UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Experimental study of void space, permeability and elastic anisotropy in crustal rocks under ambient and hydrostatic pressure.

Benson, P.M.; (2004) Experimental study of void space, permeability and elastic anisotropy in crustal rocks under ambient and hydrostatic pressure. Doctoral thesis , University of London. Green open access

[thumbnail of U602465.pdf]
Preview
Text
U602465.pdf

Download (37MB) | Preview

Abstract

Anisotropy in the physical and transport properties of crustal rocks is a key influence on crustal evolution and energy resource management. Data from deep seismic soundings, borehole logging and laboratory measurement all show that the physical properties of the earth are anisotropic. Such anisotropy generally results from the superposition of fabric development during diagenesis and/or petrogenesis, and the application of anisotropic tectonic stresses. This leads to an aligned crack and pore fabric in crustal rocks that, in turn, leads to seismic velocity anisotropy and permeability anisotropy. This thesis describes an experimental study which aims to investigate the relationships between pressure, pore fabric geometry and seismic and permeability anisotropy under hydrostatic pressures from room pressure to ~4km depth equivalence within the Earth's crust. Firstly, pore fabric analyses of three representative crustal rock types is presented. These rock types represent a range of crack and pore fabrics. The average void space shape and orientation is determined 3-D using the methods of anisotropy of magnetic susceptibility and velocity anisotropy. Scanning electron microscopy and fluorescent-dye crack imaging techniques further aid in the void space characterisation. Secondly, the development and application of an apparatus capable of contemporaneously measuring elastic wave velocity, porosity and permeability at effective pressures of up to 100 MPa is described. Results are analysed in terms of applied effective pressure and the rock pore fabric type and orientation. Finally, the laboratory data are used to test models that attempt to predict geophysical parameters such as permeability and elastic wave velocity from microstructural attributes. This multi-facetted analysis allows a number of conclusions to be drawn, expanding the state-of-the-art in how the pore fabric microstructure of crustal rock is represented by the methods of elastic wave velocity and porosity, with reference to the hydrostatic confining pressure and hence the burial conditions of the rock.

Type: Thesis (Doctoral)
Title: Experimental study of void space, permeability and elastic anisotropy in crustal rocks under ambient and hydrostatic pressure.
Identifier: PQ ETD:602465
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Thesis digitised by Proquest
UCL classification: UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Earth Sciences
URI: https://discovery.ucl.ac.uk/id/eprint/1446540
Downloads since deposit
598Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item