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Abstract

The prevalence of screen-detected premalignancies is too large for it to be feasible that all can
progress to carcinoma at the same average rate, unless that rate is very low indeed. There are
likely to be frailties in the rates of progression. Failure to take heterogeneity into account will
lead to biased estimates and could result in inappropriate screening policy. Approaches to
investigation of heterogeneity in the propensity for screen-detected disease to progress

comprise the main objectives of this project.

We used Markov models with constant hazard rates in sequence throughout the process of
disease natural history within subjects, with heterogeneity terms by means of (1) frailty
models for continuous heterogeneity, (2) mover-stayer models for dichotomous heterogeneity
(in both cases for progression between sequential homogeneous models), and (3) latent
variables; and states to estimate the parameters of progressive disease natural history in the
presence of unobserved factors. Approaches had to be developed to address problems of
tractability and estimation. For example, in the presence of frailty, solution of the

Kolmogorov equations by routine matrix algebra is no longer possible. Heterogeneous models,
both discrete and continuous, were found to be tractable, and estimation was possible for a
variety of designs and data structures. Such models illuminated various issues in real

screening applications.

- Quantifying heterogeneity of potential progress of disease is of potential importance to the
screening process. There are trade-offs between model complexity, identifiability and data
availability, but there are clear examples, such as that of cervical screening, where a
heterogeneous model improves model fit and gives more realistic estimates than a

homogenous.
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Chapter 1 Introduction
1.1 Basic aims

Often in cancer screening, the target of the screening test is a preinvasive or even
premalignant state, for example cervical intraepithelial neoplasia or polyps in the colon. The
prevalence of these premalignant conditions is too large for it to be feasible that all can
progress to carcinoma at the same average rate, unless that rate is very low indeed. Thus there
is likely to be frailty in the rate of progression due to unobserved covariates, and possibly
even mover-stayer population mixtures in which some lesions simply cannot progress at all.

| Another application area is in assessment of cancer rates after a negative screen for cancer.
Some cancers occurring early after a negative screen are tumours which were missed at
screening and are therefore still at an early stage. Others are at an early stage because they
have had little time to progress. A third group may be at a more advanced stage if their early
appearance after a negative screen is due to their being more aggressive cancers with more
rapid progression. Clearly, quantifying such heterogeneity of potential progression of disease

is of some importance to the screening process.

In the past, frailty models have been focused particularly on survival analysis. Stratified and
regression analyses incorporating known risk factors are widely applied to interpret the
heterogeneity within and among populations. These methods, however, cannot deal with the
problem when the risk factors are inaccessible for specific types of data, unable to be
measured or even unknown. The failure to take heterogeneity into account will lead to biased
results. When severe frailty exists, the population hazard will increase to a peak then decline
with time due to the effect of selection and this could be incorrectly interpreted as the central

' tendency of individual hazard. Or even worse, when there is a large proportion of
16



non-susceptible cases that reduce the average population hazard, it is wrong to apply the

resulting small hazard to all individuals, as the aforementioned situation.

The thesis will aim at the development and application of simple heterogeneity and frailty
models to address the issues mentioned above, particularly in relation to progression of
preclinical conditions, and to draw some conclusions about cancer screening strategy from the

application of these methods to screening data.

17



1.2 Basic definition and applications of frailty and heterogeneity models
1.2.1 Frailty models — mathematical development for failure time data

* Since Vaupel and colleagues' introduced the concept of frailty to model the different
susceptibilities in a population, frailty models have been extensively applied to the time to

failure event analysis.

A frailty model is a random effects model for time variables, where the random effect (the
frailty) has a multiplicative effect on the hazard. The hazard for a person with

time-independent frailty z is assumed to be of the form
Ale,z)= zA(e). [1.1]

The unity frailty mean is assumed when the scale parameter is included in A(¢). As z is not
observed for each individual, we consider it random and integrate it out. So far a gamma
distributed frailty is the most common form for its mathematical convenience, with the
closure property of which the distribution among survivors is also gamma with the original
shape parameter and the distribution among deaths at a given time is also gamma but with
different shape and scale parameters. Other distributions used to describe the frailty include a
two point distribution, the uniform distribution, the Weibull distribution, and the log normal
distribution. All the nonnegative exponential families including z as canonical statistic have
been proved to share the same closure property.? The derivation is simply described as

follows.

18



Let A(f) denote the integrated baseline hazard, A(t)= J:/'L(u)du . Combining with

expression [1.1], it is easy to show that the survival function conditional on a given frailty is
S(t | z) = exp{- zA(¢)} [1.2]

Therefore, the unconditional survival function is

8(t)=E.[s( 2)]
= Iexp{— zA(t)} f (z)dz [1.3]
= L{A(e)},

where L(s) denotes the Laplace transform of s. For the nonnegative exponential family,

expressed as P(6 ,0), with shape parameter § and scale parameter 6 having the

probability density function as

f(z)=fi;—(_;:’g%), [1.4]

where m() is any function of z not involving the distribution parameters, and ¢() is any

function of shape and scale parameters not involving the random variable z.

The Laplace transformation for the nonnegative exponential family is

$(5,0 +5)
L(s)= o6.0) [1.5]

19



According to expression [1.3] the unconditional survival function is generalised as

S(t)= %’(;”%)(’». [1.6]

* A simple parametric frailty model would be one when time to event is distributed as

exponential conditional on the rate A(z)=z-1, and then A(z) varies among subjects with a
98 751 ot

gamma distribution, say the frailty has the density as f (z) = ——W

. According to

expression [1.4], ithas m(z)=z" and ¢(5,0)=T(5)/6°.
The unconditional survival function is then obtained from expression [1.6] as

_1(8)/(6 + A1)
S()= r(5)/6°
=0%(0+m)?°

0’ 0\
== lt+—]| ,
A A
with the unconditional survival time distributed as Pareto.

The density of frailty among deaths at a given time is

f(T=112)/(z)
fzlT=1)= )

From expressions [1.2], [1.3] and the equation that f(,)=—dS(t)/dt , the above can be

expressed as

_ zexpl-zAQ)}f ()
-r(al)

20



When & is not a function of 6, it can be shown that ¢(5 +1,0)=-d¢(5,6)/d6 . For

exponential families, the density among deaths is then

2841 ,=(0+A()): m(z)

- 6(6 +1,6 + Al?))

[1.7]
= P(6 +1,0 + A(r)).

The density of frailty among survivors in time t is

A2l slar)
fEIT20)= 2 o =50

_ oxpt-zAW))f(e)
L(A())

- For exponential families, it can be expressed as

29 e—(9+A(t))z m(z)

$(5,0 + At))
[1.8]
= P(5,0 + A()),

the same distribution of frailty with the original shape parameter.

Thus, the mean of this distribution, i.e. the mean frailty among survivors, is



o [zowlsAQLG),
() sz(IT )a'z I p (t))

Alt)) rzex flz
- L(At )-[ p—L(A )}) e 19

for exponential families,

_#(6+1,6 +A(r))
$(5,6 + A(2))

In general, the integrated population hazard is

H(r)=~log{s(:)}
= ~log{L(A())}

for exponential families,

=—log[¢(5 ‘;Z;: 6‘;(’»). [1.10]

The population intensity is

h(t)= H'(t)

[1.11]

= _%((I\A((t—t)))).l(t)= E, 'l(t)’

22



which demonstrates that the population density is the average hazard among the survivors.

Hougaard also demonstrated that the choice of distribution was crucial. With Gamma
distributed frailty the relative heterogeneity is constant, however, with inverse Gaussian
 distribution the surviving population becomes homogeneous with time.> Hougaard
generalised the above distributions in addition to the stable distributions on the positive
numbers and the degenerate distribution into a three-parameter family of distribution,

P(a,6 ,y) , on the positive numbers.>* The Laplace transform of the distribution is

L(s)= exp{ 0 _0;)5 [1 - (1 + %ls)]_a H [1.12]

where 0<a <1, § (thesquared coefficient of variation)>0, and

y (the expectation of frailty)>0.If @ or § equals 0, the frailty distribution is degenerate
at y , implying no heterogeneity. When a =1, it gives a special case of gamma distribution
with Laplace transform as

IR
L(s)={l+6ys} : [1.13]

By extending the range of @ to be greater than 1, Aalen®” included a compound Poisson

distribution with a nonsusceptible subgroup of positive probability

P(z=0)= exp{— 5(%_1)} [1.14]

According to the expressions [1.3] and [1.12], the population survival function for this
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three-parameter family is

S()= exp{ i _“a)5 {1 -(1 + %’—A(t)]l_a }} if a=lLa>0, [1.15]

S()= {—1—0—)}% if a=1, [1.16]

1+ 6yA

with the corresponding population intensity

rl(t)

— = for a>0. [1.17]
{l+a ()}

h(t) = -%m S(t)=

The frailty model has been extended to consider the effect of covariates combined with the
Cox regression model by specifying the individual hazard as zexp(8'X )/’L(t), where X is the
_ vector of known covariates and f is the regression coefficient vector. Maximum likelihood
can be used when the underlying intensity can be described by finite parameters.® The EM
algorithm can be used for the semi-parametric case, allowing the underlying hazard to be
distribution free.” A Bayesian approach may also be used, carrying out with Monte Carlo

simulation.®’

In general, frailty models can be classified into two categories: univariate and multivariate
failure time analysis according to the source of the variability in time to the specific event.'’
The univariate (independent) failure time analysis is for the case when the random effect is an
individual variable, while the multivariate (dependent) failure time analysis is used when the

random effect is a variable common to several records and deals with unobserved correlation
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via latent variables (frailties) from the same clusters.

1.2.2 Frailty models — applications and practical problems

Applications of univariate frailty models may be seen in incidence and progression of disease.
Various frailty models \&ith individual hazard increasing with time have been fitted for
patients with diabetes mellitus to data on the incidence of diabetic nephropathy that increase
until 20 years duration of diabetes and later decreases.'’ Although a good fit is seen in some
models, the estimated degree of heterogeneity and the effect of covariates on the hazard are

dependent on the choice of models."'

Aalen et al'? performed a compound Poisson distributed frailty model of the selection
phenomenon to interpret the age-specific incidence of testis cancer, which increased until the
“age group 30-34 years then declined with age in Norway males. In their model, the baseline
hazard is assumed as Weibull distributed, hence an increasing hazard of testis cancer
incidence within individuals. The model including the year of birth showed how the size of

frail group changed over different birth cohorts.

Mortality after myocardial infarction is high and the complication is frequent during the first
days. Hougaard" used frailty models to allow for inter-individual heterogeneity as a possible
explanation of the high hazard rate in early days. Alternatively, the decreasing hazard can be
explained as a general decrease in risk for all patients with time since the onset of myocardial
infarction. Unlike the incidence of carcinoma or other chronic diseases exemplified above in
which the theory of different susceptibility is preferred because of its biological plausibility, it
is difficult in this application to prove which explanation is correct; hence the results should

be interpreted with caution.
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