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Abstract

This thesis uses numerical techniques and analysis to study the development
and interactions between multiple in-line slender air jets. Consideration is
given to two- and three-dimensional flow regimes, but the emphasis is on
the latter. The applications (and mechanisms) involved in high-speed ma-
chine sorting of small food items, such as grains of rice, are explained. The
underpinning mathematics required to develop the mathematical model are
stated. In Chapter 2 an analytical solution for the two-dimensional steady
jet is demonstrated and used to provide a far-downstream asymptote for
validation of the numerical scheme, for steady and unsteady jets. A numeri-
cal scheme is demonstrated to be versatile and reasonably accurate. Small-
distance analysis complements the numerical scheme and limitations are dis-
cussed. A comprehensive small-time analysis is undertaken, results from
which support later work on three-dimensional jets. Interference between in-
line jets is considered in Chapter 3, which applies methods previously used to
study two-dimensional in-parallel wakes. The conclusions from this chapter
support and help explain results in later chapters. The numerical scheme
is extended to three-dimensional steady and unsteady jets. Issuing nozzles
of various cross-sections are considered with the aim of obtaining pressure
data for comparison with physical data. Small-distance analysis is again in-
vestigated, enabling a weakness in the numerical solution to be highlighted.
Potential flow theory is used to model interference aspects of multiple in-line

unsteady three-dimensional jets. The emphasis is placed on jets from nozzles



of either circular or rectangular cross-section but, in fact, the analysis applies
for any cross-section. The impact properties of a typical jet when it hits one
of the particles such as a grain of rice being sorted are discussed briefly, and

final comments are made.
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Chapter 1

Introduction

This thesis is concerned with the relatively rapid flow of a thin jet of slightly
viscous fluid, or an array of such jets, and the industrial application to food
sorting in particular. The research was motivated by a need within the food-
sorting industry to better understand the interference aspects associated
with multiple in-line slender air jets. The jets issue from rectangular noz-
zles of 3x1mm, 4x1mm or 6x1mm cross-sectional dimensions, typically, and
operate over a 150mm range in the axial direction of the jet. Results from
the research will be used to help guide future design considerations prior to

manufacturing new generations of sorting-machines.

1.1 Overview of sorting technology

Food sorting, like most other industrial sorting, was primarily done by hand
and eye until relatively recently; that is until around 1930, when the first

automated colour-sorting machines were developed by Westinghouse in the

16



CHAPTER 1. INTRODUCTION 17
USA (see [30]).

Over a comparatively short period of time, the need to maximize profitability
led to rapid advances in technology and machines employing air-jets, capable
of sorting larger and larger quantities of products, were developed. The tech-
nology used in these machines has built on the pioneering research of Norris
[31] and Schaub [32] and continues to improve. Today’s sorting machines are
capable of sorting up to twelve tons of produce every hour (the figure quoted
refers to the Sortex 90000 series sorting machine when sorting rice). These
modern machines still combine visual inspection and targeted response as
the method of sorting; however they are capable of viewing the product from

all sides simultaneously, and can eject unwanted items in milliseconds.

The machine sorting process generally follows the format outlined in [30],
namely: feed and spread; accelerate; illuminate and view; classify and finally

eject or accept.

Referring to figure 1.1, the produce is introduced to the machine via a vi-
brating hopper. This helps to spread the produce, for example rice grains or
coffee beans, across the entire width of the machine’s feed chute so that it is,
ultimately, in a single uniform layer. These particles then fall down a gravity
chute so that they accelerate to a high velocity before entering the viewing
area; whereupon they are illuminated evenly by high-intensity fluorescent
lamps and viewed from different angles by two or three cameras. Optical
filters placed in front of the cameras allow only selected wavelengths to pass

through. Undesirable items are identified by selectively comparing the mag-
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vibrator tray

fluorescent tubes,

camera

reject receptacle

Figure 1.1: Schematic view of a typical sorting machine taken from an illus-
tration by Sortex Ltd.
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nitudes of reflected light at particular wavelengths. The reflected light from
each particle of the product is measured and compared to an index in order

to determine whether it should be accepted or rejected.

Once a particle has been identified for rejection an electronic signal activates
an ejector, which releases a blast of air as the particle passes by. The timing
of the ejector’s firing assumes that the product is moving with constant
velocity. Ejected particles are knocked beyond a separation plate and into a

reject receptacle.

Clearly, based on the volume throughput quoted, today’s sorting machines
are highly advanced and appear to be extremely efficient. However, the
sorting processes outlined above portray an ideal scenario which, in practice,
is virtually unattainable. For instance, it can never be guaranteed that the
particles being sorted will enter the viewing area in a single uniform layer
with each particle travelling at precisely the same velocity. Furthermore, the
processing of such large volumes requires the machine’s ejectors to fire in
response to defective particles hundreds of times every second. The spread
of the air-jets coupled with the close proximity with which the particles fall
in relation to one another invariably means that particles other than the
actual target particle will also be affected by the air blast and hence rejected
particles from a single batch of produce may have to be re-sorted several

times.

Improvements to machine design to enable sort-rates to increase still further

necessarily require an ‘optimized’ particle delivery system and a reduction in
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the number of good particles being wrongly ejected. Of central importance to
both of these is an understanding of the impacting properties and the evolu-
tion and interference between the fluid jets. Neve, Nelson and Kotsiopolous
[2] and Neve and Kotsiopoulos [3] have studied the deflecting force (drag)
associated with spheﬁcal objects subjected torthin air jets. Neve [33] has
considered impacting properties of circular and rectangular jets on spherical
and cylindrical targets, respectively, and results from [33] may be used to
draft design guidelines based on the deflecting force predicted for particles
that apprbximate the shapes of these two cases. There are also huge bod-
ies of literature on turbulent flow in jets (see, for instance, [40], [41], [42],
all of which address the effects of turbulence on drag; [43, pp 39-73], which
discusses similarity forms and their limitations regarding turbulent jets; and
[44], which provides an excellent reference for the general study of turbulent
flow) and on laminar-turbulent transition in jets (see, for instance, [48], [49]).
In contrast, there appears to be very little work related directly to interfer-
ence between in-line jets apart from the research on interference between

in-line wakes described by Smith [9)].

In later work [34], [35], Neve used a CFD approach to produce velocity
predictions for a limited number of neighbouring jets in the Sortex 90000
series machine. In these reports he assumed that the flow of fluid within the
ducts feeding the jets would be laminar, producing fully developed parabolic
initial jet profiles with an exit velocity of 20m/s. He concluded from his
results that there would be a significant increase in jet width in the target area

compared to initial jet width; that the amount of momentum flux residing
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in the target area after the initial impact would be enough to deflect the
next one or two particles arriving there; that, in terms of centreline velocity,
individual jets are, to a great extent, not affected by their neighbours and
that, to a first approximation, the jets’ velocity profiles in the target area

could be obtained by adding together proﬁleé for individual jets.

At the same time that Neve was working on the external jet flow mentioned
above, Smith, [19], [20], investigated the internal steady and unsteady flow
solutions through the complex slender ducts of the ejector for the same sort-
ing machine. The aims were to predict the jet velocity and shape at the
nozzle exit for the current duct geometry and input pressure and then for
modified geometries and input pressures, so that recommendations could be
made which would improve sorting efficiency. It is found in Smith’s work
that a smooth parabolic exit velocity profile is not achievable with the cur-
rent duct set-up nor, indeed, with an ideal duct set-up; in that case the
exit velocity profile tends towards a ‘smoothed unit-pulse’ or ‘top-hat’. Fur-
thermore, with the current duct geometry the exit velocity profile is skewed
and misdirected and this, therefore, could have implications regarding the
applicability of Neve’s results, particularly close to the nozzle exit. Smith
recommends that the bends in the ducting should be minimized in order
to reduce the skewing and misdirection of the developing jet. Straighten-
ing, shortening or narrowing the duct is also beneficial, increasing the exit

velocity.

The present thesis explores the development and interactions of closely packed
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multiple independent in-line slender air jets as they emerge and develop from
an array of rectangular ducts. The study is believed to ha,vé direct industrial
significance, as the above is precisely the situation that exists in the food-
sorting machines mentioned earlier. Clearly, in light of [19] and [20], the
‘top-hat’ case is of central importance, as this represents an ideal scenario,
even though at present in the industrial setting the nozzle velocity profiles are
almost certainly quite various and nonuniform, as reported in [19], [20] and
[22]. A main emphasis throughout the thesis will be on interference, which
results from the interactions between the jets as they suck (entrain) fluid
from their environs and in particular their neighbours, in order to sustain

themselves.

We will assume throughout that the fluid being studied is effectively in-
compressible, and note that the complete model will necessarily be three-
dimensional and unsteady. We begin however, in Chapter 2, by considering
a similarity solution for a single steady incompressible two-dimensional jet
(see, for éxa.mple, [15, pp 344], [25] and [6, pp 112]) which is symmetrical
about its central axis, and which will be used as a far-downstream asymp-
tote for the numerical investigation of the same or similar cases. The numer-
ical solution is achieved by using a semi-implicit finite-difference scheme as
in [21], which is solved employing a tri-diagonal matrix algorithm described
in [36]. Adjustments to the numerical scheme necessary to accommodate

non-symmetric initial profiles are also briefly discussed.

The constraints imposed on the jets by the physical aspects of the sorting
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machines, as described later in 1.2.6, suggest small-distance analysis should
be considered. This is done for both the ‘smooth’ and ‘non-smooth’ cases, i.e.
for jets developing from smooth spread-out initial profiles such as the fully
developed parabolic initial profiles considered by Neve [34], [35] and those de-
veloping from near-discontinuous ‘top-hat’ initial proﬁlés, predicted by Smith
[19], [20]. The analysis is shown to provide an excellent complement to the
numerical solution of jets developing from smooth initial profiles. However,
it is found to be generally inappropriate for non-smooth cases since, as the
limiting case of a discontinuous initial profile is approached, a Blasius-type
free-shear layer develops which cannot be resolved by leading-order analysis.
Three distinct regions then exist and Lock’s solution (see [7]) is required to

solve for the free-shear layer region.

Chapter 2 concludes with a comprehensive small-time analysis of the two-
dimensional unsteady jet, which combined with the analysis just described
gives a great deal of insight into the steady and unsteady three-dimensional

jets discussed in later chapters.

Chapter 3 applies the numerical and analytical methods described in Chapter
2 to investigate interference between close-neighbouring jets. In a similar
study [9], Smith was able to demonstrate that even if the initial streamwise
velocity profile of in-line wakes is periodic the lateral velocity components will
be non-zero and non-periodic. This result is mirrored in the current stﬁdy of
jets. Edge effects are also seen to play a ‘nontrivial’ role in the interference.

Results from the current chapter have clear implications in later chapters.
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In Chapter 4 we consider three-dimensional jets issuing from rectangular
nozzles. The governing equations as derived from the three-dimensional
Navier-Stokes momentum equations are stated and then solved using what is
essentially a vorticity-velocity formulation. The numerical solution of Chap-
ter 2 is supplemented with a Gauss—.]é,cobi iterative scheme to solve for the
lateral velocity components, and this is shown to provide a reasonably accu-
rate approximate solution. Leading order small-distance analysis is found,
once again, to provide a helpful complement to the numerical solution when
considering relatively smooth initial profiles. The pressure equation is next
derived and solved using the same type of iterative process as above. A
weakness in the numerical solution at small axial (streamwise) distances z,
which is explained by the earlier two-dimensional small-distance analysis, is
discussed and an attempt to overcome this using further small-distance anal-
ysis of the lateral velocity components and a cross-planar stream function
formulation is made. Although unsuccessful, the analysis seems to provide

some insight and proves to be of benefit to the later study of interference.

By making the streamwise grid step smaller, numerical pressure data is cap-
tured close enough to the nozzle exit for a comparison with the physical data
in [38] to be made, and the results are shown to be in good agreement. Im-
posed swirl is also considered and is shown to have very little effect on the
jet’s development. However, the swirl does appear to help concentrate the

jet’s pressure into a narrower band surrounding the central streamwise axis.

Time-dependence is considered in Chapter 5, where pressure comparisons
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are made with data supplied by Sortex Ltd [39] for a variety of times and at

various distances from the issuing nozzle.

Chapter 6 investigates the major issue of interference between multiple in-line
three-dimensional jets. By considering small-distance analysis for the case
of an irrotational (zero-swirl) smooth three-dimensional incident flow we are
able to better understand what happens to the lateral velocity components
as the initial velocity profile is transformed (by means of adjustment of a
particular parameter) from being very smooth to being near-discontinuous.
It is shown, in agreement with the earlier small-distance analysis of the two-
dimensional case, that the cross-flow grows massively as the discontinuous
‘top-hat’ scenario is approached through variation of the above parameter.
A defining characteristic of the discontinuous case is that the streamwise
velocity component, u, is constant both within the jet’s core region and
without, making potential flow theory applicable both within and without;
this is subject to a jump condition on the core-edge of the jet which is given
by the small-distance analysis. The potential-flow-like property of the single
jet solution is of much importance to our study of multiple close-neighbouring
similar jets since it means that, once the solution for a single jet has been
obtained, that solution can be added linearly (subject to a displacement of its
axis) to provide the solution for the many jet case. This elegant and powerful
result is equally applicable to jets of any cross-section and this fact is used
here to demonstrate interference aspects of various different rectangular and

circular, steady and unsteady jets.
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Chapter 7 gives a simple and brief exposition of the overall target impact
properties. A summary of the main points of each chapter is then given in
Chapter 8 along with recommendations for possible sorting-jet design im-
provements and further research. To the best of our knowledge, the majority

of the study in all of chapters 2 - 7 is novel v§ork.

In the remainder of our first chapter we present the underpinning mathe-
matics used to construct the mathematical model developed throughout the

remainder of the thesis.

1.2 Governing equations

Fundamental to the study of fluid mechanics in general are certain underlying
principles, which are described by most texts in much the same manner. We
refer the reader to the following: [1], [4], [11], [12], [13], which, amongst other
texts, have been consulted and which we suggest provide a clear but perhaps

fuller explanation of the subject matter in sections 1.2.1 through 1.2.3.

1.2.1 Newton’s law of viscosity

All fluids are characterized by an inability to resist shear; that is to say, they
deform continuously while under the influence of an applied force. If one
considers an arbitrary control volume of fluid, which has a shearing force
applied to one surface, then the force per unit area is referred to as the shear
stress, T, and the angle ¢, by which the control volume deforms while the

force is applied, is referred to as the shear strain. ¢ increases continuously
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while 7 is applied, as a result of which the fluid flows.

Not all fluids flow at the same rate relative to the same shearing force how-
ever; and the measure of a fluid’s resistance to shear, when in motion, is
called the viscosity of the fluid. In a simplistic sense, consider a fluid particle
at some maintained height, y, above the base of the above control volume,
and which travels a horizontal distance z, say, with the flow while a shearing
force is applied. Then small values of ¢ are approximately equal to z/y and,
therefore, the rate of shear strain ¢/t is approximately (z/y)/t or (z/t)/y,
which is the rate of change of velocity of the particle with respect to y. This

is consistent with the relation

T=pi—— (1.1)

where yu is the constant of proportionality referred to as dynamic viscosity.

Fluids which obey (1.1), for instance air, are termed Newtonian fluids.

We note, choosing basic dimensions M (Mass), L (Length) and T (Time),
since 7 is equal to the applied force per unit area divided by the velocity of

the fluid particle per unit distance travelled, that y has dimension M/LT.

1.2.2 Reynolds number

In 1883, Osborne Reynolds [5] demonstrated that two completely different
kinds of fluid flow can exist. Generally, at small velocities the particles within
a volume of fluid will tend to flow smoothly, maintaining the same relative

positions in successive cross-sections of fluid. This is often termed laminar,
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viscous or streamlined flow. Beyond a critical velocity fluid particles move
in a less orderly fashion, occupying different relative positions in successive
cross-sections of the fluid. This is referred to as turbulent flow since it is
characterized by continuous fluctuations in the magnitude and direction of

the velocity of the fluid particles, accompanied by fluctuations in pressure.

In viscous-dominated flows the viscous shear stresses that exist between
neighbouring particles are sufficient to balance any inertial effects caused
by applied disturbances and so the motion remains uniform. However, in
turbulent flows the viscous forces are weaker and are unable to overcome
the induced inertial forces, resulting in chaotic motion. Clearly then, it is
the ratio of inertial forces to viscous forces that (among other factors) helps

determine whether a particular flow is laminar or turbulent.

Considering Newton’s second law of motion, i.e. that inertial force is equal
to the product of a body’s mass and its acceleration, it follows that inertial
force can be represented dimensionally as pL*/T?2, where p is mass density.
Similarly, the viscous force is equal to the viscous shear stress multiplied
by the area on which this acts. Hence viscous force may be represented as
pL?/T. Therefore, the ratio of inertial forces to viscous forces is "z—", and this
is a pure number (since it is the ratio of two forces) known as the Reynolds

number, which we will denote by Re.
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1.2.3 Continuity equation

Conservation of mass requires that the nett flow of fluid out of a control
volume in unit time must be equal to the change in mass within the control
volume in unit time. Therefore, considering an arbitrary but small volume of
fluid of dimensions éz, dy, 4z, relative to the Cartesian coordinates z, y, 2,
with corresponding velocity components u, v, w, the flow of fluid into the
control volume in the z-direction is equal to the mass of flow into the control
volume in the z-direction in unit time, which equals pudydz. Since the mass
density and velocity may vary in the direction of flow, the nett outflow of fluid
in the z-direction will be ﬂa%l&xdyéz, to leading order. Similar expressions

apply in the y and z directions, and it follows that the nett outflow in unit

time is given by: {8(5’:) + 83’;) + a(g:’) }dzdydz. This is equal to the change
in mass in the control volume in unit time: —%fda:éy&z, to leading order.

Hence, 9%%‘1 + Q%%)- + Q(gl = —%f, or in vector notation

where u = (u,v,w).

This is the three-dimensional continuity equation for compressible unsteady
fluids. The present study concerns incompressible fluids only. Therefore the

mass density, p, is constant and so
Vau=0.

Furthermore, in the two-dimensional case, which is discussed first, we can
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omit the spatial variable in the 2-direction, and so the continuity equation is

Ju Ov
+

% % = 0 (1.2)

1.2.4 Navier-Stokes equations

Applying Newton’s second law of motion to our control volume of fluid in the
z-direction, and neglecting gravitational effects, implies that the pressure in
the z-direction —p is equal to the product of the mass of the fluid and its
acceleration in the z direction divided by the area over which this is acting.

Therefore a(z) = =122, Similarly, a(y) = 52 and a(2) = 1.

However, the substa.ntive acceleration @ equals %% which is equal to

%'t‘= + (u.V)u. So, upon neglect of the viscous forces, the above suggests that
ou du ou ou —13dp

v ov dv ov —10p

dw, dw Sw. dw_-1dp

ot ' or Oy 0z  p 0z (1.5)

In viscous fluids, however, there are tangential and normal forces associated
with each surface element. Consideration of these (see [10]) leads to the

Navier-Stokes momentum equations:
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%+u%+v%+w% = ;lzf ”{g:; gzyu ZZZ}, (1.6)
DruZ iR ruR = 22 LI T T )

Once again, for the present initially two-dimensional study, only two spatial

variables are required. Therefore, neglecting the z-direction, the governing

Navier-Stokes equations are then

and

Ou Ou Ou -10p p 0%

% Yoz sy = 5ot ples Tl (1.9)
o ov o -l0p p v O
7t = et {ax2+6y2 (1.10)

Nevertheless (1.6), (1.7) and (1.8) will be required in later chapters, when

the three-dimensional jet is considered.
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1.2.5 The boundary layer and the jet

The Navier-Stokes equations are, in general, extremely difficult to solve with
accuracy, and any solutions that do exist tend to be limited in their applica~
tion. However, it is often possible to derive and use approximate forms of the
equations which are much simpler and therefore easier to solve. For instance,
Prandtl [16] proposed that at high Reynolds numbers (e.g. small viscosity)
the majority of the flow past a bluff body, for example, is in effect inviscid,;
any viscous effects are confined to a relatively thin layer, of thickness 4 say,

immediately adjacent to the body. This can be justified as follows.

For a relatively slender body of length L immersed in a fluid with velocity U,
the time taken by a fluid particle to pass the body will be L/U. However the
time needed for viscous effects to spread across streamlines will be of order
O(vL/U3)3, where v is the kinematic viscosity p/p, since (L/8)% ~ O(Re)
(see [14, pp 304]). Therefore there will be a thin viscous region close to the
body if (vL/U3)3 << L/U or UL/v >> 1. This thin region is the boundary
layer. In the boundary layer the velocity of the fluid at the boundary is
taken to be ‘zero’ or, more precisely, the velocity of the boundary, and the
fluid velocity increases rapidly from that boundary value to approach the
freestream velocity asymptotically within a very small distance, ¢ say, from
the surface. This, therefore, is a region in which effects associated with the

viscous shear stress uz—z cannot be ignored, even when y is small.

It should be noted though that solid boundaries are not essential for the

formation of boundary layers or boundary-layer-like layers (see, for instance
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[17], [50]). The interaction of two parallel streams of fluid with apprecia-
bly different velocities, for example, produces a free boundary layer or free
shear layer. This is similar to the situation that exists when a narrow jet
of fluid issues into relatively still but like fluid. The velocity of the fluid
changes rapidly away from the jet’s axis, and this leads to a free jet layér.
Furthermore, Birkhoff and Zarantonello [18, pp298] contend that, in most
engineering (real) situations, the flow within the jet will probably be tur-
bulent if Re > 103. The present study is concerned with slender jets of air
issuing from narrow ducts into relatively still ambient air. Therefore the ar-
guments above underpin the work in this thesis; however, we will assume for
definiteness throughout that the jets are laminar, at least within the axial

distances of interest here.

1.2.6 Sortex jets

In reports [19] and [20] to Sortex, Smith has shown that the jets of interest
here have an initial velocity of between 20 and 40ms~!. Henceforth we will
assume a representative initial velocity of 20ms™!; justification for this is
suggested by the very good data fit for the pressure solution at the end of
chapter 4. Published figures indicate that for air under standard conditions
v is 1.46 x 1073m?s~!. The jets emerge from rectangular nozzles, which we
will consider for the moment to have a characteristic width of 2mm. This
implies a boundary layer thickness, d, equal to 1mm, this being the semi-
width of the issuing jet. It follows, since (L/6)? ~ O(Re) and Re = UL/v,

where L is the characteristic streamwise length of the system and U is the
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initial velocity, that L is approximately 1.37m and Rey, is in the region of
1.8 x 106. It should be noted, in contrast, that within the industrial setting
of food-sorting machines we are only concerned with the development and
interactions of jets over a distance of 150mm or less than 0.11L, which is a

comparatively small distance.

1.2.7 Boundary layer equations

If L is a characteristic length in the direction of flow, U is a characteristic
velocity and § is a typical length normal to the direction of flow then, in
terms of orders of magnitude, 2¢ ~ O(¥) and v ~ O(%2), from continuity.
The continuity equation also implies that the normal velocity component
is small compared with U if % is small. Furthermore, if we take a typical
value for p as (pU?), then the terms of equation (1.9) are in the following
proportions: 1 :1:1:1: 4 : (%) These indicate that, for large
Reynolds numbers, the viscous terms are both small if § and L are of the same
magnitude. However, across the boundary layer (or jet or other thin layer)
the y derivatives are generally much larger than derivatives with respect to
z. Therefore the %1,‘- term is very much smaller than the % term and can
be ignored. Hence, within the boundary layer, the full equation (1.9) should
be replaced by
Ou Ou Ou Op u

5 + u5; + 'U—a-?; i + V'a? (1.11)

where v is the kinematic viscosity %. Similar analysis of equation (1.10) shows
that all terms are relatively small compared with the pressure derivative with

respect to y, indicating that the normal pressure gradient has to be very small
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and hence the total pressure change across the boundary layer is so small
that the change can be ignored. The continuity equation remains unchanged

within the boundary layer.

The problem specification, its industrial relevance and the underpinning
mathematics needed to investigate it have now been described and we are in

a position to begin to build the mathematical model.



Chapter 2

Two-dimensional Jets

2.1 Similarity solution (steady symmetric jet)

We consider here a slender symmetric two-dimensional steady incompressible
jet of air, which discharges from a narrow slit into still ambient air, and we
demonstrate the analytical solution of Schlichting [25]. This will be of use

later on.

There are no bounding walls, so the pressure gradient in the stationary out-
side fluid is expected to be zero. This then imposes a zero pressure gradient

throughout the flow within the jet. Hence (1.9) becomes

Ou Ou Fu
U + Ve =

and (1.2), (2.1) form the governing equations for the jet. Note that = denotes
the direction of total force acting on the fluid at the point of origin. Clearly

the boundary conditions are that u — 0 as |y| = oo and % =0aty=0.

36
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To solve, we integrate (2.1) with respect to y:

/ua—dy+ —dy—-u/ 9 >dy, (2.2)
which implies
T ou ou]*
Hence o
9 / u’dy = 0 (2.4)
o0z o |
so that o
f u?dy = constant Vz. (2.5)

Hence the momentum flux over any cross-section of the jet is constant.

Let ¢ = %(z,y) be the stream function, such that v = %y’ﬁ and v = —%’g
with ¢ = 0 at y = 0. Then the continuity equation (1.2) is satisfied by ¢
and, considering the momentum equation (2.1), we seek a solution in which
successive velocity profiles are supposed to have the same shape, so that ¢
is of the form t(z, y) ox 2? f(n), say, where n = X%, with p and ¢ constants to

be determined. Then (2.1) can be rewritten in terms of the new variables,

and the momentum equation is replaced by the following equation:

- q)f" —pff't=vz " (2.6)

To satisfy consistency with (2.6), p+¢ = 1. Also, rewriting (2.5) in terms of
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the new variable we find
6 [o ]
Tl 2p—q £ 3
Oz _/ Z¥Ef dn = 0.
—00

Hence 2p — g = 0 and it follows immediately that p = ; and ¢ = 2. Hence

the solution is

$a,y) =23f(n), n=yz™ (2.7)
and (2.1) is replaced by the ordinary differential equation
1
"+ 1+ 1} =0 (28)
with boundary conditions: f'(n) = 0 as n = +oo and f'(n) = f'(-n).

Integrating (2.8) twice with respect to 7 and rearranging then gives

f6cud{ 7 GLV/dn 29)

which, after making the substitution f = +/6cv tanh 8, gives the result

f = V6cv tanh (\/g n) (2.10)

with f set to zero at n =0.

The jet velocity profile, then, is given by Bickley’s solution [24]

’ c Y
S — = =, 2.11
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This agrees with the classical sech?y profile described by Schlichting [25].
By making the substitution u = T f', which is implied above, it is possible

o0
to evaluate the momentum flux M = p [ u?dy and obtain a value for c.
—00

o [ [ ] o

which, after integrating, gives

Thus

and hence

2
¢~ 0.4543(1‘—4—)%.
pi

Therefore the centreline velocity is u, ~ 0. 4543( )a suggesting that for

a given momentum flux and fluid the centreline velocity decreases as T,

oo
Further, the mass rate of flow across any perpendicular planeism=p [ udy,

m=p —sech2(‘/ —,)d

~ 3-302(upr)%- (2.12)

giving

Thus m increases like z%, as ambient fluid is entrained by the jet.

The appropriate Reynolds number hei'e may be taken to be -’5 ~ (-A;{’.,f—’)%.

Therefore in a sense the accuracy of the solution improves as z increases,
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but on the other hand small values of z indicate a small Reynolds number
and, hence, close to the origin of the jet there might exist a region where
the boundary layer equations are not valid. Furthermore, the solution is re-
stricted in its application simply because it assumes and imposes a self-similar
form, which would not usually be appropriate for jets with a predefined initial
velocity profile. Since the accuracy of the solution improves with increased
Reynolds number and hence with greater distance downstream, it is gener-
ally regarded as a far-downstream asymptote, and we will use it as such in

the sections that follow.

2.2 Numerical solution (steady jet)

2.2.1 Introduction

Since the validity of the similarity solution described above is limited suffi-
ciently close to the jet’s origin, an alternative method of solution is required
if we are to understand the development and interactions between jets over
the relatively short distance of interest to Sortex (see 1.2.6 above). Several
numerical schemes exist which could be employed and which could give the
level of accuracy needed. However, probably one of the simplest and easiest
to program is the following scheme employing finite differences to represent

the terms of the given differential equations.

In the case of the two-dimensional steady jet, dimensional analysis of the
Navier-Stokes equations showed the second order derivatives with respect to

z to be small enough to be ignored. Hence the governing boundary-layer
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equations are parabolic in z, provided u remains positive, and so the numeri-
cal scheme used to solve them is of the downstream-marching type. By this it
is meant that previously known values are used to compute the unknown so-
lution values required at the next station in the streamwise direction. These,

in turn, are used to calculate the values at the next station, and so on.

Finite difference schemes can be sub-classified as either implicit or explicit.
Explicit schemes are the simplest to implement and they calculate the re-
quired downstream profiles immediately from known upstream data. How-
ever, they require very small streamwise steps in order to maintain accuracy
as well as numerical stability and therefore a greater number of steps to reach
the desired z-station downstream. Implicit schemes employ matrix inversion
to solve at points on the downstream profile simultaneously and iterate to
account for the non-linearity of the system. These schemes are numerically
stable and therefore, unlike the explicit schemes, do not require the steps
to be very small. The scheme adopted here is loosely termed ‘semi-implicit’
(see, for instance, [21]) since some of the terms at the next station are used

to approximate the derivatives.

2.2.2 Semi-implicit finite difference model for the two-
dimensional steady jet

Once again, we take as our starting point equations (1.2) and (2.1),

subject to

u—0 as |y = o0 | (2.13)



CHAPTER 2. TWO-DIMENSIONAL JETS 42

ou

= = = 2.14
% 0at y=0, (2.14)
v=0at y=0. (2.15)

We consider a smooth symmetrical initial profile u = up = sech(y) at z = 0.

The numerical/computer solution is obtained by employing a semi-implicit
finite-differencing approach, which marches forward in z (in small steps Az)
from the chosen starting profile uy at x = 0, with all v velocity components
initially set to zero. In this scheme the undifferentiated terms in (2.1) are
taken to be the known values from the previous station. A forward difference
in z is used to model % at the current station and central differences in y
are used to model %;—‘ and —g% at the next station. This gives a solution for »
at the next z-station. The continuity equation (1.2) is then employed to find
the corresponding v components. The computer variables are then updated

with these new values and the program marches forward to solve at the next

z-station.

Replacing the terms of (2.1) with the corresponding difference terms yields

the following finite difference equation:

Umntin — Unmn Umtin+l — Umtin-1
um,n Ax + 'Um,n. 2 Ay

um+1 n+l — 2um+1,n + um+1,n—1]
=v : , 2.16
| By (216)

which we need to solve for Uy, 41.
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Let o = ;=222 and f, = g ;‘fy. Then (2.16) reads
(ﬁn - an)um+1,n+1 + (1 + 2aﬂ.)um+1,n - (an + ﬂn)um+1,n—1 = Um,n (217)

where uy, , is known from the previous z-station.

Considering a finite difference grid that is N nodes wide, with y = y_o
(modelling —o0) at n = 0 and ¥ = Yo (modelling +o0) at n = N — 1,
then (2.17) produces N — 2 equations, each containing three unknowns. The
coefficients of these equations form a tridiagonal matrix, in which a; = —(o;+
B;); bj =1+ 2a; and ¢; = B; — a;, which may be solved simply, since by and
by_1 are zero, using a variation on Gaussian elimination known as the Tri-
Diagonal Matrix Algorithm. The matrix equation is depicted below, a;, b;

and c; are those described above and ; is the specified initial condition.

100 0 . 0 Ut 10 Um0
a; b ¢ 0 0 Um+1,1 U1
0 a b e 0 _ . @18)
0 :
0 an-1 by_1 en—1 Um+1,N—2 U N—2

| 00 0 0 0 1| ] vm+rw-1 | Um,N-1 |

The u values obtained from (2.18), along with known values from previous
z-stations, are then substituted into the following finite difference represen-

tation of the continuity equation (1.2) to obtain values for v.
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Taking Wu'’s difference equation [8):

Umntin — Umn |, Um+tin-1 — Umn—1 Un+i,n — Umtin-1
3 3! 3 3 9 k) — 0 2-19
[ oAz T 2Az ] + [ Ay ] (2.19)

and rearranging for vy, We obtain

Um+in = =Y [um,n + Unp-1 — Umy1n — um+1,n—1] + Umt1,0-1) (2'20)
2Az

in which m again represents the previous z-station.

The v values can then be obtained in two parts, employing either (2.20)
or the following equation (2.21), splitting the finite difference grid into two
halves along the freestream axis and working from this axis out to the outer

boundaries.
Yy
Untin = EZ; [um,ﬂ + Upn-1 — Umsin — um+1,n—1] + Umtin+i1- (2'21)

2.2.3 Testing the scheme

Before moving on to use the numerical solution as a means to gain a greater
understanding of the behaviour and development of more realistic jets, it is
obviously important to make sure that the scheme employed is valid and that
it has been programmed correctly. Therefore the following tests were carried

out.
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Comparison with similarity solution

The velocity profile of any steady two dimensional jet dispersing into a sur-
rounding of like fluid is expected to eventually tend towards the similarity
solution of (Section 2.1). Therefore the numerical solution was programmed
and then run with an arbitrary initial profile, which was symmetric about the
(streamwise) z-axis. A coarse grid containing 75 y-stations, with Ay = 0.1
and Az = 0.01 produced results close to those of the similarity solution.
Refining the grid, so that it contained 2001 y-stations with Ay = 0.01 and
marching forward over 1000 z steps at Az = 0.0005 further improved the
approximation. Figure 2.1 illustrates the velocity profiles produced for a
smooth initial profile at z = 0.1, 1.0, and 10.0. The approximation seems to

tend towards the sech?y velocity profile of (2.11).

x=01

c—eeee X = 10.0

Figure 2.1: half profile for uy = sech(y) at stations z = 0.1,1.0,10.0.

The initial profile was replaced with a Bickley-like (sech?y) profile, in which
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initial us and vs were obtained from the solution in (Section 2.1), and the pro-
gram was run again. The Bickley profile was maintained, and the computed
value for u|y=centretine Was compared directly with that obtained from the
analytical solution. For a grid containing 2001 y-stations at Ay = 0.01, with
Az = 0.0005, the numerical apf)roximation remained correct to within < 1%
error over 14,000 steps; and correct to within 4% error over 20,000 steps
(where the error was taken to be the difference between the solutions ex-
pressed as a percentage of the analytical solution). It was further found that
the numerical approximation remained accurate to within less than 0.035%

over 20,000 steps if the number of y-stations was increased to 4001.

Grid effects

In the finite difference scheme used, the accuracy in terms of Ay was of
second order. Therefore, for a fixed solution domain with constant Az, and
at a prescribed z-station, plotting u|,—o for increasing values of Ay should

produce a parabolic curve. This is confirmed in figure 2.2.
Uaty=0

0.736885
0.7368685

0.736845

0.736826

0.736805

0.738785 ay

0.01 0.09 0.16 021 0.27

Figure 2.2: Streamwise velocity at a fixed z-station for varying Ay.
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Similarly, within the scheme, the accuracy in terms of Az was of first order.
Therefore, fixing Ay whilst varying Az should produce a straight-line plot

of the streamwise velocity. This is confirmed in figure 2.3.

Uaty=0"

0.6978

0.6957

0.6942

0.6936

0.0005 0.01 0.04

Figure 2.3: Streamwise velocity at a fixed z-station for varying Az.

Action of several jets

By changing the initial profile it was possible to simulate multiple jets issuing
simultaneously from neighbouring ducts. This is of interest in the industrial
application as outlined in the introduction, and provides a preliminary check
prior to the more complex three-dimensional study to follow. Figure 2.4
illustrates how separate but identical jets coalesce and assume the Bickley

jet form far downstream.
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0 00
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o? 0 0g
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o0 0
{0 003
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g0’ i
0
0 00
0
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0

Figure 2.4: Simulation of two jets merging downstream

2.2.4 Non-symmetric steady two-dimensional jet

All realistic jet velocity profiles have a point of inflection (which means in
practical terms that they are unstable and are likely to become turbulent at
quite low Reynolds number). In many realistic configurations it is likely that
the jet will also be non-symmetric about the freestream axis, ¥y = 0. This
subsection considers such a non-symmetric jet and outlines the modifications
necessary in order to obtain a valid finite-difference solution scheme, which

can be implemented on a computer.
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$tu->0

Figure 2.5: Symmetric (ideal )case.

Figure 2.6: Non-symmetric case.

Prandtl transposition

In order to solve such a non-symmetric problem, the Prandtl transposition
can be applied to the original (z,y) co-ordinates to give a new set of co-

ordinates, (¢, n) say, which follow the curve f(z). Considering the continuity
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90

and momentum equations, we may transpose variables from z, y to {,n, where

(=zand n=y — f(z).
Hence,

Ou Odv Ov

_ e _Ou Ov_ v
uz—ac f(x)an7 u!l—an7 ay_an! and

and the continuity equation becomes

ou Ou, v _

This may be rewritten as

2 oty

Then, letting 7 = v — uf'(z) yields

Q’ti + @ =0
a
The momentum equation is replaced by
ou Ou ., ou _ Ou
u{a(: - anf(m)}+van =v

on?’

ou_ o
oy? ~ on?’

(2.22)

(2.23)

(2.24)
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which after rearranging and substituting for 7, from above, reads

U + Ve = Ve (2.25)

The boundary conditions become: v —+0 as |§| - o0 and

T+uf'(z)=0 at n=0.

Thus, after the transposition, we are left with essentially the same problem
but in terms of the new variables and with new boundary conditions relative
to these. This can be programmed in an exactly similar way to the symmetric

problem of (2.2.2).

2.3 Small-distance analysis

In section 1.2.5 it was shown that the jet model system’s characteristic
streamwise length is approximately 1.37m in practical terms. Therefore,
although the numerical approximation seems to produce very good results,
the length scale is by far in excess of that required for a full description of
the jet properties over an active range of 150mm (this being the typical ac-
tive range of jets employed in sorting machines, such as those manufactured
by Sortex Ltd). Hence small-distance analysis should be considered, since it
may provide an economical and accurate analytical solution to complement

the numerical work.
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2.3.1 Analysis of a simple spread-out initial profile

Since the distance over which the Sortex jets operate is less than 0.11 x the
characteristic length, smail-z analysis may be appropriate. In that case the

flow solutions expand as
(u,%) = (uo,%0) + z (u1,%1) + ... for small positive z. (2.26)

Then uy = ¥, uw = ¥, eté, and the non-dimensionalised momentum
equation (2.1) becomes
uotty — YP1ug = ug at leading order. Therefore ug1); — 1uy = ug, implying
that

y

uf
qbl = uo/?dy, (227)

0

where we assume throughout that ug > 0.

Then u; follows as

ugy f ug
Uy = 9P| = up—g +up / —dy. (2.28)
Yo s o

Therefore, if we consider the initial profile uy = sech(y), say, as an example

which is smooth and symmetric about the freestream axis, so that uy =

—sech(y) tanh(y) and u} = sech(y) [1 — 2sech?(y)], we obtain

u; = [1 — 2sech®(y)] — sech(y) tanh(y) / [cosh(y) — 2sech(y)]dy (2.29)
0
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which, after performing the integration, gives
uy = [1 — 2sech®(y)] — sech(y) tanh(y) [sinh(y) — 4 tan~"(e¥) + 7| . (2.30)

Figures 2.7 and 2.8 compare the numerical approximation of centreline ve-
locity with that obtained by the small-distance analysis, at a particular z
station. It can be seen clearly that the solutions remain very close. This
trend continues even as £ — 0.1 (the distance of industrial interest to Sor-

tex).

——--- numerical

------ analytical

0 0.99

Figure 2.7: centreline velocity at x = 0.005
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------ numerical

—---- anaktical

Figure 2.8: centreline velocity at x = 0.05

The next graph shows the difference between the values obtained for cen-
treline velocity at z = 0.1. Initial inspection may seem to suggest that the
two solutions are markedly different but closer inspection reveals that the
difference between the two solutions is still only approximately 2% of the

analytical solution at that = station.

Based on these comparisons, then, it seems promising that small-distance
analysis may well provide an entirely accurate analytical tool. There are

limitations though, and these are highlighted next.
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085

09187

Figure 2.9: centreline velocity at x = 0.1

2.3.2 Analysis of a smoothed ‘unit-pulse’ profile

Having shown that a leading order small-distance analysis works well for a
simple spread-out initial profile such as uo(y) = sech(y), we now consider the
initial profile ug = (1 + y™)~! (with N typically large), which is a smoothed
unit-pulse, and which might be more typical of initial profiles produced from
fully developed flows from ducts of the type considered here (albeit in two
dimensions). This profile hints at being discontinuous (and becomes so in
the limit as N tends to infinity), since the profile remains close to unity for
0 < y < 1, but decays rapidly towards zero as y increases through the value

1.
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Once again the flow solutions expand as in (2.26), so that u,(y) is given by
(2.28) and it follows that, in this case with N taken as 10, the perturbation

effect is given by

f 10y8(11y'° - 9)

8
(11y'° —9) — y/ 17 g0 dy| . (2.31)
0

) = o
At very small z there is generally very good agreement, as shown in figure
2.10; see also the comments concerning large y later in this subsection. In
figure 2.11 the solution obtained by leading order small-distance analysis can
be seen to depart from the numerical solution after just 10 steps (less than
7mm in Sortex terms). The poor agreement becomes more pronounced as
we march forward in z, as seen in figure 2.12. However, we would expect the
velocity profile to get ever closer to the similarity form of (2.11), and, hence,

we must conclude that the small-z solution is inappropriate in this case.

- numerical
- analytical

Figure 2.10: comparison of numerical and small-z solution at z = 0.0005 for
N-=10.
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- numerical
- anaklytical

\

Figure 2.11: comparison of numerical and small-z solution at z = 0.005 for
N =10.

The poor agreement exhibited in figure 2.12 becomes even more pronounced
as the initial profile under consideration becomes less smooth, being espe-
cially pronounced in the limit of a discontinuous initial profile. This is be-
cause a region of non-linearity then exists, in which there is a free-shear layer
of Blasius type, which cannot be resolved by the above leading order analy-
sis. The resolution, as well as the behaviour at large y values in all of figures

2.10 - 2.12, can be explained analytically or approximately as follows.

- humerical
- analytical

u

Figure 2.12: comparison of numerical and small-z solution at z = 0.01 for
N =10.
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Firstly, for the above initial profile, at sufficiently large y, up = ﬁm ~

O(y~1?), so that
Y ~12

Yy e y10 [ Ly~ O™,
0

Therefore u; ~ z;}; +y712 ~ O(y~?) since the term y~12 on its own here is
negligible. Combining the terms ug and zu; therefore we have u ~ =10 4
zy~2. Hence there is a distinct new outer region where y ~ £ is large (since
z << 1). The extra outer region is in fact associated with the dominance
of the inertial term v%‘ at sufficiently large y where u decays towards zero
of course but v tends to a (negative) function of z, corresponding to the
jet entrainment. Secondly, Lock’s solution to the free-shear layer problem,
which is documented in [7], must be used near y = 1 in order to overcome

the local difficulties there; this leads to the next sub-section.

2.3.3 Lock’s solution to the free-shear layer problem

Here we demonstrate how the free-shear layer may be resolved by employing
Lock’s solution in region III (the viscous shear-layer) of figure 2.13, which
then has to be matched-up to the solutions obtained in regions I and II
outside of the free-shear-layer.

In regions I and II of figure 2.13, the stream function expands as

% =1vo(y) + 2" (y) + ..., say (2.32)

similarly to that in section 2.3.1, but here m is to be found.
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u=1

Figure 2.13: revised smoothed unit-pulse problem.

Along with the above, in the Lock region III, the expansion is

¥ =Ci+z2f(n) + ..., (2.33)

where n = (y — H)z7 and C, is the O(1) value of ¢o(H). The scalings
involved are found from an order-of-magnitude argument, and here we take

H as 1 without loss of generality.

Therefore in III we have u = %ﬁ = i) v= %x%l{f(n)—x'?l(y—ﬂ)f’(n)};
du _

=S -Ha7 () §=27f"(n) and G =0"f"(n)

Hence the momentum equation can be rewritten as follows:

G- - S e R - Il = (23)
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This reduces to the Blasius equation f"+3f f = 0, as expected, but with the
boundary conditions (as in Lock) being f'(—o0) = ug(H—) and f/(4+00) =0

to match with the solutions in regions I and II.

No analytical solution to equation 2.34 exists. However, an approximate so-
lution with these boundary conditions in [7] gives f(+00) = Cy = 1.24 as the

positive entrainment constant and this has also been confirmed numerically.

Also, in II, 99 = C; remains constant to leading order (corresponding to
the existence of only small flow velocities ). Therefore matching (2.32) and

(2.33) yieldsm =1 and 9(H+)= f(+00) = Ca.

Furthermore, balancing C; + (y — H)ug(H-) + ... + T3y against C; +
27 {nuo(H—)+Cs} beneath implies that C = 4, (H—), since n = (y—H)z7.

In region I then, u = ug + z3u, + .. and ¥ = o + 239y + .... Therefore the
non-dimensionalised momentum equation may be written as

1 - 1 -

Euoa:"a'l@bi - Elezllluf, =ug + ...
So ugt| —11up = 0 to leading order. Hence % must be constant. The solution
in region I therefore has the form ¢, = Ajuo, where A, is the constant of
integration. Then symmetry about ¥ = 0 requires A; = 0, meaning that the

motion induced in region I is comparatively slow.

In conclusion, then, using small-distance analysis to leading order we can
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construct the starting behaviour for the flow and obtain reasonably accurate
results for smooth continuous initial profiles. However, if the initial profile is
subject to abrupt changes (e.g. the initial profile is of the ‘top-hat’ type, or is
very nearly so) then small-distance analysis to leading order is insufficient and
the three-region structure above is required to model the starting behaviour
for the flow more completely. It should be noted, however, that in [22]
Wilson demonstrates that top-hat profiles are not particularly realistic in the
Sortex set-up, a result which is corroborated by Smith in [19] and [20]. The
numerical approximation, on the other hand, has no problem dealing with
near-discontinuous profiles and can provide very good approximate solutions

for this case, should the need arise.

2.4 Pressure calculation

The main overarching tasks of this research are to study pressure charac-
teristics and interference associated with the multi-jet set-up. Whereas the
investigation of interference in the two-dimensional case will prove to be
quite enlightening, there is little to be gained from a complete exploration of
two-dimensional pressure properties. Therefore, we present here just a brief
overview of a method that can be employed to obtain pressure data from the

numerical solution.

The non-dimensionalised normal momentum equation

dv dw_ ;¢ P
U t% = "oy T o (2.35)
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can be rearranged to give

Y
ov v 6’0

=
Il
I
o —

Now, (2.36) can then be replaced with

y Y Y
ov Ou Ou Ov
b1 = —f ('U'B'E +v a ) dy+/v'a_mdy aydy"" b; +G(z), (2.37)
0 0

which implies

v

/uvdy+fv( )d +%+G(x) (2.38)

0

However, since 2 = %”5 by (2.1), we obtain
ov
=—— [/ uvdy] v—dy + 3 + G(z). (2.39)
Finally, then,
o | f o
s  Ov
= e . . 2.4
P % [ / uvdy] v’ + 3y + G(z) (2.40)
0

Therefore, if we neglect any induced pressure from outside of the jet, so that

p1 =0 at y = oo, then



CHAPTER 2. TWO-DIMENSIONAL JETS 63

Implying ,
P = --a% [[uvdy —-v + %;-. (2.41)
Therefore, .
Picentretine = ;% / uvdy| — %Icentrcline, (2.42)
0
Since Veentretine = 0 and %”g =%

o o]

Here %kmnune is known, and [ uvdy may be calculated numerically during
0

the program run. The approach in this section can be used in the next

chapter in the investigation of jet interference.

2.5 Small-time analysis of the unsteady jet

As an aside, we develop small-t theory that will provide a useful check in

later sections devoted to three-dimensional unsteady jets.

Considering the time-dependent form of (2.1) at small times, u << 1 since
up  t << 1, so that ug ~ O(t). Then, from the balances % ~ ** and u ~ ¢,
it follows that z ~ ¢2. This implies that the governing equations are inviscid
and fully non-linear to leading order, with zero pressure gradient. Therefore

u is conserved for each particle as it moves along.

Suppose now that ug is independent of y, so u = u(z,t) for ~a < y < a,

say. Then we might expect that u is independent of y also, and by (2.1), v
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is linear in y, leaving

ou ou
5 Uz =0 (2.43)

The characteristics of (2.43) are % = u, on which u is conserved. Therefore,

z = ut + ¢1, and since ug o< ¢ implies ug = bt, say, it follows that

z=b2+¢ (2.44)

confirming the z-scaling above. Hence let £ = %tz, say, (where % is constant

and chosen for convenience) then an appropriate similarity variable is % and

we can attempt a similarity solution of (2.43) in the form

u=t.U(X), where X = t%
Then
du z ., A ,
5t—=U(X)—2t—2U (X) =U(X) - 2XU'(X), (2.45)

(where 7 denotes differentiation with respect to X), so that (2.43) becomes
UX)-2XU'(X)+UX)U'(X) =0. (2.46)

The solution of (2.46) may have to be in two parts joined together with a
discontinuity in U or U " at the join. The downstream part has U = 0, which
satisfies (2.45). The other, upstream, part (0 < X < Xj, say) has U(0) = b.

Therefore, from (2.46), U’ = %, and letting U = Xw, say, gives

U Xw w

' ' _ _ —
U =Xwtv= o = X0 2-w




CHAPTER 2. TWO-DIMENSIONAL JETS 65

So that Xw' = 3%-{w — 1}. Hence [% = [—2-%.dw or equivalently

w(w—1)
[%=[&-2]%,
Performing the integration and rearranging gives
Co—Ihn|X|=2hn|w|—-In|lw-1]|,

implying that

Ca
w—1 X’
U2
However U = Xw, so substituting w = ¥ into (2.47) gives 1}—‘7_—1 = 2. From
which we obtain

X = U(1 - DyU) (2.48)

where D, = é
This leads to three possible solution branches for X, as depicted in figures
2.14, 2.15 and 2.16.

X
3

X=U

Figure 2.14: X against U, D, = 0.
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X
| / &
AN DN U
Figure 2.15: X against U, Dy > 0.
X
A X=U
L8]

Figure 2.16: X against U, D, < 0.

Since U = b at X = 0, we require the branch for which D, > 0. This implies
that 0 = b(1 — D,b) and, hence, D, = ;. Therefore,

X=U (1 - %) (2.49)

and the solution looks something like figure 2.17, overleaf.
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& - X
0 X,

Figure 2.17: U against X. Upstream (0 < X < X;): U(0) =b.
Downstream (X > X;): U =0.

2.5.1 Jet velocity

Differentiating (2.48) with respect to U gives
X'=1-2D,U, (2.50)

which is zero when X reaches its maximum. Rearranging (2.50) for U, we

find that U has a minimum value of ;j-. Hence,

x -1 _p Ly _ 1 (2.51)
meE = op,  2\2D,) ~ 4Dy’ .

Therefore

Unin = —— = 2 Xmaz» (2.52)
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U = b/2, dU/dX —> —infinity

)ff(max)
b/4)

Figure 2.18: The jet’s velocity decreases to a minimum value of 2X,,,..

which agrees with 2 = -C— — —oo0, from (2.46).
Finally then, substituting D, = , we see that Xpmoz = 2 (i.e. z = 3¢%) at

which point Uy, = -2-, so the jet flow decelerates as in figure (2.18).

2.5.2 Jet shape

Given that U = U(z, t) only, (1.2) implies ¥ = —2%. Therefore
Ju
=Y —. 2.
14 % (2.53)
Also, from the kinematic condltlon =0,
DY BF oF

onY = F(z,t).
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At the unknown interface G =Y — F(z,t) = 0; therefore

oF oF
'5;+U3—$—V—0

SO

Therefore,
oF + O(uF)
ot or

0 (2.55)

onY = F(z,t).

For small £ we must scale F ~ F(X), where X = % from earlier. Then

oF ou
ax X =U)=Fox:
implying

1 OF 1 oU

FoX  (@X-0U)ox’ (2:56)

However, (2X — U)3% = U from (2.46) and X = U — D,U? from (2.48).
Therefore (2.56) becomes

dF au _ 1 2D,
F-@-p-0) - ¥ [U Tz 2020)] (2.57)
and after integrating and rearranging we find
F AU AUb (2.58)

@D U-1) 2W-b

Considering the jet depicted in figure 2.19 then, in which F =a and U = b
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Figure 2.19: slender jet (symmetric about z-axis).

70

at z = 0, (2.58) gives A =2 > 0. However, as z — 2t2—, s0 X = 2— and
b 1 1

U — 2+, F > oo, as in figure 2.20 below.

A

N

/4

Figure 2.20: inviscid jet ‘blow-up’.

Notice also that V ~ ~Y'Z = - X (52} > 0. Implying

V—)ooasX—>§—

(2.59)

In a purely inviscid setting we might expect the trend highlighted by (2.58)

and (2.59) to lead on into an Fuler (square) region (figure 2.21) next, sur-
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rounding = = %tz. However, in the viscous case the viscous effects must stop

the ‘blow-up’ described above. These effects are investigated next.

/ S —

/ 7
N

%_,

Figure 2.21: inviscid jet and Euler region.

2.5.3 Viscous effects

Viscous effects for small times occur near the edge of the jet, where the

momentum balance % ~ %’,‘ impliesy — F ~ t3. Therefore, putting y =
F+t25, w=1tU and v = F,+ uF, +t"'/2V, along with the Prandtl

transposition such that (z,y,t) — (£, n,f) say, where { = %; 7= y—_;,(-,l_%—)
and ¢ = t, gives

-2 0F UOF 1 .
v=— -a—g—+779€+%—175v. (2.60)

Also,

0 _ 0% oo 00 -0 % nd 8
13296 2'0n o

ot ~ o9cot  onot  giot 3 A
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So, after substituting u = tU,

du 260’ 26 OF

oUu  .aU
- Xm0

_n LA )
2),, +tat+U.

o 90t 00np, 08 18 10FQ

8z~ 0oz onoz T oioz | LOE B OE on
So
ou_190 1 9F 30
0r tof t329¢ 0n
0 _ 00 0o 008 _ 130
dy 00y  Ondy otdy 2o’
implying
ou 190
_— = 7 —,
oy on

’ ” - N ——
i 020t & on 0 ot\ot K6 9%

o e, —— ——
7 o, o, P ot |, Do Do
OnoE Oy On*0y 9ndidy | Oy Ondy*  Bioy?

”~ ~

+(62 o & o a?at)g

9i0E Oy | Bindy T 9R2 0y

a7 (a_fia_y“Laean%*'asaféz) oy a2 T
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(2.61)

(2.62)

(2.63)
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which condenses to leave

i i (an)2 1

o ~ af\&y) ~ ton

So that
8u 82U
Also,
v _ 1@___ 16F6U+16V (2.65)

dy 139y JoEm  tan

Therefore, after making the relevant substitutions, the continuity equation

becomes
U oV
—— — 2-
3¢ + an 0 (2.66)
and the momentum equation becomes
o0 noU . 80U 80 .80 &0
— e — — — — —_—a — 2_
tat 23n+U 256€+U6§+V61] an? (2.67)

Then lettingf =¢, n=¢ and ¢ = X gives the following small- similarity

form.

U oV

and
U900 5 _ox % g,y _ OV

at 20§ ax " ax " ey~ 9 (2.69)
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subject to U — 0 as § — oo and U — UX) as § - —oo,

where U satisfies U'(2X —U) = U.

«

O(t71/2)
| F
a ....................................................
a AR
o X
L SRR
e

Figure 2.22: Viscous layer.

In conclusion then, it has been shown that as X increases U falls. Implying
that the viscous layer is decelerated. Viscous layers thicken as a consequence
of deceleration. The deceleration term %"5 ~ %g—g. Thus g—g — —occ0as X —
%——. This unbounded deceleration may cause the viscous-layer thickness to

tend to oo (relative to its original ta scaling) and then allow viscous effects

to influence, and possibly contain, the spread highlighted in figure 2.20.

2.6 Summary

In summary of the main points, Chapter 2 has presented the governing equa-
tions of the two-dimensional jet and described their numerical solution for a
number of appropriate cases. Analytical properties have also been explored,
notably for small or large distances. The small-distance analysis has been

found to be not only particularly relevant in the industrial setting but also
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to agree reasonably well with the numerical results, depending on the start-
ing conditions. Pressure evaluation and small-time analysis for unsteady jets

have also been introduced

The in-depth study of two-dimensional jets has helped prepare the way for
our exploration of three-dimensional jets, which is contained in chapters 4, 5
and 6. The finite difference methods used in Chapter 2 will be extended to
solve the three-dimensional steady and unsteady cases. Pressure equations
analogous to that presented in the two-dimensional case will be developed
and used in the three-dimensional cases and small-distance analysis (subject
to the limitations highlighted) will be employed to complement the numerical

solutions.



Chapter 3

Interference aspects of multiple

in-line two-dimensional jets

3.1 Introduction
This chapter addresses the major issue of interference between jets.

Full ejector setup

Figure 3.1: Schematic of full 3D ejector set-up.

76
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Figure 3.1 illustrates how ejector nozzles in a food sorting machine may be
arranged. Typically, in Sortex machines, there exists a single row of several
narrow ducts of 3 X 1mm, 4 X Imm or 6 X 1mm cross-section. Each of these is
separated from its immediate neighbour by a 0.5mm gap, which is governed
by the thickness of the ejector walls. The ejectors all fire independently of
each other in response to defect items in their target areas. Each ejector may
fire between 100 and 300 times every second and, hence, it is anticipated
that there may be considerable effects from interference between the jets.
The modelling of these interference characteristics forms a major part of the

entire study here.

In this chapter, then, the numerical marching scheme demonstrated in Chap-
ter 2 will be employed to investigate the development of several or many jets
from an imposed laterally symmetric steady initial profile. [The case of inter-
ference between several or many wakes has been studied by Smith in [9]].The
results obtained will be discussed and then interpreted analytically, once

again using techniques outlined in Chapter 2.

3.2 Numerical investigation

The governing equations, then, are (1.2) and (2.1), and these are subject to
the conditions given by (2.13) and (2.14). Now, however, for the purposes of

addressing interference we consider the initial profile

-1

ug = [1 + (6sin (-’24))2] (3.1)
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Figure 3.2: ug = [1 + (65sin (g))”] 97 <y <9m z=0,0.1, 0.5.

(which is 27 periodic in y and symmetric about y = 0) for —N7 < y < N,
for some odd natural number N. Results for N =9 at z = 0, 0.1, and 0.5

are presented in figure 3.2.

The plots at first appear to show a maintained lateral periodicity equal to
that of ug within the central region of the total flow up to at least x =
0.5. However, close inspection of the numerical results for N = 19 suggests
that in reality there is no such periodicity. For instance, at z = 0.1 in the

case of N = 19, the widths of the jets either side of the central jet decrease
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from 27 to approximately 1.96m, whereas the widths of those further out
increase in response to the presence of the jets at the outer edges. The peaks
and troughs of the middle region eventually merge and smooth, as seen in
figure 3.3, and the profile progresses towards the ‘Bickley-jet’ form. The
influence from the edges is gradually absorbed; however, this occurs a long
way downstream. The characteristic streamwise length, L, of this viscous
system is approximately 1370mm and the characteristic width 4 is 1mm (this
being the semi-width of the jets). Therefore the coalescence shown in figure
3.3 happens well beyond the 150mm range of interest to Sortex. However,
the edge effects are a dominant feature within the Sortex range, and these

play a major part in the interference.

Development of ul = 141+[6sin(y/2)]"2) according to numerical scheme.

u :)’xg; 08 b)x=16,c)x=30,d)x=4.0.
025 |
02F
0.15 o
0.1 ¢
005 |

1000 2000 3000 4000

Number of y-stations.

Figure 3.3: ug = [1 + (65sin (121))2] - , =91 <y <97,z =0.8, 1.6, 3.0, 4.0.
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3.3 Analysing the numerical results

Consider the initial profile ug = [1 + (65sin (‘21))2] - again, which is periodic
in y, with period 2w, and suppose that the profile remains periodic. Then
integration of the momentum equation with respect to y across the 27 period
would give the integral of u? being conserved for all z (see (2.5)) and equal

to 3_?\8/%, which is approximately 0.5304. A uniform state is anticipated

downstream (as predicted by the numerical results, and illustrated in figure
3.3) in which u — ¢; here, to conserve the u? integral in y between —m and

T, c= %, a value which is approximately 0.2906.

In contrast the numerical results have been shown NOT to be periodic in y;
moreover the uniform state downstream is found to have u < 0.2, which is
clearly distinct from the value of ¢ just above. The reason or resolution for
the contrast is that the flow does not generally maintain y-periodicity: this

is a result of the significant interference present.

¥,

1888 8

i jk

500 1000 1500 2000

Figure 3.4: 9, vs y for ug = 1+(5siln(2))2),0 <y<N,N =09n.
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3.4 Small-z analysis

Small-distance analysis of the form introduced in Chapter 2 further supports
the above findings. The flow solutions expand as (2.26), where % is the stream
function; so u; is given by (2.28). Plots of 1, against y and u; against y are
presented in figures 3.4 and 3.5. Close examination of these confirms the lack

of periodicity in y, and an apparent linear growth in u; with y.

Uy

1000

B S
T TT

-1000 [

gy

Figure 3.5: u; vs y for ug = m;;@,o <y< N, N =9r.

3.5 Summary

In conclusion then, it has been shown that even when considering jets op-
erating over relatively short distances, as in the Sortex case, neighbouring
jets will interfere with each other. This interference appears to be influenced

greatly by edge effects, as clearly shown in the above plots. Furthermore, it
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has been shown that even if the initial 1o profile is periodic the initial lateral
velocity component, vg = —1);, will be non-zero and non-periodic. This last
point goes some way to explaining deficiencies in the pressure solution at
very small z, a matter which is discussed in the next chapter, along with a

method investigated for overcoming the deficiencies.



Chapter 4

Three-Dimensional Steady Jets

4.1 Introduction

In this chapter the finite difference schemes er-nployed to solve the two-
dimensional case will be extended to enable us to investigate the develop-
ment of steady three-dimensional jets. We begin by obtaining the governing
equations for the three-dimensional steady jet and describing their numerical
treatment; this is by means of what is in effect a vorticity-velocity formu-
lation. The extra use of small-distance analysis and a cross-planar stream-
function formulation are explored in an attempt to overcome deficiencies in

the early development of the numerical pressure solution.

The main aim in this chapter, and the next, will be to obtain pressure data
that can be compared directly with empirical data supplied by Sortex. How-
ever, it should be noted that the empirical data could only be captured over

a very short range of approximately 15mm from the nozzle exit; beyond this

83
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range the sensory equipment was unable to accurately measure the air blast.
Furthermore, it should be noted that even over the range where data was
regarded as acceptable there are fluctuations in the readings. It must also
be stressed that the empirical data, unlike the numerical solution discussed
in this chapter, is time dependent and any comparisons should really be

confined to the unsteady solution that will be developed in Chapter 5.

4

35 \ Data supplied by Sortex.

/

~

(5,
7

d

/

Maximum gauge pressure (psi)
/

S \

25 50 75 100 125 15.0
Distance downstream in mm

Figure 4.1: Maximum gauge pressures between 2.5mm and 15mm from the
nozzle exit supplied by Sortex.

4.2 Governing equations

We take as our starting point the three-dimensional continuity equation and

the Cartesian three-dimensional Navier-Stokes momentum equations: 1.5,
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1.6, 1.7, from which we discount time dependence so that we are left with:

Ou O 2 —lap p 0% Fu
FrIM VL Py {ax~ 3y2+b.z2}, (4.1)

v Ov v -1 6p p 6% v v

Yoz T 055 TS T p By p{aa:2 0y? + 6z2} (42)
ow dw dw _-13p p w Fw Fuw
Yoz +”8 tUs T p 0z + 52 T Oy? * 92 5 (4.3)

Dimensional analysis of this system of equations suggests that, as in the two-
dimensional case earlier, the second-order derivative with respect to z in each
equation is small enough to be ignored. Hence, the governing boundary-layer
equations for the three-dimensional steady jet are, as in the two-dimensional
case, parabolic in z provided the velocity component u remains positive.
This indicates that the numerical scheme required for their solution should
be of the downstream marching type. Therefore we consider the following

non-dimensionalised system of equations:

ou Ou 0u lap 62u 62u
U— +V— + W

dr 0Oy 0z p Oz { } (44)

u

v v v _-18p  ,0%v 0%
6x+vay+w3z = 6y+ E) +6z2 , (4.5)
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ow Ow ow —-10p Pw 0w
"aa,-+"’a T T p6z+ 5_;1/7—'— 22}’ (4.6)
ou Ov Ow
5“-{"51;4-—6-;—0, (4.7)
subject to the following boundary conditions:
u—0asfy] oo, u—0as |zl >00, P =0aty=0and §2=0at 2=0,

and a starting condition at £ = 0 say. The pressure p is now of the form

p = po(z,y,2) + £=01(, Y, 2) + ... and it follows immediately from equations

4.5 and 4.6 that %’—;} and %% are zero, indicating that the system to be solved

requires p;(z,y, 2) to be considered. Also from the boundary conditions at

large |y| we find that py is constant, implying the result that %‘;‘1 =0.

In preparation for solving the above system for u, v, w, with p;, (see [27],

[28]), first 4.7 can be rearranged to give =—(2+2%) and &

Therefore, substituting these into 4.5 and 4.6, respectlvely, gives:

v Ov v 1 6p1 6 ov Ow Pu

U + Vo F W = = — - —

oz ”ay 0z P By 2'9z Oy’ 0Ozdy

and

ow Ow ow 18py 0 ,0w Ov Pu

U —+v—— — = _——

oz 6y+w8z p Oz +6y dy 0z’ 018z

=—(%+5).

(4.8)

(4.9)
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Defining the cross-planar vorticity ¢ = % - %’ we can then rewrite 4.8 and
4.9 as
v Ov dv _ 10p , 0 Pu
U Y5 V5 = ooy t 52 5ady (4.10)
and

Oz Oy 8z pdz Oy 020z

We may then eliminate the pressure terms by differentiating 4.10 with respect
to 2, differentiating 4.11 with respect to ¥, and then subtracting one of the

resulting equations from the other, to obtain

ud{% - }+v8y{ }+w ‘9”—-8"’}+ By %‘5
Sw Bu & —
+Bz ———}+8z'8_:—8y81: Vz{_——

where V2= (——5 +25).

This then gives in effect an equation for the vorticity evolution,

o¢ o¢ o ,Ov 0w Oudv Oudw

2 _— ——— — —
V=g vy e Y Y e Y o a1
Also, gy’; = :y g + 22), Therefore, in terms of the vorticity,
o Pu
2y = = — 4.1
V=5, " ooy (4.13)

can be regarded (see below) as an equation controlling v, while
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o B
2 T e e—
Viw = 0y 0z0z

(4.14)

acts as if to control w. Hence, employing 4.12, 4.13 and 4.14 along with

Viy= uég+vgy-+wgt£
T 0z Oy 02’

(4.15)
the three-dimensional steady incompressible jet problem is now in a form

suitable to be solved numerically, as we see in the next section.

4.3 Numerical solution

We first consider 4.15, which after a discretization as described below can
essentially be solved using Gauss-Jordan elimination. To account for the
boundary conditions the matrix is extended to (n + 2) x (n + 2) and the

value of u is set to zero at all boundary nodes.

As in the two-dimensional case, the undifferentiated terms are taken to be
known values from the previous station or initial conditions; this acts as a
local or quasi-linearization. A backward difference in z is used to model -g—:— at
the current station and centred differences are used to model the derivatives

with respect to y and z. Hence the difference scheme for 4.15 is

7 Umn.n—U. I7 Unm+1,n—Um-1 57 Umn+1~Umn—1
Um’n( mnAzmn)_{_Vm’n( m+ ;Aym n)+Wm’n( m,n 2Azm,n

— (Um+1,n"2Um,n+Um—l,n ) + (Um,n+1 —2Um,n+Um,n—1 )
(ay)? (a2)? ?
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which we rearrange to form

V. an

Ymn 1 1 1 Unn 1 ,
Gay @ Umnnt gyt ey Y 2ns U (g T 2ny Ut

72

Umn
)Um,n-—l = A:E y (416)

W 1 1 W
H3az ~ @ Umer ~ (& * 3a,

where U, V, W represent the velocity components u, v and w, respectively.

Once the u values have been calculated at the current z-station the associated

v, w and { values may be approximated using an iterative scheme.

4.3.1 Gauss-Jacobi iterative scheme

Here iterative solution methods generate a sequence of approximations to the
exact solution, and it is found that in the present context they can indeed
be made to converge to an acceptable level of accuracy. Although the exact
solution is not produced these methods have the advantage of requiring less

computer storage and are relatively easy to program.

Here we employ the Gauss-Jacobi scheme (see, for instance, [26], [37]) to
solve the above system of equations. This is a point-iterative scheme since
each quantity is updated one grid point at a time. This particular method
was chosen because it works independently of the order in which the nodes
are scanned, making programming simpler, and also because it seemed to

work in practice fairly efficiently.
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4.3.2 Solution of the three-dimensional jet

The individual terms of equations 4.12, 4.13 and 4.14 are replaced by their

corresponding difference terms to yield the following finite-difference equa-

tions:
newVmiin — 2newVpy » + newVp_1p
( (Ay)? )
newVm nt1 — 2newVp u + newVp 1
_ (neow,n+1 - neow,n-l) _ (Um+1,n - Um—l,n - Um+1,n + Um—-l,n)_
- 2Az 2AzAy ’
newWni1n — 2newWpy n + newWy,_1n
( By )
+ (neme,nﬂ - 2newWp, , + neme,,,_l)
(Az)?
_ neow+1,n - ne'ow—l,n Um,n+1 - Um,n—l - ﬁm,n+1 + Um,n—-l
= ( )= ( )
2Ay 2AzAz
and 3
neow,n - Cm,n 0ld€m+1,n - OIde—-l,n
Unma( Az ) + newVip,a( 27y )+
01d<m,n+1 —old¢n -1 newVpi1n —newVp_1p
newWo, a( 5A, ) + oldma( oAy )+

newW, n1 — newWy, n— Unnt1 — Unn-1, ,newVimn — Vima
oldmn( Az )+ () ()

(Um+1,n - Um—l,n )(newwm,n - Wm,n) |
2Ay Az

_ (Olde+1,n - 20ld<m,n + Old(m—l,n) + (Oldgm,n-f-l - 2OIde,n + Oldgm,n—l)
h (Ay)? (Az)? ’
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where ‘old’ values are previously known or initially guessed at the present
z-station, ‘barred’ values are values known from the previous z-station and

the ‘new’ values are to be found.

Therefore,
newVmy, =
(AyAz)? { (neme+1,,, + newVp,_1, am (neme,,,H + neme,,._l)
2(Ay? + Az?) Ay? Az?

_ (neow,,H.l — new(n,

Um+1,n - Um—l,n U m+ln + Um— 1,n
SAS ( )}

n—1
)+ 9ATAY

(4.17)

newWp, , =
(AyAz)? ( (neme+1,,, + newW,_ Lmy 4 (neme,,.+1 + neme,,,_l)
2(Ay? + Az?) Ay? Az?

new(m+1,n - neow—l,n Um,n+1 - Um,n—l - Um,n+1 + Um,n—l
)+ ( )}

+( 2Ay 2AzAz

(4.18)

newmn =
( Az Y (olde+1 n — 20ld(m n + 0ld(m—1 ,,.) (olde,n+1 20ldmn + Olde,n-1)
Um’" (Ay) 2 ( A z)z

Um+1,n Un—1 M )(ne'wwm,n - Wm,n )_ ( Um,n+1 ,n—l ) ( neme,n - Vm,n

+(

2Ay Az 2Az Az

)
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newWp ny1 — newWey, newVmiin —newVp_1p

~0ldGm,n( A 2) = old(mn SAy )
old(n nt1 — oldlnn— old(mi1n — 0ldlmn—1n =
et Wi u (2% ST L) etV (2 B A; )} 4
(4.19)

Values obtained from 4.16, along with known U values and initial or latest
values for ‘old’ terms are fed successively into 4.17, 4.18 and 4.19, at each
stage iterating to an acceptable (pre-defined) level of convergence. Once
the solution of 4.19 meets the convergence criterion the ‘new’ values are
re-fed into 4.17 and the iterative process is repeated until there is overall
convergence via equations 4.17, 4.18 and 4.19. The process then steps forward

to the next z-station and the process is repeated, and so on.

4.4 Validation of the numerical scheme

As with the two-dimensional scheme, it is possible to validate the numerical
solution by employing tests which fix the boundary of the solution domain
but which vary either the size and hence number of Ay and Az steps (i.e.

number of grid-nodes) or the size and number of Az steps.

With the solution domain fixed and with Az held constant at a prescribed
z-station the solution produced the parabolic curve, illustrated in figure 4.2,
of Ul|y=o as Ay and Az were increased. This agreed with expectations, since
both the Ay and the Az are discretizations of second order accuracy, due to

their centring.
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0.999

0.9985

0.908

0.9975

0.997

Figure 4.2: Fixed solution domain, increasing Ay and Az at prescribed z-
station. Horizontal axis gives Ay and Az values; vertical axis gives centreline
velocity.

Similarly, holding Ay and Az constant at a prescribed z-station within a
fixed solution domain produced the straight line graph Ul|,—o against Az in

figure 4.3, in keeping with the first order accuracy of the Az discretization.

(Higher order accuracy in z is discussed in the papers above).

0.99704}
0.99702}

0.997 ¢
0.90698}
0.99696
0.996941

0.0002 0.0004 0.0006 00008 0.001

Figure 4.3: Fixed solution domain, increasing Az at prescribed z-station.

Figure 4.4 illustrates the centreline velocities produced by grids of increasing
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refinement but with fixed solution domains. The RED curve was obtained
from a grid in which Ay = Az = 7/12; the GREEN curve was obtained from
a grid in which Ay = Az = 7/16; the BLUE curve was obtained from a grid
in which Ay = Az = 7/20 and the MAGENTA curve was obtained from a
grid in which Ay = Az = 7/24. The vertical axis represents the centreline

velocity and the horizontal axis indicates the value of z.

0.98

0.96

0.94

092}

09

0.88 L : N— : i
0 002 004 0068 008 0.1

Figure 4.4: centreline velocities produced by refining Ay and Az.

The overall trend is clearly towards the MAGENTA curve. However the
BLUE curve was produced by a grid containing a total of 81 interior nodes
and shows only marginal disagreement with the MAGENTA curve, gener-
ated by a more computationally expensive grid containing 121 interior nodes.
Therefore, in any further work involving this numerical scheme, a grid con-

taining 81 interior nodes will be used.
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4.5 Leading order small-z analysis of a smooth
initial profile

In this case

u = uo(y, 2) + zu1(y, 2) + ...
v=0+zv1(y,2) + ...
w=0+4+zwi(y,2) + ...
(=0+z6(y,2) + ...

Therefore 4.15 may be written as

ou ou .
UgUy + xvlao + xwl—a—zﬂ = %f‘,“ + %“,‘1 to leading order.

=0 sincgv,w <<1

— V2u 2 _ (8 82
Hence ul—TOQ y where V —(W'l‘b—z? .

Considering a relatively smooth initial profile such as uy = W,

Qﬁ‘,ﬂ = W{Syz - 22 - 1}.

Likewise, 54 = -t {322 — 92 — 1}.

Hence VZUQ = m{y2 + 22 — 1}

V3y,

and u; = -_u.;n = '(T_'_T’:_}_z—g)g{y2+22 - 1}
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Therefore u = a +,,% —ta +y§1z2)2 {v>+ 22 -1} for small positive z.

08¢

0.75

0.7

0.65

0 0.02 0.04 0.06 0.08 0.1

Figure 4.5: comparison of numerical solution with analytical solution at small
z for relatively smooth initial profile

Figure 4.5 compares the analytical values of v (RED curve )with the nu-
merical values (GREEN curve ) obtained at a node off the centreline. It
can be seen that, for relatively smooth initial profiles, the numerical solution
shows very good agreement with the solution produced by small-z analysis.
However, for less smooth ‘unit-pulse’ type initial profiles, small-z analysis
is subject to the same limitations encountered in the two-dimensional case,

highlighted in 2.3, and can provide no really useful comparison.
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4.6 Obtaining the pressure equation

To obtain an equation for pressure we return to the governing equations of
section 4.2 and differentiate the non-dimensionalised forms of equations 4.5

and 4.6 with respect to ¥ and z, respectively, to obtain

uazv +@6u v ( )2 0% Q_‘E_‘Z”_ 62p {831) }
0zdy Oz oy By"’ Byaz oy 0z 3y3 6y622

and

o +a_wa_u+va2w+a_w@_+w@+(@)2_ &r {63 a3v}
020z 0r 0z Oydz Oydz 022 ‘0z a2 Oy3 6y8z2

These can then be added together to produce:

dv du

0 Ov OJw 86v6w 331)611) 2 2
e

6x{6y az} ay{ay 6} {6y 0z

Jowdu  dudy o, {62(60 CONN NN
0z 0z  “Oyodz Oy? t o2 8y 0z

which, after considering the continuity equation, implies

3211,_”6215 _wa2'u, +(_)2_2_6_v__6iu_+@@+6_w§2+2_310__6_v
0x? 0zdy 0x0z ‘0Oz Oyoz O0Ozdy Oz 0z Oy 0z

U

= -V(p+ 20). (4.20)
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Then, considering the ¥ momentum equation 4.4, we have

0, 0u Ou du, 9 o
-a—z{‘ub—x + 'U-a; + ‘w-a—z} = 2 {V 'u},

which, after expanding the left-hand-side and rearranging, implies that

_u62u o u W Pu _gvzw(au) e Ov Ou L ov 6w6u
0z2 0zdy 0zdz = O Oz 0z 8y 9z 0

(4.21)

Hence, substituting this into 4.20 and rearranging gives the following pressure

equation:

ovdu OQwdu Owdv Ovow

= 2, OVOU A OWOU OJWOU OJVOW
V' 2{( ) 6z6y+6x 8z+6y6z Byaz}’ (4.22)

which can be approximated using finite-differencing and solved using the

Gauss-Jacobi iterative technique described earlier.
The iterative scheme is

Pk+1 1

W 2(Ay? + Az2?) {AY? (P +Pf_1)+A22 (P i+ PEy j)+2Ay° A2 X}

where X = ( U.',iA-Fi,i )2+( Uiil,é';gi-l,z ) (newV..j —Vigj )+ ( U-,j+;;g',1—l ) (newW;,J Wi )

+(newW,+1,;;:ewW,_1 i )(newV. J+;Z:ewV. §—1 )

_ (newV,-.,.l,_.,-—newV.-_.l,j )(ncwW;,_,-+1—uewW.-__,-_1 )
2Ay 2Az °
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It was hoped that specification of ug only would be sufficient for the compu-
tational solution to evolve; this was confirmed, subject to a settling-in period,

which appeared to span the first 25-30 z-steps.

With the z-step (Az) set at 0.0001, the program was made to run forward
through 200 steps. This equated to approximately 27mm (a fifth of the total
range of interest to Sortex). However, it should be noted that of particular
interest are the first 15mm or so, since data produced over this range can be

compared directly with data obtained from Sortex’s physical test rig.

200
160
100

50

50 100 150 200
-50

-100

Figure 4.6: Non-dimensional centre-line pressure curve produced by the nu-
merical solution with a smoothed unit-pulse initial profile.

Figure 4.6 clearly shows that the solution does not settle down until after
the first thirty or so steps (i.e. beyond 4mm in Sortex terms). Since this
accounts for over a quarter of the range in which physical data exists for
comparison, consideration was given to the starting conditions on the lateral

velocity components v and w and the starting pressure.
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4.7 Small-distance analysis

Consider the following power series expansions:
U=1U+ T +x2'u2 + ...

v =1y + TV, + T2vp + ...
w=wo+xw1+x2w2+...
P = Do+ 2P, + 2P + -

The continuity equation may be rewritten as
(u1 + 2zug) + (voy + V) + (wo, + Twy;) = 0.

Therefore, equating coefficients of z, u; = —vgy — wo, and uy = =221,

The v-momentum equation gives

2 —
Vg — voupy — WoVoz — Poy
U

"N =

and the w-momentum equation gives

2 —
V4w — vowgy — wowo, — Py,
Ug

w =

Also

Uty = —Voyy — Woyz,
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U1z = —Voyz — Woza,

1
2 2 D
0

Uoy (72 _
——5 (Vv — vowoy — wovo, — p()y)’
and

1
2 2 =
W, = u—(V Woz — VoWoyz — Vo Woy — WoWozz — Wy, —p()zz)
0

Uoz 2 —
2 (V*wo — UVpWoy — WoWoz — Po.)-

0

Furthermore the u-momentum equation can be written
(uo + zu1) (w1 + zu2) + (vo + zv1) (uoy + TUry) + (wo + zw1) (%o, + Z1,)

= V3(up + zu1). (4.23)
Equating coefficients of z in 4.23 we obtain
UgUpy — UgUoy — UpWoz + WolUoz = Vuo, (4.24)

which can be rewritten as

Y w Vu
(_g)y + (_0 z = ug 07 (425)

Ug Up
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and
2ugus + UF + Volyy + Vitgy + Wely, + Wite, = Viuy, (4.26)
which, after making the relevant substitutions and cancelling, gives:
Vzﬁo = g:%(ﬁgy + wovg, + VoVoy — V2v0)+

2’Mo,
Up

(Po, + wowo, + UpWoy — Vz'wo) - 2(1)0,, + ‘lDoZ)z — 2up, Woy. (4.27)

Returning to equation 4.25, obtained from the leading order expansion of the
u-momentum equation, we seek now to obtain expressions for vy and wp, and

thence (p.

Suppose that vocs and wpcs are complementary functions and Vp and Wy
are particular integrals, which together give general solutions vy and wy.
Then, by considering the homogeneous problem (), + (%), = 0, which is
satisfied by the function A(y, z) such that A\, = % and —), = 2, we can
specify an arbitrary function of y and z, such as A(y,2) = y? + 22, say, for
which the corresponding complementary functions would be vo;y = 22up

and wos = —2yuo. Then, to obtain a particular integral, V5, consider

4.25 such that wy = 0. So that —(22), = y;:é‘-“, giving

Vu
Vo = —ug / uzody. (4.28)
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This integral can be evaluated numerically, using Simpson’s method, and the
result used to obtain values for vy and wy, which we will obtain by considering
the cross-planar stream function. First, however, consideration must be given

to the boundary conditions.
4.7.1 Boundary conditions

Our main interest here is in the far-field behaviour. Considering (%), =

—V—:g'ﬂ, from above, and the relatively smooth initial profile ug = 1/(1 + %+
-8

Y ~ y*. This implies vy =

2°), we see that at large y values (2), =~
ug-y® ~ y~'. Therefore, in terms of the stream function, ¢, ~ 2 ~ 35

implying ¥ ~ 3® (or 2% at large z). Hence we expect that upy, and

up, = 0 as |y|and |z] = oc.

Also, by considering below the axisymmetric case it is possible to gain further
insight into the nature of the far-field boundary conditions from the radial

velocity components.

In cylindrical polar coordinates the continuity equation is

ng + o(rv)
oz or

0,

and the r-momentum boundary-layer equation is

ou Ou_&u 10u
Yor "Vsr T2 " ror
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Therefore, expanding u = up+zu;+.. and v = vy+..., the continuity

equation becomes:

Bvo
’M11”+‘vo+1’ﬁ—0,

implying o
—V—T -g_o‘

The momentum equation becomes

Oug %uy 10ug
UglU1 + Vo =

or or? +; or’

which, upon substituting for u,, gives

—ugUyg Oy Qug _ O%ug 10ug

r —UOET-HJO(% - 6r2+r3r'

Hence the equation controlling vg is

Tug + Uy = —Uglp — TUgUy + Ty, (4.29)

where /, representing differentiation with respect to r, is used for ease of

notation.
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Dividing both sides of 4.29 by u2 it follows that

_D (gt ug)
or Uo 'U%
Hence the solution is
U / (rug + up) +u0)

Therefore, for an initial profile that depends on r, such as uy = n—ﬁ;)-,

where a = constant and n > 0, vo ~ <* asr — oo, implying vy — 0
slowly as r — oo. This is in agreement with what was expected at the

start of the sub-section.

4.8 Cross-planar stream function formulation
for three-dimensional jets

By definition, the vorticity (o = vo, — woy. Therefore letting vo = Vo + 7p
and wy = Wy + Wy say, and considering zero vorticity with Wy, = 0 gives

Voz + To, = Wy and, hence,

Voz — Ttﬁoy = _‘/()z- (430)

Then introducing the cross-plane stream function (y, z) such that ¢, = 12—%
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and 4, = —22 4.30 can be written as

(uothy)y + (uoths): = —Vou. (4.31)

This is an elliptic partial differential equation for 1; we shall see later that
it can be used to model interference properties of many jets in rectangular
or other arrays. With uy known and V4 supplied by 4.28, 4.31 can be solved
numerically using a five point finite-difference scheme, as used throughout
Chapter 2. The finite-difference scheme adopted here is thus given by

Voi = (AyAz)?
W 2uo,-,j(Ay2 + AZ2)

Uoi,j (Uoiy1,5 — Uoi-1,j
{ Aoy‘; (Wit1,i+Pio14)+— +l’i Ay20 1) (Yir1,5—Vi-14)+

Ugij Ugi j41 — Ui j 1
A—0;§(¢i,j+1+¢i,j—1)+( OM-ZIAzg = 1)(¢i,j+1—"/’i,j—l)+m(%ij+l_%ij—1)}-
(4.32)

Also, since vy = ug,+Vp and wy = —upyy+0 (because in the present context

Wp = 0 from above ), and using ¥, = Wirrj—viz1d) gang o, = Ghitivig=1)

2Ay 2Az

as the representations of derivatives, values for the initial lateral velocity

component contributions vy and wp can then be obtained.

Results for the ug = 1/(1+y%+2°) initial profile discussed above are contained

in the following tables and figures.
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Figure 4.7: Contour plot of ¢ in the y, 2 plane.

Output (¢) for ug =

1/(1 + y® + 28), 81 interior point.

0
—4.1018
—9.6745

—11.5162
—6.1093
3.0507
12.1873
17.4989
15.4231
9.3597
0

0
—2.8387
—4.7325
—4.7902
-1.5321
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8.9756
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12.1420
10.4114
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0
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Figure 4.8: Contour plot of vy (on the left) and Contour plot of wy (on the

right).
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Output (vg) for ug =

1/(1 + y° + zo), 81 interior point.

0
2.6348
—1.7257
—9.5551
—5.6407
—0.1875
5.2902
9.3501
1.7273
—2.5768
0

Output (wg) for ug

0
2.8779
—1.8619
—13.696
-9.0214
—0.0440
8.9457
13.668
1.8709
—2.8529
0

0
2.9211
—1.9768
—14.629
9.7977
1.09E — 15
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14.629
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—2.9211
0

0
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0

0
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0

1/(1 + &+ z”), 81 interior point.
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0

0
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0
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0
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0
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—0.5006
0

0
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0
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By adding just a few lines of code to the computer program developed to
solve the pressure equation in section 4.6 the values obtained above for vy
and wy were introduced as starting conditions for the lateral velocity compo-
nents. However, running the program with the modified starting conditions

produced the same pressure solution, subject to the same settling-in period.

It seems clear then that this solution method can produce reasonable results
throughout most of the flow-field, but will always be subject to the settling-in
problem highlighted above during the very early development stage. How-
ever, running the program with smaller z-step sizes confirms that the settling-
in phase can be confined to a region closer and closer to the nozzle exit.
Therefore, by making the streamwise step smaller and smaller, detail can be
captured closer and closer to the issuing nozzle. Hence, employing a suitably
small z step and accounting for the Re~! factor associated with p;, plotting
the dimensionalized centreline pressure data between 0.3mm and 15mm from
the nozzle exit produces the following graph.

4

35

3t

25

Maximum pressure (psi)
o ~

25 60 75 100 125 150
Distance downstream in mm

Figure 4.9: Dimensionalized centreline pressure up to 15mm from exit.
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Furthermore, extracting centreline pressure values at 2.5mm intervals be-
tween z = 2.5mm and 15mm enabled a comparison between maximum
physical pressure data supplied by Sortex and the numerical sclution to be
made. Though subject to a scaling factor, figure 4.10 illustrates very good
agreement between the physical and theoretical data.

4

35 bXS
3 Y

26 ¢ N\

Maximum pressure (psi)

25 50 75 10.0 125 160
Distance downstream in mm.

Figure 4.10: Dimensionalized pressure comparison at discrete points up to
15mm from exit.

4.9 Swirl

In [27] it is shown that the evolution of input swirl in ducts, such as those
used to feed the jets in this study, is significantly affected by bending and
twisting in the ducting coupled with other considerations, such as valves and
internal surface roughness due to machining etc. See also [29]. Swirl is an
important characteristic and therefore its effect on the issuing jets should
be considered. We note that in a real setting, rather than in the case of

the idealized unit-pulse type initial profiles considered here, that swirl will



CHAPTER 4. THREE-DIMENSIONAL STEADY JETS 111

contribute to a non-symmetric and rather complex or skewed ug initial jet
profile. For the present study, however, we will demonstrate only the effects
that an induced swirl has on the development of such idealized jets in terms

of velocity and pressure characteristics.

Figures 4.11 and 4.12 are crude contour plots produced using ‘Mathemat-

ica’. They illustrate, roughly, the v components of velocity a short way

downstream with no induced swirl and with an induced swirl, respectively.

Figure 4.11: v velocity componénts ten steps downstream. (No induced
swirl).

It is reasonable to assume that in the case of a unit-pulse initial profile the
swirling effect will be concentrated around the core region and that it will

rapidly diminish with distance away from the jet’s central axis. Therefore, for
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a jet issuing from a square nozzle, we contend that the initial lateral velocity
components vy and wp could be given by expressions such as vo = % and
wy = —¥, respectively, where r is the radial distance and n is a positive integer

controlling the rate of decay, for an induced swirl in a clockwise direction.

Figure 4.12: v velocity components ten steps downstream.(Swirl given by

— —
'Uo—,.—s,'wo—ﬁ-

The numerical solution predicts no appreciable change in centreline stream-
wise velocity or pressure over the 150mm range of interest to Sortex when a
range of swirl values is imposed. These results are illustrated in figures 4.13

and 4.14.
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Figure 4.13: Comparison of centreline velocity with and without swirl.
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Figure 4.14: Comparison of centreline pressure with and without swirl.

However, it can be seen by comparing figures 4.15 and 4.16 that in the case
of a unit-pulse initial profile imposed swirl works to contain and concentrate

the pressure profile.
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Figure 4.15: Pressure solutions for a square unit-pulse initial profile at z =

150mm.
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Figure 4.16: Pressure solutions for a square unit-pulse initial profile at z =
150mm, arbitrary swirl imposed.

4.10 Non-square rectangular jets

In order to deal with these cases the initial profile was modified so that

ug = 1/(1+(%)"+ (%)), where n is an even positive integer used to vary the

initial profiles between relatively smooth at small n and near-discontinuous

at large n, and a and b are integers greater than 1 used to control the width

and depth of the jet’s issuing nozzle. Consequently, to accommodate wider
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nozzles required modifications to the size of the finite-difference grid and
this in turn affected the y and z step sizes and the position of the far-field
boundaries. Overall results from the modified scheme were good; however it
was not possible to capture pressure data as close to the nozzle exit as in
the case of square nozzles. Swirl was introduced in a similar manner to that
outlined in the previous section but with r = ((£)? + (%)2)%. Figures 4.17

and 4.18 illustrate velocity and pressure results with and without swirl.

Streamwise velocity at x = 25mm, z = 0, with and without swirl.

N\

-

Figure 4.17: Streamwise velocity profiles with and without swirl at x =
25mm.
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Cross-sections through pressure at z = 0 for a 3x1mm nozzle.

0.0035
0.003 x = 25mm with swirl
S o T
0.0025 /// x = 25mm without swirl .\\\
\\
0.002
prannn . x = 50mm with swirl L _— \
x = 50mm without swirl \
0.0015 ; o X
/ ‘
v x = 75mm without swarl
0001 / / \\
/ x = 75mm with swirl
00005 | /

Figure 4.18: Pressure profiles with and without swirl.
4.11 Summary

In summary of Chapter 4, the governing equations of the steady three-
dimensional jet have been derived in terms of a vorticity-velocity formu-
lation and their numerical solution has been demonstrated using an iterative
scheme. The results from the numerical solution and small-distance analysis
of a smooth case were shown to agree closely. The pressure equation was
obtained and solved numerically, but a weakness at the upstream end was
highlighted. An attempt was made to overcome this weakness using small-
distance analysis and a cross-planar stream function formulation to obtain
starting values for the lateral velocity components and, although insightful, it
proved not to be successful in terms of obtaining pressure results at very small
z. It was demonstrated, however, that pressure data could be obtained rela-
tively close to the nozzle exit simply by employing smaller streamwise steps
in the numerical solution. Comparisons with physical pressure data sup-

plied by Sortex showed good agreement, subject to a scaling factor required
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possibly because the numerical solution was obtained from a square, rather
than rectangular, initial profile. Finally, swirl was introduced to the starting
conditions and its effect on the jet’s development was recorded. There was
no apparent loss of pressure or velocity over the entire range but the jet’s

pressure profile was concentrated along its axis.



Chapter 5

Three-Dimensional Unsteady

Jets

5.1 Introduction

In this chapter we consider time-dependent solutions and then make direct

comparisons with physical pressure data supplied by Sortex.

5.2 Governing equations

As in the last chapter, our starting point is the (unsteady) three-dimensional

incompressible continuity equation:

ou Ov Ow
'5;+5'y-+—a—z-—0 (5.1)

118
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and the Cartesian three-dimensional Navier-Stokes momentum equations 1.5,

1.6, 1.7, which after normalizing give:

Ju Ou Ou Bu_ Op 2,
at+ua +va—+ Pl 6x+v (5.2)

v v ov ap

FriC Ty 'va—y + 'w? ~3y + Vo, (5.3)
%ttﬁ +ugl:-+v%15- +wg—w gp + Viw, (5.4)

where V2 = (% +25).
Once again, as in Section 4.2, %”y— =—(2+%)and & =—(&+ z) can be

substituted into 5.3 and 5.4, respectively, and the vorticity term, { = E - %‘"

introduced so that

—6—v+u?—v—+v?ﬁ+w@— 3p+c9§ Ou
ot 0z Oy 0z Oy Oz Ozdy

(5.5)

and

dw o, 00, 0w O % O
ot oz 'y 8z 8z Oy 020z

(5.6)

Equations 5.5 and 5.6 can then be differentiated and combined to obtain the

following vorticity evolution equation

2 3( o oC ¢ Ow Bvau Ow Ou
VC- uax+va/-+ a-l-(ay+C Bxaz oy (5.7)



CHAPTER 5. THREE-DIMENSIONAL UNSTEADY JETS 120

Also, as in the steady case,

o 8%
2 —_—e— -
V=5 dxdy (58)
and
o  %u
2 N e — —
Viw = 0y 0z0z (59)
and since %;9- = 0 (see Section 4.2)
ou Ou Ou Oou
2, Jv  ouv ou.  Id¢
Vu-at+ua$+vay+waz. (5.10)

Thus the three-dimensional unsteady jet problem is now in a form which can

be solved numerically, subject to the following conditions:
u(oa Y, Z’O) = U,

u(z,y,2,0) =0, z >0,

u — 0 as |y| = oo and u — 0 as |z| = oo,

du Ou
%-_Oaty—Oandgz-—Oatz—O.

Our aim now, in essence, is to solve 5.10 for u, then 5.7 for ¢, followed by

5.8, 5.9 for v, w, along with some iteration, and so on.
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5.3 Numerical solution

As in the previous chapter the ¥ momentum equation, 5.10, can be solved
using Gauss-Jordan elimination and the v, w and { equations solved itera-
tively. However, the inclusion of time-dependence requires the ¥ momentum
equation, and then the v, w and { equations, to be solved for every z station

before proceeding to the next time value. The finite-difference equations are

Ui u,,, 2 'v.,,+

1
m (A )2) z+1,.1+(At Az (Ay)z (Az)2) i.J (2Ay (Ay)2)u¢_1,j+

(%uz - (A;z)z)um'ﬂ (w,,, iy + == (@is)” (5.11)

(Az )2)""3 T At T A

AyAz)? Vi1 + Vio1g Vi1 + Vij—
— ( Yy ) {( +1,7 1,]) ( J+1 J 1)_

% 2By + (B (Agp (Az)?
(C”sz_xzcu L) 4 (BT u'_zAxZ;u%—u)}, (5.12)

(A?,IAZ)2 Wit1,5 + Wi-1,5 Wy 41 + Wi
{( )+ (

2B 1 (B (B G T

Wi =

1 ,'— 31—1.9 Us 5 —Ui'._ -ﬁi‘ +ﬂ,"_
(C+112Ayc 1,.1)+( 1,7+1 ,leAxAz,ﬁl 3 1)}, (5_13)
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1 um 2 _ Ui -
At At ep B (g il“y)"*“*
((Ay)2 )Cz 1,5 + ((Az)g - %)Cﬁ,}}l + ((A )2 )Cz,g 1+

old —
3,7 (Ui,j Yit1,5 +‘U: i _ Wij41 wc,] 1)< 4
i,

‘At T ‘Az 2Ay | 2Ay 2z * 2A7
(Tig — Yig) Wige1 — ig-1) | (Wij — Wig)(Wir15 — Yi-1,5) »
2AzA2 + 2AzAy ’ (5.14)

where u, v, w and ( are values at the present time and z-station, u®¢ and ¢4
are values at the previous time but present z-station, &, T, @ and  are values
at the previous z-station but present time and the %, j subscripts indicate

positions in the y, 2z plane, respectively.

5.4 The pressure equation

To obtain an equation for pressure we follow the same procedure as in Section
4.6 and differentiate the governing v and w momentum equations 5.3, 5.4 with
respect to ¥ and z, respectively. The resulting equations are then added and

after consideration of the continuity equation give

(s By
V(p+a:c)—

Pu  Pu  Fu Py Gvdu Owdu _Owdv _vow ,0Ou,

~ 520t "2 "900y V920z 020y 9z 97 20y 0z 20y 9z T \s) -
(5.15)
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Differentiating the © momentum equation 5.2 with respect to z gives

0 Pu 0u u Pu Ovdu Owldu

272, _ _ _ _ _ " z= 2
52" U= "ozot Yoz "owdy  VOs0z Owdy Oz 0z ( )
(5.16)
which is substituted into 5.15 to obtain
Bvau owdu Owdv OJOvdow
—— Y\2 haind hbadhd s dhad
Vip= 2{( Dt 5 oy ooz T oy0: oy05 (5.17)

Hence, the pressure equation for the three-dimensional unsteady jet is pre-
cisely the same as that obtained for the steady three-dimensional jet. We
can therefore use the iterative finite-difference scheme of Section 4.6 for this

case also.

5.5 Physical pressure data

In Section 4.1 we noted that the physical pressure data used for compar-
isons in this study are subject to fluctuations, which should be taken into
account. We consider here three of the data-sets used, so that similarities

and differences can be noted.

Figure 5.1 illustrates the maximum pressure values recorded at 3 millisec-
onds, 4 milliseconds, 5 milliseconds and 6 milliseconds after the ejector valve
opens at points separated by 2.5mm intervals travelling downstream, in three
different trials. The plots at 3 milliseconds show good agreement. However,
all the other plots show appreciable differences in the pressure recordings at

different distances along the flow. These differences could be the result of the
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Sortex physical data from three separate samples

Data-set A
——— Data-setB
—— Data-set C 0.8 |5

07

08

X{mm) 05

X {mm)
25
5ms
. p
4
o 04t N\
35 \
0.36 \
Ao\
3 \\ o \_\ \\
N \ N
= 026 e
X{mm) X(mm)
25 . ] 75 10 ~ 25 S 75 125 15
4ms 6ms

Figure 5.1: Maximum pressure values recorded at 2.5mm intervals along the
flow for three distinct samples, at four different times.

complex upstream flow characteristics reported by Smith in [20] and Wilson
in [22]. Alternatively, they could possibly be due to the apparatus used to
obtain the data or the way this apparatus was set up. For instance, the dis-
tance between the points at which measurements were taken in each plane
was crudely set at lmm. Decreasing this gap size might aid consistency. It
should be noted also that the maximum pressure values were generally found
not to lie on the central streamwise axis but were consistently located in a
particular region off-centre, as can be seen in figure 5.2. This observation
also supports Smith’s results in [20] regarding misalignment of the emerging

jets.
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Sortex physical pressure data plotted att = 3ms

2 4 6 8 10 2 4 6 8 10
2 5mm downstream 10mm downstream

10

2 4 -] 8 10

12 .5mm downstream

z 4 -] 8 10

7 5mm downstream 15mm downstream

Figure 5.2: Contour plots of pressure data recorded at 3 milliseconds on

10mm x 10mm (y,z) planes. Highest values are white, lowest values are
black.
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5.6 Comparing numerical solutions with phys-
ical test data

The numerical scheme used to solve the unsteady case presently incorporates
a symmetric growth and decay of the initial jet profile over time. For true
comparisons to be made this should be replaced with data obtained from
physical trials. However, for the present study, a simplified initial condi-
tion proves sufficient for some basic comparisons to be made. We note also
that, due to the numerical solution’s sensitivity to parameter changes, which

require further investigation, the initial profile used is square rather than

rectangular.
4 o
B
\\
35 N
e Maximum pressure at 3ms according to physical test
‘\ (Rectangular nozzle)
\\
g
3 A
\\\\\
~
R
\\\‘
- 25} e
4 N
S 25
2 R
§ ’ g
g e
15 T :
————
1
05 =

o 25 5 75 10 125
Distance downstream in mm

Figure 5.3: Maximum pressure values at t = 3ms, recorded at 2.5mm intervals
along the flow .
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Figure 5.3 illustrates the maximum pressures recorded during the physical
trials of a jet issuing from a 3x1mm rectangular nozzle at t = 3ms (since
these results were most consistent) and the results produced by the numerical
solution for a jet issuing from a square nozzle. Similarities are apparent in
the overall trend although the numerical solution describes a much smoother

result.

5.7 Summary

In summary of Chapter 5, the governing equations of the unsteady three-
dimensional jet have been derived and solved in a manner analogous to that of
the preceding chapter. Pressure solutions have been obtained for a jet issuing
from a square nozzle. These have been compared with physical results for a
jet issuing from a rectangular nozzle and have been shown to agree relatively
closely, subject to a scaling factor. The numerical solution has been found
to be sensitive to parameter changes when considering the truly rectangular

case however, and further investigation regarding this is required.



Chapter 6

Modelling Interference for
Multiple Three-Dimensional

Jets (Steady or Unsteady)

6.1 Introduction

In section 4.5 small-distance analysis was used to validate the numerical
scheme used to solve the three-dimensional steady case. Here we take the
same expansions for u, v, w and ¢ and substitute them into equations 4.12,
4.13, 4.14 and 4.15. Then, considering the irrotational case { = 0, so that

continuity then gives

Fu
2 —_—
Vi = ppr: (6.1)
and
8%u
V2 —_
Y= " ozaz’ (62)

128
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we can investigate further what happens to the lateral velocity components
as the initial ug profile becomes less smooth and, hence, gain a greater un-
derstanding of the interference associated with jets in close proximity to each
other. For this investigation we let ug = 1/(1 + y" + 2") + ¢, where n is a
positive even integer and c is a positive real number. Results for a variety of
initial profiles, ranging from very smooth through to near-discontinuous, are

plotted in figure 6.1.
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Figure 6.1: Effect on crossflow as u, approaches discontinuous case.

It is evident from figure 6.1 that the crossflow becomes ever stronger as the



CHAPTER 6. INTERFERENCE IN THREE-DIMENSIONAL JETS 130

edge layer thins and the incident flow approaches the discontinuous case.
This is entirely consistent with the earlier two-dimensional study at small z,
which predicts that a pure ‘top-hat’ profile generates normal velocities v of
order z7 that are much larger than the order one normal velocities in the
smooth case. Therefore the smooth lateral vélocity components, v, have to

grow as the non-smooth top-hat case is approached.

6.2 Potential flow solution of the steady rect-
angular discontinuous case

Following discussions with Professors F. T. Smith, S. N. Timoshin and S.
N. Brown it became apparent that the problem with the lateral velocity
components could be treated using potential flow theory. This is because as
the top-hat situation is approached the streamwise velocity component u is
constant mostly, both within the boundary, C say, of the top-hat and outside

of it. Therefore from 6.1, 6.2 we have
Vi =Viw=0

there; hence we can employ the potential function ¢ and stream function 1,
satisfying
V¢ = V) =0.

The problem therefore reduces to solving Laplace’s equation subject to a

jump condition which must be satisfied on the jet’s core-edge (the boundary
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C) given by

x ’U,”
¢t — b7 =up / —2dn, (6.3)
Uy

where the primes represent differentiation with respect to n and which is
obtained from the earlier small-distance analysis (see in chapter 2), and which

drives the whole solution.
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Figure 6.2: Potential flow problem specification, shown for a rectangular
nozzle. C is the core-edge, on which the jump condition must be satisfied.

Initially in solving the present system it was assumed that the velocity com-
ponents v and w should be set as zero at large distances from the origin,
implying that %f and %‘f should be set as zero on the far-field y and z bound-
aries, respectively. However, solving Laplace’s equation numerically subject

to the above conditions produced the plots in figure 6.3, suggesting that the
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far-field boundary conditions needed further investigation. Therefore the ax-
isymmetric case was analysed since at sufficiently large distances from the

centre the rectangular jet tends towards this.

b
1.76 'f_\. y=1/5
1.69 A y=110
1.65 | —— A ¥ =1/15
1.62 T A Y =120
140 f—"" ] T A Y= 140

0 : E :
-6 -1 01 6 d

Figure 6.3: ¢ vs y (z=0) at various Ay, oo fixed at +6.

6.3 The axisymmetric case and far-field con-
ditions
In the axisymmetric case the continuity equation is given by

rug + (rv), =0 (6.4)

and the u-momentum equation is given by



CHAPTER 6. INTERFERENCE IN THREE-DIMENSIONAL JETS 133
1
Wiz + VUy = Upyp + U (6.5)

Hence, expanding u = up(r) + zuy(r) + ... and v = vo(r) + zv,(r) + ... gives

1
u; + ;(T’Uo)r =0 (66)
and
1
Ugliy + Vougp = Uy + ;u{,. (6.7)
From this we obtain
-1,
v = uo/(u +r uo) - 6.8)

Considering a specific initial profile uy that depends on r, such as

a

u0=1+rn7

where a is a constant and n is greater than zero, suggests vp ~ —2. Hence ¢
grows logarithmically as r — o0o. A suitably revised boundary condition on ¢
can be implemented by considering the points on the far-field boundaries and

their immediate neighbours, and doing so leads to the following expression

ln(r3/r1) lIl(Tz/'l‘l)

(rs/r2) 2~ Tn(re/ra) ™ (69)

¢ =
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where ¢; represents the point on the outer boundary and ¢, ¢3 are the

successive points just inside the boundary.

L Ay=115
P el AN =120
L AY=140

Figure 6.4: ¢ vsy(z = 0) for various Ay, oo fixed at +6, far-field conditions
given by ¢ = —nlnr + k.

With the far-field boundary condition replaced by 6.9 the results for ¢ are
now as in figure 6.4. It is evident, and significant, that the gradients of
the curves plotted in 6.4 vary very little as the finite-difference grid used is
refined, a property which is found to yield consistency in the results for the

velocity component v.
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6.3.1 Comparison of cross-flow prediction with numer-

ical solution of smooth profiles

Returning to equations 6.6 and 6.7 for the axisymmetric case and considering
the ‘top-hat’ scenario (n >> 1) implies that up = K say, within the core and
it follows that vy = O there. Therefore, on the core-boundary, let r = 1 + €7,

where € << 1, and ug = @(#). From this it follows that
v
_(%)IC—IHZ — C—ZH",

which can be rearranged to give

»

Vg = —

o | 2

—dr. 6.10

ﬁ2 T ( )
The appearance of the ¢! factor in 6.10 is clearly a contributory factor to the
growth in the crossflow solutions of the smooth case, and this is exaggerated
by a factor of n present in the integral 6.10, as illustrated in figure 6.1. Since
this analysis is local to the boundary, C, this work is no longer confined to the

axisymmetric case and applies equally to any shape of nozzle cross-section,

including the rectangular ones of most significance in this study. Therefore,
in order to compare results from the smooth case with those produced by
the potential flow theory it is appropriate to normalize the smooth-profile
results, dividing them by a factor of n. The normalized results for a selection
of n values are shown in figure 6.5, in which it can be seen that results seem

to clearly converge to a limiting value and can now be compared directly with
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the crossflow prediction produced by the potential flow solution as follows.

1015 BaRe

0462

e S ————

Figure 6.5: Normalised crossflow results for smooth cases.

Figure 6.6 shows fairly conclusively that for large n the smooth result tends
towards the discontinuous result obtained by the potential flow theory. We
contend, therefore, that the potential flow solution to the jet problem is
reliable, but also note that the inherent jump discontinuity makes it especially
useful for the study of several or many neighbouring jets in relatively close
proximity. This is because, unlike most other potential flow solutions, when
considering more than one jet the jump condition on the core-edge makes it
possible to add on linearly to the solution for a single jet. In the sections that
follow we will use this unusual feature to demonstrate steady and unsteady

results for multiple rectangular and round jets.
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Figure 6.6: Comparison of crossflow prediction from smooth result at large
n with potential flow solution.

6.4 Multiple in-line steady rectangular jets

As it stands, the numerical solution developed for the preceding section can
only really be used to investigate the cross-flow characteristics of single steady
rectangular jets of varying cross-section. This is because the solution domain
must be fixed prior to any calculation. However, each individual jet in any
array of jets under consideration will have a different solution domain, which
must overlap those of all the others in the array. In this section we will discuss
modifications to the numerical solution that enable the study of interference

between several or many similar neighbouring jets.
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Figure 6.7: Comparison of v against r and asymptote ¢/r at § = 7 (square
nozzle).

Once the nozzle cross-section has been specified, data pertaining to a single
jet can be obtained and this, along with the nozzle parameters, can be used
to extrapolate the velocity data necessary to position this single jet into a
specific location within a larger array of similar jets. The data (for a single
jet) is extrapolated by assuming, as we have done previously, that at large
distances from the jet’s centre the velocity profile will tend towards that of
the axisymmetric case. Hence, in the far-field, v ~ ¢/r for some constant ¢
and radius r, at the point being considered. Figures 6.7 and 6.8 illustrate that

the numerical potential-flow solution does indeed converge to the asymptotic
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axisymmetric solution when considering the solution along the axial arms

(i.e. when § = nn/2, n € Z).

1033

numerical solution

0964

0.183

4 58

Figure 6.8: Comparison of v against r and asymptote c/r at 6§ = 7 (rectan-
gular nozzle).

However, comparing the values of v along radial arms which do not lie on the
coordinate axes, such as those at # = (2n+1)7 /4 for instance, with the above
asymptote, highlights the importance of # dependence in the asymptote. For
instance, figure 6.9 illustrates one such comparison for a 1 x 1 square nozzle.
In this case, when # = 7 and r = 5.3, v = 0.27. However, at # = 37/4 and

r = 5.3, v = 0.18, suggesting that v(r = 5.3,0 = 37/4) = 2v(r =5.3,0 = ).
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Figure 6.9: Comparison of v against 7 and asymptote ¢/r at # = 3w /4 (square
nozzle).

Since the v-velocity components are positive in the second and third quad-
rants but negative in the first and fourth quadrants, the properties of the
cosine function can be exploited to introduce a correcting factor. Measuring
6 in a clockwise manner as illustrated in figure 6.10 we take v = é/r, where
¢ = ccos(af) say, so that in the above example § = 0 implies ¢ = v-r = 1.431.

Hence a = % arccos(2) ~ 1.071.

Generally, a will have to be calculated for each different nozzle cross-section,
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Figure 6.10: v dependence on #, # measured clockwise.

but this is quite straightforward. However, the computer program developed
has been designed so that 4.9 < r,,,, < 7.8 along # = 0 in order to accom-
modate many different nozzle cross-sections, ranging from 0.2mm x 0.2mm
to 6mm x 6mm. Therefore it is more convenient to consider the value of v
at rmes along the radial arm at @ = 7/8; this ensures that the cell to be
considered actually lies within the array holding the v values. For example,
if a nozzle of cross-section 6mm x 1mm were to be considered, then the ar-
ray holding the v values would have dimension 157 x 107 and each quadrant
would contain 78 x 53 cells. The cells hold values for v at intervals of 0.1mm,

thus 7,4, = 7.8. However, the cell at r = 7.8 along the radial arm at 8 = /4
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would have to be positioned 55 cells left of, and 55 cells up from, the array’s

central cell, but this cell is not contained within the array.

asymptote

numencal solution
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Figure 6.11: Comparison of v against r and asymptote at 8§ = 37 /4 with 6
correction.

Using the simple # correction factor outlined above produced very good re-
sults. Figure 6.11 and the contour plots, produced for a variety of nozzle
cross-sections, illustrated in figure 6.12 demonstrate clearly how well the ex-
trapolated data fits with the numerical solutions. Note, however, that the
extrapolated (multiple) jet solution only produces enough data to demon-
strate each jet’s interactions with other jets being considered, and to show
its position within the array. Hence, since in figure 6.12 only single jets are

being depicted, the solution is automatically truncated.
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0 20 40 60 80 100

Potential flow solution for a single 1x1mm Solution with extrapolated data placed
nozzle (restricted solution domain). at position 3 of a larger array.

0 20 40 B0 80 100 120 0 20 40 60 80 100 120

Potential ﬂow solution for a sing[e 3x1mm Solution with extrapolated data placed
nozzle {restricted solution domain). at position 3 of a larger array.

Figure 6.12: Contour plots of (restricted solution domain) potential flow
solution for 1x1mm and 3x1mm nozzles and solutions with extrapolated data
placed in larger arrays.
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As stated above, the multiple in-line steady rectangular jet solution extrap-
olates the numerical data for a single jet sufficiently to place each jet into
its relevant position within the larger array of jets being considered. This
positioning also allows for varying the gap between neighbouring jets in in-
crements of 0.1mm. We illustrate next varioﬁs results prbduced for 3x1mm
nozzles with 1mm gaps between neighbours, within an array of three nozzles.
It should be noted that we have chosen this restricted solution domain only
for clarity and note that the maximum number of jets that can be consid-
ered is restricted only by the maximum array size allowed by the machine
and programming language being used. Hence the total number of nozzles
that can be considered is in excess of the maximum number required to be

considered in the Sortex case.

The graph on the top-right of figure 6.13 illustrates that only enough data is
extrapolated to position the jet appropriately. Since no jets beyond position
3 are being considered the data is truncated at an appropriate point just
beyond the core region of the jet in position 3, but is extrapolated far enough
in front of nozzle 3 to illustrate its overall position in the array. The plot and
graph presented in the middle of figure 6.13 illustrate steady jets in positions
1 and 3 of the array being fired. The graph clearly shows how the crossflow
from each jet affects the other. Note, particularly, how the flow within each
jet’s core increases under the influence of the other jet’s crossflow. The final
graph, in which the nozzles neighbour each other, separated only by a 1mm
gap, shows a similar but more pronounced result, and demonstrates that the

flow within each jet’s core region increases in the direction of its neighbour.
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Numerical value of v along axis (z = 0)
for single jet in position 3.
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Contour plot of v for 3x1mm jet in
position 3 of larger array.

Numerical value of v along axis (z = 0)
for jets in positions 1 and 3.

o 20 40 60 80 100

Contour plot of v for 3x1mm jets in
positions 1 and 3 (1mm gap between
neighbouring nozzles).
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Numerical value of v along axis (z = 0)
for jets in positions 2 and 3.

0 20 40 60 20 100 120

Contour plots of v for 3x1mm jets in positions
2 and 3 (1mm gap between nozzles).

Figure 6.13: Crossflow solutions for steady jets issuing from 3x1mm nozzles.
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In the core of a single square jet there is virtually zero crossflow, initially.
However, in rectangular jets the initial core crossflow, though small, increases
marginally with increased jet width and is directed towards the jet’s centre.
As the number of jets in the array increases each jet competes to suck fluid
from its neighbours, in order to sustainAitsel'f. Irrespective of jet cross-section,
the crossflow is increasingly directed towards the centremost jet in the array
with increased number of jets. However, the crosslow within the core of the
centremost jet is now directed away from its centre as it is pulled toward
neighbouring jets. The growth in crossflow is most notable at the array

extremes.

6.5 In-parallel steady round jets

In accordance with section 6.3.1 we take vp within the core-region of the single
axisymmetric jet to be zero, and satisfy the jump condition on the core-edge
boundary C by letting vy be equal to some arbitrary constant there. We
note, however, that the value of the arbitrary constant k, say, is necessarily
negative at all points on C, since this reflects the fact that the radial velocity
v is in the direction towards the jet’s centre at this early stage of the jet’s
development because the jet is entraining fluid from the surrounding medium.
We then impose v ~ k/r, where r represents the radial distance from the
jet’s centre, for all values of r outside C. The solution for a single jet with
k = —10 imposed on C is illustrated in figure 6.14. As in the rectangular
case, the solution for multiple in-line jets is produced by adding on linearly

the solution for the single jet, subject to the axial displacement. Examples
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are illustrated in figure 6.15 with k¥ = —10 imposed on C.

6.6 Comparing steady rectangular and round
jet solutions

Of particular interest to the industrial application are comparisons of cross-
flow/interference properties of jets issuing from nozzles of rectangular cross-
section with those of jets issuing from nozzles of different rectangular cross-
sections and also those issuing from round nozzles. Since we have already
briefly discussed similarities and differences between jets issuing from square
nozzles and those issuing from rectangular nozzles, we take the time here to
illustrate the similarities and differences between the crossflow characteristics

of jets issuing from square nozzles and jets issuing from round nozzles.

Figure 6.16 (top) compares the crossflow solution obtained for a single square
jet of width 2mm with that of a single round jet of diameter 2mm, both
positioned at the far right of their respective arrays. It should be noted that,
as in the preceding sections, a Cartesian coordinate system is used to plot the
square jet, hence positive v values indicate flow from left to right and negative
v values indicate flow from right to left of the graph. The graph of the round
jet illustrates the radial velocity component. Therefore negative v values
indicate flow towards r = 0. In figure 6.16, the direction of the crossflow
is indicated by RED arrows for the square jet and GREEN arrows for the
round jet. Figure 6.16 (bottom) compares the crossflow solutions obtained

for five square jets and five round jets, each with the above dimensions and
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Contour plot of radial velocity for a single round jet.
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Figure 6.14: Solution for a single round jet with £ = —10.
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Figure 6.15: Multiple steady round jet examples. £ = —10.
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Figure 6.16: (Top) single square jet and single round jet crossflow solutions.
(Bottom) Comparison of crossflow solutions for five neighbouring square jets
and five neighbouring round jets.
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separated by 0.5mm gaps. Reference to figures 6.15 and 6.13 confirms that
crossflow increases with increased number of jets. Figure 6.16 shows that, in
general, the crossflow is in both cases directed towards the centremost jet,
and appears to flow into the centremost round jet but out of the centremost
square jet. However, edge-effects are a marginally more dorhina.nt feature in
the square jet case and, although still influential, appear to be attenuated in

the round jet case.

Broadly, and for either type of nozzle cross-section, it is clear that the in-
terference between the jets would tend to draw all the jet flows together.
Moreover, the different directions of the central arrows in the figure means
that in the square case the interference would tend to concentrate the central

jet, whereas in the round case the effect is to diffuse the central jet.

6.7 Unsteady round jets

In this section we extend the multiple round jet potential-flow-like solution
of Section 6.5 to include time-dependence. The method of approach, once
again, is to consider each jet in turn adding its contribution to the whole
solution, subject to its axial displacement. However, unlike in the steady
case, several solutions exist for each jet, each pertaining to a single moment
in time. The solutions for each individual jet at each time step are obtained
by generating the appropriate core-edge values and then solving for the rest
of that jet’s flow field (driven by those core-edge values). Then, as each time

slot is arrived at, the relevant contribution for each jet is added to the total for
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all the jets firing. The core-edge values, k; say, for each jet at each particular
time, ¢, are determined by considering the time-lag of the jet’s firing after

the first jet to fire, and can be represented simply by an expression such as
ki=(t— L;)(1 - (t — L)) H, (6.11)

subject to L; < t < 1+ L;. We realize that strictly the k; should be governed
via the particular prescribed vy and ug; dependencies through an extension
of the integral in 6.10, but here we model the additional unsteady effects
by means of 6.11. Here H is a negative constant (since the jet is sucking
fluid from its surrounding) and L; represents the time-lag between the ith
jet and the first jet. Note that if L; > t we let k; = 0, otherwise 6.11 would
be meaningless in the sense that it would give a non-zero core-edge value k;,
and this would lead to a non-zero contribution from jet ¢ which is not yet

firing.

The crossflow solution for each jet v; at time ¢ is then given by
w(t) = 22, (6.12)

where r; is the radial distance from that jet’s centre. The entire solution at

time ¢ is then given by

V)= ul), (6.13)

=1

where N is the number of jets being considered.

The computer program written for this section has been restricted to produce
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Figure 6.17: Crossflow predictions for two unsteady jets of 2mm diameter,
separated by 0.5mm gap and lag = 0.5, at various times over complete solu-
tion cycle.
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solutions for a maximum of sixty-four in-parallel jets, since this represents
the maximum number of nozzles currently used in Sortex sorting machines.
Sample output is plotted in figure 6.17 for just two jets firing, however plots
for larger numbers of jets with various time-lags are presented in Appendix A.
In the example illustrated by figure 6.17, the first jet to fire is active between
t = 0 and t = 1.0, growing and decaying evenly between its maximum at
t = 0.5. The time-lag between the firing of the jets is 0.5, hence the second

jet is active between ¢t = 0.5 and ¢ = 1.5.

Fig 6.17 (a), (b) show the crossflow increasing as fluid is sucked from the
environs towards jet 1 up to its maximum value at ¢ = 0.5, at which point
jet 2 fires but its profile is not captured until the next time frame, ¢t = 0.6
(not shown). Note, however, that at this stage there is no crossflow within
the core of jet 1. Figure 6.17 (c) illustrates the crossflow solution just as jet
2 fires and again two time steps into its development. At this point crossflow
appears in the cores of both jets as they compete to steal fluid from each
other. This also causes the level of crossflow into jet 1 to be maintained and
that of jet 2 to be driven up considerably. Two steps further on in time,
figure 6.17 (d), we see jet 1 subsiding. The lower crossflow values indicate
that it is now struggling to maintain itself, and the increased slope in its
core-region indicates that it is now giving-up more of its fluid to jet 2, which
is approaching its peak crossflow. By ¢ = 1.1, the black graph in figure 6.17
(e), which is one time step after jet 1 has died, jet 2 has passed its maximum
crossflow and, although still entraining fluid from the surrounding air, no

longer exhibits crossflow in its core.
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6.8 Unsteady rectangular jets

In this section we combine the ideas of the previous sections of this chapter
to produce results which will enable us to investigate crossflow characteristics
of unsteady jets issuing from nozzles of various rectangular cross-sections. In
particular we will consider jets issuing from nozzles of 3x1mm cross-section,
since these are typical of the dimensions used in food-sorting machines. Re-
sults for jets issuing from 4x1mm and 6xlmm rectangular nozzles will be
presented in Appendix B. Consideration will also be given to the effects of

varying the size of the gaps between nozzles.

The results are obtained by considering the solution for a single steady rect-
angular jet produced by the program developed for Section 6.2. This is then
extrapolated using the method of Section 6.4 so that it can be placed ap-
propriately in the complete solution array. The solution for each active jet
is multiplied by the appropriate time-dependent factor given by 6.11 of the

previous section and added to the solutions for all other currently active jets.

Figure 6.18 illustrates the development of a single 2x1mm unsteady rectan-
gular jet subject to 6.11 vs}ith H given by the solution to the steady jet of
like diménsions, up to its maximum crossflow value at ¢t = 0.5. According
to the present model the crossflow then decays at the same rate. Therefore
solutions between ¢t = 0.5 and ¢ = 1.0 would overlay those in figure 6.18 and

they are not presented.



CHAPTER 6. INTERFERENCE IN THREE-DIMENSIONAL JETS 156

v (crossflow)

t=05
— =05
X5 —— t=03
—_— 1t=0.2
01 | = '£=Oj///

01

Al Y/

Growth of crossflow over time up to peak flow at 0.5t for /
2x1mm rectangular jet in position 5 of array.

Figure 6.18: Example of a single unsteady rectangular jet developing subject
to condition 6.11.

6.8.1 Effects of unsteady firing

In figure 6.19 we present an example of several jets issuing from 3x1mm
rectangular nozzles. In this example two neighbouring jets, in positions 2
and 3 of a larger array of currently inactive jets, fire subject to a time-lag
of 0.3 and separated by a gap of 0.5mm. Clearly up until ¢ = 0.3 jet 2 (the
first jet to fire) is not influenced by any other jet and its crossflow response
is entirely as expected; fluid is entrained evenly from the ambient fluid. The

core crossflow increases slightly and this is directed towards the jet’s centre.

Beyond ¢ = 0.3 up to t = 0.5 the crossflow associated with jet 2 continues
to rise until it reaches its maximum value at ¢ = 0.5. However, because jet

3 is now active (being 2 steps into its cycle) the crossflow within the core
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Figure 6.19: Two jets issuing from 3x1mm nozzles subject to a time-lag of
0.3 and separated by 0.5mm gaps .
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of jet 2 increases and is sucked towards the other jet. Jet 3, meanwhile,
also experiences greater crossflow under the influence of jet 2, with its fluid
being sucked towards jet 2. The additional fluid that jet 2 receives from the
younger jet 3 enables it to maintain its pull on fluid from the environs. More
and more of the fluid is sucked towards jet 3 which, beyond ¢ = 0.5, begins to
dominate, losing less and less fluid to jet 2. While both jets are active more
fluid is drawn into each of them from the external fluid than is given up to
the neighbouring jet. Hence there is an overall increase in core flow and a
general growth or diffusion of these jets. Eventually jet 3 is effectively firing
in isolation, drawing ambient fluid in from the environs. Its core crossflow
level subsides but the little that remains is directed towards its centre. We
report that a similar response is encountered when the time-lag between the
jets firing is increased. We next consider the effects of different gap sizes

between nozzle exits.

6.8.2 Inter-nozzle spacing effects

Due to machining constraints, the current minimum gap separating nozzle
exits in Sortex sorting machines is 0.5mm. Therefore, at this stage, we con-
sider gaps of increased size but note that the model can produce solutions
subject to smaller gaps. Indeed, results for smaller gaps have been demon-

strated in earlier sections.

In figure 6.19 (top) at t = 0.5 (pink graph) the first jet to fire (jet 2) has
reached its maximum crossflow and the second jet to fire (jet 3) is two steps

into its firing cycle. At this point the fluid within the gap between the nozzles
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Figure 6.20: Two unsteady 3x1mm jets separated by a lmm gap and time-lag
of 0.3. The ringed areas highlight the ‘inter-jet region’..
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is flowing towards the more dominant jet (jet 2) with increasing velocity as
it approaches. This evacuation of fluid away from jet 3 causes the crossflow
within the core of jet 3 to increase and to be pulled towards jet 2. By t = 0.7
(black graph) jet 2 is struggling to maintain its dominance and the flow of
fluid in the gap between the nozzles has reversed direction. It is now being
drawn back towards jet 3, which at this stage is marginally more dominant.
The crossflow in jet 2 is driven up and dragged towards jet 3, causing jet 2

to continue to entrain fluid from the outer regions of its environs.

Figure 6.20 illustrates two neighbouring jets firing subject to a time-lag of
0.3 but with an ‘inter-nozzle’ gap of 1lmm. The jet development pattern
associated with the previous example can still be seen and the behaviour of
the fluid in the inter-nozzle gap resembles that of the earlier example, too.
However, with the increased gap, the graph at t = 0.5 is telling a slightly
different story. It seems to suggest that there is virtually zero flow out of jet
3 in the direction of jet 2. This suggests that any fluid drawn into jet 2 from
this region must be from fluid already residing in the gap from earlier times.
At t = 0.7, unlike the previous case, jet 2, which is now in decline, still draws
fluid from the inter-nozzle region in an attempt to preserve itself. However
it is soon unable to continue to fight the influence of jet 3 and begins to lose

fluid to jet 3 at an increasing rate.



CHAPTER 6. INTERFERENCE IN THREE-DIMENSIONAL JETS 161
6.9 Summary

In summary of the present Chapter 6, a small-distance analysis of the three-
dimensional steady irrotational case gave a clear insight into the nature of
interference aspects associated with closely neighbouring jets. The results
predicted massive growth in crossflow as the initial uq profile was made to ap-
proach that described by Smith in [20] and supported earlier small-distance
analysis of a similar two-dimensional case. The somewhat unusual initial
profiles associated with the jets being studied also meant that potential flow
theory could be invoked in a rather novel way. An inherent jump discon-
tinuity associated with each individual jet allowed the solutions for single
jets to be added linearly, subject to axial displacement, to obtain the cross-
flow solution for several or many jets in an in-parallel array. A method for
extrapolating the single jet solution to accommodate the axial displacement
necessary for placing each jet into a larger array of similar jets was developed
and shown to yield very good results. The axisymmetric case was studied

and compared with the rectangular case.

A simple time-dependent model for the axisymmetric case was also devel-

oped and then extended to the rectangular case so that a program could be
written to solve for up to sixty four independent rectangular jets issuing from
nozzles of various cross-section and separated by various gaps. We note that,
although the current time-dependent model provides a very good insight,

empirical data should be used to obtain 6.11.

Other case comparisons and parameter changes might now be made, and
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clearly the present approach is able to handle any array configuration in
principle. We believe however that the main point is made already concerning
the construction of solutions for jet arrays: this can be done simply by the

linear addition of individual jet solutions.



Chapter 7

Target Impact Properties

This short chapter is concerned with the properties of the target impact,
i.e. the effects of the air jet flow on a representative falling grain of rice, as
depicted in figure 7.1. In reality this is a complex three-dimensional unsteady
flow problem and it is very difficult to determine the flow accurately. Our
interest here is more in modelling the typical overall effects, and in a simple

manner.

A typical rice grain of mass M is assumed to be free-falling with constant

downward terminal velocity u, so that
Mg = a;u’. (7.1)

This balances the gravity (¢) and air-resistance forces (i.e. drag), the latter
being taken to be proportional to the square of the speed, with a; being a

constant. The impact of an air jet on the grain’s motion is considered next.
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Ejector Nozzle

3mm
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u

u(av) = 20nv/s at 200kPa
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max 150mm

<

Figure 7.1: Above: typical Sortex ejector nozzles. Below: Jet impact with
rice (particle).
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7.1 Impact by a horizontal jet

Suppose firstly that the grain of rice enters and passes through a relatively
thin horizontal jet of air of thickness h and relatively high air speed W.
Assume also that the effect is an impulsive one such that the vertical velocity
component of the grain remains u but the horizontal momentum produced
is Mv, where v is the horizontal velocity component of the grain of rice as
a result of the jet impact, i.e. immediately after impact. Then momentum

and impulsive-force considerations imply that
a,W2Dt = My (7.2)

is such a model.

Here the left-hand side comes from the resistive force evaluated as if instan-
taneous steady flow around the rice grain is set up and acts over the short
time Dt(= h/u) in which the rice grain remains in the jet. The right-hand
side change of momentum balances this. Eliminating a;/M between 7.1 and

7.2 leaves the relation
v ghW?

u3

(7.3)

which serves to determine the horizontal speed provoked by impact, and

hence the slope v/u.

The argument strictly holds for W >> v and W >> u. If W and v are

comparable then W2 in 7.2 and 7.3 might reasonably be replaced by (W —v)?,
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giving
a;(W —v)2Dt = My (7.4)
and hence
gh(W — v)?
LTSS -

but we will keep to the strict formulae of 7.2 and 7.3.

In his current PhD research project Mr Andrew Ellis gives the downward
terminal velocity of the rice grains at the end of a chute (prior to any im-
pact) in Sortex series 90000 sorting machines as between 5 and 10m/s; Neve
[35] places the jet speed in the target area, W, at between 7 and 16m/s.
Therefore, taking g = 9.8m/s? and h = 1mm we plot, in figure 7.2, v against
W for an appropriate range of grain downward velocity values u. We note
that the linear relationship between v and A in 7.3 means that for jets of

greater thickness v is easily found.

The results appear to make good physical sense. For instance, fast moving
grains get deflected much less by a given jet, whereas 7.3 pre&icts that a
thicker jet provides more deflection. However, it seems that in the case of
Sortex jets the angle of deflection is very small even in the case of a jet
with velocity W = 20m/s and thickness = 5mm hitting a grain which has
terminal downward velocity 5m/s. In that case the angle of deflection is
still only around 1.8 degrees from vertical. Reducing the grain’s downward
velocity to 4m/s more than doubles the deflection angle to approximately
4.5 degrees. Similarly, increasing the jet velocity to 30m/s also more than

doubles the angle of deflection, and combining both of these changes gives



CHAPTER 7. TARGET IMPACT PROPERTIES 167

an angle of almost 10 degrees from vertical. We note also that the gravity
force acting on the effective projectile after jet impact should not alter u
significantly, until the ground is reached, because the grain is at terminal

vertical speed already and so tends to remain at constant downward velocity.

— u=4
v .
N
~— =8
U=l
00613
00392
00181
0.0075- o jooorr
S e (LGN

16 20

Figure 7.2: Horizontal velocity of grain v m/s plotted against jet speed on
impact W m/s.

7.2 Impact by an inclined jet

We now extend the arguments of the previous section to inclined impact by

a jet of speed W but at an angle a to the horizontal. The result for the slope
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F of the grain trajectory, measured from the downward vertical direction,

just after impact, is
_ ghW?
"~ (ut - ghW2tan(a))’

(7.6)

The general result 7.6 for the dependence of F on a general angle o agrees
with 7.3 when « is zero, and supports figure 7.2 in such cases, as required.
Again, strictly the approximation W >> u is applied. The result 7.6 indi-

cates a critical angle a.; of the jet, given by

u4

tan(@gyit) = —— 7.7
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Figure 7.3: Angle of deflection from vertical downward direction against
angle of jet inclination a (scales are in radians).
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at which the grain would be driven horizontally by the jet impact, according
to the model. In the case of a rice grain falling with a terminal velocity of
5m/s into an air-jet of thickness 5mm and speed 20m/s, which is perhaps
typical of this set-up, 7.7 yields an . value of 88.2 degrees. Figure 7.3
plots the resultant angle of the grain’s deflection from the vertical downward
direction against jet inclination angles between 0 and 1.54 radians (88.2 de-

grees).

7.3 Comparison with physical study

A study of particle deflection properties has been carried out by Sortex for
such particulates as frozen peas and sweetcorn. The results from physi-
cal tests that were conducted are contained in [45], [46], [47] and references
therein. Figure 7.4 illustrates a typical set-up used to investigate the angle of
deflection of frozen peas, which can be summarized as follows. The particles
(peas) enter the sorting area via a chute angled at sixty degrees above hori-
zontal and which terminates 230mm above the sorting area (measured along
the plane of the chute). Measurements indicate that the particles fall from
the chute with a velocity of 4m/s and are following a path at a decreased
angle by the time they enter the target area, i.e. their paths are then more
vertical. We assume here that this angle might be as much as ten degrees
below that of the plane of the chute. The ejector nozzle is positioned 40mm
away from the plane of the chute angled at 6 degrees below horizontal and
hence inclined at 14 degrees above the perpendicular to the particulate flow.

The chamber pressure of the air feeding the jet is between 80 and 100psi,
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chute

~
>3 Sortex anticipated angle of
deflection.

Observed angle of deflection

Figure 7.4: Schematic of a typical particle deflection test set-up.

giving an estimated jet exit velocity of between 50 and 70m/s. According to
the Sortex model the predicted angle of deflection (blue path in figure 7.4)
is perpendicular to the direction of particulate flow. However, the observed
angle of deflection (following green path in figure 7.4) is approximately half
the predicted angle of deflection, measured from the downward direction of

the plane of the particulate flow.

Based on this configuration and assuming a jet thickness of 5mm our model
predicts that the angle of deflection would be between 29 and 51 degrees
from the vertical downward direction. This compares well with the observed
angle of deflection given by the Sortex physical set-up and illustrated by the

green path in Figure 7.4.
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7.4 Summary

Clearly, any benefit from inclining the jet for the particular case of rice grains
being impacted by jets with exit velocities of around 20m/s only comes from
very steep angles, but of course these might result in a detrimental effect on
the flow of particles following behind. However, if increased angle of particle
deflection becomes a more important design consideration then increasing the
jet velocity and/or thickness or slowing the particulate flow will all result in
a reduced a.; value and hence greater angle of deflection, as seen in the case
of frozen peas discussed above. For instance, when considering rice grains, a
30 degree deflection can be obtained from a 60 degree jet inclination if the jet
speed is 30m/s and the terminal velocity of the grains is 3.5m/s. In general,
improvements can be made by increasing the jet velocity, inclining the nozzle

angle or slowing the flow of particles, or any combination of these.



Chapter 8

Summary

This work is mainly concerned with three distinct aspects of slender jets of
air issuing from rectangular nozzles. The first aspect is a study of the devel-
opment and flow characteristics of narrow jets over a relatively short range.
The emphasis here is on producing reasonably accurate numerical velocity
and pressure solutions for both steady and unsteady cases. This work is
contained within Chapters 2, 4 and 5. In Chapters 3 and 6, the second as-
pect considers the interference associated with several or many narrow jets
closely neighbouring each other in an in-parallel array. An unusual feature
associated wifh the solution of a single steady jet makes it possible to use
potential-flow theory to solve the multiple unsteady jet case. Comparisons
between jets issuing from nozzles of various different cross-sections with var-
ious inter-nozzle gaps and time-delays between firing are then possible. Fi-
nally, in Chapter 7, jet impact properties on target items are considered. A
simple particle deflection model is presented and a comparison with physical

data is made. The combined results from this research have clear industrial
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application, particularly with respect to food-sorting performance, and it is
intended that they be used to help guide design considerations prior to the

manufacture of future food-sorting machines.

The thesis can also be considered to have three distinct parts. Part One -
Chapters 2 and 3 - investigates two-dimensional jets, employing and then ex-
tending previously documented work. The content of these chapters provides
the underpinning framework for much of the rest of the thesis. In particular,
Chapter 2 uses a classical similarity solution as a far-downstream asymptote
to help validate a numerical scheme for the solution of the two-dimensional
steady jet. This numerical scheme is, in later chapters, extended to solve the
three-dimensional unsteady case. Modifications to the basic two-dimensional
scheme to enable solution of the non-symmetric case are explored and small-
distance and small-time analyses are conducted. The small-distance analysis
is shown to complement the numerical solutions developing from ‘smooth’
initial profiles, such as those described by Neve [34], [35]. However, that par-
ticular analysis is found to be less appropriate for the analysis of jets found
in the true industrial setting, as described by Smith [19], [20]. In this case,
theory predicts the development of a Blasius type free-shear layer, which can-
not be resolved by the above leading-order analysis. An alternative solution
method is outlined however, and this might pose an interesting exercise in fu-
ture study. The small-time analysis describes how we might expect the jet’s
profile to develop and how viscous forces are essential to contain the jet’s
lateral spread. Chapter 3 applies the numerical and analytical techniques

of the previous chapter to conduct a two-dimensional study of interference
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associated with multiple in-line jets. The methods employed are analogous
to those used by Smith [9] to investigate interference aspects of multiple in-
line two-dimensional wakes. The results confirm that interference is a major

concern driven largely by edge effects, which should be studied further.

Part two - Chapters 4, 5 and 6 - is concerned with three-dimensional jets.
Chapter 4 extends the two-dimensional numerical solution of Chapter 2 to
include an iterative scheme for the solution of the three-dimensional steady
jet problem, which is posed in what is essentially a vorticity-velocity formu-
lation. Several tests are conducted to confirm the validity and robustness of
the numerical scheme and a small-distance analysis, subject to the same lim-
itations experienced in Chapter 2, is also performed. The pressure equation
is derived and solved iteratively, but this is found to be subject to poor res-
olution in the very small-z range. This problem is overcome easily, however,

by employing smaller streamwise steps.

In [20] and [22] it is shown that the growth in swirl throughout the fluid (air)
feeding the jets in food-sorting machines can be quite considerable, due to
valve properties at the upstream end and because of bends and imperfections
in the piping carrying the fluid. Therefore, in Chapter 4, swirl is induced
upon the initial jet profile with a range of values. The results predict no ap-
preciable change in centreline jet velocity or pressure. However, the pressure
profile does appear to become concentrated around the central streamwise
axis. This should be regarded as a positive effect. The numerical solution

scheme is extended further in Chapter 5 to include time-dependence. Essen-
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tially, the solution to the unsteady problem is obtained by solving the steady
jet problem at all points within the entire flow field for each particular time
step and, obviously, this is subject to a time-dependent profile at the nozzle.
For the present study a simple relationship which gives a symmetrical growth
and decay in the initial prdﬁle over time is used. This is sufficient to allow
ad hoc comparisons with physical results but should be replaced with data
obtained empirically if more physically accurate results are required. The so-
lution should also account for non-symmetric (misaligned) initial profiles (as
predicted by Smith [20]) by considering a Prandtl transposition, as outlined

in the two-dimensional case in Chapter 2.

Chapter 6 addresses the major issue of interference between three-dimensional
steady and unsteady in-parallel jets. Small-z analysis of the ‘smooth’ irrota-
tional case as it is transformed by means of a certain parameter to become
less smooth, and ultimately near-discontinuous (so that it resembles the type
of profiles of most interest in this study) predicts massive growth in cross-
flow as the discontinuous ‘top-hat’ case is approached. This suggests that
in such a case the streamwise velocity component u is constant mostly both
within the jet’s core and outside of it. Consequently, potential flow theory
is applicable but is subject to an unusual feature. On the jet’s core-edge
boundary there exists a jump-discontinuity. This drives the whole solution
and allows single jet solutions to be added linearly to construct solutions to
the many jet problem, subject to axial displacement. The result is shown
to hold for all nozzle cross-sections. For the present, we consider only rect-

angular and round nozzles. However, we suggest that elliptical and oval
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cross-sections should be investigated as these, intuitively, occupy the middle-
ground between the cases studied here and resemble the target items (rice

grains) more closely.

Finally, Chapter 7 is concerned with the effect of the air jet flow on a rep-
resentative falling grain of rice. We construct a simple model for the overall
effects and first consider what happens when a particle (grain of rice) falls
with terminal velocity into a thin horizontal jet of air. Taking estimated
values for the grain’s velocity from current research by Mr Andrew Ellis, at
UCL, and characteristics of the jet flow from Neve [34], [35], we show that,
according to this simplified model, the angle of deflection is actually very
small. However, improvements in terms of increased angle of deflection are
shown to be possible by: (1) increasing the jet exit velocity; (2) slowing the

particulate flow; (3) increasing the jet thickness or (4) any combination of

1) - (3).

Impact by an inclined jet is also considered. Surprisingly, for the typical
jet parameters described by Neve and particle velocities predicted by Ellis,
the model predicts that the issuing nozzle must be inclined at a considerable
angle for any appreciable benefit in terms of deflective angle to be realized.
We suggest that such an angle of inclination would most probably lead to an
adverse effect on the particulate in terms of slowing and disrupting the flow.
However, a lesser angle of inclination can have a positive effect on deflection
angle without disrupting the flow too greatly if allied with the considerations

given above.
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We conclude by comparing the model’s prediction of deflection angle against
results obtained from a physical test conducted by Sortex Ltd. In this test
it was found that the particles (in this case frozen peas) exit the machine’s
feed-chute, which is inclined at sixty degrees, a short distance above the in-
spection/sorting area. By the time the ‘particlés arrive in the sorting area
they are following a more vertical path. Hence, if the ejector nozzle is po-
sitioned perpendicular to the plane of the chute (as it was in the original
Sortex test) it is actually declined to the plane of the flow of particles. This
results in a smaller angle of deflection, as predicted by the model and ob-
served in the experiment. The model’s prediction of deflection resulting from
an inclined nozzle compares favourably with that observed in the physical
test. We contend, therefore, that the model has a clear potential benefit

when considering new ejector set-ups.
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Appendix A

Further Illustrative Examples
of Interference Between

Multiple In-line Round Jets

We present here, with no discussion, example crossflow velocity plots ob-
tained using the potential flow solution of Chapter 6, for multiple in-parallel

steady and unsteady round jets.
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Figure A.1: Eight round jets with firing order: 4, 1, 2, 8, 3, 5, 7, 6 and time
lags: 0.1, 0.2, 0.4, 0.6, 0.7, 0.9, 1.2, respectively.
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Two tound jets at positions 2 and 3 of 5.
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Figure A.2: (Top) two neighbouring steady jets. (Bottom) two steady jets,
separated by an intermediate nozzle.
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Three round jets at positions 1, 2 and 4 of 5.
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Figure A.3: (Top) three steady jets at positions 1, 2 and 4. (Bottom) three
steady jets at positions 1, 2 and 5.
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Four round jets at positions 1, 2, 3 and 4 of 5.
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Figure A.4: (Top) four steady jets at positions 1, 2, 3 and 4. (Bottom) four
steady jets at positions 1, 2, 4 and 5.



Appendix B

Further Illustrative Examples
of Interference Between
Multiple In-line Rectangular

Jets

We present here various time-dependent cross-flow solutions for jets issuing
from 4x1mm and 6x1mm rectangular nozzles. These are typical nozzle cross-
sections used in some Sortex machines, but have not been illustrated in

Chapter 6.
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Figure B.1: 4x1mm jets separated by 0.5mm gaps. Jets 3, 2, 4 fired at t =
0,t = 0.2 and t = 0.5, respectively (illustration up to t = 0.6).
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Figure B.2: 4x1mm jets separated by 0.5mm gaps. Jets 3, 2, 4 fired at t =
0, t = 0.2 and t = 0.5, respectively (illustration from t = 0.6 to t = 1.3).



APPENDIX B. INTERFERENCE BETWEEN RECTANGULAR JETS187

v (crossflow)
03|

— t=0.1

02

04 B

y t=04
03 Fl t=05

d

1 t=086
02

50 | L ann i 150 200

-0.1 : [, ' ;‘.‘ ;
: |14/ ’/‘—h\’\/
L i X

-02 - Vt' |

[
03}

Figure B.3: 6x1mm jets separated by 0.5mm gaps. Jets 1, 2, 3 fired at t =
0.t = 0.1 and t = 0.3. respectivelv (illustration up to t = 0.6).
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Figure B.4: 6x1mm jets separated by 0.5mm gaps. Jets 1, 2, 3 fired at t =
0, t = 0.1 and t = 0.3, respectively (illustration from t = 0.6 to t = 1.2).
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