to be point-like, the contact term can be calculated using the spin Hamiltonian

2 o
4  =  - 3M e l e l N  l ¥ > e (0) l  S  * C5 - 1 )

where |(/?e(0) |2 is the electron spin density at the nucleus. This term is calculated 

in Gaussian 98. However, the value of A  can be affected when the vibrational 

properties of the hydrogen-like nucleus are included if the electron spin density 

at the nucleus varies significantly over its vibrational motion [21, 135]. The
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System Ap (MHz) (Ap) (MHz) Ap (MHz) (Ap) (MHz)

5-X-cytosine
2-X-cytosine
1-X-cytosine

-14.6225
128.66901
104.01066

-17.95251
149.43461
108.06812

-46.54584
409.59848
331.10234

-14.45560*
620.79356
422.16991

2-X-thymine
1-X-thymine

129.90701
102.01008

144.30129
105.29796

405.78954
325.73536

585.59735
423.84734

5-X-guanine
6-X-guanine

118.14318
-21.67185

124.23390
-20.46879

376.09109
-68.98908

507.97618
-31.83676*

5-X-adenine 
4-X-adenine

111.24166
150.39983

116.52294
156.95422

354.12114
478.77530

465.78288
617.28966

Table 5.5: classical and vibrationally averaged hyperfine coupling constants for 
the low energy DNA base molecule adducts

hyperfine contact term is then given by

{A) = J  A(r) | SPM(r) | 2 * ,  (5.2)

where A(r) is the ‘static’ value of A  when the point charge is located at r, and 

| (^^(r) | 2 is the nuclear density at r. As will be seen, this vibrational averaging 

can lead to a large deviation of the contact term from the static value, especially 

for a particle as light as the muon.

Vibrationally averaged hyperfine coupling constants were calculated for both 

the muon and proton in the adducts discussed in Section 5.1. These calculations 

were carried out in a similar manner to those used in the parametrisation of the 

correlation model discussed in Chapter 4. In this case the electron spin density 

was sampled at approximately fifty points around the equilibrium position of the 

hydrogen-like nucleus. These samples were then used to construct a spin density 

surface, and the averaging given by Equation 5.2 was evaluated numerically. 

Table 5.5 summarises the results. Here the hyperfine coupling constant A  is 

expressed as a frequency, not an energy, and so a more accurate description
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System (Ap) /Ap (MHz) (A ^  /Ap (MHz) (A'y) /  (Ap) (MHz)

5-X-cytosine 1.22773 0.31055* 0.25295*
2-X-cytosine 1.16139 1.51561 1.30500
1-X-cytosine 1.03901 1.27504 1.22717

2-X-thymine 1.11080 1.44279 1.29887
1-X-thymine 1.03223 1.30120 1.26057

5-X-guanine 1.05155 1.35067 1.28446
6-X-guanine 0.94449 0.46148* 0.48860*

5-X-adenine 1.04748 1.31532 1.25570
4-X-adenine 1.04358 1.28931 1.23547

Table 5.6: ratios of vibrationally averaged to classical hyperfine coupling con­
stants, and a measure of the residual isotope effect in the low energy DNA base 
molecule adducts

would be A/h. However, in line with the literature, A  will be used, but values 

will be quoted in MHz.

Of interest are two ratios of these hyperfine coupling constants. The first, 

(A) /A, gives a measure of the inaccuracy of calculated hyperfine coupling con­

stants if vibrational effects are neglected, whilst the second, (A^)/(Ap), where 

A^ is the reduced muon hyperfine coupling constant, given by

4 , = (5-3)

gives a direct theoretical estimate of the residual isotope effect experimentally 

observed in many systems, e.g. [110]. Table 5.6 gives these ratios for the various 

low energy adducts. As can be seen the isotope effects can be very large, even 

for the relatively localised proton, and so the theoretical hyperfine coupling con­

stant at the equilibrium geometry can only be used as an approximate value with 

which to interpret experimental data. Since experimental measurement of the 

hyperfine coupling constant is one of the key tools for site identification [24], it is 

very important that a theoretical treatment takes account of vibrational averag­
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Figure 5.10: Probability densities for the muon and proton in 5-X-cytosine and 
6-X-guanine. Vertical lines mark the point at which the non-adiabatic change in 
electron density occurs

ing when predictions of binding sites are attempted. This is highlighted by two 

of the systems studied here, namely 5-X-cytosine and 6-X-guanine (marked by 

asterisks in Tables 5.5 and 5.6). Both of these adducts are formed by addition of 

hydrogen/muonium at an unsaturated nitrogen, and 5-X-cytosine is predicted to 

be energetically the most stable cytosine adduct. In contrast to the typical resid­

ual isotope effects of approximately 25% predicted here, these two systems show 

the reverse effect. A more detailed study reveals that a non-adiabatic change in 

the electron density occurs during the vibrational motion of the muon. At this 

point the highest occupied molecular orbital (HOMO) changes from a somewhat 

delocalised state, with the majority of the spin density being associated with the 

next nearest carbon neighbour, to a state resembling that of atomic hydrogen.
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This results in a large and instantaneous change in the spin density at the muon 

to a level close to that of atomic hydrogen. After this non-adiabatic change 

occurs, the lowest energy configuration for the system is that of the original 

base molecule and free muonium. Figure 5.10 shows the probability densities 

for the muon and the proton, along with the points at which this non-adiabatic 

change in the electron density occurs for the two systems. As can be seen, the 

probability of finding the proton at this distance is negligible (and indeed, most 

of the change in the hyperfine coupling constants in these systems comes from 

vibrational averaging normal to the bond), whilst for the muon, it is significant. 

This implies that whilst this system may be stable if the adduct is formed by hy­

drogen addition, it’s analogous system formed by muonium addition will not be. 

This is particularly interesting since this difference is not due to the energetics 

of the system, but due to the amplitude of the HLN zero-point motion.

5.3 Comparisons to  Other Work

Barnabas et al. [4] have carried out muon level-crossing resonance experiments 

on thymine, where they assumed that adducts were formed by addition to 

carbons 1 and 2 of Figure 5.4, in agreement with the calculations presented 

here. The observed hyperfine coupling constants were 323 MHz (compared to 

585.59735 MHz here), and 371 MHz (compared to 423.84734 MHz here) respec­

tively. There are several possible reasons for this discrepancy in the observed 

and calculated hyperfine coupling constants. Firstly, the experimental results 

were obtained in solution and so the effects of the solution on both the elec­

tron density and the muon itself cannot be ignored. Secondly, the relaxation 

of the adduct, performed using Gaussian 98, assumed it to be a free molecule, 

and so distortions to the molecular structure could have been overemphasised.
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Adduct (MHz) [95] (Am) (A^) (MHz) (this work)

5-Mu-cytosine -27.3 -14.45560 (-46.54584)
2-Mu-cytosine 392.4 620.79356 (409.59848)
1-Mu-cytosine 534.0 422.16991 (331.10234)

2-Mu-thymine 459.2 585.59735 (405.78954)
1-Mu-thymine 374.0 423.84734 (325.73536)
5-Mu-guanine 391.7 507.97618 (376.09109)
6 -Mu-guanine -52.4 -31.83676 (-68.98908)

5-Mu-adenine 82.3 465.78288 (354.12114)
4-Mu-adenine 514.4 617.28966 (478.77530)

Table 5.7: Comparison of hyperfine coupling constants calculated by Oganesyan 
et al. and those calculated in this work.

Finally, the calculations presented here were performed using the MP4/6-31G 

model chemistry, and so, although electron-electron correlation was included in 

the total energy calculations, it was included using a post-SCF method, and 

so has no effect on the electron density distribution itself. This allows for the 

possibility that the spin density distribution could be significantly different if 

electron-electron correlation effects are included in the SCF cycle. It would be 

useful for experimental data on crystallised DNA samples to be obtained, so that 

the reasons for the discrepancies between the experimental and theoretical data 

postulated above could be considered more quantitatively.

Calculations presented here predicted 2-X-thymine to be more stable than 

1-X-thymine by approximately 0.1 eV. Barnabas et al. predict a radical yield 

ratio of 2-Mu-thymine/ 1-Mu-thymine of 1 ±  0.3, while von Sonntag [131] quotes 

a ratio of 2 .2  for the protonated case, and so both of these experimental re­

sults are in broad agreement with calculation. It is worth noting here that 1,2- 

dihydrothymine, formed by hydrogen addition at both of the predicted lowest 

energy binding sites, is observed experimentally [56].
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Radical Bond A'y/Ap (Reference)

Hydroxyl O-X 1.24 ([21]T); 1.27 ([130]T)
Isopropyl 1.38 ([110]E)
£er£-Butyl 1.44 ([110]E)

cyclohexadienyl C-X 1.21 ([43]E, [109]E)
C6o exo-adduct c-x 1.07 ([9]T); 1.09 ( [3]E, [90]E)

Methyl C-X 1.02 ([2]T)
Ethyl c-x 1.15 ([15]T); 1.16 ([21]T); 1.38 ([110]E)

Formyl 1.18 ([135]T)

Table 5.8: Residual isotope effects in various radical systems. In the third col­
umn, T=theoretical and E=experimental result.

Oganesyan et al. [95] have a completed a theoretical investigation of the 

hyperfine coupling constants for all of the adducts discussed in this chapter. 

Their results are compared to those of this work in Table 5.7. There is general 

agreement with the static values (AM) calculated here across the systems, with 

some notable exceptions, 1-Mu-cytosine and 5-Mu-adenine. Again discrepancies 

are probably due to a more sophisticated model chemistry with a higher quality 

basis set being used in [95]. Of greater importance however is the difference 

between (Ay) and Ay presented here. This vibrational averaging appears to 

have been ignored in [95], and so any attempts at site identification using these 

values should be treated with caution.

A much larger body of work exists on the subject of the residual isotope effect. 

Table 5.8 summarises these results. As can be seen, the residual isotope effect 

can vary a great deal between systems, accounting for over 30% of the hyperfine 

coupling constant of the muon. Of course, a detailed analysis of the behaviour 

of the electron spin density distribution as a function of geometry would be 

required to fully understand the differences between these systems, in addition 

to a more sophisticated vibrational averaging method than that applied here.
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The method used here should be reliable for the muon, since its lighter mass 

leads to high vibrational frequencies and a decoupling from the other normal 

modes of a given system, but its validity for the proton is questionable, since 

the vibrational motion of the heavier particle will be coupled to other vibrational 

modes of the system. This could account for the theoretical underestimation of 

the residual isotope effect observed in the ethyl radical.

The experimental residual isotope effect observed for the cyclohexadienyl 

radical is in reasonable agreement with the values calculated in this work. This 

is encouraging since in five of the seven systems shown in Table 5.6, wherein the 

adduct is formed by addition to an unsaturated carbon, the adduct structure 

resembles that of the cyclohexadienyl radical, and so bond properties would be 

expected to be similar. The average value of the residual isotope effect in these 

five systems is 1.262, compared to the experimental value for the cyclohexadienyl 

radical of 1 .2 1 .

Summary

All potential binding sites of the HLN to the four DNA base molecules have been 

studied. As can be seen, the inclusion of a quantum mechanical description of 

the HLN resulted in very little change with respect to the relative energies of the 

adducts, particularly for the most stable adducts. This suggests that the classical 

model is very succesful in calculating these relative energies, and this is due to 

the fact that the effects of the HLN-electron correlation appear to be similar 

for each of the adducts. This similarity means that total energy differences of 

an order of magnitude smaller than correlation energies are preserved when the 

PCM is applied. The quantum motion of the HLN cannot however be ignored 

when hyperfine coupling constants are being evaluated, since this motion can
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lead to deviations of up to 50% from the values calculated using a classical 

model.



Chapter 6 

Interaction of H and Mu with  
Diamond Dopants

It has long been realised that hydrogen is a ubiquitous impurity in diamond, 

where concentrations of up to 1 at.% have been reported [30, 120]. Many theo­

retical calculations have been performed in order to better understand the struc­

tural and electronic environments of hydrogen and muonium in diamond, with 

fj,SR data, revealing two distinct muonium states, proving extremely useful in 

these attempts. Reviews are available, e.g. [51], and an overview can be found 

in Section 1.3.

More recently, interest has grown in diamond as a useful semiconductor, 

where its high carrier mobility and thermal conductivity, along with its low 

dielectric constant and wide band gap [67] make it a promising candidate for 

a high frequency, high power, high temperature, and high irradiation-tolerant 

semiconducting device [93]. For this to be realised, however, low-resistivity re­

type and p-type diamond must be fabricated. Attempts to create p-type diamond 

using boron as an acceptor have met with some success, although there is no clear 

experimental evidence supporting a given structure for the B-H complex, but the 

fabrication of n-type diamond is much more challenging. Dopant candidates are

151
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nitrogen, phosphorus, and sulphur. Nitrogen has a high solubility in diamond 

due to its low defect formation energy of -3.4 eV [71], but acts as a deep donor, 

with an activation energy of 1.7 eV [41], making N-doped diamond insulating 

at room temperature. High doping with P is difficult since the defect formation 

energy is very high at +10.4 eV [71], partly due to the significant lattice distortion 

associated with the large substitutional atom. When incorporated, phosphorus 

gives a deep donor level lying around 0.6 eV below the conduction band [123]. 

Sulphur acts as a double donor in diamond, and S-doped n-type diamond has 

been obtained [59]. However, location of the donor level has proved difficult, 

with reports of levels being very close to the conduction band [115], or being 

rather deep [133].

The inclusion of hydrogen further complicates the situations discussed above. 

Hydrogen passivates both donors and acceptors in diamond [51], removing the 

electronically active levels from the band gap, and so more research is required 

in order to understand how this occurs, and what, if anything, can be done in 

order to produce high quality material containing hydrogen. In this chapter the 

interaction of H and Mu with substitutional P and S is considered, in addition 

to the interaction of H and Mu with various impurity-vacancy complexes.

6.1 Param etrisation o f the P -X  and S-X  bonds

Before the present calculations on the P-X and S-X complexes in diamond were 

performed, it was important to attempt to model the P-X and S-X bonds in 

some small analogous molecules, as was carried out in the parametrisation of 

the C-X, N-X, and O-X bonds in Chapter 4. The reasons for this are two­

fold. Firstly, the information gained about the nature of these bonds can be 

used to understand the observed differences in the solid state, and secondly, the
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parametrisation calculated for these small molecules can be used in the solid- 

state calculation in order to ascertain whether the same parametrisation is valid, 

or if reparametrisation must be performed.

6.1.1 R eference System s

The reference systems used for the parametrisation of the P-X bond were iso- 

topomers of phenylphosphine (C6H6PX), the phosphino radical (HPX), phos- 

phethene (CH2PX), and hypophosphorus acid (H2O2PX). Hypophosphorus acid 

was chosen as a reference system so as to investigate whether the parametrisation 

is dependent on the P-X bond alone, or if longer range effects axe important, i.e. 

would parametrisation based on the fact that H (or Mu) was a component of a 

functional group be more appropriate?

The reference systems for parametrisation of the S-X  bond were all open 

shell systems. They were adducts of thioacetone (C3H6SX), thioformamide 

(C H 3 N SX ), thioacetamide (C 2 H 5 N SX ), and thiobenzamide (C 7 H 7 N SX ). Figures

6.1 and 6.2 show the optimised structures for these reference systems. The poten­

tial energy surface on which the HLN moves was again obtained for each system. 

It was assumed that the PES was separable into a contribution along the bond, 

and contributions from each of two directions normal to this and each other. 

When these surfaces were obtained, the Schrodinger equation was solved numer­

ically for the muon, proton and deuteron mass. The results of these calculations 

can be seen in Tables 6.1 and 6.2.

When compared to the zero-point energies and bond length increases calcu­

lated for the C-X, N-X, and O-X, and presented in tables 4.4, 4.7, and 4.10, it 

can be seen that the zero-point energies are on average 25-30% lower for the P-X 

and S-X bonds. The bond length increases are only slightly larger for the muon,
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Figure 6.1: P-X bond reference systems showing the isotopomers of a)
phenylphosphine, b) phosphethene, c) the phosphino radical, and d) hypophos- 
phorous acid.
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>  i
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Figure 6.2: S-X bond reference systems showing the isotopomers of a) thioben- 
zamide, b) thioacetone, c) thioformamide, and d) thioacetamide.
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System ZPE* ZPEy ZPE, ZPETot. A x  (A)
C6H6PMu 0 .2 1 2 0.088 0.078 0.378 0.054
c 6h 6p h 0.072 0.029 0.025 0.126 0.024
c 6h 6p d 0.050 0 .0 2 0 0.018 0.088 0 .0 2 1

HPMu 0.216 0.081 0.051 0.348 0.055
HPH 0.071 0.027 0.013 0 . 1 1 1 0.019
HPD 0.051 0.019 0.008 0.078 0.014

CH2PMu 0.207 0.091 0.067 0.365 0.055
c h 2p h 0.071 0.030 0 .0 2 1 0 .1 2 2 0.019
c h 2p d 0.051 0 .0 2 1 0.014 0.086 0.014

H20 2PMu 0.225 0.095 0.092 0.412 0.051
h 2o 2p h 0.077 0.031 0.030 0.138 0.018
h 2o 2p d 0.055 0 .0 2 2 0 .0 2 1 0.098 0.013

Table 6.1: Results of numerical reference calculations performed on systems 
containing a P-X bond. Quoted energies are in eV

System ZPEX ZPE y ZPE, ZPErot. A x  (A)
C3H6SMu 0.238 0.093 0.051 0.382 0.049
c 3h 6s h 0.081 0.030 0.013 0.124 0.016
c 3h 6s d 0.058 0 .0 2 1 0.008 0.087 0 .0 1 2

CH3NSMu 0 .2 1 2 0.071 0.071 0.354 0.064
c h 3n s h 0.078 0 .0 2 2 0 .0 2 2 0 .1 2 2 0 .0 2 0

c h 3n s d 0.055 0.015 0.015 0.085 0.015
C2H5NSMu 0.234 0.071 0.074 0.379 0.052
c 2h 5n s h 0.080 0 .0 2 2 0.023 0.125 0.018
c 2h 5n s d 0.057 0.015 0.016 0.088 0.013

C7H7NSMU 0.226 0.086 0.059 0.371 0.056
C7H7NSH 0.080 0.028 0.016 0.124 0.019
C7H7NSD 0.057 0 .0 2 0 0 .0 1 1 0.088 0.014

Table 6.2: Results of numerical reference calculations performed on systems 
containing an S-X bond. Quoted energies are in eV
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but this increase is more pronounced for both the proton and the deuteron. This 

suggests that the PES is more anharmonic for these systems than for those con­

sidered previously, since both the proton and deuteron explore less of the PES 

than the muon. It should also be noted that for the isotopomers of hypophos- 

phorous acid, H2O2PX, HLN zero-point energies are approximately 10% larger 

than in the other reference systems containing a P-X bond.

The parametrised correlation model described in Chapter 4 was used in an 

attempt to define the mass-dependent parameters for the P-X and S-X bonds. 

In contrast to the calculations of Chapter 4, wherein the separation between the 

two centres on which HLN basis functions were placed was found to be rela­

tively insensitive to both classical bond length and HLN mass, it was found to 

be necessary here to increase the separation to ~0.4 A for calculation involving 

the muon, and to reduce this to ~0.36 A for the proton and deuteron. Again, 

results were reasonably insensitive to further variation about these values. Ta­

bles 6.3 and 6.4 show the correlation factors which best replicate the references 

calculations, along with the calculated zero-point energies and bond length in­

creases. It can be seen that the correlation factors associated with the HLN in 

the isotopomers of hypophosphorous acid are significantly lower than those for 

the other systems containing a P-X bond. This supports the proposal at the 

beginning of this section that the atomic species to which the HLN is bonded 

may not in itself be enough to define the correlation factor. In this case, the fact 

that the phosphorus to which the HLN is bonded is itself bonded to an oxygen, 

in contrast to the other reference systems, in which P is bonded to C or H.
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System f c Z P E C (eV) ZPEn
ZPE n Axc  (A) A  xn  

A xn

C6H6PMu 0.638 0.372 0.98 0.051 0.94
c 6h 6p h 0.706 0.116 0.92 0.016 0.67
c 6h 6p d 0.715 0.091 1.03 0.008 0.38
HPMu 0.638 0.347 1 .0 0 0.057 1.04
HPH 0.705 0.115 1.04 0.017 0.89
HPD 0.717 0.072 0.92 0 .0 1 2 0 .8 6

CH2PMu 0.638 0.367 1 .0 1 0.052 0.95
c h 2p h 0.704 0.126 1.03 0.014 0.74
c h 2p d 0.715 0.076 0 .8 8 0 .0 1 1 0.79

H20 2PMu 0.614 0.415 1 .0 1 0.042 0.82
h 2o 2p h 0.691 0.133 0.96 0.013 0.72
h 2o 2p d 0.703 0 .1 0 0 1 .0 2 0.009 0.69

Table 6.3: Zero-point energies and increases in bond lengths as calculated using 
the parametrised correlation model for the P-X bond

6.2 HLN-Im purity Com plexes in Diam ond

6.2.1 T he P X  com plex

In keeping with previous calculations, equilibrium structures were obtained using 

a point defect to represent the HLN, and PCM calculations were subsequently 

performed using these structures. To study the PX complex, a C35H40PH dia­

mond cluster, centred on an anti-bonding site, was used, with the unrelaxed C-C 

bond length set to 1.545 A, and the bond length between the carbons and the 

saturating hydrogens being set to 1.09 A. Geometry optimisation was performed 

at the UHF/6-31G level, and relaxation of the PH complex itself, along with the 

nearest and next nearest neighbour carbons was allowed, although it should be 

noted that the only symmetric distortions were considered. With this relaxation 

the minimum energy of the system was found when the interstitial hydrogen was 

at the anti-bonding site, in agreement with [93]. The relaxed structure can be
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System f c ZP E p  (eV) Z P E p
Z P E n Axp (A) Ax p 

A  XN

C3H6SMu 0.606 0.384 1.01 0.047 0.96
c 3h 6s h 0.685 0.129 1.04 0.014 0.92
c 3h 6s d 0.695 0.080 0.92 0.009 0.75

CH3NSMu 0.610 0.369 1.04 0.050 0.78
c h 3n s h 0.685 0.134 1.10 0.013 0.65
c h 3n s d 0.696 0.088 1.04 0.008 0.53

C2H5NSMU 0.606 0.382 1.01 0.048 0.92
C2H5NSH 0.685 0.125 1.00 0.015 0.83
C2H5NSD 0.695 0.080 0.91 0.10 0.77

C7H7NSMU 0.607 0.376 1.01 0.049 0.88
C7H7NSH 0.685 0.125 1.01 0.015 0.79
C7H7NSD 0.695 0.081 0.92 0.010 0.71

Table 6.4: Zero-point energies and increases in bond lengths and as calculated 
using the parametrised correlation model for the S-X bond

seen in Figure 6.3. The carbons nearest to the substitutional phosphorus can 

be seen to be noticeably displaced from the perfect crystal structure, and this 

can be seen more clearly when the local structure of the complex is studied more 

closely. The P-Ci bond length is equal to 1.711 A, an increase of 0.166 A (10.7%). 

The P-C2 bond length is equal to 1.784 A, an increase of 0.239 A (15.5%). The 

angle C1PC2 is equal to 105.32°, a decrease of 4.14° (3.8%). The angle PC2C3 

is equal to 104.17°, a decrease of 5.19° (4.8%). Finally, the P-H bond length is 

equal to 1.326 A, a decrease of approximately 10% from the standard value of 

around 1.43 A calculated for the reference systems. This means that the effect 

of the PH complex is to displace the nearest neighbour carbons outwards from 

their equilibrium position by a significant amount, whilst as can be seen from 

the values of the two angles considered, the phosphorus itself is also displaced 

backwards from the prefect crystal substitutional site. Using the PCM, with the 

parameters =  0.638 and =  0.704 obtained from Section 6.1, the total
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Figure 6.3: The UHF/6-31G relaxed structure of the C35H40PH cluster

Particle fc ZP E  (eV) Et (a.u.) Ed (eV) Ax  (A)
0.638 0.728 -1688.46063 2.127 0.015

V 0.704 0.339 -1688.51145 0.744 0.004
classical n/a n/a -1688.53879 0.000 n/a

Table 6.5: ZPE, total energy, defect formation energy, and bond length increase 
for the P-X defect complexes

energy and the relative defect formation energy Ed can be found by comparing 

this system to one containing a point charge in place of the HLN (note: to ob­

tain absolute defect formation energies, a more sophisticated calculation must 

be made. See [52] for details). In addition, the HLN zero-point energy can be 

calculated. Table 6.5 shows these different energies, and also includes the PCM 

calculated bond length increases. As can be seen, the zero-point energies of the 

HLN are predicted to be much larger than those encountered in the molecu­

lar systems, around 100% larger for the muon, and 200% larger for the proton, 

and the bond length increases are correspondingly reduced. Interestingly, the 

dependence of the defect formation energy on the HLN-electron correlation is 

large, and illustrates the fact that post-hoc methods, which only inlude the HLN
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Particle Z P E X ZPEy Z P E z Z P E Tot A x  (A)

P+ 0.288 0 .2 0 1 0.199 0 .6 8 8 0.029

P 0.099 0.068 0.067 0.234 0.009

Table 6 .6 : Numerically calculated ZPE, defect formation energy, total energy, 
and bond length increase for the P-X defect complexes. Quoted energies are in 
eV

zero-point energy, are insufficient when properties dependent on the total energy 

are of interest. It should be noted, however, that the formation of the P-H bond 

in this complex serves to reduce the defect formation energy when compared to 

that of a lone phosphorus.

It is important to consider whether the parameters obtained for the P-X bond 

in molecular systems, and used in the calculations of the P-X defect complex, are 

valid, since the defect complex has a radically different local structure to that 

of the molecular bond. In order to evaluate the suitability of the parameters 

used in the calculations presented in Table 6.5, the PES on which the HLN 

moves was again sampled, both along and normal to the P-X bond, and the 

Schrodinger equation for this PES was solved numerically. The results of these 

calculations can be seen in Table 6 .6 . There is a remarkable increase in the zero- 

point energy over that found in the reference calculations, with the ZPE along the 

bond increasing by ~25%, and the ZPE’s normal to the bond increasing by over 

100%, illustrating the effect of the surrounding atoms on the motion of the HLN, 

an effect predicted using the PCM. The bond length increase is also reduced by 

approximately 40% for the muon, and approximately 50% for the proton. This 

is due to the fact that there is a pronounced maximum between the anti-bonding 

site and the tetrahedral site, both of which lie along the [111] axis. This can 

be seen in the potential surface shown in Figure 6.4, which illustrates the fact
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1 0 -
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Figure 6.4: The [111] adiabatic potential energy surface upon which the HLN 
moves

that the antibonding site is indeed more stable than the tetrahedral site, with 

a barrier of 5.915 eV between the antibonding and cage centres. The barrier 

is some 1.686 eV above the local minimum found at the cage centre, and so it 

would be expected that both the muon and proton would also be trapped at 

the cage centre since the zero-point energies of the proton and muon would be 

expected to be significantly lower than this. It should be noted that the cage 

centre referred to in Figure 6.4, is the centre in the cage adjacent to that for 

the antibonding site is found, i.e. an HLN at the cage centre would have four 

carbons as nearest neighbours, rather than three carbons and an impurity.

Comparison of Tables 6.5 and 6.6 show that the PCM has reproduced the 

general features of the HLN component of the defect-complex. In particular, the 

muon zero-point energy is accurate to 0.04 eV (5.8%), an encouraging sign which 

suggests the PCM is accurately modelling the HLN-electron correlation across
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Particle fc Z P E  (eV) Et (a.u.) Ed (eV) A x  (A)

0.645 0.653 -1688.46415 2.031 0.023
P 0.740 0.232 -1688.51454 0 .6 6 6 0.005

Table 6.7: ZPE, defect formation energy, total energy, and bond length increase 
for the P-X defect complexes, parametrised for this system

considerably different systems. The proton zero-point energy is less accurate, 

however, being overestimated by some 0.105 eV (44.8%). In both cases, A x  is 

underestimated by around 50%.

Although the features of the HLN component of the defect complex have 

been reasonably well modelled using the parameters obtained from the reference 

calculations, it is worth considering how large the alteration to these parameters 

must be to model the HLN more accurately. Table 6.7 gives the parameters 

which best model the PX complex. As can be seen, the zero-point energies 

are much better modelled, the realtive defect formation energies remain largely 

unaffected, and A x  is improved to 79% of the numerical value for the muon. 

The bond length increase is still considerably underestimated for the proton. 

An explanation for this may be found if Figure 4.6 is considered again. A ridge 

can be seen in the effective potential. If a similar effective potential is being 

experienced here, and is located low enough in the potential well, the effect 

would be to significantly reduce the ‘tail7 of the proton wavefunction, whilst 

leaving the muon wavefunction relatively unaffected.

The defect formation energies are relatively insensitive to the reparametrisa- 

tion of the P-X bond in the defect complex. This is to be expected, since the 

zero-point energies, and hence the HLN-electron correlation energies, are well 

modelled using the original parameters, and it these components of the total 

energy that give the defect formation energy the calculated mass dependence.
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Figure 6.5: The UHF/6-31G relaxed structure of the C35H40SH cluster

6 .2 .2  T h e  S X  C om p lex

Calculations were carried out on the SX complex in diamond in an analogous 

way to those of Section 6.2.1, with a sulphur atom replacing the phosphorus 

in the diamond cluster. The relaxed features of this cluster are again worth 

considering. The carbons nearest to the substitutional sulphur can be seen to 

be displaced from the perfect crystal structure. The S-Ci bond length is equal 

to 1.767 A, an increase of 0 .2 2 2  A (14.4%). The S-C2 bond length is equal to

2 .0 1 0  A, an increase of 0.465 A (30.1%). The angle C1SC2 is equal to 104.62°,

a decrease of 4.84° (4.4%). The angle PSC2C3 is equal to 97.18°, a decrease of 

12.28° (1 1 .2 %). Finally, the S-H bond length is equal to 1.312 A, a decrease 

of approximately 3% from the standard value of around 1.35 A calculated for 

the reference systems. The distortion to the crystal can be seen to be far more 

pronounced here than in the P-X complex. The S-C bond length along the [111] 

direction is severely dilated, with the majority of this dilation due to the carbon 

being forced away from its perfect lattice location. The carbon lies close to the 

plane of its nearest neighbours.

The parameters =  0.607 and f^p = 0.685 obtained from the S-X bond
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Particle fc Z P E  (eV) E t  (a.u.) E d  (eV) A x  (A)

p + 0.607 0.769 -1744.97832 2.164 0.013

p 0.685 0.338 -1745.03061 0.741 0 .0 0 1

classical n /a n /a -1745.05784 0 .0 0 0 n /a

Table 6 .8 : ZPE, defect formation energy, total energy, and bond length increase 
for the S-X defect complex

Particle Z P E X Z P E y Z P E z Z P E Tot A x  (A)

P + 0.265 0.192 0.194 0.651 0.047

P 0.089 0.065 0.067 0 .2 2 1 0 .0 1 1

Table 6.9: ZPE, defect formation energy, total energy, and bond length increase 
for the S-X defect complex. Quoted energies are in eV

reference calculation where used in the PCM to investigate the quantum nature 

of the HLN in the SX complex, and the results of these calculations can be 

seen in Table 6 .8 . The large zero-point energy increases are again predicted 

using the PCM, and these values axe quite similar to those predicted for the 

PX complex using the parameters obtained from the reference calculations. It 

may be expected therefore, that whilst the muon zero-point energy may be quite 

accurate, that of the proton is probably significantly over-estimated. The bond 

length increase for each of the cases would also be expected to be too small. The 

PCM calculations were therefore checked numerically and the results of these 

numerical calculations can be seen in Table 6.9. Again, the qualitative features of 

the complex have been obtained from the PCM using the S-X bond parameters, 

i.e. the significant increase in zero-point energy, and the corresponding decrease 

in Ax.  The muon zero-point energy is predicted less well than in the PMu 

complex, with the PCM overestimating this by 0.118eV (18.1%). The proton 

zero-point energy is again significantly too large, being overestimated by 0.117eV 

(52.9%). The bond length increases are underestimated in both cases, with
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Particle fc Z P E  (eV) E t  (a.u.) E d  (eV) A x  (A)

P+ 0.633 0.652 -1744.98405 2.008 0.019

P 0.725 0.230 -1745.03425 0.642 0.006

Table 6.10: ZPE, defect formation energy, total energy, and bond length increase 
for the S-X defect complex, parametrised for this system

the proton value being the most severely inaccurate. The general features of 

this calculation bear a striking resemblance to those of the P-X bond however, 

implying that systematic corrections could be made to account for these failings 

in the model.

The [111] potential energy surface upon which the HLN moves in the SX 

complex is broadly similar to that shown in Figure 6.4. In this case the barrier 

between the antibonding and cage centres was found to be 4.017 eV, with a local 

minimum at the cage centre being 1.613 eV below this barrier, again suggesting 

that both the muon and proton would also be stable at the cage centre.

The correlation factor f c was again varied to obtain better agreement with 

the numerical calculations of Table 6.9. These values, along with the predicted 

energies and bond length increases, can be seen in Table 6.10. Again, using 

different parameters allows the zero-point energies to be accurately predicted, 

although the bond length increases remain underestimated. This could be due 

to the reason given in Section 6.2.1 to account for the same feature of the PCM 

calculations on the PX complex. As seen for the PX complexes the mass depen­

dent defect formation energies are relatively insensitive to the reparametrisation 

of the S-X bond.
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6.3 HLN-Impurity-Vacancy Com plexes in Dia­
mond

In Section 6.2, The PX and SX defect complexes in diamond were studied, and 

it was found that the defect formation energies were high, and indeed positive 

for the SH, SMu, and PMu complexes. This was mainly due to the large lattice 

deformation associated with the interstitial impurity, which is large in compari­

son with the neighbouring carbons. In reality, the host crystal is not perfect, but 

will contain various other defects, of which we will consider here the vacancy. 

A vacancy creates a site in which an impurity replacing a nearest neighbour 

carbon will not induce such a large lattice distortion, leading to a lower defect 

formation energy. There has recently been interest in such defects, and in par­

ticular the nitrogen-hydrogen-vacancy (NHV) defect, for which the negatively 

charged complex is experimentally observed to have [111] symmetry [49]. The­

oretical calculations [52] find the hydrogen localised via the saturation of one of 

the carbon dangling bonds present due to the vacancy. These calculations do 

not account for the experimentally observed symmetry. Rapid diffusion of the 

hydrogen between the three nearest neighbour carbons, however, would account 

for this, and this is in fact suggested as a possible explanation in [52]. In this 

section, various neutral HLN-impurity-vacancy complexes are studied, and the 

three-dimensional version of Herring’s formula, derived in Section 2.4, is em­

ployed to estimate the tunnel splitting energy, and hence the tunnelling rate, of 

hydrogen and muonium in these complexes. It is particularly important to study 

the isotope effects here, since the tunnelling rate is highly sensitive to the mass 

of the tunnelling particle and so the [111] defect symmetry may be conceivable 

for the muon, but not the proton, if only quantum diffusion is considered.
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Figure 6 .6 : UHF/6-31G relaxed structure of the C27H36NX cluster used for cal­
culations upon the NXV defect complex

The impurities considered in this section are nitrogen, phosphorus, and sul­

phur, each of which adopt an interstitial position in the complexes discussed 

here. As a reference, the hydrogen-vacancy complex was also studied. The clus­

ter used in the calculations presented here was C27H36IX, where I={C, N, P, 

S}, X={Mu, H}. This cluster was centred on the vacancy. The nearest and 

second nearest neighbours to the HLN, along with the nearest neighbours to the 

vacancy, were relaxed using Gaussian 98 at the UHF/6-31G level, and for each of 

the complexes, the lowest energy site was obtained when the HLN saturated one 

of the carbon dangling bonds. The relaxed structure of the C27H36NH complex is 

shown in Figure 6 .6 , both with and without saturating hydrogens.Various struc­

tural properties of the cluster where taken in order to study the dependence of 

the crystal structure on the impurity species. These properties are summarised 

in Table 6.11. As can be seen, the local structure around the HLN remains 

largely unaffected by the presence of the impurity. However, the local structure 

of the impurity itself is altered to a more noticeable extent, with the presence of
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Complex C-H (A) C?-C2h (A) ZC«C?C?(°) I-Ci(A) zc\ic\(°)
CXV 1.053 1.519 112.7 1.497 115.6
NXV 1.040 1.511 113.0 1.480 114.2
PXV 1.031 1.517 114.9 1.718 106.5
s x v 1.051 1.516 114.1 1.725 105.9

Table 6.11: Various properties of impurity-HLN-vacancy defects in diamond

the large phosphorus or sulphur atoms inducing a dilation in the bond length, 

and a corresponding reduction in the angle C^IC^. For the smaller carbon and 

nitrogen, the opposite is observed. The PCM was used to evaluate the HLN 

wavefunction in these complexes, with the parameters obtained in Section 4.4.2 

for the C-X bond being used. The results of Section 6 .2  suggest that these 

parameters should be sufficient to model well the C-Mu bond in each of these 

complexes, although the same cannot be said for the C-H bond. Tables 6.12 and 

6.13 summarise the HLN properties in these complexes. Numerical calculations

complex fc (eV) A ( A )
CMuV 0.663 0.574 0.046
NMuV 0.663 0.607 0.042
PMuV 0.663 0.625 0.040
SMuV 0.663 0.615 0.041

Table 6.12: Zero-point energies and increases in bond length for the muon in the 
CMuV, NMuV, PMuV, and SMuV complexes, calculated using the PCM with 
parameters obtained from the reference calculations

were also performed by obtaining the PES on which the HLN moves, and solving 

the Schrodinger equation numerically for this PES. The results of these calcula­

tion are presented in Table 6.14. The PCM succeeds in predicting an increase 

in the zero-point energy of the muon in all of the complexes when compared to 

those of the C-Mu bond in the reference systems. It also succeeds in predicting
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complex fc ZP E p (eV) Axp (A)

CHV 0.758 0.239 0.004
NHV 0.758 0.261 0.003
PHV 0.758 0.260 0.003
SHV 0.758 0.261 0.003

Table 6.13: Zero-point energies and increases in bond length for the proton in 
the CHV, NHV, PHV, and SHV complexes, calculated using the PCM with 
parameters obtained from the reference calculations

complex ZP E X (eV) Z P E y (eV) Z P E z (eV) Z P E Tot. (eV) A x  (A)

CMuV 0.293 0.139 0.139 0.571 0.048
NMuV 0.308 0.150 0.145 0.603 0.044
PMuV 0.315 0.138 0.138 0.591 0.043
SMuV 0.308 0.165 0.155 0.628 0.051
CHV 0.103 0.045 0.045 0.193 0.016
NHV 0.107 0.049 0.047 0.203 0.014
PHV 0.111 0.045 0.045 0 .2 0 1 0 .0 1 1

SHV 0.104 0.055 0.060 0.219 0 .0 1 1

Table 6.14: Numerically calculated zero-point energies and increases in bond 
length for the CXV, NXV, PXV, and SXV complexes

an increase in the zero-point energy when a carbon is replaced by an impurity, 

and models the corresponding decrease of A x  well in all cases except sulphur. 

In particular, the results for the CMuV and NMuV are in excellent agreement 

with the numerical calculations Again, the PCM performs less well for the pro­

ton when the parameter obtained from the C-H bond reference systems is used. 

Although it again correctly predicts the increase in zero-point when a carbon is 

replaced by an impurity, the increase in bond length is severely underestimated. 

The ratios of the zero-point energies and bond length increases, as obtained 

from the PCM and the numerical calculations, is shown in Table 6.15. Since 

the intention here was to use the HLN wavefunctions obtained from the PCM to
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complex Z P E p / Z P E N A x p / A xn

CMuV 1 .0 1 0.96
NMuV 1 .0 1 0.95
PMuV 1.06 0.93
SMuV 0.98 0.80
CHV 1.24 0.25
NHV 1.29 0 .2 1

PHV 1.28 0.27
SHV 1.19 0.27

Table 6.15: Comparison of zero-point energies and bond length increases, calcu­
lated numerically and using the parametrised correlation model with parameters 
obtained from the reference calculations, for the CXV, NXV, PXV, and SXV 
complexes

calculate tunnel splitting energies, the optimal values for the correlation factor 

f c were found, so that the wavefunctions obtained could be used to evaluate 

these energies. The optimal values for / c, along with the associated zero-point 

energies and bond length increases, are presented in Table 6.16.

In the systems being considered here there are three possible positions that 

the HLN can adopt, due to the three dangling bonds created by the vacancy. For 

three identical potential wells, located at the vertices of a triangle, the tunnel- 

splitting energy can be approximated using the appropriate three-dimensional 

version of Herring’s formula which, in atomic units, is given by

oo oo

AE  =  ^ J  J  ¥7(0 , y, z) ^  dy dz. (6 .1 )
—oo —oo

This represents the difference in energy between the symmetric ground state and 

doubly degenerate first excited states of a particle in the aforementioned triple 

potential well when the wells are separated by a finite barrier. Here (p(x, y, z) 

is the wavefunction of the particle in one of the wells when there are no other
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potential minima, and this function, along with its first derivative, must be 

evaluated at x  =  0 , where this represents the top of a barrier, and hence defines 

a plane of symmetry for the ground state. In the PCM calculations presented 

in this section, (p(x,y,z) is the calculated HLN wavefunction and, assuming the 

geometry used to calculate this localised state is a good approximation to the 

geometry of a system containing a rapidly tunnelling particle, Herring’s formula 

can be directly applied. It should be noted here that no other atomic motion is 

considered in these calculations, and so the ‘undressed’ tunnel-splitting energies 

are calculated. Inclusion of the atomic motion would in this case reduce this 

energy. Table 6.17 gives the tunnel splitting energies, calculated using Herring’s 

formula, for the muon and proton in each of the defect complexes considered in 

this section.

The tunnel splitting energy of the muon in these defect complexes varies be­

tween 3-7% of the corresponding zero-point energy, and so the tunnelling could 

only be considered weak. For the proton, the tunnel splitting energy is even 

smaller, varying between 0.3-0.7% of the zero-point energy. It should be noted, 

however, that Goss et al [52] predict a barrier between equivalent minima of 

no greater than 0.4 eV, and so the zero-point energies calculated here are small 

enough to support the suggestion that quantum diffusion is the mechanism re­

sponsible for the observed defect symmetry. Table 6.18 gives the time taken 

for a proton or muon initially localised in any given well to return to this well, 

obtained using Equation 2.96. The results of [49] were obtained using an ESR 

technique which would be expected to give a time resolution of ~10-1 0  s. The 

results presented here suggest that, for the neutral charge state at least, quan­

tum diffusion of the proton is sufficient to give an apparent experimental [1 1 1 ] 

defect symmetry, a conclusion supported when extra consideration is given to
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complex f c Z P E  (eV) Z P E p / Z P E N A x  (A) A x p / A x n

CMuV 0.663 0.574 1 .0 1 0.046 0.96
NMuV 0.663 0.607 1 .0 1 0.042 0.95
PMuV 0.675 0.595 1 .0 1 0.043 1 .0 0

SMuV 0.660 0.622 0.99 0.040 0.78
CHV 0.775 0.195 1 .0 1 0.007 0.44
NHV 0.790 0.199 0.98 0.007 0.50
PHV 0.790 0.204 1 .0 1 0.006 0.55
SHV 0.785 0.218 1 .0 0 0.005 0.45

Table 6.16: Zero-point energies and increases in bond length for the HLN in 
the CXV, NXV, PXV, and SXV complexes, calculated using the PCM with 
parameters optimised for these systems

complex f c AE  (eV) complex f c AE  (eV)
CMuV
NMuV
PMuV
SMuV

0.663
0.663
0.675
0.660

0.0393
0.0188
0 .0 2 0 1

0.0359

CHV
NHV
PHV
SHV

0.775
0.790
0.790
0.785

1.467xl0-3 
6.776 xlO" 4 

5.253xl0-4 
7.883 xlO" 4

Table 6.17: Tunnel-splitting energies of the HLN in the CXV, NXV, PXV, and 
SXV complexes, calculated using the PCM with parameters obtained from the 
reference systems

complex f c t a e  ( x io  12s) complex f c t a e  (xlO 12s)
CMuV 0.663 0.1052 CHV 0.775 2.8194
NMuV 0.663 0 .2 2 0 1 NHV 0.790 6.1009
PMuV 0.675 0.2058 PHV 0.790 7.8736
SMuV 0.660 0.1152 SHV 0.785 5.2459

Table 6.18: Tunnelling period of the HLN in the CXV, NXV, PXV, and SXV 
complexes, calculated using the PCM with parameters obtained from the refer­
ence systems
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complex f c AE  (eV) complex f c AE  (eV)

CMuV
NMuV
PMuV
SMuV

0.663
0.663
0.663
0.663

0.0393
0.0188
0.0183
0.0371

CHV
NHV
PHV
SHV

0.758
0.758
0.758
0.758

4.091 xlO" 4 

9.311xl0~5 
8.094xl0-5 
2 .0 2 1  x l 0 ~ 4

Table 6.19: Tunnel splitting energies of the HLN in the CXV, NXV, PXV, and 
SXV complexes, calculated using the PCM with parameters optimised for these 
systems

complex f c t a e  ( x 1 0 - 1 2 s ) complex f c t a e  (xlO 12s)
CMuV 0.663 0.1052 CHV 0.758 10.1091
NMuV 0.663 0 .2 2 0 1 NHV 0.758 44.4075
PMuV 0.663 0.2260 PHV 0.758 46.4628
SMuV 0.663 0.1115 SHV 0.758 20.4620

Table 6.20: Tunnelling period of the HLN in the CXV, NXV, PXV, and SXV 
complexes, calculated using the PCM with parameters optimised for these sys­
tems

the validity of these results.

It has been assumed that the HLN wavefunctions are accurate, and although 

this is true in the context of accurate reproduction of zero-point energies and 

bond length increases, Figures 4.9, 4.12, and 4.13 show considerable overlocal­

isation across the bond. The calculations of Section 3.3 reveal that the tunnel 

splitting energy is dependent on the overlap of the single well wavefunctions, and 

so it is conceivable that the overlocalisation across the bond could lead to an 

underestimation of the tunnel splitting energy by an order of magnitude. As an 

illustration of the sensitivity of these tunnel splitting energies to the HLN wave­

function, Tables 6.19 and 6.20 show the tunnel-splitting energy and tunnelling 

time for the muon and proton obtained using the parameters obtained from the 

C-X reference systems. Although the tunnel-splitting energy of the muon re-
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complex E% (eV) E l  (eV) E l  (eV)
CXV 0.000 0.587 1.710
NXV 0.000 0.583 1.757
PXV 0.000 0.586 1.746
SXV 0.000 0.599 1.783

Table 6.21: Defect formation energies of the CXV, NXV, PXV, and SXV com­
plexes, where X represents the muon, proton, or a point charge

mains essentially unaffected when the sub-optimal wavefunctions are used, the 

tunnel-splitting energy of the proton is reduced by up to an order of magnitude, 

due to the overlocalisation of the wavefunction. For these reasons, the tunnel- 

splitting energies calculated here should be considered lower estimates of the 

true tunnel splitting energy, although those calculated for the muon would be 

expected to be good approximations to the true values.

Finally, the dependence of the relative defect formation energies of the each 

of the complexes on the mass of the HLN can be considered. These energies, 

presented in Table 6.21, were calculated in the same manner as those associated 

with the PX and SX defects, and for systems containg a quantum HLN the 

optimal correlation factors presented in Table 6.16 were used. The raising of 

these energies when the quantum nature of the HLN is included is smaller for 

these complexes, but remains significantly larger than the zero-point energy. 

Since the zero-point energies of the HLN in all of the complexes considered in 

this chapter are comparable, it can be deduced that the HLN-electron correlation 

is not as significant in the vacancy containing complexes as in those with no 

vacancy. This would be expected since, as was shown in Section 4.3, the HLN- 

electron correlation energy rapidly approaches zero as the separation between 

the two increases. In the case of the PX and SX complexes, there is a greater 

electron density in close proximity to the HLN than in the vacancy containing
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defects, and so the corresponding HLN-correlation energy is greater. This leads 

to a raising of the relative defect formation energy.



Chapter 7 

Conclusions and Further Work

7.1 Conclusions
General Conclusions

I have found that in all cases considered here the HLN-electron correlation had 

to be modelled accurately in order to obtain realistic HLN wavefunctions. For 

the first time, I have shown that this correlation could be accounted for by 

using a parametrised model potential, and this model potential gave accurate 

results in molecular systems if the parametrisation was assumed to be dependent 

only on the atomic species to which the HLN was bonded. I have applied this 

parametrised model in order to study features of various systems, which are only 

accessible via quantum mechanical methods. This was achieved at a fraction of 

the computational cost of path-integral Monte-Carlo (PIMC) methods. I have 

shown that using this parametrisation, there was a significant dependence of 

the total system energies on the mass of the HLN. When I applied the PCM to 

systems which were significantly different to those used to parametrise the model, 

the results were still reasonably accurate, suggesting the model potential was 

able to well approximate the HLN-electron correlation across different systems, 

although small changes to the parametrisation resulted in significantly improved

176
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wavefunctions. This lends weight to the argument that a consideration of next 

nearest neighbours of the HLN (and possibly more remote components of a 

system) may lead to better parametrisation.

Chapter 2

For the first time I extended Herring’s Formula [61] so that the tunnel splitting 

energy of a particle confined to a symmetric double potential well in a three- 

dimensional space could be considered. I then further extended this work to 

allow the evaluation of the tunnel splitting energy of a particle confined to a 

potential energy surface composed of three identical potential wells located at 

the vertices of an equilateral triangle, a geometry found in certain hydrogen- 

impurity-vacancy complexes in diamond, such as that considered in Chapter 6 . 

In this case, I found that the splitting was not symmetric around the ground state 

energy of the particle localised in a single well, and so predicted an amplification 

of the tunnelling rate when compared to that of the two-well system.

Chapter 3

I studied some general problems concerning the evaluation of the hydrogen-like 

nuclear (HLN) wavefunction in the context of interacting harmonic oscillators. 

Firstly, I considered the nature of the variationally optimal isotropic HLN ground 

state wavefunction for a particle moving in an anisotropic potential, and I found 

that the more energetic components of the wavefunction were best approximated 

when using a basis which sufficiently spanned the entire configuration space.

Secondly, I confirmed the validity of Herring’s formula in the evaluation of 

tunnel-splitting energies. I achieved this by considering a particle of muon mass 

tunnelling through a finite barrier, and evaluating the tunnel-splitting energy 

using Herring’s formula, in addition to both analytical and numerical evalu­
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ation. I found that for physically realistic barrier height and potential well 

separation, Herring’s formula was a very good approximation to the numerical 

tunnel-splitting energy.

Finally, I considered the effects of HLN-electron correlation on the HLN wave­

function by studying a system in which two particles of differing mass interact 

with each other, and the external environment, harmonically. This system can 

be considered to be a crude approximation to a trapped hydrogen atom. For 

the first time, I solved the Schrodinger equation of the system exactly and 

within the framework of the Hartree-Fock (HF) approximation. I found that 

the HF approximation led to the HLN component of the wavefunction becom­

ing highly overlocalised, with a zero-point energy some three times larger than 

that obtained using the exact wavefunction. I found the electron component 

of the wavefunction to be almost completely insensitive to this approximation. 

I obtained an analytical form for the HLN-electron correlation energy and, for 

physically realistic HLN-electron mass ratios, found this correlation energy to be 

proportional to m-1/2, where m  is the HLN mass.

Chapter 4

I studied small molecular systems containing a single hydrogen-like nucleus using 

Gaussian 98, with the HLN-electron interaction modelled within the HF approxi­

mation. I compared the HF-HLN wavefunctions to those obtained by finding the 

adiabatic potential energy surface upon which the HLN moves, and numerically 

solving the Schrodinger equation for this PES. As observed in Chapter 3, The 

wavefunctions obtained within the HF approximation were highly overlocalised, 

showing that HLN-electron correlation effects are also extremely important when 

the HLN is coupled to a system through the Coulomb interaction.
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I developed a parametrised correlation model (PCM) which allowed the ac­

curate evaluation of the mass-dependent HLN wavefunction in all of the systems 

considered in this chapter through the variation of a single parameter. I achieved 

this by assuming that the correlated potential experienced by the HLN could be 

well modelled by a linear combination of Hartree-Fock and ‘ Born- Oppenheimer’ 

potentials. In this way, I parametrised the C-X, N-X, and O-X bonds, where X 

represents H, Mu, or D. I again found the HLN-electron correlation energy to 

have an m - 1 / 2 dependence, where m  is the HLN mass.

Chapter 5

I applied the parametrised correlation model of Chapter 5 in order to study 

the adducts of the four DNA base molecules formed by addition of hydrogen 

or muonium to an unsaturated bond. I found that when the finite mass of the 

HLN was included (i.e. when the HLN was modelled quantum mechanically 

as opposed to classically) the relative stability of adducts formed by addition 

at a carbon site increased when compared to the stability of adducts formed by 

addition at nitrogen and oxygen sites respectively. I also calculated that adducts 

formed by addition at a nitrogen site became more stable than those formed by 

addition at an oxygen site. Furthermore, I found that these effects were more 

pronounced for an HLN of muon mass than for one of proton mass.

I found that the inclusion of effects due to the finite mass of the HLN did not 

result in a reordering of the most stable adducts, i.e. the most stable adducts 

found using a classical HLN remained the most stable adducts. For some of the 

higher energy adducts, however, the inclusion of these effects led to some adducts 

becoming more stable than those predicted to be more stable using a classical 

description of the HLN. In particular high energy adducts formed by addition
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to carbon became more stable than adducts formed by addition to nitrogen and 

oxygen.

I found that the most stable adduct of cytosine, 5-X-cytosine, and the sec­

ond most stable adduct of guanine, 6-X-guanine, were formed by addition at a 

nitrogen site, irrespective of effects due to the finite mass of the HLN. When the 

variation of the hyperfine coupling constant (HFCC) at the HLN as a function of 

bond length was considered, I discovered that there was a crossing of electronic 

energy levels, with the highest occupied molecular orbital (HOMO) changing 

from a delocalised bonding orbital to a localised, Is-like, non-bonding orbital. 

When I considered the PCM calculated HLN wavefunctions, I found that there 

was a non-zero probability that the HLN would be found at a distance sufficiently 

far from the remainder of the system for the HOMO to be described by this non­

bonding orbital, suggesting that although these adducts are energetically stable, 

the amplitude of the zero-point energy is large enough for these adducts to be 

unstable. The experimentally observed adduct 1,2-dihydrocytidine is formed by 

addition to sites the sites labelled 1 and 2 in Figure 5.2. The adduct 5-X-cytosine 

(shown in Figure 5.3) has, to my knowledge, not been reported..

Finally, I found that the vibrationally averaged HFCC’s were significantly 

larger than the ‘static’ values (obtained by finding the HFCC at the equilibrium 

geometry). This fact leads to the experimentally observable residual isotope 

effects. For adducts formed by addition to a ring carbon, the residual isotope 

effect was calculated here to be ~1.26, comparable to the experimental value, 

obtained from the isotopomers of the cyclohexadienyl radical, of 1 .2 1 .

The results of Chapter 6  show a marked change in the quantum motion of 

the HLN when it’s local environment is altered from a molecular to a crystalline 

one. Similar effects might be expected for the results presented in Chapter 5 if
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the DNA base molecules were surrounded by water. This would give insight into 

the change in behaviour of single strand DNA, currently being used in various 

applications (see Chapter 5), and that of DNA in the more widely considered 

double helix form, where the paired bases linking the helices would be essentially 

‘dry’.

Chapter 6

I used the PCM to study the phosphorus-hydrogen (PH), sulphur-hydrogen 

(SH), hydrogen vacancy (CHV), nitrogen-hydrogen-vacancy (NHV), phosphorus- 

hydrogen-vacancy (PHV), and sulphur-hydrogen-vacancy (SHV) complexes, along 

with their muonated analogues. I Parametrised the P-X and S-X bonds, and used 

these parameters in order the study the PX and SX complexes. The PCM pre­

dicted a large increase in the zero-point energies of both the proton and muon 

in these systems compared to the molecular ones, a feature verified by numerical 

calculations. I found, however, that the zero-point energies of the proton were 

overestimated using the PCM.

I used the parameters obtained in Chapter 4 for the C-X bond in order study 

the CXV, NXV, PXV, and SXV complexes, since in each of these the total energy 

of the system was minimised by the HLN saturating a carbon dangling bond. 

The PCM again correctly predicted an increase of the HLN zero-point energies 

over those found for the HLN in C-X bonds, although numerical calculations 

again revealed the proton zero-point energy to be overestimated.

I reconsidered the defect complexes discussed here using parameters opti­

mised for the complexes themselves. I used results of these calculations to study 

the mass dependence of the defect formation and tunnel-splitting energies. In 

all complexes, I found that the effect of including the finite mass of the HLN
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raised the defect formation energy.

I obtained the tunnel-splitting energies for both the muon and proton in 

the impurity-HLN-vacancy complexes. Experimentally, the negatively charged 

NHV defect complex is found to have a [111] symmetry. The results of the 

calculations presented here suggest that for the neutral NHV complex, quantum 

diffusion may be adequate to account for the experimentally observed symmetry. 

Further calculations would be required in order to determine if this is the case 

for the negative charge state.

7.2 Further Work

There are various approaches that could be taken to extend this work. One 

would be to systematically parametrise a larger group of HLN-containing bonds, 

in order to determine if a relationship between the parametrisation and atomic 

species could be identified. In this way, the parametrisation could be to some 

extent automated. Previously mentioned extensions of this would be to recog­

nise HLN-next nearest neighbour interactions as significantly contributing to the 

parametrisation, potentially leading to a parametrisation of the HLN- containing 

bond in terms of a functional group. It would also be of use to study how the 

parametrisation is affected when different charge states of the HLN are consid­

ered. In this way consideration could be given to the effects of HLN-electron 

correlation when charge transfer processes occur.

It would be useful to perform some higher level calculations, using a method 

such as PIMC, in order to determine if the mass dependence of properties con­

sidered in this thesis can be reproduced at this higher level. This method could 

also be used in an attempt to develop an HLN-electron correlation functional 

in terms of the HLN and electron densities. A similar approach has allowed for
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a positron-electron correlation functional to be constructed [106]. This would 

have the added advantage that the electron density could be calculated in a 

manner which would include the HLN-electron correlation. Recent PIMC calcu­

lations [108] suggest that the inclusion of such effects leads to a strengthening 

of hydrogen bonds in liquid hydrogen fluoride.

It may be possible to relax some of the restrictions placed on the PCM in 

Section 4.3 by considering a multipole expansion of the potential energy since this 

would, in principle, allow for basis functions without a well-defined maxima at 

their centre to be used, and hence give a much greater degree of flexibility to the 

basis set. Improved flexibility could also be achieved by using a contracted basis 

set, where the contraction scheme allowed for Gaussians functions on more than 

one centre to be included in the same basis function. In this way, instabilities in 

the overlap matrix which proved a problem during the course of this work could 

be reduced.

Another approach would be to consider in more detail how accurately the 

quantum diffusion of the HLN could be modelled within the frameworks dis­

cussed in this thesis. Attempts were made during the course of this thesis 

to evaluate the tunnel splitting energy explicitly, i.e. by placing HLN centres 

at more than one potential energy minimum, and attempting to evaluate the 

tunnel-splitting energy by calculating the HLN eigenvalues of the ground and 

first excited states. It appears that neither the HF-approximation, nor the PCM 

model, were sufficiently accurate to obtain tunnel-splitting energies this way, 

even for very simple systems, making it more important to have a more general 

description of the HLN-electron correlation.

The results of Chapter 5 seem to be the first to explicitly consider the rel­

ative energies of all possible DNA base molecule adducts that can be formed
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by addition of hydrogen. It would therefore be useful to study these systems 

using a higher level of theory, in order to gain a more accurate description of 

the hyperfine interaction. This would emphasize the importance of including the 

zero-point vibrational motion when using theoretical results to interpret experi­

mental data.

The results of Chapter 6  suggest that the PCM can still be reasonably ac­

curate even when applied to systems considerably different to those for which 

it was parametrised. This makes the study of dynamical processes a possibility, 

for example, the muon could be used to probe the change in electronic structure, 

and hence the hyperfine interaction, as DNA strands are stretched. Another 

possibility would be to use the muon to study soliton motion, which has been 

considered as a mechanism for chemical energy transport in proteins [29].

The model presented in this thesis has succeeded in adequately describing 

many features of HLN-containing systems, but no-one - even those using com­

putationally expensive methods - has succeeded in simulating some of the most 

important outstanding problems, such as the hydrogen tunnelling believed to be 

responsible for catalysis in some enzymes [5, 57, 124].
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