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Abstract

Mycobacterium tuberculosis is the leading cause of death from a 

single infectious agent. The varying efficacy of the BCG vaccine 

and the emergence of multi-drug resistant strains of M. 

tuberculosis have made it essential that novel drug and vaccine 

targets are identified. The antitermination mechanism, probably 

used in transcriptional regulation of the single rm  operon, is one 

such target. Antitermination is a mechanism by which RNA 

polymerase is able to transcribe through both Rho-dependent and 

-independent terminators. Antitermination in association with 

Nus (N-utilising) factors was initially discovered within the X- 

phage where it regulates the transcription of early and late genes. 

Subsequent investigations in Escherichia coli demonstrated 

antitermination and the Nus proteins were involved in 

transcriptional regulation of the seven rm  operons present in the 

genome.

The presence of Nus homologs and Nut sequences (the assembly 

sites for the antitermination complex) within the M. tuberculosis 

genome indicate that antitermination may occur during rrn 

operon transcription. The aim of this project has thus been an 

understanding of the characteristics, functions and interactions of 

the Nus proteins within the M. tuberculosis antitermination 

complex.



A definite, yet likely to be weak, interaction between NusB and 

NusE is shown. The stoichiometry of this interaction (NusB 

monomer or dimer bound to NusE monomer) was investigated 

and results may indicate a heterodimer. The dissociation 

equilibrium constant for the NusB dimer was estimated to be 8 x 

10'8 M. The NusG protein was characterised and shown to be 

monomeric in solution with a highly elongated shape with 

approximately 20 % a-helical secondary structure. A C-terminal 

domain, containing the KOW rRNA binding motif, was identified 

by limited proteolysis. Lastly the Rho termination factor was over- 

expressed and purified and interactions with NusA and NusG 

investigated. No interactions have yet been detected.
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Introduction



1.1. Mycobacterium tuberculosis -  history and biology.

1.1.1. A brief history of Mycobacterium tuberculosis.

Mycobacterium tuberculosis, the causative agent of ‘Tuberculosis’ has been present in 

the human population for thousands of years and is now one of the leading causes of 

death in the 20th Century, claiming close to 3 million lives every year (Chan and Iseman, 

2002; www.statenj.us/health/cd/tbhistry.htm).

Tuberculosis was first documented around 460 B.C. (then known as phthisis or 

consumption) where it was acknowledged as the most widespread disease of the time. It 

was however only in the seventeenth century that disease symptoms and progression 

were first accurately identified and described. Sylvius, in 1679, showed the consistent 

presence of tubercles in the lungs which subsequently went on to cause cavities and 

abscesses. It was only in 1720 that minute microorganisms may cause “consumption” 

was first hypothesised by the physician, Benjamin Martin. He was also the first to 

propose mechanisms of transmission and made important epidemiological 

recommendations that played a significant role in slowing down “consumption” 

infection. The first dedicated means of treating consumption was provided by Hermann 

Brehmer (himself a cured sufferer) in the form of the sanatorium. The sanatoria were 

always found in clean mountainous regions with an abundance of fresh air and patients 

were well provided with the necessary nutrients.

t V iIt was during the mid 19 century that major insight into the disease was made and rapid 

progression subsequently followed. Jean-Antoine Villimen was the first to show cross 

species transmission, from human to cattle and cattle to rabbits. However it was Robert

http://www.statenj.us/health/cd/tbhistry.htm


Koch that, arguably, made the most important discovery in the fight against 

consumption. He developed a stain that allowed him to see Mycobacterium tuberculosis, 

and it was only then that the true cause of consumption was recognized. Unfortunately 

this discovery had little effect on treatment of the sick and the sanatoria were still the 

primary means of treatment. In addition artificial pneumothorax (lung collapse) was 

shown to increase the chances of cure and was introduced as therapy against 

consumption.

Research on M. tuberculosis continued and an important breakthrough was made by 

Calmettte and Guerin when they passaged the cattle form of tuberculosis through 

specific culture media resulting in a decrease in virulence of the bacterium. This was the 

basis of the BCG vaccine against the human form of tuberculosis and is still in extensive 

use today.

During the Second World War a fundamental breakthrough needed to fully combat the 

disease was made. Chemotherapy became the customary means of antibacterial 

treatment using antibiotics such as sulfonamide and penicillin. Both of these molecules 

were however ineffective against M. tuberculosis and it was only in 1943, with the 

isolation of streptomycin from Streptomyces griseus that chemotherapy against M. 

tuberculosis could be carried out with maximum efficiency and minimal toxicity to the 

host. It was, in fact, applied to the first human TB patient in 1944, who made a dramatic 

and full recovery. Additional anti-TB drugs were developed soon afterwards and were 

important in preventing streptomycin-resistant strains from increasing in number. 

Important anti-TB drugs developed during this era include p-aminosalycilic acid (1949), 

isoniazid (1952), pyrazinamide (1954), cycloserine (1955), ethambutol (1962) and



rifampin (1963). All of these antibiotics are used in combination today to treat and 

prevent the emergence of M. tuberculosis drug resistant strains 

(htttp://www.statenj.us/health/cd/tbhistry.htm).

1.1.2. Tuberculosis drugs, treatment and relapse.

Drug treatment has, for the last forty years, relied on a combination of drugs with a 

treatment period lasting from six months to two years, primarily to prevent antibiotic 

resistance from emerging. Multiple drug therapy was first proposed in 1962 by the 

Medical Research Council. Streptomycin, para-aminosalycilic acid (PAS) and isoniazid 

given over a period of two years were recommended. This treatment could also be given 

on an out-patient basis freeing up hospital beds. The subsequent use and discovery of 

rifampicin shortened the therapy period to 9 months and subsequent use of pyrazinamide 

shortened the treatment course even further (Dormandy, 1999).

1.1.3. The modern tuberculosis epidemic.

The use of these drugs resulted in a dramatic decrease in the number of cases in 

developed countries after the Second World War. During the 1960’s there was 

widespread belief that tuberculosis had been conquered (it was even predicted that 

tuberculosis could be eradicated in the USA by 2005 (Dormandy, 1999). Unfortunately 

this opinion was short lived as the drop in incidence began to level out (or even 

increase) in the mid 1980’s. In the USA, the increase in mortality increased by less then 

1% in the 1980’s but in Eastern Europe and South America the rise was approximately 

5%, in South Eastern Asia by about 200% -  300% and in sub-Saharan Africa the rise in 

mortality was close to 500%. Once again tuberculosis was the leading cause of death
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amongst infectious organisms resulting in 7% of all deaths and 26% of avoidable deaths 

(Dormandy, 1999).

The major reason for this dramatic increase in incidence was the HTV pandemic. Latent 

tuberculosis infection frequently develops into active tuberculosis as a result of HTV 

infection and the subsequent deterioration in the host immune system. HIV also 

increases susceptibility to primary tuberculosis infection and facilitates progression of 

the disease (Fatkenheuer et al., 1999). Tuberculosis accounts for 11% of AIDS deaths 

worldwide (www.who.int). It has been suggested that HTV positive individuals were 40 

times more likely to contract tuberculosis than healthy individuals and 20 times more 

likely to die from it (Dormandy, 1999). In a similar fashion tuberculosis stimulates the 

release of cytokines and decreases the number of CD4 cells thereby speeding up the 

progression of HIV infection to AIDS (Fatkenheuer et a/., 1999).

The close relation between HTV and tuberculosis did not mean that the rise in incidence 

only occurred in HIV positive individuals. Poorly managed tuberculosis treatment and 

prevention programmes have led to a marked increase in drug resistant and multiple 

drug resistant strains. There are currently strains of M. tuberculosis that are resistant to 

at least one of the antibiotics in every country surveyed by the WHO and strains 

resistant to all of the main antibiotics used to treat tuberculosis have been documented 

(Chan and Iseman, 2002). These multiple drug resistant strains have emerged as a result 

of patients who have failed to comply with a drug treatment regime, doctors failing to 

prescribe the correct drugs or an unreliable drug supply (www.who.int). Lastly increased 

numbers and movement of immigrants into developed countries is an important factor 

that has led to a rise in incidence in these countries. In the USA approximately 40% of

http://www.who.int
http://www.who.int


tuberculosis cases are in foreign bom individuals. Crowded refugee camps are also 

prime sites for the easy and quick spread of the bacillus.

1.1.4. The mycobacterial family.

The two most medically important members of this family are Mycobacterium leprae 

(the causative agent of leprosy, discovered in 1868) and Mycobacterium tuberculosis. 

The genus Mycobacterium has numerous members isolated from all comers of the 

environment. Ultimately they can be divided into those that are pathogenic to humans 

and those that are not, as well as fast growers and slow growers (see Table 1).
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Table 1: Simplified classification of the Mycobacteria (Kanai, 1991)

Pathogenic Non Pathogenic

£ou
O
££
53

M. tuberculosis M. microti
M. leprae M. lepraemurium
M. bovis Af. gordonae
M. africanum M. farcinogens
M. kansasii Af. gastri
M. marinum M. nonchromogenicum
M. simiae M. terrae
M. asiaticum M. triviale
M. scrofulaceum Af. paratuberculosis
M. szulgai
M. avium
M. intracellulare
M. xenopi
M. malmoense
M. haemophilum
M. ulcerans

£
2
o
ec

fa

Af. fortuitum
M. chelonei subsp. Chelonei 
M. chelonei subsp absessus

Af. smegmatis 
Af. phlei 
M. chitae 
M. flavescens 
M. parafofortuitum 
M. thermoresistible 
M. aurum 
M. duvalli 
M. neoaurum 
M. gilvum 
M. vaccae 
M. komossense 
M. senegalense
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1.1.5. Mycobacterium tuberculosis.

The M. tuberculosis complex of organisms (including M  tuberculosis, M bovis, M. 

bovis BCG, M africanum and M  microti) are likely to have originated from a M 

tuberculosis like human pathogen (Brosch et al., 2002) as opposed to the originally 

believed bovine (Af. />ovzs) origins (Cole et al., 1998).

Figure 1 : Electron micrograph of the rod shaped Mycobacterium 
tuberculosis (http://www.wadsworth.org/databank/mycotubr.htm).

M. tuberculosis is a straight or slightly curved rod between 1 and 4 pm in length and 0.3 

to 0.6 pm in width (see Figure 1). The bacterium is non-spore forming and non-motile. 

They are Gram-positive and identified based on their acid-fast properties (they are not 

decolourised by acids after staining). Optimum growth temperature is 37°C with an 

optimum growth pH of 6.4 to 7.0. Doubling time is in the region of 14 to 20 hours in 

culture. M. tuberculosis requires aerobic conditions for growth although it is capable of 

adapting to microaerophilic conditions. In general, mycobacterial genomes contain a 

high guanine/cytosine content of between 64.0 and 66.4 % (Kanai, 1991).
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http://www.wadsworth.org/databank/mycotubr.htm


The entire genome of M. tuberculosis H37Rv has now been sequenced (Cole et al.., 

1998). It is 4400 kilobases (kb) in length and contains 3294 Open Reading Frames 

(ORF’s). Approximately 70 % of the genes have been identified with the remaining 

coding for proteins of unknown function. The H37Rv genome contains sixteen copies of 

the insertion sequence IS6110 and six copies of the more stable IS 1081 insertion 

sequence (Cole et al., 1998). The genome also contains all those genes needed for 

essential amino-acid, vitamin and enzyme co-factor expression. However, some of these 

pathways may differ from other bacteria (Cole et al., 1998). Thirteen putative sigma 

factors have been identified along with one hundred additional proteins involved in 

transcriptional regulation. This is not surprising given the range of environments in 

which the organism survives. The genome also encodes numerous drug modifying 

enzymes such as p-lactamases, aminoglycoside acetyl transferases and drug efflux 

systems. These along with the thick cell wall give M. tuberculosis a natural resistance to 

a wide range of antibiotics (Cole et al., 1998).

The cell wall of M. tuberculosis is unusual in that it contains an additional layer above 

the peptidoglycan cell wall. It is rich in unusual lipids, glycolipids and carbohydrates. 

The organism also carries out unique biosynthetic pathways to generate the components 

of the cell wall, such as mycolic acid, mycocerosic acid, phenolthiocerol, 

lipoarabinomannan and arabinogalactan (Cole et a l, 1998). The thick hydrophobic 

nature allows the wall to act as a highly efficient barrier. This explains the bacilli’s 

resistance to a number of antimicrobial agents but is also vital since it protects the 

bacteria from oxidative stresses experienced during intracellular infection (Brennan and 

Nikiado, 1995; www.uct.ac.za/depts/mmi). It may also be responsible for the hosts’

http://www.uct.ac.za/depts/mmi


inflammatory reactions and may play a role in pathogenicity (Cole et al., 1998). The 

thick cell wall is also important during extracellular transmission of the organism as it 

prevents drying and allows the bacteria to survive for long periods of time in the 

environment (Mims et a l , 1993). Because of the thick, impenetrable cell wall, porins 

found in the membrane are the principal routes for entry of hydrophilic molecules into 

the cell.

1.2. Transcription : initiation, elongation, termination.

1.2.1. DNA, RNA and proteins.

DNA found in most viruses and all prokaryotes and eukaryotes contains all the 

information (in the form of genes) needed for the synthesis of the proteins and enzymes 

required for the survival, replication and ultimately death of each cell in that organism. 

The RNA formed during transcription may then have any one of a number of vital roles. 

The RNA may be used in translation. It may have structural roles and may be used as 

part of the ribosome itself, or form transfer RNA (tRNA). Alternatively RNA may be 

used as the genome of viruses or may be involved in regulation itself. The roles 

transcription and translation play in the cell means they are the most effective steps at 

which protein and enzyme synthesis can be regulated and thus control the rate at which 

the organism ultimately grows and divides.

1.3. Prokaryotic RNA polymerase and transcription.

DNA-dependent RNA polymerase (RNAP) is the enzyme used for the conversion of 

DNA into a complementary RNA sequence; all RNAP’s carry out the following 

reaction:
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Mg2+

NTP + (NMP), ^  (NMP)n +1 + PPi

RNA polymerases are multi-subunit enzymes with a variety of functions, including 

promoter binding, DNA melting and RNA chain initiation, elongation and termination.

The E. coli RNA polymerase has been well characterised and the core RNAP has been 

shown to be made up of three types of protein subunit, 2 subunits of alpha (a  - 36.5 kDa 

each), a single beta subunit (P - 150.6 kDa) and a single beta prime subunit (P' - 155.2 

kDa). Core RNAP is capable of elongation and termination. A fifth subunit, omega (0) - 

10.5 kDa) has been shown to be part of the core enzyme but it is non essential for 

viability and core enzyme containing the remaining four subunits is capable of in vitro 

transcription (Gentry et a l , 1991). Studies have however shown that deletion of co 

results in no change in phenotype but that co may be responsible for RNAP stabilisation 

(Mukheijee and Chatteiji, 1997). The holoenzyme contains an additional subunit, a 70 

(70.2 kDa) and is capable of specific promoter binding and transcription initiation 

(Opalka et al., 2000). Sigma70 binds very tightly to the core RNAP with a dissociation 

equilibrium constant of approximately 10'9 M (Gill et al., 1991).

The transcription cycle involves binding, initiation, elongation and termination 

(reviewed in Record et al., 1996 and Richardson and Greenblat, 1996) . The RNAP 

binds specific DNA sequences known as promoters found upstream of the 5' end of 

RNA coding regions (operons). The promoter sequence determines how tightly the 

RNAP binds, the frequency of initiation and subsequent elongation. The promoter 

region may also contain binding sites for transcriptional regulatory proteins. The RNAP 

binds to approximately 60 nucleotides covering the region -40 (40 nucleotides upstream
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of the transcription start site) to +20 (20 nucleotides downstream of the transcription 

start site). The sequences of nucleotides found at the -35 and -10 regions are specific 

recognition sites for the RNAP and are found in the majority of prokaryotic promoters. 

RNAP is capable of non-specific binding to DNA but is then thought to slide along the 

DNA until it forms a stable complex with the promoter regions, most likely at the -35 

and -10 regions simultaneously. This is termed a “closed promoter complex.”

Transcription initiation then commences with the unwinding or “melting” of 11 residues 

of the double stranded DNA in the -9  to + 2 region. This is termed an “open promoter 

complex.” Initiation then continues rapidly with the first nucleoside-5'-triphosphate 

(usually ATP or GTP) binding to RNAP. Binding of the NTP to RNAP is determined by 

the DNA complementary base found at the +1 position of the unwound DNA. A second 

NTP (determined by the nucleotide found at position +2 on the template strand of the 

unwound DNA) then binds RNAP and a phosphodiester bond between the first and 

second NTPs is formed by nucleophillic attack of the 3'-hydroxyl group of the first 

nucleotide on the 5'-a-phosphorous of the second nucleotide.

Elongation then continues with sequential binding of complementary NTPs to the 

RNAP, phosphodiester bond formation and translocation of the RNAP in the 5' direction 

of the template strand. Once an RNA strand 10 nucleotides in length has been produced 

the a 70 subunit dissociates from the holoenzyme leaving the core enzyme to elongate 

and eventually terminate RNA synthesis. This allows the a 70 subunit to bind free core 

enzyme at additional promoter sites. Messenger RNA chains elongate at approximately



40 nucleotides per second whereas rRNA is transcribed at a rate of >80 nucleotides per 

second.

Termination requires a sequence of DNA that stops the RNAP and releases both the 

RNA transcript and the enzyme. Two types of terminators may be found at the end of 

RNA transcripts. Both usually contain a stem-loop structure at the 3' end of the 

transcript but they differ in that one has six uridine residues immediately downstream of 

the stem-loop structure whereas the second type of terminator does not. Weak 

interactions between the 3' RNA uridine residues and adenine residues on the DNA 

template are sufficient to cause destabilisation of the interaction between RNAP and the 

DNA and to allow the release of the RNAP and the RNA transcript (Yamell and 

Roberts, 1999). The terminator lacking the uridine residues relies on protein terminator 

factors such as Rho. Rho-dependent terminators are frequently C-rich, unstructured and 

show little sequence conservation (Henkin, 1996).

Interestingly, in a small number of cases, prokaryotic holo-enzymes make use of 

additional a  factors. These additional a  factors bind to the core polymerase allowing it 

to recognise different promoters. For example, the a 32 subunit allows for the expression 

of those genes involved in heat-shock reactions (Yura et a l , 1993), a 54 is required for 

nitrogen metabolism (Kustu et al., 1991), a F is required for the regulation of sporulation 

in Bacillus subtilis (Haldenwang, 1995) and those enzymes needed for chemotaxis and 

a s is needed during carbon starvation (Loewen and Hengge-Aronis, 1994).

The recently solved crystal structure of the Thermus aquaticus RNAP shows a “crab 

claw” shaped molecule with a 27 A wide channel capable of binding double stranded
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DNA. An Mg2+ ion found on the channel back wall is responsible for catalytic activity. 

The ion is held in place by an amino acid motif conserved through all prokaryotic and 

eukaryotic RNAPs (Zhang et al., 1999). One arm of RNAP is the P subunit and the 

other arm is essentially the P' subunit. The overall size of the enzyme is 150 A long, 115 

A tall and 110 A wide. See Figure 2.

The sites for double-stranded DNA, hybrid DNA/RNA and single stranded RNA 

binding have all been identified. Double-stranded DNA-binding occurs about nine base- 

pairs from the DNA fork and shows strong non-ionic interactions with the RNAP. 

Seven-base pairs are involved in this interaction and make contacts with a zinc-finger 

found at the N-terminal of the P' subunit. The hybrid DNA/RNA binding site is found 

close to the Mg2+ catalytic site and is characterised by weak ionic interactions (Nudler et 

al., 1996). A 43 amino-acid region in the C-terminal domain of the P subunit is 

responsible for this interaction. The single stranded RNA binding site is directly 

adjacent to the hybrid binding site and covers the RNA region -8  to -14 (Nudler et al., 

1996; Zhang et al., 1999). See Figure 2.
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Figure 2 : Prokaryote RNA polymerase structure and 

elongation complex.

(A) The crystal structure of T. aquaticus core RNAP is 

shown. The structure was detected at a resolution of 3.3 A. 

The location of the Mg2+, found at the catalytic centre, is 

labelled as is the Zn2+ atom found in the p' subunit. Subunits 

are coloured a l - Red, a ll - Blue, p - Green and P' - Pink 

(Steiner et al., 1999). (B) The diagram shows the RNA 

polymerase transcription elongation mechanism. Single­

stranded RNA, DNA/RNA hybrid and double-stranded DNA 

binding sites are all indicated. Complexed proteins are not 

shown. The direction of elongation is indicated by the arrow. 

Adapted from Nudler, 1999.
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1.4. Regulation of prokaryotic gene expression.

“The level of transcription for any particular gene usually results from a complex series 

of control elements organized into a hierarchy that coordinates the metabolic activities 

of the cell” (Zubay, 1993).

Most of our understanding of gene regulation comes from important work carried out in 

the E. coli and B. subtilis catabolic, amino-acid and pyrimidine biosynthetic operons. 

They have shown the extraordinary variety of mechanisms used to simply increase or 

decrease levels of transcription, as well as sense levels of molecules within cells and 

adjust the level of transcription of the relevant operons accordingly. A few prokaryotic 

regulatory systems are detailed below.

1.4.1. Regulation of transcription initiation.

I.4.I.I. Activation and repression : The lac operon.

The first and most important site for transcription control is the point of 

initiation. The first mechanism for regulation is simply found in the sequence of 

nucleotides in the promoter region of any given gene. The closer the -35 and -10 

sequences are to the consensus -35 and -10 sequences, the more rapidly and stably RNA 

polymerase binds. Negative supercoiling is an additional means of DNA structural 

regulation. Negative supercoiling facilitates the unwinding and melting of the DNA 

double helix allowing for the formation of the open-promoter-complex.

Activator and repressor proteins are probably the most effective means of regulation. 

Activators increase the affinity of the RNA polymerase for the promoter whereas 

repressors have the opposing effect. One of the best studied systems for activation and
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repression is the lac operon in E. coli. The operon allows E. coli to carry out diauxic 

growth where glucose is utilized first followed by disaccharides such as lactose and also 

allows the bacteria to use alternative carbon sources in the absence of glucose. The lac 

operon contains the genes for p-galactosidase, a permease and thiogalactaside 

transacetylase, all required for p-galactoside hydrolysis. Expression of this operon is 

stimulated by the apoactivator Catabolite Activator Protein (CAP) which, in the 

presence of the co-activator cyclic-AMP (cAMP), greatly enhances the affinity of the 

RNA polymerase for the promoter. cAMP levels increase in the absence of glucose and 

consequently induce a structural change in CAP. This results in CAP binding tightly to 

the region upstream of the promoter, thus attracting the polymerase to the promoter 

binding site. cAMP-CAP activation increases the transcription rate by 20 to 50 fold over 

transcription with RNA polymerase alone. cAMP-CAP activation is also found in the 

galactose operon, required for galactose catabolism, and the arabinose operon, needed 

for arabinose utilization (Busby and Ebright, 1999; Ebright, 1993; Record et al., 1996; 

Zubay 1993).

Repression (inhibition of transcription) in the lac operon is carried out by a repressor 

found immediately upstream of the operon. The repressor binding site (found in the -8 to 

+28 region) shows dyad symmetry thus allowing the repressor (consisting of four 

identical subunits) to bind at two symmetrical sites. The repressor binding site overlaps 

with the RNA polymerase binding site thus preventing transcription initiation (Friedman 

et al., 1995; Nick and Gilbert, 1985).

A third means of regulation occurs in the presence of an inducer. These are molecules 

that bind to repressor and prevent it from binding to the promoter region, allowing
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transcription of the lac operon to occur (Riggs et a l , 1970). Inducers of the lac operon 

all contain an intact, unsubstituted galactosidic residue such as allolactose and the 

gratuitous inducer isopropyl-P-D-thiogalactoside (IPTG).

1.4.1.2. Initiation regulation in amino-acid biosynthesis : the trp operon.

A second system in which transcription is regulated at the level of initiation is in 

the biosynthesis of amino-acids. Those genes involved in tryptophan biosynthesis are 

best understood as a result of the work done by Charles Yanofsky and co-workers. L- 

tryptophan binds an aporepressor, encoded by the trpR gene, resulting in a structural 

change, generating repressor which is able to bind to the promoter region. This prevents 

polymerase binding and hence the genes required for tryptophan synthesis are not 

expressed. Again the repressor binding site shows dyad symmetry with the repressor 

subunits showing similar symmetry (Gunsalus and Yanofsky, 1980; Otwinowski et al., 

1988; Squires et a l, 1975,).

1.4.2. Regulation of transcription termination and terminator read- 
through.

Transcriptional initiation does not always mean automatic synthesis of the RNA 

encoded by that particular gene. Even after transcription initiation there are still 

opportunities for transcription to be regulated. Many genes and operons contain intrinsic 

terminators within regions upstream of translation start sites meaning that transcription 

can be effectively stopped before functional regions of a gene are transcribed. 

Transcription termination and antitermination (the ability of RNA polymerase to read 

through a terminator) provide additional mechanisms for transcriptional regulation.

32



I.4.2.I. Regulation through leader peptide translation : the E. coli trp
operon.

The tryptophan operon does not show positive regulation in the same way that 

the catabolic genes show cAMP-CAP upregulation. The trp operon does however 

exploit another ingenious mechanism to ensure tryptophan synthesis in times of 

starvation (See Figure 3). The leader region (approximately 200 residues downstream of 

the transcription start site) of the operon contains a translatable region containing two 

adjacent tryptophan codons. In addition, the mRNA is capable of forming three possible 

secondary stem-loop structures, one of which is an intrinsic terminator.

The first structure (the 1:2 stem-loop) results in pausing of the polymerase. This allows 

a ribosome to initiate translation of the leader region, thereby coupling transcription and 

translation. The binding of the ribosome disrupts the pause signal and transcription 

resumes with the ribosome following shortly behind it. In conditions of excess 

tryptophan the cell contains high concentrations of trp-charged tRNAs. This means that 

the ribosome translates easily through the leader region containing the two tandem trp 

codons, preventing the formation of the 2:3 stem-loop. This in turn allows the formation 

of the 3:4 stem-loop structure, a typical transcription terminator. In this way the mRNA- 

polymerase complex is disrupted and transcription is terminated.

33



Figure 3 : Regulation of the E. coli trp operon by leader 

peptide translation.

The trp operon leader contains two tryptophan codons and 

four regions all capable of forming stable stem loop structures 

(labelled 1 -  4 in the diagram). (A) shows the naturally 

occurring stem loop structures in the absence of translation.

(B) shows the formation of the anti terminating 2:3 stem loop 

during tryptophan starvation. The stem loop forms as a result 

of the stalled polymerase at the 1:2 stem loop and the stalled 

ribosome at the tandem trp codon location. The presence of 

the ribosome at the tandem trp codons, disrupts the 1:2 stem 

loop which in turn releases the polymerase to progress 

through the 2:3 stem loop and downstream into the operon.

(C) shows the terminating 3:4 stem loop structure which 

forms during excess tryptophan conditions. The ribosome 

does not stall at the tandem trp codons preventing the 

formation of the 2:3 stem loop. The 3:4 stem loop however 

remains intact, preventing further polymerase elongation. The 

positions of the ribosome (purple) and the RNAP (yellow) are 

shown in each scenario. Adapted from Zubay et al. (1993).
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In times of tryptophan starvation, a process termed antitermination occurs. During 

translation of the leader peptide the ribosome stalls at the tandem Trp codons. This 

allows sufficient time for the 2:3 stem-loop structure to form preventing formation of 

the overlapping 3:4 terminator stem-loop. In this case the polymerase continues 

transcription through the terminator. (Gollnick and Babitzke, 2002; Henkin, 1996; 

Yanofsky, 1981).

The his, phe and leu operons all show regulation in a similar manner, as does the 

pyrimidine biosynthesis operon pyrBI. In the case of UTP biosynthesis there is a pause 

signal followed by a sequence of U residues and a terminator signal, but there is no anti­

terminator structure in the leader region of the operon. Transcription through the 

terminator occurs as a result of the coupling of transcription and translation through the 

pausing of the polymerase at the poly(U) sequence. The close proximity of the ribosome 

to the polymerase prevents the formation of the terminator signal. Excess UTP means 

the polymerase does not pause sufficiently long enough for the ribosome to trail the 

polymerase in close proximity. This results in the formation of the terminator structure 

(Gollnick and Babitzke, 2002; Roland et al., 1985).

1.5. The ribosome, rRNA and antitermination.

A selection of the wide variety of mechanisms used for transcriptional regulation in 

prokaryotes has been discussed in detail above. This thesis has focused on the 

characterisation of the “N utilising (Nus)” proteins in Af. tuberculosis and their 

mechanistic roles in antitermination during ribosomal RNA operon expression.



Antitermination is the ability of the RNA polymerase to read through intrinsic Rho- 

dependent and Rho-independent terminators (Richardson and Greenblat, 1996). In 

addition to the regulation of expression of catabolic and biosynthetic genes, 

antitermination regulates ribosomal RNA (rRNA) expression using the Nus proteins. 

The Nus proteins are believed to be involved in the read-through of RNA polymerase in 

the transcription of the rRNA operon in M. tuberculosis. Ribosomes are the catalytic 

tools responsible for the synthesis (translation) of proteins within prokaryotic and 

eukaryotic cells and rRNA forms an essential component of both the prokaryotic and 

eukaryotic ribosomes. The prokaryotic ribosome is made up of three rRNA molecules, 

two in the 50S ribosomal subunit (the 5S and 23S rRNA) and one, the 16S rRNA in the 

30S ribosomal subunit. The three rRNA molecules make up approximately 50% of the 

mass of the ribosome and are believed to be responsible for its catalytic activity (Ban et 

al., 2000; Nissen et al., 2000; Noller, 1991). The regulation of rRNA synthesis is 

important in defining the growth rates of bacteria and allowing the organisms to adapt to 

changing environments. For example, cells in logarithmic phase contain far more 

ribosomes than cells in lag or stationary phase. As ribosomal activity is constant 

throughout all growth rates (Sorensen et al., 1994), a cell must increase its ribosomal 

production in order to increase its protein production and hence its growth rate (Keener 

and Nomura, 1996; Condon et al., 1995). Antitermination plays an important role in this 

regulation as it allows for the “transcription of the long, highly complex and 

untranslated rRNAs required for increased ribosome production” (Keener and Nomura, 

1996)
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1.6. The history of antitermination and the “N- 
utilising (Nus)” proteins.

1.6.1. Bacteriophage lambda.

Antitermination utilising the Nus proteins was first identified and studied in 

bacteriophage Lambda (X) replication. Roberts (1969) predicted that the N product of X 

allowed the transcription machinery to transcribe through Rho-dependent terminators 

found downstream of the early promoter sites.

Early gene transcription in the X prophage state initiates at two promoters, termed pL 

(left) and pR (right), see Figure 4. Transcription from pL transcribes the N gene whereas 

the cro gene is transcribed from pR. Rho-dependent terminators are found immediately 

downstream of N and cro, tLl and tRl respectively. Downstream of cro are genes O and 

P (required for X replication) which are, again, followed by three Rho-dependent 

terminators tR2, tR3 and tR4. As concentrations of the N protein increase within the 

bacterial cell, transcripts initiating at pR are able to transcribe through tRl, tR2 and tR3 

allowing for expression of the downstream genes O and P (required for X DNA 

replication) and transcripts initiating from pL are able to transcribe through tLl, tL2 and 

tL3 allowing for expression of the downstream genes red, gam, bet, int, and xis 

(required for integration of the X genome into the bacterial chromosome). The protein 

d l  is also produced after transcription from pR, the levels of which determine whether 

the phage enters lysogeny or the lytic cycle (Friedman and Court, 1995; Richardson and 

Greenblatt, 1996; Zubay, 1993).
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Figure 4 : Bacteriophage lambda genome structure and 

gene expression.

A simplified diagram of part of the X genome is shown with 

the antiterminator proteins N and Q highlighted in blue and 

yellow. Early transcription terminates at tRl and tLl resulting 

in the synthesis of the protein N. N in combination with the 

host Nus factors allows for the transcription of genes required 

for the establishment of lysogeny, phage genome integration 

and a second antiterminator Q, required for entry into the lytic 

cycle. The regions of transcription in the presence or absence 

of N and the host Nus factors are shown (Adapted from 

Friedman and Court, 1995).
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Studies on E. coli mutants that were unable to support X growth, and in vitro 

antitermination systems allowed for the identification of host proteins involved in X 

phage antitermination, termed the N-utilising (Nus)” proteins. The Nus proteins include 

NusA, NusB, NusE (identical to the ribosomal protein S10) and NusG and are believed 

to interact with N and modify the RNA polymerase into a termination-resistant form (Li 

et al., 1992; Mason and Greenblatt, 1991). All the Nus proteins are required to form a 

stable antitermination complex. Cis-acting sequences, termed Nut sites, found between 

pLl and tLl and pRl and tRl were also found to be required for X antitermination. The 

Nut sites act at the RNA level (Nodwell and Greenblat, 1991). NusA binds to sequences 

termed boxA and boxB found in the Nut site. NusA, NusE and NusG are all capable of 

interacting directly with the RNA polymerase and NusB interacts with NusE. The X N 

protein binds to the Nut site and in turn interacts with the RNA polymerase-NusA 

complex. (Greenblatt and Li, 1981b; Horwitz et al., 1987; Mason and Greenblatt, 1991; 

Mason et al., 1992a,b; Mogridge et al., 1995). DeVito and Das (1994) proposed that 

NusA facilitates the binding of N to the RNA polymerase and that the remaining Nus 

factors stabilise the complex.

N and the Nus proteins assemble at Nut sites on the RNA transcripts (found downstream 

of cro and upstream of N) (Salstrom and Szybalski, 1978; Rosenberg et al., 1978). 

These Nut sites are made up of three, component sequences, boxA, boxB and boxC 

separated by spacer regions (Friedman and Gottesman, 1983; Olson et a l, 1982, Olson 

et al., 1984; Salstrom and Szybalski, 1978). A comparison of five lamboid nut sites has 

allowed for definition of boxA and boxB consensus sequences (Friedman and 

Gottesman, 1983) and mutational studies on box A have shown its importance in X
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antitermination (Olson et al., 1982). The X Nut sites are found far upstream of the 

terminators the N-Nus antitermination complex acts on. It is thus believed that looping 

of the RNA, such that the complex is continuously in contact with the polymerase, 

maintains a termination-resistant polymerase (Richardson and Greenblatt, 1996). 

Interestingly boxA sequences are found in the ribosomal (rm ) operons of many 

prokaryotes (Berg et al., 1989). In vitro studies have shown that prokaryotic 

antitermination complex assembly takes place on the transcribed RNA Nut site (Mason 

and Greenblatt, 1991; Nodwell and Greenblat, 1991).

A second round of antitermination occurs immediately preceding late gene transcription 

in X. It is at this stage that entrance into the lysogenic or lytic cycle is decided. During 

transcription of the early genes, the gene Q is also transcribed. Q is the key factor 

required for late lytic gene expression (those genes required for cell lysis and maturation 

of virus particles) and, like N, binds a specific sequence, Qut, found between the -35 and 

-10 promoter sites. Qut contains both box A and boxB but not boxC sequences 

(Friedman and Gottesman, 1983) but is a non-transcribed DNA sequence (found 

between the -10 and -35 promoter sites) as opposed to the RNA Nut sequence (Friedman 

and Court, 1995). NusA has been shown to be the only host Nus factor involved in Q 

antitermination (Barik and Das, 1990).

The lysogenic cycle is followed if ell levels, produced during early gene expression, are 

high. In this case the genes cl and int are transcribed from the pRE and pi promoters. 

The production of the Int protein allows X genome integration into the E. coli genome 

where as cl prevents transcription from the pL and pR promoters and hence the
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production of Q. The mechanism by which cU levels are determined is still not 

understood (Richardson and Greenblat, 1996).

1.6.2. The Nus proteins and antitermination in E. coli.

Antitermination has been identified as a mechanism of regulation of gene expression in 

E. coli (Holben and Morgan, 1984, Aksoy et al., 1984). Expression of E. coli rm  

operons do not show polarity, defined as “the decreased expression of a distal gene (or 

sequences) of an operon resulting from specific genetic signals in proximal sequences” 

(Aksoy et al., 1984). It was therefore proposed that the E. coli rm  operons must exhibit 

some sort of antitermination mechanism. Nut sequences were first identified in the rm  

operons by Berg et al. (1989) and Li et al (1984). Sharrock et al. (1985) were the first to 

implicate some of the Nus factors in rm  antitermination. A great many subsequent 

experiments showed that rm  antitermination was highly analogous to X N-mediated 

antitermination.

I.6.2.I. E. coli rm  operon structure.

E. coli contains seven rm  operons (rraA - rmG) coding for the three ribosomal 

RNA fragments. The operons are located asymmetrically on one half of the E. coli 

chromosome and differ in that different tRNA genes are found in the 16S-23S rRNA 

spacer regions and at the ends of the operons (Bachman, 1990; Komine et al., 1990). 

They contain two promoters, Pi and P2 , followed by the 16S rRNA coding region, a 4S 

tRNA coding region, the 23S and lastly the 5S rRNA coding regions . The entire operon 

is transcribed initially as a large 30S fragment which is then processed by RNase 

activity into the four molecules (Lund and Dahlberg, 1977; Perry, 1976). Study of the
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rmB  operon shows a highly conserved box A sequence downstream of P2 and in the 16S 

-  23S spacer regions (Li et a l, 1984) indicating a X phage like antitermination 

mechanism, utilising Nus proteins. Berg et a l (1989) noted that all seven rm  operons 

have identical boxA and boxC sequences and all show dyad symmetry at boxB allowing 

for the formation of a stable stem-loop structure (See Figure 5). BoxA sequences are 

also highly conserved in the rm  leader and spacer regions of a diverse range from the 

Bacteria domain and some from the Archea species. See Table 2.
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(A)

Nut like region

Pi region P2 region B A C 16s rRNA

Figure 5 : E. coli rrnG leader region.
(A) Schematic showing the positions of Pi, P2, boxB, boxA, boxC and the beginning of 
the 16s rRNA coding region (Condon et al., 1995; Keener and Nomura, 1996; Li et a l, 
1984). (B) shows the RNA secondary structure of the transcribed leader region of the 
rrnG operon in E. coli. The boxB hairpin is labelled and boxA and boxC shown in blue 
and purple respectively. Adapted from Squires et al. (1993).
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Table 2 : BoxA Sequences.
BoxA sequences for a variety of organisms and phages (Berg et a l , 1989; Olson et a l, 
1982) show high homology and thus their likely role in transcriptional antitermination.

Organism BoxA Sequence

Escherichia coli (All rm  operons) TGCTCTTT

Bacillus subtilis (All rm  operons) (A/T)G(A/T)CTTT

Thermus thermophilus GGATCTTG
(rrn 16S and rm  23S)

Caulobacter crescentus (All rm  operons) GG(G/C)TCTTT
a-purple eubacterium

Pseudomonas aemginosa TGCTCTTT

Mycobacteriums tuberculosis TGTTGTTTG (Leader region) 
TGTTCTTTG (Spacer region)

Lambda Phage nutR CGCTCTTA

Lambda Phage nutL CGCTCTTA

Lambda qut CGCTCGTT

Phage 21 nutR GCTCTTTA

Phage P22 nutL CGCTCTTTA

The first evidence that the Nus proteins were involved in E. coli transcriptional 

regulation was the observation that rRNA transcription was inhibited in a NusB mutant 

E. coli strain (Sharrock et a l, 1985). This mutant (nusB5) is also cold-sensitive probably 

as a result of defective rRNA production (Taura et a l, 1992). Antitermination and 

expression of downstream reporter genes was achieved in vitro using a DNA template 

with a promoter, anti-terminator, terminator structure, purified RNA polymerase, 

termination factor Rho, NusA, NusB, NusE, NusG and cell extract depleted of NusB.
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Efficient expression was only achieved with the cell extract indicating that as yet 

unidentified components are required for antitermination (Squires et al., 1993). NusB 

and NusE form a heterodimer (Luttgen et al., 2002; Mason et al., 1992a) which was 

shown to interact directly with rm  boxA (Luttgen et al., 2002; Nodwell and Greenblatt, 

1993). In addition NusE interacts with the RNA polymerase (Mason and Greenblatt, 

1991). NusA, NusE and NusG are all known to interact with RNA polymerase directly 

and probably stabilise the antitermination complex (Greenblatt and Li, 1981a; Li et a l, 

1992; Mason and Greenblatt, 1991). NusA is believed to replace the RNA polymerase a 

subunit after transcription initiation (Greenblatt and Li, 1981a). The terminator Rho has 

been shown to interact with RNA polymerase (Darlix et al., 1971), NusG (Li et al., 

1993; Pasman and von Hippel, 2000) and NusA (Schmidt and Chamberlin, 1984) and 

may thus be sequestered into the antitermination complex, altering its interaction with 

the RNA polymerase (Condon et al., 1995). Alternatively the formation of the 

antitermination complex may increase the rate of the transcription machinery thereby 

uncoupling Rho from the RNA polymerase and reducing termination (Jin et a l, 1992).

A model has been proposed (Luttgen et a l, 2002) where the anti termination complex 

assembles on the rm nut sites in the leader region. The complex then interacts with RNA 

polymerase and remains attached to the nut site as the polymerase transcribes in the 5' to 

3' direction. This results in looping of the RNA and modification of the polymerase, 

allowing it to transcribe through terminators found in the leader and spacer regions of 

the rm  operons (See Figure 6).
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Figure 6 : The antitermination complex in E. coli.

The antitermination complex in E. coli is shown. Interactions 

occur between the RNA polymerase and NusA, NusE and 

NusG with NusA replacing the RNA polymerase a  subunit. 

NusB and NusE form a heterodimer. NusG interacts with Rho 

and the ? indicates unknown factors required for in vitro 

anti termination. The nut site and direction of elongation are 

shown. Adapted from Luttgen et a l , 2002.
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1.7. Antitermination in Mycobacterium tuberculosis.

In contrast to the X and E. coli systems, little is known about antitermination in M. 

tuberculosis. A major difference from other prokaryotes is that there is only a single rm  

operon present in the entire genome (Cole et al., 1998). The operon shows the classical 

rm  structure observed in other bacterial systems (Gonzalex-Y-Merchand et al., 1996; 

Kempsell et al., 1992), containing two promoters, p i and pCLl (with -35 and -10 

elements). The leader region contains boxA, boxB and boxC followed by coding regions 

for 16S rRNA, 23S rRNA and 5S rRNA. The spacer region between the 16s rRNA and 

23 s rRNA region contains only box A and boxB (Gonzalez-y-Merchand, 1996; Kempsell 

et al., 1992). BoxA and boxC sequences show homology to both X and E. coli 

sequences. The boxA sequence is TGTTGTTTG in the leader region and TGTTCTTTG 

in the spacer region. The boxC sequence is AGTGTGTTT. BoxB possesses dyad 

symmetry with the ability to form a stable stem-loop structure (Kempsell et al., 1992). 

See Figure 7.

In addition to the RNA elements required for antitermination in the ribosomal operon, 

homologous genes to all the Nus proteins are found in the M. tuberculosis genome (Cole 

et al., 1998) indicating rRNA transcription may be regulated by a similar anti termination 

mechanism to that seen in the X phage and in E. coli.

50



Figure 7 : M. tuberculosis rrn leader region secondary structure.
The secondary structure and positions of boxA, the stem-loop boxB and boxC in the M. 
tuberculosis rrn operon leader region are shown. BoxA (orange) and boxC (green) 
sequences, homologous to the X and E. coli boxA and boxC sequences are highlighted.

1.8. The Nus Proteins.

1.8.1. NusA.

NusA is 56 kDa protein in E. coli and is essential for the survival of the organism. Its 

key function within the cell is regulation of transcription. It is responsible for slowing 

down the rate of elongation by stimulating the RNA polymerase to pause at certain 

natural pause sites (Landick and Yanofsky, 1987) and it increases termination efficiency 

at intrinsic terminators (such as XtR2), probably through stem-loop structure 

stabilisation. NusA promotes release of the nascent transcript by preventing the RNA 

polymerase from binding the stem-loop structure (Artsimovitch and Landick, 1998; 

Schmidt and Chamberlin, 1987). NusA however also decreases termination efficiency at 

other terminators, such as the E. coli terminator trpoBa (Linn and Greenblatt, 1992) and 

the X Rho-dependent terminator XtR\ (Lau et al., 1982). The regulation of this
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paradoxical action may be brought about by NusA’s interaction with different 

components of the transcription and translation systems. Carlomagno and Nappo (2003) 

have hypothesised that the interaction of NusA with mRNA signals, other Nus proteins 

or ribosomal subunits may enhance transcriptional termination where as the interaction 

of NusA with ribosomes or specific ribosomal proteins found on nascent transcripts may 

enhance elongation.

Its role in antitermination was also revealed through an E. coli mutant strain carrying the 

nus A l mutation that failed to support X growth (Friedman et al., 1973). A role for NusA 

in antitermination was also predicted from studies of another NusA mutant, the cold 

sensitive nusAcslO. NusAcslO mutant decreases the rate of elongation of RNA 

polymerase resulting in considerably less read-through of terminators. NusA may thus 

be responsible for increased RNA polymerase elongation rates during antitermination 

(Vogel and Jensen, 1997).

NusA is able to make direct contacts with the RNA polymerase shortly after 

transcription initiation and once the a70 subunit has escaped the polymerase. It makes 

direct contacts with the C-terminal domain of the a-subunit as well as with both the p 

and p' through contacts in both the NusA N- and C-terminal domains (Liu et al., 1996; 

Ito and Nakamura, 1996; Mah et al., 1999). However, only the N-terminal domain, 

containing one of the RNA polymerase binding regions and the RNA binding region, is 

needed to enhance both termination and antitermination (Mah et al. 1999). NusA also 

binds the N-terminal region of N in X phage antitermination via a C-terminal region 

(Mogridge et al., 1998; Mah et al., 1999). N appears to be unstructured in solution but
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on interaction with RNA and NusA it folds into separate domains. The interaction of N 

with NusA is also independent of RNA polymerase (Van Gilst and von Hippel, 1997).

Sequence and structural homology indicates the presence of three RNA binding 

domains, an SI and two KH domains (Gopal et al., 2001a). NusA is believed to interact 

with the boxA and boxB RNA nut sites but does not cause a mobility shift in the 

absence of N. It is therefore likely that N mediates NusA RNA binding in the X 

antitermination mechanism (Mogridge et a l , 1995). Mah et a l  (1999) showed that only 

NusA constructs containing a wild-type SI domain are capable of binding an N-nut 

complex and that this domain is therefore essential for antitermination functions. Zhou 

et a l (2002) subsequently showed that wild-type KH domains are also essential for 

RNA binding in that mutations in either KH domain abolish RNA binding even in the 

presence of N. The N-terminal RNA polymerase binding region appears to be essential 

for both termination and antitermination by the X N protein where as the C-terminal 

RNAP-binding domain is not required for either of these processes (Mah et a l, 1999).

The crystal structure of M. tuberculosis NusA shows it is made up of two distinct 

regions, an N-terminal domain similar to the RNA polymerase binding domain of SigA, 

and a C-terminal region containing three RNA binding domains, an S 1 domain and two 

KH domains (Gopal et a l, 2001a). The N and C-terminal segments are attached by a 

highly flexible linker. The M. tuberculosis NusA crystal structure shows similarities 

with that of T. maritima (Worbs et a l, 2001), although there are slight changes in the 

positioning of the domains and the linker region in T. maritima is helical in structure. 

Nevertheless the overall architectures are similar.
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1.8.2. NusB.

In E. coli NusB is a monomeric 16 kDa protein and was first identified when a nusB5 

mutant was isolated that was unable to support the growth of X phage and resulted in 

premature transcription termination within rRNA operons in vitro (Sharrock et al., 

1985). E. coli strains with this mutation are also cold sensitive, again indicating a 

possible role in rRNA transcription regulation (Taura et al, 1992).

The structures of NusB from both E. coli and M. tuberculosis have been solved. E. coli 

NusB is an all helical protein with a novel fold. The majority of conserved residues in 

NusB homologs are responsible for stabilising the core of the protein. Two conserved 

amino-acids (Lys 82 and Arg 86) are found on the surface of NusB and form a small, 

positively charged cavity (Altieri et al., 2000). This feature is also conserved in the M. 

tuberculosis NusB structure. The two NusB homologs are 34 % identical and show good 

(r.m.s. deviations between Ca atoms of 2.0 A) structural similarity (Altieri et al., 2000; 

Gopal et al., 2000). A potential RNA binding site was also proposed by Gopal et al. 

(2000) based upon the N-terminal region of M. tuberculosis NusB containing a 

phosphate binding site (defined by the presence of two conserved arginines, Arg 10 and 

Arg 14).

A major difference between the two proteins is that the E. coli NusB is a monomer as 

shown by sedimentation equilibrium ultracentrifugation whereas M. tuberculosis NusB 

is dimeric (Figure 8) as seen in the crystal lattice and also shown by sedimentation 

equilibrium ultracentrifugation (Altieri et al., 2000; Gopal et al., 2000). The dimer is 

formed as a result of numerous polar and non-polar interactions. This is the first
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indication that rRNA transcription regulation and antitermination in M. tuberculosis may 

have a different mechanism to that seen in X and E. coli.

E. coli NusB and NusE form a heterodimeric complex with a dissociation equilibrium 

constant of 10'7 M. Complex formation is mediated via non-ionic interactions (Mason et 

al., 1992a). This complex then interacts specifically with box A nut sequences (Nodwell 

and Greenblatt, 1993). The heterodimer has a higher affinity for boxA RNA than NusB 

alone indicating that it is the complex that interacts with boxA RNA and not allosteric 

NusE activation of NusB only RNA binding (Luttgen et al., 2002). NusE is unable to 

bind boxA in the absence of NusB (Nodwell and Greenblatt, 1993). In contrast to the E. 

coli NusB-NusE complex, Gopal et al. (2001b) tentatively showed only very weak 

interactions between M. tuberculosis NusB and NusE.

NusB has been shown to increase Rho termination efficiency by stimulating the release 

of RNA polymerase at sub-optimal Rho-dependent terminators (Carlomagno and 

Nappo, 2001). It has also been speculated that NusB may be involved in translation as 

the nusB5 mutation resulted in decreased peptide elongation rates (Shiba et al., 1986).
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Figure 8 : M. tuberculosis NusB dimer structure.
A ribbon representation of the NusB dimer. Dimerisation occurs through a 
number of polar and non-polar interactions resulting in a triangular shaped 
molecule. This is in contrast to E. coli NusB which is monomeric (Gopal et 
al, 2000; Guex and Peisch, 1997; Schwede et al, 2003).
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1.8.3. NusE.

NusE is identical to the ribosomal protein S10 and is essential for cell survival. It is 

found in the 30S ribosomal subunit where it is one of the last proteins to be added to the 

30S complex before a functional 30S subunit is made (Squires and Zaporojets, 2000).

NusE’s involvement in antitermination was discovered when a nusEll mutation 

inhibited the growth of X phage as N was inactive (Friedman et al., 1981) and the 

addition of NusE to in vitro antitermination experiments resulted in increased read- 

through (Squires et al., 1993). Warren and Das (1984) showed that NusE was involved 

in N-mediated antitermination but was not responsible for coupling antitermination and 

translation. It has however not been possible to determine whether NusE participates in 

antitermination as part of the 30S ribosomal subunit or as a soluble, independent form 

(Das, 1993, Warren and Das, 1984).

NusE has also been shown to make direct interactions with NusB (described previously) 

as well as with the RNA polymerase with an association equilibrium constant of 106 M '1 

(Mason and Greenblatt, 1991). NusE also increases the affinity of NusB for both the X 

nutR box A and the rm  boxA by a minimum of 25-fold (Luttgen et al., 2002).

M. tuberculosis NusE has been isolated. The free protein is monomeric, largely 

unstructured, with a helical content of 12 -  16 % at 30°C. (Gopal et al., 2001b).

1.8.4. NusG.

NusG, the last Nus factor to be identified, is also essential to E. coli and, similarly to 

NusA, appears to be multi-functional with respect to gene expression regulation.
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Although both proteins promote read-through in the antitermination complex, they also 

exhibit antagonistic functions. NusG decreases pause times at attenuator structures 

while NusA increases pause times, NusG increases the rate of Rho-dependent 

termination while NusA appears to decrease the rate (Burova et al., 1995; Bums et al, 

1998; Schmidt and Chamberlin, 1987; Pasman and von Hippel, 2000). NusG’s role in 

expression regulation and antitermination has been suggested by its ability to bind both 

RNA polymerase and Rho. Weak binding of NusG to RNA polymerase has been 

demonstrated (Li et a l , 1992) while NusG binds tightly to the hexameric Rho with a 

dissociation equilibrium constant of 1.5 x 10*8 M (Pasman and von Hippel, 2000).

The crystal structure of Aquifex aeolicus NusG has recently been solved (Steiner et a l, 

2002; See Figure 9). It is made up of three domains and has overall dimensions of 

approximately 75 x 70 x 38 A. Domain I has homology to the ribonucleoprotein (RNP) 

motif thus indicating it may be involved in nucleic-acid binding. Domain I also shows 

homology with the S6 ribosomal protein (which makes contacts with S18 in the 

ribosome (Ban et a l,  2000)) perhaps indicating it may also be involved in protein -  

protein interactions. Domain III contains a KOW sequence motif (Kyrpides et a l, 1996). 

These are involved in rRNA binding in prokaryotic L24 ribosomal protein and in the 

eukaryotic eU26 and eL21 ribosomal proteins. The KOW domain has also been 

implicated in protein binding through its structural homology to the tudor domain in the 

human SMN protein (Selenko et a l, 2001). The protein binding site in the KOW 

domain is believed to be different to its nucleic acid binding site, suggesting that rRNA 

and protein binding can occur simultaneously (Steiner et a l, 2002).



Domain II shows some similarity to an immunoglobulin fold (which are often involved 

in eukaryotic protein -  protein interactions) however the NusG domain II structure could 

not be matched with a specific class of immunoglobulin fold. There is also no sequence 

homology and it has been impossible to reliably predict the function of domain II which 

appears as a loop in the homology model of the E. coli NusG (Steiner et a l, 2002). It 

may simply be involved in the stability of the protein in the thermophilic organism.

NusG also has links to translation and lowered amounts of NusG lead to a decreased 

translation rate (Burova et al., 1995; Zellars and Squires, 1999). As the KOW motif is 

predominantly found in ribosomal proteins, perhaps this is not entirely surprising 

(Squires and Zaporojets, 2000). Little is known about the M. tuberculosis NusG. It 

carries an additional forty one residues at its N-terminus and does not contain domain II 

found in A. aeolicus NusG (Steiner et al., 2002).
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Domain I Domain

Domain II

Figure 9 : A. aeolicus NusG structure.
A ribbon representation diagram of the A. aeolicus NusG structure. The 
three domains (domain I - blue; domain II - green; domain III - red) are 
indicated (Guex and Peisch, 1997; Schwede et al, 2003; Steiner et al, 
2002).
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1.9. Rho termination factor.

The Rho protein is responsible for termination of gene or operon expression in bacteria. 

It utilises the energy from ATP hydrolysis to stimulate nascent transcript release. Rho is 

a hexamer of identical subunits forming a ring shaped-structure (Yu et al., 2000). Each 

subunit contains an RNA-binding domain at the N-terminus (Allison et al., 1998; 

Modrak and Richardson, 1994; Skordalakes and Berger, 2003) and an ATPase domain 

making up the C-terminal region (Dolan et al., 1990; Dombroski et al, 1988a,b; 

Skordalakes and Berger, 2003).

Rho-dependent terminators are made up of two parts, the rut region (Rho binding site) 

along with the site of transcript release (Richardson and Greenblat, 1996). The 

terminator region can span up to 150 nucleotides in length. Termination and transcript 

release is brought about by pause sites downstream of the rut sites when nucleotide 

addition by the polymerase is at its slowest rate (Artsimovitch and Landick, 2000; 

Morgan et al., 1983; Richardson, 2002).

The structure of E. coli Rho has been solved by Skordalakes and Berger (2003). The 

Rho hexamer was shown to contain a 12 A gap between two of the subunits presumably 

allowing for the loading of RNA into the central cavity. The model for Rho action 

proposed by Skordalakes and Berger involves the nascent transcript rut site binding the 

inwardly pointing, RNA-binding domains of the Rho subunits. This automatically forces 

the 3' end of the transcript into the cavity, either through the gap present in the ring or 

until the gap opens within the ring. The presence of RNA in the central cavity may then 

lead to the closing of the gap. This in turn activates the ATPase function of Rho
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allowing it to translocate along the RNA. From the structure they were however not able 

to establish whether translocation causes looping of the nascent RNA, as a result of rut 

sites remaining bound to Rho, or whether these interactions are disrupted and Rho 

simply translocates down the transcript with no RNA looping. The transcript must then 

be released by means of a Rho interaction with the RNAP. Richardson (2003) proposes 

that this interaction may cause Rho to pull the transcript from the RNAP catalytic site 

and that this may be coupled with the forward movement of RNAP (without transcript 

elongation) along the DNA template, as shown by Yamell and Roberts (1999).

The exact role of Rho in antitermination has not been defined. Two theories have been 

proposed; the first involves the sequestering of Rho by NusG thus preventing access to 

the rut site or RNA polymerase. The second involves the acceleration of the elongation 

complex to such an extent that Rho is unable to catch up with and dissociate the RNA 

polymerase from the template. The second theory seems to be the more plausible given 

the high elongation rates of E. coli rm  operons when compared with mRNA elongation 

(> 80 nucleotides s'1 compared with 40 nucleotides s'1) which may, in turn, be due to the 

antitermination mechanism (Vogel and Jensen, 1994a,b; Vogel and Jensen, 1995).

1.10. Identification of protein -  protein interactions in the X 
and E. coli antitermination mechanisms.

Numerous techniques were used in the study of the X and E. coli antitermination 

mechanisms to determine protein -  protein interactions. These are vital in resolving the 

components of the complex. Subsequent to the identification of the likely components of 

the antitermination complexes, through defective X growth or rRNA synthesis in E. coli
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mutants, in vitro transcription assays were used to determine the ability of the proposed 

complexes to transcribe through Rho-dependent terminators. In X, the minimum 

components were identified as the host Nus factors, the X N protein and the X nut site 

(Mason and Greenblat, 1991). Squires et al. (1993) and Torres et al. (2001) showed the 

requirements of the Nus factors, RNAP, rRNA nut sites and S4, in addition to unknown 

factors, for E. coli rRNA antitermination-dependent terminator readthrough. The inter­

protein interactions within these complexes were subsequently established using 

techniques such as pulldown assays and sedimentation equilibrium ultracentrifugation. 

An interaction was established between NusB and NusE using immobilized GST-NusE 

and purified NusB (Mason et al., 1992a) and the 1 : 1 stoichiometry of this interaction 

resolved using sedimentation equilibrium ultracentrifugation (Luttgen et al, 2002). The 

interaction between NusG and Rho was also established using immobilzed NusG and 

Rho being “pulled” from E. coli cell free extracts (Li et al., 1993) and the 1 : 6 (NusG : 

Rho) stoichiometry again determined using sedimentation equilibrium 

ultracentrifugation (Pasman and von Hippel, 2000). Interactions between NusA and the 

X N protein and the E. coli RNAP subunits were established using pulldown assays and 

immobilized GST-N or His-NusA as shown by Mah et al. (1999) and Liu et al. (1996). 

Alternative techniques used to demonstrate protein -  protein interactions include the use 

of size exclusion chromatography to show the co-elution of NusE with RNAP (Mason 

and Greenblat, 1991) and NMR spectroscopy used to tentatively show a weak 

interaction between M. tuberculosis NusB and NusE (Gopal et al., 2001b). The use of 

pulldown assays is thus a well established technique for protein -  protein interaction
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determination and sedimentation equilibrium ultracentrifugation important in the 

establishment of the subsequent stoichiometrys.

1.11. Project aims.

The presence of only a single rm  operon in M. tuberculosis means that the regulation 

and expression of the operon is vital to survival of the organism. As antitermination is 

important in the regulation of rm  operon expression, antitermination and the 

components of the antitermination complex are likely to be critical to M. tuberculosis 

viability. An understanding of the antitermination mechanism will thus provide even 

greater comprehension of the biology of the bacterium. This is clearly fundamental for 

the development of new drug and antibiotic targets. Indeed, the components of this 

mechanism may even make useful targets themselves.

The aim of the project has been an understanding of the characteristics, functions and 

interactions of the M. tuberculosis Nus proteins within the antitermination complex. 

This thesis presents biochemical and biophysical data used to try and achieve this aim 

and resolve some of the structural and functional differences evident between the M. 

tuberculosis and WE. coli models.
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Chapter 2 

Materials and Methods



2.1. Bacterial strains and growth media.

E. coli strain XL-1 Blue (Stratagene) was used for site-directed-mutagenesis.

E. coli strain DH5a (Invitrogen) was used for all plasmid vector amplification and 

cloning procedures.

E. coli strain BL21(DE3)pLysS (Novagen) was used for all protein expression and 

protein purification.

E. coli strains were grown in Luria Broth (10 g Bacto-Tryptone, 5 g Yeast Extract, 10 g 

NaCl in 1 L Distilled Water) or Terrific Broth (10 g bacto-tryptone, 24 g yeast extract, 4 

ml glycerol, 12.54 g K2HP04, KH2P 04 in 1 L distilled H20).

2.2. Plasmid vectors.

Plasmids pET15b -  NusA, NusB, NusE, NusE C50S, NusG and RNAPa were supplied 

by Dr. B. Papavinasundarum

Plasmid pET15b (Novagen) was used as an expression vector to enable the production 

and purification of NusA, NusB, NusB FE22.23AA, NusE, NusE C50S, NusG and RNA 

polymerase-a-subunit (RNAPa). The plasmid contains an ampicillin cassette allowing 

for antibiotic selection. It also contains a coding sequence for a six-histidine tag. 

Cloning of protein genes in the Ndel and BamHl restriction sites results in an in-frame 

his6-tag, occurring on the N-terminus of the translated protein. A diagram of the 

pET15b-NusG plasmid is shown in Appendix 2C.

Plasmid pET-22b (Novagen) was used for the cloning and over expression of Rho 

termination factor. Cloning of Rho into the Ndel and Xhol sites allowed for a C-
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terminal His-tag. The plasmid contains an ampicillin cassette allowing for antibiotic 

selection.

Plasmid pGEX-4T-l (Amersham Pharmacia Biotech) was used for the cloning and over 

expression of NusB. Cloning NusB into the BarriH.1 and EcoRl sites resulted in an N- 

terminus GST-tag which could subsequently be removed by thrombin digestion. The 

plasmid contains an ampicillin cassette allowing for antibiotic selection.

Plasmid pGEX-6P-l (Amersham Pharmacia Biotech) was used for the cloning and co­

expression of NusB and NusE. A NusB-RBS-NusE-His6 construct was cloned into the 

BamHl site allowing for an N-terminal GST-tag on NusB and a C-terminal His-tag on 

NusE. The GST-tag on NusB could subsequently be removed by “PreScission Protease” 

(Amersham Pharmacia Biotech) cleavage. The plasmid contains an ampicillin cassette 

allowing for antibiotic selection.

2.3. Site-directed-mutagenesis of wild-type NusB to NusB 
FE22.23AA.

2.3.1. Primer design.

The phenylalanine and glutamic acid, at positions 22 and 23 respectively, of the M. 

tuberculosis NusB are found at the centre of the dimer interface and are likely to be 

involved in dimer formation in the protein (Gopal et al., 2000). It was thus decided to 

mutate Phe22 (codon : TTC) and Glu23 (codon : GAG) to Ala (codons GCC and GCT). 

Primers required for site-directed-mutagenesis must contain approximately 25 -  35 

nucleotides and must contain the mutated codon(s). Primers, 31 nucleotides in length, 

were designed with the double alanine codons in the centre. Sequences of the two
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primers designed and used in the mutation of FE22.23AA in NusB are shown in 

Appendix 1 (Primers A and B). The Ala codons are highlighted.

2.3.2. Amino acid mutation using site-directed mutagenesis.

Site-directed-mutagenesis was carried out using the Quickchange kit (Stratagene). The 

reaction mixture was made up o f :

5 pi 1 OX Reaction Buffer
58 ng NusB Template (Wild-type M. tuberculosis NusB in pET15b)
229 ng Upper Primer A (See Appendix 1)
218 ng Lower Primer B (See Appendix 1)
1 pi dNTP mix
40 pi Distilled H2O
2.5 U Pfu Turbo DNA polymerase

Temperature cycling was then carried out, using a Peltier thermal cycler (MJ Research),

using the following parameters :

Step 1. 95°C for 30 seconds
Step 2. 95°C for 30 seconds
Step 3. 55°C for 1 minute
Step 4. 68°C for 15 minutes
Steps 2 - 4  were then repeated 16 times

1 pi of restriction enzyme Dpnl was added to the mutation reaction mixture in order to 

digest the parental (non-mutated) supercoiled dsDNA. Digestion was carried out at 37°C 

for 1 hour.

1 pi of the mutated DNA (Dpnl treated) was then added to 50 pi E. coli XL-1 Blue 

supercompetent cells and transformation carried out by incubating the cell/plasmid 

mixture on ice for 45 minutes. The sample was then heat-shocked for 1 minute at 42°C 

and immediately placed on ice for a further 2 minutes. 1 ml of Luria broth was then 

added to the cell/plasmid mixture which was subsequently incubated at 37°C for 45 

minutes. 100 pi of the mixture was then plated on Luria agar plates (10 g bacto-tryptone,
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5 g yeast extract, 10 g NaCl, 15 g difco Agar in 1 L distilled water) containing 0.01% 

w/v ampicillin and incubated overnight at 37°C. The remaining 900 fi\ was pelleted at 

4000 rpm for 5 minutes and then resuspended in 100 fi\ Luria broth and plated on a 

second Luria agar plate containing 0.01% w/v ampicillin.

The pET15b plasmid containing mutated NusB (FE22.23AA NusB) was purified from 

single colonies using the Qiaprep Quickspin mini-prep kit (Qiagen). The presence of the 

mutation was determined by DNA sequencing (Cytomyx, Cambridge).

PCR, using KOD DNA polymerase (Novagen), was used to amplify the NusB sequence 

from M. tuberculosis genomic DNA. The following reaction conditions were used for 

the NusB PCR:

3 /il o f 5 pmol/ /il forward primer C (See Appendix 1)
3 /il o f 5 pmol/ /il reverse primer D (See Appendix 1)
1 /il (1U) KOD DNA polymerase

BamHl/EcoRl restriction enzyme digestion was then carried out using standard reaction 

conditions. The restriction digest reaction mixture was incubated at 37°C for 3 hours. 

Restriction enzymes, polymerase, oligonucleotides and buffers were then removed from 

the sample using a Qiaquick PCR Purification kit (Qiagen). BamHl/EcoRl digestion of 

pGEX-4T-l plasmid was carried out so as to allow for the insertion of the NusB PCR 

product. The plasmid was cut using standard reaction conditions. The reaction mixture 

was incubated at 37°C for 3 hours. Digestion was confirmed by running 1/xl of the

2.4. Cloning of NusB into pGEX-4T-l

Reaction mixture Temperature cycles 
Step 1. 2 min. 94°C 
Step 2. 15 s 94°C 
Step 3. 30 s 55°C 
Step 4. 1 min 68°C

26 /il H20
5 /xl 10 x PCR Reaction Buffer (Novagen)
5 /il 1 mM dNTPs (Novagen)
2 /il 25 mM M gS04 (Novagen)
5 /il o f 20 ng/ /il M. tuberculosis genomic DNA Repeat steps 2 - 4 30 x
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product on a 1 % agarose gel. Ligation of the amplified and digested NusB and the cut 

pEX-4T-l plasmid was then performed. Reaction conditions were as per manufacturer 

instructions (New England Biolabs). The ligation reaction mixture was incubated at 

16°C overnight.

4 jul of the sample was then transformed into E. coli DH5a cells (as described for E. coli 

XL-1 Blue cells). Single colonies were then picked from the plates and grown in 5 ml 

Luria broth, containing 0.01 % ampicillin, overnight. Plasmids were then purified from 

the overnight cultures using a Qiaprep Spin Miniprep kit (Qiagen). Positive clones were 

identified using a BamHl/EcoRl restriction enzyme digest using standard reaction 

conditions. The restriction digest products were then run on a 1 % agarose gel, with a 1 

kb DNA ladder marker (Promega), and positive clones were identified by insert release 

at the correct size. Positive clones were then sequenced (Cytomyx, Cambridge). A 

diagram of the plasmid construct is shown in Appendix 2a.

2.5. Cloning of GST-NusB -  NusE-His into pGEX-6P-l.

The pGEX-4T-l -  NusB plasmid was first digested with EcoRl allowing for the 

insertion of amplified NusE. Digestion was carried out for 3 hours at 37°C using 

standard reaction conditions.

Removal of the 5' phosphates, on the overhangs, by dephosphorylation was then 

performed using shrimp alkaline phosphatase (SAP -  Roche). This prevents 

recircularisation of the cut plasmid. Dephosphorylation was carried out as per 

manufacturer instructions (Roche).
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SAP was inactivated by incubation at 65°C for 15 minutes. All enzymes, 

oligonucleotides and buffers were removed using a Qiaquick PCR purification kit.

NusE, containing a synthetic N-terminus ribosome binding site (RBS), was amplified 

using PCR and the reaction conditions set out below :

Reaction mixture Temperature cycles
26 (i\ H20  Step 1. 2 min 94°C
5 /il 10 x Reaction Buffer Step 2. 15 sec 94°C
5 /il 1 mM dNTPs Step 3. 30 sec 55°C
2/il 25 mM M gS04 Step 4. 1 min 68°C
5 /il 20 ng/ /il M. tuberculosis genomic DNA Repeat steps 2 -  4 30 x
3 /il 5 pmol/ /il forward primer E (See Appendix 1)
3 /il 5 pmol/ /il reverse primer F (See Appendix 1)
1 /il (1U) KOD DNA polymerase

The primers used for NusE (with an N-terminus RBS) are shown in Appendix 1. The 

NusE forward primer contains a RBS sequence obtained from pGEX-4T-l.

The entire RBS-NusE PCR product was run on a 1 % agarose gel and the band then 

removed from the gel using a Qiaquick gel extraction kit (Qiagen). This was then 

digested with EcoRl, for 3 hours at 37°C, using standard reaction conditions.

The restriction enzyme was then inactivated at 65°C for 20 minutes and all enzymes, 

oligonucleotides and buffers removed using a Qiaquick PCR purification kit.

Ligation of EcoRl digested RBS-NusE and pGEX-4T-l -  NusB was carried out using 

standard reaction conditions. Positive clones were then identified by insert release after 

EcoRl restriction digestion and verified by DNA sequencing (Cytomyx, Cambridge).

This plasmid construct was then used as a PCR template for amplification of NusB- 

RBS-NusE and the synthetic addition of a His6-tag to the C-terminus of NusE. The PCR

71



reaction conditions are shown below and the primer sequences G and H shown in

Appendix 1:

30.6 H20
5 fd 10 x Reaction Buffer 
5 f i l l  mM dNTPs 
2 (l \ 25 mM M gS04

Reaction mixture Temperature cycles 
Step 1. 94°C 2 min 
Step 2. 94°C 15 s 
Step 3. 55°C 30 s 
Step 4. 68°C 1 min

0.4 fil (0.36 fig) pGEX-4T-l -  NusB -  RBS -  NusE Template DNA Repeat steps 2 -  4 30 x
3 [il 5 pmol/ [il forward primer G (See Appendix 1)
3 [il 5 pmol/ fil reverse primer H (See Appendix 1)
1 [il (1U) KOD DNA polymerase

The entire PCR sample was then run on a 1 % agarose gel and extracted from the 

agarose using a Qiaquick gel extraction kit before BamHl digestion of the amplified 

product. The digest was carried out at 37°C for 3 hours. Oligonucleotides, enzymes and 

buffer were then removed from the PCR preparation using a Qiaquick PCR purification 

kit (Qiagen).

Plasmid pGEX-6P-l was digested with BamHl restriction enzyme digestion using 

standard reaction conditions.

The 5' ends were then dephosphorylated using SAP to prevent recircularisation of the 

plasmid. Dephosphorylation was carried out as per manufacturer instructions (Roche).

SAP was inactivated by treatment at 65°C for 15 minutes. Enzymes, oligonucleotides 

and buffers were then removed from the linearized plasmid preparation using a Qiaquick 

PCR purification kit.

Ligation of the amplified NusB-RBS-NusE-His6 in pGEX-6P-l was lastly carried out 

using manufacturer instructions (New England Biolabs). Positive clones were then 

identified by insert release after BamHl restriction digestion and verified by DNA
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sequencing (Cytomyx, Cambridge). A diagram of the plasmid construct is shown in 

Appendix 2b.

2.6. Cloning of M. tuberculosis Rho termination factor.

The gene for the M. tuberculosis Rho termination factor was amplified from genomic 

DNA using PWO DNA polymerase (Eurogentec) and using the following reaction 

conditions and temperature cycles :

Reaction mixture Temperature cycles
37 fi\ H20  Step 1. 94°C 3 min
2.5 /tl 20 ng/ /il M. tuberculosis genomic DNA Step 2. 94°c 1 min
1 /il 5 mM dNTPs (Eurogentec) Step 3. 58°C 30 s
5 /il 25 mM MgSC> 4 (Eurogentec) Step 4. 72°C 1 min 30 s
2 /il 25 pmol/ /il Forward Primer I (See Appendix 1) Step 5. 72°C for 5 min
2 /il 25 pmol/ /il Reverse Primer J (See Appendix 1) Repeat steps 2 -  4 30 x
1 /il (2.5U) PWO DNA polymerase (Eurogentec)

Oligonucleotides, enzymes and buffer were removed from the PCR preparation using a 

Qiaquick PCR purification kit (Qiagen) and the sample then precipitated using 5 /tl 5M 

NaCl, 1 /tl 0.5M EDTA and 350 /tl cold 100 % ethanol. The ethanol-precipitation 

mixture was then incubated overnight at -20°C before centrifugation at 13000 rpm for 

15 minutes. The pelleted DNA was allowed to dry and resuspended in 42.5 /tl H2O. 

Xhol/Ndel restriction digestion was then carried out as per manufacturer instructions 

(New England Biolabs). The restriction digestion mixture was incubated at 37°C for 3 

hours. Xhol and Ndel were then heat inactivated at 65°C for 20 minutes before 

enzymes, oligonucleotides and buffers were removed using a Qiaquick PCR purification 

kit (Qiagen). The Rho PCR product was then run on a 1 % agarose gel and the product 

cut from the gel using a Qiaquick gel extraction kit (Qiagen).
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The Rho PCR product was ligated into Xholl Ndel cut pET22b as described previously. 

Positive clones were identified by insert release after Xholl Ndel restriction digestion 

and 1 % agarose gel electrophoresis. DNA sequencing was carried out to verify correct 

Rho sequence replication (Cytomyx, Cambridge). A diagram of the plasmid construct is 

shown in Appendix 2d.

2.7. Protein expression transformations.

All plasmid constructs used for protein expression and purification were transformed 

into E. coli BL21(DE3)pLysS competent cells. 100 fil of the mixture was then plated on 

Luria agar plates containing 0.01% w/v ampicillin and 0.002 % w/v chloramphenicol 

incubated overnight at 37°C. The remaining 900 jtil was pelleted at 4000 rpm for 5 

minutes and then resuspended in Luria broth and plated on a second Luria agar plate. 

Single colonies were then used for protein expression and purification.

2.8. Protein Purification.

2.8.1. Purification of NusB, NusB FE22.23AA, NusE and NusE C50S.

After transformation a colony was picked from the plate and used to check for over 

expression of the relevant protein. The colony was used for the inoculation of 3 ml of 

Luria Broth containing 0.01% w/v ampicillin and 0.002 % w/v chloramphenicol . The 

culture was allowed to grow for 3.5 hours. 300 jliI of the culture was used to inoculate 

another 3 ml of Luria broth (containing 0.01% w/v ampicillin and 0.002% 

chloramphenical) and allowed to grow for 30 minutes. Expression from the T7 lac 

promoter was induced by the addition of 3 /ri 1MIPTG and the culture allowed to grow 

for 3 hours. The cells were then pelleted by centrifugation at 3500 rpm for 20 minutes.
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The supernatant was discarded, the cells resuspended in 20 pi PBS (137 mM NaCl, 2.7 

mM KC1, 10 mM NaaHPO^ 2 mM KH2PO4, pH 7.0), 7.5 jml Nupage 4x LDS sample 

buffer (Invitrogen) and 3 pi 10x sample reducing agent (Invitrogen) and then heated at 

70°C for 10 minutes. 10 pi was then loaded onto a 10 % Nupage pre-cast Bis-Tris 

polyacrylamide gel (Invitrogen) and run at 200 volts (V), 200 mA. A negative control 

with no IPTG induction was also used.

If over expression was observed, large scale purification was carried out by adding 500 

pi of a 3 ml culture grown for 3.5 hours, to 50 ml of Luria broth containing 0.01% w/v 

ampicillin and 0.002 % w/v chloramphenicol. This was grown overnight at 37°C. 10 ml 

of this culture was subsequently used to inoculate 750 ml of terrific broth containing 

0.01% w/v ampicillin and 0.002 % w/v chloramphenicol . This culture was then grown 

until the O.D .600 reading was between 0.8 and 1.0. Expression was then induced by 

addition of 750 pi of 1M IPTG and the cells allowed to grow at 37°C for 5 hours. The 

cells were then pelleted by centrifugation at 4000 rpm for 20 minutes, washed with 180 

mM NaH2P0 4 / Na2HP04,130 mM NaCl and pelleted at 4000 rpm for 20 minutes.

Pelleted cells were then resuspended in 100 ml of lysis buffer (50 mM NaH2P0 4 , 10 

mM Tris, 8 M Urea, 100 mM NaCl, 1 complete EDTA free protease inhibitor cocktail 

tablet, pH 6.0 ) and sonicated for 5, 1 minute bursts with 3 minute intervals on ice. Cell 

debris was removed by centrifugation at 18000 rpm at 4°C for 60 minutes and the 

supernatant incubated for 1 hour with 10 ml of pre-equilibrated Talon Resin (Clontech) 

at 4°C. The resin was then loaded into a gravity flow column (Sigma) and washed with 

20 ml lysis buffer. The bound protein was then eluted using elution buffer (50 mM
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NaH2PC>4 , 20 mM PIPES, 8 M Urea, 100 mM NaCl, pH 8.0). Stepwise dialysis, to 

renature the proteins, was carried out using 3.5 kDa MWCO Snakeskin Pleated dialysis 

tubing (Pierce), through 7 M, 5 M, 3 M, 1.5 M and 0M Urea, 200 mM NaCl, 50 mM 

Tris, pH 7.5). The protein was concentrated to 5 ml using a 10 kDa MWCO centrifugal 

filter tubes (Vivaspin) and loaded onto an XK (26/70) column packed with Superdex 75 

(Amersham Pharmacia Biotech) equilibrated in 50 mM Tris, 300 mM NaCl, ImM 

EDTA, ImM DTT pH7.5. Fractions containing NusB, NusB FE22.23AA, NusE or 

NusE C50S were concentrated using 3.5 kDa MWCO centrifugal filter tubes.

Protein concentrations were calculated using the following absorbance/concentration 

ratios and extinction coefficients: NusB = 12660 M^cm'1 (0.67 O.D.28o = 1 mg/ml); 

NusB FE22.23AA = 12660 M 'W  (0.68 O.D.28o = 1 mg/ml); NusE = 3840 M 'W  

(0.28 O.D .280 = lmg/ml) and NusE C50S = 3840 M 'W  (0.28 O.D.280 = 1 mg/ml).

2.8.2. Purification of GST-NusB.

Over expression of GST-NusB was assayed before commencing purification and cells 

were induced, grown, washed and pelleted as described before.

Pelleted cells were resuspended in 100 ml lysis buffer (300 mM NaCl, 50 mM Tris, 1 

mM EDTA, 1 mM DTT, 1 complete EDTA free protease inhibitor cocktail tablet, pH 

7.5) and sonicated 5 x 1  minute bursts with 3 minute intervals on ice. Cell debris was 

removed by centrifugation at 18000 rpm, 4°C for 60 minutes. The supernatant was then 

added to 10 ml of glutathione sepharose 4B fastflow resin (Amersham Pharmacia 

Biotech) in a gravity flow column (Bio-Rad) and the resin was washed with 5 x 20 ml of 

lysis buffer. GST-NusB was then eluted with 20 x 1.5 ml elution buffer (lysis buffer +
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20 mM glutathione (Sigma)) and pooled samples concentrated to 5 ml using a 30 kDa 

MWCO centrifugal filter tubes (Vivaspin).

An XK (26/70) column packed with Superdex 200 (Amersham Pharmacia Biotech), 

attached to an AKTA prime pump and fraction collector (Amersham Pharmacia 

Biotech), was then equilibrated with GF buffer (300 mM NaCl, 50 mM Tris, 1 mM 

EDTA, 1 mM DTT, pH 7.5) before loading of 5 ml of GST-NusB. GST NusB was then 

eluted in 4.5 ml fractions using GF buffer running at 1.5 ml/ min.

Pooled peak elution fractions were concentrated using 30 kDa MWCO centrifugal filter 

tubes (Vivaspin) and the concentration estimated using the absorbance/concentration 

ratios and extinction coefficient 53580 M"1cm'1(1.245 O.D.280 = 1 mg/ml).

2.8.3. Purification of co-expressed GST-NusB and NusE-His6.

Over expression of GST-NusB and NusE-His6 was checked as before. Cells were 

induced, grown, washed and pelleted as above.

Pelleted cells were resuspended in 100 ml lysis buffer (300 mM NaCl, 50 mM Tris, 1 

complete EDTA free protease inhibitor cocktail tablet, pH7.5) and sonicated for 5, 1 

minute bursts with 3 minute intervals on ice. Cell debris was removed by centrifugation 

at 18000 rpm, 4°C for 60 minutes. The supernatant was then incubated (rolling) with 10 

ml of Ni-NTA His»Bind Superflow resin (Novagen) for 1 hour at 4°C, allowing for the 

selection of His-tagged NusE. The resin/ supernatant mixture was then loaded onto a 

gravity-flow column (Sigma) and flow through discarded. The resin was washed with 20 

ml lysis buffer and then with 5 x 10 ml lysis buffer + 20 mM imidazole. Protein(s) were 

eluted with 20 x 1.5 ml lysis buffer + 500 mM imidazole. Pooled fractions were
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collected and dialysed (using Snakeskin Pleated Dialysis Tubing, Pierce) into a Tris/ 

NaCl buffer (300 mM NaCl, 50 mM Tris, 1 mM EDTA, 3 mM DTT, pH7.5) overnight 

at 4°C.

The dialysed protein solution was then circulated through 2 ml of Glutathione Sepharose 

4B resin (loaded on a gravity-flow column (Bio-Rad)), using a PI-pump (Amersham 

Pharmacia Biotech), for 4 hours at 4°C. This allowed for the selection of GST-tagged 

NusB.

GST-tag cleavage was then carried out by incubating the GST-NusB bound resin with 

75 fi\ (75U) PreScission protease in 1ml 50 mM Tris, 150 mM NaCl, 5mM DTT, 5mM 

EDTA buffer for 1 hour at room temperature. This fraction was collected and the resin 

then washed with 4 x 1ml Tris, NaCl, DTT, EDTA buffer to elute all traces of 

protein(s). Elution fractions should therefore contain GST-free NusB and His-tagged 

NusE.

The elution fractions were pooled and loaded onto an equilibrated XK (26/70) column 

packed with Superdex 200. Proteins were eluted using GF buffer (300 mM NaCl, 50 

mM Tris, 1 mM EDTA, 3 mM DTT, pH7.5), peak elution fractions were pooled and 

concentrated using a 5 kDa MWCO centrifugal filter tubes.

2.8.4. Purification of Rho termination factor.

Over expression of Rho was assayed by small scale culture and cells then induced, 

grown, washed and pelleted as before.



His-tag purification of Rho was carried out using Ni-NTA His#Bind Superflow resin. 

Pooled elution samples were then dialysed into a Tris/ NaCl buffer (50 mM NaCl, 50 

mM Tris, 1 mM EDTA, 3 mM DTT, pH7.5) overnight at 4°C.

The His-affinity purified protein was loaded onto a 5 ml HiTrap Heparin HP column 

(Amersham Pharmacia Biotech) using a Pl-pump. This utilises the nucleic acid binding 

properties of Rho. An AKTA Prime pump and fraction collector were then used to pump 

a linear 50 mM -  1M NaCl gradient in 30 minutes through the Heparin column. Rho 

was eluted at approximately 600 mM NaCl. Peak elution samples were pooled and 

concentrated to 5 ml, using 30 kDa MWCO centrifugal filter tubes, before loading onto 

an XK (26/70) Superdex 200 column. Gel filtration was carried out using GF buffer 

(300 mM NaCl, 50 mM Tris, 1 mM EDTA, 3 mM DTT, pH7.5) and peak elution 

samples pooled and concentrated using 30 kDa MWCO centrifugal filter tubes.

The concentration of purified Rho was determined using the absorbance/concentration 

ratio and extinction coefficient 8960 M ’c m 1 (0.135 O.D. = 1 mg/ml)

2.8.5. NusA, NusG and RNAPa.

Purified NusA, RNAPa and NusG were supplied by Dr Ian Taylor and Dr B. Beuth. 

(NIMR, London) Protein concentrations were determined using the following 

absorbance/concentration ratios and extinction coefficients:

NusA = 17900 M"1 cm'1 (0.45 O.D.28o = lmg/ml), NusG = 19060 M '1 cm'1 (0.69 O.D.28o 

= 1 mg/ml) and RNAPa = 17210 M '1 cm'1 (0.43 O.D.28q = 1 mg/ml)



2.9. Protein storage.

All proteins were stored in 50 % glycerol at -20°C

2.10. Electrospray ionisation mass spectroscopy of purified 
proteins.

All proteins submitted to electrospray ionisation mass spectroscopy (ESI MS) were 

diluted to a concentration of 2 pM in 0.1 % formic acid, 10 % acetonitrile (v/v). ESI MS 

(using a Platform Electrospray Mass Spectrometer, Micromass, Manchester, UK) was 

then carried out by Dr. S Howell and Dr. L Haire (NIMR, London).

2.11. Pulldown assays.

2.11.1. His-affinity pulldown.

250 pl of Talon Resin (Clontech) was washed twice with a PBS wash/binding buffer, 

pH 7.0. 50 pi of purified protein (NusA (98 pM), NusB (659 pM), NusE (163 pM) or 

RNA polymerase a-subunit (157 pM)) and 50 pi wash/binding buffer was added to the 

resin and allowed to incubate on a roller at 4°C for 1 hour. The resin was then washed 

twice with the wash/binding buffer before adding 50 pi of M. tuberculosis cell free 

extract and allowed to incubate for 1 hour at 4°C. Next the resin was washed twice with 

100 pi wash/binding buffer. The resin was then washed four times with 100 pi elution 

buffer (PBS, 250 mM Imidazole, pH 7.5).

Samples of all supernatant’s from the above steps were run on a 10% Bis-Tris pre-cast 

gels (Invitrogen). Supernatants were obtained by centrifugation at 13 000 rpm for 1 

minute. Supernatants were then carefully removed.
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2.11.2. Western blot analysis of pulldown assays.

Wash and elution samples were then probed with NusA, NusB, NusE or RNAPa 

antibodies. Wash and elution samples from each respective pulldown were run on 10% 

Bis-Tris pre-cast Gels at 200 V, 200 mA. Gels were then equilibrated in semi-dry 

transfer buffer (39 mM Glycine, 48 mM Tris Base, 0.037% SDS, 20% Methanol) for 15 

minutes and placed on PVDF Immobilon-P blotting membrane (Millipore), treated with 

methanol then semi-dry transfer buffer. Three layers of 3M filter paper (Millipore) were 

placed above and below the gel and membrane and placed on a semi-dry blotting unit 

(Biometra). Transfer was then run at 60 mA per gel for 1 hour. Once transfer was 

complete the membranes were air dried and transfer checked by staining with Ponceau S 

stain (Sigma). Membranes were then incubated in 0.1% TTBS (20 mM Tris, 0.5 M 

NaCl, 0.1 % Tween 20) containing 10% milk powder and 2 mM EDTA. Membranes 

were then washed in 0.1% TTBS (without milk powder) for 15 minutes, washed in 

water and incubated in a 1/250 dilution of primary antibody in 0.1% TTBS containing 

3% milk powder and 2 mM EDTA for 1 hour. Membranes were subsequently washed 

three times in 0.1% TTBS before incubating in a 1/250 dilution of anti-mouse secondary 

antibody, conjugated with horseradish peroxidase (HRP), (Dako) for 1 hour. Membranes 

were then washed four times in 0.1% TTBS, twice in IX TBS (20 mM Tris, 500 mM 

NaCl, pH 7.5) and once in PBS pH 7.2 -  7.4. Blots were lastly developed using (1 mM 

Di-aminobenzidine, 3 mM NiCl, 0.005% H2O2), rinsed in water and allowed to air dry.
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2.12. GST-NusB pulldowns and NusA, NusE and RNAPa 
antibody western-blotting.

2.12.1. GST-NusB pulldowns.

200 jUrl of glutathione sepharose 4B was equilibrated with 2 ml wash buffer (300 mM 

NaCl, 50 mM Tris, pH7.5). 100 fi\ of 3.2 mg/ml GST-NusB was incubated with the 

resin for 30 minutes at 4°C. 100 fi\ wash buffer was used as control. The resin was then 

centrifuged at 13000 rpm, 1 min, 4°C, the supernatant removed (flow through (F.T.)) 

and the resin washed 3 x 1 ml with wash buffer. 100 /zl of a 4.5 mg/ml M. tuberculosis 

CFE was then added to the resin and incubated for 30 minutes, 4°C. The resin was 

centrifuged at 13000 rpm, 1 min, 4°C, the supernatant removed and the resin washed 5 x 

1 ml wash buffer (Wash). 100 fi\ of elution buffer (wash buffer + 20 mM glutathione) 

was then added to the resin and incubated for 30 minutes, 4°C. The resin was 

subsequently pelleted (13000 rpm, 1 min, 4°C) and the elution fraction removed. This 

was repeated 3 times (with 5 minute incubations) and 20 fi\ of the F.T, wash and elution 

samples run on 10 % Bis-Tris pre-cast gels, at 200V, 200 mA, with wide-range ECL 

molecular weight markers (Amersham Pharmacia Biotech) and stained with Simply- 

Blue Safe stain (Invitrogen).

2.12.2. Western blots using NusA, NusE and RNAPa antibodies.

Blotting of pulldown samples was carried out as before. Blots were, however, developed 

using the ECL Plus chemiluminescent detection reagents (Amersham Pharmacia 

Biotech). 1:1000 and 1:5000 primary and secondary antibody dilutions respectively 

were used.
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After the last PBS wash the membrane was developed as per ECL Plus instructions 

(Amersham Pharmacia Biotech). The detection solution was drained off, the membrane 

wrapped in Saran wrap and placed in an X-ray film cassette. Autoradiography film 

(Kodak MXB NIF100) was placed on top of the membrane and exposed for 30 seconds. 

The film was then developed using an AGFA developer.

Preliminary development was done using ECL protein molecular weight markers 

(Amersham Pharmacia Biotech) and conjugating streptavidin-HRP to the markers using 

ECL Streptavidin-HRP conjugate (Amersham Pharmacia Biotech). After probing of the 

membrane with primary and secondary antibodies and subsequent 0.1 % TTBS washes 

(as above), the membrane was incubated in a 1:10000 dilution of Streptavidin HRP- 

conjugate for 1 hour at room temperature. The membrane was then washed 4 x 5  min 

0.1 % TTBS, 2 x 5  min 1 x TBS and lastly 2 x 15 min PBS. Membrane development 

was then carried out using the ECL Plus Detection kit.

2.13. Preparation of M. tuberculosis cell free extracts.

0.5 ml of an M. tuberculosis culture in logarithmic phase was used to inoculate 175 ml 

of Dubos broth (Difco) containing 0.2 % glycerol and 10 ml Dubos medium albumin 

(Difco). The culture was grown for 7 days at 37°C reaching an approximate O.D .600 of 

1.3.

Cells were harvested by centrifugation at 13000 rpm for 30 min. Cells were washed 

once with 150 ml PBS (137 mM Nacl, 2.7 mM KCL, 10 mM Na2HP04, pH 7.0) and 

centrifuged at 10000 rpm for 30 min. The supematent was discarded and cells washed 

twice with 2 ml PBS followed by centrifugation at 10000 rpm for 30 min. The pelleted
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cells were resuspended in 500 pi PBS containing 1 mM Pefabloc (Roche) and an 

equivalent volume of 150 -  212 pm glass beads (Sigma) added. Cells were disrupted by 

beadbeating, using a ribolyser (Hybaid), 3 x 1  min with 1 min intervals on ice, at the 

4200 setting. Centrifugation was carried out at 13000 rpm for 15 min, the supematent 

removed and centrifuged for a further 5 min at 13000 rpm. Lastly the supematent was 

filtered through a 0.22 pm centrifugal filter (Amicon) by centrifugation at 13000 rpm 

for 15 min.

Protein concentration was then estimated using the BCA protein assay kit (Pierce) as per 

manufacturer instructions.

2.14. Co-refolding and His-affinity pulldowns of NusB/ NusE 
and FE22.23AA/ NusE mixtures.

2.14.1. Purification and refolding of NusB/ FE22.23AA and NusE.

His-tagged NusB and NusB FE22.23AA were purified as described in 2.8.1. The N- 

terminal His-tags were removed by thrombin digestion. 12.7 pg (48U) of thrombin 

(Haemotologic Technologies, Inc.) was added per mg of protein and incubated 

overnight at 4°C. The reaction was stopped by the addition of 10 pi PPack inhibitor 

(Calbiochem) per 40U of thrombin used and left at room temperature for 30 minutes. 

The protein solution was dialysed into 300 mM NaCl/ 50 mM Tris, pH 7.5 and the free 

his-tag then removed by passing the protein solution through 125 pi of Talon his-affinity 

resin (Clontech).

NusE was affinity purified, as above, but not renatured. 30 pM NusB and 10 pM NusE 

were placed in 3.5 kDa MWCO Slide-a-lyser cassettes (Pierce) and refolded by stepwise
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dialysis through 8M, 7M, 5M, 3M, 1.5M Urea, 300mM NaCl, 50 mM Tris, pH 7.5 and 

final dialysis into 300mM NaCl, 50 mM Tris pH 7.5. Each dialysis step was carried out 

for two hours at 4°C.

His-tagged NusE was then selected for by incubating the NusB or FE22.23AA and 

NusE mixture with Talon his-affinity resin for 30 min, 4°C. The supernatant was 

removed and the resin washed 10 x 1 ml 300mM NaCl, 50 mM Tris, 20 mM imidazole, 

pH 7.5 (Wash). Finally NusE was eluted with 3 x 100 /z 1 elution buffer (300mM NaCl, 

50 mM Tris, 500 mM imidazole, pH 7.5).

Wash and elution samples were separated on 16 % Tris-glycine pre-cast gels 

(Invitrogen) and stained with Simply-Blue safe stain.

2.15. Dynamic light scattering.

Dynamic light scattering was carried out using a DynaPro-801 dynamic light scattering 

machine (DynaPro). Protein samples were diluted to 1 mg/ml and measurements carried 

out using a 10 mm path-length quartz cuvet.

2.16. Circular dichroism of purified proteins.

Proteins were dialysed into 20 mM Tris, 300 mM NaCl, pH 7.5 and diluted to 9 /zM for 

far-UV circular dichroism (CD) and to 1 mg/ml for near-UV CD. Spectra were recorded 

using a Jasco-J715 Spectropolarimeter. Far-UV CD was carried out in a quartz-cuvet 

with a path-length of 1 mm and near-UV CD in a quartz cuvet with a path-length of 10 

mm. Wavelengths 260 nm -  190 nm were used for far-UV CD and 340 nm -  255 nm for 

near-UV CD. The scan rate was set at 100 nm/min, time constant 0.25 s and the spectral
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bandwidth 2 nm. Final spectra are the average of fifteen scans. Data analysis was carried

out using Specproc (Dr. S. Martin, NIMR, London).

2.17. Sedimentation equilibrium ultracentrifugation .

Sedimentation equilibrium ultracentrifugation was carried out using a Beckman Optima 

XL-A analytical ultracentrifuge and an AN-60 Ti rotor. Sample concentrations ranging 

from 0.25 mg/ml to 1.5 mg/ml were prepared and loaded into a 6-channel centre piece 

and centrifugation carried out using the following speed, delay and absorbance scan

settings:

NusB and NusB FE22.23AA NusG
18000 rpm 24 hours 1 scan 280 nm 14000 rpm 20 hours 1 scan 280 nm
18000 rpm 2 hours 1 scan 280 nm 14000 rpm 2 hours 1 scan 280 nm
18000 rpm 2 hours 1 scan 280 nm 14000 rpm 2 hours 1 scan 280 nm
22000 rpm 15 hours 1 scan 280 nm 17000 rpm 16 hours 1 scan 280 nm
22000 rpm 2 hours 1 scan 280 nm 17000 rpm 2 hours 1 scan 280 nm
22000 rpm 2 hours 1 scan 280 nm 17000 rpm 2 hours 1 scan 280 nm
32000 rpm 15 hours 1 scan 280 nm 21000 rpm 16 hours 1 scan 280 nm
32000 rpm 2 hours 1 scan 280 nm 21000 rpm 2 hours 1 scan 280 nm
32000 rpm 2 hours 1 scan 280 nm 21000 rpm 2 hours 1 scan 280 nm

42000 rpm 18 hours 1 scan 280 nm

2.18. Analytical gel filtration.

Analytical gel filtration was carried out using a Jasco PU-1580 HPLC pump, a Jasco 

UV-1575 UV/Vis detector and a Jasco UV-970M 4X UV detector. A calibrated 

Superdex 200 HR 10/30 pre-packed column (Amersham Pharmacia Biotech) was used 

for NusB and NusB FE22.23AA gel filtration and a Superose 6 HR 10/30 pre-packed 

column (Amersham Pharmacia Biotech) was used for Rho, NusA and NusG gel 

filtration. Sample volumes of 100 /xl were loaded onto columns using concentrations of 

18.5 fxM Rho, 6.6 fxM NusA, 15.4 fxM NusG, 27 fxM NusB FE22.23AA and
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concentrations of 0.26 fiM to 27 fiM  for NusB. A flow rate of 0.4 ml/min was used for 

all separations. All analysis was done using Borwin Chromatography software.

2.19. Limited proteolysis of NusG.

Trypsin and Chymotrypsin (Promega) were used for limited proteolysis of NusG. 

Trypsin or chymotrypsin (92 ng/ml) was added to 50 /d of 2.3 jLig//d of NusG to give a 

1:250 dilution of the enzyme. Proteolysis was carried out at room temperature and 8 /d 

of reaction mixture removed at time points 0, 2, 5, 10, 20, 40 and 70 minutes. Cleavage 

was stopped with the addition of 1 /d 20 mM Pefabloc (Roche) and 1 /d of Protector 

(Roche). Proteolytic products were then run on 10 % Bis-Tris pre-cast gels with low 

range molecular weight markers (Sigma) and stained with Simply Blue safe stain.

2.20. N-tenninal sequencing of proteolytic products.

Protein samples for N-terminal sequencing were resolved on 10 % pre-cast gels and then 

blotted onto PVDF membrane paper (ProBlot). The membrane was initially treated with 

100 % methanol, followed by incubation with blotting buffer (10 mM CAPS, pH 11.0, 

10 % methanol). The gel was also incubated in blotting buffer for five minutes prior to 

assembly of the blotting sandwich. Blotting was then carried using a Biometra blotter at 

60 mA/ gel, 5 -  10 V for 1 hour. Membranes were then stained with 0.1 % Coomassie 

Blue R-250, 40 % methanol, 1 % acetic acid until bands appeared and then destained 

using 50 % methanol. Band sequencing was then carried out by Babraham Biosciences 

Technologies, Babraham, U.K.
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2.21. Amino acid sequence alignment of NusG.

Amino acid sequence alignment of M. tuberculosis, A. aeolicus and E. coli NusG was 

carried out using the T-coffee program (www.chembnet.org/software/Tcoffee.html - 

Notredame et al., 2000).

2.22. M. tuberculosis NusG secondary structure prediction.

M. tuberculosis NusG secondary structure prediction was carried out using the PSI- 

Predict program (http://bioinf.cs.ucl.ac.uk/psipred - Jones, 1999).
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Chapter 3

Biochemical and Biophysical Techniques used in

this Study
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3.1. Sedimentation equilibrium ultracentrifugation.

Analytical ultracentrifugation is an important technique for the study of the 

oligomerisation state of macromolecules. It allows for molecular weight determination, 

homogeneity analysis of a solution, complex size determination and the calculation of 

the strength of interactions within these complexes. This makes the method invaluable 

in initial characterisation of macromoleculer complexes and the components of these 

complexes. Unlike dynamic light scattering and size exclusion chromatography (other 

methods commonly used for molecular weight size determination), the measurement of 

molecular weight by sedimentation equilibrium ultracentrifugation is independent of the 

shape of the molecule. Molecular shape is unaccounted for in dynamic light scattering 

and size exclusion chromatography as the parameter measured by these techniques is 

related to the translational diffusion coefficient {Dt) rather than molecular weight itself. 

D j is correlated to molecular weight however it is directly related to the frictional 

coefficient,/through equation 1.

where R = Gas constant,
T = temperature (Kelvin)
Na = Avogadro’s number

The frictional coefficient (/) is indicative of the ability of the molecule to undergo 

translational motion, affected by both molecular weight and shape and as Dt is directly 

dependent on /, it is obvious as to why molecular weight determination by dynamic light

scattering and size exclusion chromatography are shape-dependent (Cantor and 

Schimmel, 1980).
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Sedimentation equilibrium ultracentrifugation is therefore used for molecular weight 

determination independent of molecule shape. During centrifugation two processes 

occur, the first being sedimentation towards the bottom of the cell as a result of a 

gravitational force (dependent on the buoyant molecular weight of the molecule) and the 

second being diffusion opposing the establishment of the concentration gradient. Both of 

these forces are accounted for in the concept of flux (the rate of flow of molecules 

across a given surface) and shown in equation 2.

where 7, = flux for component i
dUi/br is a generalised gradient of chemical potential,
Li is conductivity (and is related to /  and contributes to both flow due to sedimentation and 
diffusion)
r -  radial distance from the centre of rotation 

The movement of molecules within an ultracentrifuge cell can then be shown by

equation 3:

J =
M (\-v p )

W2r C -
' RT  " ' dC '

N * f  \ L̂ /J j

where M = molecular weight
v = partial specific volume 
p is the solute density 
co is the angular velocity

[M(l-vp)/N/\f] is the term for the sedimentation coefficient (S) and [RT/NaJ] corresponds 

to the translational diffusion coefficient (D t) and t/, has been replaced by the 

concentration, C. At low rotor speeds (as used in sedimentation equilibrium 

ultracentrifugation), back diffusion, as a result of the chemical potential gradient, 

balances movement due to the gravitational field until equilibrium is reached. This
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results in an exponential increase in concentration with increasing radial distance (See 

Figure 10). At equilibrium net movement within the cell becomes zero at all points (i.e. 

7= 0).

Diffusion Sedimentation ^

< >

Radius
Top Bottom

Figure 10 : Diffusion and sedimentation forces occurring within an
ultracentrifugation cell.
The diagram shows the relative strength and direction of balanced diffusion and 
sedimentation forces occurring during sedimentation equilibrium ultracentrifugation. At 
equilibrium, the concentration distribution of the solute is a squared exponential. 
Adapted from (G. Ralston, Introduction to Analytical Ultracentrifugation. Beckman).

Equation 3 can thus be written as :

meaning that the N /f  (relating to molecular shape) is removed and the concentration 

gradient of the molecule is simply related to molecular weight and is completely 

independent of shape. Equation 4 is then rearranged to form equation 5 and integration 

carried out between Co and Cx and ro and rx giving equations 6a and 6b:
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In' c '
\  u y

Mco2( \ - v p ) (  2 2\ s
=  2R T ^  ~  ° r

M f l ^ d - V j O )  2  2

Cx = C0e 2RT ‘ ° (6b)

The spectrophotometer of the Beckman XL-A is able to measure O.D. at a set 

wavelength at numerous points in the cell between ro and rx. Absorbance can then 

replace C in equation 6b based on the Beer-Lambert law :

Ax = exC J  (7)

The molecular weight is determined by least-squares fitting of equation 6b between ro 

and rx and solving for M and Ao. Data analysis is carried out using Origin Optima XL-A/ 

XL-I Data Analysis software with partial specific volumes (calculated from the amino 

acid content of the protein) and solvent densities determined using Sednterp software. 

Ideally offset values (non-sedimenting material causing a no-zero baseline) included in 

data analysis should be as close to zero as possible. In the case of polymers, data will 

not ideally fit a monomer model and dissociation constants can thus be determined for 

monomer -  polymer equilibrium (Cantor and Schimmel, 1980; G. Ralston, Introduction 

to Analytical Ultracentrifugation. Beckman; Reviewed in Laue and Stafford, 1999; 

Schuster and Toedt, 1996).
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3.2. Dynamic light scattering.

Dynamic Light scattering (DLS) is useful in the characterisation of molecular weight or 

conformation of a protein as well as the interaction or aggregation of protein molecules. 

It is based on the principle of constructive and destructive interference of transmitted 

light as a result of the Brownian motion of the molecules. The technique utilises a laser 

beam (monochromatic, single beam of light) directed through an aqueous protein 

preparation.

In static light scattering (SLS), the absolute intensity of the scattered light is used to 

estimate the molecular weights of particles. Scattering by a single molecule will result in 

reradiation of the beam of light in all directions and the intensity of this light, in planes 

normal to the plane of polarization, can be predicted by the Rayleigh scattering relation:

, _ 4 ^ 2M 2 sin2 0(dn/dc)210
S ' °  ~  K T  2  1 2 2N a a  r

where 0 = the angle between the incident light and the direction o f  scatter 
M  = molecular mass 
dn/dc = refractive index increment 
I o  = intensity of the incident light 
Na= Avogadro’s Number 
X = wavelength o f the incident light 
R = distance of molecule to the point o f detection

When numerous particles are illuminated by a laser beam, the intensity of the scattered 

light at the detector is given by the square of the vector sum of the light reradiated from 

each particle.

This method is useful for the calculation of the molecular weight of a given molecule or 

solution of molecules as well as the radius of gyration of a molecule provided the

94



particle is big enough. It, however, requires information such as dn/dc and a very 

accurate value for the concentration of the solution.

DLS negates the need for such information through the use of the movement of the 

molecules in solution, by Brownian motion. DLS utilises the resultant fluctuations in 

intensity and the time taken for these fluctuations to occur, to estimate the diffusion 

constant (D t) of the molecule. During DLS, the scattered light (photon count) is 

detected by an avalanche photo diode (APD) and information regarding the time 

dependence of the intensity fluctuations is determined. Time dependence of these 

fluctuations is determined using a mathematical procedure known as autocorrelation. 

Autocorrelation involves the multiplication of the signal from the APD by itself, but 

delayed by a delay time x, and summed and averaged until a statistically relevant 

number of intensity fluctuations have been obtained. This gives rise to the intensity 

autocorrelation function, G2(x) as shown in equation 9 :

G2(T) = j l ( t ) I ( t  + T )d t/N  (9)

where I(t) = Intensity at time t
I(t+T) = Intensity at time t + delay time t
N  = background photon count (measurement o f photon count of solvent only)

It can be been shown that G(x) decays exponentially with x if a single molecular species is 

responsible for the scattering.

The intensity autocorrelation coefficient can then be converted to an amplitude 

autocorrelation coefficient using equation 10:

G2(t,t + r) = l + Gl(t,t + r) |2 (10)
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Molecules undergoing simple Brownian motion will then give equation (11):

G' (r) = 1 + exp(-2DTq 2r) (11)

where G(x) = autocorrelation function
Dt = translational diffusion coefficient 
i  = decay time
And where q is defined by the wave vector:

Q = (12)

where 6 = the scattering angle
n the refractive index of the solvent 
X = the wavelength of the incident radiation
and the translational diffusion coefficient of the molecule is given by Stokes-Einstein equation :

where kB = Boltzmann constant 
T  = temperature (Kelvin) 
r| = the viscosity o f the solvent
Rh = the hydrodynamic radius of the scattering molecule 

DLS thus has the advantage over SLS in that solution concentrations and refractive

index increments do not have to be determined when estimating the hydrodynamic

radius of the experimental molecule.

The calculated correlation functions can then be used to fit the following function :

and a plot of InG (x) vs. x made and Dt estimated from the slope of this graph. As Dt is 

now known, Rh can be calculated based on equation 13, and molecular weights

(13)

ln|G'(T)| = -2D T9 2T (14)
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estimated using relationships between Rh s and molecular weights of well characterised 

proteins. If the slope is not a straight line it is an indication of polydispersity (a mixture 

of different sized particles).

Dynamic light scattering is therefore useful for the estimation of molecular weights of 

monomeric, polymeric or aggregated protein molecules. As the shape of the protein 

molecules is incorporated in Dt, dynamic light scattering also allows for the prediction 

of compact or loosely packed proteins as the calculated molecular weights will not 

match the actual molecular weights. For example a tightly packed protein will have a 

lower than actual predicted molecular weight whereas a loosely packed or extended 

protein will have a higher than actual predicted molecular weight. The shape 

dependence of Dt is shown by the relation of the frictional coefficient (/) with the 

diffusion coefficient seen in equation 1:

where f=6mjRH (15) and RH is the hydrodynamic radius of the molecule

A ratio of f/fo  (frictional ratio), where fo  = 6wt\Ro (Ro is the radius of a sphere), is thus the 

difference in shape of the experimentally determined molecule from that of a regular 

sphere. These can however only be determined if the shape and radius of the molecule 

are known (DvnaPro MS and MSTC : Theory and Data Interpretation. 1998; Coligan et 

al., 2003; van Holde et al., 1998).
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3.3. Circular dichroism.

Circular dichroism is an important technique useful for the study of protein secondary 

structure, conformational changes to proteins in changing extrinsic environments, 

protein denaturation and protein-ligand interactions. Circular dichroism (CD) utilises 

circular polarised light (light where the magnitude of the electric vector remains 

constant while its direction changes). Circular polarised light can be produced by the 

superimposition of two plane-polarised beams that have the same wavelengths and 

amplitudes but differ in phase by a quarter of a wavelength and by 90° in the plane of 

polarisation. The electric vector thus takes on the shape of a helix which can either be 

left or right handed. In linear polarized light, the direction of the electric vector is 

constant where as the magnitude varies.

Optical rotary dispersion spectroscopy (ORD) was the polarimetry technique which 

initially used plane polarised light. ORD measures the ability of an asymmetric or chiral 

molecule to cause a change in the plane of the polarised light due to changes in the 

differential refractive indices of the left and right-handed circular polarised light without 

absorption being required. The angle of rotation (0jJ of the resultant beam is measured. 

ORD is useful for the determination of the chirality of molecules.

Circular dichroism then became the technique of choice as more information could be 

obtained from the effects of chiral molecules on circular polarised light. CD is an 

investigation of the difference in absorption of the left and right-handed circular 

polarised light. Proteins are made up of highly ordered structures, such as a-helices and 

p-sheets and the asymmetric orientation of the peptide bonds in these ordered structures
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leads to differences in absorption of the right and left-handed polarised light. This 

occurs mainly in the far-UV (260 -  190 nm). The amino acids tyrosine, tryptophan and 

phenylalanine are the major chromophores resulting in changes in circular polarised 

light absorption in the near-UV (340 -  255 nm) range. These differences in absorption 

cause the resultant beam (a recombination of both left and right-handed emergent 

beams) to form an ellipse. CD spectropolarimeters are capable of measuring this 

difference in absorption and hence the ellipticity (0 -  ratio of the magnitudes of the 

major and minor axes of the ellipse) of the resultant elliptically polarised light.

As CD is an absorbance measurement, it is based on the Beer-Lambert law:

where A = absorbance
eM = molar extinction coefficient (M'1 cm'1)
C = protein concentration (M)
I = path length (cm)

The CD version of this equation is shown below:

where AeM = (euft - Smght) = the molar CD extinction coefficient

The difference in absorption is frequently presented as 0 by commercial 

spectropolarimeters which is related to circular dichroism by equation 18 :

CD of proteins is measured in two regions, the near and the far UV regions. Near-UV 

CD (Wavelengths 340 nm -  255 nm) is useful for determining whether a protein folds

A - e M .Cl (16)

M  = 613298 (18)
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into a 3-dimensional structure or simply retains its secondary structure. Near-UV CD is 

determined by the amino-acids Phe, Tyr, Trp and Cys and all four give rise to specific 

peaks at defined wavelengths. Phe gives rise to peaks in the 255 -  270 nm region, Tyr 

gives rise to peaks in the 275 -  282 nm region and Trp gives rise to peaks above 280. 

The intensity of the peaks is determined by the immobility or interaction of these 

residues with neighbouring residues with both immobility and interaction resulting in 

higher intensities. This thus allows for the prediction of the presence of tertiary structure

Far-UV CD is an important technique for the determination of a proteins secondary 

structure content. The spectra determined by peptide bond absorption are purely 

dependent on the presence of a-helices, P-sheets and random coils or unstructured 

regions. The spectra of all helical proteins show intense negative peaks at positions 208 

nm and 222 nm and an intense positive peak between 191 nm and 193 nm. P-sheet 

containing proteins usually show a single negative peak in the 210 nm -  225 nm region 

and a positive peak in the 190 nm -  200 nm region however the intensities are lower 

than those shown by a-helices. p-sheets are in fact better defined at very short 

wavelengths (below 180 nm). Unstructured or denatured peptides have a strong negative 

peak in the 195 nm -  200 nm region and a weaker band between 215 nm and 230 nm. 

Proteins containing both a-helices and P-sheets have spectra dominated by the a-helical 

components and show peaks in the 190 nm -  195 nm, 208 nm and 222 nm regions. A 

broad peak extending from 210 nm to 220 nm may also be seen as a result of the 

combined effects of the a-helices and p-sheets (Martin and Bayley, 2002; van Holde et 

a l, 1998; Wilson and Walker, 1994).
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3.4. Electrospray mass spectroscopy.

Electrospray ionisation mass spectroscopy is a useful technique for verification of 

molecular masses of purified proteins. The technique involves the transfer of the protein 

molecule into gas phase via electrospray ionization (ESI). The sample is first dissolved 

in a polar solvent and then forced through a narrow capillary, the end of which is under 

a strong electric field. This results in the production of highly charged droplets. As the 

droplets move towards the detector, they undergo solvent evaporation resulting in 

diminishing droplet size and subsequent charge density increase. Once all solvent has 

been removed, the intact, charged proteins pass through a sampling cone, into an 

intermediate vacuum region and onto the mass analyser under high vacuum. ESI MS 

results in proteins gaining multiple positive charges on ionisation. The majority of the 

nitrogen ions in the protein backbone can be protonated as can the amine groups in 

lysine and arginine. As each protein molecule differs in the number of added protons, 

the function of the mass analyser is to resolve the mass/ charge (m/Z) and measure the 

intensities for each set of differently charged protein molecules.

The data is then plotted in the form of intensity vs. m/Z. Molecular mass (M) can then 

be determined using the equation:

m /Z  = —  +n? ±— (19)

where m/Z = mass/ charge
n = the integer number of charges on the ions 
H = the mass of a proton (1.008 Da)
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As n is not usually known, simultaneous equations can be used to determine the number 

of charges by assuming the peaks (m/Z of differently charged protein molecules) are 

separated by a single charge, n can thus be defined by the equation:

„ =  " / Z f r  +  P - g *  (20)
m / Z(n) -  m / Z(n + \)

A number average can thus be determined for n by solving for all peaks and the 

molecular mass of the protein then calculated by substitution of n back into equation 19.

(Wilm, 2000, www.astbury.leeds.ac.uk/Facil/MStut/mstutorial.htm).

3.5. N-terminal sequencing.

Edman sequencing (or degradation) is used for the sequencing of peptides and proteins 

from their N-terminal end. It requires the modification of the N-terminal amino acid by 

phenylisothiocyanate (PITC) which is subsequently removed by weak acid hydrolysis. 

The released 2-anilino-5-thiazolinone amino acid derivative is then converted to a 

phenylthiohydantoin amino acid and HPLC analysis used for amino acid identification. 

The single amino acid shortened polypeptide now contains a free N-terminus which can 

then be modified by PITC and the cyclical sequencing reaction can then continue 

(Coligan et a l , 2003).
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Chapter 4

Results -

The Antitermination Complex and NusB and NusE
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4.1. The antitermination complex in M. tuberculosis.

4.1.1. Purification of hexa-his-N-terminally tagged NusA, NusB, NusE 
and aRNAP.

All proteins were purified to homogeneity as described in the materials and methods 

(See appendix 2 for general characteristics of cloned and purified proteins).

4.1.2. His-affinity pulldowns.

Studies in both the X phage and E. coli have successfully revealed some of the 

components of antitermination complexes. Mason and Greenblatt (1991) reconstituted 

transcription reactions using purified RNA polymerase holoenzyme, the X N protein, 

NusA, NusB, NusE, NusG and the nut containing RNA and all were subsequently 

isolated as a single, stable complex using High Performance Liquid Chromatography 

(HPLC) gel filtration. A model for the order of assembly was also proposed where S10 

may initially be interacting weakly with the RNA polymerase. As a70 is released early 

on in chain elongation NusA binds tightly to the polymerase and NusG may also interact 

weakly with the polymerase. After transcription of the nut site, N binds NusA, NusA, 

NusE and NusG bind the polymerase tightly and NusE and NusB interact. This results in 

a stable, antitermination complex on the surface of the RNA polymerase (Mason and 

Greenblatt, 1991). However, an E. coli rm  antitermination complex consisting of 

RNAP, Rho, NusA, NusB, NusE and NusG was not able to transcribe through a Rho- 

dependent terminator indicating the complex is not fully functional. Readthrough could 

only be achieved when the above complex was allowed to form in the presence of E. 

coli cell free extracts. This indicated the need for additional unidentified factors for
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accurate and efficient antitermination (Squires et al., 1993). Four such factors may have 

been identified, the S4, L3, L4 and L I3 ribosomal proteins (Torres et al., 2001). The 

addition of these proteins to in vitro antitermination complexes, described above, 

showed high rates of read-through with the majority of the effect as a result of S4. The 

S4 protein does in fact show properties very similar to that of NusA and binds tightly to 

the RNA polymerase (Torres et al., 2001). This is thus a strong indication that ribosomal 

protein S4 is an additional antitermination factor.

With these results in mind, experiments were set up to isolate and identify components 

of the antitermination complex from M. tuberculosis. It has not yet been established 

whether antitermination is a regulatory mechanism used in M. tuberculosis, and if so, 

whether the same factors are involved as in X and E. coli antitermination and whether 

they are capable of forming similar complexes to those found in X and E. coli. Initial 

aims of the project were thus the characterisation of the components of the 

antitermination complex in M. tuberculosis using affinity pulldown experiments.

Affinity pulldown assays are techniques used to identify protein -  protein interactions 

by pulling proteins or complexes of proteins from a cell free extract (CFE) via a tagged 

protein tightly bound to an affinity resin. This is commonly done using a nickel or cobalt 

based resin in the case of His-tagged proteins or glutathione sepharose in the case of 

GST-tagged proteins. The tagged protein (defined as the “bait” protein) is attached to 

the affinity resin and CFE from the relevant organism then passed through the “bait” 

protein primed affinity column. Proteins in the CFE interacting with the “bait” protein 

remain on the column until elution of the “bait” protein. The presence of interacting
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proteins can then be detected by a visualization technique after electrophoretic 

separation on an SDS-polyacrylamide gel.

Affinity pulldown experiments were carried out using N-terminally His6-tagged NusA, 

NusB, NusE, and the a-subunit of RNA polymerase (aRNAP). These five proteins were 

individually attached to a His-affinity resin, and cell free extract (CFE) then applied to 

the Nus or aRNAP primed columns. Those factors present in the CFE capable of 

binding any of the Nus factors or aRNAP should have subsequently been retained on the 

column and then eluted. Samples are applied to denaturing SDS-acrylamide gels, 

allowing for separation of isolated protein complexes, and the “pulled out” proteins 

identified using MALDI (Matrix Assisted Laser Desorption/ Ionisation) MS or western 

blotting. Negative control experiments are run in parallel where no tagged protein is 

added to the column prior to the loading of CFE. This is thus indicative of those proteins 

with affinities for the resin only.

The results of these experiments are shown in Figure 11. Unfortunately both the 

experimental and negative control gels immediately indicate the non-specificity of His- 

affinity resins. A considerable number of proteins within the M. tuberculosis CFE have 

affinities for the resin and thus are retained on the column regardless of the “bait” 

protein. They are then eluted along with the His-tagged Nus or aRNAP protein along 

with proteins that may have made biologically relevant contacts with the Nus factors or 

RNAPa. Initially it was hoped that the technique would provide sufficient and specific 

resolution of “pulled out” complexes and that identifications could be made using 

MALDI MS. However due to the high number of bands present in elution samples, this 

was not possible (See Figure 11).
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Antibodies to NusA, NusB, NusE, and aRNAP, raised in mice (Mr B. Butler, NIMR, 

London), were then used to probe Nus or aRNAP primed column eluants for any of the 

Nus proteins or aRNAP. This would at least provide verification of interactions between 

the predicted components of the M. tuberculosis antitermination complex. This however 

could also not be achieved due to the low specificity or cross-reactivity of the antibodies 

used (See Figure 11). Some bands were seen in the negative control indicating the 

binding of antibodies to proteins with affinities for the resin. Both NusA and RNAPa 

seem to bind to the resin as they are also present in all other pulldowns. It is also likely 

that the P' RNAP subunit would bind the resin due to the presence of a Zn2+ binding site. 

The NusB and NusE antibodies also appear to cross react with proteins which have 

affinities for the resin. The NusE antibody cross-reacts with a ~ 45 kDa protein in all 

pulldowns (including the negative control) and a ~ 28 kDa protein in the NusA 

pulldown. Interestingly the NusE pulldown pulls out a protein corresponding to the 

NusB size (indicted by NusB? In Figure 11). However the band is not recognised by the 

NusB antibody in the western blot, perhaps indicating a lack of specificity of the 

antibody. The NusB antibody binds a high molecular weight protein in the negative 

control and the NusE pulldown but seems to show non-specificity in the NusA and 

RNAPa pulldowns.

107



kDa

A : Negative Control
Pulldown Elution

220.0 1

97.0 I
66.0
45.0 {

30.0 (L I

20.1 y
14.3 (

B : NusA
Pulldown Elution

Western

220

97.0
66.0

45.0

30.0

20.1 

14.3

?

kDa

220.0

97.0
220.0 <

97.0 <
66.0 B 66.0

45.0
45.0 * ____ — NusA

30.0
30.0

20.1
20.1

14.3 14.3

NusA NusB NusE RNAPa

Western

?

?

NusB NusE RNAPa

kDa

C : NusB
Pulldown Elution

220.0
97.0
66.0
45.0

30.0

20.1 

14.3

S
u

220.0
97.0
66.0
45.0

30.0

^  NusB 20.1  

14.3

Western

NusA NusE RNAPa

108



D : NusE
Pulldown Elutions Western

220.0

£
220.0

97.0
66.0
45.0

30.0

?NusB 20.1 
~ NusE

14.3

— <4

NusA NusB RNAPa

kDa

RNAPa
Pulldown Elutions

2 2 0 . 0 2 2 0 .0

97.0 9 7 .0
66.0 6 6 .0

45.0 RNAPa 45 0

30.0 y 30.0

20.1 y 20.1

14.3 y 14.3

Western

NusA NusB NusE

Figure 11 : His-affinity Pulldowns
N-terminally His tagged affinity pulldowns using NusA, NusB, NusE 
and RNAPa and Western Blots using mouse derived antibodies 
against NusA, NusB, NusE and RNAPa. (A) Negative Control 
Pulldown. (B) NusA Pulldown. (C) NusB Pulldown. (D) NusE 
Pulldown. (E) RNAPa Pulldown. Both NusA and RNAPa appear to 
stick to the resin as bands correspond to their sizes can be seen in all 
elution lanes. They are indicated by a <4- .  Bands found at unusual 
sizes are indicated by a ?. The band corresponding to the NusB size 
in the NusE pulldown is indicated by ?NusB.
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4.1.3. Cloning, expression and purification of GST N-terminally 
tagged NusB.

As His affinity pulldowns proved unsuccessful, it was decided to N-terminally tag NusB 

with glutathione-S-transferase (GST) and carry out similar pulldown experiments using 

a glutathione-sepharose resin. Glutathione-sepharose is more frequently employed in 

pulldown experiments.

NusB was cloned into a GST containing vector, pGEX-4T-l resulting in an N- 

terminally tagged NusB. The resulting construct was then transformed into E. coli 

BL21(DE3)/?£y.sS cells. GST-NusB over expressed very well and proved to be soluble. 

This is in contrast to the N-terminally His-tagged form of NusB which was highly 

insoluble. The over expressed protein was then easily purified using a 2 step procedure. 

A glutathione-sepharose affinity column was used to select for the GST-tagged NusB. 

This gave a high level of purity (see Figure 12) however size exclusion chromatography 

was required to remove a few remaining contaminants. After purification concentrations 

in the region of 7 mg/ml (estimated using an extinction coefficient of 53580 M '1 cm'1 at 

an absorbance of 280 nm) were obtained and a yield of 30 mg/1.5 L of culture. This was 

suitable for the affinity pulldowns to be carried out.

4.1.4. Glutathione sepharose affinity pulldowns.

Purified GST-NusB was used in glutathione sepharose affinity pulldowns. The 

technique is identical to that of His-affinity pulldowns except GST-tagged protein is 

immobilized on a column of glutathione-sepharose. M. tuberculosis CFE is then passed 

through the column and the GST-tagged protein along with bound proteins are eluted
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with glutathione. Thus any proteins in the M. tuberculosis CFE making contacts with 

NusB should be eluted with the tagged NusB.

In this case no bands can be seen in the elution lanes of either the experimental or 

negative control pulldown experiments (See Figure 13). This may be due to the fact that 

small volumes of M. tuberculosis culture are used for producing CFE (between 100 and 

400 ml). The resulting CFE would thus contain low concentrations of proteins and 

would not be seen after Coomassie staining. It was thus not possible to identify proteins 

pulled out by the NusB using MALDI MS as previously hoped. Elution samples from 

the GST-NusB and negative control pulldown experiments were analysed by western 

blotting with antibodies against NusA, NusE and aRNAP. This was again carried out in 

an attempt to verify interactions known to occur in the X and E. coli systems. No bands 

were seen with neither the NusA antibodies nor the aRNAP antibodies indicating there 

are no significant interactions between NusB and these two proteins. However, NusE 

antibodies showed a definite band at the size corresponding to NusE thus indicating that 

NusE had been pulled from the CFE by NusB. No other bands could be seen indicating 

the specificity of NusB for NusE. The negative control (where no GST-NusB was 

loaded onto the glutathione-sepharose column) showed no band confirming the 

interaction of NusB with NusE. No cross-reactivity of the NusE antibody was seen (as 

with the His-affinity pulldowns). This is the first time that this has been shown using M. 

tuberculosis NusB and NusE and corresponds to the results seen in X and E. coli (Mason 

et al., 1992a; Luttgen et al., 2002).
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(A) Glutathione-sepharose purification 

kDa F.T Wash Elution
220 V
97.0 m
66.0 m
45.0 - GST-NusB
30.0

20.1

14.1 V

(B) Size exclusion chromatography 

220
97.0 —
66.0

kDa 4 5 0  *  GST-NusB
30.0
20.1
14.1 ta*

Figure 12 : Purification of GST-NusB
(A) Glutathione-sepharose affinity chromatography was initially used to 
purify GST-NusB.
(B) Size exclusion chromatography (Superdex 200) was then used to 
achieve homogeniety of the protein. Concentrations of 7 mg/ml (170 pM) 
were obtained.
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(A) GST-NusB Pulldown

GST-NusB Negative 
Pulldown Control 
Elutions (+) Elutions (-)

kDa + + + + - -

220

97.0
66.0
45.0

30.0

20.1

14.1

GST-NusB Negative 
Pulldown Control 
Elutions (+) Elutions (-)

kDa

(B) Western Blot - anti-NusE
(using above elution samples)

Figure 13 : GST-NusB Pulldowns and anti-NusE Western Blots.
(A) GST-NusB Pulldowns showing elution samples (+). The first two 
elution lanes of the negative control pulldowns (-) are also shown 
During the negative control pulldowns, no GST-NusB was attached to 
the glutathione-sepharose resin but CFE is still passed through the 
cloumn. This allows for the determination of non-specific protein 
binding to the resin.
(B) Anti-NusE Western blots on GST-NusB and negative control 
elution samples. A band can clearly be seen in the GST-NusB elution 
lanes. NusE is thus pulled from the CFE by NusB indicating an 
interaction between these two proteins.

+  +  + + - -
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4.2. The NusB dimer.

The role of the M. tuberculosis NusB dimer in antitermination has proved elusive and 

this has been further complicated by the fact that in the well characterised E. coli 

system, the protein is monomeric (Altieri et al., 2000; Gopal et a l,  2000). In E. coli it is 

believed that NusB functions as a monomer (Mason and Greenblatt, 1991) and it was 

thus necessary to establish the importance of the M. tuberculosis dimeric NusB.

Gopal et al. crystallised and solved the structure of the M. tuberculosis NusB (shown in 

Figure 8) and revealed the homodimeric nature of the M. tuberculosis protein in contrast 

to the monomeric E. coli form. Despite the dimeric properties of the M. tuberculosis 

NusB, there are still structural similarities to the E. coli NusB structure with six of the 

seven a-helices in each molecule superimposing (Altieri et a l,  2000; Gopal et al., 

2000).

Interactions between the two NusB molecules in the dimer are both polar and non-polar 

with eleven water molecules buried within the dimer interface. The non-polar interface 

is made up of residues Val 18, Ala 19, Phe 22, Val 26, Ala 34, Val 88, Val 97, and Leu 

122. The charged residues Lys 15, Arg 16 and Glu 23 all make contacts with the non­

polar residues Val 26 and Ala 19 (Gopal et al., 2000). Lastly Phe 22 forms an aromatic 

stack at the core of the dimer interface. The phenylalanine at position 22 is interesting as 

it corresponds to the tyrosine at position 18 in ^  coli, which when mutated to aspartic 

acid results in the cold sensitive phenotype (the NusB5 strain -  Court et al., 1995; 

Friedman et al., 1976)
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Analysis of the dimer interface indicated that mutations of Phe 22 and Glu 23 to Ala 

were likely to have a large impact on the interface and the most likely to result in 

monomer formation (See Figure 14). The mutation of F22A would result in a large 

cavity within the hydrophobic interface while the E23A change would disrupt some of 

the hydrogen bond and network polar interactions at the dimer interface.

4.2.1. Monomerising the NusB dimer.

Site-directed-mutagenesis was used to generate F22A and E23A double mutation. The 

success of the mutation was verified using DNA sequencing and the resulting 

FE22.23AA mutant was over expressed and purified. As with the wild-type, the protein 

was insoluble and purified by denaturation and subsequent refolding. The mutation was 

reconfirmed using ESI MS (See Figure 15). A second species (with molecular weight 

18820 ±1.55; 178 da greater than the expected molecular weight) is present in the 

preparation (species B in the ESI MS spectra) and is likely to be a result of a-N- 

gluconylation of the N-terminus of NusB FE22.23AA as described by Geoghegan et al. 

(1999).

It was then necessary to determine whether the resulting mutations had in fact caused 

dissociation of the NusB dimer. The FE22.23AA mutant was analysed using 

sedimentation equilibrium ultracentrifugation, in order to accurately define its solution 

molecular weight. The solution molecular weight of FE22.23AA NusB obtained by 

sedimentation equilibrium ultracentrifugation was 17 ± 3 kDa. This corresponds to the 

expected monomeric molecular weight (See Figure 16). The wild-type NusB protein 

gave a molecular weight of 36 ± 4 kDa under the same conditions. Thus, the double
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mutation in NusB disrupts the dimer interface sufficiently to prevent any significant 

dimer formation in solution. Further analysis of the data also showed there was no 

apparent concentration dependence (at 80 fxM, 53.5 /xM and 26 /xM) of either the 

FE22.23AA or the wild-type proteins on the molecular weights determined by 

sedimentation equilibrium ultracentrifugation indicating a strong wildtype dimer and 

very weak dimerisation affinities of the mutant monomer.

Before the monomeric NusB mutant could be used in any further studies, it was also 

necessary to ensure that the secondary structure of the mutant was still essentially 

identical to that of the wild-type. Changes in structure may affect functionality and 

stability of the mutant thus rendering functional and interactive studies difficult to 

interpret and compromising the comparison with the wildtype.

Far-UV circular dichroism (the 260 to 190 nm range) is an ideal technique for 

establishing secondary structure of a protein and can be used to estimate the number of 

helical residues within a protein. CD spectra were recorded for both the wild-type and 

FE22.23AA mutant NusB proteins at a concentration of 9 /xM and at temperatures of 20 

°C. The results are shown in Figure 17. The results indicate the secondary structure 

content of wild-type and mutant NusB is almost identical as the far-UV CD spectra 

almost overlap. This means the two mutations introduced into NusB are unlikely to have 

had a large effect on the secondary structure of the protein. The monomeric NusB is 

therefore likely to fold similarly to the wild-type protein, maintain functionality and 

would still be able to make interactions with in vivo partner proteins if dimerisation was 

not required for its biological activity.
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(A)

(B)

Glu23 
Monomer A

Phe22 
Monomer A

Arg38 
Monomer B

Arg16 
Monomer B

Phe22 
Monomer B

Figure 14 : Electrostatic representation of the NusB dimer surface and 
select interactions between the two monomers.
(A) shows the electrostatic potential on the dimer surface with blue shading 
indicating positive charge, red shading indicative of negative charge and white 
indicating neutral charge. (B) shows hydrogen bond interactions between the 
Glu23 on monomer A (red) and the Arg16 and Arg38 of monomer B (Green). The 
phenylalanine stack at the centre of the interface is also shown (Gopal et al., 
2000).
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Figure 15 : Confirmation of FE22.23AA Molecular Weight using ESI MS.
The molecular weight, and hence the presence of the amino acid mutations, 
was determined using ESI MS. The molecular weight was shown to be 18640 
kDa (Species A) indicating the N-terminal methionine is missing. The 
calculated molecular weight of the mutant is 18638 kDa without the N-terminal 
methione. ESI MS thus confirmed the presence of the mutations. Species B 
(18820 kDa) is the a-N-gluconylated form.
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Figure 16a : Sedimentation equilibrium ultracentrifugation of FE22.23AA NusB.
Equilibrium sedimentation ultracentrifugation was carried out to determine the effect 
of mutation at the dimer interface in NusB. The data shows a molecular weight of 17 
± 3 kDa for the mutant indicating a monomeric species. NusB wildtype showed a 
molecular weight of 36 ± 4 kDa using equilibrium sedimentation ultracentrifugation 
therefore indicating a dimeric species (seen in Figure 15b). (A) shows the random 
distribution of of residuals around a non-linear fit. (B) shows the radial distribution of 
the sample once equilibrium has been reached. The plot is a global fit of nine 
parameters (three concentrations recored at three time points).

119



6.4 6.5 6.6
Radius

DOF = 865 Variance = 5.49596E-5 Speed = 18000
Fitted Parameters: Time =101890
Co Offset Temp =20
0.406 0.002 V-bar = 0.738
0.243 0.018 Rho =1.011
0.104 0.036
0.409 0.024
0.223 0.056
0.096 0.045
0.439 0.046
0.228 0.070
0.101 0.051
M = 36149 B = 0

Figure 16b : Sedim enta tion  equilibrium ult racentr ifugat ion of NusB 
wildtype protein.
The molecular weight of NusB wildtype was determined using equilibrium 
sedimentation ultracentrifugation. The molecular weight was 36 ± 4 kDa 
indicating a dimeric species. The plot is a global fit of nine parameters 
(three concentrations recorded at three time points).
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Figure 17 : Circular dichroism of NusB wildtype (-) and the FE22.23AA mutant

The CD spectra of the wildtype and mutant proteins are very similar indicating the 
mutations introduced into NusB have had little effect on the secondary structure of the 
protein.

4.2.2. Interactions o f  w ild-type and FE22.23A A  m utant NusB with

The occurrence of an interaction between NusB and NusE in M. tuberculosis has only 

been hypothesised based on studies in E. coli. The M. tuberculosis NusB dimer indicates 

a different model of NusB -  NusE interaction compared to that of the E. coli model. 

This may in turn have an effect on the whole antitermination mechanism in M 

tuberculosis. The complex may be trimeric consisting of the NusB homodimer and a 

single NusE molecule, it may be heterodimeric (a single NusB and NusE molecule) or 

the interaction may not even occur at all.

NusE.
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The last possibility seems unlikely as the GST-NusB pulldown experiments have 

demonstrated an interaction between NusB and NusE (see section 4.1.4). Experiments 

were therefore set up to firstly confirm the NusB and NusE interactions in vitro and 

secondly to determine the stoichiometry of the interaction.

Studies were thus carried out in order to characterise the interaction between the wild­

type and mutant NusB proteins and NusE. Luttgen et a l (2002) showed that E. coli 

NusE was only soluble when expressed in the presence of E. coli NusB. Attempts to 

express and purify NusE in the absence of NusB resulted in insoluble protein and it 

proved impossible to refold the protein. Similarly both M. tuberculosis NusB and NusE 

were insoluble when expressed separately. It was possible to refold NusB and obtain 

crystals, however NusE showed very little stability or structure when refolded (Gopal et 

al., 2000; Gopal et al., 2001b).

In one set of experiments denatured M. tuberculosis untagged-NusB and His6-NusE 

were refolded together and then applied to a His-affinity column. The idea being that 

His6-NusE would be immobilized on the column and theoretically interact with a 

stochiometric amount of refolded NusB. The His6-NusE- NusB complex could then be 

eluted from the column and analysed by SDS-PAGE. This would allow the estimation of 

the NusB-NusE stoichiometry.

The results of these experiments can be seen in Figure 18. Encouragingly the results 

immediately show an interaction between NusB and NusE as well as FE22.23AA and 

NusE. This can be seen by the increased amounts of NusB and FE22.23AA present in 

the elution fractions after the elution of NusE when compared with the wash fractions.
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This means that during refolding, NusB or FE22.23AA is binding NusE and remains 

attached to NusE when the refolded mixture is passed through a His-affinity column. On 

elution, both NusB or FE22.23AA and NusE are present in the fractions indicating 

binding. This therefore reconfirms, in vitro, those results obtained using GST-NusB 

pulldowns and anti-NusE western blots.

Unfortunately it was not possible to elucidate the stoichiometry of NusB/FE22.23AA -  

NusE interaction. From the gels it can be seen that there are higher concentrations of 

NusE than NusB or FE22.23AA. This is unexpected as the stoichiometry was expected 

to be either 1 : 1 (heterodimer of NusB or FE22.23AA with NusE) or 2 : 1 (heterotrimer 

of the NusB dimer with NusE). However assuming that FE22.23AA-NusE interactions 

are heterodimeric (a monomeric FE22.23AA would be expected to interact with a 

monomer of NusE assuming the E. coli model), the similarities between intensities of 

the bands seen in the NusB-NusE interactions and the FE22.23AA-NusE interactions 

may suggest a 1 : 1 stoichiometry. As FE22.23AA NusB is monomeric all unbound 

FE22.23AA would have flowed through the column and thus the bands seen on the gels 

would represent a single FE22.23AA NusB interacting with a single NusE. If wild-type 

NusB was interacting with NusE as a dimer (resulting in a heterotrimer) one would 

expect to see higher band intensities of NusB than those seen with FE22.23AA as two 

molecules of wild-type NusB would remain attached to NusE compared to the single 

molecule of FE22.23AA. The band intensities in the two experiments are however 

similar indicating that a single wild-type NusB molecule may bind NusE as does a 

single FE22.23AA mutant NusB thereby predicting a 1 : 1 stoichiometry of NusB : 

NusE.

123



The increased amounts of NusE (present in the elution lanes) may be due to the fact that 

NusE never becomes saturated with the loaded NusB wild-type or FE22.23AA and thus 

equimolar concentrations of NusE and NusB wild-type or FE22.23AA are never eluted. 

This may be indicative of a weak interaction between NusB wild-type and FE22.23AA 

with NusE. The NusE may be competing with the NusB wildtype dimer for binding at 

the dimer interface resulting in a weak interaction and subsequent differences in the 

NusE -  NusB band intensities. It would then, however, be expected that NusE 

interactions with the FE22.23AA monomer would be stronger (as there is no 

competition) resulting in more intense FE22.23AA band intensities compared with those 

seen with NusB during NusB -  NusE binding. This is however not the case; similar 

band intensities are seen with both FE22.23AA during NusE -  FE22.23AA binding and 

NusB during NusE -  NusB binding. This may be explained by a weak interaction 

between NusE and FE22.23AA as the FE22.23AA mutations in NusB (found within the 

dimer interface) may have disrupted the NusE binding site resulting in a weaker 

interaction. This again points towards a 1 : 1 stoichiometry for NusB -  NusE binding in 

the M. tuberculosis antitermination complex.

These results need to be interpreted with some degree of caution as band intensities are 

dependent on such factors as staining efficiency. The results are thus only comparative 

and need to be proved quantitatively.
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(A) NusB - NusE binding
4 5  0_ Washes Elutions

kDa 30.0-

20-1- — •  -NusB
-1 4 1 . —  -NusE

(B) NusB - NusE binding control (no NusE)
4 5  0 - Washes Elutions

kDa 3 0  °-
20.1- I.**, _NusB

14.1-

(C) FE22.23AA - NusE binding
45.0- Washes Elutions

kDa 3 0  °-
20 .1 -^  _NusB

  -NusE
14.1-

(D) FE22.23AA - NusE binding control (no NusE)
45.0- Washes Elutions

^  3 0 °- kDa
20. 1-

14.1-

-NusB

Figure 18 : Refolding and binding of NusB and FE22.23AA with 
NusE.
(A) Refolding and binding of NusB and NusE.
(B) Control refolding and binding of NusB and NusE. No NusE loaded on 
His-affinity column.
(C) Refolding and Binding of FE22.23AA with NusE.
(D) Control refolding and binding of FE22.23AA and NusE. No NusE 
loaded on His-affinity column.
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4.2.3. Co-expression of M. tuberculosis NusB and NusE.

On the basis of the refolding/binding experiments, it was decided to attempt co- 

expression of NusB and NusE. NusB was thus cloned into pGEX-6Pl resulting in an N- 

terminal GST-tag. NusE was then cloned 3' to NusB and a synthetic Shine-Dalgamo 

sequence inserted just upstream of NusE and a synthetic hexa-His tag inserted 

immediately downstream of NusE. This resulted in a GST N-terminally tagged NusB 

and a C-terminally His6 tagged NusE which would be expressed simultaneously from 

the same tac promoter found upstream of the GST-tag. Positive clones were verified by 

DNA sequencing and restriction analysis and then transformed into E. coli and the 

proteins over expressed and purified.

GST-NusB was again found to be soluble and, importantly, so was NusE-His6- This was 

a significant step forward in the study of NusE as it had never been purified in a soluble 

manner. This is similar to what was reported by Luttgen et al. (2002) with the E. coli 

NusE. It seems that soluble NusE can only be achieved when expressed in the presence 

of NusB.

NusB and NusE were then purified using tandem affinity columns in order to first select 

for NusE and then NusB. A His-affinity column was used to pull the NusE-His6 from 

the lysed cell extract. As it has already been shown that M. tuberculosis NusB and NusE 

associate, the likelihood is that NusB should be pulled from the extract through its 

interaction with NusE. This can clearly be seen in Figure 19a. A GST-affinity column 

was then used to select for GST-NusB. The GST-tag is then removed from NusB using 

the “PreScission Protease” allowing for the elution of NusB. Again, as a result of the
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NusB-NusE interactions it would be expected that the two proteins would be eluted 

together through this method of purification. This was in fact the case, as can be seen in 

Figure 19a.

The co-elution of NusB and NusE again confirms the interaction between M. 

tuberculosis NusB and NusE as seen in the GST-affinity pulldown from M. tuberculosis 

CFE and the co-refolding and His-affinity pulldown experiments. Thus, there seems no 

doubt that M. tuberculosis NusB and NusE are able to associate. It has not however been 

possible to determine the NusB-NusE stoichiometry of this complex. Again the band 

intensities of NusB and NusE, when co-eluted from the glutathione-sepharose column, 

are similar (see Figure 19a) possibly indicating comparable concentrations of each 

protein suggesting a heterodimer (single NusB molecule interacting with a single NusE 

molecule). Attempts were made to try and confirm this by analysing the NusB-NusE 

complex (eluted from glutathione-sepharose) by size-exclusion chromatography. 

Unfortunately the NusB-NusE complex appeared to dissociate during size-exclusion 

chromatography (See Figure 19b). Only NusB is seen in the elution fractions as the 

dissociation of the complex may result in instability of NusE and subsequent 

precipitation of the protein. This may be explained by the fact that the interaction 

between NusB and NusE is relatively weak and during gel filtration the concentration of 

NusB and NusE falls to well below the Kd value for the complex (as a result of the 

approximately 10-fold dilution occurring when carrying out gel-filtration experiments). 

It was also hoped that the NusB-NusE complex could be analysed by analytical gel 

filtration or sedimentation equilibrium ultracentrifugation allowing for the calculation of
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the dissociation constant. However due to the dissociation of the complex during gel 

filtration, this was not possible.

Co-expression of NusB and NusE therefore clearly shows an interaction between NusB 

and NusE indicated by the solubility of NusE in the presence of NusB and the co-elution 

of NusB and NusE through two affinity chromatography steps. The results hint at a 1 : 1 

stoichiometry as band intensities are similar after the second round of affinity 

chromatography but the interaction between the two proteins appears to be weak as 

shown by the apparent dissociation of the complex during size exclusion gel filtration. 

Again this weak interaction may be explained by the competition of NusE for the 

binding of NusB at the dimer interface. Again, results based on band intensity must be 

treated with caution because of possible differences in staining efficiency.
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(A) His-affinity purification of co-expressed NusB-NusE

Elution 
2 3 4 5

- GST-NUSB

- NusE-His6

(B) GST-affinity purification of co-expressed NusB-NusE

kDa Elution
F.T. 1 2 3 4 5

97.0
66.0
45.0

30.0

2 0 . 1  -NusB (GST-tag removed)
1 4 . 1  . -NusE-His6

Figure 19a : NusB-NusE co-expression and purification.
(A) GST-NusB and NusE-His6 were first purified using a His-affinity 
column and selecting for the NusE-His6 protein. NusB co-elutes with 
NusE as seen in the increased band intensity of NusB on NusE Elution 
(elution lanes 2 - 5).
(B) GST-NusB and NusE-His6 were then applied to Glutathione- 
Sepharose. The two proteins appear to be co-eluted at similar 
concentrations (shown by similar band intensities in elution lanes 1 - 4 )  
indicating the proteins may form a heterodimer.
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Superdex 200 size exlusion 
chromatography peak elution 
fractions of NusB-NusE

kDa complex

30.0

20.1

-NusB
14.1

- NusE-His6

Figure 19b : Size exclusion chromatography of the NusB- 
NusE complex.
The gel shows selected peak elution fractions after size- 
exclusion chromatography. NusB can be clearly seen however 
only traces of NusE are seen meaning the complex is no longer 
co-eluting (in contrast to co-elution after GST-affinity 
chromatography -see Figure 19a).
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4.2.4. The dissociation equilibrium constant of the NusB dimer.

It was not possible to determine the stoichiometry of the NusB -  NusE complex during 

the refolding and co-expression experiments. Both experiments demonstrated weak 

binding between NusB and NusE. This is in contrast to the E. coli model, where the 

dissociation equilibrium constant is in the 10'7 M range (Mason et al., 1992a). The low 

affinity of NusE for NusB may be due to the requirement of NusE to compete with 

NusB self-association. We therefore thought it useful to determine the dissociation 

equilibrium constant for NusB self-association.

High sensitivity HPLC analytical gel filtration was used to analyse dissociation of the 

NusB dimer. Analytical gel filtration is useful for complex composition determination 

and qualitative interactive studies. In this case a calibrated (for molecular weight) 

Superdex 200 (Amersham Pharmacia Biotech) column was used and column elution’s 

monitored at wavelengths of 220 nm and 280 nm allowing for the observation of the 

large O.D. range required.

NusB wild-type and the FE22.23AA NusB mutant were used to establish retention times 

for the 100 % dimer and monomer respectively. The retention times were 38.7 min. for 

27 fiM  loading concentration of the NusB wild-type and 41.4 min for 27 (iM of the 

FE22.23AA mutant. These correspond to molecular weights of 27 203 kDa and 15 981 

kDa respectively using a standard curve for the calibrated column. These are therefore 

the upper and lower limits for the retention times for the dissociating dimeric complex, 

shown in Figure 20. The differences between the calculated molecular weights using 

amino-acid composition and those determined using analytical gel filtration may be as a

131



result of the shapes of the proteins. Compact proteins move slower through gel filtration 

columns resulting in higher retention times. Statistical error during the fitting of the 

calibration curve may lead to discrepancies in the molecular weight values determined, 

from retention times, and formula molecular weights.

Concentrations ranging from 106 /xM to 0.26 /xM of wild-type NusB were then loaded 

on the column and the retention times measured for each concentration. There was no 

significant decrease in retention times between 26 /xM and 106 /xM; this concurs with 

sedimentation equilibrium data where no concentration dependency was seen between 

26 /xM and 80 /xM loading concentration (section 4.2.1). All retention times were 

determined using wavelengths of 280 nm. As the concentrations of wild-type NusB 

decreased below 26 /xM (loading concentration) the retention times increased (moved 

towards the NusB monomer retention time) indicating a dissociating complex. See Table 

3. The retention times were then converted to molecular weights using a standard curve 

for the calibrated column. The calculated average molecular weights were then used to 

determine the fraction of monomer present in the NusB wild-type samples loaded onto 

the column using the following equation :

Fraction Monomer =
DimerM^ -  CalcM w 

Af Dimer -  AT,Monomer
(21)

A plot of fraction monomer vs. total protein eluted (M -  estimated as a 10-fold dilution 

of the loading concentration) then allows an estimation of the Kd of the NusB dimer 

(Figure 21). This is determined at the total concentration of monomer equal to 0.5 (i.e.

132



50 % of the total protein is in monomeric form). A fraction monomer value of 0.5 occurs 

at an X-value of approximately 8 x 10'8 M.

K“ =[M  !/[£>] (22) 

where [M] = concentration monomer and [£>] = concentration dimer

but = [%  j ( » ) and [MT] = [M] + 2[D](24)

where Fm is fraction monomer, [MT\ is total protein eluted, [M] is concentration 

monomers present and [D] is concentration dimers present.

From (23) [M] = FM[MT] (25)

and from (24) [D] = ■ rJ L J (26)

2fMl2
Substituting (26) into (22) gives Kd = --------------- (27)

[Mt ]~[M]

i2
And substituting (25) into (27) gives Kd = -------- — -------  (28)2 [FmM t Y 

[Mt ] - F m[Mt ]

2 x 0  52 x M  2
Thus when the fraction monomer is 50% (Fm = 0.5) Kd = ------1---------— (29)

M t -Q .5M t

0.5M , 2
'' 0.5Mr
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Thus from (30) when FM = 0.5, Kd = Mt or Kd is given by the total protein concentration 

eluted at which 50 % is monomeric. This is of course only an estimation of the Kj value 

for the NusB dimer. Limitations of the method are that it was not possible to achieve the 

full range of dimer to monomer dissociation (a full sigmoidal curve could not be plotted) 

and that the dissociation was not in equilibrium. The technique has however given a 

good indication as to the possible Kd value.

0.6

0.5

0.4

d  0.3

0.2

0.1

35 36 37 38 39 40 41 42 43 44 45

Retention ime (minutes)

Figure 20 : Analytical gel filtration showing retention times of NusB dimer (-) and 
FE22.23AA NusB monomer (-) on a Superdex 200 Column.
The retention times of the NusB dimer and NusB mutant monomer were determined 
using gel filtration HPLC. There is a clear difference between the NusB wildtype and 
mutant at identical concentrations again indicating the mutations have led to dimer 
disruption. Retention times of 38.8 (dimer) and 41.4 (monomer) correspond to 
molecular weights of 27 203 kDa and 15 981 kDa respectively determined from the 
standard curve for the molecular weight calibrated column.
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Table 3 : Analytical gel filtration of the NusB dimer -  determination of the Kd.
Determination of the average molecular weight of decreasing concentrations of NusB 
dimer allowing for the determination of fractions of monomer present in the NusB 
wildtype loaded on the column. A plot of Fraction Monomer Loaded vs. Total Protein 
Concentration Eluted allows for the subsequent calculation of the dissociation 
equilibrium constant of the NusB wildtype dimer.

NusB Wildtype 
Concentration 

(liM)

Retention 
Time (Min)

Calculated 
Molecular 

Weight (kDa)

Fraction of 
Monomeric 

NusB 
Loaded

Total Protein 
Concentration 
Eluted (nM)

106 nM 38.7 min 27 765 - -

53.0 n M 38.8 min 27 203 0.05 5.3 fiM

27.0 nM 38.8 min 27 203 0.05 2.7 pM

13.3 fiM 38.9 min 26 652 0.09 1.3 ft M

5.30 nM 39.0 min 26 113 0.14 0.53 n M

2.70 jtM 39.2 min 25 066 0.23 0.27 nM

0.53 fiM 40.1 min 20 850 0.59 0.053 /iM

0.26 nM 40.7 min 18 442 0.79 0.026 nM

27 jiM 
FE22.23AA

41.4 min 15 981 1.00
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Figure 21 : Plot of Fraction Monomer Present vs. Total Protein Concentration 
(log scale).

Using Table 3, a plot of the fraction monomer present in the total protein eluted vs. total 
protein concentration eluted from the column allows for the calculation of the 
dissociation equilibrium constant of NusB (i.e. when 50 % of the protein is dimerised 
and 50 % is in monomeric form). Thus at a fraction monomer present of 0.5 (50 % of 
the protein is in monomeric form) the X-value is approximately 8 x 10'8 M indicating a 
Kd of 80 nM.
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Chapter 5 

Results -

NusG and the Rho Termination Factor
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The NusB -  NusE interaction was investigated in the previous chapter. A second 

interaction between NusG and Rho (Pasman and von Hippel, 2000) is also believed 

important in antitermination and both proteins were thus studied.

5.1. Characterisation of the M. tuberculosis NusG protein

In comparison to NusG from other organisms, little is known of the M. tuberculosis 

NusG protein. Interaction studies have been carried out on E. coli NusG and it has been 

shown to bind to both RNA polymerase and Rho. It has also been implicated in 

translation (Zellars and Squires, 1999). The crystal structure of A. aeolicus NusG 

revealed it to be a three domain protein. Sequence homology modelling then allowed for 

the prediction of the E. coli NusG structure. Two of the three domains have nucleic acid, 

rRNA and protein -  protein interaction functional characteristics however a role for the 

third domain could not be determined (Steiner et al., 2002).

None of these properties have however yet been shown in NusG from M. tuberculosis. 

Sequence analysis along with biochemical and biophysical studies have been employed 

to investigate the structural and domain organisation of M. tuberculosis NusG.

5.1.1. Amino-acid sequence analysis of M. tuberculosis NusG.

NusG is a 238 amino-acid, 26 kDa protein (http://genolist.pasteur.fr/TubercuList/). The 

T-Coffee alignment program (Notredame et al., 2000) was used to align NusG from the 

organisms M. tuberculosis, A. aeolicus and E. coli. This can be seen in Figure 24. The 

alignment immediately shows the presence of an N-terminal extension found on the M. 

tuberculosis NusG when compared with that from both A. aeolicus and E. coli. The
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function of this extension is unknown and deletion studies would be very useful in the 

determination of the function or necessity of these forty one amino-acids. Immediately 

following the N-terminal extension is a region of high homology with both A. aeolicus 

and E. coli (amino-acids 42 -  99). This corresponds to part of domain I in the A. 

aeolicus structure and is thus likely to be involved in both nucleic acid and protein -  

protein interactions. A region present in A. aeolicus but not in either of E. coli or M. 

tuberculosis corresponds to domain II in the A. aeolicus structure and is of unknown 

function. It may have a role in structural stability of the protein in this thermophilic 

organism. Amino-acids 100 to 155 then form the rest of domain I (with respect to the A. 

aeolicus structure). A region linking domain I and a second domain (corresponding to 

domain III of A. aeolicus) is made up of amino-acids 156 to 181. The second domain 

(amino-acids 182 to 238) shows strong homology with both E. coli and A. aeolicus and 

corresponds to domain III of A. aeolicus NusG. Again it is likely to be involved in rRNA 

binding and protein -  protein interactions. The KOW motif present in domain III of A. 

aeolicus NusG is also present in M. tuberculosis NusG (amino-acids 184 to 211 -  

sequence highlighted in Figure 22) thus confirming the proteins rRNA binding and 

protein -  protein binding roles (Kyrpides et a l, 1996; Steiner et a l, 2002).

l-VTTFDGDTSAGEAVDLTEANAFQDAAAPAEEVDPAAALKA 
ELRSKPGDWYWHSYAGYENKVKANLETRVQNLDVGDYIFQV 
EVPTEEVTEIKNGQRKQVNRKVLPGYILVRMDLTDDSWAAVR 
NTPGVTGFVGATSRPSALALDDWKFLLPRGSTRKAAKGAAS 
TAAAAEAGGLERPWEVDYEVGESVTVMDGPFATLPATISEV 
NAEQQKLKVLVSIFGRETPVELTFGQVSKI-2 3 8

Figure 22 : Amino-acid sequence of NusG with the KOW homologous sequence 

highlighted
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From amino acid sequence analysis (see figures 23 and 24), it is probable that M. 

tuberculosis NusG is made up of two domains connected by a linker region. Based on 

sequence homology, the N-terminal (domain I) and C-terminal domains (domain III) 

probably share the nucleic acid and protein -  protein binding functions as their 

equivalents in A.aeolicus NusG.

Myc_Tu

Aqu_Ae

E coli

Domain II

Domain I

— Domain I

Domain IDomain I

Domain I

Domain I Domain III

Domain III

Domain III

Figure 23: Domain homology of M. tuberculosis, A. aeolicus and E. coli 
NusG.

Sequence homology analysis (see Figure 23) allowed for the representation of 
domain homology of M. tuberculosis (Myc Tu) and E. coli (E coli) NusG with 
respect to the known A. aeolicus (Aqu Ae) NusG domain organisation. Dotted 
lines indicate regions of A. aeolicus NusG not present in M  tuberculosis or E. 
coli NusG and regions of M. tuberculosis NusG not present in A. aeolicus or E. 
coli NusG. The N-terminal extension found on M. tuberculosis NusG is shown 
(Steiner et al., 2002).

A prediction for M. tuberculosis NusG secondary structure is shown in Figure 25. The 

alignment predicts an a-helical content of 26 %, a p-sheet content of 27 % and non­

structured content of 47 % for NusG.

5.1.2. Expression and purification of NusG.

NusG was cloned into pET15b (Novagen) and over expressed with an N-terminal His- 

tag. Purification was carried out using a His-affinity resin followed by ion-exchange 

using Source Q (Amersham Pharmacia) and size-exclusion chromatography (Superdex
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75). Concentrations of upwards of 2 mg/ml (yield of 10 mg/L of culture) were achieved 

and were thus suitable for carrying out biochemical and biophysical characterisation. 

The purified protein was analysed using ESI MS in order to confirm the molecular 

weight and hence confirm the identity of the protein; shown in Figure 26. ESI MS gave 

a molecular weight of 27479.89 ± 1.39 Da. The molecular weight of NusG (including 

the N-terminal His-tag) is 27577.8 Da so ESI MS indicates the N-terminal methionine is 

removed. The ESI MS also shows a second species is present in the protein sample with 

a molecular weight of 27655.00 ± 1.27 Da. This corresponds to a-N-gluconylation of the 

N-terminus. This common modification of the His-tag sequence has been shown by 

Geoghegan et al., where there is a resultant 178 Da increase in molecular weight in N- 

terminally His-tagged, recombinant proteins. A 258 Da modification is also occasionally 

seen as a result of 6-phosphogluconylation of the N-terminus however it was not seen 

during the purification of NusG.

141



Figure 24 : Amino Acid Sequence Alignment of NusG 

from M. tuberculosis, A. aeolicus and E. coli.

The T-Coffee alignment program was used to show alignment 

between the NusG amino acid sequences from M. 

tuberculosis (Myc_Tu), A. aeolicus (Aqu_Ae) and E. coli 

(E_coli). The alignment shows homology throughout most of 

the M. tuberculosis NusG length. When compared with 

sequence, structural and biochemical information from A. 

aeolicus, M. tuberculosis NusG appears to contain two 

domains both involved in nucleic acid and rRNA binding as 

well as protein -  protein interactions. Good levels of 

homology are defined by red shading, above average 

homology defined by orange shading, below average by 

yellow shading and poor homology by green shading. The 

KOW motif and NGN motif are also shown.
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---------------------------------------------------------------MS HQC J ----------------------------------- 1
-------------------------------------------------------m s b a J ------------------ ------------
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OBL
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NusG Aqu_Ae 
NusG E_coli
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p a D W Y V V H f l  Y A a Y B M K V J t A M L B T R V Q M L D V d D Y I P Q V B V P T B R V '
BKK
KKR
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T I B B V M A B Q Q R L K V L V B I F a R f i T P V B L T F a Q V S K l  
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Figure 25 : Secondary structure prediction for M. tuberculosis 
NusG using PSI-Predict.
The predicted secondary structure of NusG contains both a-helices 
(approximately 26 %)and B-sheets (27 %). Just under half (47 %) of the 
protein is predicted to be unstructured.
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Figure 26 : ESI MS of M. tuberculosis NusG
The correct molecular weight for NusG is 27479.89 kDa (Calculated M.W. : 
27478.7 kDa) taking into account methionine processing. A second species can 
also be seen with an adddtional mass of 176 Da corresponding to N-terminal 
a-N-gluconylation (Geoghegan etal, 1999).

145



5.1.3. Sedimentation equilibrium ultracentrifugation of NusG.

The solution oligomeric state of NusG was analysed using sedimentation equilibrium 

ultracentrifugation as detailed earlier. NusG at a concentration of 0.4 mg/ml (15 fiM) 

gave a molecular weight of 25.4 ± 1 kDa. This therefore indicates a monomeric form of 

the protein in solution. See Figure 27.

5.1.4. Dynamic light scattering of NusG.

Dynamic light scattering was carried out on a 1 mg/ml (37 fiM) NusG solution 

(DynaPro). The results are shown in Table 4. The measured translational diffusion 

coefficient is the molecular parameter that governs the translational motion of NusG in 

solution. A hydrodynamic radius (Rh) prediction can be determined using Stokes 

equation (equation 13), Dw20 and Dt. The polydispersity is a measurement of the 

standard deviation of the distribution that best fits the autocorrelation function decay. A 

polydispersity value less than 25 % of the value of Rh indicates a monodisperse sample. 

The polydispersity of NusG is 10 % of that of the Rh indicating the NusG preparation is 

highly monodisperse.

The results gave a predicted molecular weight of 54.27 kDa, a much higher value than 

the monomeric formula molecular weight of NusG. The predicted molecular weight is in 

fact double that of the formula molecular weight and may thus indicate a NusG dimer in 

solution. As sedimentation equilibrium ultracentrifugation demonstrated a monomeric 

protein, the dynamic light scattering data reflects the fact that NusG contains a 

substantial amount of extended structure. The elongated properties of NusG can be 

confirmed by calculation of flfo.
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Figure 27 : Sedimentation equilibrium ultracentrifugation of M. tuberculosis 
NusG
Equilibrium sedimentation ultracentrifugation shows an overall molecular weight of 
25.4 ± 1 kDa for NusG. The plot is a global fit of a single concentration at nine time 
points over three speeds.
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Table 4 : Dynamic light scattering data for M. tuberculosis NusG.

Translational
Diffusion

Coefficient
6.0 x 10'7 
cm /sec

Hydrodynamic
Radius

3.28 nm

Polydispersity 0.358 nm
Molecular

Weight
54.3 kDa

Temperature 17.7 °C
Baseline 1.000

The frictional ratio (f/fo) is an indication of the deviation in molecular shape of a protein 

from a hard sphere and was calculated using the equations 3 1 -3 3 .

v  = —  (31)

W S (32)

f  6nrir 
-*- = — — (33) 
fo  6nr]r0

where V=volume
v = partial specific volume = 0.7430 
r = hydrodynamic radius from light scattering data 
r0 = radius of a hard sphere 
T| = viscosity (Dw20 of 0.0102)

/  was calculated using the hydrodynamic radius (see table 4) and was found to be 6.1 x 

10'8./o was calculated as 3.7 x 10’8 giving an fffo  value of 1.65. This indicates NusG is 

not a sphere (f/fo of 1) and is thus likely to be highly elongated. These data correspond
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with secondary structure predictions where approximately 47 % of the protein is 

unfolded.

5.1.5. Circular dichroism of NusG.

Circular dichroism was carried out to examine the secondary and tertiary structural 

content of NusG. Both near and far-UV CD spectra were recorded and are shown in 

Figure 28.

Analysis of the near-UV spectra shows weak peaks in the 255 -  270 nm region 

indicating that some of the Phe residues are contributing to tertiary structure. Phe 

residues at positions 22, 80, 132, 150 and 232 are all found in a-helical or P-sheet 

regions according to secondary structure predictions. The presence of intense peaks in 

the 275 -  282 region indicate that at least some of the six Tyr are ordered and are 

involved in tertiary structure formation. According to sequence homology (Figure 24), 

the tyrosines at positions 50, 56, 58, 78 and 108 may be found in an N-terminal domain 

(corresponding to domain I of the A. aeolicus NusG structure) and the tyrosine at 

position 185 found in a C-terminal domain (corresponding to domain III of A. aeolicus 

NusG). Secondary structure predictions (Figure 25) show the tyrosines at positions 50 

and 108 to be involved in a-helical structure and tyr58 to be involved in P-sheet 

structure. A declining signal is found above 280 nm meaning the two Trps are 

contributing little to the overall signal.

The near-UV CD thus indicates there is certainly a degree of tertiary structure within 

NusG with some of the phenylalanines and tyrosines found within these regions of 

tertiary structure. The tryptophans (found at positions 49 and 120) do not however seem
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to contribute to the NusG tertiary structure possibly indicating that regions in the 

vicinity of positions 49 and 120 may be unfolded. The secondary structure prediction 

shows positions 49 and 120 to be found at the beginning of six-residue long p-sheets. 

The secondary structure prediction may thus be slightly inaccurate and these residues 

are, in fact, not present in secondary structure folds or that these particular secondary 

structure regions do not contribute to tertiary structure.

Interpretation of the far-UV CD spectra for NusG seen in Figure 28 indicates the 

presence of both a-helices and p-sheets. The Ae per residue value at 222 nm is -2.37 M‘ 

^ m '1 indicating the presence of a-helices. The a-helical content is thus approximately 

22 % which corresponds to approximately 52 helical residues. This is similar to that 

seen in the secondary structure prediction (26 %). A broad plateau is seen between 

wavelengths 210 nm and 220 nm probably resulting from a combined a/p effect, and 

hence indicating the presence, of both a-helices and p-sheets within the protein.
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Figure 28 : CD of M. tuberculosis NusG (1 mg/ml and 10 )iM -  20°C)
(A) The near-UV CD of M. tuberculosis NusG indicates the presence of some tertiary 
structure as a result of peaks in the 255 nm -  270 nm and 275 -  282 nm regions of the 
spectra. These are as a result of phenylalanine and tyrosine residues respectively which 
are either immobilised or interacting with neighbouring residues. (B) The far-UV CD 
indicates the presence of both a-helical and P-sheet structure in NusG. The peaks at the 
208 nm and 222 nm wavelength indicate a-helical structure and equate to approximately 
22 % total a-helical structure in NusG. The plateau between wavelengths 210 nm and 
220 nm shows the co-effects of a-helices and p-sheets indicating both are present in 
NusG. The data correlates with that determined from the secondary structure prediction 
program where NusG was shown to be 26 % helical and 27 % p-sheet.
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5.1.6. Limited proteolysis of M. tuberculosis NusG.

The domain organisation within NusG was investigated using limited proteolysis with 

trypsin and chymotrypsin. Proteolytic enzymes, such as trypsin and chymostrypsin, 

frequently cleave rapidly at sites within proteins that are unfolded or exposed. Sites 

found within three dimensional domains are often protected from the actions of the 

enzymes. The treatment of a protein with trypsin (cleaves the C-terminal sides of Arg 

and Lys) or chymotrypsin (cleaves C-terminal to Tyr, Phe, Trp and Leu) thus gives an 

indication of domain structure within a protein (Wilkinson, 2003). N-terminal 

sequencing of major cleavage products then allows for the placement of domains at 

specific locations within the protein. Limited proteolysis is thus an important tool for 

further characterisation of a protein and gives additional information as to possible 

secondary and tertiary structural features.

A time-course (70 minutes) trypsin and chymotrypsin proteolytic digest was carried out 

in order to look at the location of domains within NusG. Cleaved protein was removed 

after 0, 2, 5, 10, 20, 40 and 70 minutes of protease treatment and the products separated 

on SDS-polyacrylamide gels (See Figure 29)

Trypsin digestion of NusG was rapid and cleavage sites were abundant within the 

protein. Two stable products were apparent at approximately 3 kDa and 8 kDa. The 

remainder of the protein was rapidly hydrolysed by the trypsin. Chymotrypsin treatment 

was less rapid. Three stable products were observed; the 3 and 8 kDa polypeptides seen 

after trypsin digestion and an additional polypeptide found 2 - 3  kDa below undigested 

NusG. A small amount of NusG remained uncleaved after chymotrypsin treatment.
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Three polypeptide products (the 8 and 34 kDa chymotrypsin and 8 kDa trypsin 

products) were N-terminally sequenced in order to determine the position of the 

polypeptides within NusG. The results of the N-terminal sequencing and the positions of 

the polypeptides within NusG are shown in Table 5 and Figure 30.

Results from both trypsin and chymotrypsin cleavage indicate a single stable domain at 

the C-terminal end. Both the trypsin and chymotrypsin 8 kDa stable polypeptides 

contain the KOW homologous sequence and thus indicate that the C-terminal region of 

NusG is likely to be structured and important functionally. It is likely to correspond to 

domain III found in A. aeolicus NusG. However when compared with the secondary 

structure prediction both the trypsin and chymotrypsin cleavage sites are within a 

predicted helical region. This may mean that this region is helical yet not folded into 

tertiary structure or that, more likely, the secondary structure prediction is inaccurate, at 

least in this region.

Based on amino acid sequence homology, an N-terminal domain, corresponding to 

domain I in A. aeolicus NusG, would have been expected to have been identified. No 

stable polypeptide products were however identified within the N-terminal region 

possibly indicating the N-terminal domain shows little tertiary structure. It would still be 

expected that a functional N-terminal domain does exist.

M. tuberculosis is thus likely to be made up of a loosely folded N-terminal domain and a 

structured C-terminal domain corresponding to domains I and HI from A. aeolicus NusG 

respectively. This correlates with results from light scattering and circular dichroism 

implying that the overall structure of M. tuberculosis NusG is likely to be elongated or
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largely unfolded. A schematic showing the positions of trypsin and chymotrypsin 

cleavage sites, relative to the expected positions of the N-terminal and C-terminal 

domains (based on amino acid sequence homology) is shown in Figure 30b.
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(A) Trypsin digest of M. tuberculosis NusG
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(B) Chymotrypsin digest of M. tuberculosis NusG 
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Figure 29 : Limited proteolysis of M. tuberculosis NusG 
using trypsin and chymotrypsin.
(A) Proteolytic digestion of NusG by trypsin (0.004 w/w) shows 
two stable polypeptides at 3 kDa (X) and 8 kDa (Tryp-8 kDa). 
Tryp-8kDa was submitted to N-terminal sequencing (See Table 5). 
The 3 kDa polypeptide was regarded as too small a fraction of 
NusG and thus N-terminal sequencing was felt to be 
unneccesary. (B) Chymotrypsin digestion (0.004 w/w) gave rise to 
a 3 kDa polypeptide (X), an 8 kDa polypeptide (Chymo-8 kDa) 
and a 34 kDa polypeptide (Chymo-34-kDa). Chymo-8kDa and 
Chymo-34kDa were submitted to N-terminal sequencing. The 3 
kDa fragment was again regarded as too small and is likely to be 
the cleaved N-terminus His-tag. Note - NusG is a 25 kDa protein 
but during SDS-PAGE, NusG moves as a 35 kDa protein.
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Table 5 : N-terminal sequences of stable NusG polypeptides after trypsin and 
chymotrypsin digestion.

BAND N-TERMINAL
SEQUENCE

Tryp-8kDa GAA(S/R)T

Chymo-8kBa (L/G)(S/A)PRG

Chymo-34kDa DGDTS

Tryp-8kDa - trypsin 8 kDa band; Chymo-8kDa = chymotrypsin 8 kDa band; Chymo- 
34kDa = chymotrypsin 34 kDa band; the 3 kDa bands from both trypsin and 
chymotrypsin digests were not sequenced due to the small size of the polypeptide.

(A)

1-VTTFDGDTSAGEAVDLTEANAFQDAAAPAEEVDPAAALKA
ELRSKPGDWYWHSYAGYENKVKANLETRVQNLDVGDYIFQV
EVPTEEVTEIKNGQRKQVNRKVLPGYILVRMDLTDDSWAAVR
n t p g v t g f v g a t s r p s a l a l d d v v k f l l p r g s t r k a a kH H
|a a a a e a g g l e r p w e v d y e v g e s v t v m d g p f a t l p a t i s e v
NAEQQKLKVLVSIFGRETPVELTFGQVSKI-2 3 8

(B)

DGDTS LPRG

Domain 1/ 
N-terminal

Domain 1/ 
N-terminal

Domain III/ 
C-terminal

Figure 30 : NusG trypsin and chymotrypsin cleavage sites.
(A) N-terminal sequences of trypsin resistant polypeptides are shown in RHH* The 
polypeptide indicates the presence of a C-terminal domain (containing the KOW motif). 
N-terminal sequences of chymotrypsin resistant polypeptides are highlighted in Yellow. 
The larger polypeptide (beginning DGDTS) corresponds to the bulk of NusG and 
signifies that NusG shows a degree of resistance to chymotrypsin digestion. The 8 kDa 
polypeptide (beginning LPRG) again indicates the presence of a C-terminal domain. (B) 
shows the positions of cleavage sites relative to the position of the M. tuberculosis NusG 
N- and C-terminal domains predicted from amino acid sequence homology (see Figure 
24) The dotted line represents a region present in A. aeolicus NusG but not in that of M 
tuberculosis.
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5.2. The M. tuberculosis Rho terminator.

M. tuberculosis contains a homolog very similar to the Rho termination proteins of 

numerous prokaryotes (http://genolist.pasteur.fr/TubercuList). M. tuberculosis Rho is a 

602 amino-acid protein with a molecular weight of 65 kDa. E. coli Rho functions as a 

hexamer with each subunit containing an N-terminal RNA binding domain and large C- 

terminal ATPase domain (Modrak and Richardson, 1994; Dombroski et al., 1988a,b; Yu 

et a l,  2000). By comparison, it is likely the M. tuberculosis Rho will also assemble into 

a hexamer, with a molecular weight of 390 kDa. The role of E. coli Rho in 

antitermination has not yet been fully resolved although it must, in some way, be 

prevented access to the transcription elongation complex.

Rho-dependent termination has not been observed within M. tuberculosis itself and nor 

have specific Rho RNA binding sites been found. This makes it difficult to predict the 

function of M. tuberculosis Rho-termination factor in M. tuberculosis rRNA 

antitermination. Rho was therefore cloned, over expressed and purified and interaction 

studies with NusA and NusG carried out in an attempt to understand any involvement of 

Rho in M. tuberculosis rRNA anti termination.

5.2.1. Cloning, expression and purification of Rho.

The Rho DNA sequence was amplified directly from M. tuberculosis genomic DNA 

using PCR. The product was then cloned into the Xhol and Ndel sites in the pET22b 

(Novagen) plasmid vector. This results in a C-terminal His-tag on the expressed Rho 

protein. The recombinant plasmid was then transformed into BL21(DE3)pLy1sS E. coli 

cells and C-terminally His-tagged M. tuberculosis Rho over expressed. Rho was then
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purified using a His-affinity resin selecting for the C-terminal His-tag (See Figure 31a). 

This resulted in relatively large amounts of Rho however the protein was not sufficiently 

pure. The nucleic acid binding properties of Rho allowed for further purification using a 

Heparin column (Amersham Pharmacia). Rho eluted at a NaCl concentration of ~ 0.6 M 

which correlates with the observations of Sharp et al. (1983) who observed elution of E. 

coli Rho from Heparin at about 0.5 M. This increased the purity of Rho dramatically 

(See Figure 31b). Finally Rho was purified by size-exclusion gel filtration in an attempt 

to acquire a homogenous preparation (See Figure 31c). Eluant from size-exclusion 

chromatography was pure and contained Rho. A yield of 15 mg/1.5L of culture and final 

concentrations of 1.23 mg/ml (18.5 fiM) of Rho were achieved.

The peptide molecular weight of purified Rho was determined by ESI MS. A value of 

66098.16 ± 4.54 Da was obtained shown in Figure 32. The formula molecular weight 

for Rho is 66198.5 Da and with methionine processing is 66067.4 Da. ESI MS thus gave 

a molecular weight between the two, probably indicating a proportion of recombinant 

Rho contains the N-terminal methionine while the remainder of the Rho molecules have 

undergone methionine processing. This apparent intermediate mass is probably due to 

partial processing of the N-terminal methionine, a process dependent on the nature of 

the second residue. Hirel et al. (1989) and (Dalbpge et al. (1990) both showed that 10 % 

of proteins with threonine found at position two retain the N-terminal methionine with 

the remaining 90 % having undergone methionine processing. This thus appeared to 

have happened in purified M. tuberculosis Rho.
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(A) His-tag affinity purification
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(B) Heparin affinity purification
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(C) Superdex 200 size exclusion purification
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Figure 31 : Purification steps for recombinant M. tuberculosis Rho 
termination factor.
(A) His-tag affinity purification resulted in large amounts of Rho but 
insufficiently pure.
(B) Heparin-affinity purification resulted in a purer preparation but 
contaminants still appear to be present.
(C) Superdex 200 size-exclusion chromatography results in a pure 
preparation.
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Figure 32 : ESI MS of purified M. tuberculosis  Rho.
The Mass spectra of Rho shows a moleculer weight of 66098.16 Da. This 
does not correspond with an N-terminal methionine containing Rho 
(66198.5 Da) nor with a methionine processed Rho (66067.4 Da). The 
ESI MS thus indicates both species (methionine containing and 
methionine processed Rho) are present in the preparation and the 
calculated molecular weight is determined depending on the ratios of the 
two species present.
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5.2.2. Interaction of Rho with NusA and NusG.

Initial studies on the interaction of Rho with NusA and NusG were carried out using gel 

filtration HPLC. The technique is based on the decrease in absorbance (or even 

complete disappearance) of the NusA or NusG peaks as a result of binding to Rho. This 

technique is sensitive only to strong interactions between proteins and in such cases an 

increase in Rho absorbance intensity may be seen. The results (seen in Figure 33) show 

that Rho resolves as two peaks during gel filtration. This is likely to be as a result of 

degradation over time and the peaks seen may indicate incorrectly assembled Rho 

hexamers. The binding of M. tuberculosis Rho with NusA and NusG were also not 

observed in these initial experiments. No decrease in NusA or NusG peaks was detected 

indicating the lack of binding between Rho and NusA and NusG (Figure 33). This may 

be as a result of Rho degradation and subsequent incorrect assembly of the hexameric 

protein. These studies are however ongoing and attempts are being made to stabilise the 

Rho preparation through improved purification procedures
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Figure 33 : Elution traces from size-exclusion gel filtration 

of Rho and Rho in combination with NusA and NusG.

All graphs are plotted as absorbance vs. time (minutes). Peaks 

are labelled by (time, absorbance).

(A) 18.5 /iM Rho gave rise to two peaks at 25.57 and 28.17 

minutes closest to the expected position for hexameric Rho. 

Other peaks seen are likely to be additional Rho degradation 

products.

(B) 6.6 nM  NusA gave rise to a single peak at 42.06 minutes.

(C) 17.6 jitM Rho and 6.6 fiM  NusA. Two peaks are seen for 

Rho (25.06 and 28.04 minutes) and a single peak for NusA 

(42.05 minutes) is seen.

(D) A single peak is seen for 15.4 fjM  NusG

(E) 17.6 mM Rho and 15.4 mM NusG. Two peaks are seen 

for Rho (25.35 and 28.63 minutes) and a single peak for 

NusG (43.41 minutes) is seen.
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(D) NusG (15.4 iiM)
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Chapter 6 

Discussion



The antitermination complex in M. tuberculosis represents a potentially important target 

for anti-mycobacterial drug development because of its crucial role in ribosomal RNA 

synthesis. M. tuberculosis contains a single rm  operon and accurate regulation and 

transcription of the operon is essential to the survival of the bacilli. The overall goal of 

work carried out on antitermination in M. tuberculosis, is the determination of the 

composition of the complex, identification and an understanding of the interactions 

between components of the complex, identification of RNA contacts and those proteins 

that make the contacts and an understanding of conditions under which antitermination 

occurs.

6.1. The M. tuberculosis antitermination complex.

Both the X and the E. coli antitermination complexes have been well characterised and 

models have been proposed for the read-through of terminators in the X genome and E. 

coli rm  operons (Luttgen et al., 2002; Mason and Greenblatt, 1991). Antitermination in 

M. tuberculosis has not been observed and it is not known whether antitermination is, in 

fact, a regulatory mechanism for the transcription of the single rm  tuberculosis operon. 

Homologous sequences to the E. coli antitermination proteins NusA, NusB, NusE and 

NusG are present in the M. tuberculosis genome as are sequences homologous to the X 

nut RNA regulatory sequences box A, boxB and boxC (Cole et al., 1998; Gonzalez-y- 

Merchand et al., 1996, Kempsell et al., 1992) This therefore suggests that the X and E. 

coli antitermination models are good models for M. tuberculosis rm  transcriptional 

regulation.



Aims of this study were thus the confirmation or otherwise of the involvement of the 

various Nus factors in antitermination in M. tuberculosis and the identification of 

additional factors that may be required in the antitermination complex. In E. coli it has 

been shown that NusA interacts with RNA polymerase (Greenblatt and Li, 1981a; Liu et 

al., 1996) and Rho (Schmidt and Chamberlin, 1984), NusB binds NusE (Mason et al., 

1992a), NusE binds RNA polymerase (Mason and Greenblatt, 1991) and NusG binds 

RNA polymerase (Li et al., 1992) and Rho (Pasman and von Hippel, 2000). The use of 

His-tagged NusA, NusB, NusE and RNAPa and M. tuberculosis CFE’s, in His-affinity 

pulldowns, detected none of these complex-forming interactions. The problems 

associated with this experiment were primarily due to non-specific interactions of some 

M. tuberculosis CFE proteins with the His-affinity resin. This resulted in high protein 

background levels during pulldown elutions. NusA and RNAPa (and more than likely 

RNAP P') also appear to bind to the His-affinity resin, as they are seen in the elution 

lanes of all His-affinity pulldown experiments. This renders analysis of interactions by 

this method difficult as it would not be possible to determine whether the interaction 

was with the tagged “bait” protein, NusA or RNAPa.

GST-affinity pulldowns were then used in an attempt to circumvent the problems seen 

with His-affinity pulldowns. NusB was N-terminally GST-tagged and pulldown assays 

carried out. Examination of bound fractions resolved on gels, showed no bands after 

Coomassie blue staining, firstly indicating the lowered affinity of M. tuberculosis 

soluble proteins for glutathione-sepharose resin, but, also suggesting no strong 

interactions with NusB. Probing of the bound samples with antibodies against NusE did,
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however, show that NusE was present in the elution lanes of GST-NusB pulldown 

assays, identifying the interaction between M. tuberculosis NusB and NusE.

The failure of the NusB His-affinity pulldowns may also be explained by the detection 

method employed in the western blots, as no NusE band was seen in the His-NusB 

pulldown. The ECL Plus chemiluminescent detection protocol (Amersham Pharmacia 

Biotech), used for the GST-NusB pulldown, is up to lOOOx more sensitive than the 

DAB (Di-Aminobenzidine) chromagenic protocol, used for the NusB-His affinity 

pulldowns. NusE may have been present but simply not detected in the His-affinity 

pulldowns.

The fact that the NusE band was not visualised by Coomassie blue staining after GST- 

NusB pulldowns, suggests either the presence of low concentrations of NusE in the CFE 

and/or weak binding between NusB and NusE. These data compare with the results of 

Gopal et al. (2001b) who reported weak interactions between M. tuberculosis NusB and 

NusE but are in contrast to E. coli NusB and NusE, which bind with a dissociation 

equilibrium constant of 10'7 M (Mason et al., 1992a). The NusB -  NusE complex may 

thus be stabilised within the mycobacterial antitermination complex by another, 

currently unidentified, interaction between either of NusB or NusE and one of the other 

Nus factors, RNAP or an unknown protein. In E. coli the NusB -  NusE heterodimer is 

held in place by an interaction between NusE and the RNAP (Mason and Greenblatt, 

1991). A possible difference between the E. coli and M. tuberculosis systems is that the 

RNAP may play more of a role in complex stabilisation in M. tuberculosis than in E. 

coli. Alternatively there may be an additional, unidentified factor which may interact
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with both NusB and NusE thereby stabilising the weak interaction between these two 

Nus factors.

The combination of the use of GST-tags and high-sensitivity blotting protocols has 

proved successful in the identification of the NusB and NusE interaction in vivo for the 

first time. These methods can now be used to identify interactions between NusA, 

NusG, RNAP and, perhaps, unknown complex components.

6.2. The stoichiometry of the NusB -  NusE interaction.

The observation of NusB as a dimer in M. tuberculosis (Gopal et a l, 2000) was 

somewhat surprising and an indication of mechanistic differences between the E. coli 

and M. tuberculosis antitermination systems. The M. tuberculosis molecule is dimeric 

both in the crystal lattice and in solution. E. coli NusB is monomeric and the NusB -  

NusE complex is heterodimeric (Altieri et a l, 2000; Luttgen et a l,  2002). This 

difference in NusB is the only disparity that is currently known regarding the Nus 

factors in E. coli and M. tuberculosis or the antitermination complex as a whole.

Studies were thus carried out with the aim of elucidating the stoichiometry of the M. 

tuberculosis NusB -  NusE complex. Initially a monomeric NusB mutant (FE22.23AA) 

was constructed that allowed comparisons of the interactions between NusE and the 

NusB dimer or NusB monomer to be examined. The disruption of the NusB dimer was 

achieved by a double mutation of Phe22 and Glu23 located at the dimer interface 

identified from the crystal structure. The resulting monomer was confirmed by 

analytical ultracentrifugation and shown to have a similar secondary structure to the 

dimeric form by circular dichroism. It was necessary to confirm this as changes in
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secondary structure may obviously lead to disruptions in tertiary structure and 

subsequent interference in NusE binding. Nooren and Thornton (2003), have observed 

that transient protein -  protein interactions are characterised by the nature of the binding 

interface. Stable homodimers have large dimer interfaces (> 1000 A2), which are 

generally non-polar, less planar and frequently undergo conformational change after 

dissociation. Transient homodimers are characterised by smaller interfaces (500 A2 to 

1000 A2) that are more polar and often planar. The NusB dimer lies somewhere between 

these two extremes with a large dimer interface (2100 A2) but interactions between the 

two subunits that are made up of both polar and non-polar interactions including 11 

water molecules buried at the dimer interface. In addition, the monomeric mutant also 

showed little loss of secondary structure possibly indicating little conformational change 

on dimer dissociation. Overall, NusB thus shows characteristics associated more with 

weak homodimers, suggesting that antitermination in M. tuberculosis may thus require 

the dissociation of a weak NusB dimer by NusE binding.

In order to further examine this idea, pulldown experiments were carried out using 

tagged NusE which was refolded in the presence of either untagged NusB or 

FE22.23AA. This procedure was inspired by the observations of Luttgen et al. (2002) 

who obtained soluble NusB and soluble, stable NusE through co-expression of the two 

proteins. These refolding experiments (section 4.2.2.) again showed an interaction 

between NusE and NusB as well as between NusE and the monomeric NusB 

FE22.23AA. Unfortunately stoichiometry could not be determined from the resulting 

gels. The NusE band was more intense than the NusB or FE22.23AA bands signifying 

the presence of increased free amounts of NusE in the NusB/NusE and
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FE22.23AA/NusE complex. As explained in section 4.2.2, the co-refolding results may 

suggest a 1:1 stochiometery as the band intensities seen in the NusB -  NusE 

experiments were very similar to those seen with the FE22.23AA -  NusE experiments. 

This may show that the mass of FE22.23AA (NusB monomer) binding NusE is similar 

to that of NusB wild-type binding NusE and hence NusB wild-type is interacting with 

NusE as a monomer and not as a dimer. FE22.23AA -  NusE interactions appear weak 

(as seen with the increased amounts of NusE eluted) possibly because the mutated 

amino acids at the dimer interface may be involved in NusB -  NusE binding. Thus 

equimolar elution of NusE and NusB wild-type may only occur when NusB wild-type is 

loaded in very high excess (much higher than the 3 times excess used in this 

experiment) to ensure saturation.

These experiments, although again revealing the presence of an interaction between 

NusB and NusE, were not conclusive regarding the NusB : NusE stoichiometry. NusE 

appears to be highly unstable after purification. Both Gopal et al. (2001b) and Luttgen et 

al. (2002) suffered similar problems with M. tuberculosis and E. coli purified NusE 

respectively. Luttgen et al. (2002) solved the problem through co-expression of NusB 

and NusE, whereupon NusE was found to be soluble. Similarly when M. tuberculosis 

NusE was co-expressed with NusB both proteins were found to be in the soluble 

fraction, in contrast to individual expression when both proteins were highly insoluble.

Two-step purification (glutathione sepharose and his-affinity columns) of co-expressed 

NusB and NusE again demonstrated an interaction between the two proteins. Similar 

NusB and NusE band intensities after the second round of affinity purification are again 

suggestive of a 1:1 stoichiometry. However, subsequent gel filtration purification
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resulted in dissociation of the NusB -  NusE complex possibly as a result of the dilution 

that occurs during gel filtration and the apparently weak interaction between NusB and 

NusE.

Taken together, these data suggest that NusB is probably a weak homodimer and may 

either bind in a 1 : 1 or 2 : 2 stoichiometry with NusE. The E. coli NusB -  NusE 

interaction is heterodimeric (Luttgen et al., 2002) suggesting that the M. tuberculosis 

NusB -  NusE interaction is also heterodimeric. The observation of an apparent weak 

NusB -  NusE interaction contrasts that found for E. coli (Mason et a l, 1992a). This may 

be explained by the fact NusE must compete with the NusB dimer for binding at the 

NusB dimer interface. Although the interaction of FE22.23AA with NusE showed 

similar characteristics to that of the NusB dimer -  NusE interaction, it is possible that 

NusE binding partly utilises the amino acids at the dimer interface which were mutated 

to disrupt the NusB wildtype dimer.

Future work should involve the development of improved NusB -  NusE co-expression 

constructs (allowing for pure and high concentrations of the NusB -  NusE complex). 

The stoichiometry of the resultant NusB -  NusE complex can then be determined and, 

equally importantly, leader region rRNA binding assays can be carried out. The NusB -  

NusE heterodimer binds at the boxA site in the E. coli rm  leader regions and the 

heterodimer is required for this interaction (Nodwell and Greenblatt, 1993). It would 

thus be interesting to compare this with the M. tuberculosis system.
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6.3. The M. tuberculosis NusB dimer.

The determination of the dissociation equilibrium constant of the NusB dimer was 

important in establishing the importance of the dimer in antitermination. A Kd of 80 nM 

(8 x 10‘8 M) was estimated for NusB self-association within the limitations of the gel 

filtration experiment.

The E. coli NusB monomer and its interaction with NusE have been well characterised. 

E. coli NusB shows no propensity to dimerise even at the low concentrations (1 mM) 

required for NMR structure determination (Altieri et al., 2000) and the NusB -  NusE 

interaction is heterodimeric (Mason et al., 1992a). NusB from E. coli and M. 

tuberculosis, however, show structural homology (see Figure 34). Analysis of the E. coli 

NusB5 mutation (Y18D), which corresponds with the M. tuberculosis Phe22 mutated in 

this study, has shown the mutation to map to a cluster of aromatic residues that are 

partially solvent exposed in E. coli but are buried in the M. tuberculosis dimer interface 

(Altieri et al., 2000; Friedman et al., 1976; Gopal et al., 2000). The effect of this 

mutation on NusE has not yet been determined but, should binding be affected, it may 

be as a result of the Y18D mutation causing a change in overall E. coli NusB structure 

or it may simply perturb the NusE binding interface. The binding of E. coli NusB -  

NusE also appears to be tighter than that seen in M. tuberculosis.

Results in this study again show that M. tuberculosis NusB -  NusE binding may have a 

stoichiometry of either 1 : 1 (or 2 : 2) and that binding is likely to be weaker than that 

seen from E. coli. A model for M. tuberculosis NusB -  NusE association would thus be 

that a component of overall NusE binding may involve a surface that is partially
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engaged in NusB : NusB interactions. This would however suggest that the 

monomerised NusB would bind more tightly to NusE (see refolding experiments, 

section 4.2.2) however since the mutations are, by definition, at the dimerisation surface, 

it may be difficult to determine the relative contributions of each of the dimerisation vs 

competition vs NusE binding effects to those effects observed in the experiments. Thus 

the similarities seen between the affinities of the NusB dimer and NusE and the 

affinities of the NusB monomer and NusE may be due to the contribution of two 

opposing but equal effects (such as dimerisation and competition).

In the light of the above discussion, a very useful experiment would be the 

determination of cellular concentrations of NusB in M. tuberculosis giving clues as to 

the concentration of monomeric NusB within the cell. An additional future experiment 

involves the determination of whether M. tuberculosis NusB is capable of 

complementing an E. coli NusB mutant, the cold sensitive NusB5 E. coli strain (Taura et 

a/., 1992). The results would thus demonstrate whether the two NusB proteins are 

functionally homologous and would be a measure of similarity in antitermination 

mechanisms between the two microorganisms.

175



(A)

ocB

a2

Figure 34 : Structural homology between the NusB molecules of M. 
tuberculosis and E. coli.
The overlapping E. coli (purple) and M. tuberculosis NusB (gold) 
structures are shown. Homology can be seen in six of the seven a- 
helices. Both NusB molecules are a-helical proteins made up of seven a- 
helices each. The two structures show an r.m.s deviation of 2 A. (A) 
shows the two proteins from a front on view (as seen in the NusB dimer 
structure in Figure 8) (B) shows the homologous structures from the M. 
tuberculosis NusB dimer interface plane (Alteiri et a/., 2000 Gopal et a/., 
2000, Guex and Peitsch, 1997; Schwede etal., 2003).
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6.4. M. tuberculosis NusG

In comparison with NusG from E. coli, little is known about the mycobacterial 

counterpart. NusG plays a vital role in transcriptional regulation, both in termination and 

antitermination. NusG is believed to increase the transcriptional elongation rate by 

approximately 20% when present, yet is required for termination at certain Rho 

dependent terminators (Burova et al., 1995; Li et al., 1993). These functions of NusG 

are facilitated by its ability to bind tightly to Rho and weakly to RNA polymerase (Li et 

al, 1992; Pasman and Von Hippel, 2000). Its role in anti termination is not fully 

understood but it is known to be required for the increased stability of the 

antitermination complex (Mason and Greenblatt, 1991). Furthermore the ability of NusG 

to increase the rate of RNA polymerase elongation may be important in the read-through 

of terminators. The switch between NusG’s role in termination and antitermination may 

be dependent on the presence of boxA in the transcript (Zellars and Squires, 1999). The 

recently determined X-ray structure of NusG from A. aeolicus has been important in 

defining the domains involved in protein -  protein and RNA interactions and alludes to 

the ability of NusG to act as a bridge between nucleic acids and other proteins within the 

complex (Steiner et al., 2002).

In vitro and in silico characterisation of the M. tuberculosis NusG protein was 

undertaken in order to shed some light on its role in antitermination. Biophysical and 

biochemical techniques were used to investigate the structural characteristics of M. 

tuberculosis NusG allowing a comparison with the A. aeolicus structure and the E. coli 

homologous model proposed by Steiner et al. (2002).
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M. tuberculosis NusG was shown to be a monomer using sedimentation equilibrium 

ultracentrifugation and is likely to be an elongated protein as shown with dynamic light 

scattering experiments. Circular dichroism experiments showed some secondary 

structure (approximately 22 % a-helical content and some P-sheet content) and a degree 

of tertiary structure. Proteolytic experiments identified a stable domain found at the C- 

terminal end (amino acids 151 -  238). M. tuberculosis is therefore likely to be an 

elongated protein with a structured C-terminal domain potentially involved in 

interactions with RNAP, Rho or rRNA. An N-terminal domain was not identified but is 

likely to occur. A small amount of NusG remained uncleaved after chymotrypsin 

treatment and this may indicate the presence of some structure or domain organisation at 

the N-terminal end as well.

Further sequence analysis of M. tuberculosis NusG and comparisons with E. coli and A. 

aeolicus NusG revealed 41 non-conserved residues at the N-terminal end of the M, 

tuberculosis NusG. The function of these residues is unclear. The region from position 

46 through to the end of the protein is highly conserved and contains two sub regions; 

the NusG N-terminal (NGN) homology domain (positions 46 -  154) and the KOW 

motif (positions 184 -  211). The NGN domain appears to be found in all Spt5p and 

NusG homologues in prokaryotes and eukaryotes (Ponting, 2002). The NGN motif is 

nearly always associated with a KOW motif (found C-terminal to the NGN domain). E. 

coli TraB and ActX proteins, the Salmonella typhimurium TraB and Serratia 

entomophilia AnfAl proteins are exceptions to this in that no KOW motif is associated 

with the NGN region. In all of these cases there is a C-terminal sequence present that 

may contain a cryptic KOW domain or a KOW-like domain. Both A. aeolicus and E.

178



coli NusG contain the NGN domain, a gap of approximately 10 residues followed by the 

KOW domain. M. tuberculosis NusG however contains a gap of 30 residues between the 

NGN and KOW domains. There may thus be a possible role for this region within the 

M. tuberculosis NusG which does not occur in either A. aeolicus or E. coli NusG. This 

gapped arrangement of the NGN and KOW domains does occur in a few other proteins 

(such as NusG from Mycoplasma gallisepticum and Corynebacterium glutamicum; 

sequence analysis done using SMART; http://smart.embl-heidelberg.de/; Letunic et al., 

2002; Ponting et al., 1999; Schultz et al., 1998; Schultz et al; 2000).

Further comparisons of the three NusG molecules were made using structure prediction 

and the A. aeolicus NusG structure and E. coli and M. tuberculosis NusG sequence 

homology (using Swiss-Model; Guex and Peitsch, 1997; Schwede et al., 2003). 

Sequence homology of the E. coli NusG with the A. aeolicus NusG structure predicts it 

to be an elongated protein made up of two domains joined by a linker region that is 

likely to be highly flexible (Steiner et al., 2002). The two domains correspond to 

domains I and III in the A. aeolicus NusG (Figure 35a). The N-terminal domain 

(corresponding to domain I) is likely to contain the NGN motif and the C-terminal 

domain (corresponding to domain HI) the KOW motif. The C-terminus sequence of M. 

tuberculosis has a high degree of predicted structural homology with domain m  of A. 

aeolicus NusG. As this region contains the conserved KOW motif, it is likely to be a 

domain important in both RNA and protein -  protein interaction, hence the high degree 

of conservation. It is however probable that a domain also exists at the N-terminus of M. 

tuberculosis NusG (containing the NGN motif) with similar functions to those seen in 

domain I of A. aeolicus NusG. Overall, the structure of M. tuberculosis NusG is likely to
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be similar to that of the predicted E. coli structure with two domains joined by a flexible 

linker region. The topology of the E. coli and M. tuberculosis structure predictions, 

based on sequence homology, are shown in Figures 35b and 35c.

An understanding of the structure, properties and functions of NusG will greatly 

enhance the understanding of both termination and antitermination. The ability of NusG 

to directly affect the rate of RNA polymerase elongation and its strong interaction with 

the Rho termination factor indicates that it has important functions in both termination 

and antitermination. Future work should involve the determination of the structure of M. 

tuberculosis NusG which would give vital clues as to possible functions. In addition, it 

is important to investigate the interactions NusG may make with Rho and with RNA 

polymerase and to explore interactions with other proteins which may occur in the 

anti termination complex.
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Figure 35a : Structural homology between A. aeolicus NusG and 
NusG from E. coli and M. tuberculosis.
(A) The structure of A. aeolicus NusG is shown in red with structural 
homologous regions of E. coli NusG shown in blue. E.coli NusG 
appears to contain 2 domains with homology to domains I and III of 
the A. aeolicus NusG. The region showing homology with domain II is 
likely to loop back into the region homologous with domain I.
(B) The structure of A. aeolicus NusG is shown in red with structural 
homologous regions of M. tuberculosis NusG shown in blue. Only the 
C-terminal region of M. tuberculosis NusG shows structural homology 
with domian III of the A. aeolicus NusG.
(Guex and Peisch, 1997; Schwede et al, 2003; Steiner et al, 2002).

181



Domain I

Domain II

Figure 35b : Topology of the A. aeolicus NusG structure compared with that 
predicted for NusG from E. coli.
The A. aeolicus topology is shown in red and the E. coli in blue (as in Figure 35a). 
E. coli NusG is made up of two domains homologous to domains I and III of A. 
aeolicus NusG. The dotted line is a region that did not map to the A. aeolicus 
NusG structure but is likely to simply loop back to domain I as predicted by 
Steiner et al. (2002)
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Domain I

Domain III

Domain II

Figure 35c : Topology of the A. aeolicus NusG structure compared with that 
predicted for NusG from M. tuberculosis.
The A. aeolicus topology is shown in red and the M. tuberculosis in blue (as in 
Figure 35a). The M. tuberculosis NusG sequence only showed structural 
homology with domain III of the A. aeolicus NusG structure. An N-terminal 
domain is, however, likely to occur but does not necessarily show structural 
homology with that of domain I of A. aeolicus NusG.
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6.5. An emerging model for M. tuberculosis antitermination.

Early studies of the M. tuberculosis antitermination complex have not yet yielded 

enough data to make a detailed comparison with the well documented E. coli model. 

Although M. tuberculosis is not closely related to E. coli (Fu and Fu-Liu, 2002), work 

carried out in this thesis does point towards a similar antitermination mechanism but 

with some distinct differences. The NusB dimer is probably disrupted and is likely to 

bind to NusE to form a heterodimer, corresponding with the E. coli model. The 

interaction between NusB and NusE appears to be weak, in contrast to the E. coli model. 

Additional factors (such as RNAP, other Nus factors or unknown factors) may therefore 

be involved in stabilising the NusB -  NusE heterodimer. NusG seems to share structural 

characteristics with that of E. coli NusG and they are therefore likely to show functional 

similarities.

The knowledge obtained from work carried out in this thesis combined with the 

knowledge of the NusB structure and Nus A structure and function (Gopal et al., 2001a) 

does, however, allow for the tentative postulation of a model for M. tuberculosis 

antitermination (See Figure 35). NusA, NusB, NusE and NusG are all highly likely to be 

involved in an rm  antitermination mechanism occurring within M. tuberculosis. A NusB 

-  NusE heterodimer and NusA are likely to make contacts with the rRNA transcript 

leader region while NusA and NusG probably make contacts with the RNA polymerase. 

This may be all that is necessary to convert the RNA polymerase into a terminator 

resistant form however the presence of Rho and the requirement for additional factors in 

E. coli antitermination suggest that they are very likely to be necessary for M. 

tuberculosis antitermination.
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Confirmation of the proposed M. tuberculosis rRNA antitermination complex 

composition would initially involve the cloning of NusA, NusE, NusG and RNAPa into 

GST expression vectors and pulldown assays carried out as shown in this thesis using 

GST-NusB. The use of purified proteins may be used to confirm interactions seen in E. 

coli and M. tuberculosis cell free extracts used to identify additional factors required for 

complex formation. An alternative technique to pulldown assays would be the use of 

ELISA, where individual Nus factors or RNAP are crosslinked to a microtitre plate and 

interactions between the attached protein and the remaining individual factors and 

combinations of the remaining factors established by probing with antibodies to the 

added factors. Once interactions had been established, sedimentation equilibrium 

ultracentrifugation would be essential for stoichiometric predictions for all interactions.

rRNA nut site binding assays should also be carried out on all individual Nus factors and 

combinations of Nus factors in order to establish the RNA binding sites of individual 

proteins and the complex as a whole.

In conjunction with these experiments, in vitro transcription assays should be used to 

determine whether the identified components are capable of assembling and transcribing 

through Rho-dependent terminators. An approach used by Torres et al. (2000) may be 

useful for the determination of novel proteins required for M. tuberculosis 

antitermination. A modified EcoRl enzyme (capable of specific DNA sequence binding 

but unable to cleave the DNA) was used to stall the transcribing RNA polymerase (in an 

in vitro transcription assay containing E. coli cell free extract) and subsequently allowed 

for the identification of the factors bound to the RNAP after having transcribed through 

an rm nut site. This would be a very useful approach for confirming the requirements of



the Nus factors and identifying unknown antitermination components in M. tuberculosis. 

It is important that the mutant, monomeric NusB is used in all of the above experiments 

so as to fully establish whether NusB takes part in M. tuberculosis antitermination as a 

monomer.

The proposed model, involving the looping of the RNA allowing the Nus factors to 

maintain contact with both the RNAP and the nut site, could possibly be determined 

using an RNase protection assay on a stalled transcription complex. Should the nut sites 

remain protected from RNase digestion during such a scenario, this would be indicative 

of the looping of the RNA.
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Figure 36 : Proposed Antitermination model in M.

tuberculosis.

A possible model for antitermination shows the involvement of 

the four Nus proteins. An in vitro assay proving the involvement 

of Nus proteins in antitermination has not been carried out, 

however the homology of the Nus proteins to those found in E. 

coli is highly indicative of their involvement. The model also 

indicates a monomeric NusB interacting with NusE as well as 

the predicted weak interaction between NusB and NusE. 

Unknown factors that may stabilise the NusB -  NusE interaction 

are indicated by a question mark. The elongated shape of NusG 

is shown. A question mark has been placed against Rho as it was 

not possible to show interactions with NusA and NusG. More 

thorough studies need to be carried out on the involvement of 

Rho in M. tuberculosis antitermination. Current studies involve 

the investigation of binding of the NusB -  NusE complex with 

the rRNA boxA region and the rRNA binding site of NusA (both 

indicated by question marks). Future studies require the 

identification of additional factors, possibly involved in 

antitermination, as has and is occurring in E. coli; indicated by 

the question mark in the white circle (Squires et a l , 1993; Torres 

et a l, 2001). The structures of NusA and NusB (solved in this 

laboratory) and the domain organisation of NusG are indicated.
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Appendices



Appendix 1.

Site-Directed-Mutagenesis Primers:

FE22.23AA mutations of Phe and Glu to Ala are highlighted.

Upper Primer A:

G GCC CTG CTG GGC GCT GCC GAG GTC CGC GGC 

Lower Primer B:

GCC GCG GAC CTC GGC AGC GGC CAG CAG GGC C 

PCR Primers:

NusB-GST Forward Primer C:

GATCGGATCCATGTCGGACAGAAAGCCGGTTCGCG 

NusB-GST Reverse Primer D:

GATCGAATTCGACGCGCAGCTCGAGCCGGGTCATCA 

NusE + RBS Forward Primer E:

GATCGAATTCATTTCACACAGGAAACAGTATTCATGGCGGGACAGAAGAT
CCGC

NusE + RBS Reverse Primer F:

GATCGAATTCCCCTTTCGTGCCATTGCTCTGTCCAATCTCCTA

NusB -  RBS -  NusE -  His6 Forward Primer G : 

GATCGGATCCATGTCGGACAGAAAGCCGGTTCGC 

NusB -  RBS -  NusE -  HiS6 Reverse Primer H :

GATCGGATCCTCAGTGGTGGTGGTGGTGGTGCTCCTGGATGTTGACGTCG
AC
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Rho Forward Primer I:

CCGG A ATTCC AT ATG ACCG AT ACGG ACCTC ATT ACGGCT 

Reverse Primer J:

CGCCAAGCTTTCACTCGAGGTCGCTGTCCATGGACCCTGGCGT



Appendix 2a

GST

Ba/nH1

NusB

pGEX-4T1-NusB

pBR322 ORI

pGEX-4T 1 was used for the cloning and overexpression of an N-terminally- 
GST tagged M. tuberculosis NusB. The resulting protein is 43.0 kDa, with a 
theoretical pi of 6.33 and an extinction coeffeciant of 53580 M“1 cm-1 ■ The N- 
terminally fused GST can be removed by thrombin cleavage.
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Appendix 2b

8amH1

GST NusB

EcoR1

Ptac NusE

pGEX-6P1 -NusB-NusE

pBR322 ORI

pGEX-6P1 was used for the cloning and overexpression of an N-terminally- 
GST tagged NusB and a C-terminally-Hise tagged NusE. The resulting GST- 
NusB was a 43.0 kDa protein, with a theoretical pi of 6.33 and an extinction 
coeffecient of 53580 M~1 cm_1. The GST can be removed using PreCission 
Protease (Amersham Biotech).The NusE-Hisg is a 12.4 kDa protein, with a pi 
of 9.17 and an extinction coeffecient of 3840 M-1 cm-1.
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Appendix 2c

BamH1

usG

His6

PT7

pET15b-NusG

pBR322 ORI

pET15b was used for the cloning and overexpression of an N-terminally- 
Hisg tagged NusG. The resulting protein was a 27.6 kDa protein, with a 
theoretical pi of 5.29 and an extinction coeffecient of 19060 cm-1 .
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Appendix 2d.

xaioi

Rho

Nde<\
F1 O rig in

T 7

pET22b-Rho

lacl

pBR322 ORI

pET22b was used for the cloning and overexpression of a C-terminally- 
Hisg tagged M. tuberculosis Rho-termination factor. The resulting protein 
is a 66.1 kDa protein, with a theoretical pi of 5.8 and an extinction 
coeffecient of 8960 M_1 cm-1 .
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