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Abstract

The dispersion of magnetic excitations in PrNiSn has been studied using inelastic 

neutron scattering. The dispersion relations along [0 0 Q] and [Q 0 0] have been 

determined for the excitations observed at 1.5, 2.5 and 5.2 meV. The two lower 

excitations are proposed to be modes originating from the 2 meV level predicted 

by earlier inelastic measurements. Additional measurements of the 3.5 meV 

excitation already studied were performed to provide higher resolution data and 

improved statistics. Preliminary measurements on NdNiSn were also made.

Searches have been made using inelastic neutron scattering to look for 

crystalline electric field (CEF) excitations in the uranium-based intermetallics 

UPdSn, UCu2 Sn and U3Pd2oSi6 .

In UPdSn, a distinct CEF excitation has been observed at 50 meV in the 

paramagnetic phase. On cooling, the excitation shifts to lower energies and its 

temperature dependence exhibits marked changes at the antiferromagnetic 

transition temperatures of TN = 25 and 40 K. The quasielastic scattering below

20 meV is found to increase significantly below the lower transition temperature. 

A set of Stevens parameters have been proposed to account for the observed data.

The magnetic scattering observed in UCu2 Sn is a broad, asymmetric peak centred 

at 7 meV which disappears above the quadrupolar ordering temperature of 

Tq = 16.5 K. The temperature dependence of the peak has been determined and

comparisons with two different energy level schemes have been made.

Three clear CEF excitations, which are visible in both the paramagnetic and 

ordered phase, have been observed at energies of 14.3, 23.9 and 31.6 meV in 

U3Pd2oSi6. The temperature dependence of the excitations has been followed and 

a tentative level scheme proposed. A sharp, intense peak at 3 meV is visible at 

low temperatures and has been attributed to the exchange induced splitting of the 

8c ground state below TN = 19 K.
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CHAPTER 1

Magnetism

1.1 Lanthanides and actinides

Many of the most interesting discoveries in the field of condensed matter physics 

have come from materials which include elements from the lanthanide or actinide 

series. Some examples are unconventional superconductivity, heavy fermions, 

non-Fermi liquid behaviour and quantum critical points. Lanthanides and 

actinides are characterised by having unpaired electrons in the /  shell and their 

diverse behaviour is due to interactions between the highly anisotropic /  electron 

wavefunctions. It is clear that such “/  electron” physics is a fascinating area of 

research.

Intermetallics containing magnetic ions exhibit different types of behaviour 

depending on the interactions between the magnetic moments. In the lanthanide 

series, the 4 /  electrons are deeply embedded within the atom and their 

wavefunctions do not extend particularly far. This means that most materials 

containing lanthanide ions exhibit localised magnetism with magnetic moments 

that are usually close to the free ion values.

The actinide series is very different because the 5 / electrons are often involved in 

bonding and their wavefunctions are more spatially extended. Most actinide 

based materials therefore exhibit itinerant magnetism in which energy bands are 

formed instead of discrete energy levels. The magnetic moments in such 

materials are therefore much smaller than the free ion values.
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Uranium is on the border between the localised and itinerant regimes and thus 

compounds containing uranium can be used to look at the crossover from one to 

the other. Unfortunately, uranium compounds showing localised behaviour are 

relatively rare and so compounds which exhibit such behaviour, like those studied 

in this thesis, are particularly interesting. In order to understand the experimental 

results, the mechanisms behind localised moment magnetism must be understood. 

The rest of this chapter will therefore be used to describe the basic theories of 

magnetism.

1.2 Paramagnetism

For free atoms, the magnetic moment consists of three components. Firstly, the 

intrinsic spin of the electrons provides a paramagnetic contribution. A second 

paramagnetic contribution comes from the orbital angular momentum of the 

electrons about the nucleus. The third component is a diamagnetic one, which 

arises from the change in orbital moment induced by a magnetic field.

Atoms with completely filled electron shells have zero spin and orbital angular 

momentum in their ground state, hence only the diamagnetic component 

contributes to the susceptibility. However, atoms with a partially filled inner shell 

(such as rare-earth and actinide elements) and solids containing atoms with 

partially filled electron shells exhibit very different magnetic properties. In these 

cases, we will have some form of paramagnetism.

In order to obtain a simple theory that describes such magnetism, it is assumed 

that the sources of magnetic moment (e.g. unfilled electron shells or conduction 

electrons) do not interact with each other. Later, an interaction between moments 

will be included in order to account for magnetic ordering.
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The magnetic moment of a free ion is given by:

P =  8Mb J

where juB = e/z/2m is the Bohr magneton and g is the Lande factor given by:

, 7 (7  + l) + 5(5  + l ) - L (L + l)
g = 1 + -------------------------------------

27(7 + 1)

Such an ion will have a set of 7-multiplets arising from a given L  and S , and the

ground state will be (27 + l)-fold degenerate in zero field. To calculate the value

of the total angular momentum, J ,  we use Hund’s rules:

i. Maximise the total spin, 5, consistent with the Pauli exclusion principle.

ii. Maximise the total orbital angular momentum, L, consistent with rule (i) 

and the Pauli exclusion principle.

iii. Calculate the total angular momentum, 7, using:

7 = |L -  S \, if the shell is less than half-full,

7 = |L + S \, if the shell is more than half-full.

For example, the ions Pr3+ and U4+ both have two /  electrons so g = 0.8, 5 = 1 ,  

L = 5 and 7 = I L  -  S I = 4, which gives the free ion magnetic moment as 3.2 P-b*

This method of calculating the total angular momentum, i.e. 7 = ^  /, + ^  s , , is 

known as Russell-Saunders (LS) coupling. Note that another method known as 

j- j coupling, i.e. + j f), is used when the coupling between the

spin and orbital angular momentum for each electron is stronger than the /-/ or s-s 

coupling between electrons. This is more applicable to very heavy atoms.
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The degeneracy of the 7-multiplet is lifted by the Zeeman interaction between the 

magnetic moment and an applied field and produces (27 + 1 ) states with energies:

HZeeman ~  I1 ‘ ® — § M b ^ Z B

for a field applied along the z-axis. At a finite temperature, the levels are 

populated according to the Boltzmann distribution:

P(Ei) = ,~Ei/kBT

which, assuming M  is parallel to B, leads to a susceptibility of the form:

dM T
X  ~  Mo — ^ M oM b 8*7

27 + 1 
2 J

coth 27 + 1 gMBJB 
~~2J kBT j

 coth
27

f  1 SMbJ B '' 
27 kBT j

where the term in square brackets is the Brillouin function with x  = gjuBJ B /kBT . 

At high temperatures and small magnetic fields, i.e. for small jc, the above 

equation gives the Curie paramagnetic susceptibility:

nfiQjJ,2Bg 2J{J  + \) _  nMoMlff = C 
3 k BT  3 kBT T

where n is the number of ions per unit volume and p eff = jUBg-yJj(J + l) is the

effective magnetic moment of each ion. In the 5f  and 5 / configurations of 

uranium, for example, the effective moments are 3.58 and 3.62 jub, respectively. 

In uranium compounds which show itinerant magnetism the effective magnetic 

moments are much smaller than expected, hence the magnitude of can be used 

as an indication of the degree of/electron localisation.
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1.3 Magnetic Order

1.3.1 Curie-Weiss mean field theory

In zero applied field, non-interacting magnetic ions are randomly oriented so the 

net magnetic moment is zero. As a field is applied the magnetic moments begin 

to align along the direction of the field and the net magnetic moment is initially 

proportional to the field strength, i.e. M  oc B for small fields.

Some materials, however, exhibit a net magnetic moment even in zero field, when 

they are cooled below a critical Curie temperature Tc . This type of behaviour is

known as ferromagnetism. (In antiferromagnetism the spins also align, but 

antiparallel to one another. Although this does not result in a net moment, the 

moments are still well ordered in zero field below a critical Neel temperature TN).

Such a transition from a disordered paramagnetic state to a highly ordered 

magnetic state requires a coupling between the individual magnetic ions. To 

model this interaction we assume that each of the magnetic ions experiences an 

internal field proportional to the magnetisation, in addition to any applied field:

B rr = B B t — Be jf  app  int

This is obviously a mean fie ld  theory since we are considering one spin in the 

mean field produced by all of the other spins. Inserting this into M  = %0Beff jju0 ,

w here^0 = C /T  is the susceptibility for non-interacting moments, gives the 

Curie-Weiss susceptibility:



Spontaneous magnetisation occurs at and below the singularity at T  = Tc . (Note 

that for non-interacting moments we have X = 0 which gives X  — C /T  as before.) 

The internal field can be estimated as the temperature tends to zero by:

nw T'c w  3*Br c t 3kBTcBm = A M =  — M  = —   ngpigJ = ----— —
C ng24 j ( J  + l )  gJuBU  + 1)

1.3.2 Heisenberg exchange interaction

Heisenberg explained the origin of this internal (or exchange) field by considering 

the electrostatic interaction between the charge densities of two ions. The Pauli 

exclusion principle states that the wavefunction of a complete system must be 

antisymmetric with respect to the exchange of two fermions, such as electrons 

(with spin s, at position r,-):

i.e. T'(r1,spr2,s2) = -T'(r2,s2,r1,s1)

The total wavefunction can be written as the product of spatial and spin parts:

i.e. >J/(r1,s1,r2,s2) = a(r,,r

So, if ^ ( j 1,s 2) is antisymmetric (i.e. a singlet state with S = 0 , S z = 0 ) then 

must be symmetric, and if p{sl ,s 2) is symmetric (i.e. a triplet state 

with S = 1, S z = -1 ,0 ,1) then a (rp r2) must be antisymmetric. Therefore, for the 

spatial part:

a s = 7j k a(r,)V'1,(r2) + v b (r, )y/a (r2)]

=7T Wa (ri )Vb (r2) -  Vb (r, )¥a (r2)]

where y/a{r j  represents the wavefunction of electron 1 in state a, and y/b(r2) 

represents the wavefunction of electron 2 in state b.
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This leads directly to a correlation between the spins of electrons on two different 

ions, which is all that is required for a magnetically ordered state. The direct 

Heisenberg exchange interaction between atomic spins can be written as:

where the exchange integral is given by:

j , x = JVC (ri )v l  (r2) ̂ (r!, r2) yrb (r, )y/a (r2)dT

and U(rp r2) is a function which describes the interaction between the electrons 

and the ions and between the electrons themselves. Ferromagnetism results when 

J  > 0 and antiferromagnetism results when J  < 0 .

1.3.3 RKKY interaction

In rare earth intermetallics, there is little direct overlap of the 4 f  electron 

wavefunctions which means that the exchange interaction cannot act directly 

between them. Instead, the exchange interaction acts between the localised 4 / 

electrons and the conduction electrons. The polarised conduction electrons 

thereby mediate the spin between 4 / electrons. This indirect exchange mechanism 

was formulated by Ruderman, Kittel, Kasuya & Yoshida and is therefore known 

as the RKKY interaction.

In this case, the Heisenberg exchange is rewritten in terms of J ij9 the Fourier 

transform of the ^-dependent exchange integral j{q ) ,  as:



The RKKY interaction is a long-range, oscillatory function and the interaction 

with a given ion will be either ferromagnetic or antiferromagnetic depending on 

the distance from it. It is this interaction which is responsible for the complex and 

often periodic magnetic structures in the rare earth elements.

1.3.4 Spin waves

Consider a line or ring of N  ions of spin S with nearest neighbours coupled by the 

Heisenberg interaction (shown schematically in Figure 1.1):

s„+1
p = i

The ground state energy of the system is therefore given by U0 = - 2 J exN S 2. 

Now consider an excited state in which the p* spin is reversed. The energy of this 

excited state is Ux = - 2 J ex{ N - \ ) S 2 + 2J exS 2 = U0 + 4 JexS 2.

T
Figure 1.1 The ground state (left) and an excited state (right) of a line of aligned spins.

There is, however, an excited state known as a magnon (or spin wave) which has a 

lower energy than this. In this configuration, the spins ‘share’ the reversal by 

precessing around their mean direction but with a uniform phase change between 

successive spins (see Figure 1.2). In the case when the precession angle is small, 

the energy of the system is:

U{0) = - 2 J ex (N  cos 0 )S 2 = f / 0 + J exN 6 2S 2

8



Figure 1.2 The precession of a one dimensional spin wave.

For a rotation of K over the N  spins (which is equivalent to the reversal of one 

spin) we have U(0) = U0 + J  exn 2S 2/ N  . So as the number of spins increases, the 

energy of the spin wave state becomes lower than when a single spin is reversed.

It is assumed that the precession angle is small and that the spin wave is in the 

form of a travelling wave, S p exp[i{Qa-cot))  where Q is the wavevector and

a is the spin separation distance. The dispersion for a one-dimensional 

ferromagnet is then given by hco = 4JexS(l  - c o s Qa) which means that c o Q 2

in the long wavelength limit. (Note that the long wavelength limit for phonons is 

co Q ). Magnon dispersion relations for real crystals can be determined by 

inelastic neutron scattering, in exactly the same way as for phonon dispersion 

relations which arise from lattice excitations.



1.4 Crystalline Electric Fields

The energy spectrum of an isolated magnetic ion in a crystal carries information 

about the magnetic ion itself, the crystalline environment and the interaction 

between the two. In a periodic lattice of magnetic ions, each ion experiences an 

electrostatic potential due to the regular array of charges from the surrounding 

ions. If the symmetry of the lattice is high enough, this crystalline electric fie ld  

(CEF) will lift the degeneracy of the ground state multiplet to form various 

(possibly degenerate) sub-levels.

The splittings of these levels are usually much smaller than the multiplet 

separations, so the mixing of different multiplets can usually be neglected. The 

magnitude of the energy splitting between these levels is also comparable to 

thermal energies and therefore many physical quantities are strongly affected by 

their changing populations. Techniques commonly used to detect such CEF levels 

include magnetisation, resistivity, susceptibility, heat capacity measurements and 

neutron scattering.

Coulomb
interaction

Spin-orbit
interaction

-e V

Crystalline 
electric field

-  meV

Electron shells Electron orbitals J multiplets CEF levels

Figure 1.3 Schematic diagram showing typical energy level splittings 
due to interactions between the/electrons and their environment.
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There are two general theorems which apply to the lowest energy level produced 

by the CEF splitting:

• Kramers' theorem states that, in the absence of an applied field, an ion

containing an odd number of /  electrons has CEF levels which are at least

doubly degenerate.

• The Jahn-Teller effect causes the environment around an ion with a

degenerate (non-Kramers) ground state to distort to a lower symmetry so as to

remove the degeneracy.

1.4.1 CEF Ham iltonian

In rare-earth and light actinide elements, the CEF interaction is weaker than the 

spin-orbit interaction and can therefore be treated as a perturbation of the free ion 

Hamiltonian. The CEF perturbation Hamiltonian is given by:

and determines the effect that charges qj situated at distances ry from the origin 

have on the unpaired electrons qt within the magnetic ion at r, from the origin.

Each contribution to the potential can be represented as the product of a radial 

component, f ( r ) ,  and a spherical harmonic, Fnm (0, (f>). In order to calculate the

eigenvalues and eigenvectors of the ion, the CEF transition matrix must be 

diagonalised. This task is simplified considerably by noting that, within a specific 

J  multiplet, the matrix elements of the 7nm operators are proportional to those of 

/-operator equivalents.
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Using the Stevens operator equivalents1, O " ,  the CEF Hamiltonian becomes:

hcef =zk(''"K"J°;
nm nm

where the cn are multiplicative Stevens factors which can be calculated using 

standard formulae2 and (rn  ̂ is the mean n 1 power of the magnetic electron 

radius.

The B™ are known as the crystal fie ld  parameters. In theory, it should be possible

to calculate their values from the charge distribution in the material, although in 

practice this proves to be too difficult.

These parameters can be determined experimentally, however, from 

measurements of specific heat, susceptibility and inelastic neutron scattering. 

Single crystal samples are especially useful since the different symmetry 

directions can be looked at independently. In fact, determination of the 

paramagnetic Curie temperatures, 6a , along the three principle axes allows the 5°

and B l  parameters to be obtained directly from the high temperature 

susceptibility, since3:

= * ,  + T 5 t ( 2 ^ - l ) ( 2 /  + 3)[B2° + B22]

eb = o P — f c ( 2 J + i ) [ B l ]

+ t̂ ( 2 7 - 1 ) ( 2 /  + 3)[b 2° - B 22]

and rearranging these gives:



In practice, these calculated values are used as starting parameters which are 

allowed to vary when fitting to the experimental data. The number of terms 

needed to describe the CEF potential is determined by the symmetry of the 

magnetic lattice, with more terms required as the symmetry is reduced:

The eigenfunctions obtained by diagonalisation are written, using the notation of 

Bethe4, as T, where i = 1,2,3,4,5 for integer J  and i = 6,7,8 for half-integer / .  

In this notation, Ti and T2 are singlet states, T3 is a non-magnetic doublet, T4  and 

r s  are magnetic triplets, T6 and 1^ are magnetic doublets and Ts is a quartet.

1.4.2 Bulk properties

Using the eigenvalues En and eigenfunctions An obtained from the

diagonalisation of the CEF transition matrix, the paramagnetic susceptibility, 

magnetisation and magnetic specific heat can be calculated5,6,7 (for a field applied 

along a  = x ,y ,z )  via:

where f3 = l/k BT , AE - E m- E n and the partition function Z  = ^ e  ^  .

CEF ' hexagonal

CEF /  tetragonal

CEF 'orthorhombic
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Since the susceptibility depends on the matrix elements between CEF eigenstates 

it is sensitive to the arrangement of the eigenstates within the level scheme. It was 

shown by Van Vleck that the thermal population of multiplets above the ground 

state multiplet has a significant effect on the measured susceptibility.

The CEF modifies the susceptibility in a similar way. This is reflected in the 

second term in the susceptibility which is dependent on the transition between 

different eigenstates. Thus there is a Curie-type term and a Van Vleck-type term.

If the ground state is non-magnetic, the only contribution to the susceptibility at 

T  = 0 comes from the Van Vleck coupling of the ground state to the excited states. 

At finite temperatures, the Curie term will also contribute due to the thermal 

population of excited states.

A program has been written in FORTRAN to allow calculations of the 

eigenvalues, eigenvectors and the transition matrix elements between eigenstates 

to be made. This program also uses these eigenvalues and eigenvectors to 

calculate the susceptibility, magnetisation and magnetic specific heat.
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CHAPTER 2

Neutron Scattering

2.1 Properties of the neutron

Neutron scattering is one of the most powerful tools available with which to look 

at the properties of condensed matter. It is the intrinsic properties of thermal 

neutrons (listed below) which make them perfectly suited to condensed matter 

studies:

mass 1.675 x 10'27 kg 

charge 0 

spin Vi 

moment -1.913 f iN

The following relationships between energy E, mass m, velocity v, temperature T, 

wavevector k, wavelength A and momentum p  can be defined for the neutron:

E  = {mv2 = kBT

p  rnv k

where ks is the Boltzmann constant and h is the Planck constant. Inserting these 

values, we obtain the following values for thermal neutrons (100 < T<  1000 K):

9 meV < E  < 90 meV and 1 A < A < 3 A
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Some of the reasons why thermal neutrons are so useful in studying condensed 

matter systems, especially those in which magnetism is present, are given below:

• Since the neutron has a magnetic moment it will interact with unpaired 

electrons in magnetic atoms. This enables magnetic structures and dynamics 

to be directly observed. Neutrons can also be spin polarised which allows 

further information about the magnetism of a material to be determined.

• Since the neutron is uncharged it can penetrate into the bulk of a material and, 

more importantly, since there is no Coulomb repulsion from the electron 

‘cloud’ surrounding an atom it is scattered entirely by the nucleus.

•  The neutron mass is such that the de Broglie wavelength of thermal neutrons 

is comparable to the interatomic distances in solids and liquids. This means 

that interference effects between neutrons scattered from the nuclides can 

provide information about the structure of the scattering system.

• Thermal neutrons have a kinetic energy which is comparable to many types of 

excitations in condensed matter. This means that the transfer of energy to or 

from the neutron can provide information about the dynamics of the scattering 

system.

Neutrons are usually produced by nuclear reactors or spallation sources. The two 

methods of production are discussed in Chapter 4, using the ILL reactor and ISIS 

spallation source as examples.
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2.1.1 Comparison with x-rays

It is worth mentioning the differences between neutrons and x-rays which allow 

neutron scattering to be used advantageously:

•  X-rays are scattered by the electron charge density surrounding the atom. 

Neutrons, however, are scattered entirely by the nucleus, meaning that certain 

nuclides from which x-rays are only weakly scattered (such as hydrogen) can 

be observed very easily using neutrons.

•  The uncharged nature of neutrons makes them highly penetrating. This means 

that a wide range of sample environments (e.g. furnaces, cryostats, magnets, 

pressure cells) can be used without significantly reducing the beam intensity.

• The scattering of x-rays is proportional to the atomic number whereas the 

neutron scattering length varies from atom to atom. This means that neutrons 

can be sensitive to light atoms in the presence of heavy atoms.

• The difference in sign for the neutron scattering lengths of certain isotopes 

(e.g. hydrogen and deuterium) means that isotopic substitution can be used to 

provide additional information through contrast variation.

• Neutrons can interact directly with unpaired electron spins to provide 

information about magnetic structures and excitations.

The major disadvantage of neutron scattering compared to x-ray scattering is the 

much lower intensities available from neutron sources compared to x-ray 

synchrotrons. This means that large samples must be used which are often 

difficult to obtain, especially in single crystal form. Samples for neutron 

experiments are typically required to be 1000 times larger than for a similar x-ray 

measurement.
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2.2 Neutron Scattering Theory

There are many classic texts which describe in detail the theory of neutron 

scattering, including those by Marshall and Lovesey1, Squires2, Lovesey3 and 

Jensen and Mackintosh4. The equations for nuclear scattering will be derived 

first, followed by those for magnetic scattering. The relationship between these 

equations and the actual quantities measured will be discussed.

In order to obtain information from the scattering of neutrons from a sample, it is 

necessary to measure the neutron cross-section. These cross-sections are the 

quantities actually measured in a scattering experiment. Suppose the scattering 

process is that as shown in Figure 2.1 in which the incident neutron flux is <X>. 

The partial differential cross-section is defined as:

 ̂ number of neutrons scattered per second into a small ^
solid angle dQ with final energy between E f  and Ef  +dEd a f )

dQdE'/ OdQd£/

If the final neutron energy is not analysed, the differential cross-section is then 

defined as:

d a  _  (number of neutrons scattered per second into a small solid angle dfl) 
d£l ®d£l

By integrating over all angles, we obtain the total scattering cross-section:

(total number of neutrons scattered per second)
^total
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D irection

dS

Incident

neutrons r axis
Target

Figure 2.1 Generic scattering diagram for a beam of neutrons 

being scattered into a solid angle dH at an angle of 0,(p

2.2.1 Elastic and inelastic scattering

Elastic scattering occurs when the energies of the incident and scattered neutron 

are identical and so the magnitude of the scattering is given by the differential 

cross-section. Inelastic scattering, on the other hand, occurs when the incident 

neutron gains (or loses) energy through the absorption (or emission) of an 

excitation. The magnitude of inelastic scattering is therefore obtained by 

measuring the partial differential cross-section. This cross-section is measured as 

a function of momentum transfer and energy transfer, which are defined as:

»Q = f t ( k , - k , )  and hw =
2m
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2.2.2 Nuclear scattering

The derivations of nuclear and magnetic cross-sections both begin with a general 

description of the neutron-sample interaction. Consider a neutron scattered from 

an initial state (wavevector k f and spin c r)  to a final state (wavevector k f  and

spin Gf ) by an interaction potential V. The probability of such a scattering event

is given by Fermi’s Golden Rule as:

d 2G
dQ.dEs

ZL
k;

m \ 2

where Ai, Af  denote the initial and final state of the sample and , p Cj are the 

occupation probabilities of the initial states. The terms Ik^./l,.) and k f a f Af ^

are the initial and final wavefunctions of the complete scattering process. The 

delta function is simply energy conservation, i.e. the difference in energy between 

the final and initial states must be equal to the energy transferred to or from the 

neutron.

In order to obtain the form of the neutron-nucleus interaction VN we assume that

it is very short ranged, i.e. V^O*) ©c £ (r ) . This is valid since the range of the

nuclear force (-1 fm) is much smaller than the neutron wavelength. Calculations 

of the coefficient then give:

V„(r) = — bS(r) 
m

where b is known as the scattering length which varies with element, isotope and 

nuclear spin. Tables of scattering lengths for all of the elements are available in 

many places, including Marshall and Lovesey1, Lovesey3 and the NIST website 

(http://www.ncnr.nist.gov/resources/n-lengths/).

20

http://www.ncnr.nist.gov/resources/n-lengths/


For a scattering system containing j  nuclei with scattering lengths bj the partial 

differential cross-section (for unpolarised neutrons) becomes:

d 2cr k 4

after integrating over the space co-ordinates of the neutron.

The delta function for energy can be rewritten as an integral with respect to time 

and the R  . operators can be converted into time-dependent Heisenberg operators

Then, after integrating over the X states, the partial differential cross-

section can be expressed as the sum of coherent and incoherent inelastic 

scattering cross-sections:

d a r d 2o  '
dQ.dEf dOdEf  J

+
coh V

dOdEf  J

where

and

f  d 2c  '
d ddE

= (?)**. J _ y  r  &
v 7 k, 27th 4 -  J~ \ /

d o
dOdEf  J

= [b2- b 2)^ L  _ L V  f  / - /rRi(0) ir.R,(,)\ 
v 7 k, 27th 4" J - \  /

e 'm dt

It can be seen that incoherent scattering depends only on the correlation between 

the same nucleus at different times. Coherent scattering, however, also depends 

on the correlation between different nuclei at different times. Coherent scattering 

therefore gives interference effects.
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Actual systems consist of different nuclei and therefore different scattering 

lengths. The coherent scattering is that which would be obtained if all the

scattering lengths were equal to the ensemble average, b . The term which must 

be added to this to regain the actual scattering is the incoherent scattering.

From the coherent nuclear scattering cross-section we can obtain the coherent 

elastic nuclear scattering cross-section for a non-Bravais crystal (i.e. one in which 

there is more than one atom per unit cell):

where the N n nuclear unit cells of volume vN each contain d atoms at positions d  

and x is a vector in the reciprocal lattice. It can be seen that scattering occurs only 

when Q = k f. - k /  =  t  which is the same as Bragg’s Law, i.e. coherent elastic 

scattering of neutrons is simply Bragg scattering.

The nuclear structure factor in the above equation is given by:

d

where the exponential term, e~w^ \  is known as the Debye-Waller factor. This 

factor is due to the thermal motion of atoms from their equilibrium positions and 

results in a diminishing scattering intensity with increasing Q.
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2.2.3 M agnetic scattering

The magnetic field generated by an electron with spin s and moving with 

momentum p is given, at a point R  away from the electron, by the sum of the spin 

and orbital contributions:

B = B , + B ,
s L A x

V x
m  x R  

R 2
+

f - l H B p x R N 
h R 2

where jue = - 2 jubs is the electron magnetic dipole moment. The interaction 

potential of a neutron in this field is given by:

An
V x

s x R
R ‘

+
r , a 1 p x R

where p„ = - y u Na is the neutron magnetic dipole moment, juN is the nuclear 

magneton, y = 1.913 is the gyromagnetic ratio and a is the neutron Pauli spin 

matrix.

The magnetic scattering cross-section for unpolarised neutrons can then be 

derived:

d l(J  ~ ~ r~ (yre)2 Y , P d X\ <J' M 'M f) { :ii \a -U M i W 63+El - E f )d£ldEf  k t ^ tA/

where the magnetic interaction operator is defined for an electron at Tj as:

M x(Q) = X
J  L

Q x ^ x Q ) + ^ t ,x Q ) expi!(q ■ rj )
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1 - 1In the dipole approximation, which is valid for case where Q is much greater

than the mean radius of the orbital wavefunctions of the unpaired electrons, the 

magnetic scattering cross-section can be written in terms of the total angular 

momentum:

d 2t7 k f  / \2
= - r ( n e)

dQAEf  k ; ^ ( q) Zp î(A|(jJ;K)(̂ |(j;),k>
1  J Xt,Xf  i j  1 1

XZ ( ^  “  QccQf) exP «Q ■ (r , -  r ^ S i h a + E . - E f )

where a,  f t  = x , y , z  and the magnetic form  factor, f a q ) .  is defined as the 

Fourier transform of the magnetisation density of unpaired electrons. Integration 

over energy then gives the coherent elastic magnetic cross-section:

'£l -m 'nMa i l
-2^(0)'

\ u^Jcoh M
S( Q- x )

where the N M magnetic unit cells each contain d  atoms in a volume vM and x is a 

vector in the reciprocal lattice.

By using the integral representation of the ^-function, the magnetic neutron 

scattering cross-section may be written5 in terms of the scattering function, 

S(Q,a>):

d 2<J k f  / v2
= ~r~\7re)d dd E f  k t 'W(Q)E  f a - Q,a>)

a,p

where the Van Hove scattering function Sap (Q, tv) is the Fourier transform of the 

magnetic correlation function,
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It is assumed that the probability of a transition between any two states in a 

system is the same in both directions. Then, the principle o f detailed balance 

states that:

S(Q,ffl) = ex p (^ )s(-Q ,-< 2))

since the probability of the system being initially in the higher energy state is a 

factor of exp(-0r) lower than the probability of it being in the lower energy state.

2.2.4 Dynamical susceptibility

Linear response theory is a method of “analysing the dynamical properties of a 

condensed matter system close to thermal equilibrium”4. It shall be used to relate 

the magnetic susceptibility to the neutron scattering function. Consider the 

dynamical susceptibility which describes the dynamics of magnetic moments and 

is defined via:

M  a (Q, <0) = Y j X a f (Q- 0))Hf  (Q, CO) 
fi

Using the Kramers-Kronig relationship which relates the real and imaginary 

components of ^(Q , co) , the principle of detailed balance and by applying linear 

response theory, we obtain the fluctuation-dissipation theorem:

S(Q,a>) =
2h

z ( Q .« )

Thus, using this expression, comparisons between the measured neutron cross- 

section and calculations o f  the dynamical susceptibility can be made directly.
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The random-phase approximation, which assumes that the fluctuations of the 

angular momentum vectors away from their thermal averages are small and 

uncorrelated, results in the MF-RPA dynamical susceptibility:

where ^(< y) = C/T is the non-interacting susceptibility derived in Section 1.3.1 

using mean field theory.
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CHAPTER 3

Literature Review

Due to the extremely localised nature of the 4 /  electrons in rare-earth 

intermetallics and the resulting high value of the effective magnetic moment, there 

are many examples of crystal field excitations in such compounds. In contrast, 

the 5 /  electrons in uranium intermetallics are usually delocalised and so the 

observation of clearly defined crystal field excitations is relatively rare.

In this chapter, comparisons and contrasts between rare-earth and actinide 

electronic and magnetic behaviour will be made. Typical signatures of localised 

magnetism and the techniques available to detect such properties will be 

discussed. Finally, a literature review of the small number of localised uranium 

intermetallics will be presented.

3.1 Lanthanide and actinide magnetism

In the lanthanides, the 4 / electrons are tightly bound to the core of the ion, so the 

interaction between them and their environment is weak. Consequently, the 

ground state magnetic moments are usually close to the free-ion values calculated 

in the LS  coupling scheme. Differences between calculated and experimental 

moments can often be attributed to the interaction between the aspherical 4 /  

charge cloud and the surrounding charge distribution. This interaction causes 

CEF effects and also leads to the single-ion magnetocrystalline anisotropy of the 

lanthanide magnetic moments. This anisotropy causes the 4f  magnetic moments 

to align preferentially with respect to the crystallographic axes.
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The outermost electrons of the ion, i.e. the 6s6p5d electrons, form the conduction 

band leaving the ion in a tripositive state. The properties of this band therefore 

influence the magnetic properties of the material. The indirect RKKY interaction 

responsible for coupling the 4 / orbitals is a long range interaction and is often 

oscillatory, which gives rise to periodic spin structures such as helical and conical.

In the actinides, the wavefunctions of 5 /electrons extend much further than the 4 / 

wavefunctions, so they interact much more strongly with their environment. 

Consequently, the 5 / electrons in actinides are usually delocalised and 

considerable hybridisation occurs between them and the valence electrons in 

neighbouring atoms. In these delocalised cases, the 5 / states form a narrow band 

meaning that the magnetic moments due to the itinerant 5 / electrons are much 

smaller than the free-ion values. So, in the vast majority of uranium 

intermetallics, no crystal field excitations are observed by inelastic neutron 

scattering and instead a broad quasielastic response is usually seen.

In 1970, Hill recognised that in compounds with a small uranium-uranium spacing 

the ground state is often superconducting and non-magnetic. Conversely, a large 

uranium-uranium separation often leads to a magnetic, non-superconducting 

ground state. The critical separation between these two regimes (the Hill limit) is 

considered to be around 3.5 A. So, for actinide-actinide separations below this 

value, itinerant behaviour and a non-magnetic ground state is expected whereas, 

for separations above this value, localised magnetism often results.

Obviously there are exceptions to this primitive rule, such as UNi2 which orders 

magnetically despite having du-u ~ 3.1 A. Exceptions for compounds with du-u 

greater than the Hill limit are numerous due to the 5/-ligand hybridisation which 

causes delocalisation of the/electrons and can make compounds with negligible 

direct 5/-5/overlap non-magnetic. Since the hybridisation process conserves spin 

information, however, it can also lead to an indirect exchange coupling. There is 

therefore a competition between strong hybridisation, which suppresses magnetic 

moments, and weak hybridisation which weakly couples magnetic moments.
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3.2 Signatures of localised and itinerant behaviour

An effective magnetic moment close to the free ion value indicates that the 

/electrons are well localised. Itinerant/electron systems often show an enhanced 

y coefficient of the low temperature specific heat. The integrated magnetic 

contribution to C /T  gives the magnetic entropy, which is usually only a fraction 

of Rln2 in the itinerant regime.

Indirect observations of localised behaviour may be obtained using techniques 

such as NMR, Mossbauer, electrical conductivity and resistivity. Direct 

observations, on the other hand, come from specific heat, susceptibility, thermal 

expansion, magnetostriction and high field magnetisation measurements. The 

observation of crystal field excitations using inelastic neutron scattering gives the 

strongest indication that the/electrons in a material are localised. However, clear 

CEF excitations are rare in uranium-based intermetallics.

3.3 UTX, UT2X, UT2X2 and U2T2X compounds

Comprehensive reviews of the UTX, UT2X and U2T2X series of compounds have 

been assembled by Sechovsky and Havela in Volume 11 of the Handbook of 

Magnetic Materials (Elsevier, 1998). The following sections will summarise the 

relevant information in regards to localised magnetism in these series. The 

compounds studied in this thesis will be mentioned briefly, however a more 

detailed literature review will be presented in each experimental chapter.

3.3.1 UTX compounds

There are almost 50 isostoichiometric compounds in the UTX series. The crystal 

structure is determined primarily by the transition metal component, T, which
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comes from the second half of the 3d, 4d or 5d  series. The systematic occurrence 

of crystal structures is shown in Table 3.1 where structures in brackets are the 

ordered derivative of the preceding structure. Most UTX compounds crystallise 

in the ordered ZrNiAl and TiNiSi structures and most exhibit itinerant electron 

behaviour. In fact, URhSi is an outstanding example of itinerant 5 / magnetism in 

which the magnetic moments are extremely small but are strongly anisotropic.

Compounds with nearly (Ni, Pd, Pt) or fully (Cu, Ag, Au) occupied d  electron 

states usually form in the Caln2 or ordered GaGeLi structure. As the d  electron 

states are populated, the 5f-d  hybridisation is reduced which leads to more 

localised 5 / states. The largest uranium spacings in the series are towards the 

right hand side and the Caln2 and GaGeLi structures typically have du-u = c/2 ~ 

3.6 A along the c-axis whilst the uranium spacing in the basal plane is 

significantly larger.

Mn Fe Co Ni Cu

Tc Ru Rh Pd Ag

Re Os Ir Pt Au

Hexagonal MgZn2
Hexagonal Fe2P (ZrNiAl) Hexagonal Caln2 (GaGeLi)

Orthorhombic CeCu2 (TiNiSi) Cubic MgAgAs

Table 3.1 Systematics of the crystal structure of UTX compounds 

as the transition metal, T, is changed.

UPdSn is one of these GaGeLi structures and has an effective magnetic moment 

of f ieff =3.31jUb , a low value of the specific heat coefficient y  = 5 mJ/mol/K2

and a high magnetic entropy AS = 1.1/? In 2. These values, together with a 

uranium spacing above the Hill limit, all suggest that the 5 / electrons are 

localised. Specific heat measurements on UCuSn show a similar behaviour to 

UPdSn and the large magnetic entropy changes around TN are indicative of /  

electron localisation.
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The three cubic MgAgAs compounds UNiSn, UPtSn and URhSb have effective 

moments of 3.15, 3.55 and 3.25 f iB, respectively, which indicate localised 

moment magnetism at high temperatures. UNiSn has an interesting phase 

transition at TN = 43 K above which it is a semiconducting paramagnet and below

which it is a metallic antiferromagnet1. The du-u separation of 4.2 A is well above 

the Hill limit. The low value of y = 18 mJ/mol/K2 and a magnetic entropy of 

almost R\ril at T  = 43 K suggest localised behaviour and UNiSn indeed shows 

clear CEF excitations.

The 5 /2 configuration is split into a singlet, a doublet and two triplets by the cubic 

crystal field. From susceptibility and heat capacity measurements, Aoki et al. 

proposed2 a crystal field scheme for UNiSn with levels at 16, 45 and 270 meV. 

However, inelastic neutron scattering measurements3 have since determined that 

the upper limit for the CEF energy level scheme is around 40 meV. X-ray 

diffraction4 has also shown that the AFM ordering splits the ground state which 

induces ferroquadrupolar order which, in turn, triggers a cubic to tetragonal 

distortion.

3.3.2 UT2X compounds

Most of the UT2X series crystallises in the cubic MnCu2  structure, although some 

form in the hexagonal ZrPt2Al structure. The cubic compounds are related to the 

Heusler 1-1-1 compounds but with the extra transition metal atoms filling in the 

vacancies. This increases the 5f-d hybridisation and so most of these compounds 

are paramagnets. As an example, UNi2 Sn is non-magnetic despite the fact that the 

UNiSn and U2Ni2 Sn compounds order magnetically.

Although d\j.u and fieff are often large, the hybridisation usually causes these

compounds to tend towards itinerant /  electron behaviour. An exception to this 

trend is UCu2 Sn which has the ZrPt2Al structure. It exhibits a sharp 2-type
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anomaly at TN = 16.5 K which contains an entropy of Rln2, suggestive of

localised electronic states. The difference in properties of UPt2 Sn has been 

attributed to stronger 5f-d  hybridisation due to a 3.5 % reduction in the du-j 

distance compared to UCu2 Sn.

3.3.3 UT2X2 compounds

From this series it is the UT2 Si2  and UT2 Ge2 families of compound which have 

been most intensively studied. A common feature of the series is a strong uniaxial 

anisotropy of the susceptibility in which the c-axis response is much greater than 

the a- or b-axis response. The magnetic ordering temperatures have been found to 

be related to the f-d  hybridisation.

Out of these compounds, UNi2 Si2  has attracted attention due to its rich phase 

diagram and URu2 Si2  due to the coexistence of the antiferromagnetic ordering of 

weak magnetic moments with superconductivity at low temperatures. Some of 

these compounds have had CEF models proposed to explain their magnetic 

properties, but crystal field excitations have only been clearly observed in UPt2 Si2  

for which a CEF level scheme has been proposed5.

UPt2Si2 orders antiferromagnetically below TN = 35 K which is accompanied by a

strong uniaxial magnetocrystalline anisotropy. This can be seen in the 

susceptibility and high-field magnetisation curves. The estimated anisotropy field 

of 50 T is low compared to other magnetic silicides.

UC0 2 P2 has an effective moment close to that for free U3+ or U4+ ions which 

points to possible localised 5 / states. UCU2P2  exhibits attributes of a local moment 

system and the high temperature susceptibility of has been interpreted in terms of 

a CEF model with molecular field6.
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3.3.4 U2T2X compounds

Hybridisation effects obviously play an important role in the U 2T2X series since, 

although the du-u distance is usually just above 3.5 A, the /e lec tron  states exhibit 

itinerant behaviour in almost all of these compounds.

3.3.5 Other localised 5f materials

As has already been mentioned, there are only a few uranium-based intermetallics 

in which the /  electrons are known to be localised by the observation of clear 

crystal field excitations. Among these compounds, the most well known example 

is UPd3 which shows sharp CEF excitations in the 1-20 meV range consistent 

with a 5/ 2 configuration7,8. Neutron diffraction, ultrasonic attenuation and elastic 

constant measurements have established9 ,1 0  the existence of antiferroquadrupolar 

(AFQ) order below T0 = 7.6 K. Resonant x-ray scattering has shown that the

AFQ ordering is on the uranium sites and that the quasi-cubic sites order with a 

Qxi 2 order parameter.

Doping with Y on the U sites increases the hybridisation between the 5 / electrons 

and the conduction electrons. For U^Y;.^Pd3 with x  = 0.45, crystal field 

excitations are observed at 5 and 40 meV. As the uranium concentration is 

reduced, these excitations becoming weaker and broader and, at x  = 0 .2 , non- 

Fermi liquid behaviour is observed11.

The U(Pd;^Ptx ) 3  series has also been investigated12 to follow the transition 

between localised UPd3 and the itinerant, heavy fermion U R 3. In contrast to pure 

U R 3 which exhibits antiferromagnetic fluctuations, the x  = 0.95 compound 

exhibits long-range antiferromagnetism below TN = 6.4 K. In this doped

compound, a damped spin wave is visible below TN which exhibits dispersion
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along the c direction but not along the a direction. This indicates a strong 

coupling between uranium moments along the c-axis but not in the basal plane.

Photoelectron spectroscopy13 of UsNi3 Sb4  suggests an itinerant behaviour of the 

5 / states. Inelastic neutron scattering14, however, has revealed clear CEF 

excitations below 60 meV, an intermultiplet transition at 370 meV and a lack of 

quasielastic scattering which is more indicative of localised 5 / electrons. Similar 

features were observed for U3Pt3 Sb4  but a broad quasielastic response and no 

distinct CEF excitations were observed for U3CU3 S114 which suggests an itinerant 

nature of the/electron states in this compound.

The UN12AI3 and UPd2Al3 compounds are both heavy fermion superconductors 

which order antiferromagnetically at low temperatures. UPd2Al3 has a y value of 

140 mJ/mol/K2 and an effective moment of fieff = 3.2 / iB and the magnetic

ordering coexists with the superconductivity. It has therefore been proposed15 that 

two subsystems exist; a local 5 /moment one responsible for the magnetic features 

and a heavy fermion one responsible for superconductivity and the enhanced y 

value. Inelastic neutron scattering found possible evidence for crystal field 

excitations (a signature of local moments) on top of a quasielastic (itinerant /  

electron type) response16. The 5f-d  hybridisation is stronger in UN12AI3 which 

makes the 5 / states more delocalised in this compound.

U2RhsSi5 orders antiferromagnetically at TN = 26 K at which point the

susceptibility shows a sharp cusp. The associated magnetic entropy is around 

R\n2, so it has been suggested that this compound has a ground state which 

undergoes an exchange-induced magnetic ordering.
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CHAPTER 4

Experimental Techniques

4.1 Sample preparation

The U3Pd2oSi6, UCU2 S11 and U 2 Cc>2 Sn polycrystalline samples were all grown by 

the arc-melting method; the former two using a Biihler arc furnace at University 

College London and the latter by Dave Fort at the University of Birmingham. 

The required amount of uranium was cut from a large disc of (99.9% purity) 

depleted uranium from the Ames Laboratory (USA) using a spark eroder. The 

surface was then cleared of any oxide layers by etching in a diluted nitric acid 

solution and the final amount of uranium weighed. The necessary amounts of 

high purity (99.999%) constituent elements in the form of powder, wire or thin 

sheets were then weighed out and placed into a copper crucible, along with a 

zirconium getter. The chamber was put under vacuum, flushed with high purity 

Argon and then purged. This procedure was repeated three times and a final 

pressure of 300 mbar of Argon was left in the chamber.

A voltage was applied between a tungsten tip and the copper crucible, to create a 

plasma arc. The tip was then manipulated so that the arc came into contact with 

the getter for 1 minute. Since zirconium oxide has a dull surface, air leaks in the 

chamber were checked for by noting whether the surface of the getter remained 

shiny after this procedure. The plasma arc was created again and moved slowly 

onto the constituent elements for around 10 seconds. The heat generated melted 

the elements together to form a single ‘button’. To ensure sample homogeneity, 

each button was flipped and re-melted up to three times. Depending on the 

relative vapour pressures of the constituent materials, fractional percentages of the 

elements were added to compensate for loss through evaporation.
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The UPdSn sample was grown, in the form of six small single crystals, at the 

University of Amsterdam by Heinz Nakotte and colleagues. The PrNiSn and 

NdNiSn single crystals were grown by Dave Fort in the University of 

Birmingham in a tri-arc furnace. The PrNiSn crystal used in the present work is 

the same as that used in the experiments by Eamonn Beime (PhD Thesis, 

University College London, 2002).

4.2 SQ U ID  m agnetom eter

The susceptibility and magnetisation measurements were performed using a 

Quantum Design SQUID magnetometer. This type of magnetometer uses the 

Superconducting QUantum Interference Device (SQUID) as a kind of 

picovoltmeter. This is achieved through use of the Meissner effect which 

prevents magnetic flux from entering a superconductor, and the Josephson effect 

in which superconducting electrons are able to tunnel through a thin insulating 

layer separating two superconductors.

Superconductor

Sample
Coil C

To
Instrumentation

Circuitry

□

Sensor coils 
A and B

Josephson
Junction

Figure 4.1 Schematic diagram of the SQUID magnetometer.
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The sample is raised through two counter-wound sensor coils (A and B) and its 

magnetic moment induces a current in the coils. This induced current is then 

passed through another set of tightly wound coils (C) to generate a magnetic flux 

which threads through the superconducting SQUID ring (as shown in Figure 4.1). 

If the ring was completely superconducting the flux through it could not change. 

However, the value of the supercurrent flowing through the ring is restricted by 

the presence of the weak links. Therefore, once the supercurrent exceeds this 

critical value, a flux quantum can enter or leave the ring.

So as the magnetic flux due to the sample changes, the output voltage across the 

SQUID changes and is sent to a series of radio frequency circuits. This 

instrumentation circuitry allows magnetic fields to be measured to an accuracy of 

a fraction of a flux quantum.

4.3 Neutron Sources and Spectrometers

There are two main types of spectrometer used at neutron sources; triple-axis and 

time-of-flight spectrometers, each with their own advantages and disadvantages. 

Typical experimental setups are shown in Figure 4.2.

Triple-axis spectrometers are designed to look at specific points in (Q, cd) space. 

They are therefore ideally suited to making point-by-point scans along lines 

of constant energy or constant wavevector, which makes them perfect for 

determining dispersion relations in single crystals. The main advantage of triple­

axis spectrometers is their flexibility since the resolution, collimation and choice 

of incident energy can be finely tuned to meet experimental requirements. 

Disadvantages include slow data acquisition and the problem of the fast neutron 

background from uranium based samples.
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Time-of-flight spectrometers are designed to survey wide areas of (Q, co) space. 

The range of available incident energies is wide and the resolution can be 

controlled by changing the type or speed of the chopper. The main benefit of the 

time-of-flight technique is that there is no need to select the energy or direction of 

the detected neutrons, meaning that detector banks with large solid angles can be 

used to detect a large percentage of the scattered neutrons. Using software, cuts 

through regions of constant energy or wavevector can be made. At pulsed 

sources, where these spectrometers are used, the fast neutron background can be 

eliminated by gating out neutrons that arrive too soon after the initial pulse.

Analyser
Sample

Reactor
DetectorMonochromator

Detector
bank

Chopper

Pulsed
source

Sample

Is(t)

ID(0

k(t)

->  t

Figure 4.2 Schematic of a typical triple-axis (left) and time-of-flight (right) experiment. For both, 

the variation with time of flux at the sample position (top) and at the detector (bottom) is shown.
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4.3.1 Triple-axis spectrometers: V2

The V2 triple-axis spectrometer is situated in the BER-II reactor at the Berlin 

Neutron Scattering Centre (BENSC) in Germany1. Neutrons produced from the 

fission process in the 10 MW reactor core are moderated by light water and are 

then directed down a guide tube to the experimental apparatus (see figure 4.3). A 

triple-axis spectrometer is so named because of the axes about which the 

monochromator crystal, sample and analyser crystal rotate.

When the “white beam” of neutrons from the reactor hits the monochromator 

crystal, only those neutrons satisfying the correct Bragg condition are diffracted 

towards the sample. Thus, by varying the angle of this crystal, the energy of the 

neutrons incident on the sample can be selected. The analyser crystal works in the 

same way to ensure that only neutrons of the required energy are detected. They 

are both made from pyrolitic graphite (002) strips and can be curved to focus the 

beam. The collimators and diaphragms are used to optimise the signal-to-noise 

ratio and a cooled Be filter is used to eliminate second order (A/l)  contamination.

d ia ­
p h ragm

m o n o  
ch ram  ator

co lim  a t a
PG-
fitter

l e i i r a n
guide m on itor sample beam stop

Figure 4.3 Schematic layout o f  the V 2 triple-axis spectrometer taken from the HMI website.
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4.3.2 Time of flight spectrometers: HET

The HET (High Energy Transfer) spectrometer is situated at the ISIS facility in 

the UK2, which is the world’s most powerful pulsed spallation source. A high 

energy (800 MeV) bunch of protons produced in a synchrotron impacts onto a 

heavy metal (tantalum) target with a power of 160 kW, leaving some of the nuclei 

within the target in a highly excited state. These unstable nuclei evaporate 

nucleons (mainly neutrons), some of which leave the target, while others go on to 

trigger further reactions.

Each high-energy proton delivered to the target produces approximately 15 

neutrons resulting in a flux of approximately 2 x 1016 neutrons per second. These 

neutrons are too high in energy to be used experimentally so they must be slowed 

down to usable energies. This is achieved by using a 316 K H 2O moderator, since 

hydrogen has a high scattering cross section.

The neutrons travel down an 11.82 m flight path to the sample position, where 

they are scattered into a set of detector banks (shown in Figure 4.4). At low 

scattering angles, from 2.6° to 7.2°, four detector arms are arranged at 90° to each 

other at a distance of 4 m from the sample position. At a slightly wider angle, 

from 9.3° to 28.7°, eight detector arms are arranged at 45° to each other at a 

distance of 2.5 m from the sample position. In addition, two high angle banks are 

positioned at angles of 110.4° to 119.4° (4 m) and 125.4° to 138.7° (2.5 m). 

These latter detectors enable the phonon density of states in polycrystalline 

materials to be estimated.

The 2.5 and 4 m detector banks have different resolutions due to their difference 

in distance from the sample. Since the energy of the scattered neutron is 

determined from its time-of-flight, the energy resolution is proportional to S t / t . 

Since the error associated with St is the same for both detector banks, the 4 m 

bank has better resolution as the time, t, taken for a neutron to reach it is longer.
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21.5“
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Figure 4 .4  Schematic diagram o f the HET detector banks. The blue and yellow  detectors are the 

low  angle banks at 2.5 and 4  m respectively, w hile the red and green detectors are the high  

angle banks at 2.5 and 4 m respectively. The average angle o f  each detector bank is shown.

Detectors

Target 

Moderator

Monitor 1 

Nimonic Chopper 

Fermi Chopper 

Monitor 2

Sample

&  Monitor 3

Figure 4.5 Schematic diagram o f the HET layout. Neutrons from the target are moderated then 

pass through the choppers before being scattered from the sample into the detector banks.
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In order to reduce the background noise, which arises from gamma rays generated 

from the spallation process and high-energy neutrons that thermalise within the 

spectrometer, a nimonic chopper is used to effectively close the beam tube at the 

moment the proton beam is incident on the target. The neutron beam is 

collimated to 45 x 45 mm at the sample position.

The beam is then monochromated by a Fermi chopper, which is a cylindrical 

drum consisting of thin sheets of highly absorbing boron interleaved with sheets 

of aluminium which are transparent to neutrons. The drum rotates in phase with 

the 50 Hz ISIS pulse such that only neutrons with the desired energy and 

wavelength are transmitted. To optimise transmission, the “slits” are curved in 

opposition to the direction of rotation. The “S” chopper used for all HET 

measurements produces a high flux at the expense of resolution (Figure 4.6).

250 150 llz3 HET chopper 'S'HET chopper 'S’

<a.>
E C/5

E'j3
1£'J 300 llz

1ScI  tVc X
zu

E,=23meV 
150 Hz

0
800 10 20 30 40 50 60 70 20 30 60 70 800 10 40 50

Energy Transfer (meV) Incident Energy (meV)

Figure 4 .6 HET flux and resolution curves for different experimental arrangements.

Three monitors are installed on HET: one between the moderator and nimonic 

chopper, one between the Fermi chopper and sample and one in the straight 

through position after the sample. The time-of-flight between the latter two 

monitors is used to determine the incident neutron energy. In the same way, the 

energy of the detected neutrons is analysed by considering the time of flight over 

the known distance between sample and detectors. As the energy of the incident 

beam is known, the energy transfer at the sample can be calculated.
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The beam tubes and detector banks are evacuated to a rough vacuum to reduce the 

background arising from air scattering. A Polycold is used to remove any 

moisture from the tank to ensure that ice does not build up during the experiment. 

The internal surfaces in the sample tank are lined with a low hydrogen B4 C resin 

mix which minimises the background arising from the scattering of high energy 

neutrons. Finally, apertures at the entrance to the sample tank can be adjusted to 

minimise the amount of beam falling on the sample environment apparatus.

For all the polycrystalline experiments, the arc-melted buttons were broken into 

small fragments to minimise the size of any crystallites in the sample and thereby 

reduce any preferential direction for Bragg scattering. These fragments were then 

placed into a thin A1 foil sachet to give a sample area of 40 mm x 40 mm.

In order to convert the raw time-of-flight data (i.e. counts per second) into the 

scattering function S(Q,co) in absolute units, measurements of the HET 

calibration sample are made during the experiment. This is a flat slab of 

vanadium measuring 2.1 x 40 x 40 mm and weighing 20.14 g. The data obtained 

from the scattering of a “white beam” of neutrons from the vanadium sample is 

used to eliminate inaccurate detectors and those containing Bragg peaks. The raw 

time-of-flight data is then converted into absolute units by normalising to this 

vanadium data and to the incident flux. Therefore, fo r  all o f the HET data 

presented in this thesis, the intensities are measured in units ofmb/sr/meV/U.

4.3.2.1 Separation of magnetic and phonon scattering

In order to obtain the magnetic scattering from a sample, it is necessary to subtract 

the scattering due to phonon modes of the crystal lattice from the total scattering 

observed. The method by which the phonon contribution has been estimated is 

known as the ratio method.
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The ratio method was first described by Murani3 and makes use of the fact that 

any magnetic scattering is negligible at high momentum transfers, as a result of 

the wavevector dependence of magnetic form factors. This means that the low 

angle detector banks contain both magnetic and phonon contributions whereas the 

scattering in the high angle detector banks is almost entirely phonon based.

In order to estimate the phonon contribution at low scattering angles, a non­

magnetic reference compound which has an identical crystal structure (and ideally 

an identical sample mass) is required. For uranium-based compounds an 

isostructural thorium compound is usually used. It is assumed that the phonon 

scattering is the same from both the sample and the reference material, so that an 

energy transfer dependent scaling function can be defined. The phonon scattering 

at low angles in the magnetic compound can then be obtained via:

Th
t jphonon  r t v  *Mow

low “  u  high A  rp,
high

The ratio of the low angle to high angle data from the non-magnetic compound is 

usually found to lie between \  and j , so when a suitable reference material is not

available a constant ratio of j j  can be used to estimate the phonon contribution.

The magnetic scattering of interest can finally be obtained by subtraction of this 

phonon contribution from the total scattering in the low angle detector bank:

t jmagnetic  y jto ta l y -rphonon
low low low

The ratio method was found to be the most reliable way to estimate phonon 

spectra in a comparison of different methods made4.

45



4.4 Data analysis

For all of the fits presented in this thesis, a least squares method was used to 

m inim ise^2, which is defined by:

r 2 f  ( w ;)2
t ! ( N - p ) a ?

where I  and I  are the measured and calculated values, a is the standard error and 

(N  - p ) is the number of degrees of freedom given by the number of data points, N, 

minus the number of free parameters, p .

For experimental measurements involving neutron spectrometers, the measured 

peaks are a convolution of the instrumental resolution and the intrinsic peak shape 

associated with processes occurring in the sample. The resolution of triple axis 

spectrometers can usually be approximated by a Gaussian peak shape in Q and co 

space. Since the measured peak widths in the PrNiSn analysis were often only 

slightly larger than the instrumental resolution, a Gaussian model for the peak 

shape was used for simplicity. Future studies at a higher resolution might use a 

more accurate model for the peak shape, e.g. Lorentzian or Damped Harmonic 

Oscillator, in order to determine the lifetime of the excitation.
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CHAPTER 5

PrNiSn

5.1 Literature R eview

PrNiSn is a member of the RTX series of compounds which have been studied 

comprehensively. In comparison to CeNiSn, however, relatively little work has 

been done on PrNiSn. The crystal structure of PrNiSn, as deduced by x-ray 

diffraction1, is the orthorhombic TiNiSi-type (space group Pnma) with lattice 

parameters of a = 7.440 A, b = 4.560 A and c = 7.706 A. The Pr ions have a 4f 2 

configuration and are situated on the 4c crystallographic sites. Neutron 

diffraction2 by Beime et al. confirmed the room temperature structure and the 

absence of long-range magnetic ordering down to 1.7 K.

Figure 5.1 The orthorhombic unit cell o f  PrNiSn show ing the 

Pr (blue), N i (yellow ) and Sn (red) atoms.
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Figure 5.2 M agnetic susceptibility o f  PrNiSn showing Curie-W eiss behaviour down to 40  K. 

Inset: the low temperature data showing a local maximum and minimum along the &-axis.
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Figure 5.3 Inverse susceptibility o f  PrNiSn showing fits to the C urie-W eiss law  

using data points between 60 and 300 K.
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Bulk measurements2  were also carried out by Beime et al. on a polycrystalline 

sample of PrNiSn. The susceptibility was found to obey the Curie-Weiss law 

down to 40 K, giving a Curie-Weiss temperature of Qcw -  -18 K and an effective 

moment of juejf = 3.5Sjub (in agreement with Routsi et al.3). No magnetic

transitions were observed down to a temperature of 2 K and resistivity 

measurements did not show any transitions down to 2 K.

Susceptibility and magnetisation measurements were also carried out on a single 

crystal of PrNiSn. No magnetic transitions were observed in the susceptibility 

data for any of the axes, but a clear maxima and minima were observed along the 

fc-axis at low temperature (Inset to Figure 5.2). The values of the Curie-Weiss 

temperature and effective magnetic moment are shown in Table 5.1. 

Magnetisation measurements along the three principal axes did not reveal any 

transitions in fields up to 7 T, and the magnetic moments had not reached their 

saturation values by this field strength.

0cw(K) Meff (p-B/Pr-ion)

a-axis -7 ±0 .4 3.74 ±0.06

Z?-axis 4 ±0 .4 3.56 ±0.04

c-axis -52 ±1.1 3.58 ±0.04

polycrystalline -18 ±0.5 3.58 ±0.05

Table 5.1 Curie-Weiss temperatures and effective magnetic moments for single crystal 

and polycrystalline PrNiSn obtained by fitting to the magnetic susceptibility.

Inelastic neutron scattering on a polycrystalline sample2  was able to show seven 

of the eight excitations expected from the ground state, at energy transfers of 1 .8 , 

3.3, 5.3, 7.3, 17.2, 23.3 and 28.4 meV. Least squares fitting to this data was used 

to determine a set of Stevens parameters, which are listed in Table 5.2. These 

parameters were then used to calculate an energy level scheme which is shown in 

Figure 5.5.
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Figure 5.4 Magnetic scattering from PrNiSn in the 2.5 m and 4 m detector banks. The dotted lines 

are fitted gaussian peaks and the red line is the total fit (E. D. Beime, PhD Thesis, 2002).
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Parameter meV

B°2 -0.225 ± 0.003

B] 0.384 ± 0.004

B't (0.981 ±0.001) x 100 2

B \ (-0.170 ± 0.010) x 10 01

B t (-0.494 ± 0.001) x 10 01

B l (-0.165 ± 0.055) x 10' 03

B l (-0 . 1 0 0  ± 0 .0 2 1 ) x 1 0  0 2

B t (-0.265 ± 0.004) x 10' 0 2

Bt (-0.502 ± 0.284) x 10 03

Table 5.2 Stevens parameters for PrNiSn, obtained from 

least squares fitting of inelastic neutron data..

cp ) = -0.364]- 4) + 0.144]- 2) + 0.831|0) + 0.144)2) -  0.365U)47.90

28 .88-

26.07-

17.48-

7 .29-

5 . 11-

3 .53-

1.99-

0 - i

I

cpg j  = —0.056|— 3) + 0.703] - 1) + 0.705| l) -  0.057| 3) 

(p? \  = 0.346| -  3) + 0.617| -1 )  -  0.617| l) -  0-346] 3)

cp ) = 0.671] -  4) -  0.222] -  2) + 0.222] 2) -  0.671| 4)

cp5 j  = -0.222]- 4) + 0.671 | - 2 ) - 0.671| 2) -  0.222|4)

cp4 ̂  = 0.597| -  4) -  0.031| -  2) + 0.535| 0) -  0.031| 2) + 0.597| 4)

cp^ = 0.103|- 3) + 0 .057 |-1) + 0.057|l) + 0.705|3)

cp ̂  = 0.103| — 4) + 0.692]- 2) -  0.150|0) + 0.692]2) + 0.103|4)

cpj = 0.617|- 3) -  0.346|-1) + 0.346] l) -  0.617] 3)

Figure 5.5 Crystal field scheme for PrNiSn deduced from the Stevens parameters obtained above. 

The thickness of the lines indicates the probability of the transition between levels.
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In order to investigate the excitations below 10 meV, Beime et al. performed 

inelastic neutron scattering on a single crystal of PrNiSn using the V2 

diffractometer at the HMI in Berlin.

They found that two excitations exist around 3.5 meV and that both of these

modes exhibit dispersion along the [0 0 Q] and [Q 0 0] directions (see Figures 5.6

and 5.7). The upper modes can be described by a nearest-neighbour interaction,

but the lower modes require an additional next-nearest-neighbour interaction to be

included. Since the peaks at (1 0 0) and (0 0 1) are of similar intensity, the
%

3.5 meV modes were determined to be polarised along the b direction.

An excitation at 2.4 meV was also observed, but they could not detect any 

dispersion of this mode along [0 0 Q]. Furthermore, this peak is much weaker at 

(1 0  0) than at (0 0 1), which indicates that the 2.4 meV mode is polarised along 

the a direction.

In this experiment, a broad region of scattering was observed at low energy 

around 0.5 meV. The temperature dependence of the position and area of this 

scattering indicated some kind of transition at around 4.5 K below which both of 

these values increased. Another peak at around 1.5 meV was seen at the (0 0 3) 

position and was determined to be unrelated to the lower energy scattering.
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Figure 5.6 Dispersion of the 3.5 meV modes along the [0 0 Q] direction. The lines are fits 

to the singlet-singlet dispersion relation as discussed in the text (E. D. Beime, PhD Thesis, 2002).
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Figure 5.7 Dispersion of the 3.5 meV modes along the [Q 0 0] direction. The lines are fits 

to the singlet-singlet dispersion relation as discussed in the text (E. D. Beime, PhD Thesis, 2002).
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5.2 Experimental Procedure

The neutron diffraction measurements presented here were obtained using the V2 

diffractometer at the HMI facility in Berlin. Firstly, a scan through the elastic 

peak of a standard Vanadium sample was performed to determine the energy 

resolution, which was found to be 0.195 ± 0.005 meV. The same single crystal of 

PrNiSn used in the previous V2 experiment was then mounted on an aluminium 

sample holder with the a -c plane horizontal (as shown in Figure 5.8). Cadmium 

was wrapped around the base to prevent scattering from the adhesive. It was then 

attached to a sample stick, inserted into a standard Orange (ILL-type) cryostat and 

cooled to a base temperature of 1.6 K.

The collimation was set to 40’-60’-60’, a Be filter was placed between the 

sample and analyser crystal and the final wavevector, kf, was fixed at 1.55 A'1. 
This configuration allowed a maximum energy transfer of around 6 meV. 

Alignment on the (2 0 0) and (0 0 2) Bragg peaks resulted in lattice parameters of 

a = 7.47 A and c = 7.69 A. The diaphragms immediately before and after the 

sample were then adjusted to optimise the signal by reducing background 

scattering from the cryostat.

Figure 5.8 The single crystal of PrNiSn mounted with the a*-c* plane horizontal. 

Note the cadmium shielding around the base of the crystal.
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Initially, broad scans covering an energy range from -0.6 to 3.95 meV were made 

at the (0 0 1) position. This was to look for the unusual scattering around 

0.5 meV seen in the previous experiment, as well as to ensure that the 2.5 meV 

and 3.5 meV peaks were also present. These scans were then repeated at a 

temperature of 6 K.

As can be seen in Figure 5.9, no sign of the scattering around 0.5 meV was 

observed at either temperature. This suggests that the scattering seen previously 

was due to helium trapped in the cryostat, and this would also explain the 

apparent transition at around 4.2 K which had been observed.

500
125

PrNiSn 
• 2K 
o 6 K

100-400-

75-o
o 300- O
T—H

<3o-
<Z3
C 2 0 0 -
g
§
z

100-

50-

25-

1.0 2.0 2.5 3.0 3.5

-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Energy T ransfer (meV)

Figure 5.9 Broad energy scan at (0 0 1) showing the elastic peak and three excitations 

at around 1.5,2.5 and 3.5 meV. Note the absence of the spurious scattering 

at low energy which was observed in the previous experiment.
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However, in eliminating this spurious scattering, a further peak at 1.5 meV was 

revealed in addition to the peaks at 2.5 and 3.5 meV seen in the previous 

experiment. This peak had been observed in the previous experiment but was 

obscured by the spurious scattering.

In order to determine whether this 1.5 meV mode exhibited any dispersion, a 

series of scans were made in the [0 0 Q] direction between Q = 0.8 and 3. At the 

position of the most intense peak, i.e. at ( 0  0  2 .6 ), a measurement was also made 

after heating the sample to 20 K. A few scans were then performed to look at the 

dispersion in the [Q 0 0] direction, although there was insufficient time to make a 

detailed study in this direction.

Next, a detailed study of the 2.5 meV peak was made to look at the dispersion of 

this mode along the [0 0 Q] direction. A similar study was made on a peak 

observed at 5.2 meV to obtain the dispersion of this mode along the [Q 0  0] 

direction. Measurements of this peak were also made at a few points in the 

[0 0 Q] direction. Finally, three scans were made on the 3.5 meV peak to help 

with fitting the theoretical model to the data obtained in the previous experiment.

The PrNiSn sample was then removed from the cryostat and the NdNiSn crystal 

inserted with the a - c  plane horizontal. After aligning the crystal on the (2 0 0) 

and (0 0 2) Bragg peaks at base temperature, the temperature was raised to 6  K 

and preliminary measurements were made to look for excitations. No peaks were 

observed below 2.5 meV at either (1 0 0) or (0 0 1), but peaks were observed 

around 5.4 meV at the (2 0 0), (0 0 2), (3 0 0) and (0 0 3) positions.
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5.3 Results & Discussion

For all of the results shown, the number of counts have been normalised to a 

monitor value of 1 0 6  counts and the errors are simply the square root of the 

number of counts. Typically, it would take between 300 and 600 seconds to 

obtain a data point.

The dispersion relation for a singlet-singlet (Ising) model, as derived by Jensen 

and Mackintosh4, is given by:

E(Q) = A(A -  2nmM  (Q>)

where A is the energy difference, n0l is the population difference and 

M a = |( l | / a |o)| is the matrix element of J a between the two states. In the limit 

of A »  2n0lM l J aa(Q) , the dispersion can be approximated by:

E( Q) = A-7701M X « ( Q )

where J aa(Q) is the Fourier transform of the exchange interaction, J a . To fit 

our data, we have used the following expression:

E(Q) = A + J l [cos(Q;r)]+ J 2 [cos(2Q^)]

in which the Ju J2 parameters include the matrix elements and population factors. 

The J\ term gives the effect of nearest-neighbour interactions, whereas the J2 term 

accounts for the next-nearest-neighbour interactions.
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5.3.1 1.5 meV mode

H K L

Centre

(meV)

Step

(meV)

No. of 

Points

Monitor

(counts)

Temperature

(K)

0 0 0.8 1.5 0.1 11 106 1.8

0 0 1 1 0.2 11 106 2.4

0 0 1 1.5 0.1 11 106 1.6

0 0 1.2 1.5 0.1 11 106 1.6

0 0 1.4 1.5 0.1 11 106 1.6

0 0 1.6 1.5 0.1 11 106 1.6

0 0 1.8 1.6 0.1 13 106 1.6

0 0 2 1.7 0.1 13 106 1.6

0 0 2.2 1.6 0.1 13 106 1.6

0 0 2.4 1.5 0.1 11 106 1.6

0 0 2.6 1.5 0.1 11 106 1.6

0 0 2.6 1.6 0.1 11 106 20

0 0 2.8 1.5 0.1 11 106 1.6

0 0 3 1.5 0.1 11 106 1.6

0 0 3 1 0.2 11 106 1.6

1 0 0 1.6 0.1 11 10B 1.8

2 0 0 1.6 0.1 11 106 1.8

3 0 0 1.6 0.1 11 106 1.8

Table 5.3 Summary of the scans made on the 1.5 meV mode.

5.3.1.1 [0 0 Q] direction

In order to check for dispersion of the 1.5 meV mode along the [0 0 Q] direction, 

a series of scans were made at intervals of AQ = 0.2 between (0 0 0.8) and (0 0 3). 

The (0 0 2.6) peak is shown in Figure 5.10 and demonstrates the fitting technique 

using a single gaussian function. The effect of temperature on the (0 0 2.6) peak 

is shown in Figure 5.10. This peak was chosen as it was the position of greatest 

intensity in the (0 0 Q) series.
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Increasing the temperature from 1.6 to 20 K increases the background count rate 

which is expected since the amount of multiple scattering will increase as the 

phonon population increases. The peak width and position do not change 

significantly but the intensity decreases considerably as the ground state is 

depopulated.

180

Data: (002 .6 ),T =  1 .6K 
Model: Gauss160- PrNiSn

(0 0 2 .6 )O V 2 = 2.31 
R*2 = 0.96140-

4.6 ±1.1
1.59 ±0.01
0.22 ±0.01 
46.2 ±2.4

2

ecs
120-

100-

Data: (002 .6 ),T = 2 0 K 
Model: Gauss

80- 

O 60-
u

c/3 ChiA2 = 0.55 
R"2 = 0.89

21.5 ±2.2
1.61 ±0.02 
0.23 ±0.05
9.0 *2.040-

2 0 -

2.21.0 1.2 1.4 1.6 1 .8 2 .0

Energy Transfer (meV)

Figure 5.10 Single gaussian fits to the 1.5 meV peak at (0 0 2.6) measured at T = 1.6 and 20 K.

The complete series of scans is shown in Figure 5.11 where the dotted line is a 

guide to the eye to show the dispersion along [0 0 Q]. Plotting the central 

position of the fitted peaks against wavevector, Q, results in the data shown in 

Figure 5.12. The curve shown is a fit to the singlet-singlet dispersion (as 

discussed in Section 5.3) and the parameters obtained are shown below.

E(Q) = A + J x cos(Q^) + J 2 cos(2Q^)

A J x J2
1.65 ±0.01 0.13 ±0.01 0 ±  fixed

Table 5.4 Dispersion parameters for the 1.5 meV mode. (All units are in meV.)

59



1200 -

1000 -

0

1
8 0 0 -

6 0 0 -o1—H

4 0 0 -—- fl
o
U

2 0 0 -

(0 0 0 .8)

1 .0 2 .0 2.21.2 1.4 1.6 1.8

Energy Transfer (meV)

Figure 5.11 Dispersion of the 1.5 meV mode from (0 0 0.8) at the bottom to (0 0 3) at the top. 

Note that each scan has been offset by 100 counts and the dotted line is a guide to the eye.
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T = 1.6 K

1 .8 0 -
0.13 ±0.01
0 fixed

1 .7 5 -

>
1 .7 0 -

£
8  1 6 5  -

1 .6 0 -

1 .5 5 -

1.50
1.0 1.8 2.2 2.6 3.00.6 1.4

(0 0 Q)

Figure 5.12 Dispersion of the 1.5 meV mode along [0 0 Q] and fit to the singlet-singlet model. 

Note that the data points at Q = 1.2 and 1.4 were not included in the fit.
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5.3.1.2 [Q 0 0] direction

PrNiSn (10 0) 
(2 0 0) 
(3 0 0)

5 0 -

i-ic
■4—4 4 0 -  c o
6

3 0 -

■ 4 -Jc3
U

2 0 -

1 0 -

1.0 1.2 1.6 .8 2.0 2.21.4

Energy Transfer (meV)

Figure 5.13 The dispersion of the 1.5 meV mode in the [Q 0 0] direction.

Each curve has been offset by 15 counts for clarity.

The (1 0 0), (2 0 0) and (3 0 0) peaks are shown in Figure 5.13. Although a 

dispersion relation cannot be obtained, it is clear that the 1.5 meV excitation does 

indeed move as the wavevector q relative to the zone centre is changed. There is 

little variation in the peak intensities at these positions.

If we compare these peaks with the corresponding (0 0 1), (0 0 2) and (0 0 3) 

peaks, however, we see that there is much more dispersion and greater intensity in 

the [0 0 Q] direction (Figure 5.14). These results suggest that the 1.5 meV mode 

is strongly polarised along the c-direction.

Since nuclear Bragg peaks are found at (2 0 0) and (0 0 2) but are absent at (1 0 0) 

and (0 0 1), we can conclude that the zone centres are at Q = 2 and the zone 

boundaries are at Q = 1 and 3. Note that the modes are highest in energy at the 

zone centres.
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5.3.1.3 Comparison of [0 0 Q] and [Q 0 0]
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Figure 5.14 Comparison of the 1.5 meV modes at different (0 0 Q) and (Q 0 0) positions.
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5.3.2 2.5 meV mode

H K L

Centre

(meV)

Step

(meV)

No. of 

points

Monitor

(counts)

Temperature

(K)

0 0 1 1.7 0.25 19 106 2

0 0 1 1.5 0.1 25 106 2

0 0 1.2 2.6 0.1 11 106 1.8

0 0 1.4 2.6 0.1 11 106 1.8

0 0 1.6 2.6 0.1 11 106 1.8

0 0 1.8 2.6 0.1 11 106 1.8

0 0 1.8 2.55 0.05 15 106 1.7

0 0 2 2.6 0.1 11 106 1.8

0 0 2 2.55 0.1 7 106 1.7

0 0 2.2 2.5 0.05 15 2x  106 1.7

0 0 2.4 2.5 0.05 15 2x  106 1.6

0 0 2.6 2.5 0.05 15 2x  106 1.6

0 0 2.8 2.45 0.05 15 2x  106 1.6

0 0 3 2.6 0.1 11 106 1.8

0 0 3.2 2.45 0.05 15 106 1.6

0 0 3.2 2.45 0.05 9 106 1.6

Table 5.5 Summary of the scans made on the 2.5 meV mode.

5.3.2.1 [0 0 Q] direction

The dispersion of the 2.5 meV mode along the [0 0 Q] direction was investigated 

by a series of scans made at intervals of AQ = 0.2 between (0 0 1) and (0 0 3.2). 

The (0 0 1.4) peak is shown in Figure 5.15 and demonstrates the fitting technique 

using a single gaussian function. The complete series of scans is shown in 

Figure 5.16 where the dotted line is a guide to the eye to show the dispersion 

along [0 0 Q].
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Figure 5.15 An example of the single gaussian fitting technique for the data at (0 0 1.4).
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Figure 5.16 Dispersion of the 2.5 meV mode from (0 0 1) at the bottom to (0 0 3.2) at the top. 

Note that each scan has been offset by 50 counts and that the dotted line is a guide to the eye.
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Plotting the central position of the fitted peaks against wavevector, Q, results in 

the data shown in Figure 5.17. The red curve shows a fit to the singlet-singlet 

dispersion (as discussed in Section 5.3) but it does not model the data very well. 

The maxima and minima of the dispersion appear to be shifted away from the 

integer lattice positions, so a further fit was made using the same dispersion 

relation but with an extra parameter -  a phase factor, S. This fit is shown by the 

dotted blue line in Figure 5.17.

However, after returning to the raw data it was noted that the data sets for 

(0 0 2.2) and (0 0 2.8) had very poor statistics. Therefore the gaussian fits of these 

data sets were repeated but with their positions fixed by eye. The resulting data is 

shown in Figure 5.18 along with a fit to the singlet-singlet dispersion relation. 

This method appears to validate a dispersion model which is commensurate with 

the reciprocal lattice and which does not require an additional phase factor. 

The parameters obtained from this fit (which does not take into account the fixed 

data points) are given below.

E(Q) = A + J 1 cos (Q n) + J 2 cos(2Q 7t)

A J ! h
2.48 ±0.01 0.04 ±0.01 0 ±  fixed

Table 5.6 Dispersion parameters for the 2.5 meV mode. (All units are in meV.)
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2.56 E(Q) = A + J,cos[(Q+6)n] + J2cos[2(Q+S)n]

PrNiSn 
T = 1.8 K

2.47 ±0.01
0.04 ±0.01
0 fixed 
0.17 ±0.06

2.54

2.52
2.48 ±0.01
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1.0 1.8 2.2 2.6 3.0 3.41.4

(0 o Q)

Figure 5.17 Dispersion of the 2.5 meV mode along [0 0 Q]. The red line is a fit to the 

singlet-singlet model. The blue line is the same fit but includes a phase factor, S.
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Figure 5.18 Dispersion of the 2.5 meV mode along [0 0 Q] and fit to the singlet-singlet model.
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5.3.3 3.5 meV mode

H K L

Centre

(meV)

Step

(meV)

No. of 

Points

Monitor

(counts)

Temperature

(K)

2 0 0 3.45 0.1 7 2x  106 1.6

2 0 0 3.4 0.1 15 2x 106 1.6

2.25 0 0 3.55 0.1 9 2x  106 1.6

2.25 0 0 3.4 0.1 15 2x  106 1.6

2.5 0 0 3.6 0.05 25 2x 106 1.7

Table 5.7 Summary of the scans made on the 3.5 meV mode.

5.3.3.1 [Q 0 0] direction

In order to determine whether the upper mode along the (Q 0 0) direction follows 

the theoretical curve predicted from the dispersion of the other 3.5 meV modes, 

scans were made at three positions along the curve using long counting times and 

a small step size to improve the statistics. It is immediately obvious that the peak 

shapes cannot be described by only one or two gaussians, since at the very least 

there is a central peak with further peaks either side. Figures 5.19 and 5.20 show 

fits using three and four gaussian peaks. In both cases, the widths of the gaussians 

have been fixed to be the instrumental resolution of 0.2 meV (as obtained from 

measurements on the vanadium standard sample).

The (2 0 0) peak is fitted equally well using three or four gaussians, with a large 

central peak and smaller peaks either side. Again, fits to the (2.25 0 0) peak are 

adequate in both cases, although the three gaussian fit appears to fit the upper 

energy part slightly better. Finally, the fits to the (2.5 0 0) peak are essentially 

identical since two of the gaussians in the four gaussian fit can be superimposed to 

leave just three gaussians. Note here that there are strong correlations between the 

various fitting parameters, i.e. a change in one parameter will have a large affect 

on the remaining ones. This usually means that there are an excessive number of 

parameters in the fit. Thus, although the 3.5 meV peaks appear to consist of more 

than two modes, it cannot be determined whether three o r four modes are present.
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Figure 5.19 Three gaussian fit to the 3.5 meV peak at various positions along the [Q 0 0]

direction. The solid line is the total fit and the dotted lines are the individual gaussians.
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Figure 5.20 Four gaussian fit to the 3.5 meV peak at various positions along the [Q 0 0]

direction. The solid line is the total fit and the dotted lines are the individual gaussians.
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In order for a comparison to be made with the previous data on the 3.5 meV 

excitation, however, fits to the new data were made using two gaussians only. 

One of the peaks was fitted to the intense lower energy part and the other fitted to 

the weaker higher energy shoulder. An example of one of the two gaussian fits is 

shown in Figure 5.21. In addition to this, the previous V2 data was refitted to 

ensure that the same fitting method was used for all of the available data.

1 0 0

cso
U

PrNiSn 
T = 1.6K 

(2.25 0 0)

Data; SV8018_D1
Model: Gauss

ChiA2 = 1.05
RA2 = 0.96

yO 3.9 ±1.5
xcl 3.29 ±0.01
wl 0.33 ±0.03
A1 34.4 ±2.8
xc2 3.78 ±0.06
w2 0.33 ±0.11
A2 6.3 ±2.2

-

3.0 3.2 3.4 3.6

Energy Transfer (meV)

Figure 5.21 Two gaussian fit to the 3.5 meV peak at (2.25 0 0)

5.3.3.2 Comparison of [0 0 Q] and [Q 0 0]

The dispersion relations obtained from the refitted data, as well as the new 

measurements, are shown in Figures 5.22 and 5.23. In both symmetry directions 

a next-nearest-neighbour interaction must be included in order to fit the data 

satisfactorily. However, in the [0 0 Q] direction the two modes are out-of-phase 

with each other whereas in the [Q 0 0] direction the two modes move in-phase.
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Figure 5.22 Dispersion of the 3.5 meV modes along [0 0 Q] and fit to the singlet-singlet model.

4.6- E(Q) = A + J,cos(Ck) + J2cos(2Qti)E(Q) = A + J,cos(Qn) + J2cos(2Qit)
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Figure 5.23 Dispersion of the 3.5 meV modes along [Q 0 0] and fit to the singlet-singlet model. 

Note that the open points are the data taken in the experiment reported in this thesis.
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5.3.4 5.2 meV mode

H K L

Centre

(meV)

Step

(meV)

No. of 

Points

Monitor

(counts)

Temperature

(K)

0 0 1.5 5.4 0.2 7 106 1.7

0 0 2 5.4 0.2 9 106 1.7

0 0 2 5.2 0.2 13 106 1.7

0 0 3 5.4 0.25 5 106 1.7

1.5 0 0 5.2 0.2 7 i”oY 1.8

1.5 0 0 5.2 0.1 17 2 x  106 1.6

1.75 0 0 5.2 0.1 15 2x  106 1.6

2 0 0 5.4 0.2 7 106 1.7

2 0 0 5.2 0.1 15 2 x  106 1.6

2.25 0 0 5.2 0.1 15 2 x  106 1.6

2.5 0 0 5.2 0.1 17 2 x 106 1.6

2.75 0 0 5.2 0.2 9 2x  106 1.6

3 0 0 5.2 0.2 7 106 1.8

3 0 0 5.2 0.1 15 2 x  106 1.6

Table 5.8 Summary of the scans made on the 5.2 meV mode.

5.3.4.1 [Q 0 0] direction

Measurements of the 5.2 meV mode were made at various positions along the 

[Q 0 0]. A typical gaussian fit to the data is shown in Figure 5.24 for the (3 0 0) 

position. The complete series of measurements direction is shown in Figure 5.25. 

It can be seen this mode exhibits very little dispersion.

5.3.4.2 [0 0 Q] direction

The statistics of the data in the [0 0 Q] direction are very poor, although tentative 

fits have been made. The peak positions are further away from the 5.18 meV line 

compared to the [Q 0 0] direction, but from the data it is not possible to determine 

whether this apparent dispersion is real or not.

72



50

2  • fHC
I

1 d

§
U

40-

30-

2 0 -

1 0 -

Data: SV8017 D1
Model Gauss

ChK2 = 0.40
RA2 = 0.94

yo 8.5 ±1.8
xc 5.22 ±0.03
w 0.46 ±0.07
A 16.0 ±2.9

PrNiSn 
T =  1.6 K
•  (3 00 )

4.4 4.6 4.8
T
5.0

T
5.2

T
5.4 5.6 5.8 6 .0

Energy Transfer (meV)

Figure 5.24 An example of the single gaussian fitting technique for the data at (3 0 0).
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Figure 5.25 Dispersion of the 5.2 meV mode from (1.5 0 0) at the bottom to (3 0 0) at the top. 

Note that each scan has been offset by 25 counts and that there is little dispersion.



5.3.5 Summary of polarisations and dispersion

The amplitude of the 1.5 meV mode reaches a maximum of around 170 counts 

along the [ 0  0 Q] direction, compared to a maximum of around 15 counts in the 

[Q 0 0] direction. This suggests that the 1.5 meV mode is polarised along the 

c-axis. The dispersion along [0 0 Q] is due to nearest-neighbours only and is 

centred at ( 2  0  0 ).

The 2.5 meV mode may also be polarised along the c-axis since the peak 

amplitude at (0 0 1) is 80 counts compared to only 5 counts at the (1 0 0) position. 

More measurements along the [Q 0 0] direction are required to clarify this 

however. Again, it exhibits a nearest-neighbour dispersion along [0 0 Q] and 

appears to be centred at ( 0  0  2 ).

In contrast, the 3.5 meV modes have similar amplitudes along both the [0 0 Q] 

and [Q 0 0] directions, reaching a maximum of around 125 counts in both 

directions. This indicates that the 3.5 meV modes are polarised along the 6 -axis. 

The dispersion of the two modes along the [0 0 Q] and [Q 0 0] directions both 

require additional next-nearest-neighbour terms, although this coupling is not as 

strong as the nearest-neighbour coupling.

Finally, the 5.2 meV mode appears to be weakly polarised along the a-axis, since 

the maximum amplitude along the [0 0 Q] direction is negligible and that along 

the [Q 0 0] direction is only around 35 counts. It does not seem to exhibit 

dispersion along either of the [0 0 Q] or [Q 0 0] directions.

Summaries of the dispersion relations obtained along the [0 0 Q] and [Q 0 0] 

directions are shown in Figures 5.26 and 5.27, respectively.
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5.3.5.1 Dispersion along the [0 0 Q] direction

5.6
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4 .0-
>
I 3 *6 “

0 ®Ih
c

PQ
2 .8 -]

3.2-

2.4-

2 .0 -

1.0 1.5 2.0 2.5 3.0

(0 0 Q)

Figure 5.26 Comparison of the dispersion of the different modes in PrNiSn along [0 0 Q].

E(Q) = A + J { cos(Q^) + J 2 cos(2Q#)

A J x h
1.65 ±0.01 0.13 ±0.01
2.48 ±0.01 0.04 ±0.01
3.28 ±0.01 -0.09 ±0.01 0.04 ±0.01
3.81 ±0.01 0.08 ±0.01 0.00 ±0.01
5.18 ± fixed

Table 5.9 Dispersion parameters for the [0 0 Q] direction. (All units are in meV.)
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5.3.5.2 Dispersion along the [Q 0 0] direction

5.6
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4 .8-

4 .4-

4 .0-

|  3 .6 -

£? 3.2- 
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2 .8 -

2.4-

2 .0 -
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1 . 0 1.5 2 . 0 2.5 3.0

(Q o 0)
Figure 5.27 Comparison of the dispersion of the different modes in PrNiSn along [Q 0 0].

£(Q ) = A + cos(Q tt) + J 2 cos(2Qn)

A J\ h
1.65 ± fixed
2.48 ± fixed
3.43 ±0.01 -0.24 ±0.01 0.06 ±0.01
3.90 ±0.01 -0.39 ±0.01 0.05 ±0.01
5.18 ± fixed

Table 5.10 Dispersion parameters for the [Q 0 0] direction. (All units are in meV.)
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Numerous attempts were made at refitting the HET data in order to obtain an 

energy level scheme with levels at 1.5 and 2.5 meV. Then, after discussions with 

Prof. Jens Jensen, we found that it is likely that, just as the two modes at 3.3 and 

3.8 meV arise from the predicted 3.5 meV level, so the 1.5 and 2.5 meV modes 

may arise from the level predicted at 2 meV.

This view was prompted by the data at (0 0 1) and (0 0 3) which was taken at 

T = 2 K. As can be seen in Figure 5.28, the modes at 1.5 and 2.5 meV seem to 

have an anti-phase relationship with the peak at 1.5 meV being much more intense 

at (0 0 3) whilst the 2.5 meV peak is more intense at (0 0 1). If this is the case, 

then the level at 2 meV calculated from the HET data fits in extremely well.

Model: G auss

C h i ^ = 9.71

yo 2 fixed
xcl 1.56 iC.02
w1 0.35 ±0.04
A1 8.6 ±0.9
xc2 2.44 ±0.00
w2 0.20 ±0.01
A2 22.2 ±0.7

Model: G auss

C hi'S := 26.84

yO 3 fixed
xcl 1.55 ±0.00
w1 0.20 ±0.01
A1 29 9 ±1.2
xc2 2.43 ±0.03
w2 0.30 ±0.06
A2 8.1 ±1.5

0.5 1.0 1.5 2.0 2.5 3.0

Energy Transfer (meV)

PrNiSn • (0 0 1) ■
T = 1.6K o (0 0 3) -

Figure 5.28 Comparison of the 1.5 meV and 2.5 meV modes at (0 0 1) and (0 0 3). 

Note the anti-phase relationship between the two modes.
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Since there are 4 atoms per unit cell in PrNiSn, we can assume that there should 

be 4 different modes for each energy level. This is because all of the atoms in the 

unit cell have the same site symmetry, which means that each experiences the 

same crystalline electric field

If we look at the phase relationship between one of the atoms and the remaining 

three, we can visualise the different modes as either acoustic (where the atoms are 

in-phase) or optic (where the atoms are out-of-phase). This means that we would 

expect there to be four possible modes for each energy level as shown below.

$

$

4>

$

$

O  O

o

Acoustic mode

<f> (j)

(j> <j)

Optic modes

This assumes that all of the atoms act independently and in this case we would 

have a nearest-neighbour coupling of:

j = j s ± j a ± j b ± j

where Js is the coupling between a given ion and the equivalent in the next unit 

cell, and Ja, Jb, Jc are the coupling between the same ion and the remaining three 

ions in the unit cell.

If, however, there are two sublattices, a and b, each comprising two atoms of the 

unit cell we would expect to see only two modes, i.e. one acoustic and one optic.
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If we assume that this is the case for PrNiSn, then the J\ and Ji  parameters we 

have obtained are related to the inter- and intra-sublattice couplings via:

J \  =  J l a a  — 3  la b  a n ^  A  =  ^  la a  — J  la b

Then, assuming that the acoustic branch in each direction is the lower energy of 

the two modes (which is usual for acoustic modes) we obtain the following 

couplings along [0 0 Q] for the 3.5 meV level:

J\aa = -  0.01 ± 0 . 0 1  J 2aa = + 0 . 0 2  ± 0 . 0 1
and

J lab =  ~  0 0 9  ±  0 0 1  J 2ab =  +  0 -0 2  ±  0 0 1

and similarly along [Q 0 0] for the 3.5 meV level, we obtain:

J laa = -  0.32 ±0.01 J 2aa = + 0.06 ± 0.01
and

J lab =  + 0 *0 8  ±  0 *01 J la b  =  +  0 0 1  ±  0 -01

where J\aa and Jiaa are the couplings between atoms on the same sublattice, 

respectively, and J\ab and hab are the couplings between atoms on different 

sublattices. From this we can see that the nearest-neighbours tend to couple 

antiferromagnetically, whereas the next-nearest-neighbours tend to couple 

ferromagnetically. Note the strong antiferromagnetic coupling, Jiaa, between 

nearest-neighbour atoms on the same lattice in the [Q 0 0] direction.

5.4 Calculations

Using a FORTRAN program written by the author and the Stevens parameters 

deduced from fitting to the inelastic polycrystalline data, calculations of the 

susceptibility, magnetisation and heat capacity were performed along each of the 

main symmetry directions. In the calculations shown in Figures 5.29, 5.31 and 

5.32, the z-, y- and x-axes correspond to the a-, b- and c-directions, respectively. 

Comparisons to the experimental susceptibility are shown in Figure 5.33.
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Figure 5.29 Calculation of the susceptibility of PrNiSn using the CEF Hamiltonian 

and Stevens parameters discussed in the text.
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Figure 5.30 Calculation of the inverse susceptibility of PrNiSn using the CEF Hamiltonian 

and Stevens parameters discussed in the text.
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Calculation of the magnetisation of PrNiSn using the CEF Hamiltonian 

and Stevens parameters discussed in the text.

Figure 5.31
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Figure 5.32 Calculation of the heat capacity of PrNiSn using the CEF Hamiltonian 

and Stevens parameters discussed in the text.
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Figure 5.33 Comparison of the experimental and calculated values for the susceptibility 

and inverse susceptibility of PrNiSn. The calculated curves were obtained using the 

Stevens parameters determined by FOCUS.
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5.5 NdNiSn

From inelastic neutron scattering performed on polycrystalline NdNiSn, 

excitations were observed around energies of 5.4, 11.4, 16 and 24.2 meV. 

Thus, using the same V2 setup as for PrNiSn we would expect to be able to see 

the level at 5.3 meV and an absence of any excitations below this energy.

Preliminary measurements on a single crystal of NdNiSn revealed no excitations 

below 2.5 meV at either (1 0 0) or (0 0 1) (see Figure 5.34). However, an 

excitation at around 5.5 meV is visible in both the [0 0 Q] and [Q 0 0] directions 

(see Figures 5.35 and 5.36). There is a slight shift in the peak between (2 0 0) 

and (3 0 0) but less of a shift between (0 0 2) and (0 0 3).

1800

NdNiSn 
T = 6K1500-

60-

Vho
•*—» 40 -

1200 -co
E 20-
o 900-

2.00.0 0.5 1.5wG3O
u

600-

300-

1.0 1.5- 1.0 -0.5 0.0 0.5 2.0 2.5

Energy Transfer (meV)

Figure 5.34 Inelastic neutron scattering from NdNiSn at (1 0 0) and (0 0 1) with a spline fit 

as a guide to the eye. Inset: close-up of the scattering below 2.5 meV.
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Figure 5.35 The 5.5 meV excitation observed in NdNiSn at (2 0 0) and (0 0 2).
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Figure 5.36 The 5.5 meV excitation observed in NdNiSn at (3 0 0) and (0 0 3).
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5.6 Conclusions

The inelastic magnetic response of PrNiSn has been measured at various positions 

in reciprocal space. Four excitations have been found at energy transfers of 

approximately 1.5, 2.5, 3.5 and 5.2 meV at the (0 0 1) position. Measurements of 

the dispersion of these modes have been made along the [0 0 Q] and [Q 0 0] 

directions.

The 1.5 meV mode exhibits a nearest-neighbour type dispersion along the [0 0 Q] 

direction with an amplitude of 0.13 meV and a period of two units commensurate 

with the reciprocal lattice. It is strongly polarised along the c axis.

The mode at 2.5 meV also exhibits a nearest-neighbour type dispersion in the 

[0 0 Q] direction, but with a smaller amplitude of 0.04 meV. The dispersion also 

appears to be commensurate with the reciprocal lattice.

An antiphase relationship between the 1.5 meV and 2.5 meV modes suggests that 

they arise from the 2 meV level predicted from the calculations. A similar 

assessment of the coupling between nearest-neighbours as for the 3.5 meV level 

may be possible, but measurements of the dispersion along the [Q 0 0] direction 

would be required to determine these couplings.

Our additional measurements on the 3.5 meV excitation seem to confirm the 

results deduced from the previous experiment by Beime et al. At least three 

modes exist at this energy range. Since there are four Pr ions in the unit cell, 

four modes are expected which is compatible with our measurements.

The dispersion of the upper and lower modes in the [Q 0 0] direction are 

dominated by a nearest-neighbour interaction, whereas their dispersion along the 

[0 0 Q] direction is weaker and requires an additional next-nearest-neighbour 

interaction. The modes in the [Q 0 0] direction are in-phase, whereas the modes 

in the [0 0 Q] direction are out-of-phase.

85



$
The 5.2 meV mode is weak with a slight polarisation along the a axis. It does not 

seem to undergo any dispersion along the [Q 0 0] direction, remaining at a 

roughly constant energy transfer of about 5.18 meV.

Preliminary measurements have been made on a single crystal of NdNiSn. The 

crystal is of poor metallurgical quality, nevertheless excitations have been 

observed at 5.5 meV at (Q 0 0) and (0 0 Q) positions with Q = 2 and 3.
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CHAPTER 6

UPdSn

6.1 L iterature R eview

Following a systematic study of the magnetic properties of various ternary 

uranium-based compounds by Palstra et al}, more detailed studies on UPdSn 

have since been performed. The crystal structure of UPdSn is the ordered ternary 

GaGeLi-type structure (space group P63mc) as deduced from neutron and x-ray 

diffraction experiments. The lattice parameters are a = 4.61 A and c = 7.31 A, 

giving an inter-uranium distance du-u = cl2 = 3.66 A, which is above the Hill limit 

beyond which the localisation of 5/moments is expected for uranium compounds.

Figure 6.1 The hexagonal GaGeLi-type crystal structure of UPdSn.

Measurements of magnetic susceptibility and magnetisation on single crystals of 

UPdSn were also performed by de Boer et al. (Figure 6.2 a-d). Both are strongly 

anisotropic, with the hexagonal c axis response being much weaker than the a and 

b axes. Two distinct anomalies at around 25 and 38 K are seen in the 

susceptibility data with the higher one attributed to antiferromagnetic ordering. A 

low temperature spin-flop transition takes place just above B = 3 T.
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UPdSn 
T = 4.2K

UPdSn
UPdSn

0 UK/kbar

Figure 6.2 Measurements of (a) magnetic susceptibility, (b) magnetisation, 

(c) specific heat and (d) resistivity for UPdSn.

The effective magnetic moment has been deduced to be jueff =3.31 juB and the 

Curie temperatures to be 6a = -2.5 K and Gb = -113 K. The specific heat

behaviour of UPdSn is shown in Figure 6.2c and the magnetic transitions are 

reflected in the shoulder at 27 K and broad maximum at 38 K. Extrapolating to 

zero temperature gives a very low value of y ~ 5 mJ/molK2, which is of the same 

order as the localised 5/electron compound UPd3.

Single crystal neutron diffraction experiments in a magnetic field were 

performed4,5 by Nakotte et al. The complete magnetic phase diagram they 

obtained is displayed in Figure 6.3 and shows the zero field transitions at 40 and 

25 K as well as the low temperature spin flop transition at 3 T.
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Figure 6.3 The magnetic phase diagram for UPdSn determined from neutron 

diffraction experiments with a field applied along the a axis.

The most recent experiments performed on UPdSn are those of zero-field muon 

spin relaxation (pSR) by Noakes et a l 6 They found that the paramagnetic signal 

(PM) begins to be replaced near 42 K by another signal which indicates an 

inhomogeneous magnetic freezing process. Oscillations indicating long-range 

magnetic ordering appear at 40 K (AFM I), but a remnant of the paramagnetic 

signal persists until 37 K. Then, below 27 K, a higher frequency signal grows at 

the expense of the original one until, at 22 K, the entire sample has the second 

type of long-range ordering (AFM II). The observation that fluctuations exist 

above the ordering temperatures suggests that the two magnetic transitions are 

second order.
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6.2 Experimental Procedure

The problem of multiple phases is well-known in UTX compounds. To try and 

obtain a single-phase sample and to ensure high metallurgical quality single 

crystals were grown, since the number of defects is lower than in a polycrystalline 

sample. The six single crystals of UPdSn were grown by Heinz Nakotte and 

colleagues in the University of Amsterdam and were sent to us with their c-axes 

aligned. Unfortunately, due to the large amount of varnish used to fix them in 

place, the background scattering was too strong. The varnish was therefore 

cleaned off the crystals by soaking them in acetone. The crystals weighing 5.81 g 

were then wrapped in aluminium foil and clamped between cadmium strips so that 

their c-axes were approximately parallel (since there was insufficient time to align 

them accurately). This arrangement was attached to the sample stick so that the 

crystals lay horizontally (see Figure 6.4) and the CCR was then connected.

Sample stick

UPdSn crystal 
—>■ c-axis

Cadmium strip

Figure 6.4 Schematic diagram of the arrangement of the UPdSn single crystals.

An initial scan was made with an incident energy of 100 meV at a temperature of 

66 K. Measurements were then made at various temperatures using 80 meV 

neutrons. A scan using 42 meV neutrons was then performed to look for evidence 

of low energy excitations. Following this, measurements at 23 meV were taken at 

various temperatures above and below the 25 K transition. Finally, high incident 

energy (800 meV) neutron measurements were made at low (50 K) and high 

(300 K) temperatures in order to look for intermultiplet excitations.

90



Run number Incident 
Energy (meV)

Chopper 
Speed (Hz)

Sample 
Temp (K) Total pA hr Sample

11944 White beam - 300 Vanadium
11991 23 150 10 2000 UPdSn
12013 23 150 22 1000 UPdSn
12014 23 150 28 411 UPdSn
11989 42 150 10 2000 UPdSn
11984 80 300 10 2000 UPdSn
11992 80 300 19 2000 UPdSn
12012 80 300 22 1000 UPdSn
11983 80 300 28 2000 UPdSn
11993 80 300 35 2000 UPdSn
11986 80 300 41 2000 UPdSn
11987 80 300 50 2000 UPdSn
11982 80 300 66 2000 UPdSn
11988 80 300 100 2000 UPdSn
11996 80 300 200 1680 UPdSn
11981 100 150 66 2790 UPdSn
11995 800 600 50 1500 UPdSn
11997 800 600 300 3400 UPdSn

Table 6.1 Summary of the first set of scans performed on UPdSn.

Following this initial experiment, further beam time was scheduled to look at low 

energy excitations below 30 meV. In this experiment, neutrons with an incident 

energy of 36 meV were used to look at the low energy magnetic scattering above 

and below the two transition temperatures. During this experiment, a 5.77 g 

polycrystalline sample of ThPdSn was also measured at energies of 36, 80 and 

800 meV so that phonon subtractions could be made more accurately.

Run number Incident 
energy (meV)

Chopper speed 
(Hz)

Sample temp 
(K) Total pA hr Sample

12292 White beam - 300 Vanadium
12332 36 150 6 2000 UPdSn
12333 36 150 28 1846 UPdSn
12335 36 150 50 2000 UPdSn
12336 36 150 19 1893 UPdSn
12337 36 150 6 2000 ThPdSn
12338 36 150 50 1400 ThPdSn
12339 36 150 19 1400 ThPdSn
12340 80 300 50 1000 ThPdSn
12341 800 600 50 570 ThPdSn

Table 6.2 Summary of the second set of scans performed on UPdSn.
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6.3 Results & Discussion

The initial = 100 meV scan revealed a strong, broad peak of magnetic 

scattering centred around an energy transfer of 40 meV. We therefore repeated 

the measurement at a lower incident energy of 80 meV to improve resolution. 

The resolution at 40-50 meV with £, = 80 meV is -1 .4  meV compared to a 

resolution of -1.9 meV with Et = 100 meV. A series of such measurements were 

then carried out at various temperatures above and below each of the transitions.

In order to estimate the scattering due to phonons, the data from the high angle 

banks was initially scaled down by a factor of 4.5. Following the subsequent 

measurements on ThPdSn, the phonon contribution was determined using the 

ratio method. The procedure used to obtain this contribution is outlined in 

Chapter 4. The ratio obtained in this way is close to 1/5 over a wide range and 

lies between 1/5 and 1/4 in the 10 to 60 meV range. Outside this region the ratio 

begins deviate severely, as shown by the fourth order polynomial fit. Therefore 

only the magnetic data between 10 and 60 meV can be considered as reliable.

0.5

ThPdSn 
T = 50 K 

80 meV
0 .4 -

ju’obBC3
0 .3 -JZ

00
2

0)
"ob
§  0 .2 -  £

2

0.1 -

0.0
10 400 20 30 50 60 70

Energy Transfer (meV)

Figure 6.5 The ratio of the low angle to high angle scattering from ThPdSn with Et = 80 meV. 

The line is the polynomial fit used to estimate the phonon contribution from the UPdSn data.
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Figure 6.6 The total scattering from UPdSn at 10 and 50 K using neutrons with an incident energy 

of 80 meV. Note that the phonon scattering has been estimated by the ratio method

1.50

T = 10K 
T = 50K

UPdSn 
E. = 80 meV1.25-

1 .0 0 -

S3 0.75 -
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0.25-

0.00
20 30 50 6010 40

Energy Transfer (meV)

Figure 6.7 The magnetic scattering from UPdSn at 10 and 50 K using neutrons with an incident 

energy of 80 meV, obtained by subtracting the phonon contribution from the total scattering.
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Figure 6.8 The magnetic scattering o f  UPdSn at T =10 K fitted to a single Gaussian 

and an exponentially decreasing background.

UPdSn 
E. = 80 meV1.0 -
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Figure 6.9 The magnetic scattering o f  UPdSn at T =50 K fitted to a single Gaussian 

and an exponentially decreasing background.
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As can be seen in Figures 6.6 and 6.7, the peak shifts by a significant amount 

(-10 meV) on cooling from 50 to 10 K. Note that it is unlikely that the scattering 

at T = 10 K disappears at low energy transfers and that this effect is probably due 

to limitations in the ratio method subtraction around the elastic peak.

In order to determine the peak position and intensity, a single gaussian was fitted 

to the peak. Since the instrumental resolution is asymmetric, an exponential 

decay was used to approximate the background due to the elastic peak tail 

(see Figures 6.8 and 6.9 for an example of the fitting technique). The temperature 

dependence of the peak positions and intensities is shown in Figure 6.10.

On cooling from 100 to 10 K, the peak shifts from an energy transfer of 39 meV 

to an energy transfer of 50 meV with distinct changes around the two transition 

temperatures (shown by dotted lines). The integrated intensity decreases on 

cooling and this is due to the reduction of the peak width, not the peak height.

50-

48-

4 0 -

0 2 0 40 60 80 100

1 0

cd crqH3
cdO-

CD3
C/3

Temperature (K)

Figure 6.10 Temperature dependence o f  the energy transfer and integrated intensity o f  the 

40-50  m eV excitation. The transition temperatures o f  25 and 40  K are shown by dotted lines.
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The low energy magnetic scattering is shown in Figure 6.12 with distinct peaks 

visible at approximately 7 and 13 meV. This data, however, was obtained by 

scaling down the high angle data by a constant factor of 4. As can be seen in 

Figure 6.11, the ratio determined for an incident neutron energy of 36 meV varies 

considerably with energy transfer. Its value deviates significantly below 5 meV 

and above 25 meV, so only data within this range can be considered to be reliable. 

The ratio does not change with temperature so the average ratio was used for all of 

the temperature scans.

Using the ThPdSn data to obtain the phonon contribution via the ratio method 

results in the data shown in Figure 6.13. This method of analysis results in a 

broad band of magnetic scattering and a smearing out of the distinct features 

obtained by the previous method.

0.5

T = 6 K 
T = 19 K 
T = 50 K

ThPdSn 
E. = 36 meV0 .4 -

s
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* '
2  1 
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0 5 1 0 15 2 0 25 30

Energy Transfer (meV)

Figure 6.11 The ratio o f  low  angle to high angle scattering from ThPdSn with £ , =  36 m eV. 

The line is the polynom ial plus gaussian fit used to estimate the phonon contribution .
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Figure 6.12 The low energy scattering from UPdSn obtained by subtracting the phonon 

contribution (calculated by scaling the high angle data by 0.25) from the total scattering.

1.25

UPdSn 
E. = 42 meV, T = 1 0 K  
E. = 36 meV, T = 6  K

1.0 0 -

^  0 .7 5 -
•*-*

Go
G

0 .5 0 -

0 .2 5 -

0.00
1 0 2 0 255 15

Energy Transfer (meV)

Figure 6.13 The low energy scattering from UPdSn obtained by subtracting the phonon 

contribution (calculated by the ratio method) from the total scattering.
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Figure 6.14 Temperature dependence of the low energy magnetic scattering from UPdSn 

obtained by subtracting the phonon contribution (calculated via the ratio method).

The lines are the smoothed averages of the low and high temperature data.

The temperature dependence of the low energy magnetic scattering is shown in 

Figure 6.14. There is little difference between the scattering at 6 and 19 K, but 

raising the temperature above the lower transition temperature produces 

significant quasielastic scattering below 15 meV. On heating above the second 

transition temperature, there is again little change. This suggests that the low 

energy magnetic scattering is associated with the lower temperature transition.

Such a temperature dependence of the scattering could be envisaged as a change 

in the ground state doublet wavefunction at the 25 K transition. Above the 

transition temperature the Jz matrix element within the ground state may be large, 

producing significant quasielastic scattering. Below the transition, however, the 

ground state may split and the modified wavefunctions may not couple via Jz as 

intensely.
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6.4 Calculations

6.4.1 Paramagnetic phase

The electronic configuration of UPdSn is 5 /  and, by applying Hund’s rules, this

gives L  = 5, S = 1. Therefore J  = L -  S = 4 and there are (27 + 1) = 9 degenerate 

energy levels. The potential due to the hexagonal crystal symmetry splits the 

levels into three singlets and three doublets and, since UPdSn orders magnetically, 

the ground state must be one of these doublets.

The hexagonal symmetry means we have 5 ° , B%, B® and B% contributions to the 

CEF Hamiltonian. Without the B \ term there would be no mixing between the 

states and we would have a simple |0), |± l), |± 2), |±3), |± 4 ) level scheme. 

However, we find that the B \ term results in the following scheme:

|o>

X g \+ 3) + X f i \~ 3) 

Xr2\ + 3) - X r 2 \ - 3)

l±l)

where a 2 + /32 = 1

If we assume that the or|± 4) + /? |+  2) state is the ground state, | g ) , then it can be 

seen that | (g \JZ | g) | = 4a 2 -  2/32. Now we know that:

where N  = 6.022 x 102 3 is the number of magnetic ions per mole.
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Thus, by comparing this expression with the experimental heat capacity in the 

z-direction, we find that | (g | J z \ g) | = 2.06, leading to the result:

a  = ±0.82 and f t  = ±0.57

Using 5° = — ^ —  = 0.42 m eV , the result#* = ±^-#£  and by choosing 6 ( /  + } i ) ( J  + X)
the following suitable values for and B °6 :

# 2° = 0.4200 meV 5 6° = -O.OOlOmeV

B°a = -0.0345 meV B66 = O.OlOOmeV

we obtain the energy levels, wavefunctions and relative transition intensities from 

the ground state shown in Table 6.3. The transition intensity is calculated via:

( /  V t  | i ) 2 = *  l< /  \ j ,  | i) 2 +  ( /  w  i>2 +  ( /  K I O 2 J

Level

(meV)
Wavefunction Degeneracy

Transition

Intensity
Operator

0 . 0 0 0.820| ± 4) -  0.573| T 2} Doublet 4.127 Jz

8.54 l±l> Doublet 1.476 Jx ) Jy

15.11 |o> Singlet 0.000 -

40.57 0.573|±4) + 0.820|+2) Doublet 7.936 Jz

78.20 X ^\ + 3) ~ X ^ \ ~ 3) Singlet 2.488 Jx » Jy

128.60 X/2\+3) + X/2\~3) Singlet 0.004 Jx j Jy

Table 6.3 The energy levels, wavefunctions and transition intensities in the paramagnetic 

phase obtained using the Stevens parameters discussed in the text.
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Note that in the paramagnetic state at 50 K, only the ground state will be 

significantly populated (since kBT  = 4.31 meV) so there are no transitions 

between any of the other levels. From the calculations, we expect to see in the 

paramagnetic phase (i.e. T  > 50 K) transitions from the ground state to the levels 

at energies of 8.5, 41 and 78 meV due to Jx and/or Jy coupling between them. 

In addition, we expect a significant amount of quasielastic scattering within the 

ground state itself.

If we look at the experimental data, the transition at 41 meV is clearly shown. 

However, there is no evidence for a peak at 78 meV although this could be due to 

the poor statistics of the HET data at high energy transfers. A further 

measurement using 130 meV incident neutrons would allow the presence of such 

a transition to be determined. In the paramagnetic phase, we indeed observe a 

large quasielastic response as predicted and this may have swamped the predicted 

level at 8.5 meV.

6.4.2 Ordered phase

From the Curie-Weiss theory, the effective internal field generated when ordering 

occurs is given by:

J 3 k Tl? — ex T __ J N

*  n g 2n \  B gMB(J  + 1 )

Thus the energy associated with the transition at TN = 40 K can be estimated by

an internal magnetic field of -45  T. In an applied field of this magnitude, the 

energy levels and wavefunctions are changed significantly. The variation of the 

energy levels with applied field is shown in Figure 6.15.
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Although the splitting between the ground state and the 40 meV level has 

increased in a field of 45 T, the observed splitting of 50 meV in the ordered phase 

is only reached in a field of 60 T. This suggests that the exchange interaction 

between the magnetic moments in UPdSn may be smaller than predicted by the 

Curie-Weiss model.

Applied field 0 T 60 T

Direction of field - along z along x along y

0 0 0 0

0 10.90 0.38 1.16

8.54 12.69 5.97 6.18

Energy Level 

(meV)

8.54

15.11

40.57

18.25

22.04

48.88

11.06

23.05

42.95

11.45

23.40

43.22

40.57 49.09 43.23 43.65

78.20 83.79 80.85 81.20

128.60 136.88 131.14 131.48

Table 6.4 Summary of the energy levels, wavefunctions and transition intensities in the 

paramagnetic and ordered phases obtained using the Stevens parameters discussed in the text.

Table 6.4 lists the energy levels in zero field and in a field of 60 T applied along 

the three principal axes. In zero field (which corresponds to the paramagnetic 

state), there is an energy level at around 40 meV above the ground state which 

agrees with the neutron data at 50 K.

In an applied field of 60 T (which corresponds to the ordered state), the nine-fold 

degeneracy is completely lifted. With the field along the z-direction there are 

states at around 49 meV, and with the field along the x- and y-directions there are 

states around 6  and 11 meV (as shown in Figure 6.15). Both of these results seem 

to agree well with the intensities of the neutron data at T  = 6  and 10 K .
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Figure 6.15 The change of energy levels in UPdSn as the internal magnetic field is increased 

from 0 to 60 T in the (top) z-direction and (bottom) x-direction. Note that for clarity, the levels 

below and above the two dotted lines are those in a constant field of 0 T and 60 T, respectively. 

The possible transitions observed in the neutron data are shown by arrows.
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B = 0 T
Eigenvectors

|-4) I'3) I'2) l->) 1 °) l+1> 1+ 2 ) l+3) |+ 4)

0 .0 0 0 0 -0.573 0 0 0 0 0 0.820

0 .0 0 0.820 0 0 0 0 0 -0.573 0 0

8.54 0 0 0 0 0 1 .0 0 0 0 0 0
<u
£ 8.54 0 0 0 1 .0 0 0 0 0 0 0 0

<a 15.11 0 0 0 0 1 .0 0 0 0 0 0 0
>
C 40.57 0 0 0.820 0 0 0 0 0 0.573
00
W 40.57 0.573 0 0 0 0 0 0.820 0 0

78.20 0 -0.707 0 0 0 0 0 0.707 0

128.60 0 0.707 0 0 0 0 0 0.707 0

t  ;
Final State (meV)

«/2 llltW lldllJf
0 .0 0 0 .0 0 8.54 8.54 15.11 40.57 40.57 78.20 128.60

0 .0 0 4.127 0 0 0 0 7.936 0 0 0

0 .0 0 0 4.127 0 0 0 0 7.936 0 0

£ 8.54 0 0 1 .0 0 0 0 0 0 0 0 0
<D
B 8.54 0 0 0 1 .0 0 0 0 0 0 0 0

B
B
CO

3

15.11

40.57

0

7.936

0

0

0

0

0

0

0

0

0

0 .0 0 1

0

0

0

0

0

0

cl—H 40.57 0 7.936 0 0 0 0 0 .0 0 1 0 0

78.20 0 0 0 0 0 0 0 0 9.000

128.60 0 0 0 0 0 0 0 9.000 0

Jxy intensity
Final State (meV)

0.00 0.00 8.54 8.54 15.11 40.57 40.57 78.20 128.60

0 .0 0 0 0 0 1.476 0 0 0 2.488 0.004

0 .0 0 0 0 1.476 0 0 0 0 2.488 0.004

C' 8.54 0 1.476 0 0 5.000 0 3.024 0 0
<D
B 8.54 1.476 0 0 0 5.000 3.024 0 0 0
O4-»
B 15.11 0 0 5.000 5.000 0 0 0 0 0
00

3 40.57 0 0 0 3.024 0 0 0 0.262 2.746
‘3I—i 40.57 0 0 3.024 0 0 0 0 0.262 2.746

78.20 2.488 2.488 0 0 0 0.262 0.262 0 0

128.60 0.004 0.004 0 0 0 2.746 2.746 0 0

Table 6.5 Calculated eigenvalues, eigenvectors and Jz and Jxy transition intensities in zero field.
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Bz = 60 T
Eigenvectors

I " 4) I " 3) I " 2) l - > 1 ° ) H M l+3> M
0 .0 0 0 0 -0.432 0 0 0 0 0 0.902

10.90 -0.681 0 0 0 0 0 0.732 0 0

> 12.69 0 0 0 0 0 1 .0 0 0 0 0 0
<D
B 18.25 0 0 0 1 .0 0 0 0 0 0 0 0

<L> 22.04 0 0 0 0 1 .0 0 0 0 0 0 0

>c 48.88 0 0 0.902 0 0 0 0 0 0.432
60
w 49.09 0.732 0 0 0 0 0 0.681 0 0

83.79 0 -0.586 0 0 0 0 0 0.811 0

136.88 0 0.811 0 0 0 0 0 0.586 0

t  :
Final State (meV)

*J 2, AlllVlidllJf
0 .0 0 10.90 12.69 18.25 22.04 48.88 49.09 83.79 136.88

0 .0 0 8.291 0 0 0 0 5.468 0 0 0

10.90 0 0.618 0 0 0 0 8.954 0 0

><D
B

12.69

18.25

0

0

0

0

1 .0 0 0

0

0

1 .0 0 0

0

0

0

0

0

0

0

0

0

0

3
B
00

3*+■»

22.04

48.88

0

5.468

0

0

0

0

0

0

0

0

0

0.773

0

0

0

0

0

0

Gi-« 49.09 0 8.954 0 0 0 0 1.473 0 0

83.79 0 0 0 0 0 0 0 0 .8 8 8 8 .1 1 2

136.88 0 0 0 0 0 0 0 8 .1 1 2 0 .8 8 8

intensity
Final State (meV)

■'x.y
0 .0 0 10.90 12.69 18.25 22.04 48.88 49.09 83.79 136.88

0 .0 0 0 0 0 0.840 0 0 0 2.272 0.008

10.90 0 0 2.410 0 0 0 0 2.803 0

> 12.69 0 2.410 0 0 5.000 0 2.090 0 0
(0
B'w' 18.25 0.840 0 0 0 5.000 3.660 0 0 0
<L>
B 22.04 0 0 5.000 5.000 0 0 0 0 0
00

3’w 48.88 0 0 .0 0 0 0 3.660 0 0 0 0.243 2.977
a 49.09 0 0 2.090 0 0 0 0 0.183 2.514

83.79 2.272 2.803 0 0 0 0.243 0.183 0 0

136.88 0.008 0 0 0 0 2.977 2.514 0 0

Table 6.6 Calculated eigenvalues, eigenvectors and Jz and JXi7 transition intensities
in a field of 60 T applied along the z-axis.
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Bx = 60 T
Eigenvectors

| - 4) I ' 3 ) I " 2 ) l - > 1 ° ) l + 1 ) |+2) l + 3 > M
0 .0 0 0.455 -0 .0 0 1 -0.367 -0.355 -0.257 -0.355 -0.367 -0 .0 0 1 0.455

0.38 0.528 0.052 0.405 0.234 0 -0.234 -0.405 -0.052 -0.528

> 5.97 0.359 0.004 -0.176 0.459 0.509 0.459 -0.176 0.004 0.359

11.06 -0.249 -0.018 -0.053 0.659 0 -0.659 0.053 0.018 0.249
<DJ3 23.05 -0.107 -0.006 -0.044 -0.388 0.82 -0.388 -0.044 -0.006 -0.107
>S<o 42.95 0.390 0.052 0.575 -0.115 0.056 -0.115 0.575 0.052 0.390

s 43.23 0.398 -0.038 -0.574 0.104 0 -0.104 0.574 0.038 -0.398

80.85 -0.024 0.704 -0.063 0.005 0 -0.005 0.063 -0.704 0.024

131.14 -0.031 0.705 -0.042 0 .0 0 2 0 0 .0 0 2 -0.042 0.705 -0.031

7 : Final State (meV)
«/2

0 .0 0 0.38 5.97 11.06 23.05 42.95 43.23 80.85 131.14

0 .0 0 0 1.348 0 1.683 0 0 4.910 0 0

0.38 1.348 0 2.095 0 0.500 6.451 0 0 0 .0 0 1

/*"s
>0)
a

5.97

11.06

0

1.683

2.095

0

0

0.006

0.006

0

0

0.083

0

1.116

2.697

0

0

0

0

0

B
aC/2
Is

23.05

42.95

0

0

0.500

6.451

0

0

0.083

1.116

0

0

0

0

0 .1 0 1

0.013

0

0

0

0

G 43.23 4.910 0 2.697 0 0 .1 0 1 0.013 0 0 0.027

80.85 0 0 0 0 0 0 0 0 8.968

131.14 0 0 .0 0 1 0 0 0 0 0.027 8.968 0

r Final State (meV)
x»y micuaiijr

0 .0 0 0.38 5.97 11.06 23.05 42.95 43.23 80.85 131.14

0 .0 0 3.680 0.426 3.179 0.158 0.033 0.421 1 .0 1 0 3.151 0 .0 0 0

0.38 0.426 1.247 1.977 0.957 0.058 0.430 0.313 4.196 0 .0 0 1

> 5.97 3.179 1.977 1.972 3.687 0.996 1.183 0.527 1.651 0.029
CD
6 , 11.06 0.158 0.957 3.687 0.068 6.909 2.142 2.483 0.650 0.058
CD•4-*
3oo
3

23.05 0.033 0.058 0.996 6.909 7.251 2.215 1.741 0.048 0.064

42.95 0.421 0.430 1.183 2.142 2.215 0.081 0.033 0.587 5.327
GHH 43.23 1 .0 1 0 0.313 0.527 2.483 1.741 0.033 0.182 0.561 5.401

80.85 3.151 4.196 1.651 0.650 0.048 0.587 0.561 0.184 0.005

131.14 0 .0 0 0 0 .0 0 1 0.029 0.058 0.064 5.327 5.401 0.005 0.119

Table 6.7 Calculated eigenvalues, eigenvectors and Jz and / x,y transition intensities
in a field of 60 T applied along the x-axis.
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6.5 Conclusions

Inelastic neutron scattering has been performed on a polycrystalline sample of 

UPdSn. A well defined excitation likely to be due to a transition between 

crystalline electric field levels has been observed at around 40 meV in the 

paramagnetic phase. The temperature dependence of this excitation has been 

followed down to T  = 10 K.

The peak shifts upwards in energy as the temperature decreases, reaching an 

energy of around 50 meV at the lowest temperature measured. The temperature 

dependence is smooth, but has noticeable changes in gradient at the two transition 

temperatures of TN = 25 and 40 K. Such a smooth variation is not expected for

first order magnetic ordering transitions. However, the pSR data of Noakes et al., 

which suggests that the two transitions are second order, may help to explain this.

By comparison of the experimental specific heat with that expected from 

calculations on a set of CEF energy levels, values for the Stevens parameters have 

been deduced. These parameters predict energy levels in the paramagnetic phase 

which are consistent with the excitations we have observed in this experiment.

The effect of magnetic ordering on the energy levels and associated wavevectors 

has been estimated by assuming a mean field interaction acts below the transition 

temperature. Thus, the energy levels and wavefunctions in the ordered phase have 

been obtained and a comparison made with experiment. The calculated energy 

levels in the ordered phase are consistent with our T  = 6  and 10 K data when the 

mean field reaches approximately 60 T. This value of the field is, however, larger 

than the value predicted by the Curie-Weiss mean field theory, and may point 

towards a reduced interaction between the/electrons.

The observation of crystal field levels and the agreement between experiment and 

calculations based on a CEF level scheme are strong evidence that the 5 /electrons 

in UPdSn are well localised, which is rare in uranium intermetallic compounds.
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CHAPTER 7

UCu2Sn

7.1 Literature Review

The first experiments on UCu2 Sn were performed by Takabatake et al} They 

found that the compound crystallises in the ZrPt2Al-type structure (space group 

P6ijmmc) in which the constituent atoms are stacked in layers perpendicular to the 

hexagonal c-axis with a sequence ...U, Cu, Sn, Cu... (Figure 7.1). The room 

temperature lattice parameters have been determined as a -  4.46 and c = 8.71 

which gives atom separations of Ju-u = 4.46 , <iu-sn = 3.37 and du-cu = 2.87 .

Such a uranium-uranium separation is well above the Hill limit. Hybridisation is 

therefore expected between localised 5 /electrons and delocalised ligand electrons, 

although a direct overlap of 5 /wavefunctions is unlikely in the U layer.

Figure 7.1 Diagram of the hexagonal unit cell for UCu2Sn in which the atoms are 

stacked in layers of Sn (yellow), Cu (red), U (blue), Cu (red) along the c-axis.
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The magnetic, transport and thermal properties of UCu2 Sn have been reported for 

both polycrystalline1 and single crystal2 samples. The resistivity is temperature 

independent above 100 K, but increases sharply upon cooling below 16.5 K. 

In contrast to the drop in resistivity in the polycrystalline sample upon further 

cooling, the resistivity saturates along the a and c axes whilst increasing along the 

b axis. This may point to a contaminated phase in the polycrystalline sample.

Above 150 K, the magnetic susceptibility displays Curie-Weiss behaviour with an 

effective magnetic moment of f ieff -  (3.3±0.3)//fi/U  and a paramagnetic Curie

temperature of 0p = -(89 ±  30) K. At low temperatures, a pronounced peak in the

magnetic susceptibility occurs at around 16.5 K. High field magnetisation 

measurements show a spin-flop-like behaviour at B = 23.5 T at a temperature of

4.2 K. The specific heat exhibits a sharp 2-type anomaly at 16.5 K which releases 

a magnetic entropy of R ln l (Figure 7.2). This means that there are at least two 

levels below an energy scale of -1 .5  meV and suggests that the paramagnetic 

ground state is a doublet. The electronic specific heat coefficient was determined 

to be y = 60 mJ/K2molU from the low temperature behaviour.

These bulk measurements strongly suggest that the anomaly at 16.5 K is due to 

antiferromagnetic ordering. However, recent Mossbauer3, NMR4, pSR5 and 

neutron diffraction2  experiments have all been unable to detect any sign of 

antiferromagnetic ordering.

Further nuclear quadrupolar resonance (NQR) experiments6  have suggested that 

the ordered state might be due to a non-magnetic phase transition, such as 

quadrupolar ordering. This type of ordering involves an alignment of the charge 

densities of the ions and is therefore strongly coupled to the lattice. 

Hence, fluctuations in the quadrupolar ordering affect the lattice and give rise to 

anomalies in the elastic constant measurements. Such measurements in UCu2 Sn 

have revealed a dramatic softening of the c66 transverse elastic modulus around

16.5 K with more than a 57% reduction in the stiffness7.
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Such a large softening of the lattice cannot be explained to arise solely from an 

antiferromagnetic transition, and it has been proposed that a quadrupolar ordering 

of the non-Kramers ground state doublet Ts occurs at TQ = 16.5 K in this

compound. However, x-ray diffraction studies of UCu2Sn have revealed neither a 

broadening of diffraction peaks indicative of ferroquadrupolar (FQ) ordering nor 

superlattice reflections indicative of antiferroquadrupolar (AFQ) ordering.

>0ooooooooo

polycrystal

UCiuSn
UCiijSn single crystal.

—  - back ground 
r 3 at 1177 K 
r 5 at 1022 K 
r6at 55.60 K 
r 4 at 39.33 K 
r ,  at 17.72 K 
r 5 atOK

T (  K)

Figure 7.2 (a) Specific heat data showing the 2-type transition at TQ. Inset: the magnetic entropy, 

(b) Elastic constant measurements showing a softening at TQ. Inset: the calculated level scheme.

Suzuki et al. have interpreted their results in terms of a crystal field scheme and a
r\

5 / configuration. In their crystalline electric field (CEFi) model, the ground state 

is Ts with excited states at 1.52, 3.38, 4.79, 88.1 and 101 meV. All of these states, 

except that at 1.5 meV, are dipolar coupled to the ground state. The CEFi level 

scheme is shown in Figure 7.3.

Since our experiment on HET, Suzuki et al. have produced another set of Stevens 

parameters based on measurements of the specific heat, thermal expansion, 

susceptibility and elastic constants in a magnetic field. In the crystalline electric 

field (CEF2) model deduced from these new parameters, the ground state is again 

T5 but the excited states are now calculated to be at energies of 9.38, 28.61, 35.82, 

50.39 and 75.91 meV. All of these states, except that at 35.82 meV, are dipolar 

coupled to the ground state. The CEF2 level scheme is shown in Figure 7.4.
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Figure 7.3 The first CEF level scheme deduced by Suzuki et al. from elastic constant 

measurements. Possible transitions for temperatures just above TQ are indicated 

and the thickness of the line indicates their relative intensity.
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Figure 7.4 The second CEF level scheme deduced by Suzuki et al. from more recent bulk 

measurements. Possible transitions for temperatures well above TQ are indicated 

and the thickness of the line indicates their relative intensity.
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7.2 Experimental Procedure

Firstly, a white beam vanadium run was carried out for the subsequent 

normalisation process. The 17.97 g sample of UCu2 Sn was crushed and placed 

into an aluminium sachet which was then attached to the bottom of a closed-cycle 

refrigerator (CCR) and cooled. At 7 K, the scattering from UCu2 Sn was measured 

with incident neutron energies of 60 and 150 meV.

Measurements using neutrons with an incident energy of 23 meV were then made 

at various temperatures below and above TQ. Finally, a measurement was made

using high incident energy neutrons to search for intermultiplet transitions. 

See Table 7.1 for a complete list of the data collected.

Incident 
Energy (meV)

Chopper 
Speed (Hz)

Sample 
Temp (K)

Total
pAhr

Vanadium white beam RT 114
23 150 7 1 1 0 0

23 150 1 2 1 1 0 0

23 150 16 1 1 0 0

23 150 2 0 1 1 0 0

23 150 1 0 0 1124
60 2 0 0 7 1115
150 250 7 1 1 0 0

800 600 1 2 486
800 600 1 0 0 3037

Table 7.1 List of scans performed during the experiment.
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7.3 Results and Discussion

The magnetic scattering obtained using Ei =150 meV neutrons is shown in Figure 

7.5. The scattering below 120 meV is essentially smooth, although there appears 

to be extra scattering around 45 meV and a shoulder of scattering at 25 meV. An 

investigation of these features was performed using Ei = 60 meV neutrons.

UCu2Sn
E = 800 meV1

T = 100 K

0.8 -

0.6 -

0.4-

0.2
200 300250 350 400 450 500

UCu2Sn
E = 150 meV1

T = 7 K

20 40 60 80

Energy Transfer (meV)

100 1 2 0

Figure 7.5 Magnetic scattering from UCu2Sn using neutrons with an incident energy of 150 meV. 

Inset: possible intermultiplet transition observed using 800 meV incident energy neutrons.

The total scattering and phonon background are shown in the inset of Figure 7.6. 

Since a non-magnetic reference compound was not available, the phonon 

contribution was estimated by scaling down the high angle bank data by a factor 

of 4.5. Looking at the energy gain side, it appears that the phonons are slightly 

underestimated. The magnetic scattering, shown in the main part of this figure, is 

dominated by a peak of scattering centred at 7.5 meV which continues up to 

around 20 meV where a gradient change occurs. No features are seen at 45 meV.
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Figure 7.6 Magnetic scattering from UCu2Sn using neutrons with an incident energy of 60 meV. 

Inset: the total scattering (points) and phonon contribution estimated by the scaling method (line).

Scans using 23 meV neutrons were then made at various temperatures above and 

below T q  in order to investigate the temperature dependence of the scattering 

below 20 meV. The magnetic scattering from UCu2Sn at T -  12 K with Et = 23 

meV is shown in Figure 7.7 for both the 2.5 m and 4 m banks.

In the 2.5 m bank, the magnetic scattering is seen as a broad, asymmetric peak 

centred around 7 meV. The width of the peak is approximately 6 meV, much 

greater than the instrumental resolution of 0.7 meV. A two gaussian fit places 

peaks at 6.55 and 8.25 meV with widths of 2.92 and 7.26 meV, respectively.

The data from the 4 m bank reveals at least two contributions to the broad peak 

which can be fitted to two Gaussian peaks centred at 3.72 and 8.21 meV, with 

widths of 1.23 and 7.01 meV, respectively. The 4 m bank data has also been 

fitted by two gaussians with their peak positions fixed to be those obtained from 

the fit to the 2.5 m data. A summary of the fit parameters is given in Table 7.2.
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Figure 7.7 Magnetic scattering from UCu2Sn at 12 K in the 2.5 and 4 m detector banks. The 4 m 

data has been offset by 5 units for clarity. The solid lines are fits to two gaussian peaks with the 

peak positions determined by the 2.5 m data. The blue line is a two gaussian fit to the 4 m data.

2.5 m data 4 m data

Free positions Free positions Fixed positions

xc\ (meV) 6.55 + 0.11 3.72 + 0.11 6.55 + 0

wi (meV) 2.92 + 0.31 1.23 + 0.29 7.62 + 2.49

Ai (mb/sr/U) 7.23 + 1.46 4.34 + 1.27 20.9 + 12.6

XC2 (meV) 8.25 + 0.17 8 . 2 1  + 0.26 8.25 + 0

W2 (meV) 7.26 + 0.22 7.01+0.53 8 . 6 8  + 1.70

A2 (mb/sr/U) 31.0+1.63 38.8 + 2.54 25.8 + 12.0

Table 7.2 Parameters obtained from the two gaussian fit to the 2.5 and 4 m data at T= 12 K.
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The temperature dependence of the scattering is shown in Figure 7.8. There is 

little change between 7.5 and 12 K, but as the transition temperature is 

approached the scattering reduces significantly and a quasielastic component 

begins to form. By the time the temperature reaches 20 K, the scattering is flat 

and the quasielastic scattering reaches its maximum value. At 100 K, the shape of 

the scattering remains flat but the overall intensity is reduced.

Fits to the magnetic data have been made at each temperature using a combination 

of a linear term and either two or three gaussian peaks. The peak positions were 

fitted simultaneously between all of the data sets, but the widths and intensities 

were allowed to vary freely for each data set. An example of each fitting 

technique is shown in Figures 7.9 and 7.10 for the T  = 7.5 K data.

The parameters obtained from these fits are shown in Tables 7.3 and 7.4. It can 

be seen that the data at T  = 20 and 100 K could be fitted by a linear term only. 

The linear terms change smoothly between 7.5 and 20 K, becoming steeper and 

more intense as the temperature is raised. In contrast, the gaussian peaks decrease 

in intensity whilst their widths do not change significantly.
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Figure 7.8 Magnetic scattering from UCu2Sn at various temperatures, using an incident energy 

of 23 meV. Note that each temperature has been offset by 2.5 units for clarity. The fits are to 

two (blue line) and three (red line) gaussians on top of a linear background -  the positions 

of the gaussians are the same for each fit but the widths and areas are allowed to vary.
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Figure 7.9 Example of the two gaussian fitting with a linear background term.

T( K) 7.5 12 16 2 0 1 0 0

m -0.03 ± 0.01 -0.05 ±0.01 -0.16 ± 0 .0 1 -0 .2 0  ± 0 .0 1 -0 .1 1  ± 0 .0 1

c 2.79 + 0.13 3.24 ± 0.24 5.33 ±0.15 5.81 ±0.07 4.21 ± 0.07

Wi
(meV) 3.13 + 0.25 3.51 ±0.24 3.08 ±0.38 - -

A,
(mb/sr/U) 14.14 ±3.21 13.94 ±2.59 4.86 ± 1.02 - -

w2
(meV) 6.06 + 0.25 6.79 ± 0.24 6.16 ±0.38 - -

a 2
(mb/sr/U) 20.64 + 3.43 19.55 ±4.77 5.97 ± 1.52 - -

Table 7.3 Parameters obtained from the linear plus two gaussian fit to the 23 meV data. 

The peak positions were found to be (6.62 ± 0.05) and (9.81 ± 0.55) meV.
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Figure 7.10 Example of the three gaussian fitting with a linear background term.

T (K) 7.5 12 16 2 0 1 0 0

m -0.03+0.01 -0.05 + 0.01 -0.16 + 0 .0 1 -0 .2 0  ± 0 .0 1 -0 .1 1  ± 0 .0 1

c 2.79 + 0.13 3.44 + 0.16 5.32 ±0.14 5.81 ±0.07 4.21 ±0.07

w
(meV) 3.29 ± 0.09 3.61 ±0.18 3.37 ± 0.36 - -

Ai
(mb/sr/U) 20.76 + 0.57 10.46 + 0.40 3.74 ± 0.39 - -

a 2
(mb/sr/U) 19.14± 1.11 8.94 + 0.49 2.31 ±0.63 - -

A3
(mb/sr/U) 6.89 + 0.82 2.96 + 0.40 1.09 ±0.56 - -

Table 7.4 Parameters obtained from the linear plus three gaussian fit to the 23 meV data. 

The peak positions were found to be (6.73 ± 0.05), (10.40 ± 0.14) and (14.30 ± 0.26) meV.
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Our experimental results may be compared with the predictions of the CEF 

models of Suzuki et al. According to the first (CEFi) model, in the paramagnetic 

phase we should expect neutron induced transitions at 3.4, 4.8, 8 8  and 101 meV 

from the ground state, and also transitions at 3.3 meV from the T\ excited state at

1.5 meV (17.5 K) when this is thermally occupied. However, in our data for 16 K 

and 20 K, we see no distinct peaks between 2 and 15 meV.

According to the second (CEF2 ) model, in the paramagnetic phase we should 

expect neutron induced transitions at 9.4, 28.6, 35.8, 50.4 and 75.9 meV from the 

ground state, and also transitions at 41.0 and 66.5 meV from the T 1 excited state at

1.5 meV (109 K) when this is thermally occupied. The level at 9.4 meV is 

consistent with our data, although we would expect the scattering from such a 

transition to be symmetric and less broad.

The wavefunctions and eigenvalues of the CEF levels will be modified in the 

ordered phase below TQ = 16.5 K. In particular, the degeneracy of the proposed

Fs ground state doublet will be removed. The splitting will be of the order of 

kBTQ (i.e. around 1.4 meV), so it is possible for there to be two or more

excitations in the low energy spectra. However, the energy scale of the 

excitations we have found below TQ is almost double that of the lower transition

energies predicted by the CEFi model. Thus, from the inelastic neutron data, the 

CEF2  level scheme seems to provide a better description.
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7.4 Calculations

7.4.1 Suzuki et al. param eters

Using the CEF2 Stevens parameters obtained by Suzuki et al., a set of eigenvalues 

and eigenvectors have been calculated and used to calculate the susceptibility, 

magnetisation and specific heat. In Figures 7.11 to 7.15, the black, red and blue 

lines refer to the z-, x-, and y-axis respectively.

0.10

0 .08 -

P 0 .06 -

0 .04 -N5

0 .0 2 -

0.00
0 50 100 150 200 250 300

Temperature (K)

Figure 7.11 Susceptibility of UCu2Sn calculated using the Suzuki et al. parameters.
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Figure 7.12 Inverse susceptibility of UCu2Sn calculated using the Suzuki et al. parameters.
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Figure 7.13 Magnetisation of UCu2Sn calculated using 

the Stevens parameters obtained by Suzuki et al.
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Figure 7.14 Specific heat and entropy of UCu2Sn calculated using 

the Stevens parameters obtained by Suzuki et al.
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7.4.2 FOCUS parameters

Using the equations derived in Section 1.4.1 and inserting the Curie-Weiss 

temperatures obtained from high-temperature susceptibility measurements 

( 6a = -53 K and 6C = -118 K), we obtain a value of B% = -0.121 meV. Using the

ISIS program FOCUS to fit the inelastic neutron data, whilst keeping the 

parameter fixed at this value, the fits shown in Figure 7.15 are produced. The 

Stevens parameters corresponding to this fit are listed in the figure.
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Figure 7.15 Calculations of the inverse susceptibility and magnetisation 

using the Stevens parameters obtained from the FOCUS fit.
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7.5 Conclusions

Although the energy scale and details of the CEFi level scheme deduced by 

Suzuki et al. is not in accord with our measurements, the proposed T5 ground state 

with a first excited T 1 state has much to commend it. Firstly, this ground state has 

the correct symmetry for the c66 elastic constant softening. Secondly, its charge

density is pancake-like, and predominantly in the basal plane, whereas the charge 

density of the T1 state is predominantly along the c-axis. Thus, at temperatures 

when the excited Ti state has a significant thermal population, we anticipate a 

relatively strong hybridisation between U ions with these orbitals and the Cu and 

Sn ligands.

As the temperature is reduced and this excited state becomes depopulated, the U 

ions will consequently become much more localised. This mechanism may well 

explain the rapid temperature dependence of the inelastic scattering that we have 

observed, which is much faster than expected simply from the temperature factor 

due to thermal population of the CEF levels.

There is certainly not a straightforward CEF interpretation for the observed 

behaviour. Recently, a similar type of scattering was seen in the heavy fermion 

skutterudite compound, CeRiuSbn. D. T. Adroja et al. observed broad, 

asymmetric magnetic scattering centred at 30 meV. They have interpreted their 

data in terms of an energy gap due to the hybridisation of localised/electrons and 

conduction bands. Similar hybridisation effects may have a part to play in the 

UCu2 Sn as well.
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CHAPTER 8

U3Pd20Si6

8.1 L iterature Review

Recent systematic bulk measurements were performed on the R3Pd2oSi6 series of 

ternary intermetallic compounds, which revealed magnetic ordering at low 

temperatures. The magnetic properties of these compounds are understood to 

arise from the competition between the RKKY interaction and CEF effects. 

Among these compounds, Ce3Pd2oSi6 attracted much attention due to successive 

quadrupolar ( TQ = 1.2 K) and antiferromagnetic (TQ = 0.7 K) phase transitions.

More recently, Tateiwa et al. undertook a search for new ternary actinide systems 

U3T20X6 (T = Pd, Pt or Ni, X = Si or Ge). They discovered1,2 the compound 

U3Pd2oSi6 which is isostructural with the R3Pd2oSi6 series, i.e. an ordered 

derivative of the Cr23C6-type cubic structure (space group Fm3m). The uranium 

atoms occupy two inequivalent crystallographic sites, 4a and 8c, which have 

cubic Oh and Td point symmetries respectively.

Figure 8.1 (a) The unit cell of U3Pd2oSi6 showing all atoms (U in blue, Pd in yellow and Si in red), 

(b) The uranium unit cell showing the different sites (4a in dark blue and 8c in light blue).
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They performed measurements of the transport, thermal and magnetic properties 

on single crystals of U3Pd2oSi6, grown in a tri-arc furnace by the Czochralski 

pulling method under an Ar gas atmosphere. The resistivity was found to 

decrease down to 50 K, below which two anomalies are observed at 19 K and 2 K. 

The two transitions are also observed in the specific heat, with the peak at 19 K 

being of the 2-type and that at 2 K having a maximum around 2 K and extending 

to 5 K. The magnetic entropy, obtained by subtracting the specific heat of 

La3Pd2oSi6, reaches a value at 19 K which is close to R\n3.
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Figure 8.2 Transport, thermal and magnetic measurements of U3Pd2oSi6 showing 

the 19 K and 2 K transitions in (a) specific heat, (b) magnetic entropy,

(c) resistivity and (d) inverse susceptibility (Tateiwa et al.)
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At high temperatures from 50 K to 300 K, the magnetic susceptibility is isotropic 

and obeys the Curie-Weiss law with an effective moment (ieff -  3.30//S/U  and

Curie-Weiss temperature 6 = -30 K. A weak anomaly at 19 K in the inverse 

magnetic susceptibility indicated that it is due to antiferromagnetic ordering.

The magnetisation was found to diverge below 4 K in low magnetic fields, 

indicating that the 2 K anomaly is due to ferromagnetic ordering. The 

magnetisation is almost isotropic at all temperatures and varies linearly with 

applied field in the paramagnetic state. Below 19 K, however, a deviation from 

this linear relation suggests that a ferromagnetic component exists in the 

antiferromagnetic state. At 1.8 K, the magnetisation increases rapidly with a 

spontaneous magnetic moment of around 0.5 fiB / U .

The microscopic magnetic properties of U3Pd2oSi6  were investigated3 by 29Si 

NMR. They found that the large, strongly T-dependent relaxation rate of the 

5f  moments indicated that the single-site dynamics due to hybridisation between 

the 5f  and conduction electrons dominates the low energy spin dynamics in the 

paramagnetic state.

The field dependence of the heat capacity confirms that the 19 K and 2 K 

transitions are associated with antiferromagnetic and ferromagnetic order, 

respectively, since an external field shifts the two anomalies to lower and higher 

temperatures, respectively4. Furthermore, powder neutron scattering has shown5 

that type-II antiferromagnetic ordering occurs on the 8c sites at 19 K, with an 

ordered moment of 1.73 f iB /U  at 7 K.
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8.2 Experimental Procedure

Susceptibility and magnetisation measurements were made on a 0.105 g fragment 

taken from the same polycrystalline button which was used in the HET 

experiment described below. The susceptibility data was taken cooling from 

300 to 1.8 K in applied fields of 0.1 and 1 T. The magnetisation data was taken 

from 0 to 2.4 T at temperatures of 1.8 and 3 K.

Before the main HET experiment, a white beam vanadium run was made to allow 

for the subsequent normalisation process. The 20.32 g polycrystalline button was 

then crushed to minimise crystallites and placed into an aluminium sachet. Initial 

measurements at 14 K were made using incident energies of 23, 60 and 200 meV, 

and these were followed by temperature dependence measurements using 23 and 

60 meV neutrons. Finally, a search for intermultiplet transitions was made using 

an 800 meV incident energy.

Run number Incident 
Energy (meV)

Chopper 
Speed (Hz)

Sample 
Temp (K) Total pAhr

11128 White beam vanadium 300 595
11136 23 150 6.5 1100
11132 23 150 14 1200
11140 23 150 25 600
11144 23 150 80 600
11142 23 150 150 781
11135 60 150 6.5 1100
11131 60 150 15 1100
11134 60 150 24 592
11139 60 150 25 600
11143 60 150 80 1400
11141 60 150 150 1800
11133 200 250 14 575
11137 800 600 6.5 325
11145 800 600 80 2183

Table 8.1 Summary of the scans performed during the HET experiment on U3Pd2oSi6-
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8.3 Results & Discussion

8.3.1 SQUID results

The susceptibility measurements are shown in Figure 8.3 as a plot of inverse 

susceptibility against temperature. The high temperature data is almost linear, 

indicating that U3Pd2oSi6 exhibits Curie-Weiss behaviour. Fitting to the Curie- 

Weiss law between 50 and 300 K gives a Curie temperature of 6 -  -29.8 K and 

an effective magnetic moment of j ieff — 332 jub in agreement with Tateiwa et al. 

(Note that four spurious points in the 0.1 T data were not included in the fit).

The inset of Figure 8.3 shows the low temperature part of the inverse 

susceptibility. A slight anomaly can be seen around 19 K which indicates the 

upper transition temperature, TN. The susceptibility for the different applied 

fields begins to diverge below about 8 K.
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Figure 8.3 The inverse susceptibility of U3Pd2oSi6 measured in fields of 0.1 and 1 T. 

Inset: the low temperature part showing the transition at TN= 19 K.
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Figure 8.4 The magnetisation of U3Pd2oSi6 measured at temperatures of 1.8 and 3 K.

8.3.2 HET results

Since a non-magnetic reference compound, such as Th3Pd2oSi6, was not available 

the phonon contribution to the scattering has been estimated by reducing the high 

angle bank data by a constant factor of 4.5. This results in an underestimation of 

the phonon background, as shown by the energy gain side of the data.

Using an incident energy of 200 meV, the scattering above 50 meV is weak and is 

essentially flat. Below this however, there appears to be a shoulder of magnetic 

scattering between 20 and 40 meV. This can be seen more clearly in Figure 8.5 

which is the data obtained using 60 meV neutrons. In fact it can be seen that the 

magnetic scattering starts to increase just below 10 meV and three distinct 

excitations are visible at energy transfers of around 14, 24 and 32 meV. 

Subtraction of the phonon background to leave just the magnetic scattering results 

in a ‘smearing out’ of the 14 meV peak.

132



In
te

ns
ity

 
31 

In
te

ns
ity

12

U3P d » S i 6

E = 60 meV
1

• T = 6.5 K
9

6

3

0

-20 -10 0 40 5010 20 30

Energy Transfer (meV)

gure 8.5 The total scattering from U3Pd2oSi6 (symbols) and the phonon contribution 

obtained by the scaling method (line) using £, = 60 meV neutrons at T = 6.5 K.
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Figure 8.6 The resulting magnetic scattering from U3Pd2oSi6 after phonon subtraction. 

The red and blue lines are three and four gaussian fits to the data, respectively.
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Fits to the magnetic scattering below 50 meV have been made using gaussian 

functions. Fitting with only three gaussians does not provide a satisfactory fit to 

the excitation around 32 meV. A fourth gaussian is required to account for the 

high energy tail of the scattering, enabling a narrower gaussian to describe the 

main part of the excitation (Figure 8.6).

The four peaks have been designated as A, B, C and D as shown in Figure 8.7. 

This analysis was repeated on all five temperature data sets simultaneously, whilst 

keeping the positions of peaks B, C and D fixed between all of the temperature 

data sets. The results of these fits are shown in Table 8.2. The parameters evolve 

reasonably smoothly with temperature with a general increase in the integrated 

intensity caused by the increase in peak width. The shift of peak A to lower 

energies is due to the increase in quasielastic scattering.

12
▲

D E. = 60 meV

- .: _

0
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Energy Transfer (meV)

Figure 8.7 The magnetic scattering from U3Pd2oSi6 at various temperatures. 

The lines are simultaneous fits to the data above the dotted line.
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T (K) Parameter Peak A Peak B Peak C PeakD

E (meV) 14.27 ±0.19 23.87 ± 0.05 31.58 ±0.05 36.5 ±0

6.5 w (meV) 6.72 ± 0.42 5.97 ±0.16 3.75 ± 0 6.72 ± 0.62

A (mb/sr/U) 11.64 + 0.78 27.18 ±0.74 10.27 ± 0.36 7.65 ± 0.84

E (meV) 13.71+0.23 23.87 ± 0.05 31.58 ±0.05 36.5 ± 0

14 w (meV) 9.77 ± 0.77 5.54 ±0.22 4.42 ± 0.21 7.11 ±0.96

A (mb/sr/U) 21.01 + 1.58 23.43 ±1.26 14.13 ±0.67 5.97 ±0.91

E (meV) 13.37 ±0.18 23.87 ± 0.05 31.58 ±0.05 36.5 ± 0

25 w (meV) 8.85 ± 0.57 5.68 ± 0.24 4.13 ±0.16 7.20 ±1.23

A (mb/sr/U) 20.13 ±1.25 20.92 ± 1.02 14.62 ± 0.60 4.66 ±0.93

E (meV) 11.16 ±0.36 23.87 ± 0.05 31.58 ±0.05 36.5 ± 0

80 w (meV) 11.25 ±1.31 6.51 ±0.38 5.13 ±0.38 9.57 ±1.81

A (mb/sr/U) 28.14 ±3.42 20.37 ± 1.72 10.37 ± 0.99 6.50 ±1.51

E (meV) 10.75 ± 0 23.87 ± 0.05 31.58 ±0.05 36.5 ± 0

150 w (meV) 11.61 ±1.02 7.81 ±0.52 5.5 ± 0 13.61 ±3.41

A (mb/sr/U) 31.06 ±4.05 18.93 ± 1.79 6.02 ± 0.72 9.82 ±4.25

Table 8.2 Summary of the parameters obtained from the four gaussian fit to 

the magnetic data at various different temperatures.

The data obtained using neutrons with an incident energy of 23 meV at T  = 6.5 K 

is shown in Figure 8 .8 a. The weak scattering of peak A can be seen between 

9 and 17 meV. Below this, a sharp peak of much higher intensity is seen at 

around 3 meV. This peak is likely to be the result of a transition within the 

ground state itself, since it is at a very low energy transfer and since the matrix 

element of such a transition would be large.

The peak is present at T  = 14 K (although not as well defined) but not at T  = 25 K 

as shown in Figure 8 .8 b. Thus we can conclude that it must be the splitting of the 

ground state at the 8 c site which results in the peak at 3 meV.
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Figure 8.8 (a) The total scattering from U3Pd2oSi6 (symbols) and the phonon contribution 

obtained by the scaling method (line) using £, = 23 meV neutrons at T = 6.5 and 25 K.

(b) The resulting magnetic scattering from U3Pd2oSi6 after phonon subtraction.

136



8.4 Calculations

From the bulk measurements, it has been deduced that the uranium ions have a 

5/ 2  configuration. The crystal fields at both U sites are cubic so the /  = 4 

multiplet will be split into a T i singlet, a T3 doublet, a T4  triplet and a T5 triplet. 

From elastic constant measurements, the most likely ground state for both sites is 

the T5 level which means that there are possible transitions from T5- T 3 and IV  T4  

at each site. The four peaks fitted to the magnetic data can therefore be attributed 

to the two transitions at each U site.

Using the Lea, Leask and Wolf (LLW) parameters6  defined by:

B 0 = ™  and
F(4) F{6 )

The LLW diagram can be plotted (as shown in Figure 8.9). Note that the 

eigenvectors obtained in this cubic CEF do not depend on the choice of Stevens 

parameters. They are displayed in Table 8.3.

The peaks positions at 6.5 K are 14.27, 23.87, 31.58 and 36.5 meV. Using the 

LLW diagram to find x  positions for which the eigenvalue ratios match the ratios 

of the peak positions determined experimentally, a tentative CEF level scheme has 

been deduced. We can propose that the peaks at 14.27 and 36.5 K are related to 

the 4a sites and those at 23.87 and 31.58 K are related to the 8 c sites, if we 

assume that the larger magnetic moments on the 8 c sites will result in greater 

magnetic scattering.

If this is the case, we can obtain approximate x  parameters to match the ratios of 

2.73 (for the 4a sites) and 1.32 (for the 8 c sites). The overall energy of the level 

scheme can then be adjusted using the W  parameter to give levels at the measured 

values.
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Figure 8.9 The LLW diagram for 7 = 4 with W = 1.

T,) = 0.4564| + 4) -  0.7638| 0) + 0.4564| -  4)

T3a) = 0.5401| + 4) -  0.6455| 0) + 0.5401| -  4)

r 3 b ) =0-7071| + 2) + 0.7071| -  2)

r4a) = 0.3536|+3) + 0.9354|- 3}

r 4i,) = 0.3536| -  3) + 0.9354|+3)

r 4, ) = 0.7071| +4) + 0.0000| 0) -  0.7071| -  4}

r 5„) = 0.9354| + 3) -  0.3536| - 1)

r5t) = 0.9354| -  3) -  0.3536| + 1)

r5c) = 0.7071| + 2) -  0.7071| -  2}

Table 8.3 The CEF eigenvectors resulting from the splitting of the

7 = 4 multiplet in a cubic crystal field.

138



The obtained LLW and Stevens parameters (measured in meV) are:

x  ~  0.2 and W  ~ 0.5 => = 1.67 x 10' 3 and = 3.17 x Iff4, for the 4a sites

* = 0.7 and W = 0.75 => = 8.75 x 10' 3 and = 1.79 x 1 O'4, for the 8 c sites

The Jz transition matrix between the different eigenvectors is displayed below. 

Note the large value corresponding to the transition within the Ts ground state. 

This could well explain the intense peak seen at very low energy, assuming the 

ground state is Ts.

lr 3.) Ir 3») Ir 4<) Ir 4») K ) lr i> K ) Ir 5») Ir 5c)

lr 3«) 0 0 0 0 9.333 0 0 0 0

K ) 0 0 0 0 0 0 0 0 4.000

lr 4.) 0 0 0.250 0 0 0 1.750 0 0

Ir « ) 0 0 0 0.250 0 0 0 1.750 0

l1̂ ) 9.333 0 0 0 0 6.667 0 0 0

Ir i) 0 0 0 0 6.667 0 0 0 0

K ) 0 0 1.750 0 0 0 6.250 0 0

1^ ) 0 0 0 1.750 0 0 0 6.250 0

K ) 0 4.000 0 0 0 0 0 0 0

Table 8.4 The Jz transition matrix between the different eigenvectors.
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8.5 Conclusions

The magnetic scattering from polycrystalline U3 Pd2oSi6  has been investigated 

using inelastic neutron scattering. Three crystal field excitations have been found 

which suggests that this compound is a rare example of a uranium intermetallic 

with localised magnetic moments. The excitations are visible in the both the 

paramagnetic phase and the ordered phase. The positions and widths of these 

peaks do not change significantly with temperature, although the intensity of all of 

the peaks decreases with increasing temperature.

A very low energy peak at 3 meV has been observed below T = 25 K, which 

suggests that it is related to the transition at 7^ = 19 K. Thus, it is proposed that

this peak is due to the splitting of the ground state on the 8c sites. The subsequent 

transitions between these levels is likely to be large since the Jz matrix element 

couples strongly between the ground state T5 eigenvectors.

8.6 References

1 Tateiwa et al., J. Phys. Soc. Japan 69, 5 (2000) 1517
2 Tateiwa et al, Physica B 281 & 282 (2000) 254
3 Maruta et al, Physica B 281 & 282 (2000) 251
4 Michor et al., Physica B 284 -  288 (2000) 1303
5 Tateiwa et al, J. Phys. Soc. Japan 70, 6 (2001) 1853
6 K. R. Lea, M. G. M. Leask and W. P. Wolf, J. Phys. Chem. Solids 23 (1962) 1381

140



CHAPTER 9

Conclusions and Future Work

9.1 Overall conclusions

The rare-earth intermetallic, PrNiSn, is a prime example of a well localised 

magnetic system as proven by the occurrence of intense and well defined 

crystalline electric field excitations. The availability of this material in single 

crystal form has allowed the dispersion relations of these CEF excitations to be 

determined along the [0 0 Q] and [Q 0 0] symmetry directions.

The observed excitations agree extremely well with the CEF level scheme 

deduced from the inelastic scattering from a polycrystalline sample. The two 

excitations around 3.5 meV have previously been attributed to different modes of 

the same energy level. From the data presented in this thesis, we propose that the 

two excitations at 1.5 and 2.5 meV also originate from the same energy level. In 

this case they are taken to be different modes of the predicted energy level at 

2 meV. Another of the predicted energy levels, the level at 5.1 meV, has also 

been observed and measurements made on it.

The dispersion of the 3.5 meV mode has been reported previously and the new 

data we have obtained appears to be able to account for the four modes of this 

level which arise from the coupling of the four Pr ions in the unit cell. The 

dispersion relations we have determined for the 1.5 and 2.5 meV modes along 

[0 0 Q] are symmetric and commensurate with the reciprocal lattice. They appear 

to move in phase with each other, in contrast to the 3.5 meV modes along the 

same direction. The excitation around 5.1 meV does not appear to be dispersive, 

at least not along the [Q 0 0] direction where detailed measurements were made.
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Although the majority of uranium-based compounds show itinerant behaviour, 

examples of localised magnetism in such compounds can be found. Likely 

candidates may be revealed by their chemical, magnetic or transport properties. 

We have looked at three such compounds; UPdSn, UCu2 Sn and U 3Pd2oSi6 . In two 

cases, UPdSn and UsPd2oSi6 , we have observed clear excitations which exist in 

both the paramagnetic and ordered phases. We are therefore confident that the 

/  electrons in these compounds are well localised and that these excitations are 

due to transitions between crystal field split energy levels.

The temperature dependence of the UPdSn excitation is unusual in that, although 

there are gradient changes at the transitions temperatures, the overall changes in 

position and intensity of the excitation peak are smoothly varying. We note from 

recent pSR data that there may be an overlap of the two antiferromagnetic phases 

which may explain our results. The temperature dependence of the CEF peak and 

also of the quasielastic scattering can be explained by an energy level scheme 

which we have derived from comparison of the calculated ground state specific 

heat with the experimental value.

The three magnetic peaks seen in U3Pd2oSi6  may also be interpreted as CEF 

excitations, although the determination of a level scheme is made more difficult 

due to the existence of two inequivalent U sites. The different point symmetries 

of the 8c and 4a sites mean that each site gives rise to an individual level scheme. 

An attempt has nevertheless been made to determine a set of CEF parameters 

which would account for the scattering we observe. An intense peak at very low 

energy can be explained by considering the splitting of the ground state when the 

material orders. Transitions within the split ground state are predicted to have a 

large Jz component which would explain the intensity of the scattering.

The broad, asymmetric magnetic scattering from UCu2 Sn is unusual and the lack 

of distinct excitations means that it is not straightforward to interpret the system in 

terms of a CEF level scheme. The disappearance of this scattering above the 

ordering temperature suggests that other effects such as hybridisation between the 

/electrons and the delocalised ligand electrons must be taken into account.
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9.2 Future work

9.2.1 PrNiSn

The completion of our dispersion measurements along [0 0 Q] and [Q 0 0] is 

desirable, especially of the 2.5 meV mode along [Q 0 0] to determine its relation 

to the 1.5 meV mode in this direction. Measurements along other symmetry 

directions, especially along [0 Q 0], would be extremely interesting.

Since the dispersion appears to be relatively strong for the 3.5 meV mode, an 

experiment on the MAPS spectrometer at ISIS would allow wide regions of the 

dispersion to be surveyed. Measurements on a high quality single crystal of 

NdNiSn would also make an interesting experiment.

9.2.2 UPdSn

The energy level scheme we deduced to explain our temperature dependence 

results predicts transitions to occur at around 80 meV both in the paramagnetic 

phase and in the ordered phase. Our measurements have not allowed us to 

determine whether scatting corresponding to such a transition is present or not. 

Therefore higher energy measurements using 130 meV incident neutrons at both 

high and low temperatures would allow our predicted energy scheme to be 

scrutinised. Application of a magnetic field would be another experiment to test 

the proposed scheme since the eigenfunctions would be strongly affected by such 

a perturbation.
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9.2.3 UCu2Sn

The only measurements we performed in the paramagnetic phase were either at 

very high or very low energies. In order to test the level schemes proposed by 

Suzuki et al. measurements would need to be made in the paramagnetic phase 

using neutrons with an incident energies of perhaps 60 and 130 meV. It would 

then be possible to determine whether or not the transitions predicted to occur at 

28.6, 35.8, 50.4 and 75.9 meV actually exist. Single crystal studies of UCu2 Sn, 

perhaps on a triple-axis spectrometer such as V2, would allow an investigation of 

whether the broad scattering we have observed is actually comprised from 

individual peaks.

9.2.4 U3Pd2oSi6

The existence of two cubic U sites provides problems in determining which of the 

sites is responsible for the different energy peaks we have measured. A triple-axis 

experiment with measurements made at a number of temperatures above and 

below each of the two transition temperatures may allow such a distinction to be 

made. Crystal field schemes would then be able to be deduced for each site.

9.2.5 Localised U compounds

Searches should also continue to be made for localised uranium compounds, since 

they are able to provide us with information on / - /  interactions, as well as 

demonstrating the effects of hybridisation on localised magnetism. Experiments 

on such compounds will hopefully help with the formation of a ‘standard model’, 

such as that for the rare-earths, which would be able to explain magnetism in the 

actinides.
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