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PhD THESIS

DETECTION AND DIAGNOSIS OF
DISTRIBUTED DISTURBANCES
IN CHEMICAL PROCESSES

Nina F. Thornhill

Abstract

This thesis has been submitted for the examination of PhD in the University of London.
Its subject is the detection and diagnosis of distributed disturbances in chemical
processes. A distributed disturbance affects many variables such as feed, product and
recycle flows, column temperature and product composition. It may upset just a single
unit for example a distillation column, it may be plant-wide if it affects a complete
production process or even site-wide if utilities such as the steam system are involved.
Disturbances have an impact on profitability because production and throughput may
have to back away from their maximum settings to accommodate process variability.

The research has used signal processing, spectral analysis and non-linear time series
analysis of measurements from routine process operations and has led to new
applications of these methods in chemical process diagnosis. In particular, the use of
principal component analysis on the power spectra of process measurements has given a
breakthrough in the analysis of non-steady processes because the spectra are invariant to
the lags and time delays that can make PCA unreliable in the time domain.

The thesis offers novel methods and theoretical insights to support the industrial activity
of detection and diagnosis of distributed disturbances. A key insight has been that non-
linearity in the time trends of plant measurements is greatest in those measurements
closest to the root cause because mechanical filtering by the plant makes the signals
more linear as the disturbance propagates away from the source. A non-linearity index
derived from process measurements can therefore locate the root cause of a disturbance.

A feature of the work has been its focus on industrial implementation. The methods are
demonstrated with data from real processes and care was taken to devise robust default
settings of parameters in the algorithms to facilitate their application in unseen plants. As
demonstrated in a case study, the outcomes of the work will significantly reduce the time
spent on analysis and focus attention towards root causes of faults so that maintenance
effort is directed effectively.
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Chapter 1. Introduction 1

1. INTRODUCTION

1.1 OVERVIEW

1.1.1 Overview of the research project

Motivation: The title of the project is “Detection and diagnosis of distributed disturbances in
chemical processes”. Disturbances to process operation are unwanted deviations in the process
variables such as temperature, pressure and flow rates that move the process away from its
optimum settings and thus degrade product quality or reduce output. The issue of the detection
and diagnosis of distributed or plant-wide disturbances has not received much attention
previously in the process control or process systems literature although it has been recognized as
a key issue facing the process industries (Qin, 1998; Desborough and Miller, 2002; Paulonis and
Cox, 2003).

A disturbed plant generally operates less profitably than one running steadily because production
and throughput may have to back away from their maximum settings to accommodate process
variability. (Martin ez. al, 1991; Shunta, 1995). Early detection and automated diagnosis will
mean more profitable operation of large-scale chemicals and petroleum products manufacture.

A distributed disturbance is one which appears in several places in a process plant. It may upset a
single unit such as a distillation column, it may be plant-wide if it affects a complete production
process or even site-wide if utilities such as the steam system are involved. Automated methods
are needed to detect a distributed disturbance. The challenge then is to trace the disturbance to its
root cause because maintenance actions are more cost-effective if a root cause has been correctly
identified. These tasks are the main objectives of the PhD.

The thesis addresses dynamic disturbances that persist over a time horizon of hours to days. A
common example is a plant-wide oscillation. It does not address abrupt faults such as compressor
trips leading to critical or abnormal situations which have been the focus of the Abnormal
Situations Management consortium and others (see below). Nor does it consider slowly
developing faults such as catalyst degradation or fouling of a heat exchanger. For these types of
faults methods such as multivariate statistical process control (Section 2.4.2) have proved
effective.

Research strategy and an example: The detection of distributed disturbances in process

measurements requires their characterization with a signature that is distinctive of the
disturbance. Examples of signatures are peaks in the power spectra or the pattern of zero

































































































































































































































































































































































































































































































































































































































































































































