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ABSTRACT

Osteoarthritis (OA) is a common group of disabling joint disorders for 

which there are limited pharmacological therapies to alter disease progression. 

Zoledronate, one of several bisphosphonates found to modulate joint changes 

in animal OA models, may have a disease-modifying role, and potential 

mechanisms of action include effects on cartilage and/or subchondral bone. In 

OA cartilage, loss of aggrecan, the main glycosaminoglycan-bearing 

proteoglycan, and degradation of type II collagen are major biochemical 

changes arising from imbalances in matrix synthesis and degradation. 

Zoledronate, in common with other bisphosphonates, is capable of inhibiting 

matrix metallo-proteinases, enzymes implicated in OA cartilage matrix 

catabolism, providing a biochemical basis for cartilage effects but it is not known 

whether direct effects occur at the cell/tissue level.

Studies described in this thesis have explored the hypothesis that 

zoledronate modifies cartilage metabolism to reduce cartilage 

glycosaminoglycan loss in OA. Short-term treatment effects on proteoglycan 

synthesis and degradation were examined in vitro in models of cartilage and 

chondrocyte metabolism, with IL-1a used to stimulate “OA-like” tissue 

glycosaminoglycan release.

Zoledronate lO^M adversely affected cell viability, proliferation and 

proteoglycan synthesis in bovine articular chondrocytes and, thus, was the 

upper limit of the concentration range investigated. No enhancing effects were 

observed with zoledronate 10'10M to lO^M on proteoglycan synthesis in bovine 

articular chondrocytes. No effects on glycosaminoglycan release were seen 

with zoledronate 10'10M to 10‘5M in bovine articular cartilage or with zoledronate 

10*8M to lO^M in alginate bead constructs containing bovine articular 

chondrocytes and matrix.

Thus, a direct effect on cartilage proteoglycan metabolism following 

short-term treatment does not appear to be a mechanism of action for 

zoledronate as a disease-modifying treatment in OA. However, preventative or 

delayed treatment effects remain unaddressed and other potential targets for

3



zoledronate in the OA joint include cartilage type II collagen metabolism and 

subchondral bone metabolism.
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ABBREVIATIONS AND CONVENTIONS

Conventions: International system (SI) units or units consistent with the 

recommendations of the International Committee for Weights and Measures are 

used throughout except that M is used to represent mol/l for expressing amount 

concentration.

List of abbreviations used in text:

ADAMTS ^  disintegrin and metalloproteinase with thrombospondin
motifs

ACL Anterior cruciate ligament
bFGF Basic fibroblast growth factor
BMD Bone mineral density
CDN Canadian
CILP Cartilage intermediary layer protein
COMP Cartilage oligomeric protein
CV Coefficient of variation
IC50 Concentration producing 50% inhibition
CTX-I C-telopeptide of type I collagen
CTX-II C-telopeptide of type II collagen
ECM Extracellular matrix
Exp Experiment
GAG Glycosaminoglycan
IGF-1 Insulin-like growth factor- 1

IGD Interglobular domain
MMP Matrix metalloproteinase
MT-MMP Membrane-type MMP
OA Osteoarthritis
rOA Radiographic OA
SD Standard deviation
srOA Symptomatic and radiographic OA
SYSADOA Symptomatic slow acting drugs for OA
TIMP Tissue inhibitor of metalloproteinase
TGF-p Transforming growth factor-p
UK United Kingdom
US United States
WOMAC Western Ontario and McMaster Universities
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Chapter 1. Introduction

This chapter is arranged in three parts. The first part focuses on defining 

osteoarthritis and the relevance of the condition. Next, changes to synovial 

joints that are seen during the OA disease process are considered, along with 

underlying pathogenic mechanisms. In particular, alterations to articular 

cartilage and subchondral bone are covered, setting the scene for investigating 

treatments that might modify the course of the condition by targeting the 

metabolic processes in these two tissues. The last part reviews studies relevant 

to the concept of zoledronate as a disease-modifying treatment for osteoarthritis 

and ends with the direction for investigation.

1.1 Osteoarthritis: what is it and how is it relevant?

Osteoarthritis, which is also known as degenerative joint disease and 

osteoarthrosis, is the commonest disorder to affect joints and a major cause for 

locomotor disability. Though a fair amount of attention has been directed 

towards understanding OA, defining OA precisely has been problematic.

1.1.1 Definitions

Several definitions for OA have been put forward. In 1986, the Subcommittee 

on Osteoarthritis of the American College of Rheumatology Diagnostic and 

Therapeutic Criteria Committee proposed the following:

“OA is defined as a heterogeneous group of conditions that lead to joint symptoms and 

signs which are associated with defective integrity of articular cartilage, in addition to 

related changes in the underlying bone and at the joint margins.” (Altman et al. 1986)

In that same year another definition was developed at a conference on the 

“Etiopathogenesis of Osteoarthritis” which summarised OA according to clinical, 

pathological, histological, biomechanical and biochemical characteristics:
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“OA is a degenerative disease of the cartilage of joints. It is of diverse etiology and 

obscure pathogenesis. Clinically, the disease is characterized by joint pain, tenderness, 

limitation of movement, crepitus, occasional effusion, and variable degrees of local 

inflammation, but without systemic effects. Pathologically, the disease is characterized by 

irregularly distributed loss of cartilage more frequently in areas of increased load, 

sclerosis of subchondral bone, subchondral cysts, marginal osteophytes, increased 

metaphyseal blood flow, and variable synovial inflammation. Histologically, the disease is 

characterized early by fragmentation of the cartilage surface, cloning of chondrocytes, 

vertical clefts in the cartilage, variable crystal deposition, remodelling, and eventual 

violation of the tidemark by blood vessels. It is also characterized by evidence of repair, 

particularly in osteophytes, and later by total loss of cartilage, sclerosis, and focal 

osteonecrosis of the subchondral bone. Biomechanically, the disease is characterized by 

alteration of the tensile, compressive, and shear properties and hydraulic permeability of 

the cartilage, increased water, and excessive swelling. These cartilage changes are 

accompanied by increased stiffness of the subchondral bone. Biochemically, the disease 

is characterized by reduction in the proteoglycan concentration, possible alterations in the 

size and aggregation of proteoglycans, alteration in collagen fibril size and weave, and 

increased synthesis and degradation of matrix macromolecules. Therapeutically, the 

disease is characterized by a lack of a specific healing agent” (Mankin et al. 1986).

More recently in 1995 a further definition arose out of a workshop entitled “New 

Horizons in Osteoarthritis”:

“Osteoarthritis is a group of overlapping distinct diseases, which may have different 

etiologies but with similar biologic, morphologic, and clinical outcomes. The disease 

processes not only affect the articular cartilage, but involve the entire joint, including the 

subchondral bone, ligaments, capsule, synovial membrane, and periarticular muscles. 

Ultimately, the articular cartilage degenerates with fibrillation, fissure, ulceration, and full

thickness loss of the joint surface OA diseases are a result of both mechanical and

biologic events that destabilize the normal coupling of degradation and synthesis of 

articular cartilage chondrocytes and extracellular matrix, and subchondral bone. Although 

they may be initiated by multiple factors, including genetic, developmental, metabolic, and 

traumatic, OA diseases involve all of the tissues of the diarthrodial joint. Ultimately, OA 

diseases are manifested by morphologic, biochemical, molecular, and biomechanical 

changes of both cells and matrix which lead to a softening, fibrillation, ulceration, loss of 

articular cartilage, sclerosis and eburnation of subchondral bone, osteophytes, and 

subchondral cysts. When clinically evident, OA diseases are characterized by joint pain,
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tenderness, limitation of movement, crepitus, occasional effusion, and variable degrees of 

inflammation without systemic effects.” (Kuettner and Goldberg 1995)

In terms of understanding OA, the strength of these definitions lies in their 

description of the pathological outcomes of the OA disease process. Clearly OA 

leads to articular cartilage loss, underlying bone changes and alterations to 

other joint tissues. However, it is evident from these definitions that the links 

from aetiology to pathology to clinical outcome remain poorly understood, and it 

is not clear how different joint tissues interact during disease pathogenesis. 

Furthermore, because OA is a heterogeneous group of disorders, it is apparent 

that an all-encompassing definition of OA will either be a non-specific one or a 

lengthy one, more representative of a description.

Several investigators have advocated classifying the condition into subtypes, for 

example according to (i) the localisation of disease (inter- as well as intra- 

articular) and the current balance of degradation and repair in the joint (Dieppe 

1995); or (ii) an initial division into idiopathic and secondary OA, and then sub­

classification of idiopathic OA according to site(s) of involvement and secondary 

OA by cause (Altman et al. 1986; Altman et al. 1990; Altman et al. 1991). The 

use of such classifications in research is likely to be a fruitful way of furthering 

understanding of OA. Investigation of subsets of OA may reveal distinct 

aetiological factors, pathogenic pathways, outcomes and responses to 

treatment (Dieppe 1995). Furthermore, because each subset should 

demonstrate more homogeneity than the collective group of OA conditions, the 

classification approach should allow clearer delineation of the path from 

aetiology to clinical outcome.

As more information becomes available about OA, and along with further 

analyses of the knowledge base, definitions will continue to evolve. Ultimately, 

in order to be clinically useful, a definition of OA should also provide insight into 

prognosis and likelihood of response to intervention.
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1.1.2 Risk factors for OA

OA aetiology is multi-factorial with often complex links to pathological change in 

the tissues of the joint. In a comprehensive review by Felson, OA risk factors 

are grouped into those that are systemic, intrinsic, or extrinsic to the joint 

(Table 1.1) (Felson 2003).

Table 1.1. Risk factors for OA. Adapted from (Felson 2003).

Systemic factors Intrinsic joint factors Extrinsic factors acting on 
joints

Ageing

Female gender 

Oestrogen deficiency in 

women

Genetic susceptibility 

Obesity

Nutritional factors 

Bone mineral density*

Joint site 

Previous damage 

Malalignment/ deformity 

Laxity/ instability 

Muscle weakness 

Proprioceptive deficiency

Obesity

Injurious activity

*The relationship between bone mineral density (BMD) and OA is complex; high BMD is associated with new onset OA 
but low BMD is associated with OA disease progression (Hart et al. 2002; Zhang et al. 2000)

In some cases a single over-riding risk factor can be identified, as in the case of 

anterior cruciate ligament instability and the development of knee OA (Sherman 

et al. 1988). More commonly there is interplay between risk factors such as the 

interaction of age and trauma: older age in subjects who sustain a knee injury 

with meniscal damage is associated with more rapid development of OA 

change (Roos et al. 1995). Complexity is additionally compounded by the fact 

that OA has a gradual onset during which several risk factors may act at 

different time periods. Furthermore the role played by a particular risk factor 

may vary according to the stage of the disease (Doherty 2001; Felson 2003) to 

the extent that, paradoxically, roles can be opposing at different times. In the 

case of bone mineral density (BMD) and OA, high BMD is associated with new 

onset OA whereas low BMD appears to be a risk factor for disease progression 

in patients that already have OA (Hart et al. 2002; Zhang et al. 2000).
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1.1.3 Public health relevance

The importance of OA worldwide is reflected by global burden of disease 

estimates from the World Health Organization which indicate that in 2002 the 

condition was the eighth leading cause of non-fatal disability, with a disease 

burden similar to that for schizophrenia or age-related vision disorders 

(Beaglehole et al. 2004). In the future disease burden is likely to increase for a 

number of reasons. Firstly, the projected increases in the population aged 65 

years and older (to approximately double by 2020 compared to 1990) (Murray 

and Lopez 1997) will lead to more cases of OA because of high disease 

prevalence in the elderly. Secondly, increasing rates of obesity, an important 

risk factor for developing OA, in societies such as the UK will elevate the 

disease burden. Furthermore, socio-economic drives to promote independence 

among older people will mean additional resources are needed in order to 

reduce the disability profile of OA.

1.1.3.1 Prevalence

OA has a predilection to target certain joints whilst sparing others. Commonly 

affected joints are the small joints of the hand (distal interphalangeal, proximal 

interphalangeal and the first carpometacarpal joints), the hip joint, the knee 

joint, the cervical spine and the lumbrosacral spine (Felson 2003). The basis for 

this distribution is not well understood, though it has been suggested that new 

biomechanical demands that have been placed on particular joints as humans 

have evolved are significant (Felson 2003). For example, full weight-bearing on 

the legs will have altered the load distribution through hip and knee joints which 

may predispose these joints to OA.

OA is an extremely common condition and is particularly prevalent for the hand 

and knee (Table 1.2). When interpreting reported OA prevalence rates it is 

important to bear in mind which method was used for case identification. 

Classically OA has been diagnosed by the presence of radiographic change, 

frequently according to the grading system described by Kellgren and Lawrence
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in 1957 which is based on the severity of joint space narrowing (as an indirect 

measure of cartilage loss) and various bony changes (subchondral and 

marginal) (Kellgren and Lawrence 1957). Other classification methods combine 

patient-reported pain and/or other clinical criteria with radiographic features to 

diagnose OA, such as those proposed by the American College of 

Rheumatology Subcommittee on Osteoarthritis for hip OA (Altman et al. 1991) 

and knee OA (Altman et al. 1986). Though radiographic evidence for OA is 

clearly associated with joint pain (Davis et al. 1992; Felson et al. 1997; 

Lethbridge-Cejku et al. 1995; Spector et al. 1993) there is also a lack of overlap 

in many cases (Creamer and Hochberg 1997) and symptoms can be absent in 

about 90% of subjects with radiographic hand OA (Lawrence et al. 1966; 

Lawrence et al. 1998; Zhang et al. 2003) and up to about half of patients with 

radiographic knee OA (Dillon et al. 2006; Du et al. 2005; Felson et al. 1987; 

Jordan et al. 2007; Lawrence et al. 1966). Thus it follows that, for each 

particular joint region, application of combined clinical/radiographic 

classifications to a population will find substantially lower prevalence rates than 

the use of a classification based solely on the radiographic features. 

Furthermore, relying on patient-reported pain within a purely clinical diagnosis 

will miss asymptomatic cases with radiographic OA.

Based on the presence of clinical symptoms and radiographic criteria for OA, 

knee OA affects about 10% of the adult or elderly population (Table 1.2). Hand 

OA is generally less prevalent though reported rates are quite variable, ranging 

from 1.7% for adult men (Lawrence et al. 1998) to 26.2% for elderly women 

(Zhang et al. 2002), and the hip is the least commonly affected joint of the three 

with prevalence rates of less than 1% (Lawrence et al. 1998). Other 

generalisations that are apparent are that OA is more common in the elderly
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Table 1.2. OA prevalence: estimated rates of hand OA, hip OA and knee OA for several countries

Joint
region

Study population
% prevalence

Reference
Radiographic OA with or 

without symptoms
Radiographic OA with 

symptoms
Country Age range 

(years)
Total Female Male Total Female Male

Hand US 25-74 29.5 30.1 28.9 2.4 2.9 1.7 (Lawrence et al. 1998)
US £40 69 31 (Wilder et al. 2006)
us 71-100 26.2 13.4 (Zhang et al. 2002)
UK £15 24.4 18.2 5.9 2 (Lawrence et al. 1966)
China £60 47 44.5 5.8 3 (Zhang et al. 2003)
Finland £30 44.8 (Haara et al. 2003)

Hip US 55-74 3.2 2.8 3.5 0.7 0.7 0.7 (Lawrence et al. 1998)
China 60-89 0.9 1.1 (Nevitt et al. 2002)
Denmark £60 4.4-5.3 (Jacobsen et al. 2004)

Knee US £45 16 8 (Jordan et al. 2007)
US £60 37.4 42.1 31.2 12.1 (Dillon et al. 2006)
US 63-94 33 34.4 30.9 9.5 11.4 6.8 (Felson et al. 1987)
UK £35 18.4 22.6 14.2 9.4 12.4 6.4 (Lawrence et al. 1966)
China £40 37.4 7.2 (Du et al. 2005)

US, United States; UK, Jnited Kingdom
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and, for the hand and knee, the condition more frequently affects women than 

men (Table 1.2).

1.1.3.2 Economic cost

Another way to consider public health relevance is according to the economic 

cost of OA. For individual patients, the direct cost of illness is the expenditure 

for medical care and the indirect cost arises from the impact of the illness on 

function, usually measured by wages lost but also can include implied losses 

from reduced home and leisure activities (Yelin 1998). The monetary cost felt by 

society is the total of these costs per disease case multiplied by the disease 

prevalence.

In a US community-based cohort, average direct costs over a one-year period 

for patients with a diagnosis of OA were found to be US$2 654.51 compared to 

US$1 387.83 in patients without arthritis after adjusting for age and sex (Gabriel 

et al. 1997). Another estimate of annual direct costs due to OA, through 

analysis of insurance claims, gave per patient costs of US$5 294 and US$5 704 

for OA patients aged <65 and > 65 years, respectively, and corresponding 

figures of US$2 467 and US$3 741 for age and sex matched controls (MacLean 

et al. 1998).

The total annual costs among Canadian individuals with disabling hip and knee 

OA were found to be US$9 882 per patient with indirect costs accounting for 

80% of the total (Gupta et al. 2005). For the US, total yearly costs for each case 

of OA have been estimated to range between US$13 000 to US$15 000 (Yelin 

2003). Again indirect costs were more significant, at around US$12 000.

In terms of regional population costs, a French study found evidence for the 

increasing impact of OA in financial terms (Le Pen et al. 2005). Direct medical 

costs attributable to OA in 2002 exceeded 1.6 billion Euros (US$1.4 billion), 

making up 1.7% of the French health insurance system expense, and
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represented a 156% increase compared to costs in 1993 (though adjustments 

for the effects of inflation were not specified in the study methodology). The 

increment was chiefly ascribed to 54% more OA patients with costs per OA 

patient only increasing at 2.5% per year.

An estimate of the total costs of OA for the US population has been derived 

from the analysis of the data from four studies published between 1984 and 

1997 after adjusting amounts to 1999 US dollars (Yelin 2003). Based on the 

assumption that the population prevalence of OA was 4.2% for males and 9% 

for females, total costs for OA were calculated at US$178.9 billion.

Costs bearable by society are also significant in the UK. Data from studies 

commissioned by the Arthritis Research Campaign indicate that in Great Britain 

36 million working days were lost because of OA in 1999-2000 representing 

£3.2 billion (US$2 billion) lost production (Arthritis Research Campaign 2002). 

Further more, OA accounted for 3 million GP consultations in 2000 and 114,628 

hospital admissions in 1999-2000.

Overall the economic impact of OA on society appears to be substantial, 

whether per patient or for whole populations, with indirect costs being more 

significant than direct costs.

1.1.4 Clinical relevance

The primary clinical manifestations of OA are confined to the musculoskeletal 

system and, reflecting the heterogeneity of OA aetiology and pathogenesis, 

these features vary from case to case. Generally the clinical features are slow 

to evolve, lack an inflammatory aspect and usually only involve one or a few 

joints (although polyarticular OA is also common) (O'Reilly and Doherty 2003). 

The patient’s perspective of OA can be considered in terms of problematic 

symptoms and functional disturbance.
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Symptoms

The main symptoms that OA patients experience are pain and stiffness, with 

deformity being another complaint. The pain is usually aching in nature, related 

to joint use and alleviated by rest (O'Reilly and Doherty 2003). With progressive 

disease, the pain may become persistent, occurring at rest and at night. For 

individual patients, the overall perception of pain from OA joints is influenced by 

non-physical factors and studies of patients with knee or hip OA have found 

significant associations between measures of depressive and anxiety states 

and pain (Salaffi et al. 1991; Summers et al. 1988). Additionally, social 

circumstances and coping strategies are considered to be important 

determinants for pain (Creamer 2004; Hadler 2003).

As a symptom, “stiffness” of a joint can vary in meaning between patients, being 

used to describe difficulty or pain with joint movement. Early morning stiffness is 

generally short-lived compared to the prolonged stiffness that characterises 

inflammatory arthritis. Many OA patients complain of stiffness or “gelling” of 

joints after a period of inactivity to describe a transient difficulty in initiating 

movement of their affected joints.

How pathological changes to the joint structure in OA can lead to the pain 

experienced by the patient is not clear. As noted above, joint pain and 

radiographic evidence for OA are often discordant (Table 1.2). However, there 

is clearly an association between OA structural change seen on the X-ray and 

joint pain (Davis et al. 1992; Felson et al. 1997; Lethbridge-Cejku et al. 1995; 

Spector et al. 1993) and this relationship is more commonly observed in 

patients with a longer history and more persistent symptoms (Duncan et al. 

2007).

No single specific articular source for pain in OA has been shown, though joint 

line tenderness elicited on clinical examination suggests a capsular or 

intracapsular origin (O'Reilly and Doherty 2003). Furthermore, transient 

abolishment of pain has been achieved in 60% of patients following an intra-
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articular injection of local anaesthetic into their OA knees (Creamer et al. 1996) 

and clear improvements in pain are seen after replacement of the diseased joint 

for knee or hip OA (Bachmeier et al. 2001; Escobar et al. 2007; Kirwan and 

Silman 1987).

Bone and surrounding periosteum, which are richly innervated with sensory 

nerve fibres (Mach et al. 2002), may be particular sources for pain. A cross- 

sectional observational study of patients with radiographic knee OA found that 

bone marrow lesions, seen on magnetic resonance imaging and thought to 

represent oedema, were more prevalent in subjects with knee pain (77.5%) 

compared to those with no knee pain (30%) (Felson et al. 2001). Because 

cartilage is aneural, it cannot be the originator for nociception, but an indirect 

role is suggested by the finding that chondral defects scored on MRI imaging 

were associated with knee pain in a dose dependent fashion (Zhai et al. 2007). 

Potentially, pain may arise from other joint tissues that are innervated such as 

synovium, capsule or soft tissue. Mechanisms beyond specific joint tissues may 

be also important and it has been proposed that alterations to peripheral and 

central nociceptive pathways in OA subjects increase the sensitivity of the joint 

to usually non-noxious stimuli (e.g. standing and walking), thereby contributing 

to the experience of pain (Kidd 2003).

Other clinical features of OA are more readily explained by structural change. 

Deformity and instability can arise from cartilage loss, bony deformity (through 

subchondral bone remodelling and osteophyte formation), ligament damage or 

laxity and muscle weakness. Reduced range of movement in a joint principally 

results from bone deformity and capsular thickening and is accentuated by 

effusion and soft tissue swelling (O'Reilly and Doherty 2003).

Functional impairment

Disabilities arising from OA include impaired mobility, problems with the 

activities of daily living, other restrictions in usual physical function and social 

difficulties such as lost work opportunities. Restrictions in mobility appear to
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have particularly significant implications for the elderly, as illustrated by the 

finding in a Swedish cohort that walking speed at age 70 years predicted 

independence at age 76 (Sonn 1996). The mechanism for disability in OA is not 

always clear but painful joints, muscle weakness and reduced range of joint 

movement have been considered as contributors (O'Reilly and Doherty 2003). 

Other extra-articular factors also appear important in determining disability 

outcomes. For individuals with knee OA, age and body mass index were the 

non-local factors that were found to increase the risk of a poor functional 

outcome whereas mental health, self-efficacy, social support and aerobic 

exercise protected against disability (Sharma et al. 2003).

1.1.5 Management and disease modification

Because the clinical manifestations of OA have a heterogeneous and 

multifactorial nature, the management of patients with OA requires tailoring for 

the individual according to local joint features and, in addition, psycho-social 

factors. The aims of management are to educate the patient, control pain, 

optimise function, reduce handicap and beneficially modify the OA process 

(Brandt et al. 2003b).

The American College of Rheumatology, the European League Against 

Rheumatism and the National Institute of Clinical Excellence (UK) have 

published guidelines covering the management of hand, hip or knee OA which 

have recommended therapies based on the analyses of published evidence 

combined with expert opinion (2000; Jordan et al. 2003; National Collaborating 

Centre for Chronic Conditions 2008; Pendleton et al. 2000; Zhang et al. 2005; 

Zhang et al. 2007). Interventions that were identified as being beneficial for 

improving symptoms or functional outcome included non-pharmacological 

treatments (e.g. education, exercise, appliances and weight reduction), oral and 

topical analgesics, symptomatic slow acting drugs for OA (SYSADOA; e.g. 

glucosamine sulphate, chondroitin sulphate, diacerhein, avocado soybean
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unsaponifiable and hyaluronic acid), intra-articular steroids and surgery (e.g. 

osteotomy and joint replacement).

Recently, attention has been directed towards the concept of structure- or 

disease-modifying drug treatments that might be able to slow the progression of 

OA and/or promote reparative processes (Abramson et al. 2006; Altman 2005; 

Sun et al. 2007). Findings from clinical trials have suggested disease modifying 

properties for doxycycline (Brandt et al. 2005), diacerhein (Dougados et al.

2001) and glucosamine sulphate (Bruyere et al. 2004; Pavelka et al. 2002; 

Reginster et al. 2001). In addition, there is some evidence for OA disease 

modification with intra-articular hyaluronic acid therapy (Goldberg and 

Buckwalter 2005). Proposed mechanisms of action vary between these agents 

and include effects on cartilage that may reduce matrix degradation or promote 

tissue repair (Table 1.3). However, despite the promising findings for these 

agents, drug treatments with indications for altering the OA disease process 

have yet to become established in clinical management guidelines and, 

currently, this overall approach remains largely conceptual.

Table 1.3. Possible OA disease-modifying agents and their mechanisms of action.

Possible OA disease- 
modifying agent

Possible mechanisms of action References

Doxycycline Inhibition of collagenase-mediated 
degradation of cartilage collagen

(Smith, Jr. et al. 1996; Yu, Jr. 
et al. 1991)

Diacerhein Inhibition of IL-1 or MMP-mediated 
cartilage degradation

(Boittin et al. 1993; Martel- 
Pelletier et al. 1998; Moore et 
al. 1998)

Glucosamine sulphate Stimulation of cartilage proteoglycan 
synthesis or inhibition of 
aggrecanase-mediated degradation 
of cartilage aggrecan

(Bassleer et al. 1998; Sandy 
et al. 1998)

Hyaluronic acid Viscosupplementation of synovial 
fluid, promotion of cartilage repair, or 
inhibition of cartilage degradation

Reviewed in (Goldberg and 
Buckwalter 2005)
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1.2 Osteoarthritis pathogenesis: targets for disease modification

Delineation of OA pathogenic pathways will aid identification of targets for 

disease modification. In the following sections, a conceptual framework for 

considering OA aetio-pathogenesis is described before turning to compositional 

and structural changes that affect articular cartilage and subchondral bone, two 

tissues that undergo characteristic changes in OA. In particular, the 

mechanisms driving these changes are explored, and considered as potential 

targets for modifying the OA disease process. Throughout these sections, a 

recurring theme is the intimate relationship between composition, structure and 

physical function.

1.2.1 The synovial joint: composition and function

The synovial joint is the commonest type of articulation in the human body and, 

like any joint, forms a junction between two or more bones of the skeleton. As 

integral parts of the musculoskeletal system, synovial joints participate in 

providing stable support structures that are able to distribute load and allow 

purposeful movement of different parts of the body relative to each other. Seven 

tissues make up synovial joints: articular cartilage, subchondral bone, 

synovium, synovial fluid, fibrous capsule/ ligament, tendon and muscle (Fig.

1.1). Each tissue has individual properties and together they complement each 

other to fulfil joint function.

1.2.2 OA pathogenesis: a dynamic process involving the whole joint

Views of OA pathogenesis have evolved. Previously OA has been seen as a 

passive degenerative “wear and tear” process leading to articular cartilage loss 

and subchondral bone change. More recent concepts recognise that OA is a 

process involving the entire joint during which important interactions occur 

between the different joint tissues (Brandt et al. 2003a), though there are 

competing theories as to which joint tissue change is of primary importance 

(Brandt et al. 2006).
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Muscle Bursa
Capsule

Synovium

Tendon

Subchondral bone Synovial cavity 
filled with 
synovial fluid

Articular cartilage

Fig. 1.1. Schematic representation of a synovial joint.

Articular cartilage: thin firm visco-elastic layer of connective tissue that 
forms a smooth articulating surface covering the articulating ends of bones. 
Subchondral bone: cortical and cancellous bone layer that physically 
protects and supports the overlying cartilage.
Synovium: thin non-adherent soft connective tissue layer lining the cavity 
not covered by cartilage that secretes hyaluronan, a large molecular weight 
carbohydrate, into the joint cavity.
Synovial fluid: Hyaluronan-rich fluid filling the synovial cavity that acts as 
a lubricant for cartilage surfaces.
Capsule: basket work of strong dense connective tissue (ligament and 
tendon) around a joint that provides stability to the structure. Ligaments 
also hold bones together and restrain movement in particular directions. 
Tendons also connect muscles to bone.
Muscles: force-generating tissue attaching to bone via a tendon that is 
responsible for producing movement of joint structures relative to one 
another. They and also assists in providing stability.
Bursa: structure lined with synovium and filled with synovial fluid that 
facilitates movement between different tissue planes.
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Furthermore, the development of OA is viewed to involve metabolically- 

mediated tissue destruction, repair and remodelling (Brandt et al. 2003a).

A conceptual framework for considering OA aetio-pathogenesis is shown in 

Fig. 1.2. The way that each joint tissue responds to one or more risk factors 

depends on the prevailing joint constitution. This response, called the OA 

process can include acute and destructive structural changes caused by 

physical forces sustained by the joint, such as fibrillation of cartilage (Pritzker

2003) and microcracking or microfracture of subchondral bone (Burr 2003). 

Alternatively, joint tissues can respond with altered metabolism, and in cartilage 

catabolic events at the molecular level appear to be particularly important for 

tissue degradation in the early stages of the OA process (Sandy 2003). On the 

other hand remodelling and attempts at repair are also seen.

Risk factors

act on

V
may
modify*

Synovial joint

OA
process modifies

V
Altered joint 
composition ± 
mechanics

Fig. 1.2. OA aetio-pathogenesis as a dynamic process.

‘ Altered joint mechanics may modify bio-mechanical risk factors
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The cells resident in cartilage proliferate (Mankin et al. 1971; Mankin and 

Lippiello 1970) and increase their synthetic activity (Adams and Brandt 1991; 

Mankin and Lippiello 1970; Nelson et al. 1998). In addition, new cartilage forms 

at joint margins where it ossifies into osteophytes (Brandt et al. 2003a; 

Moskowitz and Goldberg 1987) and subchondral bone undergoes remodelling 

(Burr 2003; Moskowitz 1999).

Changes to other joint tissues include joint effusions (with variable synovitis that 

is usually not intense), capsular thickening, ligament laxity or instability and 

muscle weakness (O'Reilly and Doherty 2003). The sum effect is a joint with 

altered composition, structure and attendant mechanical properties (Fig. 1.2).

As changes develop, the new joint constitution then becomes the substrate for 

the influence of on-going or new risk factors. The effects of the risk factor older 

age illustrate this dynamic and continuous nature to the OA process. Older age 

is associated with a reduction in the tensile properties of human articular 

cartilage from the femoral head (Kempson 1991). This constitutional change 

exposes the aged cartilage to increased susceptibility to damage and, thus, 

trauma to the joint (another risk factor) that might normally have been 

innocuous may perpetuate the OA process. Interestingly, such a process 

provides an explanation for the observation noted above, that the risk factors 

older age and knee injury can interact during the development of knee OA 

(Roos et al. 1995).

Changes that alter joint biomechanics will modify biomechanical risk factors felt 

by the joint, and thus can influence OA pathogenesis. In addition, changes in 

one joint tissue may have direct effects on another tissue. In particular, cartilage 

and subchondral bone may physically or biochemically interact, and this 

concept is discussed further below (section 1.2.4).

At any particular point in time, the structural outcome of the OA process 

depends on the balance between the destructive/ degradative events and the 

effects of the repair response. The process can be slow and, depending on the
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outcome measure, structural changes may take many years before they are 

evident. In patients who sustain anterior cruciate ligament or meniscal damage, 

the first signs of radiographic joint space narrowing appear, on average, ten 

years after injury (Roos et al. 1995).

Changes in articular cartilage and subchondral bone as targets for 

disease modification

Despite the under-explained link between OA structural change and symptoms, 

preventing or reversing structural change presents one approach to disease 

modification. Because OA aetio-pathogenesis is multi-factorial and leads to 

heterogeneous outcomes that can involve all tissues of the joint, the scope for 

selecting targets for disease modification is wide. Broadly, there are two areas 

for investigation: therapies to target risk factors or to modify the pathogenic 

response in joint tissues. It is the latter area that is subsequently further 

considered in relation to cartilage and bone, two tissues of the joint that undergo 

characteristic structural and compositional change during the OA process. The 

following two sections will outline these changes and the underlying metabolic 

mechanisms and it is these mechanisms that are considered to present 

pharmaceutical targets for disease modification.

1.2.3 Articular cartilage changes in OA

1.2.3.1 Articular cartilage composition and function 

Anatomical location and physiological function

Adult articular cartilage is a relatively thin layer of tissue that covers the 

articulating ends of bones in the synovial joint (Fig. 1.1). This layer of cartilage, 

usually of the hyaline type, is a firm but compliant viscoelastic connective tissue. 

The functions of articular cartilage are (i) to provide an interface between 

subchondral bone and the synovial space; (ii) to manage, transmit and 

withstand repetitive physical forces, particularly during joint loading; and (iii) to
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form a smooth articulating surface with the opposite articulating surface, 

assisted by synovial fluid.

Histological architecture

Cartilage is composed of cells embedded in an extracellular matrix (ECM). On 

light microscopy, normal articular cartilage can be distinguished into several 

zones arranged in layers parallel to the joint surface. Differences in cells and 

ECM composition occur between these zones. Moving from the surface 

downwards, these zones are the superficial zone, the middle zone, the deep 

zone then the distinct tide mark that separates the deep zone from the calcified 

zone (Thonar et al. 1999). In addition, domains of ECM are described according 

to their proximity to the cell, namely pericellular, territorial and inter-territorial 

compartments (Kuettner and Thonar 1998).

Chondrocytes

Chondrocytes are the sole cellular elements of cartilage. They are sparsely 

distributed, making up 2-3% of the total tissue volume, and assume flattened 

disc shapes in the superficial zone with their long axes parallel to the articular 

surface, becoming ellipsoid or spherical in shape through middle and deep 

zones (Thonar et al. 1999). Chondrocytes are responsible for synthesising and 

regulating the ECM, processes that are regulated by biochemical and 

mechanical factors (subsequently discussed in section 1.2.3.6). Progenitor-like 

characteristics have been identified in a subpopulation of superficial zone 

chondrocytes (Dowthwaite et al. 2004) suggesting that cells in this zone are 

particularly important for cartilage growth and, possibly, repair.

Matrix composition

The physical properties of cartilage, vital for the management of the physical 

stresses and strains of the tissue, are intimately dependent on the biochemical 

composition and structural integrity of the ECM. Articular cartilage is a highly 

hydrated tissue, with water making up over two-thirds of the tissue weight 

(Bollet and Nance 1966; Venn and Maroudas 1977). The main structural

33



component of the matrix is type II collagen which is present as a three- 

dimensional network of fibrils that binds and enmeshes large aggregates of 

negatively charged proteoglycans (Heinegard et al. 2003). Other collagens and 

non-collagenous proteins are found in smaller amounts. The composition of 

normal articular cartilage is not static but undergoes continuous turnover. In 

adult cartilage, the half-lives of collagen and intact aggrecan are estimated to be 

in the order of 100 years and less than 5 years respectively (Maroudas et al. 

1992; Maroudas et al. 1998).

Type II collagen

Ninety percent of collagen in adult cartilage is of the type II variety (Thonar et al.

1999). Type II collagen molecules are fibril forming and have the typical 

collagen structure of a long, stiff, triple stranded helix (Alberts et al. 2002). 

Synthesis occurs in chondrocytes with each collagen molecule being made up 

of three a polypeptide chains tightly wound around one another. The structure is 

stabilised by inter-chain hydrogen bonding between hydroxyproline and 

hydroxylysine and the triple helix is protected from proteolysis by the side chain 

constituents of their amino acid residues. Collagen molecules assemble with 

one another into fibrils where covalent cross-linking between lysine residues of 

the molecules is important for fibril stability and tensile strength. A small amount 

of type XI collagen is present within the fibril which may have a role in 

determining fibril thickness. Another collagen, type IX, is bound on the fibril 

surface and is thought to be involved in regulating fibril assembly (Heineg&rd et 

al. 2003).

Throughout articular cartilage, the collagen fibrils that make up the network vary 

in thickness. The thinnest fibrils occur in the territorial matrix close to 

chondrocytes within the superficial zone and, in general, fibrils become thicker 

with distance from cells and towards the deep zone. In addition, fibril orientation 

demonstrates anisotropy through articular cartilage in which, relative to the 

articular surface, fibrils are mostly parallel in the superficial layer, perpendicular
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in the deep areas and variable in direction in the intermediate parts (Heinegard 

et al. 2003).

Type II collagen imparts tensile properties to cartilage and when tension is 

generated as cartilage is stretched, the strength and stiffness of the tissue is 

dependent on the integrity of the collagen fibrillar network (Mow and Hung

2003). Disruption of the network, such as by breaking down intermolecular 

cross-linking by treating cartilage with elastase, leads to loss of tissue tensile 

strength and stiffness (Bader et al. 1981).

Matrix composition: aggrecan

The second main extracellular macromolecule is aggrecan. This large 

aggregating proteoglycan has important hydrophilic properties and makes up 

approximately 90% of the mass of proteoglycans in articular cartilage (Thonar et 

al. 1999). It has the typical proteoglycan structure of a central core protein with 

multiple glycosaminoglycan side chains which comprise 90% of the 

macromolecular mass (Thonar et al. 1999). Synthesis occurs in chondrocytes 

prior to secretion into the matrix (Hardingham 2004). The core protein of 

aggrecan has several distinct functional domains:

a) CS1 and CS2 domains that are heavily decorated with approximately 

100 glycosaminoglycan chains, each being composed of repeating 

chondroitin sulphate units. Chondroitin sulphate is a disaccharide with 

two negatively charged groups: a sulphate group on the N-acetyl 

galactosamine moiety; and a carboxylate group on the glucuronic acid. 

As each chondroitin sulphate chain is made up of 40 to 50 disaccharide 

units the CS1 and CS2 domains contribute about 8000 to 10000 

negatively charged groups to a single aggrecan molecule (Heinegard et 

al. 2003).

b) N-terminal G1 domain that, with link protein, binds aggrecan to 

hyaluronan (Heinegard et al. 2003). Linkage of a large number of 

aggrecan molecules to hyaluronan, which is a long-chained
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glycosaminoglycan, forms huge polymeric complexes that can be a big 

as a bacterium (Alberts et al. 2002). The large size of such aggregates 

is believed to aid its retention within cartilage,

c) Other domains with less certain functions- a domain containing keratan 

sulphate glycosaminoglycan chains; a G2 domain that has homology 

with the G1 domain; and a C-terminal G3 domain with sequence 

homology to epidermal growth factor, complement regulatory protein 

and lectin (Heinegard et al. 2003). The G3 domain is important for 

secretion of aggrecan from the cell (Zheng et al. 1998).

Aggrecan that is retained within the collagen network contributes to tissue 

viscoelasticity, a behaviour of cartilage that is largely dependent on the ease of 

interstitial fluid flow through the matrix (Mow et al. 1980). Glycosaminoglycan 

chains of aggrecan form porous hydrated gels (Alberts et al. 2002) and fluid 

movement is governed the pore size of these gels (Mow and Hung 2003). A 

further property of aggrecan that influences fluid flow comes from the negatively 

charged groups of the molecule. These impart a high fixed charge density that 

attracts “mobile” osmotically-active counter ions to balance electroneutrality, 

thereby generating an osmotic pressure that causes cartilage to imbibe and 

retain water. The resulting swelling pressure is met and balanced by tension in 

the restraining collagen network, a process that enables cartilage to reversibly 

deform during loading (Mow and Hung 2003).

Factors contributing to a reduced fixed charge density in cartilage, such as 

increased hydration or a lower glycosaminoglycan content, result in a tissue that 

is more compliant in compression (Mow and Hung 2003). For example, in-vitro 

digestion of proteoglycan in human articular cartilage by treatment with 

cathepsin D and cathepsin B has been shown to reduce viscous damping to 

compressive loads (Bader et al. 1992).
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Matrix composition: other collagens and non-collagenous proteins

Several other types of molecules are found in small amounts in cartilage matrix. 

Type VI collagen may protect the chondrocyte from compression. Numerous 

non-collagenous proteins with less well understood functions have been also 

identified, such as the family of leucine-rich repeat proteins (COMP, cartilage 

oligomeric matrix protein; CILP, cartilage intermediary layer protein; fibronectin; 

perlecan; and matrilins) (Heinegard et al. 2003).

1.2.3.2 Cartilage metabolism during the OA process

A cardinal pathological feature of OA is articular cartilage loss. Tissue 

degradation occurs more frequently in areas of increased load (Mankin et al. 

1986) and, macroscopically, this is first evident as fibrillation of the cartilage 

surface. Later on cartilage becomes eroded and this process can progress to 

full thickness loss of tissue that exposes subchondral bone (Pritzker 2003). In 

advanced OA joints, such as those that are excised at arthroplasty, though the 

cartilage loss is often extensive, some areas of cartilage can appear 

macroscopically normal (Brocklehurst et al. 1984).

At the molecular level, the loss of cartilage matrix during the OA process is 

driven by cell-mediated metabolic events. The principal ECM constituents, 

aggrecan and type II collagen, are altered both quantitatively and qualitatively 

through degradation and synthesis and ultimately it is the balance of catabolism 

and anabolism that is important for determining matrix composition (Nagase 

and Kashiwagi 2003). Thus, in order to alter compositional outcomes, the 

metabolism of aggrecan or type II collagen during the OA process present 

attractive targets for disease modification.

Other alterations that are seen in OA cartilage include chondrocyte hypertrophy, 

elevations in alkaline phosphatase activity and deposition of type X collagen in 

the matrix. In these respects, the tissue composition resembles immature 

cartilage (such as that found in the growth plate) which suggests that OA
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cartilage is resuming its capability to mineralise (Doherty et al. 2004). Variations 

in the levels of matrix non-collagenous proteins (e.g. COMP, CILP and 

fibronectin) are also observed. Because these macromolecules are thought to 

have roles in matrix assembly, cross-linking networks and providing feedback to 

chondrocytes (Heinegard et al. 2003), these changes may be also important for 

the OA process.

1.2.3.3 Aggrecan metabolism in OA

Some of the initial changes in the OA process involve aggrecan molecules. 

Aggrecan is depleted from cartilage matrix thus removing fixed charge groups 

from the tissue with consequent alterations of physio-chemical properties 

(Heinegard et al. 2003). Though the loss of aggrecan from cartilage is 

considered to be reversible (Martel-Pelletier 2004; Mort and Billington 2001), it 

is thought to initiate the cascade of metabolic events leading to irreversible 

tissue disruption (Sandy 2006).

Early OA- cartilage proteoglycan content

Following joint injury and during the development of OA the degradation of 

aggrecan is evidenced by increased levels of fragments of this proteoglycan in 

the synovial fluid of human knee joints (Lohmander et al. 1999). Furthermore, 

with worsening arthroscopic and radiographic severity of OA there is an 

associated rise in the aggrecan fragment concentration of synovial fluid. In the 

cartilage tissue itself, aggrecan loss is reflected in pronounced reductions in 

proteoglycan staining (Heinegard et al. 2003). In addition, in dogs with knee 

joint instability following surgical transection of the cruciate ligament, the extent 

of this proteoglycan depletion increases with the degree of cartilage surface 

disruption (Visco et al. 1993).

Though these observations of reduced staining indicate a lower proteoglycan 

concentration in the tissue, in animal models of early OA the total proteoglycan 

content appears to increase (Adams et al. 1987; McDevitt and Muir 1976).
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Similar findings are seen in human subjects who have sustained anterior 

cruciate ligament rupture; analyses of their femoral condylar cartilage reveals 

reduced histological staining for proteoglycan in some patients and an increase 

in tissue glycosaminoglycan content up to one year post injury (Nelson et al.

2006). These findings may be explained by cartilage swelling, an event that is 

also observed in early OA (Heinegard et al. 2003), whereby though tissue 

proteoglycan concentration may be reduced, the larger cartilage volume results 

in an overall increase in tissue proteoglycan content.

Late OA- cartilage proteoglycan content

Cartilage proteoglycan content is reduced in late-stage OA. By the time patients 

with OA undergo arthroplasty the disease can be considered to be advanced. 

Cartilage samples obtained from the knee or hip joints of such patients shows a 

decreased GAG content (Brocklehurst et al. 1984; Byers et al. 1977; Mankin 

and Lippiello 1970). In addition, the proteoglycan content of late-stage OA 

cartilage has been found to inversely correlate with OA severity at the hip joint 

as assessed histologically (Mankin et al. 1971).

Qualitative changes to aggrecan in OA

Apart from quantitative changes to proteoglycan in OA cartilage, qualitative 

alterations to aggrecan molecules are also seen. In OA cartilage, the 

chondroitin-4 sulphate: chondroitin-6 sulphate and chondroitin sulphate-rich 

proteoglycan: keratan sulphate-rich proteoglycan ratios have been observed to 

be higher than normal, resembling patterns seen in immature cartilage (Adams 

et al. 1987; Doherty et al. 2004). In addition, human OA cartilage from the 

femoral condyle has been found to bear elevated levels of a chondroitin 

sulphate epitope that is usually present in foetal aggrecan (Rizkalla et al. 1992). 

The implications of these biochemical changes are unknown, though some of 

the alterations may modify the binding of growth factors in matrix (Doherty et al.

2004). Another qualitative change is the presence of aggrecan fragments with 

shortened core proteins in OA cartilage (Sandy and Verscharen 2001). This 

finding indicates proteolytic cleavage activity, an important mechanism for the
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release of GAG from the tissue that provides an explanation for the reduced 

GAG content in OA cartilage.

Mechanisms leading to the reduced GAG content in OA cartilage

Overall the findings in synovial fluid and cartilage in early OA indicate an 

increase in proteoglycan turnover, with increases in degradation and release 

from the tissue being accompanied by adequate synthesis to prevent any 

overall reduction in proteoglycan content. However, as the disease becomes 

more advanced the balance shifts and there appears to be a net loss of GAG 

from the tissue.

Mechanisms responsible for GAG release

a) Aggrecan core protein cleavage.
Aggrecan is present in cartilage matrix from normal, acutely injured and 

OA joints in various forms: the full-length species and a series of 

products generated by varying degrees of proteolytic truncation from the 

C-terminal end of the core protein (Sandy and Verscharen 2001). 

Cleavage within the IGD releases the complete GAG-rich region from 

hyaluronan-bound aggrecan molecules leading to loss of GAG from the 

tissue. Thus, the IGD of the aggrecan core protein has been a major 

focus of investigation. Nine different cleavages within the IGD have been 

demonstrated to occur in incubations of aggrecan with purified 

proteinases but only two cleavages of the IGD appear to occur in human 

tissues in vivo: at the matrix metalloproteinase site and aggrecanase site 

(named after the principal enzyme families with activity at those sites) 

(Sandy 2006). Cleavage at these sites generates novel terminals (called 

neoepitopes) with specific N- or C- amino acid sequences that can be 

identified using antibody techniques (Caterson et al. 2000).
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Are matrix metalloproteinases or aggrecanases responsible for 

aggrecanolysis in OA?

Matrix metalloproteinases (MMPs) and aggrecanases are thought to be 

the main proteinases involved in aggrecan degradation though the their 

relative contributions to aggrecanolysis in OA have recently been the 

subject of debate (Sandy 2006; Struglics et al. 2006). Both families of 

enzymes are present OA cartilage (Billinghurst et al. 1997; Curtis et al.

2002). In humans, both MMP and aggrecanase-generated cleavage 

products, identified either as neoepitopes or by protein sequencing, have 

been found in normal cartilage (Flannery et al. 1992; Lark et al. 1997),

OA cartilage (Lark et al. 1997) and synovial fluid from OA joints (Fosang 

et al. 1996; Lohmander et al. 1993b; Sandy et al. 1992). One working 

model, based on analyses of human cartilage and synovial fluid from 

normal, injured and late-stage OA joints (Sandy and Verscharen 2001), 

proposes that aggrecanase activity is responsible for cleaving full length 

aggrecan and the loss of osmotically-active GAG. In this model, 

aggrecanase activity is thus considered “destructive” to the tissue. In 

contrast, MMP activity acts on a separate pool of aggrecan that does not 

bear much GAG and is therefore considered not to be “destructive” 

(Sandy 2006). Others have reported that synovial fluid from OA joints 

contains GAG-bearing aggrecan fragments generated by the activities of 

both MMPs and aggrecanases implicating both families of proteinases in 

aggrecan degradation in human OA (Struglics et al. 2006). In vitro 

studies of cartilage degradation find clear evidence for aggrecanase- 

mediated catabolism of aggrecan (Little et al. 1999) but also demonstrate 

that aggrecan cleavage involves MMP activity (Little et al. 2002).

b) Impaired aggrecan aggregation and altered hyaluronic acid 

metabolism.
Defective aggregation of aggrecan is a further possible mechanism for 

GAG release from cartilage in OA. The capacity of chondrocytes from 

ageing subjects to synthesize link protein and to assemble a
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proteoglycan-rich matrix is impaired (Sandy et al. 1987). These 

impairments could lead to poor stabilisation of hyaluronic acid-aggrecan 

aggregates and loss of aggrecan from the tissue.

In addition, link protein-stabilised aggregates in vitro are less susceptible 

to hyaluronic acid degradation by hyaluronidase or free radicals 

(Rodriguez and Roughley 2006) so decreases in link protein synthesis 

with ageing may expose this vulnerability. Other in vitro studies have 

demonstrated the release of link protein and hyaluronic acid from bovine 

and human cartilage cultured in the presence of catabolic stimuli leading 

to the hypothesis that cleavage of hyaluronic acid and the release of 

small hyaluronic acid-aggrecan complexes is another mechanism for 

proteoglycan loss from the tissue (Sztrolovics et al. 2002).

Reversibility of GAG depletion from cartilage

A reparative ability of chondrocytes to respond to decreases in matrix GAG 

content is suggested by the observation that GAG synthesis inversely correlates 

with GAG content in human femoral head cartilage (Mankin and Lippiello 1970). 

Elevated GAG synthesis rates have been directly demonstrated in a rabbit 

model with instability-induced OA (Ehrlich et al. 1975). However, in the late 

stages of OA the synthetic response appears to reverse. Humans studies have 

shown reduced rates of GAG synthesis in cartilage from OA hip joints (Byers et 

al. 1977) and OA knee joints removed at arthroplasty (Brocklehurst et al. 1984). 

In addition, though GAG synthesis was shown to positively correlate with 

histological severity for cartilage obtained from excised OA hip joints, beyond a 

certain severity grade GAG synthetic rates appeared to decline (Mankin and 

Lippiello 1970).

Recovery from GAG depletion has been demonstrated in bovine articular 

cartilage explants in vitro. Using the catabolic cytokine IL-1 to induce depletion 

of GAG, explants were observed to re-accumulate GAG over a three week 

period if they were allowed to recover in the absence of IL-1 (Williams et al.
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2003). Similarly, in an animal model of OA, the loss of proteoglycans induced by 

an intra-articular injection of IL-1 in rabbits was seen to replace gradually over a 

three to four week period (Page Thomas et al. 1991). Measurements of 

cartilage GAG synthesis showed that after initially depressed rates, there was a 

compensatory increase in GAG synthesis. Interestingly, this restorative 

response was found to be impaired in older animals (Arner 1994), a finding that 

offers some explanation for the association between ageing and OA.

1.2.3.4 Type II collagen metabolism in OA

During the OA process, overt collagen release is thought to follow the onset of 

proteoglycan loss from cartilage matrix (Caterson et al. 2000; Ellis et al. 1994). 

Though collagen is less readily released from matrix, this type of tissue 

disruption is considered to represent the point of irreversible cartilage 

destruction (Cawston et al. 1998; Jubb and Fell 1980). Initial changes to type II 

collagen arising from the OA process are qualitative in nature.

Physical changes to cartilage in OA and their relation to collagen

One early identifiable event in the OA process is oedema and swelling of 

cartilage (Heinegard et al. 2003). These changes are thought to probably reflect 

a loosening of the restraining collagen fibre network resulting in further 

hydration of the enmeshed proteoglycans and consequent swelling of the tissue 

(Venn and Maroudas 1977). In an ovine model of OA, meniscectomy was found 

to lead to areas of thicker more hydrated articular cartilage that demonstrated 

abnormal collagen birefringence intensity suggesting disorganisation of the 

collagen network (Appleyard et al. 2003). Further support for the role of 

collagen disruption in tissue swelling comes from the finding that the swelling of 

OA cartilage from the femoral condyle strongly correlated with the amount of 

damage to collagen molecules (Bank et al. 2000).

Another physical change to OA cartilage is that the superficial tissue layer is 

weaker and less stiff compared to normal cartilage (Kempson et al. 1973). Such
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impaired tensile properties of cartilage have been found to relate to reduced 

tissue collagen content (Kempson et al. 1973) and also to damaged collagen 

fibrils (Bader et al. 1981).

Damage to type II collagen and its loss from cartilage during the OA 

process

Mirroring studies into aggrecan catabolism, many investigators have employed 

antibody techniques to identify neoepitopes revealed on collagen molecules 

when they are degraded. The initial cleavage of type II collagen generates two 

fragments, one approximately one-quarter in length and the other three-quarters 

in length compared to the original molecule (Miller et al. 1976). The resultant 

novel terminals of the molecule can be identified as cleavage neoepitopes 

(Billinghurst et al. 1997). In addition, cleavage of triple helical collagen leads to 

unwinding of the a chains which exposes another identifiable neoepitope, a 

denaturation neoepitope (Dodge and Poole 1989).

Within hours after trauma, higher levels of type II collagen fragments are seen 

in the synovial fluid of acutely-injured knees (Lohmander et al. 2003). In 

addition, the cartilage itself, taken at the time of anterior cruciate ligament (ACL) 

reconstruction surgery from acutely-injured knees, shows increased levels of 

type II collagen denaturation and cleavage though no change to the total 

collagen content (Nelson et al. 2006).

As the OA process progresses, evidence for collagen damage persists. The 

synovial fluid from patients with knee OA demonstrates increased levels of type 

II collagen fragments (Lohmander et al. 2003) and elevated cleavage and 

denaturation neoepitopes have been found in cartilage from OA knee joints 

removed at arthroplasty (Billinghurst et al. 1997; Hollander et al. 1994).

The amounts of cleavage and denaturation of type II collagen correlate with the 

histological severity of OA cartilage (Konttinen et al. 2005) and, within the 

tissue, these neoepitopes are mainly located in the pericellular matrix and in the 

superficial layer of cartilage (Wu et al. 2002).
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In the later stages of the OA process, the collagen content of cartilage tissue is 

reduced (Hollander et al. 1994) and cleavage of collagen molecules appears to 

be an important underlying mechanism. In addition to increased levels of type II 

collagen fragments seen in the synovial fluid of acutely injured and OA knees 

(Lohmander et al. 2003), the amounts of type II collagen cleavage or 

denaturation neoepitopes in cartilage have been found to inversely correlate 

with collagen content (Poole et al. 2003; Squires et al. 2003). Furthermore, OA 

cartilage explants that were cultured in vitro released more type II collagen 

cleavage neoepitopes into culture media than non-arthritic cartilage explants 

(Dahlberg et al. 2000).

Mechanisms of type II collagen cleavage

Proteinases from the MMP family are thought to be responsible for 

collagenolysis in cartilage (Mort and Billington 2001). These degradative 

enzymes are found in the synovial fluid of acutely-injured (Lohmander et al. 

1993a; Walakovits et al. 1992) and OA joints (Clark et al. 1993; Lohmander et 

al. 1993a). They are expressed in OA synovial tissue (Firestein et al. 1991) and 

expressed and secreted by OA chondrocytes at increased levels (Reboul et al. 

1996). Tissue inhibitors of MMPs (TIMPs) are deficient relative to MMPs in OA 

cartilage and this imbalance is also likely to play a role in accelerated matrix 

degradation (Dean et al. 1989). Synthetic inhibitors of MMPs have been found 

to significantly reduce the release of type II collagen cleavage neoepitopes from 

OA cartilage cultured in vitro (Billinghurst et al. 1997; Dahlberg et al. 2000), 

clearly demonstrating the activity of MMPs in OA cartilage.

Synthesis as a repair response
During the OA process, increases in collagen synthesis suggest an attempt at 

repair. Knee joint instability, in a rabbit model of OA, has been found to 

stimulate collagen synthesis (Floman et al. 1980) and surgically-induced ACL 

rupture in canine knee joints increased cartilage type II collagen synthesis as 

measured by incorporation of [3H]proline into new collagen molecules (Eyre et 

al. 1980). Evidence of elevated synthesis of type II collagen is also found in
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human OA cartilage. N- and C-propeptides are removed from type II 

procollagen fibrils as they are synthesised and secreted into ECM (Heinegard et 

al. 2003) and amounts of type II procollagen C-propeptide were found to be 

markedly elevated in human OA femoral condylar cartilage, particularly in the 

mid and deep zones (Nelson et al. 1998). Thus, there may be potential for 

repair of damage to the collagen network, but an effective response in late OA 

when major disruption in the collagen architecture has occurred is thought to be 

less likely (Doherty et al. 2004).

1.2.3.5 Cartilage tissue proteinases
ECM is metabolically degraded by various proteinases. During the OA process 

proteolytic enzymes are produced by chondrocytes and also synovial cells 

(Doherty et al. 2004). Table 1.4 lists proteinases that have been found in 

cartilage (Sandy 2003). Attention has focused on MMPs and aggrecanases as 

the proteinases responsible for the degradation of aggrecan and type II collagen 

in OA cartilage (Poole et al. 2003; Sandy 2006).

Matrix metalloproteinases

Matrix metalloproteinases (MMPs) are a family of endopeptidases that have 

divalent cations as part of their active structure. They are secreted by cells 

found in joint tissues and are located in the matrix either as soluble proteins or 

bound to the cell membrane. Through their ability to degrade ECM constituents, 

MMPs are considered to play significant roles in normal physiological tissue 

remodelling, turnover and in pathological processes such as OA. In disease 

states, aberrant regulation of MMPs is thought to lead to their hyperactivity with 

consequent ECM degradation (Murphy et al. 2002).

The MMP family includes collagenases, gelatinases, stromelysins, and 

membrane-type MMPs (MT-MMPs). These proteinases have common domains 

in their protein structure with specific functions. The enzymes are secreted in
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Table 1.4. Proteinases present in cartilage. From (Sandy 2003)

Enzyme family Enzyme Other name

MMPs MMP-1 Collagenase 1

MMP-2 Gelatinase A

MMP-3 Stromelysin 1

MMP-8 Collagenase 2

MMP-9 Gelatinase B

MMP-10 Stromelysin 2

MMP-13 Collagenase 3

MMP-14 MT1-MMP

ADAMTSs ADAMTS-1 METH-1

ADAMTS-2 Procollagen-N-proteinase

ADAMTS-3 Procollagen-N-proteinase

ADAMTS-4 Aggrecanase-1

ADAMTS-5 Aggrecanase-2

Others

Metallo-proteinase Procollagen-C-endopeptidase BMP-1

Cysteine proteinases Cathepsin B

Serine proteinases

Calpain

Plasmin

Aspartic proteinases

Plasminogen activator 

Cathepsin D

latent form and are usually activated extracellularly by cleavage of a propeptide 

domain. An N-terminal catalytic domain has a zinc ion bound at the catalytic site 

where hydrolysis is thought to occur by polarisation of a water molecule to act 

as a nucleophile to attack the scissile peptide bond. Further divalent cations, 

zinc and calcium, contained in the catalytic domain also seem significant for 

function. Cleavage of a substrate depends on the depth and structure of the 

catalytic site. Variations in this region between different MMPs are therefore 

important for the substrate specificity. A linker region connects the N-terminal 

catalytic domain to a C-terminal domain that has sequence similarity to the 

serum protein haemopexin. The role of this latter domain seems to vary
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between MMPs but all collagenolytic enzymes appear to require this domain for 

the hydrolysis of triple-helical collagens (Murphy et al. 2002).

MMP-mediated cleavage of triple-helical collagens characteristically and 

specifically occurs at a single locus giving rise to fragments approximately 

three-quarters and one-quarter in length compared to the precursor molecule 

(Miller et al. 1976; Murphy et al. 2002). In articular cartilage, the initial cleavage 

of triple-helical type II collagen is thought to be mediated by MMPs-1, 8, 13 and 

14 (Sandy 2003). The first cleavage then allows further degradation by other 

proteinases (Mort and Billington 2001). Selective inhibition of MMP-13 along 

with MMP-8 blocks the release of collagen from OA cartilage (Dahlberg et al.

2000). In particular, MMP-13 is considered to be important because it 

preferentially cleaves type II collagen (Knauper et al. 1996) and expression of 

human MMP-13 in the joints of transgenic mice was found to lead to OA 

cartilage changes (Neuhold et al. 2001). MMPs are also involved in aggrecan 

degradation as has been outlined above (section 1.2.4.1).

Other roles for MMPs include activation of other MMPs, for example MMP-14 

(MT-1 MMP) is an activator of proMMP-2 on the cell surface (Murphy et al.

2002); release of matrix fragments that have cellular effects, for instance 

fibronectin fragments; release of growth factors or cytokines bound to the matrix 

or cell surface; and proteolytic activation or inactivation of growth factors, 

cytokines and their receptors (Murphy and Lee 2005).

Aggrecanases
The term “aggrecanase” refers to a proteinase that can cleave the aggrecan 

core protein at the glutamyl-X scissile bond which is insensitive to MMP activity 

(Sandy 2003). These glutamyl-X cleavage sites are located in the IGD and CS- 

2 domains of the aggrecan core protein (Caterson et al. 2000). Three members 

of the “A Disintegrin And Metalloproteinase with Thrombospondin motifs” 

(ADAMTS) family of enzymes have been identified as having aggrecanase 

activity: ADAMTS-1, ADAMTS-4 (aggrecanase-1) and ADAMTS-5 

(aggrecanase-2) (Nagase and Kashiwagi 2003). Like MMPs, ADAMTSs also
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have a metallo-proteinase domain that contains a zinc binding motif sequence 

at the catalytic site (Murphy and Lee 2005). Type-1 thrombospondin motifs are 

found in their structure and for aggrecanase-1 this motif is important for binding 

the enzymes to sulphated GAGs in the matrix and, thus, targeting of the 

proteinase to aggrecan molecules (Tortorella et al. 2000).

Other proteinases
Other proteinases implicated cartilage breakdown are the cathepsin lysosomal 

proteinases (Mort and Billington 2001). In an inhibitor study, cathepsin B was 

implicated in IL-1 -stimulated proteoglycan loss from bovine nasal cartilage 

(Buttle et al. 1993). Cathepsins have also been shown to degrade cartilage 

collagens (Maciewicz et al. 1990) and proteoglycans (Roughley 1977). 

However, these enzymes are considered to play a secondary role in cartilage 

degradation with mainly intracellular actions (Mort and Billington 2001). 

Furthermore, because their activity is optimum at acidic pH, it has been 

suggested that cathepsins might only participate in advanced stages of the OA 

process (Nagase and Kashiwagi 2003) when the local pH of cartilage has been 

shown to fall (Konttinen et al. 2002).

Tissue inhibitors metalloproteinases
Four mammalian tissue inhibitors of metalloproteinases (TIMPs) have been 

discovered. TIMP-3 is sequestered in the ECM and the other TIMPs localise to 

the cell surface. TIMPs-1 to 4 all inhibit MMP activity and TIMP-3 inhibits the 

aggrecan-degrading ADAMTSs-1, 4 and 5. Because the TIMPs are thought to 

have significant roles in regulating proteinase activity in ECM (Murphy and Lee

2005), the inhibitors are likely to be important for the maintenance of matrix 

integrity.

The mechanism of MMP inhibition by TIMPs involves the interaction of a 

“wedge-like” part of the TIMP protein and the active site of the MMP. This 

allows the amino and carbonyl groups of Cys1 residue at the N-terminal of the
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TIMP molecule to chelate the catalytic zinc atom of the MMP, and expel the 

zinc-bound water molecule (Nagase et al. 2006).

1.2.3.6 Regulation of aggrecan and type II collagen metabolism

During the OA process, disturbance in the balance of anabolism and catabolism 

results in the net loss of cartilage matrix constituents and, therefore, leads to 

deterioration in the physio-chemical properties of the tissue (Goldring and 

Goldring 2004). Regulation of chondrocyte-mediated synthesis and degradation 

of ECM involves both biochemical and mechanical factors, both of which can 

interact.

Biochemical factors: cytokines
An extensive review on the role of cytokines in regulating cartilage degradation 

in OA has classified cytokines according to their catabolic or anabolic effects on 

chondrocyte-mediated matrix metabolism (Table 1.5) (Goldring and Goldring

2004). In addition, several cytokines have been described as anti-catabolic or 

modulatory based on their ability to inhibit or modulate the activities of other 

cytokines respectively. Within the tissue, cytokines act on cells by paracrine 

(cytokine produced by one cell acts on neighbouring cells) or autocrine 

(cytokine produced by a cell acts on the same cell) mechanisms (Goldring and 

Goldring 2004).

Although synovitis and/or clinical features of inflammation are not prominent in 

OA, proinflammatory cytokines derived from synovial tissues and chondrocytes 

are involved in cartilage destruction (Goldring 2000; Goldring and Goldring

2004). In particular, interleukin-1 (IL-1) and tumour necrosis factor-a (TNF-a) 

are considered to play major roles as catabolic cytokines (Martel-Pelletier et al. 

1999).
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Table 1.5. Classification of chondrocyte-cytokine interactions. From (Goldring and 
Goldring 2004).

Catabolic lnterleukin-1
Tumour necrosis factor-a 
Interleukin-17 
Interleukin-18 
Oncostatin M

Modulatory lnterleukin-6 
lnterleukin-11
Leukaemia inhibitory factor

Anti-catabolic lnterleukin-4
Interleukin-10
Interleukin-13
lnterleukin-1 receptor antagonist 
Interferon-y

Anabolic Insulin-like growth factor-1 
Transforming growth factor-pT.p2.P3 
Fibroblast growth factor (2,4,8)
Bone morphogenetic proteins (2,4,6,7,9,13)

In vitro, IL-1 treatment of articular cartilage or chondrocytes has been shown to 

stimulate aggrecanase activity (Caterson et al. 2000; Little et al. 1999), induce 

matrix degradation (Billinghurst et al. 2000; Caterson et al. 2000; Dodge and 

Poole 1989; Little et al. 1999; Saklatvala et al. 1984; Sandy et al. 1991a; Sandy 

et al. 1991b) and also inhibit proteoglycan synthesis (Chowdhury et al. 2001; 

Hauselmann et al. 1996a; Taskiran et al. 1994). In OA joints this cytokine has 

been found in synovial fluid (Schlaak et al. 1996; Westacott et al. 1990; Wood et 

al. 1983), synovium (Farahat et al. 1993; Pelletier and Martel-Pelletier 1989) 

and cartilage (Pelletier and Martel-Pelletier 1989; Tetlow et al. 2001). Receptors 

for IL-1 have been found on OA chondrocytes at double the normal density in 

association with an increased sensitivity of the cells to the cytokine in terms of 

stimulating metalloproteinase secretion (Martel-Pelletier et al. 1992). Further 

evidence for a role of IL-1 in OA cartilage matrix catabolism comes from studies 

using animal models of OA. Intra-articular injections of IL-1 have been found to 

induce proteoglycan loss (Henderson and Pettipher 1989; O'Byrne et al. 1990; 

Page Thomas et al. 1991) and in two instability models of OA, intra-articular 

administration of IL-1 receptor antagonist therapy (a competitive inhibitor of
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IL-1) has been shown to partially protect against the development of cartilage 

lesions (Caron et al. 1996; Pelletier et al. 1997).

TNF-a has similar in vitro effects to IL-1 on chondrocytes and cartilage, 

including stimulation of proteinase activity (Bunning and Russell 1989), matrix 

degradation (Campbell et al. 1990; Saklatvala 1986) and inhibition of collagen 

and proteoglycan synthesis (Lefebvre et al. 1990) (Saklatvala 1986). In addition, 

TNF-a has been localised in OA joints to the synovial fluid (Schlaak et al. 1996; 

Westacott et al. 1990), synovium (Farahat et al. 1993) and cartilage (Tetlow et 

al. 2001). The potency of TNF-a appears to be 100-fold to 1000-fold less than 

that for IL-1 (Lefebvre et al. 1990; Meyer et al. 1990; Saklatvala 1986) but the 

two cytokines demonstrate synergy to exert cellular effects (Campbell et al. 

1990; Meyer et al. 1990; Saklatvala 1986) and, thus, combinations of IL-1 and 

TNF-a may be important for cartilage destruction (Goldring 2000; Goldring and 

Goldring 2004).

Some cytokines have anabolic effects. Transforming growth factor-p (TGF-P) is 

recognised to stimulate chondrocyte proliferation and proteoglycan synthesis 

(Blumenfeld and Livne 1999; Gueme et al. 1995) and in addition to inhibit IL-1 - 

stimulated proteinase activity (Blumenfeld and Livne 1999), possibly by down- 

regulation of matrix-degrading proteinases and up-regulation of proteinase 

inhibitors such as TIMP-1 (Doherty et al. 2004). Insulin-like growth factor-1 

(IGF-1) is also anabolic for chondrocyte proteoglycan synthesis (van Osch et al. 

1998). It is expressed in fibrillated OA cartilage (Blumenfeld and Livne 1999) 

and so may form part of the repair response.

Cytokines active in cartilage (Table 1.5) are thought to operate within networks 

that also involve other mediators such as nitric oxide and prostaglandin E2 

(Goldring and Goldring 2004) in which the overall balance between the activities 

of catabolic, anti-catabolic, modulatory and anabolic cytokines is important for 

determining the severity of cartilage damage in OA (Goldring 2000).
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Biochemical factors: matrix degradation products

Constituents of matrix that have been degraded also appear to play a part in 

regulating on-going matrix degradation. Fibronectin is a large glycoprotein that 

is involved in organising the matrix and helping cell-matrix attachment (Alberts 

et al. 2002). In vitro, treatment of cartilage explants or chondrocytes with 

fragments of fibronectin has been found to stimulate MMP production, 

proteoglycan degradation (Homandberg and Hui 1996; Stanton et al. 2002) and 

type II collagen degradation (Yasuda and Poole 2002). Depletion of cartilage 

proteoglycan induced by fibronectin fragments was found to be associated with 

enhanced release of IL-1 and TNF-a (Homandberg and Hui 1996), suggesting 

that this catabolic mechanism involves interaction with the cytokine network. 

Moreover, IL-1 was shown to mediate type II collagen cleavage in this pathway 

(Yasuda and Poole 2002).

Type II collagen degradation products may be involved in positive cellular feed­

back mechanisms. Recently, fragments of type II collagen have been found to 

increase mRNA levels of several MMPs in chondrocytes or cartilage explants 

(Fichter et al. 2006) and short synthetic peptides of type II collagen have been 

shown to induce the cleavage of type II collagen and aggrecan in articular 

cartilage (Yasuda et al. 2006).

Mechanical factors
A further regulatory mechanism affecting chondrocyte metabolism involves 

mechanical cues (DiMicco et al. 2003). In vitro, proteoglycan synthesis in 

cartilage explants is inhibited by static compression but stimulated by dynamic 

compression (Sah et al. 1989). This dependence on dynamic stress and strain 

for cartilage health is also demonstrated in vivo. In dogs, immobilisation of their 

joints has been found to cause both reduced synthesis of cartilage proteoglycan 

and its loss from tissue (Behrens et al. 1989).

Mechanical overload can result in direct effects such as collagen network 

disruption and matrix fissuring, but physical stimuli are also be important for
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modulating cartilage catabolism. Injurious compression of cartilage has been 

shown to cause cell death, increase proteoglycan release (Quinn et al. 1998) 

and up-regulate MMP-3 expression (Patwari et al. 2001) and cutting cartilage 

has been found to induce IL-1 mRNA expression (Gruber et al. 2004). In 

addition, interaction with the cytokine network may be important for cartilage 

loss, as suggested by the finding that mechanical injury and IL-1 or TNF-a can 

act in a synergistic fashion to stimulate proteoglycan degradation (Patwari et al.

2003).

Transduction of mechanical signals to modulate chondrocyte metabolism is 

thought to be highly dependent on the pericellular matrix (Guilak et al. 2006). 

Basic fibroblast growth factor (bFGF) is one proposed mechanotransducer in 

articular cartilage. It has been immuno-localised in the pericellular matrix of 

articular chondrocytes (Vincent and Saklatvala 2006) and cutting to injure 

cartilage has been found to release extracellular stores of bFGF that rapidly 

activated extracellular-signal-regulated kinase (Vincent et al. 2002). Integrins, 

which are transmembrane cell adhesion proteins that tie the matrix to the 

cytoskeleton of the cell (Alberts et al. 2002), have also been found to mediate 

mechanical signals to modify the metabolism of chondrocytes (Chowdhury et al.

2006). Other candidate mechanotransducers include matrilins (Kanbe et al.

2007) and ion channels (Mouw et al. 2007).

1.2.4 Bone changes in OA

Structural and metabolic changes in subchondral bone are clearly evident 

during the OA process (Burr 2003; Westacott 2003) and the BMD status of 

patients is associated with the development or progression of disease (Hart et 

al. 2002; Zhang et al. 2000). Though alterations to subchondral bone often 

relate in a temporal and topographical fashion to articular cartilage loss, there 

has been considerable debate about the exact role of subchondral bone in OA 

pathogenesis (Brandt et al. 2006; Burr 2003). The following sections outline 

subchondral and systemic bone changes seen in OA, as observed by 

radiological, histological and biochemical techniques, and discuss theories on
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mechanical and biochemical mechanisms by which these changes may relate 

to articular cartilage loss and the OA process more generally.

Structure and function of subchondral bone

Subchondral bone refers to the layer of lamellar cortical bone underneath 

articular cartilage and the trabecular cancellous bone buttressing this layer. The 

cortical bone layer and the calcified cartilage above it form the subchondral 

plate that functions (i) to physically protect and support the overlying articular 

cartilage, transmitting forces to the diaphyseal cortex and deforming to increase 

the contact area under load; and (ii) possibly to provide a source of nutrients to 

the deeper layers of hyaline cartilage. Whereas subchondral bone is highly 

vascularised, blood vessels do not normally penetrate through to cartilage (Burr

2003).

Protection of articular cartilage from mechanical damage

Subchondral bone protects the adjacent articular cartilage from damage caused 

by excessive loads in various ways. Together with other periarticular tissues 

(capsule, ligament and muscle), subchondral bone has significant force- 

attenuating properties (Radin and Paul 1970; Radin and Rose 1986). Thus, 

during joint loading these tissues collectively help to manage potentially 

injurious peak forces. Cartilage does have damping properties but its overall 

contribution as a shock absorber is limited by the thinness of the layer (Radin 

and Rose 1986) and synovial fluid plays no significant role (Radin et al. 1970).

Load transfer from the articular surface to the diaphyseal cortex can generate 

damaging shear forces at the bone-cartilage interface. The undulating nature of 

the tide mark at the osteochondral junction transforms these shear forces into 

and tensile compressive stresses that are more easily managed and less 

destructive. Furthermore, the presence of subchondral bone also constrains the 

radial deformation of attached cartilage which imparts some protection against 

load-induced fissuring to cartilage (Burr 2003).
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1.2.4.1 OA subchondral bone: structural changes and possible 

mechanical implications

Subchondral bone sclerosis, thickness and stiffness

Radiographic subchondral bone sclerosis is a characteristic finding in OA. 

Thickening of the subchondral cortical plate and subjacent horizontal trabeculae 

are early changes seen on the radiograph prior to the articular cartilage loss 

that can be detected by joint space narrowing (Buckland-Wright 2004).

Histology also identifies thickened or hypertrophic subchondral bone during the 

OA process in humans and animal models (Dedrick et al. 1993; Grynpas et al. 

1991; Kamibayashi et al. 1995; Li and Aspden 1997; Oettmeier et al. 1992)..

This thickening of subchondral bone is associated with cartilage damage. A 

study of naturally-occurring OA in cynomolgus monkeys found that cartilage 

fibrillation in knee joints was unusual without thickening of the subchondral plate 

and, in addition, the morphological bone changes preceded those found in 

cartilage (Carlson et al. 1994). A subsequent study using the same primate 

model of OA demonstrated further evidence for a relationship between 

subchondral bone and cartilage through the finding that the subchondral plate 

thickness of the medial tibial plateau increased with worsening severity of 

articular cartilage lesions (Carlson et al. 1996).

However, in relation to the temporal association during the OA process, other 

studies have found cartilage changes occurred before bone alterations. Anterior 

cruciate ligament transection of canine knee joints led to increases in 

subchondral plate volume within 18 months but these were preceded by mild 

histological OA changes to articular cartilage that eventually progressed to full 

thickness loss (Burr 2003). In addition, another mechanical model of OA found 

that impacting of the patello-femoral joint through a padded interface induced 

softening of cartilage without underlying subchondral bone thickening (Ewers et 

al. 2000). Overall, these studies indicate that subchondral bone thickening does
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develop during the OA process, but there is conflicting evidence as to whether 

bone or cartilage structural changes come first.

Mechanical mechanisms may be the link between subchondral bone and 

cartilage in OA. Over twenty years ago it was hypothesised that OA 

subchondral bone had areas of increased stiffness that generated destructive 

forces in the attached articular cartilage, thereby initiating and propagating 

cartilage damage (Radin and Rose 1986). A further factor compounding this 

hypothetical destructive process is that load-induced physical forces sustained 

by individual structures of the joint may be elevated in the diseased joint, as 

suggested by the finding that OA knee joints exhibit impaired shock-absorbing 

properties compared to normal knees (Hoshino and Wallace 1987).

Support for the concept of stiffening of subchondral bone in OA has come from 

studies using animal models of OA. These studies involved repeated impulsive 

loading of joints and the bone stiffening was found to occur either before or 

concurrently with cartilage changes (Radin et al. 1978; Simon et al. 1972). On 

the other hand, more recent studies of late-stage OA in humans have found 

evidence against the hypothesis. Instead of increased stiffness, thickened 

subchondral bone from OA femoral heads obtained at arthroplasty has been 

shown to exhibit reduced stiffness (Li and Aspden 1997) along with decreased 

mineralisation and material density (Grynpas et al. 1991). Furthermore, in light 

of the results from an animal study that failed to demonstrate progressive 

cartilage loss secondary to experimental stiffening of the subchondral plate and 

the findings of a finite element model that predicted only moderate increases in 

cartilage stresses secondary to subchondral bone stiffening (Brown et al. 1984), 

the earlier hypothesis has been revised and, though subchondral bone 

stiffening is till considered to occur transiently in some situations, it is not 

thought to be pathophysiologically significant in OA (Burr and Radin 2003).
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Microcracks and subchondral cysts
Structural changes to cartilage and subchondral bone can occur following acute 

trans-articular loading. In vitro structural failure begins with microcracks in the 

zone of calcified cartilage before gross intra-articular fracture of subchondral 

bone and overlying cartilage (Vener et al. 1992). Microcracks are also seen in 

the calcified cartilage of non-diseased human femoral heads (Mori et al. 1993). 

Their physiological significance in OA is unknown but it is thought that 

microcracks may initiate vascular invasion of the calcified cartilage, reactivation 

of the tidemark and enchondral ossification leading to subsequent thinning of 

the overlying articular cartilage (Burr and Radin 2003). In addition microcracks 

involving bone are associated with bone remodelling (Bentolila et al. 1998; Burr 

et al. 1985; Mori and Burr 1993) and may provide physical conduits between 

cartilage and bone (Burr and Radin 2003).

Subarticular cysts are subchondral lesions that are predominantly located 

underneath areas of cartilage thinning or loss. They show features of bone 

necrosis encircled by a rim of reactive new bone and fibrous tissue. These cysts 

are thought to arise secondary to high intra-articular pressure communicated 

through defects of the overlying cortical bone, or from abnormal intra-osseous 

hypertension generated by impaired joint mechanics (Doherty et al. 2004).

Altered joint shape
The bony articular contours can reshape in OA and these alterations are often 

evident radiographically. At the knee, the femoral and tibial articular surfaces 

flatten leading to greater congruity of the articular elements, changes that may 

result from weakened subchondral bone (Buckland-Wright 2004). In advanced 

stages of the OA process, collapse of the subarticular cancellous bone further 

deforms the articular surfaces, altering limb alignment (Buckland-Wright 2004). 

Such changes to the mechanics are likely to lead to the generation of abnormal 

physical forces in the joint.
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Osteophytes are osseous outgrowths at the margin of the articular surface. 

Though they are considered characteristic manifestations of OA, osteophytes 

are also seen in the absence of cartilage loss (Moskowitz and Goldberg 1987). 

Their formation proceeds through an initial chondrophytic stage followed by 

endochondral calcification and fusion with cortical bone (Hardingham 2004). 

This process can be stimulated by transforming growth factor-p1 (van 

Beuningen et al. 1994) and may also involve basic fibroblast growth factor 

(Uchino et al. 2000).

It is possible that the osteophyte is an adaptive response of the OA process. 

Studies during total knee replacement surgery have found that removal of 

osteophytes increased varus or valgus instability (Pottenger et al. 1990). Thus, 

marginal osteophytes appear to stabilize OA knees, though their presence can 

also cause fixed deformities.

Bone bruises

Structural changes to bone are also seen with magnetic resonance imaging 

(MRI). Early MRI of patients with acute injury and anterior cruciate ligament tear 

has identified an occult osteochondral lesion (also known as a “bone bruise”) in 

over 80% of knees (Rosen et al. 1991; Speer et al. 1992). Though not well 

pathologically characterised, these lesions are thought to represent blood, 

oedema, hyperaemia and, possibly, microfracture of the trabecular subchondral 

bone (Mink and Deutsch 1989). Over time, the bone bruise that follows acute 

anterior cruciate ligament injury can be associated with thinning of adjacent 

cartilage (Faber et al. 1999). Furthermore at arthroscopy the overlying cartilage 

is softened and shows histological evidence of damage including degeneration 

of chondrocytes and loss of proteoglycan (Johnson et al. 1998). Patients with 

established knee OA also have these “bone marrow oedema” lesions which are 

associated with painful symptoms (Felson et al. 2001) and an increased risk of 

progressive disease (Felson et al. 2003).
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1.2.4.2 OA subchondral bone: changes in metabolism and molecular 

composition
Alterations to subchondral bone metabolism provide explanatory mechanisms 

for some of the observed structural changes described above. In addition, 

abnormal bone metabolism may directly influence cartilage metabolism through 

biochemical mechanisms.

(a) Abnormal bone turnover/ remodelling

Bone scan
Convincing evidence for a role of subchondral bone metabolism in OA 

pathogenesis comes from temporal and topographical associations between 

metabolic changes seen with bone scintigraphy and the OA process. Bone 

scintigraphy is an imaging technique that involves the intra-venous injection 

of a bone-seeking radio-pharmaceutical (usually a technetium-99m-labelled 

bisphosphonate) followed by its localisation with a gamma camera. The 

intensity of isotope uptake seen on the scan reflects the rate of bone 

remodelling (Schauwecker 2003). In patients with generalised nodal OA, 

bone scintigraphy abnormalities predicted the subsequent detection of 

radiographic OA change three to five years later, whereas baseline 

radiographic OA changes on their own had no predictive value (Hutton et al. 

1986). Bone scintigraphy has also been found to identify cases of 

progressive disease in patients with established knee OA. Eighty-eight 

percent of knees that originally demonstrated severe scan abnormalities 

subsequently showed decreasing tibio-femoral joint space after five years. In 

addition, this study found that no knees that scanned normally progressed 

(Dieppe et al. 1993), indicating a high negative predictive value of the test 

for progressive disease.

Overall these findings show that physiological changes to bone that are 

detected by bone scan can precede structural OA changes identified by 

radiograph in specific joints. Later on in the OA process, the bone scan can
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become negative though abnormal structural alterations will persist on the 

radiograph (Schauwecker 2003).

Biomarkers of bone turnover

Markers of total bone turnover that can be measured in serum, urine or 

synovial fluid are being evaluated as indicators of subchondral bone 

formation and resorption (Lohmander and Poole 2003). Several studies 

have demonstrated increased levels of bone turnover markers in patients 

following acute joint injury (Lohmander et al. 1996) or in cases of established 

OA (Astbury et al. 1994; Campion et al. 1989; Seibel et al. 1989; Thompson 

et al. 1992). However, others have found reduced bone turnover markers in 

patients with knee OA (Gamero et al. 2001b) and hand OA (Sowers et al. 

1999). All of these studies were cross-sectional in design and thus the 

differences may have arisen due to variation in the rate of bone turnover at 

different stages of the OA process. A longitudinal study found that bone 

resorption markers were increased in patients with progressive knee OA but 

not elevated in those with non-progressive knee OA (Bettica et al. 2002). 

These findings support the bone scintigraphy data, indicating that bone 

remodelling appears to be a dynamic process in OA.

There is also evidence at the tissue or cell level that subchondral bone 

turnover is elevated in OA. Osteocalcin levels (Hilal et al. 1998) and alkaline 

phosphatase activity (Hilal et al. 1998; Lajeunesse 2004; Mansell et al.

1997; Mansell and Bailey 1998), both markers of bone formation (Westacott 

2003), have been found to be elevated. This increased turnover may relate 

to an altered phenotype of osteoblasts (Hilal et al. 1998) or be driven by 

elevations in osteoblast-stimulating cytokines, such as insulin-like growth 

factor and transforming growth factor-p, which have been observed in OA 

subchondral bone (Hilal et al. 1998; Mansell and Bailey 1998). Transforming 

growth factor-p may be particularly important for osteophyte formation (van 

Beuningen et al. 1994).

H istomorphometry
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Histomorphometric analyses employing tetracycline labelling indicate that 

bone remodelling of subchondral plate is one of the earliest changes seen in 

response to impulsive loading in a rabbit model of OA (Radin et al. 1984). In 

addition, studies of human samples using static histomorphometry indicate 

increased bone turnover in the OA subchondral bone from the femoral 

heads (Grynpas et al. 1991).

Bone remodelling is a well characterised process comprised of coupled 

events (activation, resorption and then formation) that sequentially occur at 

the same location. Activation of osteoclasts leads to their resorption of bone, 

and then during formation, osteoblasts produce an uncalcified matrix, the 

osteoid. Density and stiffness of bone is endowed by mineralisation of 

osteoid, a process that initially occurs rapidly but requires six months to a 

year for full calcification of the matrix (Burr 2004). Thus, during the OA 

process increased remodelling of subchondral plate will replace old matrix 

with a new under-mineralised one. Such a scenario provides an explanatory 

mechanism for the observed decreases in bone density and stiffness in OA 

subchondral bone (Burr 2004).

(b) Abnormal collagen metabolism in OA subchondral bone
Changes in collagen metabolism are a further indication of subchondral bone 

abnormality in OA. In humans, the subchondral bone from OA femoral heads 

shows increases in collagen synthesis and content compared to age-matched 

controls. Furthermore, this collagen was found to be hypomineralised (Mansell 

and Bailey 1998). Subsequent studies, using a similar source of tissue, have 

demonstrated the unusual presence of type I collagen homotrimer (composed 

of three a1 chains) in addition to the normal type I collagen heterotrimer (two a1 

chains and one a2 chain). The significance of this finding is unclear but, drawing 

on the observations relating to abnormal collagen in osteogenesis imperfecta (a 

condition characterised by poorly mineralised and highly brittle bone), it has 

been hypothesised that the presence of type I collagen homotrimer may explain
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the hypomineralisation and reduced strength of OA subchondral bone (Bailey et 

al. 2002).

(c) OA bone cells altering cartilage metabolism

In vitro, bone cells from OA subchondral bone can produce effects on cartilage 

metabolism. One study isolated cells from the subchondral bone of human OA 

knee joints that demonstrated medial joint surface cartilage damage and 

cultured these cells with non-arthritic cartilage (Westacott et al. 1997). Of the 

bone cell cultures derived from the medial, damaged side of the joint, over a 

third increased GAG release from cartilage. Over three quarters of the cell 

cultures established from the lateral side of the same joints altered cartilage 

metabolism, half of them increasing and half decreasing GAG release. Control 

bone cell cultures from non-arthritic joints had no effect on GAG release. All cell 

cultures secreted osteocalcin, indicating osteoblast-like activity and a bone 

origin. Further work using this co-culture system indicates that aggrecanase 

activity may be the mechanism for increased GAG release from cartilage 

caused by the OA bone cells (Diffin et al. 2001).

Recently another in vitro co-culture study found that osteoblasts isolated from 

sclerotic zones of human OA subchondral bone inhibited aggrecan production 

and increased MMP-3 and MMP-13 expression from co-cultured human OA 

chondrocytes (Sanchez et al. 2005). Because osteoblasts from non-sclerotic 

bone of the same joints did not have these effects on chondrocyte metabolism, 

the authors concluded that sclerotic OA subchondral osteoblasts could 

contribute to cartilage degradation by stimulating MMP production and inhibiting 

aggrecan synthesis.

A biochemical interaction between subchondral bone and cartilage will require a 

communication between compartments. In normal adult joints this does not 

appear to exist since vessels do not penetrate the osteochondral junction (Burr

2003) and diffusion through the subchondral plate does not appear to play a 

role in cartilage nutrition (Ogata et al. 1978). However, during the OA process, a
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route for biochemical interaction may be opened up by microcracks in calcified 

cartilage that have been found in ageing and OA joints (Sokoloff 1993). 

Additional support for the existence of a biochemical communication between 

subchondral bone and cartilage in OA comes from the finding that osteocalcin is 

present in synovial fluid of diseased knee joints (Sharif et al. 1995).

1.2.4.3 Bone mineral density alterations in OA

Measurements of bone mineral density (BMD) that reflect bone mass are used 

in the diagnosis osteoporosis (Kanis 1994). This is a skeletal disorder 

characterised by low bone mass and architectural deterioration of bone tissue 

with a consequent decrease in bone strength and increase in fracture risk (NIH 

Consensus Development Panel on Osteoporosis Prevention 2001). The 

possibility of a relationship between OA and osteoporosis has been widely 

studied. A review of the literature between 1972 and 1996 found that 28 out of 

36 publications reported significant increases in bone mass or bone density in 

OA patients compared to age- and sex-matched controls. Furthermore, 

correction for body weight, a possible confounding factor, did not change the 

results in most studies (Dequeker et al. 1996).

More recent longitudinal studies that have further investigated the association 

between OA and BMD indicate a more complex relationship. Consistent with 

previous findings, a study of a population-based female cohort found that 

patients with high BMD or BMD gain at the femoral neck had an increased risk 

of incident (new onset) knee OA. On the other hand, in patients with established 

knee OA, low BMD or BMD loss was associated with an increased the risk of 

radiographic progression (Zhang et al. 2000). Another study confirmed higher 

BMD measurements (at the hip and spine) in women who went on to develop 

incident knee OA and also found that low BMD at the hip was weakly related to 

knee OA progression (Hart et al. 2002).
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Further evidence for the role of bone loss in the OA process comes from studies 

of BMD in the periarticular bone of affected joints (Kannus et al. 1992; Karvonen 

et al. 1998; Leppala et al. 1999). Ten to eleven years following surgical 

treatment for anterior cruciate ligament rupture secondary to acute knee injury, 

BMD measurements have been found to be lower around the injured knee 

(distal femur, patella and proximal tibia) compared to the uninjured knee 

(Kannus et al. 1992). BMD was not different between left and right when 

measured further away from the knee at the femoral neck or calcaneus. This 

type of bone loss is seen as early as 12 months following knee injury (Leppala 

et al. 1999) and appears to occur irrespective of whether subjects have 

osteoporosis based on spine BMD (Karvonen et al. 1998). The findings from 

these three studies are consistent with the reported lower mineralization and 

material density of OA subchondral bone that is seen histologically (Grynpas et 

al. 1991; Li and Aspden 1997).

Overall the findings indicate that high BMD is associated with OA, in particular 

the risk of developing OA. However, once the OA process is established, 

localised bone loss occurs around affected joints and reductions in BMD are 

associated with disease progression.

1.2.5 Limitations to interpreting studies of cartilage and bone change in 

OA
As detailed in sections 1.2.3 and 1.2.4, a great deal of insight has been 

provided into the underlying mechanisms behind the changes to cartilage and 

bone in OA. However, many findings have arisen from in vitro or in vivo studies 

performed under specific circumstances. Collective interpretation of the 

evidence base to draw conclusions about common events or pathways of the 

OA disease process is limited by differences between studies that could have 

led to different active metabolic processes. Those that are likely to be important 

include between-study differences in:
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(a) Dominant aetiological factors. Differences in these factors may be 

difficult to identify, particularly in human studies in which multiple risk 

factors may be involved.

(b) Duration of disease activity prior to assessment of outcome measures. 

OA pathogenesis proceeds slowly and most studies have investigated 

only a small part of the process. Dominant mechanisms that occur in 

early OA may be different to those seen in advanced disease.

(c) Species investigated. Variation in cartilage metabolism is seen between 

species (Cawston et al. 1998; Hughes et al. 1998).

(d) Joint sites investigated. Cartilage metabolism varies not only between 

joints (Eger et al. 2002) but also at different topographical locations 

within a joint (Barakat et al. 2002; Bayliss et al. 1999).

(e) Setting for investigation in terms of in vitro vs. in vivo. During in vitro 

investigation, much of the usual physiological, biochemical and 

biomechanical environment of the joint tissue of interest is often absent. 

These environmental factors are important for regulating tissue 

metabolism in cartilage and the osteochondral unit (discussed in sections 

1.2.3.6 and 1.2.4).

Thus, caution should be exercised when extrapolating findings between studies.

1.3 Is there a role for zoledronate as a disease-modifying treatment in 

osteoarthritis?
Zoledronate and other bisphosphonates are best known clinically as efficacious 

treatments for various metabolic bone conditions. Interestingly, findings from in 

vivo and in vitro studies suggest that certain bisphosphonates may be useful as 

disease-modifying therapies in OA with possible mechanisms of action on 

cartilage or bone or their interactions in the osteochondral unit.
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1.3.1 Zoledronate and other bisphosphonates as therapies for metabolic 

bone diseases
Over the last four decades, bisphosphonates have become established as 

effective inhibitors of bone resorption with therapeutic efficacy in the treatment 

of various metabolic bone disorders such as osteoporosis, Paget’s disease, 

myeloma and bone metastases (Russell 2006).

Chemically, bisphosphonates are stable analogues of inorganic pyrophosphate, 

a naturally occurring inhibitor of hydroxyapatite crystal formation and dissolution 

which is thought to be important for regulation of tissue mineralisation (Francis 

et al. 1969). The phosphonate-carbon-phosphonate structure of 

bisphosphonates (Fig. 1.3) is important for binding to hydroxyapatite of bone 

mineral, enabling these compounds to localise to the skeleton. From there they 

are well placed to exert effects on bone-resorbing osteoclasts (Russell 2006).

The anti-resorptive potency of bisphosphonates has been found to relate to the 

composition of the R2 side chain on the bridging carbon atom (Fig. 1.3). 

Etidronate and clodronate are early generation bisphosphonates that 

respectively have a methyl group or chlorine atom at the R2 position (Fig. 1.4) 

and were the first to enter clinical use. Newer compounds with side chains 

containing nitrogen, such as pamidronate and alendronate (Fig. 1.4) were 

subsequently developed which demonstrated increased anti-resorptive potency. 

The most potent bisphosphonates were found to be those in which the nitrogen 

was contained within a heterocyclic ring, for example risedronate and 

zoledronate (Fig. 1.4) (Russell 2006).

Zoledronate has a R2 side chain with two nitrogen atoms contained within a 

heterocyclic ring and in one in vivo model of bone resorption, its potency was 

observed to be 850 times more than pamidronate and >10000 times more than 

etidronate (Green et al. 1994). Currently in the UK, zoledronate is licensed for 

the treatment of Paget’s disease of bone, the prevention of skeletal-related
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events in advanced bone malignancies and the treatment of tumour-induced 

hypercalcaemia (2007a; 2007b). In addition, the results of a recent clinical trial 

indicate efficacy for zoledronate in the treatment of osteoporosis in post­

menopausal women (Black et al. 2007).

Bisphosphonates: mechanisms of bone anti-resorptive activity

Considerable attention has been directed towards elucidating the mechanisms 

by which bisphosphonates inhibit bone resorption. The principal mechanism is 

thought to be a direct effect on osteoclasts following cellular uptake by 

endocytosis (Russell 2006). Cellular effects that have been seen include 

diminished osteoclast formation, resorptive activity and survival (Benford et al. 

2001; Flanagan and Chambers 1991; Hughes et al. 1989; Hughes et al. 1995; 

Selander et al. 1994; Selander et al. 1996). Results of work to unravel these 

cellular mechanisms at a biochemical level has led to the proposal that 

bisphosphonates can be classified into at least two major groups based on 

modes of intracellular action (Table 1.6) (Russell 2006).

Table 1.6. Classification of bisphosphonates according to mechanism of action. Adapted 

from (Russell 2006).

Non-nitrogen bisphosphonates Nitrogen-containing bisphosphonates

Bisphosphonate Molecular 
mechanism of 
action

Bisphosphonate Molecular 
mechanism of 
action

Etidronate

Clodronate

Tiludronate

Incorporated into 

intracellular 

analogues of ATP

Pamidronate

Alendronate

Risedronate

Ibandronate

Zoledronate

Inhibit the prenylation 

and function of GTP- 

binding proteins 

required for 

osteoclast formation 

and survival

The first group is comprised of non-nitrogen bisphosphonates such as 

etidronate and clodronate which have been shown to be metabolised to
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analogues of adenosine triphosphate (ATP) (Auriola et al. 1997; Frith et al.

1997; Pelorgeas et al. 1992). These metabolites are non-hydrolysable and 

accumulate in the cell cytoplasm, a process that is thought to lead to adverse 

effects on cell metabolism, function and survival (Russell 2006). For example 

clodronate has been shown to increase osteoclast apoptosis via the intracellular 

accumulation of a clodronate metabolite (AppCCI2p) (Frith et al. 2001).

The more potent anti-resorptive bisphosphonates that contain nitrogen form the 

second group (Table 1.6). These compounds do not appear to be metabolised 

to analogues of ATP (Frith et al. 1997; Rogers et al. 1994) and act in a different 

fashion. All nitrogen-containing bisphosphonates have been shown to inhibit the 

mevalonate pathway (Russell 2006). This pathway is responsible for the 

biosynthesis of cholesterol and other sterols, and also isoprenoid lipids (such as 

famesyldiphosphate and geranylgeranyldiphosphate) that are needed for the 

post-translational prenylation of small guanine triphosphate (GTP) binding 

proteins (e.g. Ras, Rab, Rho and Rac). These GTP proteins regulate a variety 

of cellular functions including membrane ruffling, trafficking of vesicles and 

apoptosis (Fukuda et al. 2005; Ridley et al. 1992; Zerial and Stenmark 1993). In 

osteoclasts, Rac1 and Rho have been found to play significant roles in 

facilitating bone resorptive activity (Fukuda et al. 2005; Zhang et al. 1995).

Thus, the mechanism of anti-resorptive activity seen with the nitrogen- 

containing bisphosphonates appears to be through interference of protein 

prenylation and the downstream function of several GTP binding proteins that 

are important for osteoclast function (Russell 2006). Farnesyl diphosphate 

synthase, an enzyme within the mevalonate pathway that catalyses the 

synthesis of isoprenoid lipids, has been identified as the specific target of 

action. Consistent with this mechanism of action, the abilities of different 

nitrogen-containing bisphosphonates to inhibit farnesyl diphosphate synthase 

have been shown to closely correlate to their abilities to inhibit bone resorption 

in vivo (Dunford et al. 2001).
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1.3.2 In vivo evidence for zoledronate and other bisphosphonates as 

disease-modifying treatments in OA
In addition to clinical efficacy in metabolic bone disorders, zoledronate may also 

have a role in OA. Substantial, though not universal, support for this concept 

comes from several studies that report on the effects of zoledronate and other 

bisphosphonates in animal models of OA. Results from clinical trials on the 

effects of risedronate in knee OA patients have also recently become available 

(Bingham, III et al. 2006; Spectoret al. 2005).

1.3.2.1 Effects of zoledronate on chymopapain-induced cartilage damage 

in an animal model of OA
Injections of chymopapain into the knee joints of rabbits have been found to 

cause persistent cartilage and bone changes similar to those seen in OA 

(Muehleman et al. 2002; Uebelhart et al. 1993; Williams et al. 1993). 

Chymopapain is a cysteine endopeptidase of the papain family that has 

aggrecanolytic activity (Dekeyser et al. 1995) but does not cause direct damage 

to collagen fibres (Postacchini et al. 1982).

Cartilage and bone changes have been characterised for the OA model. Two 

days after intra-articular chymopapain injections, pronounced loss of cartilage 

proteoglycan occurs followed by fibrillation of the articular surface and 

chondrocyte loss at three weeks (Uebelhart et al. 1993; Williams et al. 1988). 

Subsequently, at six months, the cartilage becomes eroded in loaded regions 

and marginal osteophytes develop. Associated with these changes there are 

increases in urinary levels of lysyl pyridinoline (LP) and hydroxylysyl pyridinoline 

(HP) crosslinks of collagen (Muehleman et al. 2002; Uebelhart et al. 1993). LP 

cross-links appear to be fairly specific for collagen in bone whereas HP collagen 

cross-links are found in bone and cartilage (Eyre et al. 1988). Thus, the 

elevated urinary levels of LP and HP cross-links are considered to reflect 

increased collagen catabolism in bone and bone or cartilage respectively 

(Uebelhart et al. 1993).
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In a controlled-study that used this model of cartilage damage, zoledronate 

treatment has been found to partially reduce levels of grossly- and 

histologically-detectable cartilage degeneration (Muehleman et al. 2002). 

Commencing 24 hours before intra-articular chymopapain, zoledronate 10 pg/kg 

was administered to rabbits by subcutaneous injection three times a week, 

dosing that approximates to the monthly intravenous zoledronate 4 mg regimen 

that is used clinically in humans (personal communication from Dr. J.R. Green, 

Novartis Pharma AG). Animals were sacrificed for histological and biochemical 

analyses 28 days and 56 days post chymopapain and the results for these two 

time points were reported together. Though all chymopapain-injected knees, 

whether the animals were zoledronate-treated or not, demonstrated cartilage 

damage compared to uninjected control knees, partial reductions for some 

outcome measures were observed with zoledronate treatment.

A gross visual grade was used to measure cartilage fibrillation, fissuring and 

erosion, and also osteophytes in the knee joints (Muehleman et al. 2002). 

Chymopapain injections led to significant increases in joint damage assessed 

by the visual grade and this effect was partly attenuated by zoledronate 

treatment. Articular cartilage was also scored for microscopic histological 

change. On a 15-point scale that assessed surface integrity, cell clone 

formation and cellularity (15 points representing the highest level of 

degenerative change), the mean score for tibial cartilage was lower for 

chymopapain-injected/ zoledronate treated rabbits than chymopapain-injected 

rabbits (mean scores 5.8 and 8.6 respectively; P=0.001 for the difference). In 

addition, for patella cartilage there was a trend for a lower score in the 

chymopapain-injected/ zoledronate treated group compared to the 

chymopapain-injected group (mean scores 6.5 and 7.3 respectively; P=0.07 for 

the difference).

Biochemical analyses revealed a trend for improved cartilage proteoglycan 

retention with zoledronate treatment (Muehleman et al. 2002). Chymopapain-
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injected/ zoledronate-treated animals demonstrated a 21% reduction in cartilage 

proteoglycan content of injected knees compared to 28% for chymopapain- 

injected animals (P=0.12 for difference between groups). However, rises in 

serum levels of keratan sulphate (a proposed measure of cartilage proteoglycan 

degradation (Williams et al. 1988)) with chymopapain injections were not altered 

by zoledronate treatment.

In association with these histological and biochemical findings, the study also 

found indirect evidence for inhibition of bone remodelling with zoledronate 

treatment (Muehleman et al. 2002). Urinary levels of LP cross-links rose with 

chymopapain injections but not with concomitant zoledronate treatment.

Based on the study findings, the authors hypothesised that inhibition of bone 

remodelling by zoledronate in the model might be the mechanism for the 

observed protective effects on cartilage damage (Muehleman et al. 2002). 

However, the pathophysiological relationship between subchondral bone 

remodelling and cartilage degradation in the model is not clear (discussed in 

section 1.2.4). Clearly another possibility is inhibition of chymopapain proteolytic 

activity, though such an ability has not been reported in the MEROPS peptidase 

database (Rawlings et al. 2006). Alternatively, the mechanism could be a direct 

effect by zoledronate on cartilage metabolism (further discussed below).

1.3.2.2 Effects of zoledronate in a cruciate-deficient animal model of OA

Surgical transection of the anterior cruciate ligament of the stifle joint in dogs 

causes joint instability and provides an animal model in which persistent OA-like 

lesions develop (Brandt et al. 1991). A few weeks after ligament transection, the 

articular cartilage begins to swell. Cartilage degeneration subsequently 

develops with fibrillation, loss of surface tissue and chondrocyte cloning.

Marked osteophyte formation is apparent at about three months (Griffiths and 

Schrier 2003) and eventually cartilage ulceration progresses to full thickness 

loss (Brandt et al. 1991). Other changes that have been observed in unstable
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knees in the model include increases in bone turnover (Brandt et al. 1997), 

decreases in periarticular BMD indicative of bone loss (Agnello et al. 2005; 

Behets et al. 2004; Boyd et al. 2000) and mechanical weakening of periarticular 

cancellous bone (Wohl et al. 2001).

The effects of zoledronate treatment have been evaluated in this model of OA 

(Agnello et al. 2005). Though articular cartilage changes were not assessed, 

subcutaneous zoledronate treatment was found to inhibit elevations in serum 

osteocalcin and bone-specific alkaline phosphatase (markers of systemic bone 

remodelling) and to prevent decreases in periarticular BMD that occurred 

following anterior cruciate transection.

1.3.2.3 Other bisphosphonates and in vivo models of OA

Substantial attention has focused on risedronate as a possible disease- 

modifying treatment in OA. The bisphosphonate was initially evaluated in an 

animal OA model (Meyer et al. 2001a; Meyer et al. 2001b). The Duncan-Hartley 

strain guinea pigs that were used in the studies are known to develop 

spontaneous cartilage degeneration (Bendele and Hulman 1988) preceded by 

subchondral bone remodelling (Griffiths and Schrier 2003; Quasnichka et al.

2006). Treatment with risedronate or with bisphosphonates structurally similar 

to risedronate was found to slow progression of macroscopically-evident 

cartilage degeneration and osteophyte formation in Duncan-Hartley guinea pigs 

(Meyer et al. 2001a; Meyer et al. 2001b). Interestingly, alendronate and other 

bisphosphonates structurally dissimilar to risedronate did not demonstrate 

treatment effects in this model. Risedronate has also been found to protect 

against periarticular BMD loss and to partly attenuate the deterioration in some 

of the mechanical properties of bone and ligament in the knee joints of rabbits 

with instability induced by ACL transection (Doschak et al. 2004). These 

favourable results for risedronate have been followed by studies in human OA.
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A British one-year prospective randomised placebo-controlled trial investigated 

the effects of risedronate in 284 patients with OA of the medial compartment of 

the knee (Spector et al. 2005). Patients taking the higher dose of risedronate 

tested (15 mg daily) showed improvement in symptoms and function as 

assessed by the Western Ontario and McMaster Universities (WOMAC) OA 

index, the patient global assessment and the use of walking aids. In addition a 

trend towards attenuation of joint-space narrowing was observed. Though 

numbers were small, 8% of patients receiving placebo (n=7) and 4% of those 

receiving 5 mg risedronate daily (n=4) demonstrated radiographic disease 

progression compared with 1% (n=1) of patients receiving 15 mg risedronate 

(P=0.067). Radiographic disease progression was defined as joint-space 

narrowing of £0.75 mm or loss of joint space of £25%. Associated with these 

observations, risedronate treatment reduced urinary levels of N-terminal cross- 

linking telopeptide of type I collagen (NTX-I) and urinary levels of C-terminal 

cross-linking telopeptide of type II collagen (CTX-II). NTX-I and CTX-II are 

proposed markers of bone resorption (Pagani et al. 2005) and cartilage 

degradation respectively (Christgau et al. 2001; Lohmander and Poole 2003).

However, these encouraging results were not reproduced in a large 2-year trial 

that used a similar protocol involving nearly 2500 patients with medial 

compartment knee OA from North America and the European Union (KOSTAR 

study)(Bingham, III et al. 2006). Risedronate treatment did cause a dose- 

dependent reduction in urinary CTX-II levels but, for the primary outcomes 

investigated, risedronate (5 mg daily, 15 mg daily, 35 mg weekly or 50 mg 

weekly) compared to placebo did not improve symptoms and signs of OA or 

reduce radiographic progression of knee OA.

A more detailed analysis of the patients from the North American arm of the 

KOSTAR study on the effects of risedronate on subchondral bone has been 

reported in a separate study (Buckland-Wright et al. 2007). In patients with 

progressive disease (defined in the study as joint-space narrowing £0.6 mm 

over 2 years in the OA knee), higher doses of risedronate treatment were found
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to inhibit radiographically-measured trabecular bone loss in the subchondral 

region of the diseased medial compartment of the tibia.

Other bisphosphonates have been evaluated using animal models of OA with 

conflicting findings for effects on cartilage degradation. Etidronate given to 

SRT/ORT mice, an inbred strain which commonly develops a severe form of OA 

(Griffiths and Schrier 2003), did not influence the incidence or severity of 

histologically-assessed cartilage degeneration (Walton 1981). The 

bisphosphonate NE-10035 (2-[acetylthio]ethylidene-1, 1-bisphosphonate) has 

been tested in the canine cruciate deficient model of OA (Myers et al. 1999). 

Though NE-10035 effectively reduced subchondral bone turnover, it had no 

effect on osteophyte formation or the severity of OA cartilage changes.

However the authors did note that the cartilage degeneration observed in the 

study was mild and the possibility of an inhibitory effect on cartilage damage in 

a model displaying more severe cartilage degradation remained.

Disease-modifying effects have been demonstrated with alendronate treatment 

in the rat ACL transection model of OA (Hayami et al. 2004). This 

bisphosphonate was found to prevent osteophyte formation, inhibit bone 

turnover (assessed by bone histomorphometry) and partially protect against the 

development of histologically-observed cartilage degeneration. Consistent with 

these structure-modifying effects, alendronate also reduced urinary levels of 

CTX-II and C-terminal telopeptide of type I collagen (CTX-I; a marker of bone 

resorption (Pagani et al. 2005)).

1.3.2.4 Zoledronate and other bisphosphonates in inflammatory arthritis

Following encouraging findings from animal models of inflammatory arthritis, 

there has been recent interest in the use of bisphosphonates to reduce the 

development of bone erosions in inflammatory arthritic conditions such as 

rheumatoid arthritis (Breuil and Euller-Ziegler 2006; Goldring and Gravallese

2004). In addition, zoledronate has been found to partly inhibit cartilage
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degradation along with decreasing focal bone damage in transgenic mice with 

tumour necrosis factor-mediated arthritis (Herrak et al. 2004) and in rabbits with 

carrageenan-induced inflammatory arthritis (Podworny et al. 1999).

However, several clinical trials with bisphosphonates in patients with 

rheumatoid arthritis have found more equivocal results. No evidence for efficacy 

with respect to preventing the progression of focal bone destruction was 

observed for pamidronate in two studies (Lodder et al. 2003; Ralston et al.

1989) and etidronate in one study (Valleala et al. 2003) though another trial 

demonstrated a beneficial effect for pamidronate (Maccagno et al. 1994). In 

addition, a small study of 39 rheumatoid arthritis patients has found that 

zoledronate treatment can prevent the development of new bone erosions 

(Jarrett et al. 2006).

Extrapolation of the findings arising from studies of inflammatory arthritis to OA 

is questionable because the underlying pathogenic mechanisms are different.

By definition there is often intense synovial inflammation driving the pathology in 

inflammatory arthritis. This is not usually present in OA. However, the beneficial 

effect of zoledronate on cartilage damage in the animal models of inflammatory 

arthritis was unlikely to have been due to an anti-inflammatory action since no 

accompanying reductions in synovitis were observed (Herrak et al. 2004; 

Podworny et al. 1999), suggesting an alternative mechanism such as a direct 

effect on cartilage metabolism. In both inflammatory arthritis and OA, MMPs 

and aggrecanases are key mediators of cartilage matrix destruction (Clark and 

Parker 2003; Elliott and Cawston 2001). Thus, the findings from these studies of 

zoledronate in models of inflammatory arthritis (Herrak et al. 2004; Podworny et 

al. 1999) may be relevant for considering a role for the bisphosphonate in OA.
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1.3.3 Exploring potential mechanisms of action of zoledronate as a 

disease-modifying treatment in OA

Understanding the mechanisms by which zoledronate might be able to modify 

the OA disease process will support a role for the bisphosphonate as a 

treatment for OA. In the subsequent discussion the following possible targets for 

zoledronate in the OA joint will be considered:

(a) Inhibition of bone remodelling

(b) A direct effect on cartilage metabolism

Although findings with respect to bisphosphonates other than zoledronate will 

continue to be discussed, it is useful to bear in mind that disease-modifying 

effects seen with bisphosphonate treatment in one animal OA model did not 

relate to bisphosphonate anti-resorptive potency (Meyer et al. 2001a; Meyer et 

al. 2001b). The absence of such an association indicates that a bone effect is a 

less likely mechanism, making an effect on cartilage the more attractive 

underlying mechanism of action.

1.3.3.1 Inhibition of bone turnover by zoledronate: a possible mechanism 

for disease-modification in OA?

Structural and metabolic changes to subchondral bone are clearly evident in the 

OA joint though their pathophysiological relationship to cartilage loss and the 

OA process are not well understood (discussed in section 1.2.4). Furthermore 

BMD appears to relate to OA incidence and progression. Zoledronate and other 

bisphosphonates have well-known effects on bone, and these may beneficially 

modify the OA process. In this section, the effects of bisphosphonate on bone 

and their possible implications for the OA joint are discussed.

Is inhibiting bone remodelling in OA a useful effect?
OA joints that demonstrate increased bone turnover on bone scintigraphy have 

a higher risk of disease progression (Dieppe et al. 1993; Hutton et al. 1986).
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Thus, using a bisphosphonate such as zoledronate to inhibit bone remodelling 

and modify this risk factor may retard OA disease progression.

Support for this concept comes from the numerous in vivo studies that 

evaluated zoledronate and other bisphosphonates in models of OA which found 

favourable treatment effects on OA cartilage and subchondral bone (Agnello et 

al. 2005; Buckland-Wright et al. 2007; Doschak et al. 2004; Hayami et al. 2004; 

Meyer et al. 2001a; Meyer et al. 2001b; Muehleman et al. 2002; Spector et al.

2005). In addition, calcitonin, another bone anti-resorptive agent, has been 

found to reduce the severity of OA cartilage lesions in the canine ACL 

transection OA model (Manicourt et al. 1999) and to attenuate cartilage and 

subchondral bone changes in the rabbit ACL transection OA model 

(Papaioannou et al. 2007)

Ultimately, whether inhibition of bone remodelling is beneficial in OA will depend 

on the role of bone remodelling during OA pathogenesis. This remains an area 

that is not well understood. However, it is interesting to consider how modifying 

bone metabolism might affect the OA process.

Implications of effects on BMD and subchondral bone structure
Zoledronate treatment leads to sustained increases in BMD in post-menopausal 

women with osteoporosis, along with reducing the risk of fracture (Black et al.

2007). It is likely that the bisphosphonate would also increase BMD in OA 

patients. If the BMD status of patients that has been found to be associated with 

OA according to epidemiological data (discussed in section 1.2.4.3) turns out to 

be a causal risk factor for OA, then zoledronate treatment to increase BMD 

could increase the risk of incident OA but, on the other hand, reduce the risk of 

disease progression in established OA.

With regard to local bone loss, subcutaneously-administered zoledronate was 

found to prevent significant BMD decreases in periarticular bone in the canine 

ACL transection model of OA, (Agnello et al. 2005). Additionally, zoledronate
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has been observed to increase the mechanical strength of long bones of 

ovariectomised rats (Hornby et al. 2003) and if such effects also occurred in 

periarticular bone, the subchondral plate might be protected from acute 

structural failure and the development of microcracks. However, the 

pathophysiological significance of such structural changes in OA is not clear. 

Strengthening OA subchondral bone may also prevent articular surface 

deformity and limb malalignment, changes that are thought to arise from 

collapse of weakened subarticular cancellous bone (Buckland-Wright 2004).

Bisphosphonates may also reduce osteophyte formation. In the rat ACL 

transection model of OA, alendronate was found to dose-dependently decrease 

the incidence and area of osteophytes (Hayami et al. 2004). In addition, 

risedronate reduced the size of osteophytes that developed in the Duncan- 

Hartley guinea pig OA model (Meyer et al. 2001b). However, treatment with the 

bisphosphonate NE-10035 in the canine ACL transection OA model (Myers et 

al. 1999) or risedronate in patients with knee OA (Bingham, III et al. 2006) did 

not produce effects on osteophyte formation. Inhibition of osteophyte formation 

will clearly modify one of the characteristic features of OA, but because the 

osteophyte might actually improve joint instability (Pottenger et al. 1990), this 

disease-modifying effect may not be beneficial for the OA process.

Potential effects of zoledronate on a possible biochemical interaction 

between OA subchondral bone and articular cartilage

Osteoblasts from OA subchondral bone can biochemically stimulate GAG 

release or inhibit aggrecan synthesis in cartilage, and so may be important for 

cartilage degradation (Sanchez et al. 2005; Westacott et al. 1997). If this 

abnormal osteoblastic activity occurs as part of bone remodelling, then a potent 

anti-resorptive therapy such as zoledronate could have beneficial effects. 

Another possibility is a direct effect on the OA osteoblasts since zoledronate 

has been found to directly act on osteoblasts to inhibit their proliferation 

(Fromigue and Body 2002; Reinholz et al. 2000).
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1.3.3.2 Does zoledronate have effects on cartilage metabolism?

Can zoledronate localise to cartilage?

Localisation of zoledronate to cartilage has not been reported, but one 

theoretical route for systemically-administered zoledronate to reach cartilage is 

via bone. The bisphosphonate has a high adsorption affinity for hydroxyapatite 

(Nancollas et al. 2006) and is avidly taken up by bone following intravenous 

administration (Green and Rogers 2002). Because bisphosphonates in general 

bind preferentially to areas of bone which have high turnover rates (Lin 1996), 

such as OA subchondral bone (section 1.2.4.2), it is likely that zoledronate can 

localise to the bone underlying articular cartilage in the OA joint. Possible routes 

from subchondral bone to cartilage include the synovial fluid and microcracks in 

OA calcified cartilage (section 1.2.4.2).

Alternatively, the blood circulation could deliver the bisphosphonate directly to 

cartilage in diseased joints. Though blood vessels do not penetrate from 

subchondral bone through to cartilage in normal synovial joints, capillary 

invasion of the tidemark is seen in OA (Sokoloff 1993). Overall, the existence of 

these possible access routes is consistent with the concept that the protective 

effects on cartilage damage with zoledronate treatment observed in an animal 

OA model (Muehleman et al. 2002) could have occurred through a direct action 

on cartilage.

Effects of bisphosphonates on chondrocyte synthetic function and 

survival
In vitro work has demonstrated direct effects of bisphosphonates on cartilage or 

chondrocyte matrix synthesis, though there is some discordance between 

studies. Etidronate and clodronate (at concentrations ranging from 10'6 M to 

5x10*4 M) were shown to produce reversible inhibition of GAG synthesis in 

canine articular cartilage explants (Palmoski and Brandt 1978). However, for 

rabbit articular chondrocytes, clodronate (2.5x1 O'5 M and 2.5x1 O'4 M), but not
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etidronate (2.5x1 O'4 M), was found to increase GAG and collagen synthesis 

(Guenther et al. 1979; Guenther et al. 1981). In addition, mild inhibition of cell 

proliferation was observed for 2.5x1 O'4 M clodronate and 2.5x10‘4 M etidronate 

(Guenther et al. 1979).

Chondrocyte survival appears to be promoted by some bisphosphonates under 

certain conditions. In an in vitro study of bovine articular chondrocytes, 

incubation with glucocorticoid dexamethasone was used to reduce cell viability, 

to increase cell apoptosis and to inhibit cell proliferation in the cultures (Van 

Offel et al. 2002). Each of these detrimental effects on chondrocytes was 

partially prevented by co-treatment with pamidronate (10"6 M) or risedronate 

(1CT8 M or 10'6 M) but not with clodronate (Van Offel et al. 2002). Higher 

concentrations of the bisphosphonates were not protective and, moreover, at 

10 4 M and above, the bisphosphonates were found to reduce cell viability or 

proliferation.

Effects of zoledronate and other bisphosphonates on chondrocyte- 

mediated degradation of cartilage matrix
Evidence from several studies points towards cartilage matrix catabolism as a 

potential target for zoledronate. Reductions in urinary CTX-II levels have been 

observed in patients with Paget’s disease of bone following intravenous 

zoledronate (Garnero et al. 2001a). Though the OA status of the subjects was 

unknown, and so it is not clear whether the effects might relate to normal or OA 

cartilage, the findings do suggest that the bisphosphonate has an ability to 

inhibit type II collagen degradation. Furthermore, the observed reduction in 

urinary CTX-II was rapid (within five days) and transient which points towards a 

direct effect of zoledronate on cartilage rather than on subchondral bone with 

consequent changes to cartilage metabolism. This is because (i) five days is too 

early to see structural alterations to subchondral bone that could have had 

secondary effects on cartilage; and (ii) an effect that arose from inhibition of 

bone remodelling should have been persistent.
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In agreement with a possible effect of bisphosphonates in general on collagen II 

metabolism, decreases urinary CTX-II have also been observed following 

risedronate treatment in knee OA patients (Bingham, III et al. 2006; Spector et 

al. 2005). One caveat about these studies involving urinary CTX-II assays is 

that there may be unknown factors affecting systemic metabolism of the marker 

prior to its measurement in urine which could complicate interpretation 

(Lohmander and Poole 2003).

Direct evidence for an effect on cartilage matrix catabolism comes from in vitro 

work. Three reported studies employed a similar culture model in which an IL-1- 

like factor (either derived from mononuclear cells, macrophages, or synovial 

tissue) was used to stimulate proteinase production by articular chondrocytes 

(Emonds-Alt et al. 1985; Evequoz et al. 1985; McGuire et al. 1982). Cultures 

were also treated with the bisphosphonates of interest and at the end of the 

culture period proteinase activity was assayed in the chondrocyte-conditioned 

culture medium. Findings indicate that chondrocyte-derived proteinase activity 

can be influenced by bisphosphonates, though the reports are somewhat 

conflicting as to the direction of effect.

Addition of etidronate 2.5x10‘5 M or pamidronate 2.5x1 O'6 M was found to 

enhance the collagenase activity produced by stimulated rabbit chondrocytes, 

though treatment effects were not seen with clodronate (2.5x1 O'5 M or 

2.5x10‘4 M) or etidronate at a higher concentration (2.5x10‘4 M)(Evequoz et al. 

1985). Another study also evaluated etidronate and clodronate but used human 

chondrocytes (McGuire et al. 1982). However, in these experiments, 2.5x10'4 M 

etidronate or 2.5x1 O'4 M clodronate were both found to inhibit stimulated 

collagenase activity. A limitation of both studies is that specific data on possible 

cytotoxic effects of the bisphosphonates were not shown and, thus, cell death 

can not be excluded as the mechanism for any observed inhibitory effects.

From a third study with similar methodology, tiludronate (10'5 M to 5x1 O'4 M) 

was seen to dose-dependently inhibit proteinase activity (against collagen,
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proteoglycan and casein) produced by stimulated rabbit chondrocytes (Emonds- 

Alt et al. 1985). Etidronate (1 O'4 M to 10'3 M) also inhibited these enzyme 

activities but was much less potent. In this study, the bisphosphonates at the 

concentrations tested did not induce chondrocyte toxicity.

In addition, the effects of etidronate and pamidronate on proteoglycan 

degradation in bovine nasal septum cartilage have been examined (Couchman 

and Sheppeard 1986). Following culture of the bisphosphonates with cartilage, 

the amount of GAG released from cartilage into the medium was measured. In 

this culture model, 10'5 M pamidronate increased GAG release, though no 

effect was observed with 10'5 M etidronate.

It is not clear why the results are discrepant between in vitro studies. Factors 

that may have been significant include (i) inter-species differences in 

chondrocyte metabolism (Hughes et al. 1998), (ii) differences in metabolism 

between nasal and articular cartilage (Caterson et al. 2000), (iii) differential 

effects between bisphosphonates and (iv) differing bisphosphonate treatment 

concentrations between studies in conjunction with possible cytotoxic effects at 

high bisphosphonate concentrations (Van Offel et al. 2002). Nonetheless, there 

are findings to suggest that certain bisphosphonates (etidronate, clodronate and 

tiludronate) can favourably inhibit chondrocyte-mediated catabolism of matrix 

(Emonds-Alt et al. 1985; McGuire et al. 1982).

Effects of zoledronate and other bisphosphonates on MMP activity

At the biochemical level, inhibition of the matrix-degrading enzymes, the MMPs 

and the aggrecanases, is an attractive therapeutic strategy to prevent cartilage 

loss in arthritic conditions including OA (Clark and Parker 2003). Several reports 

by a Finnish research group indicate that zoledronate and other 

bisphosphonates can directly reduce MMP activity in vitro (Heikkila et al. 2002; 

Konttinen et al. 1999; Teronen et al. 1997a; Teronen et al. 1997b; Teronen et 

al. 1999). These studies employed cell-free enzyme activity assays using
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various substrates such as casein, pro-urokinase, gelatine and type I collagen, 

though not aggrecan or type II collagen.

Zoledronate (concentration range 2x1 O'5 M to 10‘3 M) was found to inhibit 

human MMPs-3, 8, 13 and 20 in a concentration-dependent fashion with fifty 

percent inhibition (IC50) of MMP-20 activity occurring at zoledronate 

concentrations between 5x1 O'5 M to 10‘4 M (Heikkila et al. 2002). In the same 

study, similar inhibitory effects were seen for clodronate and alendronate 

(against MMPs-1, 2, 3, 8, 9 and 13), and pamidronate (against MMPs-3, 8, 13 

and 20). In addition, increasing the calcium ion concentration in the assay buffer 

attenuated some of the inhibitory abilities of clodronate and alendronate 

suggesting that the mechanism of MMP inhibition involved interaction between 

the bisphosphonate and divalent cations, such as the zinc ion bound at the 

MMP catalytic site.

Separate studies reported by the same group also found inhibitory effects of 

several bisphosphonates on MMP activity. Alendronate reduced MMP-13 

activity (IC50 between 5x1 O'4 M and 7.5x1 O'4 M) (Konttinen et al. 1999), and 

clodronate inhibited the activities of MMP-1 (IC50 1.5x1 O'4 M) (Teronen et al. 

1997b) and MMP-8 (IC50 1.5x10‘4 M) (Teronen et al. 1997a). In addition, 

zoledronate reduced the activities of MMPs-3, 12, 13 and 20 in a concentration- 

dependent fashion with IC50S that ranged from 5x1 O'5 M to 1.5x1 O'4 M (Teronen 

et al. 1999).

Though currently there are no reports on the effects of bisphosphonates on 

aggrecanase activity, metal-chelating chemicals are known to inhibit the 

activities of both MMPs and aggrecanases (Hughes et al. 1998). This is 

understandable since both families of enzymes contain zinc in their metallo- 

proteinase catalytic domain (Murphy and Lee 2005). Thus, in theory, 

bisphosphonates should be able to inhibit aggrecanase activity.
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1.3.4 Summary of evidence. Direction for investigation

In vivo data largely support the concept that there is a role for zoledronate as a 

disease-modifying treatment in OA. Studies that have evaluated zoledronate in 

models of OA and inflammatory arthritis are summarised in Table 1.7. In 

addition, Table 1.8 summarises the in vivo data on other bisphosphonates in 

models of OA. Despite their promising findings, these in vivo studies are not 

able to conclude on underlying mechanisms of action. Exploring potential 

mechanisms of action would provide additional insight towards defining a 

possible role for zoledronate as a disease-modifying treatment in OA.

Clearly zoledronate has well known actions on bone metabolism but an 

alternative target is cartilage metabolism. In cartilage, loss of the principal GAG- 

bearing proteoglycan (aggrecan) from cartilage is a well characterised process

T ab le  1.7. E ffects o f zo ledron ate  in an im al m odels o f osteoarthritis  and  in flam m atory arthritis .
M odel o f O A  o r IA Efficacious

b isphosphonate
dose

Effects observed Reference

Chymopapain- 
induced 
cartilage 
damage in 
rabbits

OA Subcutaneous 
injections; 10 pg/kg 
3x per week

.Partially reduced cartilage damage 
assessed by histology 

•Trend for improved cartilage 
proteoglycan retention 

• Prevented rise in urinary lysyl pyridinoline 
collagen cross-links (marker of bone 
turnover)

(Muehleman 
et al. 2002)

ACL transection 
in dogs

OA Subcutaneous 
injections; 10 pg/kg 
or 25 pg/kg every 
90 days

• Prevented peri-articular BMD decreases
• Inhibited rise in serum osteocalcin 
(marker of osteoblast activity)

(Agnello et 
al. 2005)

Collagen- 
induced arthritis 
in rats

IA Subcutaneous
injections;
>10 ug/kg as a 
single dose

•Reduced bone erosions 
.Reduced juxta-articular trabecular bone 
loss

• Reduced serum type I collagen cross-link 
levels (marker of bone resorption)

(Sims et al. 
2004)

Human tumour 
necrosis factor 
transgenic mice

IA Intra-peritoneal
injections;
100 pg/kg as a 
single dose or 5x 
per week

• Prevented bone erosions
• Partially reduced cartilage damage 
assessed by histology (repeated doses 
only)

. Reduced serum lysyl pyridinoline 
collagen cross-link levels and serum 
osteocalcin levels

(Herrak et 
al. 2004)

Carrageenan- 
induced 
inflammatory 
arthritis in 
rabbits

IA Subcutaneous 
injections; 10 pg/kg 
3x per week

• Preserved subchondral bone integrity 
assessed by histology

• Partially reduced cartilage degradation 
assessed by histology

•Trend for improved cartilage 
proteoglycan retention

(Podworny 
et al. 1999)
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Tab le  1.8. E ffects o f b isphosphonates (o ther than zo ledron ate ) in O A  an im al m odels and OA  
clin ica l trials.
B isphosphonate
evaluated

O A  m odel B isphosphonate
dose

E ffects observed Reference

R isedronate Duncan- 
Hartley 
guinea pigs

Subcutaneous: 
12 pg/kg or 
30 pg/kg 5x per 
week

• Reduced grossly-visible 
cartilage lesion size

• Reduced grossly-visible 
osteophyte size

(Meyer et 
al. 2001b)

ACL
transection

Subcutaneous: 
10 pg/kg daily

• Prevented periarticular BMD 
decreases

(Doschak 
et al.

in rabbits • Partially conserved mechanical 
properties of peri-articular 
bone and the medial collateral 
ligament

2004)

Human 
knee OA 
(clinical trial)

Oral: 5 mg or 
15 mg daily

• Improved symptoms and 
function (15 mg dose)

• Trend for reduced radiographic 
joint space narrowing

• Reduced urinary CTX-II levels 
(marker of cartilage 
degradation)

• Reduced urinary NTX-I levels 
(marker of bone resorption)

(Spector et 
al. 2005)

Human 
knee OA* 
(clinical trial)

Oral: 5 mg/day, 
15 mg/day,
35 mg/week or 
50 mg/week

• No treatment effects 
demonstrated for 
symptoms/signs or 
radiographic joint space 
narrowing

• Reduced levels of urinary 
CTX-II

• Reduced levels of urinary 
NTX-I

(Bingham, 
III et al. 
2006)

Human 
knee OA* 
(clinical trial)

Oral: 5 mg/day, 
15 mg/day, or 
50 mg/week

• In patients with marked 
cartilage loss (radiographic 
joint space narrowing 
> 0.6 mm), conserved 
subchondral bone structure 
(15 mg/day and 50 mg/week 
closing)

(Buckland- 
Wright et 
al. 2007)

E tidronate SRT/ORT
mice

Subcutaneous: 
5 mg/kg or 
50 mg/kg

• No treatment effect on articular 
cartilage degeneration 
assessed by histology

• Reduced levels of bone 
resorption

(Walton
1981)

N E -10035 ACL
transection 
in dogs

Subcutaneous: 
5-10 mg/kg 5x 
per week

• Reduced subchondral bone 
turnover assessed by 
histomorphometry

• No treatment effect on 
osteophyte formation or OA 
cartilage changes assessed by 
histology

(Myers et 
al. 1999)

A lendronate ACL
transection 
in rats

Subcutaneous:
15 pg/kg or
120 pg/kg twice a
week

• Partially reduced cartilage 
damage assessed by histology

• Prevented osteophyte 
formation (120 pg/kg dose)

• Prevented rise in urinary CTX-I 
and CTX-II

(Hayami et 
al. 2004)

‘These two studies involved the same group of patients. OA= osteoarthritis; ACL= anterior cruciate 
ligament; BMD= bone mineral density; CTX-I= C-terminal cross-linking telopeptide of type I collagen; 
CTX-II= C-terminal cross-linking telopeptide of type II collagen; NTX-I= N-terminal cross-linking 
telopeptide of type I collagen
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T ab le  1.9. D irect effects  o f b isphosphonates on cartilage m etabolism
M etabo lic  
p rocess in 
cartilag e

E ffect observed  w ith  various b isphosphonates

B isphosphonate Effect B isphosphonate  
concentra tion  w ith  
activ ity

R eference

C hondrocyte  
surv ival or

Clodronate Reduced 10'4M to 10'3M (Van Offel et 
al. 2002)

pro liferation Pamidronate Reduced 10‘3M (Van Offel et 
al. 2002)

Risedronate Reduced 10'3M (Van Offel et 
al. 2002)

M atrix
synthesis-
G AG

Etidronate Reduced 10'6 M to 5x1 O'4 M (Palmoski and 
Brandt 1978)

Clodronate Reduced 10'6 M to 5x1 O'4 M (Palmoski and 
Brandt 1978)

Clodronate Increased 2.5x10"5 M to 2.5x10‘4 M (Guenther et 
al. 1979)

M atrix
synthesis-
C ollagen

Clodronate Increased 2.5x1 O’5 M to 2.5x10"4 M (Guenther et 
al. 1981)

C hondrocyte
-m ediated

Increased 2.5x1 O'5 M (Evequoz et al. 
1985)

p ro te inase
activ ity

Etidronate Reduced 2.5x1 O'4 M (McGuire et al. 
1982)

Reduced 10'4 M to 10'3M (Emonds-Alt et 
al. 1985)

Increased 2.5x1 O'6 M (Evequoz et al. 
1985)

Pamidronate
Increased 10‘5M

(Couchman
and
Sheppeard
1986)

Clodronate Reduced 2.5x1 O'4 M (McGuire et al. 
1982)

Tiludronate Reduced 10'5 M to 5x1 O'4 M (Emonds-Alt et 
al. 1985);

M M P activ ity

Zoledronate

Inhibited activity of 
MMPs-3, 8, 13 and 
20

2.5x1 O’5 M to 10'3M (Heikkila et al. 
2002)

Inhibited activity of 
MMPs-3, 12, 13 
and 20

IC50 between 5x10‘5 M 
and 1.5x1 O'4 M

(Teronen et al. 
1999)

Pamidronate Inhibited activity of 
MMPs-3, 8 and 13 2x1 O'5 M to 10'3M (Heikkila et al. 

2002)

Alendronate

Inhibited activity of 
MMPs-3, 8 and 13 2x1 O’5 M to 10’3M (Heikkila et al. 

2002)
Inhibited activity of 
MMP-13

IC50 between 5x10'4 M 
and 7.5x104M

(Konttinen et 
al. 1999)

Clodronate Inhibited activity of 
MMPs-1 and 8 IC50 1.5x1 O'4 M

(Teronen et al. 
1997a;
Teronen et al. 
1997b)

GAG= glycosaminoglycan; MMP= matrix metalloproteinase; IC5o= concentration producing 50% 
inhibition of activity

in OA that compromises the physio-chemical behaviour of the tissue (Heinegard 

et al. 2003; Mow and Hung 2003). This compositional change is thought to 

initiate a series of events that leads to irreversible tissue degradation (Sandy 

2006). Thus, reducing the loss of cartilage aggrecan should conserve tissue
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integrity and function, and may represent one way of retarding the OA disease 

process. Since cartilage proteoglycan content is dependent on balance between 

anabolism and catabolism in matrix (Nagase and Kashiwagi 2003), 

interventions to increase proteoglycan synthesis or decrease its degradation 

during the OA process are likely to be beneficial.

At the biochemical level, there is evidence to suggest that zoledronate can 

reduce cartilage matrix degradation. Zoledronate and other bisphosphonates 

have been found to inhibit the activity of various MMPs (summarised in Table 

1.9), one family of proteinases implicated in cartilage matrix degradation. At the 

cell/tissue level, bisphosphonates other than zoledronate have been shown to 

influence chondrocyte viability, matrix synthesis and proteinase production, 

though both beneficial and detrimental effects have been reported (summarised 

in Table 1.9). It is not known whether zoledronate has direct effects on cartilage 

tissue or chondrocytes that alter proteoglycan metabolism.

The following chapters describe studies that have explored hypotheses relating 

to effects of zoledronate on hyaline cartilage at the cell/tissue level. The general 

hypothesis was that zoledronate modifies cartilage metabolism to reduce the 

loss of cartilage glycosaminoglycan during the osteoarthritic process.
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Chapter 2. Hypothesis, experimental design and materials and methods

This chapter describes the experimental approach that was taken. Background 

is provided on the in vitro culture models of OA that were used in the 

experiments. In addition, the basic materials and methods for the models are 

detailed.

2.1 General hypothesis

Zoledronate modifies cartilage metabolism to reduce loss of cartilage 

glycosaminoglycan during the osteoarthritic process

2.2 Experimental design and study objectives

An in vitro approach to investigation was taken to test the general hypothesis 

since cartilage and chondrocyte metabolism can be studied isolated from other 

joint tissues. Information was sought by testing individual specific hypotheses in 

experiments using in vitro models of chondrocyte, chondrocyte-matrix or 

cartilage metabolism. IL-1, a cytokine involved in regulating cartilage catabolism 

(discussed in section 1.2.3.6), was employed to stimulate “OA-like” metabolic 

changes.

Study objectives

i) Define the concentration range of zoledronate to evaluate in the studies.

ii) Evaluate zoledronate for effects on GAG synthesis and degradation 

using culture models of chondrocyte and cartilage metabolism with IL-1 

as an OA stimulus.
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2.2.1 In vitro models of OA cartilage and OA chondrocyte metabolism

In vitro culture models have been widely used to examine metabolic processes 

in OA (Caterson et al. 2000). Two model systems were used in this present 

study. In both, IL-1 was employed as a stimulus of OA metabolic change.

2.2.1.1 Bovine articular cartilage explant culture model
Articular cartilage explants are ex vivo pieces of tissue. When cultured in vitro, 

the chondrocytes within the explants are maintained in their usual three- 

dimensional matrix. Bovine articular cartilage is often used in this culture model 

and the addition of the catabolic cytokine IL-1 stimulates proteoglycan 

degradation that can be measured as released GAG or aggrecan in the culture 

medium (Caterson et al. 2000; Little et al. 1999; Sandy et al. 1991a; Sandy et 

al. 1991b). Western blot analysis of the medium using monoclonal antibodies to 

identify cleavage sites on released aggrecan fragments indicates that 

aggrecanase activity is primarily responsible for aggrecan catabolism in this 

culture system. Furthermore, IL-1 up-regulates aggrecanase-1 and 

aggrecanase-2 mRNA transcription in bovine cartilage explants. Taken 

together, the metabolic events that characterise the model simulate the 

cartilage metabolic processes in vivo which lead to the loss of cartilage GAG 

during OA pathogenesis (discussed in section 1.2.3.3).

2.2.1.2 Chondrocyte/ alginate bead culture model
Chondrocyte and matrix metabolism may also be studied in a three-dimensional 

culture system in which cells that have been isolated from cartilage are cultured 

encapsulated and suspended in alginate gel beads. Alginates, glycuranans 

extracted from brown seaweed algae (Guo et al. 1989), are linear unbranched 

polymers containing D-mannuronic acid and L-guluronic acid residues that form 

gels in the presence of calcium or other multivalent counter ions (Chaplin 2007).
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The morphologic and metabolic features of this culture system have been 

extensively characterised, indicating that cells retain their chondrocyte 

phenotype. The cells are observed (i) to maintain a spherical shape (Guo et al. 

1989); (ii) to synthesise characteristic matrix molecules (aggrecan and type II 

collagen) (Almqvist et al. 2001; Hauselmann et al. 1992; Hauselmann et al. 

1994); and (iii) to express MMPs (Chubinskaya et al. 2001). These 

characteristics appear to persist for some time and even after 8 months of 

culture, the cells remain metabolically active and continue to synthesise type II 

collagen and aggrecan (Hauselmann et al. 1994).

The distribution and composition of elaborated matrix in the culture model also 

demonstrates similarities to that found in articular cartilage. Long-term culture of 

normal adult human chondrocytes in alginate beads establishes matrix that is 

found in two compartments: the cell-associated and further-removed matrix. 

These compartments correspond respectively to the pericellular/territorial and 

interterritorial matrix of articular cartilage (Hauselmann et al. 1996b). By day 30 

of culture, the absolute and relative volumes occupied by these compartments 

and the encapsulated cells were observed to be nearly identical to those found 

in native articular cartilage. Furthermore, other investigators have shown that 

after 4 weeks of culture, collagen types II, IX and XI are seen to accumulate in 

the matrix in relative proportions that are similar to those in found in adult 

cartilage (Petit et al. 1996).

Collectively, these observed cell and matrix characteristics indicate that the 

chondrocyte phenotype is maintained in the chondrocyte/ alginate culture 

system. Thus, as a model for studying chondrocyte metabolism it has 

advantages over the two-dimensional culture of chondrocytes in monolayer, a 

model that suffers from problems with chondrocyte dedifferentiation and loss of 

phenotypic traits (Benya and Shaffer 1982; Holtzer et al. 1960). Additionally, in 

comparison to cartilage explant culture, the chondrocyte/ alginate culture 

technique allows intra-joint topographical variability in metabolism to be 

somewhat minimalised through the removal of native cartilage matrix and the
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pooling of isolated chondrocytes, the benefit being that small-sized treatment 

effects on cell metabolism should be more easily observed.

Effects of IL-1 on cell and matrix metabolism in the chondrocyte/ alginate 

bead culture model
In the alginate bead culture model, IL-1 has been found to have inhibitory 

effects on proteoglycan synthesis by bovine articular chondrocytes (D'Souza et 

al. 2000) and aggrecan production by human OA chondrocytes (Sanchez et al. 

2002). Effects on matrix degradation have also been seen. Following the culture 

of bovine articular chondrocytes in alginate beads for two weeks to establish 

matrix, subsequent treatment with IL-1 induced profound GAG release from the 

beads into the media (Beekman et al. 1998). Though the exact mechanism for 

GAG release induced by IL-1 in the model was not demonstrated specifically, 

MMP activity was not increased implying that other proteolytic enzymes such as 

aggrecanases might have been responsible for GAG catabolism.

Thus, the chondrocyte/ alginate bead culture model has compositional and 

metabolic characteristics that mimic native cartilage and addition of IL-1 to the 

culture system allows aggrecan catabolism to be investigated. Previously, 

several studies have used this model to investigate the effects of agents on 

chondrocyte metabolism to help define therapeutic potential in OA (Henrotin et 

al. 2003; Sanchez et al. 2002; Sanchez et al. 2003).

2.2.1.3 Form and concentration of IL-1 used in the in vitro studies

IL-1 is the prototypic pro-inflammatory cytokine and is found in two forms, IL-1 a 

and IL-1 (3 (Dinarello 1997). In most studies both forms have very similar 

biological activities, however, bovine articular chondrocytes appear more 

sensitive to human recombinant IL-1 a than to IL-1 (3. IL-1 a has been found to 

have a greater inhibitory effect than IL-1 p on proteoglycan synthesis by bovine 

articular chondrocytes cultured in agarose gel and only IL-1 a was capable of 

stimulating proteoglycan degradation (Aydelotte et al. 1992). In addition, IL-1 a is
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the form of the cytokine that has been frequently used as a catabolic stimulus to 

study aggrecan degradation in bovine articular cartilage explants (Little et al. 

1999; Sandy et al. 1991a; Sandy et al. 1991b). Thus, for the culture 

experiments of this present study, IL-1 a was selected as the form of the 

cytokine to be used to stimulate proteoglycan degradation and inhibit 

proteoglycan synthesis.

The concentration of IL-1 a chosen for the majority of experiments was 10 ng/ml, 

based on upon a previously described method for bovine articular cartilage 

explant culture (Little et al. 1999). Though for the purposes of in vitro 

investigation with short culture periods, 10 ng/ml IL-1 a is an effective stimulus of 

cartilage proteoglycan degradation, it is important to note that in vivo the 

synovial fluid concentrations of IL-1 (albeit IL-1 (3 rather than IL-1 a) from patients 

with knee OA are reported to be nearly 100-fold lower (Westacott et al. 1990). 

The difference is striking but might be partly explained by interactions of various 

cytokines in vivo, such as TNFa acting synergistically with IL-1 to drive cartilage 

destruction (Goldring 2000; Goldring and Goldring 2004). Furthermore, another 

difference is that in vitro the cytokine is employed to stimulate cartilage 

degradation over a relatively short time period (e.g. 4 days), whereas in vivo this 

process is much more prolonged.

2.2.2 Use of culture models to fulfil study objectives

Study objective (i). Define the concentration range of zoledronate to evaluate 

in the studies.

Experiments using the bovine chondrocyte/ alginate bead culture model were 

performed to investigate adverse effects of zoledronate on chondrocytes to 

define the upper limit of the concentration range. Specific outcomes measured 

were cell viability, proliferation and GAG synthesis. The results on GAG 

synthesis served partly to deliver study objective (ii).
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Study objective (ii). Evaluate zoledronate for effects on GAG synthesis and 

degradation using culture models of chondrocyte and cartilage metabolism with 

IL-1 as an OA stimulus.

Both the bovine cartilage explant culture model and the bovine chondrocyte/ 

alginate bead culture model were used. The outcome measured was the 

amount of GAG released from the tissue.

2.3 Materials and methods

2.3.1 Basic methods: cell and tissue culture 

Tissue source
Bovine forefeet were obtained on the day of animal slaughter from a local 

abattoir and used within 24 hours. All animals were aged 12-30 months and of 

unknown breed and sex unless otherwise specified.

2.3.1.1 Culture of bovine articular cartilage explants 

Medium and general maintenance conditions
The basic medium used for all explant cultures was Dulbecco’s modified 

Eagle’s medium (DMEM; Gibco, Paisley, UK) supplemented with 50 pg/ml 

gentamicin (Gibco) and 0.5% (v/v) antibiotic/antimycotic solution (100x 

containing 10,000 units penicillin, 10,000 pg streptomycin, and 25 pg 

amphotericin B/ml; Gibco). All explant cultures were maintained at 37°C in a 

humidified atmosphere of 5% C 02 and 95% air.
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Preparation and culture of explants
Bovine articular cartilage explant culture was performed according to previously 

described methods (Little et al. 1999). Only one joint from one foot was used for 

each experiment to exclude inter-animal and inter-joint variation. Fore feet were 

washed and the skin was excised. After exposing metacarpophalangeal (MCP) 

joints under aseptic conditions, full depth articular cartilage slices were excised 

off the metacarpal articular surface with a scalpel (approximately 80 explants 

per articular surface), pooled, washed with DMEM and then pre-cultured in 

DMEM supplemented with 10% (v/v) foetal calf serum (FCS; First Link, West 

Midlands, UK) for 48 hours. Explants were then washed 3 times for 10 minutes 

each in serum-free DMEM before treatment culture. Methods for treatment 

culture are detailed in Chapter 4.

2.3.1.2 Culture of cells isolated from bovine articular cartilage in alginate 

beads

Medium and general maintenance conditions
The basic medium used for all cell cultures was DMEM supplemented with 150 

mg/ml ascorbic acid (Sigma, Poole, UK), 100 unit/ml penicillin (Gibco) and 100 

pg/ml streptomycin. All cell cultures were maintained at 37°C in a humidified 

atmosphere of 5% CO2 and 95% air.

Isolation of cells
Articular cartilage was obtained using the same method as for explant culture. 

Cartilage slices obtained from one to seven MCP joints were pooled, washed 

with Earle’s balanced salt solution (EBSS; Gibco) and cultured overnight in 

DMEM supplemented with 20% FCS. The next day the cartilage was finely 

diced with a scalpel and then, to digest the matrix and release cells, the tissue 

was incubated for 1 hour at 37°C in DMEM + 20% FCS and 10 mg/ml pronase 

E (BDH, Lutterworth, Leics, UK) and then for further 16 hours at 37°C in DMEM 

+ 20% FCS and 100 unit/ml collagenase XI (Sigma). The resulting cell
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suspension was passed through a 70 pm pore size sieve (Falcon, Oxford, UK) 

and washed twice with EBSS. Viability and total cell numbers were determined 

using the trypan blue (Sigma) exclusion method and a cell counting chamber. 

Cell viability ranged from 96% to 100%. Cells were resuspended in DMEM + 

20% FCS to yield a suspension with 2x107 cells/ml.

Forming alginate gel beads containing cells
Alginate Keltone LV (Kelco Nutrasweet, Poole, UK) was dissolved in EBSS and 

autoclaved to give a sterile 4% (w/v) alginate solution which was added to an 

equal volume of the cell suspension to yield a final concentration of 2% alginate 

containing 1x107 cells/ml. The cell/alginate suspension was slowly expressed 

through a 25-gauge needle into a solution containing 100 mM CaCI2 (BDH) in 

phosphate buffered saline (PBS; Sigma) to form alginate beads containing the 

cells. The bead volume and cells per bead were calculated. Beads were 

incubated at room temperature in the CaCI2/PBS solution for 10 mins to induce 

crosslinking of the alginate gel and then washed three times with EBSS 

followed by a final wash with DMEM + 20% FCS. Different methods were used 

for the subsequent culture of the beads and these are detailed in the materials 

and methods section of each experimental chapter.

2.3.2 Basic methods: statistical analyses
Statistical analyses were performed using SPSS 14.0 for Windows software 

(SPSS Inc.). Assumptions about the normal distribution and homogeneity of 

variance in relation to the data were assessed by frequency plots and Levene’s 

test respectively. Because nearly all data sets fulfilled these assumptions, all 

comparisons were carried out using parametric tests to maintain consistency. 

First, data were analysed by ANOVA and if differences of the means between 

groups were found (P<0.05), post-hoc comparisons were then performed. 

Within experiments, comparisons of means between two groups were made 

using the Independent-Samples T Test and comparisons of means between 

multiple groups were made with Dunnett’s t test or the Bonferroni test. When
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experimental hypotheses were tested in a single experiment, the alpha level for 

statistical significance between means was set at 0.05. When multiple 

experiments were performed to test the same hypothesis, a more stringent 

alpha level of 0.01 was used in order to take into account the increased 

likelihood of statistical type 1 error. In the event that data sets showed a non­

normal distribution or exhibited unequal variance, any comparisons with 

significance levels near to the set alpha level were interpreted cautiously.
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Chapter 3. Effects of zoledronate on bovine articular chondrocyte viability, 
proliferation and proteoglycan synthesis. Selection of the zoledronate 
concentration range to evaluate.

There were two aims behind the experiments described in this chapter. In order 

to aid selection of the concentration range to evaluate in further studies, the 

adverse effects of zoledronate on chondrocyte metabolism (cell viability, 

proliferation and proteoglycan synthesis) were investigated. In addition, another 

purpose for examining effects on chondrocyte proteoglycan synthesis was to 

provide information for the general hypothesis.

3.1 Introduction
Three criteria were considered in relation to the concentration range of 

zoledronate to evaluate for effects on cartilage or chondrocyte proteoglycan 

metabolism. Ideally, the range should include zoledronate concentrations that 

were achieved in cartilage in the in vivo studies that found beneficial treatment 

effects with respect to cartilage outcomes. In addition, zoledronate 

concentrations with known in vitro cellular effects or inhibitory MMP activities 

should be covered and, moreover, the upper limit of the range should be 

defined by zoledronate concentrations that have adverse effects on 

chondrocytes.

Reduction in cartilage damage in rabbits was seen with subcutaneous 

zoledronate 10 pg/kg given three times a week (Muehleman et al. 2002), a 

dosing regimen that approximates to intravenous 4 mg zoledronate given 

monthly in humans (personal communication from Dr. J.R. Green, Novartis 

Pharma AG). Patients with Paget’s disease, in whom zoledronate treatment 

reduced a urinary marker of type II collagen degradation (CTX II), received 

either a single 200 pg or 400 pg intravenous dose of zoledronate (Garnero et al. 

2001a).
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It is not possible to make accurate estimates for zoledronate cartilage tissue 

concentrations achieved in either of the above studies since specific 

pharmacokinetic distribution data for cartilage have not been reported.

Available data indicate that in humans receiving a single dose of intravenous 

zoledronate 4 mg, the mean peak plasma concentration was 309 ng/ml (about 

10'6 M) which then declined rapidly to <1% of the peak twenty-four hours post 

infusion (Skerjanec et al. 2003). Extrapolating from these data, the 400 pg dose 

of zoledronate should have lead to an approximate peak plasma concentration 

of 10'7 M in the Paget’s disease patients. Drug distribution data have also been 

reported for systemically-administered zoledronate in rats (Green and Rogers 

2002). In rat bone, zoledronate was found in high concentrations between 

10"4 mol/kg and 10'3 mol/ kg, levels which persisted up to eight months after 

injection. During this period, zoledronate was present also in soft tissue 

(10‘7 mol/kg to 10'6 mol/kg) and blood (10'9 mol/kg to 10'7 mol/kg). Despite the 

lack of reports to indicate that systemically-administered zoledronate can 

distribute to cartilage, there are theoretical mechanisms by which the 

bisphosphonate could reach cartilage, namely via subchondral bone or the 

circulation (discussed in 1.3.3.2).

Numerous in vitro studies have found effects of zoledronate on various enzyme, 

cell and tissue metabolic processes (Table 3.1). These effects were observed at 

zoledronate concentrations between 2x1 O'9 M to 10 3M and, in particular, cell 

toxicity was demonstrated in rabbit osteoclasts (Benford et al. 2001), human 

foetal osteoblasts (Reinholz et al. 2000) and human myeloma cells (Derenne et 

al. 1999) at concentrations 10'5 M and above. In addition, other in vitro studies 

have found that etidronate, clodronate, pamidronate and risedronate have 

detrimental effects on chondrocytes, mostly with bisphosphonate concentrations 

around the 10‘4 M mark (Guenther et al. 1979; Palmoski and Brandt 1978; Van 

Offel et al. 2002). However, it is not known whether zoledronate has adverse 

effects on chondrocyte metabolism.
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Table 3.1. Some reported effects of zoledronate on various metabolic processes that 
have been observed in vitro

Effect on metabolic process Zoledronate concentration 
for observed effect

Reference

Bone-related

Inhibition of protein prenylation in 
rabbit osteoclasts

10‘bM (Coxon et al. 2000)

Inhibition of recombinant human 
farnesyl diphosphate synthase 
activity

3x10‘y M (IC50) (Dunford et al. 2001)

Stimulation of capsase-3-like activity 
in rabbit osteoclasts

lO^M (Benford et al. 2001)

Inhibition of 1,25-dihydroxyvitamin 
D3-induced bone resorption in 
mouse calvaria

2x10 yM (IC50) (Green et al. 1994)

Inhibition of calcium incorporation 
into calvaria

10_1>M to 10'4M (Green and Rogers 
2002)

Inhibition of human foetal osteoblast 
proliferation

10'b M to 10'4 M (Reinholz et al. 2000)

Stimulation of human foetal 
osteoblast mineralisation of matrix

1 0 5M

MMP-related

Inhibition of MMP-20 activity against 
p-casein

5x10_{3 M to 5x104M (Heikkila et al. 2002)

Inhibition of MMP-3, MMP-8 and 
MMP-13 activity against 3-casein

2x10 5 M to 10'3M

Inhibition of MMP-1 production by 
bone marrow stromal cells 
stimulated by IL-1p

10'yM (Derenne et al. 1999)

Stimulation of MMP-2 secretion by 
bone marrow stromal cells

10'9M to 10'6M

Myeloma-related

Inhibition of human myeloma cell 
proliferation

5x10‘b M to 5x104 M (Derenne et al. 1999)

Stimulation of bone marrow stromal 
cell apoptosis

10’4M

Stimulation of human myeloma cell 
apoptosis

10"4 M to 5x1 O'4 M

IC5o= concentration producing 50% in nibitory effect
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On the other hand, zoledronate may have beneficial effects on chondrocyte 

metabolism. In relation to the general hypothesis, one way that zoledronate 

could improve the proteoglycan content in OA cartilage is by increasing 

chondrocyte proteoglycan synthesis. Interestingly, clodronate (2.5x10"5 M and 

2.5x1 O'4 M) has been found to stimulate GAG synthesis in rabbit articular 

chondrocytes (Guenther et al. 1979), though another study found that both 

etidronate and clodronate (10'6 M to 5x1 O'4 M) inhibited GAG synthesis in 

canine articular cartilage explants (Palmoski and Brandt 1978).

It is not known (i) whether zoledronate has adverse effects on chondrocyte 

metabolism and (ii) whether the bisphosphonate can stimulate chondrocyte 

proteoglycan synthesis. The experiments described in this chapter have been 

performed to determine this information using the bovine articular chondrocyte/ 

alginate bead culture model with and without IL-1a co-treatment as an OA 

stimulus (model described in section 2.2.1).

3.2 Experimental hypotheses

Zoledronate at concentrations 10'5 M and above reduces cell viability and 

inhibits cell proliferation and proteoglycan synthesis of bovine articular 

chondrocytes cultured in alginate beads with and without IL-1a 

co-treatment

Zoledronate at concentrations without adverse effects on cell viability or 

proliferation stimulates the proteoglycan synthesis of bovine articular 

chondrocytes cultured in alginate beads with and without IL-1a 

co-treatment
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3.3 Experimental objectives
i) Culture bovine articular chondrocytes in alginate beads with and without 

zoledronate (10'12 M to 10'4 M) and with and without IL-1a (10 ng/ml)

ii) Measure cell viability

iii) Measure rates of cell proliferation by 3H-TdR incorporation

iv) Measure rates of cell proteoglycan synthesis by 35S 04 incorporation

3.4 Materials and methods

3.4.1 Cell culture and treatments

Bovine articular chondrocyte/ alginate bead culture
Alginate beads containing cells isolated from bovine articular cartilage were 

formed as described in section 2.3.1.2. Four experiments assessing cell viability 

(exps. b.a2, b.a4.1, b.a5.1 and b.a6.2) were performed on separate occasions 

using different tissue sources. Another experiment was performed to assess cell 

proliferation and proteoglycan synthesis (exp. b.a6.1) using the same tissue 

source as experiment b.a6.2.

Differences in the culture method and outcome measure between experiments 

are summarised in Table 3.2. Experiment b.a2: treatment commenced on the 

day of bead formation. Experiments b.a4.1, b.a5.1, b.a6.1 and b.a6.2: beads 

were pre-cultured in DMEM + 20% FCS for 3 days in 225 cm2 tissue culture 

flasks (Corning Life Sciences, Schipol-Rijk, The Netherlands) prior to 

commencing treatment culture. This 3-day pre-culture period allows stabilisation 

of the cells in alginate as previously described (van Susante et al. 2000).

Beads were then washed 3 times for 10 minutes each in DMEM. Up to 6 beads 

were placed in individual wells of 24-well tissue culture plates. Into each well 

were added 1 ml of treatment serum-free DMEM (experiments b.a4.1 and 

b.a5.1) or DMEM + 10% FCS (experiments b.a2, b.a6.1 and b.a6.2) with and
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without 10 ng/ml IL-1a and with and without zoledronate treatment 

concentrations. For experiment b.a6.1 treatment DMEM was supplemented also 

with 37 kBq/ml tritiated thymidine (3H-TdR; Amersham Biosciences UK, Bucks, 

UK) and 370 kBq/ml 35SC>4 (Amersham Biosciences UK). Treatment cultures 

were performed in replicates of 6 and maintained in treatment DMEM for 1 or 2 

days. Cell viability was assessed after 1 or 2 days culture. For experiment 

b.a6.1 beads and medium were harvested after 2 days of culture and stored 

separately at -20°C until biochemical analysis.

3.4.2 Cell viability analysis
Beads were washed twice with PBS. Cell viability was assessed using the 

Live/dead viability/cytotoxicity kit (Molecular Probes Inc., Eugene, Oregon,

USA). This technique distinguishes live cells by the presence of ubiquitous 

intracellular esterase activity that enzymatically converts virtually non- 

fluorescent cell-permeant calcein AM to calcein producing intense green 

fluorescence. Dead cells with damaged membranes allow ethidium homodimer- 

1 (Ethd-1) to enter and bind to nucleic acids to produce bright red fluorescence. 

Beads were incubated for 1 hour at 37°C in 0.5 ml of PBS containing 4 pM 

EthD-1 and 1 pM calcein AM. Each bead was sliced, placed on a glass slide, 

covered with a coverslip, viewed by fluorescence microscopy and photographed 

(Fig 3.2). Live cells and dead cells were manually counted within a defined area 

and cell viability was calculated as follows:

% cell viability = number live cells x 100/ (number live cells + number dead 

cells)

Reproducibility of manual cell counting: coefficient of variation (CV) < 1% for 

counts repeated 3 times.
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Table 3.2. Summary of cell source characteristics and culture conditions for experiments evaluating the effects of zoledronate on cell viability, proliferation and 

proteoglycan synthesis in the bovine chondrocyte/ alginate bead culture model.

Exp. Characteristics of cell 

source

Cell viability 

post isolation

Bead volume; cells/ 

bead; beads/well

Pre-culture; medium No. days of 

treatment culture; 

medium

Treatment Outcome

measured

b.a2

1x MCP joint from bovine 

animal aged 12-30 months; 

sex unknown

96.4% 6.8 pi; 67600; 3 Not performed
1 day;

DMEM + 10% FCS

IL-1a 0, 10 ng/ml;

Zol 0 ,1012M to 10'4M
Cell viability

b.a4.1
2x MCP joints from 2 bulls 

each aged 13 months
100% 7.4 pi; 73500; 3 3 days; DMEM + 20% FCS

1,2 days; 
serum-free DMEM

IL-1 a 0,10 ng/ml;

Zol 0, 10‘9 M to 10'6M
Cell viability

b.a5.1

2x MCP joints from 2 

heifers aged 24 and 29 

months

100% N/A; N/A; 6 3 days; DMEM + 20% FCS
2 days;

serum-free DMEM

IL-1 a 0, 10 ng/ml;

Zol 0, 108 M to 10‘4M Cell viability

b.a6.1

7x MCP joints from 4 

heifers each aged 18 

months

99% 7.1 pi; 71400; 6 3 days; DMEM + 20% FCS
2 days;

DMEM + 10% FCS

IL-1 a 0,10 ng/ml;

Zol 0 ,101°M to 104 M
Cell proliferation 

and proteoglycan 

synthesis

b.a6.2

7x MCP joints from 4 

heifers each aged 18 

months

99% 7.1 pi; 71400; 6 3 days; DMEM + 20% FCS
2 days;

DMEM + 10% FCS

IL-1 a 0,10 ng/ml;

Zol 0, 10'1°M to 10'4M Cell viability

Exp= experiment; MCP= metacarpophalangeal; DMEM= Dulbecco’s modified Eagle’s medium; FCS= foetal calf serum; Zol= zoledronate
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3.4.3 Biochemical analyses
Alginate beads were disrupted and digested by incubating at 60°C for 24 h in 

1ml of 55 mM sodium citrate (BDH), 150 mM sodium chloride (Sigma), 5 mM 

cysteine hydrochloride, 5 mM EDTA (BDH) and 0.56 units/ml papain (Sigma) as 

previously described (Enobakhare et al. 1996). All biochemical analyses of 

samples were performed in duplicate.

Quantification of 3H-TdR incorporation

Rates of cell proliferation were assessed by quantifying amounts of 3H-TdR 

incorporated into newly-formed DNA over the two day incubation period using 

the trichloroacetic acid (TCA) precipitation technique and liquid scintillation 

counting. Aliquots (100 pi) of the alginate bead digest were added to individual 

wells of a multiscreen plate (0.65 pm pore size; Millipore, Watford, Herts, UK) 

followed by 100 pi of 20% (w/v) TCA (BDH) and incubated at 4°C for 30 min. 

The multiscreen plate was vacuum aspirated and wells were rinsed twice with 

100 pi 10% TCA, vacuum aspirating each time. The plate was dried and the 

filters were punched out into scintillation vials. Five hundred pi of 0.01 M KOH 

(BDH) was added to each of the vials which were then agitated for 2 h to 

release bound 3H-Tdr from the filter into solution. A 4.5 ml volume of Ultima 

Gold™ MV liquid scintillation cocktail (Perkin Elmer LAS UK, Beaconsfield, 

Bucks, UK) was added to each vial and scintillations were measured using a 

Perkin Elmer Tricarb 2900 TR scintillation counter (Perkin Elmer LAS UK). 

Reproducibility: mean intra-assay CV 1.8%.

Quantification of 35S04 incorporation
Rates of proteoglycan synthesis were assessed by measuring the amounts of 

35S 04 incorporated into newly-synthesised proteoglycans and/or 

glycosaminoglycans over the two day incubation period using an alcian blue 

precipitation method and liquid scintillation counting (Masuda et al. 1994). 

Aliquots (75 pi) of a pH 5.8 solution containing 50 mM sodium acetate (BDH) 

and 0.5% (v/v) triton X-100 (BDH) were added to individual wells of a 

multiscreen plate (0.65 pm pore size) followed by 40 pi aliquots of medium or
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alginate bead digest and 150 |jl of alcian blue solution consisting of 0.2% (w/v) 

alcian blue 8GX (BDH) in 50 mM sodium acetate, 85 mM magnesium chloride, 

pH 5.8. The plate was gently mixed for 1 h at room temperature and vacuum 

aspirated. Wells were washed 3 times with 200 pi volumes of a pH 5.8 solution 

containing 50 mM sodium acetate, 85 mM magnesium chloride and 100 mM 

sodium sulphate, vacuum aspirating on each occasion. The filters were 

punched out into scintillation vials and gently agitated for 1 h in 0.5 ml of 4 M 

guanidine HCI in 33% (v/v) propan-2-ol. Four ml of Ultima Gold™ MV was 

added to each vial and scintillations measured using a Perkin Elmer Tricarb 

2900 TR scintillation counter. Reproducibility: mean intra-assay CV 1.9%.

DNA quantification
Amounts of DNA contained in the beads were determined using the Hoechst 

fluorimetric method (Rao and Otto 1992). Aliquots (100 pi) of standards 

prepared using calf thymus DNA (Sigma) in pH 7.0 saline sodium citrate (SSC; 

150 mM NaCI and 15 mM sodium citrate; both from BDH) or alginate bead 

digests were placed in individual wells of 96-well microtitre plates (Nunc, 

Roskilde, Denmark). Aliquots (100 pi) of 2 pg/ml Hoechst 33258 (Sigma) in 

SSC were added to each well and then the plate was read using a Fluoroskan 

Ascent microtitre fluorimeter (Labsystems Oy, Helsinki, Finland) with excitation 

at 348 nm and emission readings at 460 nm. Values for the DNA content of the 

alginate beads were used to normalise values obtained for sulphate 

incorporation. Reproducibility: mean intra-assay CV 1.8%

3.4.4 Statistical analyses
Statistical analyses were performed as described in section 2.3.2. With respect 

to %  cell viability data, phrases such as “caused a 10% reduction” or 

“decreased by 10 %” are used in relation to absolute differences in values. With 

respect to cell proliferation and proteoglycan synthesis data, these phrases 

indicate the proportional differences between values.
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3.5 Results

3.5.1 Effects of zoledronate on chondrocyte viability with and without 
IL-1 a co-treatment

Four experiments were performed to assess the effects of zoledronate on 

chondrocyte viability with and without IL-1 a co-treatment (experiments b.a2, 

b.a4.1, b.a5.1 and b.a6.2).

Chondrocyte viability in controls and IL-1a-treated controls (Table 3.3)

In controls, with or without IL-1 a 10 ng/ml, cell viabilities after one-day or two- 

day culture ranged from 92.1% to 98.2%. IL-1 a 10 ng/ml did not affect cell 

viability in the one-day cultures, but in cultures for two days caused a 3.1% 

reduction in cell viability compared to no cytokine in one experiment (P<0.001) 

and a trend for a 1.7% reduction in another (P=0.049). Duration of culture also 

had an effect. Comparing two-day culture to one-day culture in the single 

experiment in which both time points were examined (exp. b.a4.1), a trend for a 

1.5% reduction in cell viability was observed in controls (P=0.049) and a 2.7% 

reduction was seen in IL-1a-treated controls (P=0.001).

Table 3.3. Cell viability after one-day or two-day culture of bovine articular chondrocytes 
in alginate beads in controls and IL-1a-treated controls.

Culture
period

Experiment Mean % cell viability P value for difference in 
means between control and 
IL-1a-treated control*

Control IL-1a-treated
control

One day of 

culture

b.a2 94.4 95.2 P=0.413

b.a4.1 98.2 97.7 P=0.118

Two days of 

culture

b.a4.1 96.7 95.0 P=0.049

b.a5.1 92.6 93.1 P=0.555

b.a6.2 95.2 92.1 P=0.000183**

* Since multiple experiments were performed the alpha level to indicate a significant difference 
between means was set at P=0.01 as described in section 2.3.2.
** Statistically significant difference at the P<0.01 level.
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Effects of zoledronate on chondrocyte viability

In the first experiment (b.a2), one-day treatment cultures were carried out. In 

basal cultures (i.e. without IL-1 a co-treatment), zoledronate 10'6M and 

zoledronate 10'4 M reduced cell viability compared to control by 4.3% (P=0.002) 

and 7.4% (P<0.001) respectively (Fig. 3.1; Table 3.4). Fig. 3.2 shows 

photographs of the cells following treatment for control and zoledronate 10'4 M. 

In IL-1 a co-treated cultures, zoledronate 10'4 M caused a 10.1% reduction in 

cell viability (P<0.001; Fig. 3.1; Table 3.4). Lower concentrations of zoledronate 

down to 10'12 M did not affect cell viability in either basal or IL-1 a co-treated 

cultures.

Fig. 3.1. Experiment b.a2: Effects of zoledronate (1.E-12 M to 1.E-4 M) with and without 
IL-1a co-treatment on the viability of chondrocytes cultured in alginate beads after one- 
day treatment culture.

100

95

90

85

80

75

rfrr*! *

*

IE -12 IE -10 1.E-09 1.E-08 IE-06 1.E-04 X 0 1.E-12 IE -10 1.E-09 1.E-08

zoledronate (M) X zoledronate (M)+IL-1a 10 ng/rrt

Treatment

Bovine articular chondrocytes cultured in alginate beads in the presence of treatments for one day prior to assessment of 
chondrocyte viability. Values for %cell viability shown as means ±  SD (n=6). *P=0.002 or **P<0.001 vs. zoledronate 0M. ***P<0.001 
vs. zoledronate OM + IL -la  10 ng/ml.

As zoledronate 10'6 M and zoledronate 10'4 M had been observed to reduce cell 

viability in experiment b.a2 but concentrations between 10'8 M and 10‘6 M had 

not been explored, an additional experiment (b.a4.1) was performed to 

determine adverse effects of zoledronate 10'9 M to 10'6 M (x10 increments 

between concentrations). However, no zoledronate treatment effects on cell 

viability were seen in one-day or two-day cultures with or without
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Fig 3.2. Experiment b.a2: Photographs of chondrocytes after live/dead staining.

Examples of photographs taken through a fluorescent microscope after one day of 

treatment culture and subsequent incubation in live/dead stain (live cells appear green 

and dead cells red); cells counted in photographs to measure %cell viability (results 

detailed elsewhere). Left: control culture; right: culture with zoledronate 10 4 M treatment.

IL-1 a co-treatment (Figs 3.3 and 3.4; Table 3.4). Of note, the animal source for 

chondrocytes was different between experiments, and pre-culture of 

chondrocytes and serum supplementation of treatment medium were performed 

in experiment b.a4.1 but not experiment b.a2 (Table 3.2).

Since the results for effects of zoledronate 1CT6 M disagreed between 

experiments b.a2 and b.a4.1, investigations were repeated. In the next 

experiment (b.a5.1), culture conditions were the same as for experiment b.a4.1 

except chondrocytes were sourced from 24- to 29-month old heifers instead of 

13-month old bulls and only two-day culture was performed (Table 3.2). The 

concentration range investigated was extended back up to 10'4 M. Compared to 

control, zoledronate 10'4 M reduced cell viability by 2.6% in basal cultures 

(P=0.003; Fig. 3.5; Table 3.4). No other effects were observed for lower 

zoledronate concentrations in basal cultures or for any concentration (10'8 M to 

10'4 M) in IL-1 a co-treated cultures.
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Fig. 3.3. Experiment b.a4.1: Effects of zoledronate (1.E-9M to 1.E-6 M) 
with and without IL-1a co-treatment on the viability of chondrocytes 
cultured in alginate beads after one-day treatment culture.

0 1.E-09 1.E-08 1.E-07 5.E-07 IE -06 X 0 1.E-09 1.E-08 1.E-07 1 5.E-07 1.E-06

zoledronate (M ) X zoledronate (M)+IL-1a 10 ng/ml

Treatment
Bovine articular chondrocytes cultured in alginate beads in the presence of treatments for one day prior to assessment of 
chondrocyte viability. Values for % cell viability shown as means ± SD (n=6).

Fig. 3.4. Experiment b.a4.1: Bfects of zoledronate (1.E-9 M to 1.E-6 M) 
with and without IL-1ct co-treatment on the viability of chondrocytes 
cultured in alginate beads after two-day treatment culture
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zoledronate (M ) | x

Treatment

1.E-09 | IE -08 | 1.E-07 | 5.E-07 | 1.E-06 

zoledronate (M)+IL-1a 10 ng/ml

Bovine articular chondrocytes cultured in alginate beads in the presence of treatments for two days prior to assessment 
of chondrocyte viability. Values for % cell viability shown as means ± SD (n=6).
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Fig. 3.5. Experiment b.a5.1: Effects of zoledronate (1.E-8 M to 1.E-4 M) 
with and without IL- 1a co-treatm ent on the viability of chondrocytes 
cultured in alginate beads after two-day treatment culture

*

1.E-08 tE -07 tE -06  1.E-05 1.E-04 X 0 1.E-08 tE -07 1.E-06 1.E-05

zoledronate (M ) X zoledronate(M)+IL-1a 10 ng/ml

Treatment

Bovine articular chondrocytes cultured in alginate beads in the presence of treatments for two days prior to assessment 
of chondrocyte viability. Values for % cell viability shown as means ± SD (n=6). *P=0.003 vs. zoledronate OM.

Fig. 3.6. Experiment b.a6.2: Effects of zoledronate (1.E-10 M to 1.E-4 M) with and 
without IL- 1a co-treatment on the viability of chondrocytes cultured in alginate 
beads after two-day treatment culture.
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zoledronate (M ) f  x

Treatment

1.E-10 1.E-09 1.E-08 1.E-07 | 1.E-06 j  1.E-05 | 1.E-04

zoledronate (M )+ IL-1a 10 ng/rri

Bovine articiiar chondrocytes cultured in alginate beads in the presence of treatments for two days prior to assessment of chondrocyte 
viability. Values for%cell viability shown as means ±SD (n=6). *P<0.001 vs. zoledronate OM. **P=£).003 vs. zoledronate OM + IL-1a 10 ng/ml.
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Table 3.4. Results summary from four experiments for effects of zoledronate (1 .E-12 M to 1 .E-4 M) with and without IL-1 a co-treatment on chondrocyte viability after one-day or 
two-day treatment culture

Treatment Mean 
% cell 

viability of 
control

Difference (A) in mean % cell viability between control and treatment and significance level of the difference (P*)

culture IL-1 a 
co-treatment 

(ng/ml)

Zol 10'12 M Zol 10‘10 M Zol 10'9 M Zol 10"8 M Zol 10‘7 M

Exp.
duration

(days) A P A P A P A P A P

b.a2 1 0
10

94.4
94.8

+0.8
+0.9

.934

.980
-0.2
-0.7

>.999
.995

-0.1
-2.3

>.999
.523

-0.1
-1.9

>.999
.688

b.a4.1
1 0

10
98.2
97.7

-0.1
-0.4

.992

.904
+0.5
+0.1

.362

.999
-0.2
+0.1

.944
>.999

2 0
10

96.7
95.0

0
+0.5

>.999
.776

+0.8
+0.3

.695

.975
+0.1
-0.8

>.999
.466

b.a5.1 2 0
10

92.6
92.9

0
-0.8

>.999
.891

+1.3
-1.5

.253

.373

b.a6.2 2 0
10

95.2
92.1

+0.5
-0.4

.992

.997
-0.9
-1.8

.895

.254
-0.7
-0.3

.963
>.999

-1.3
-0.4

.630

.999

T reatment Mean

Difference (A) in mean % cell viability between control and treatment and significance level of the
difference (P*)

culture
duration

(days)

IL-1 a 
co-treatment 

(ng/ml)

% cell 
viability of 

control

Zol 5x1 O'7 M Zol 10"8 M Zol 10'6 M Zol 10"4 M

Exp. A P A P A P A P

b.a2 1 0
10

94.4
94.8

-4.3
-2.4

.002**

.463
-7.4

-10.1
<.001**
<.001**

b.a4.1
1 0

10
98.2
97.7

+0.7
-0.2

.129

.996
-0.5
-0.4

.277

.847

2 0
10

96.7
95.0

+0.4
+0.5

.957

.763
-1.1

0
.379

>.999

b.a5.1 2 0
10

92.6
92.9

+0.2
-1.1

.997

.680
-0.3
-1.5

.987

.384
-2.6
-1.9

.003**

.176

b.a6.2 2 0
10

95.2
92.1

-1.2
+0.1

.715
>.999

-1.3
+0.3

.571
>.999

-5.7
-3.5

<.001**
.003**

Zol= zoledronate; * As multiple experiments were performed the alpha level to indicate a significant difference between means was set at P=0.01 as described in section 2.3.2; ** Statistically 
significant difference at the P<0.01 level
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A final experiment was carried out to clarify effects for zoledronate 10'4 M. In 

experiment b.a6.2, tissue was sourced from 18 month-old heifers and treatment 

cultures were performed in serum supplemented medium for two days (Table 

3.2). Zoledronate 10'4M decreased cell viability in both basal and IL-1 a co­

treated cultures by 5.7% (P<0.001) and 3.5% (P=0.003) respectively (Fig. 3.6; 

Table 3.4). Again, no effects were seen with lower zoledronate concentrations. 

Table 3.4 summarises the observed effects on chondrocyte viability of the 

zoledronate concentrations tested across the four experiments.

3.5.2 Effects of zoledronate on chondrocyte proliferation and 

proteoglycan synthesis with and without IL-1 a co-treatment

Effects of IL-1 a on chondrocyte proliferation and proteoglycan synthesis

In controls, IL-1 a treatment reduced cell proliferation (measured by 3H-TdR 

incorporation) by 66.1% compared to basal culture (P<0.001). Consistent with 

this finding, cell numbers were also lower with IL-1 a as indicated by a 14.7% 

decrease in bead DNA content (P<0.001). IL-1 a also reduced proteoglycan 

synthesis (measured by 35S 04 incorporation) by 42.3% per culture well 

(P<0.001). When 35S 04 incorporation was normalised for DNA content in the 

beads, the effect of IL-1 a was still evident (24.5% reduction; P<0.001) indicating 

an action on chondrocyte proteoglycan synthesis independent of an effect on 

cell numbers.

Effects of zoledronate on chondrocyte proliferation and proteoglycan 

synthesis without IL-1 a co-treatment
ZoledronatelO-4 M reduced cell proliferation by 8.1% (P<0.001) and bead DNA 

content by14.7% (P<0.001) compared to control (Figs. 3.7 and 3.8). In addition, 

zoledronate 10'4 M inhibited proteoglycan synthesis by 29.5% per culture well 

(P<0.001; Fig. 3.9) and by 17.4% when values were normalised for DNA 

(P<0.001; Fig. 3.10). A 5% reduction in 35S 04 incorporation per culture well was 

seen with 10'5 M zoledronate (P=0.02; Fig. 3.9) but this finding was not
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interpreted to be statistically significant because the data set did not distribute 

normally and the P value was not highly significant. No effects were seen with 

any of the other zoledronate concentrations tested compared to control.

Fig. 3.7. Exp. b.a6.1: Effects of zoledronate (1.E-10 M to 1.E-4 M) with and without 
IL-1a co-treatment on the DNA content of chondrocytes cultured in alginate beads.

I 0 1.E-10 I 1.E-09 | 1.E-08 | 1.E-07 | IE -06 | 1.E-05 | 1.E-04 x 0 [ 1.E-10 | 1.E-09 | 1.E-08 | 1.E-07] 1.E-061 1.E-05 [

zoledronate (M ) x zoledronate (M)+IL-1a 10 ng/ml

<xZ

I
sJ T  r e a tm e n t

Bovine articular chondrocytes cultured in alginate beads in the presence of treatments for two days prior to analysis of DNA content. 
Values for bead DNA content per culture well shown as means ± SD (n=6). *P<0.001 vs. zoledronate OM.

Fig. 3.8. Exp. b.a6.1: Effects of zoledronate (1.E-10 M to 1.E-4 M) with and without IL-1a 
co-treatment on the proliferation of chondrocytes cultured in alginate beads.

4500 0 0

400000
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300000

2500 00

200000

•5;:::
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50000

1.E-10 11.E-091 1.E-08) 1.E-07| 1.E-061 IE-051 1.E-04| x j  0 | IE-101 1.E-0911.E-0811.E-07 j 1.E-06| 1.E-05 11.E-04

zoledronate (M) | x | zoledronate (M)+IL-1a 10 ng/ml

Treatment

Bovine articular chondrocytes cultured in alginate beads inthe presence of treatments and 3H-TdR for two days. 
Chondrocyteproliferation assessed by amount of radioactive3H-TdR incorporated into DNA in beads at end of culture 
period. Values for radioactivity per culture well shown as means ±SD (n=6). Cpm= counts per minute *P<0.001 vs.
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Fig. 3.9. Exp. b.a6.1: Effects of zoledronate (1.E-10 M to 1.E-4 M) with and without IL-1a 
co-treatment on proteoglycan synthesis in chondrocytes cultured in alginate beads.
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zoledronate (M)

1.E-10 ] 1.E-09 | 1.E-08 | 1.E-07 | 1.&06 | 1.&05 | 1.&04 

zoledronat e (M)+ IL- 1a 10 ng/ ml

T rea tm en t
. S  I  Bovine articular chondrocytes cultured in alginate beads in the presenceof treatments and 35S04 for two days. Chondrocyte proteoglycan

^  synthesis assessed by amount of radio act ive^SO* incorporated into proteoglycan in beads and medium at end of culture period. Values 
for radioactivity per culture well (beads + medium) shown as means ± SD (n=6). cprrt= counts per minute. *P=^).02 or **P<0.001vs. 
zoledronateOM. ***P=0.022 vs. zoledronateOM +IL-1n 10 ng/ml.

Fig. 3.10. Exp. b.a6.1: Effects of zoledronate (1.E-10 M to 1.E-4 M) with and without IL-1a 
co-treatment on proteoglycan synthesis (normalised for DNA content) in chondrocytes 
cultured in alginate beads.
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zoledronat e(M)

1.E-10 1.E-09 1.E-08 1.E-07 1.E-06 1.E-05 1.E-04

zoledronate (M) + IL- 1a (10 ng/ml)

T reatm ent

Bovine articular chondrocytes cultured in alginate beads in the presence of treatments and 35S04for two days. Chondrocyte proteoglycan 
synthesis assessed by amount of radioactive^SOA incorporated into proteoglycan in beads and medium at end of culture period. Values 
for radioactivity per culture well (beads + medium) normalised for DNA content shown as means ± SD (n=6). cpm= counts per minute.
*P<0.001 vs.zoledronateOM. **P=O.025vs. zoledronateOM +IL-1a10 ng/ml.
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Effects of zoledronate on chondrocyte proliferation and proteoglycan 

synthesis with IL-1 a co-treatment
With IL-1 a co-treatment, no zoledronate treatment effects were observed on cell 

proliferation or bead DNA content (Figs. 3.7 and 3.8) compared to IL-1a-treated 

control. However, zoledronate 10'4M did reduce proteoglycan synthesis by 

8.0% per culture well (P=0.022; Fig. 3.9) or by 7.5% after normalising for DNA 

(P=0.025; Fig. 3.10).

3.6 Discussion
The aims behind the experiments described in this chapter were to determine 

whether zoledronate has adverse effects on chondrocytes and whether the 

bisphosphonate can stimulate chondrocyte proteoglycan synthesis. Treatment 

effects on chondrocyte viability, proliferation and proteoglycan synthesis were 

examined in bovine articular chondrocytes cultured in alginate beads with and 

without IL-1 a co-treatment as a stimulus for OA metabolic change.

Culture model
When chondrocytes isolated from bovine articular cartilage were cultured in 

alginate beads for up to two days with and without IL-1 a stimulation, the cells 

demonstrated good viability ranging from 92.1% to 98.2% (Table 3.3). In 

addition, the cells were shown to synthesise proteoglycan (as measured by 

35S 0 4 incorporation; Figs. 3.9 and 3.10), a phenotypic characteristic of 

chondrocytes, and proliferate (as measured by 3H-TdR incorporation; Fig. 3.8). 

These findings support the use of this model to investigate chondrocyte 

metabolism.

For the two-day culture period, IL-1a 10 ng/ml decreased cell viability in one out 

of three experiments (Table 3.3) and inhibited chondrocyte proliferation and 

proteoglycan synthesis in a single experiment (Figs. 3.7 to 3.10). These findings 

are consistent with previous reports of increased apoptosis, reduced cell 

proliferation and reduced proteoglycan synthesis following IL-1 a exposure in
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bovine articular chondrocytes (Badger et al. 1999; Schuerwegh et al. 2003). 

Such adverse effects on chondrocytes support the concept that the IL-1 a plays 

a regulatory role in chondrocyte metabolism and is involved in promoting 

articular cartilage degradation during the OA process.

Effects of zoledronate on chondrocyte viability, proliferation and 

proteoglycan synthesis
The effects of zoledronate on chondrocyte viability (zoledronate 10‘12 M to 

10'4 M), and chondrocyte proliferation and proteoglycan synthesis (zoledronate 

10'10 M to 10*4 M) have been evaluated under basal or IL-1 a co-treated 

conditions. Zoledronate 10 4 M consistently reduced cell viability under basal 

culture conditions (Figs. 3.1, 3.2, 3.5 and 3.6). With IL-1a co-treatment, 

zoledronate 10-4 M decreased chondrocyte viability in three out of four 

experiments (Figs. 3.1, 3.2, 3.5 and 3.6). The absolute reductions in % cell 

viability were small in size ranging from 2.8% to 10.5%.

In one of the four experiments, and only under basal culture conditions, 

zoledronate 10'6M treatment reduced chondrocyte viability by 4.6% (experiment 

b.a2; Fig. 3.1). Though this is an isolated finding, the significance level 

(P=0.002) indicates a genuine result. The lack of reproducibility may be due to 

an inter-experimental difference in the vulnerability of chondrocytes to toxicity 

arising from differences in methodology between experiments (see Table 3.2 for 

summary of methods). Adult bovine cartilage from the metacarpal articular 

surface of the MCP joint was used in all experiments, though other unknown 

characteristics of the tissue source may have been important for determining 

chondrocyte vulnerability in vitro (e.g. bovine breed, animal weight or history of 

joint injury). Alternatively, the lack of a pre-culture period to stabilise 

chondrocytes prior to commencing treatment in one of the four experiments 

(exp. b.a2 in which reduced chondrocyte viability was observed with 

zoledronate 10‘6 M) could have been important. Chondrocytes that are cultured 

in alginate demonstrate initial cell loss (van Susante et al. 1995), suggesting
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that chondrocytes that do not undergo initial pre-culture stabilisation may be 

more susceptible to toxic treatment effects.

Taken together the results from the four cell viability experiments indicate that 

zoledronate 10'4 M treatment is clearly adverse for the viability of bovine 

articular chondrocytes from the bovine MCP joint and this appears to be a 

biological effect across bovine animals of a similar age. These findings are 

consistent with reported effects of zoledronate on other cell types. At 

zoledronate concentrations 10'4 M and above, the bisphosphonate has been 

found to cause apoptosis of rabbit osteoclasts (Benford et al. 2001), human 

bone marrow stromal cells and human myeloma cells (Derenne et al. 1999). 

Furthermore clodronate, pamidronate and risedronate, all at the concentration 

of 10'3 M, have been shown to cause necrosis of bovine articular chondrocytes, 

(Van Offel et al. 2002). Thus, bisphosphonates as a class, at high 

concentrations, appear to reduce chondrocyte survival.

Zoledronate 10'4 M also inhibited chondrocyte proliferation under basal culture 

conditions (Figs. 3.7 and 3.8) and, with or without IL-1 a co-treatment, reduced 

proteoglycan synthesis (Figs. 3.9 and 3.10). The observed reductions in 

chondrocyte proliferation are consistent with previous reports which have found 

inhibitory effects of zoledronate on the proliferation of human foetal osteoblasts 

(zoledronate 10'5 M and 10'4 M) (Reinholz et al. 2000) and human myeloma 

cells (zoledronate 5x1 O'5 M to 10'4 M) (Derenne et al. 1999). Considering 

bisphosphonates as a class, the detrimental effects of zoledronate on 

chondrocyte proteoglycan synthesis are similar to reported inhibitory effects of 

etidronate and clodronate on canine cartilage proteoglycan synthesis (Palmoski 

and Brandt 1978) but discordant with a study that found a stimulatory effect of 

clodronate on rabbit chondrocyte proteoglycan synthesis (Guenther et al. 1979).

The mechanisms of action of the observed adverse effects of zoledronate on 

chondrocyte viability, proliferation and proteoglycan synthesis are unknown.
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Reduced levels of chondrocyte viability may occur via stimulation of cell 

apoptosis. Such an effect might occur via inhibition of FPP synthase in the 

mevalonate pathway, which is the probable mechanism behind induction of 

rabbit osteoclast apoptosis seen with zoledronate treatment (Benford et al. 

2001). Chelation of divalent cations by zoledronate is a possible mechanism for 

the inhibition of chondrocyte proteoglycan synthesis since calcium ions are 

stimulatory for proteoglycan synthesis in cartilage (Shulman and Opler 1974).

Overall, the results from the series of experiments described in this chapter 

indicate that zoledronate 1C4 M is detrimental for bovine articular chondrocytes 

from the MCP joint. This concentration was used to limit the upper range of 

subsequent experiments that evaluated the effects of the bisphosphonate on 

proteoglycan metabolism. The findings also have implications for the clinical 

use of zoledronate in that it would be advisable to avoid exposing cartilage to 

high concentrations of the bisphosphonate.

No information was found to support the hypothesis that zoledronate can 

enhance on cartilage proteoglycan metabolism during the OA process. 

Zoledronate treatments at concentrations 10'10 M through 10‘4 M were not 

observed to stimulate chondrocyte proteoglycan synthesis, nor demonstrate any 

protective effects on the inhibitory actions of IL-1 a. The negative findings 

suggest that if zoledronate can improve the retention of cartilage proteoglycan 

in OA, the mechanism may be through inhibition of proteoglycan degradation.

3.7 Conclusions

. Culture of bovine articular chondrocytes in alginate beads provides a model 

for studying cell metabolism in which chondrocytes remain viable, proliferate 

and synthesise proteoglycan. Addition of IL-1 a to the culture system 

produces adverse effects on chondrocyte proliferation and proteoglycan 

synthesis and, possibly, chondrocyte viability.
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. Zoledronate 10'4 M has detrimental effects on bovine articular chondrocyte 

viability, proliferation and proteoglycan synthesis. It would be advisable to 

avoid exposing cartilage to high concentrations of zoledronate during clinical 

use.

. Since adverse effects were observed, zoledronate 10'4 M was used as the 

upper limit of the concentration range to investigate in further in vitro studies 

of chondrocyte or cartilage metabolism. The lower end of this range, 

zoledronate 10‘10 M, was defined by zoledronate concentrations reported to 

have effects on cell or enzyme processes in vitro (Table 3.1).

. No evidence was demonstrated to support the hypothesis that zoledronate 

can conserve cartilage GAG content during the OA process through 

stimulating chondrocyte proteoglycan synthesis or preventing the inhibitory 

effect of IL-1 a on proteoglycan synthesis. An alternative mechanism of action 

for zoledronate that has yet to be investigated is an inhibitory effect on 

proteoglycan degradation in cartilage.
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Chapter 4. Effects of zoledronate on IL-1a-stimulated proteoglycan 

degradation in bovine articular cartilage explants

This chapter describes experiments that tested for effects of zoledronate on IL- 

1a-stimulated proteoglycan degradation in bovine cartilage explants.

4.1 Introduction
The investigations described in this chapter were performed to continue testing 

the hypothesis that zoledronate can modify cartilage metabolism to reduce the 

loss of cartilage GAG during the OA process. Results from investigations 

detailed in Chapter 3 do not indicate that zoledronate has a beneficial effect on 

the amount of proteoglycan synthesised by chondrocytes. In this chapter 

attention has turned towards examining for an effect on the other side of the 

metabolic balance: the degradation of proteoglycan in cartilage.

MMPs and aggrecanases are proteinases implicated in the degradation of 

aggrecan and type II collagen in OA cartilage (discussed in section 1.2.3.5) and 

there has been considerable interest in inhibiting the activities of these enzymes 

as a therapeutic strategy to prevent joint destruction in arthritic disorders 

including OA (Clark and Parker 2003; Elliott and Cawston 2001). At the 

biochemical level, studies have demonstrated that zoledronate and other 

bisphosphonates can inhibit the activities of various MMPs at bisphosphonate 

concentrations in the range 2x1 O'5 M to 10‘3 M (Heikkila et al. 2002; Konttinen et 

al. 1999; Teronen et al. 1997a; Teronen et al. 1997b; Teronen et al. 1999) 

(Table 1.9). In addition, since MMPs and aggrecanases share common 

inhibitors (Hughes et al. 1998), it is possible that bisphosphonates can also 

inhibit aggrecanase activity.

At the cell or tissue level, bisphosphonates other than zoledronate have been 

found to have effects on chondrocyte-mediated proteinase activity, though 

findings are conflicting as to the direction of effect. Pamidronate was observed
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to increase collagenase activity (Evequoz et al. 1985) and proteoglycan 

degradation (Couchman and Sheppeard 1986); clodronate to decrease 

collagenase activity (McGuire et al. 1982); tiludronate to reduce proteinase 

activity (Emonds-Alt et al. 1985); and etidronate to both increase collagenase 

activity (Evequoz et al. 1985) and decrease proteinase activity (Emonds-Alt et 

al. 1985; McGuire et al. 1982). The inhibitory effects on chondrocyte-mediated 

proteinase activity were observed at bisphosphonate concentrations in the 

range 10'5 M to 10'3 M (Table 1.9).

It is not known whether zoledronate can inhibit cartilage proteoglycan 

degradation at the tissue level. The principal investigations described in this 

chapter have sought this information in bovine articular cartilage explants 

stimulated with IL-1a to induce GAG release (model described in section 2.2.1).

4.2 Experimental hypothesis 

Zoledronate 10'10 M to 10*4 M reduces IL-1a-stimulated GAG release 

from bovine articular cartilage explants 

4.3 Experimental objectives

i) Culture bovine articular cartilage explants with and without zoledronate 

(10'1° M to 10*4 M) and with and without 10 ng/ml IL-1a

ii) Measure GAG content in explant and in medium
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4.4 Materials and methods

4.4.1 Tissue culture and treatments
Bovine cartilage explants prepared and pre-cultured as detailed in section 

2.3.1.1. Single explants were placed in individual wells of 24-well tissue culture 

plates (Orange Scientific NV/SA, Braine-l’Alleud, Belgium). One ml of serum- 

free DMEM supplemented with or without 10 ng/ml recombinant human IL-1 a 

(tebu-bio, Peterborough, UK) and various concentrations of zoledronate (2- 

[imidazol-1-yl]-hydroxy-ethylidene-1,1-bisphosphonic acid, disodium salt, 4.75 

hydrate; MW 401.6; donated by Novartis Pharma AG, Basel, Switzerland) was 

added to each well and explants were maintained in culture for four days. A 

four-day IL-1 a stimulation period was used based on previously described 

methods in studies of aggrecan catabolism (Caterson et al. 2000; Little et al. 

1999). At the end of the culture period, the cartilage explants (approx wet 

weight 10-15 mg) and conditioned medium were collected and stored 

separately at -20°C until biochemical analysis of GAG content.

Five experiments were performed to test for effects of zoledronate. For each 

separate experiment, cartilage was sourced from the metacarpal surfaces of a 

single MCP joint (Fig. 4.1). Tissue source characteristics and the zoledronate 

concentrations evaluated for the five experiments are detailed in Table 4.1.

During the course of the experiments, notable intra-experimental variability in 

cartilage GAG release was encountered (described more fully below). In order 

to define this variability a preliminary experiment was performed to examine the 

effect of topographical sampling on IL-1a-stimulated GAG release. The 

metacarpal articular surface was arbitrarily divided into three equal transverse 

bands (dorsal, central and palmar) and cartilage explants were sampled from 

these three regions (Fig. 4.1). Explants were cultured with and without IL-1 a 

10 ng/ml as described above.
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Metacarpal articular 
surfaces

Phalangeal articular 
surfaces

Fig. 4.1. Photograph showing the articular surfaces of a bovine metacarpophalangeal 

joint. Joint capsule and ligaments have been dissected to open joint and reveal articular 

surfaces. For experiments examining effects of zoledronate on cartilage, explant samples 

were taken only from the metacarpal surface. For an experiment investigating 

topographical differences in cartilage metabolism, the metacarpal articular surfaces of a 

single joint were arbitrarily divided into three equal transverse bands (dorsal, central and 

palmar) and separate pools of explant samples were taken from each of these regions.

Table 4.1. Summary of tissue source characteristics and zoledronate concentrations 
tested for experiments evaluating the effects of zoledronate on basal and IL-1a- 
stimulated GAG release in bovine articular cartilage explants

Exp.
Animal tissue 
source Number of 

replicates Zoledronate concentration tested (M)
Age Sex

b.el 18 months N/A n=2 10‘8 10‘7 10’6 10‘5 10'4
b.e2.b 16 months heifer n=6 10*9 10'8 10'7 10-6 10'5
b.e2.w 16 months heifer n=6 10'9 10'8 10’7 10'6 10'5
b.e3.2 20-24 months steer n=6 10'10 10'9 10'8 10'7 10‘6
b.e3.3 20-24 months steer n=6 10’10 10'9 10*8 10'7 10’6

Regions of metacarpal 
articular surfaces:

DORSAL

CENTRAL

PALMAR
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4.4.2 Biochemical analysis

GAG quantification
Post culture cartilage explants were digested with 125 pg/ml papain (Sigma- 

Aldrich, Poole, UK), 5 mM cysteine-HCI (BDH) and 5 mM sodium EDTA (BDH) 

in PBS adjusted to pH 6 with 1M NaOH (BDH) at 60°C for 12 h and then stored 

at -20°C. The GAG content of papain digests and medium was measured as 

sulphated glycosaminoglycan using the dimethylmethylene blue (DMMB; 

Sigma-Aldrich) colorimetric assay and chondroitin sulphate-C (Sigma-Aldrich) 

as the standard based on previously described methods (Farndale et al. 1986). 

Forty pi aliquots of standard in deionised distilled water or sample were placed 

in separate wells of 96 well flat bottom EIA microtitre plates (MP Biomedicals; 

Cambridge, Cambs, UK). A 250 pi aliquot of a solution containing 16 pg/ml 

DMMB in 1% (v/v) ethanol (BDH), 29.5 mM NaOH and 0.343% (v/v) formic acid 

(BDH) was added to each well and absorbance at 540 nm ( A 5 4 0 )  measured 

using a microplate reader (Bio-Rad model 3550; Bio-Rad Laboratories, Hemel 

Hempstead, Herts, UK). Reproducibility: intra-assay CV 0.37%; inter-assay CV 

1.96%. To exclude the possibility of an effect of zoledronate on this assay, A54o 
was measured on solutions containing 20 mcg/ml chondroitin sulphate-C and/or 

zoledronate 10'7 M to 10'4M. Zoledronate did not demonstrate an effect on A540. 

The amount of GAG release was expressed as a percentage and calculated as 

follows:

%GAG release = medium GAG content/ (medium GAG content + explant GAG content)

4.4.3 Statistical analyses
Statistical analyses were performed as described in section 2.3.2. For data 

relating to experiments evaluating zoledronate treatment, multiple comparisons 

between zoledronate-treated and untreated control were made with 

Dunnett’s t test. For the topographical sampling experiment multiple 

comparisons between sample regions were made using the Bonferroni test.
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4.5 Results

Effects of IL-1 a on GAG release (Table 4.2)
Control bovine articular cartilage explants released small amounts of GAG in 

basal culture (mean GAG release ranged from 5.9%to 15.1%). For IL-1a- 

stimulated controls, mean GAG release ranged from 36.9% to 62.9%. 

Differences in GAG release between IL-1a-treated controls and basal controls 

were significant at the P<0.001 level.

Table 4.2. GAG release from bovine articular cartilage explants with and without IL-1 a 
stimulation in controls.

Experiment Mean %GAG release from controls (SD) P value for difference 
between meansControl IL-1a-treated control

b.el 15.1 (1.1)* 36.9 (1.9)* N/A+

b.e2.b 11.5 (4.4)** 60.5(15.2)** P<0.001

b.e2.w 13.1 (3.9)** 62.9 (9.0)** P<0.001

b.e3.2 5.9 (0.9)** 46.1 (11.7)** P<0.001

b.e3.3 7.2 (0.9)** 59.8 (5.3)** P<0.001

*n=2. **n=6. +Statistical testing not performed since n=2.

Effects of zoledronate on GAG release with and without IL-1 a stimulation
The first experiment performed to evaluate effects of zoledronate was 

experiment b .e l. Though the experiment had been designed to be performed in 

triplicate (n=3), a technical issue meant that one set of samples was unavailable 

for GAG biochemical analysis. As only two observation were available for each 

treatment group (n=2) and the data also exhibited marked inhomogeneity of 

variance (Fig. 4.2), statistical comparisons were not performed.

In the four other experiments (Figs. 4.3 to 4.6), the effects of zoledronate at 

concentrations 10'10 M through to 10‘5 M were examined in the culture model.

No effects of the bisphosphonate were observed on either unstimulated or IL-
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1a-stimulated GAG release. The intra-experimental co-efficient of variation in 

IL-1a-stimulated GAG release, the main outcome measure of interest, was 

found to range from 8.9% to 25.4% in the four experiments (Table 4.3).

Table 4.3. Intra-experim ental variation in IL-1a- 

stimulated GAG release from bovine articular 

cartilage explants.

Experiment Co-efficient of variation (CV) for 

IL-1a-stim ulated GAG release

b.e2.b 25.1%

b.e2.w 14.3%

b.e3.2 25.4%

b.e3.3 8.9%

Mean CM 18.4%

Fig. 4.2. Exp. b .e l: Effects of zoledronate (1.E-8 M to 1.E-4 M) on basal and 
IL-1a-stimulated GAG release in bovine cartilage explants.
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Fig. 4.3. Exp. b.e2.b: Effects of zoledronate (1.E-9 M to 1.E-5 M) on basal and IL-1a- 
stimulated GAG release in bovine cartilage explants
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Fig. 4.4. Exp. b.e2.w: Effects of zoledronate (1.E-9 M to 1.E-5 M) on basal and IL-1a- 
stimulated GAG release in bovine cartilage explants.
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Fig. 4.5. Exp. b.e3.2: Effects of zoledronate (1.E-10 M to 1.E-6 M) on basal 
and IL-1a-stimulated GAG release in bovine cartilage explants.
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Fig. 4.6. Exp. b.e3.3: Effects of zoledronate (1.E-10 M to 1.E-6 M) on basal 
and IL-1a-stimulated GAG release in bovine cartilage explants.
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Variation in GAG release across the joint surface

The marked variation in GAG release of cartilage explants from a single 

articular surface prompted an experiment to examine whether the site of 

cartilage sampling could contribute to variability. In this experiment the rounded 

metacarpal articular surfaces of a single joint were arbitrarily visually divided 

into three equal transverse bands (dorsal, central and palmar; Fig. 4.1). The 

amounts of GAG released, with and without IL-1 a stimulation, from cartilage 

explants taken from each of the three joint regions were compared.

Combining the three regions, the mean %GAG release from explants was 

10.2% for unstimulated cultures and 55.7% with IL-1 a stimulation (P<0.001 for 

difference between means). In unstimulated culture there was no difference in 

explant GAG release between different regions (Fig. 4.7). IL-1a-stimulated GAG 

release from explants sampled from the central region (mean 62.5%) was 

greater than that for explants from the dorsal region (mean 53.3%; P=0.026) or 

palmar region (mean 51.3%; P=0.005). The stimulated GAG release for the 

latter two regions did not differ.
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Fig. 4.7. Exp. b.e3.1: Basal and IL-1a-stimulated GAG release 
from bovine cartilage explants sampled from dorsal, central 
and palmar regions of the metacarpal articular surfaces of a 
single MCP joint.
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4.6 Discussion

Effects of IL-1 a in the culture model
In the series of experiments, IL-1 a 10 ng/ml exposure consistently stimulated 

GAG release in cartilage explants compared to control cultures (Table 4.2). This 

catabolic response is consistent with previous reports (Caterson et al. 2000;

Little et al. 1999) and supports the use of the culture model to investigate 

cartilage proteoglycan degradation.

Effects of zoledronate on cartilage GAG release with and without IL-1 a 

stimulation
Zoledronate treatment at concentrations 10"10 M to 10'5 M did not demonstrate 

any beneficial effects on the amount of GAG released from cartilage in the 

absence or presence of IL-1 a stimulation. Since separate experiments utilised 

tissue sourced from different animals (Table 4.1), the negative finding is more 

likely to be biologically relevant. Thus, in this series of experiments, no 

information was demonstrated to support the hypothesis that zoledronate can 

modify cartilage metabolism to reduce the loss of cartilage GAG during the OA 

process.

Intra-experimental variation for the culture model
However, these results need to be interpreted in light of the marked variability in 

GAG release observed within experiments that could have limited sensitivity for 

detecting treatment effects (Figs. 4.2 to 4.6; Table 4.2). Across the four 

experiments in which n=6 per treatment group, the intra-experimental coefficient 

of variation for IL-1a-stimulated GAG release, the main outcome measure of 

interest, ranged from 8.9% to 25.4% (mean 18.4%). With these levels of 

variation, sample size calculations indicate that, in order to detect a 10% 

difference in GAG release between independent control and treatment groups 

(a=0.05) with 80% power, sample sizes of at least 13 (n=13) or up to 102 

(n=102) per treatment group would be needed. Clearly the experiments that
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have been performed were underpowered to find zoledronate treatment effects 

that produced 10% differences in IL-1a-stimulated GAG release.

One possible source for the observed variability was experimental technique. In 

initial experiments, relative inexperience with laboratory technique may have 

introduced between-sample variation. However, even towards the later stages 

of the project, intra-experimental variation remained notable (Figs. 4.5 and 4.6). 

Interestingly, the cutting of articular cartilage explants has been found to have 

metabolic effects such as the release basic fibroblastic growth factor (a 

proposed extracellular mechanotransducer involved in the regulation of tissue 

turnover) (Vincent et al. 2002; Vincent and Saklatvala 2006), the induction of IL- 

1 (Gruber et al. 2004) and also the stimulation of cell proliferation and matrix 

synthesis at the wound edge (Redman et al. 2004). Thus, differences in the way 

that cartilage explants were excised during tissue preparation may have 

contributed to between-sample variation. An alternative explanation is that, in a 

similar fashion to reported topographical differences in cartilage matrix 

composition across the joint surface (Bayliss et al. 1999; Bayliss et al. 2001; 

Brama et al. 2000), cartilage metabolism also exhibits topographical variation 

according to sample site.

Variation in IL-1a-stimulated GAG release across the joint surface
In a single preliminary experiment, cartilage was sampled from the metacarpal 

articular surface of a single bovine MCP joint. Explants from the central region 

of the metacarpal articular surface released more GAG in response to IL-1 a 

10 ng/ml compared to samples taken from either the dorsal or palmar region 

(Fig 4.7). This sampling effect on IL-1a-stimulated GAG release offers a partial 

explanation for the high variability that was observed previously.

The results suggest that different regions of the bovine MCP joint have different 

vulnerabilities to IL-1a-induced cartilage degradation. If these susceptibilities 

were to correlate with areas that commonly develop cartilage loss in OA, this 

would provide an explanation for the focal nature of cartilage loss that is often
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seen during the OA process. In support of this concept, GAG release in 

response to IL-1 p has been found to vary in cartilage from different anatomical 

locations on human OA knee joints (Barakat et al. 2002). However, another 

study that investigated susceptibilities of equine cartilage to various cytokines 

(including IL-1) in relation to regions of the joint with known high or low 

vulnerabilities to degeneration in OA did not observe regional differences in 

response to catabolic cytokines that could explain the localisation of focal 

cartilage degeneration in OA (Little et al. 2005).

How to test the general hypothesis further
Increasing the sample size would be one way to evaluate zoledronate for small 

10% sized treatment effects on GAG release. However, the metacarpal articular 

surfaces of a single MCP joint only yield approximately 80 cartilage explants 

which would be inadequate since, from sample size calculations (see above this 

section), up to 102 samples per treatment group would be needed. Ways to 

increase numbers include pooling samples from both metacarpal and 

phalangeal joint surfaces, pooling samples from other MCP joints (either from 

the same animal or another animal) or taking smaller and more numerous 

cartilage explants from the articular surface, though it is likely that variability will 

be increased with each of these techniques. Additional evaluation of these 

methods to determine feasibility and, in addition, reproducibility of GAG release 

would be required prior to use of the model to continue testing the general 

hypothesis.

An alternative approach is to use a culture model in which sources of metabolic 

variation are minimised. In the next chapter, experiments are described that 

further test the general hypothesis in the bovine chondrocyte/ alginate bead 

culture system, a model that demonstrates less inherent variability for IL-1a- 

stimulated GAG release than the bovine cartilage explant culture model.



4.7 Conclusions

• The culture of bovine articular cartilage explants with IL-1 a 10 ng/ml to 

stimulate GAG release provides an in vitro culture model for studying 

cartilage proteoglycan degradation.

• There is noticeable variability in IL-1a-stimulated GAG release from 

cartilage sampled from the metacarpal articular surfaces of the bovine 

MCP joint. This variability may be partly explained by regional differences 

in the susceptibility of cartilage to IL-1 a across the joint surface.

• Zoledronate treatment in the concentration range 10'10 M to 10'5 M was 

not observed to reduce IL-1a-stimulated GAG release from bovine 

articular cartilage explants. Thus, no evidence was found to support the 

hypothesis that zoledronate can modify cartilage metabolism to reduce 

the loss of cartilage GAG during the OA process.

• The studies were under-powered to investigate for small-sized effects 

(e.g. 10%) with zoledronate treatment. An alternative culture model, with 

less inherent variability, should be more suitable for this purpose.



Chapter 5. Effects of zoledronate on IL-1a-stimulated proteoglycan 

degradation in bovine articular chondrocytes cultured in alginate beads

This chapter describes experiments that tested for the effects of zoledronate on 

IL-1a-stimulated proteoglycan degradation in a chondrocyte-matrix culture 

model.

5.1 Introduction
In the experiments detailed in Chapter 4, zoledronate treatment (10"1° M to 

10‘5 M) was not seen to alter IL-1 a stimulated GAG release in bovine articular 

cartilage explants. However, a small-sized effect may have been missed since 

the studies were underpowered to detect 10% differences between treatment 

and control. One approach to pursuing the possibility of small-sized treatment 

effects is to use a culture model with less variability. In the cartilage explant 

culture model, possible sources for between-sample variability in 

IL-1a-stimulated GAG release include (i) topographical variation in the 

susceptibility of cartilage across an articular surface to the effects of IL-1 a and 

(ii) variation introduced during tissue processing when cartilage explants are cut 

(discussed in section 4.6).

The bovine chondrocyte/ alginate bead model (described in section 2.3.1.2) 

offers the potential to remove or average-out these sources of variation. Since 

this culture technique involves isolating chondrocytes from cartilage, the 

existing matrix with its attendant variability is removed from the culture system. 

Subsequent mixing of the cell suspension redistributes and averages out 

metabolic cellular differences. For the study of chondrocyte-matrix interactions, 

the chondrocytes can then be cultured in the alginate beads to grow a cartilage- 

like matrix (Hauselmann et al. 1996b; Petit et al. 1996). Variation in the matrix 

newly synthesised by chondrocytes is likely to be minimal since all the cells 

come from the same homogenised pool.
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The studies described in this chapter investigate the effects of zoledronate on 

IL-1a-stimulated proteoglycan degradation in the bovine chondrocyte/ alginate 

bead culture model. Initially, some experiments are described that were 

performed to validate the model by characterising how stimulus duration and 

IL-1 a concentration affect GAG release.

5.2 Experimental hypotheses

A. To validate the culture model

A1. The amount of GAG release from alginate beads containing a 

matrix established by bovine articular chondrocytes is 

dependent on the duration of stimulus with IL-1 a 10 ng/ml.

A2. The amount of GAG release from alginate beads containing a 

matrix established by bovine articular chondrocytes is 

dependent on the concentration of IL-1 a used as a stimulus.

B. To evaluate zoledronate treatment effects

Zoledronate 10*8 M to 10-4 M reduces IL-1a-stimulated GAG release 

from alginate beads containing a matrix established by bovine 

articular chondrocytes

5.3 Experimental objectives

i) Culture bovine articular chondrocytes in alginate beads to establish an 

extracellular matrix.

ii) Measure GAG release from alginate beads stimulated by IL-1 a 10 ng/ml 

as a function of time (one, two or five days). Select duration of IL-1 a
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stimulus to use in further experiments.

iii) Measure IL-1a-stimulated GAG release from alginate beads as a function 

of IL-1 a concentration (0.05 ng/ml to 20 ng/ml). Select concentrations of 

IL-1 a to use for further experiments.

iv) Measure IL-1a-stimulated GAG release with and without zoledronate 

treatment at concentrations 10‘8 M to 10'4 M in the culture model.

Note: Objective (iii) was undertaken late on in the studies. Prior to information 

on GAG release as a function of IL-1 a concentration being available for the 

model, IL-1 a 10 ng/ml was used as the stimulus for GAG release in experiments 

of objective (iv) based on the concentration of IL-1 a that was found to effectively 

stimulate GAG release in the cartilage explant model (section 4.5).

5.4 Materials and methods

5.4.1 Chondrocyte culture in alginate beads
Alginate beads containing isolated bovine chondrocytes were formed as 

detailed in Chapter 2, Materials and methods. Culture to establish 

extracellular matrix: Beads were cultured in 225 cm2 tissue culture flasks 

maintained in DMEM + 10% or 20% FCS for 21 to 42 days with medium 

changes three times a week. Tissue source characteristics for chondrocytes 

and differences in culture conditions between experiments are summarised in 

Tables 5.2 and 5.3. Treatment culture: After the matrix-establishing culture 

period beads were washed 3 times for 10 minutes each in serum-free DMEM. 

Six beads were placed in individual wells of 24-well tissue culture plates to 

which was added 1 ml of serum-free DMEM supplemented with or without IL-1 a 

and with or without zoledronate treatments. Concentrations of IL-1 a and 

zoledronate used in different experiments are detailed in Tables 5.2 and 5.3. 

Each well represented one replicate and treatment cultures were performed 

replicates of three to six. Beads were maintained in medium for 1, 2 or 5 days. 

At the end of the treatment culture period beads and medium were harvested
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and stored separately at -20°C until biochemical analysis. A typical time line for 

chondrocyte/ bead culture is shown in Table 5.1.

Tab le  5.1. Typical even t tim e  line fo r the bovine ch ondrocyte / a lg inate bead cu lture m odel used in 
experim ents d eta iled  in C hapter 5.

Day o f cu lture
-1 0 0-35 35-37 37

Event

Cartilage 
excised off joint 
surface and 
digested to 
release 
chondrocytes

Formation of 
alginate beads 
containing 
chondrocytes

Culture of beads in 
DMEM + 20%
FCS with medium 
change 3x a week 
to establish matrix

Treatment 
culture of beads 
in serum-free 
DMEM ± IL-a ± 
Zol

Beads and 
medium 
harvested for 
analysis of 
GAG content

DMEM= Dulbecco’s modified Eagle’s medium; FCS= foetal calf serum; Zol= zoledronate; 
GAG= glycosaminoglycan

5.4.2 Biochemical analysis 

GAG quantification
Alginate beads were disrupted and digested in 1ml of 55 mM sodium citrate 

(BDH), 150 mM sodium chloride (Sigma), 5 mM cysteine hydrochloride , 5 mM 

EDTA (BDH) and 0.56 units/ml papain (Sigma), incubated at 60°C for 24 h 

(Enobakhare et al. 1996). Bead digest and medium GAG content was quantified 

using the DMMB dye method as described in chapter 4, Materials and methods, 

but with the dye adjusted to pH 1.5 to minimise alginate-dye complex formation 

according to previously reported adaptations (Enobakhare et al. 1996). 

Reproducibility: mean intra-assay CV 0.38%; mean inter-assay CV 4.01%. 

Measured GAG release was expressed as percentage released according to 

the following formula:

%GAG release = medium GAG content/ (medium GAG content + bead GAG content)



Table 5.2. S um m ary of cell source characteristics and culture conditions fo r experim ents evaluating IL-1a-stim ulated GAG release as a function of 
IL-1 a  concentration or stim ulus duration in the bovine chondrocyte/ alg inate bead culture model.

Exp.
Function
evaluated

C haracteristics of cell 
source

M atrix-establish ing  
culture period; % FCS  
used

Treatm ent cu lture conditions

Replicates IL-1 a  stim ulus (ng/m l) IL-1 a stim ulus  
duration

b.a3.1 Duration of IL-1 a 
stimulus

1x MCP joint from a single 
heifer aged 20 months 21 days; 10% FCS n=3 0, 10 1, 2 or 5 days

b.a6.5 Concentration of IL- 
1a stimulus

7x MCP joints from 4 heifers 
aged 18 months 42 days; 20% FCS n=4 0, 2 , 10 or 20 2 days

b.a7.3 Concentration of IL- 
1a stimulus

5x MCP joints from 
5 heifers; ages unknown 23 days; 20% FCS n=4 0, 0.5, 1,2, 10 or 20 2 days

b.a7.4 Concentration of IL- 
1a stimulus

5x MCP joints from 
5 heifers*; ages unknown 25 days; 20% FCS n=4 0, 0.05, 0.2, 0.5, 2 or 10 2 days

Exp.= experiment; MCP= metacarpophalangeal; FCS= foetal calf serum; 'different joints to those used in Exp. b.a7.3

Table 5.3. S um m ary of cell source characteristics and culture conditions for experim ents evaluating the effects of zo ledronate treatm ent on IL-1a- 
stim ulated GAG release in the bovine chondrocyte/ a lg inate bead culture model.

Exp.
Characteristics of cell 
source

M atrix-establishing  
culture period; % FCS  
used

Treatm ent culture (all treatm ent cultures perform ed over 2 days)

Replicates IL-1 a  
(ng/m l)

Zoledronate treatm ent concentrations tested (M)

b.a3.2 1x MCP joint from a single 
heifer aged 20 months 28 days; 10% FCS n=6 0, 10 10'8 10'7 5x1 O'7

b.a4.2 3x MCP joints from 2 bulls 
aged 13 months 22 days; 20% FCS n=6 0, 10 10'8 10‘7 10'6

b.a4.4 3x MCP joints from 2 bulls 
aged 13 months 29 days; 20% FCS n=6 0, 10 10'8 10'7 10'6

b.a5.3 2x MCP joints from 2 heifers 
aged 24 and 29 months 31 days; 20% FCS n=5 0, 10 10‘7 10'6 10'5 10‘4

b.a6.3 7x MCP joints from 4 heifers 
aged 18 months 35 days; 20% FCS n=6 0, 10 10'7 10'6 10'5 10’4

b.a7.6 5x MCP joints from 
5 heifers*; ages unknown 32 days; 20% FCS n=3 or n=6 0, 0.05 10'7 10'6 10'5 10'4

Exp.= experiment; FCS= foetal calf serum; MCP= metacarpophalangeal
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5.4.3 Statistical analyses
Statistical analyses were performed as described in section 2.3.2. Comparisons 

of means between multiple groups were made using the Bonferroni test, except 

where comparisons were only between treatment groups and control in which 

case Dunnett’s test was used. As previously detailed (section 2.3.2), the alpha 

level was set at P=0.05 for an hypothesis that was tested once and at P=0.01 

for an hypotheses that was tested in multiple experiments.

A linear regression model was used to describe correlation between GAG 

release and IL-1 a concentration in experiments b.a7.3 (assumptions met for 

data normality, equality of variance and linearity).

5.5 Results

5.5.1 Culture model characteristics

Culture of bovine articular chondrocytes in alginate beads to establish 

extracellular matrix (Fig. 5.1)
Culture of chondrocytes in alginate beads increased bead GAG content as a 

function of time, though the rate of GAG accumulation appeared to differ 

between experiments. After approximately one month of culture, GAG content 

ranged from 118 pg to 347 pg GAG per six beads.

GAG release as a function of IL-1 a stimulus duration (Fig. 5.2)

Experiment b.a3.1 investigated basal and IL-1a-stimulated GAG release at 

various time points (one, two and five days). GAG was spontaneously released 

from the beads in basal culture, with similar amounts released for one-day and 

two-day culture (mean GAG release 29.1% and 26.3% respectively; P=0.609) 

but higher amounts at five days (mean GAG release 60.5%; P<0.001 vs. one- 

day or two-day culture).



Fig. 5.1. Matrix synthesis by bovine articular chondrocytes cultured in 
alginate beads: GAG content as a function of time. Results for six different 
experiments.
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Bovine articular chondrocytes cultured in alginate beads in serum supplemented medium (10%foetal calf serum used in exp. b.a3 
and 20%foetal calf serum used in all other exps.) Different animals were used to source chondrocytes between experiments. 
Culture period prior to assessment of bead GAG content varied between experiments and ranged from 21 days to 57 days. 
Values for bead GAG content shown as means ± SO ( M 3). Lines connecting data points are for illustrative purposes.

With IL-1 a treatment, the means for %GAG release after one-day, two-day or 

five-day culture were 37.4%, 52.6% and 82.5% respectively. At each time point 

IL-1 a stimulated GAG release compared to basal culture (significance levels for 

time points: one-day, P=0.027; two-day P<0.001; and five day P<0.001). 

IL-1a-stimulated GAG release increased as a function of stimulus duration (two 

days vs. one day: P<0.001; five days vs. two days: P<0.001). Since the largest 

difference in GAG release between basal and IL-1 a stimulated culture was 

observed at the 2-day time point, this stimulation period was selected for use in 

subsequent experiments.

GAG release as a function of IL-1 a concentration (Figs. 5.3, 5.4, 5.5 and 

5.6)

In the first of three experiments, mean GAG release with basal culture was 

19.9%. Compared to basal culture, IL-1 a 2 ng/ml, 10 ng/ml and 20 ng/ml 

stimulated GAG release (mean values for GAG release 72.9%, 67.6% and 

67.8% respectively, P<0.001 for all comparisons; Fig. 5.3). There was no 

difference in GAG release between IL-1 a 10 ng/ml and 20 ng/ml (P>0.999) but,
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interestingly, both of these IL-1 a concentrations were less stimulatory than 

IL-1 a 2 ng/ml (P=0.003 and P=0.002 respectively).

Fig. 5.2. Exp. b.a3.1. Basal and IL-1a-stimulated GAG release as a 
function of time in the bovine articular chondrocyte/alginate bead 
culture model.
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Fig. 5.3. Exp. b.a6.5. GAG release as a function of IL-1 a concentration (2 ng/ml to 20 ng/ml) 
in the bovine articular chondrocyte/ alginate bead culture model.
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This unexpected finding led to a further experiment examining IL-1 a 

concentrations down to 0.5 ng/ml (Fig. 5.4). Again each of the IL-1 a 

concentrations tested caused an increase in GAG release compared to control 

(P<0.001 for all comparisons). Furthermore, in agreement with the previous 

experiment (b.a6.5), there appeared to be an inverse relationship between IL-1 a 

concentration and GAG release. For IL-1 a 0.5 ng/ml to 20 ng/ml, a simple linear 

regression analysis of logi0(IL-1a concentration) and %GAG release indicated a 

significant correlation (P<0.001; R2= 0.79; Fig. 5.5) described by the following 

equation:

% G AG  release= 51.3 -  (5.1 x log10(IL -1a  concentration))

Fig. 5.4. Exp. b.a7.3. GAG release as a function of IL-1a concentration 
(0.5 ng/ml to 20 ng/ml) in the bovine articular chondrocyte/alginate 
bead culture model.

60 r
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IL-1a (ng/ml)

Treatment

Alginatebeads containing bovine articular chondrocytes and an established matrix cultured withtreatmentsfor 2 days. 
Values for %3AG release from beads shown as means ±SD (n=4).
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Fig. 5.5. Exp. b.a7.3. Linear regression model of GAG release as a function of 

log10 IL-1 a concentration (0.5 ng/ml to 20 ng/ml) in the bovine articular chondrocyte/ 

alginate bead culture model.
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%GAG release= 51.3 -(5 .1x logi0(IL-1a concentration)) 

R2= 0.79; P<0.001
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IL-1alpha treatment (ng/ml)

Linear regression modelling of data from exp. b.a7.3. Beads containing bovine articular chondrocytes and an 
established matrix cultured with treatments for 2 days. Data points represent %GAG release from beads treated with 
various concentrations of IL-1 a.

A subsequent experiment evaluated IL-1 a concentrations down to 0.05 ng/ml 

(Fig. 5.6). All IL-1 a concentrations tested (0.05 ng/ml to 10 ng/ml) compared to 

control stimulated GAG release (P<0.001 for all comparisons). Graphically, 

there appeared to be a positive relationship between GAG release and IL-1 a 

concentration at the IL-1 a concentration range 0.05 ng/ml to 2 ng/ml (Fig.5.6). 

Less GAG release was stimulated by IL-1 a 0.05 ng/ml than by IL-1 a 0.5 ng/ml 

(P=0.041) or IL-1 a 2.0 ng/ml (P=0.009), though other comparisons between 

IL-1 a concentrations did not reveal any significant differences. Linear regression 

modelling was not performed since the data did not fulfil the linearity 

assumption (with or without log transformation).
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Fig. 5.6. Exp. b.a7.4. GAG release as a function of IL-1a concentration (0.05 ng/ml to 10 ng/ml) in the 

bovine articular chondrocyte/ alginate bead culture model.
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Beads containing bovine articular chondrocytes and an established matrix cultured with treatments for two days. Values for %GAG 
release from beads shown as means ± SD (n=4) on chart above left. P values for differences in mean %GAG release between 
treatments shown in table above right.

Intra-experimental and inter-experimental variation in GAG release

IL-1 a 10 ng/ml consistently stimulated GAG release from beads compared to 

basal culture across nine experiments (P<0.001 for comparisons in each 

experiment; Fig. 5.7). Intra-experimental CVs for unstimulated and IL-1 a- 

stimulated GAG release ranged from 3.8% to 21.5% (mean 9.1%) and 0.7% to 

13% (mean 3.6%) respectively. The inter-experiment CVs for unstimulated and 

IL-1a-stimulated GAG release were 52.6% and 26.5% respectively. Between- 

experiment differences for unstimulated or IL-1a-stimulated GAG release were 

found to be highly significant (P<0.001 for both measures). Possible 

explanations for this striking inter-experimental variation are discussed below.
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Fig. 5.7. Inter-experimental variation in basal and !L-1a-stimulated (10 ng/ml) 
GAG release in the bovine articular chondrocyte/alginate bead culture 
model. Results from nine separate experiments.

□  unstim ulated  
culture

■  culture with IL-1o 
(10 ng/m l)

b.a3.l* b.a3.2' b.a4.2* b.a4.4* b.a5.3’ b.a6.3* b.a6.5" b.a7.3** b.a7.4**

Experiment

Beads containing bovine articular chondrocytes and an established matrix cultured with and without IL-la X) ng/ml for 2 days. 
Values f or “/GAG release from beads shown as means ± SO (*n=6; **n=4).

Fig. 5.8. Basal and IL-1a-stimulated (0.05 ng/ml) 
GAG release in the bovine articular chondrocyte/ 
alginate bead culture model. Results from two 
separate experiments.

n=4

n=6

b.a7.4 b.a7.6

□ unstimulated 
culture 

■ culture with IL-ia 
(0.05 ng/ml)

Experiment
Beads containing bovine articular chondrocytes and an established matrix cultured 
with and without IL- 1a 0.05 ng/ml for 2 days. Values for °/<GAG release from beads 
shown as means ±SD (numbers indicated on chart). *P<0.001 vs. unstimulated 
culture in exp. b.a7.4. **P=0.06 vs. unstimulated culture in exp. b.a7.6.
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In two experiments (b.a7.4 and b.a7.6), IL-1a 0.05 mg/ml was used to stimulate 

GAG release (Fig. 5.8). In experiment b.a7.4, IL-1 a 0.05 ng/ml significantly 

increased %GAG release compared to unstimulated culture (P<0.001).

However, the same concentration of IL-1 a was only associated with a trend for 

increased GAG release (P=0.06) in experiment b.a7.6. The intra-experimental 

CVs for IL-1a-stimulated GAG release for the two experiments were 19.2% 

(b.a7.4) and 42.2% (b.a7.6).

5.5.2 Effects of zoledronate on basal or IL-1a-stimulated GAG release
Investigations described in this chapter have examined the effects of 

zoledronate 10‘8 M to 10'4 M on basal or IL-la-stimulated GAG release in the 

bovine articular chondrocyte/ alginate bead culture model. Most experiments 

used IL-1 a at the concentration 10 ng/ml to stimulate GAG release. IL-1 a 0.05 

ng/ml was employed as the stimulus in a single later experiment.

Effects of zoledronate on basal GAG release- six experiments (Figs. 5.9 to 

5.14 and Table 5.4)
Compared to control, treatment with zoledronate 10’8 M to 10'4 M was not 

observed to effect basal GAG release. Trends for increases in basal GAG 

release were seen with zoledronate 10"7 M in one experiment out of six (b.a4.4; 

10.6% increase vs. control; P=0.034) and with zoledronate 10'4 M in one 

experiment out of three (b.a6.3; 9.6% increase vs. control; P=0.039).

Effects of zoledronate on GAG release stimulated by IL-1 a 10 ng/ml- five 

experiments (Figs. 5.9 to 5.13 and Table 5.5)
No effects on IL-1a-stimulated GAG release were seen with zoledronate 10'8 M 

to 10‘4 M. However, several trends that approached significance were apparent. 

In separate experiments increases in stimulated GAG release were found with 

zoledronate 10'6 M in one experiment of four (b.a4.4; 6.2% increase vs. control; 

P=0.011) and zoledronate 10‘5 M in one of two experiments (b.a6.3; 4.8% 

increase vs. control; P=0.012). Decreases in stimulated GAG release were seen
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with zoledronate 10'5 M (4% decrease vs. control; P=0.033) and zoledronate 

10'4 M (4.3% decrease vs. control; P=0.022) in one of two experiments (b.a5.3; 

both findings in the same experiment).

Effects of zoledronate on GAG release with IL-1 a 0.05 ng/ml co-treatment- 

single experiment (Fig. 5.14)

In one experiment IL-1 a 0.05 ng/ml was chosen as the stimulus since it had 

been previously shown that this concentration caused a sub-maximal stimulus 

of GAG release (Fig. 5.6) and it was considered that a gentler stimulus of GAG 

release might be more readily modulated by zoledronate. Unexpectedly, in 

controls, only a trend for increased GAG release was seen with IL-1 a 

0.05 ng/ml compared to no IL-1 a (P=0.06). In cultures co-treated with IL-1 a 

0.05 ng/ml, none of the zoledronate treatments tested (10'7 M to10'4 M) was 

observed to alter GAG release compared to control.

Fig. 5.9. Exp. b.a3.2. Effects of zoledronate (1.E-8 M to 5.E-7 M) on basal and 
IL-1a-stimulated (10 ng/ml) GAG release in the bovine articular 
chondrocyte/alginate bead culture model.
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zoledronate (M ) x zoledronate (M ) + IL-1a 10 ng/ml

Treatment

Beads containing bovine articular chondrocytes and an established matrix cultured in the presence of treatments for two 
days. Values for °/(GAG release from beads shown as means ±SD (n=6).
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Fig. 5.10. Exp. b.a4.2. Effects of zoledronate (1.E-8 M to 1.E-6 M) on basal and 
IL-1a-stimulated (10 ng/ml) GAG release in the bovine articular 
chondrocyte/alginate bead culture model.
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zoledronate (M)

1.E-06

zoledronate (M ) + IL-1a 10 ng/ml

Treatment

Beads containing bovine articular chondrocytes and an established matrix cultured in the presence of treatments for two 
days. Values for °/<GAG release from beads shown as means ± SD (n=6).

Fig. 5.11. Exp. b.a4.4. Effects of zoledronate (1.E-8 M to 1.E-6 M) on basal and 
IL-1 a-stimulated (10 ng/ml) GAG release in the bovine articular chondrocyte/ 
alginate bead culture model.
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zoledronate (M ) + IL-ta 10 ng/ml

Treatment
Beads containing bovine articular chondrocytes and an established matrix cultured in the presence of treatments for two 
days. Values for °/<GAG release from beads shown as means ±SD (n=6).
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Fig. 5.12. Exp. b.a5.3. Effects of zoledronate (1.E-7 M to 1.E-4 M) on basal and 
IL-1a-stimulated (10 ng/ml) GAG release in the bovine articular chondrocyte/ 
alginate bead culture model.
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zoledronate (M) X zoledronate (M )+IL-1a 10 ng/ml

Treatment

Beads containing bovine articular chondrocytes and an established matrix cultured in the presence of treat merits for two days. 
Values for °/fiAG release from beads shown as means ±SD (n=6).

Fig. 5.13. Exp. b.a6.3. Bfects of zoledronate (1.E-7 M to 1.E-4 M) on basal and 
IL-1a-stimulated (10 ng/ml) GAG release in the bovine articular chondrocyte/ 
alginate bead culture model.
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Treatment

Beads containing bovine articular chondrocytes and an established matrix cultured in the presence of treatments for two days. 
Values for °/<GAG release from beads shown as means ±SD (n=6).
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Fig. 5.14. Exp. b.a7.6. EJfects of zoledronate (1.E-7 M to 1.E-4 M) with and 
without IL-1a 0.05 ng/ml co-treatment on GAG release in the bovine 
articular chondrocyte/alginate bead culture model.
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n=3
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zoledronate (M ) X zoledronate (M ) +IL-1a 0.05 ng/ml

1.E-04

Treatment
Beads containing bovine articular chondrocytes and an established matrix cultured in the presence of treatments for two days. 
Values for °/£3AG release from beads shown as means ±SD (n=3 or n=6 as indicated on chart).

5.6 Discussion

Characteristics of the bovine articular chondrocyte/ alginate bead culture 

model

In vitro culture of bovine articular chondrocytes within alginate beads in serum- 

supplemented medium for periods ranging from 21 days to 42 days led to the 

GAG accumulation in the beads (Fig. 5.1). Synthesis of GAG is an indication 

that the chondrocyte phenotype was maintained in the culture model, consistent 

with previous detailed studies which have demonstrated that the cell and matrix 

characteristics of chondrocytes cultured in alginate beads closely resemble 

those of native articular cartilage (Almqvist et al. 2001; Chubinskaya et al. 2001; 

Guo et al. 1989; Hauselmann et al. 1992; Hauselmann et al. 1994; Hauselmann 

et al. 1996b; Petit et al. 1996), and supports the use of the culture system to 

investigate chondrocyte-matrix metabolism.
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Table 5.4. Results summary from six experiments for the effects of zoledronate (1.E-8 M to 1.E-4 M) on basal GAG release from alginate beads containing 
chondrocytes and an established matrix.

Exp.
Mean %GAG 
release for 
control

Difference (A) in mean %GAG release between zoledronate and control; and significance level of the difference*

Zoledronate treatment concentration (M)

10-8 10'7 5x1 O'7 10* 10* 10*
A P value A P value A P value A P value A P value A P value

b.a3.2 16.7 -.2 .995 -.3 .973 +.2 .990
b.a4.2 7.6 +.2 .782 +.3 .267 +.2 .619
b.a4.4 6.9 +.3 .499 +.7 .034 -.5 .203
b.a5.3 11.3 -.6 .589 -.3 .931 -1.3 .055 +.5 .715
b.a6.3 11.6 +.4 .725 -.1 .999 .0 >.999 +1.1 .039
b.a7.6 5.2 -.6 .388 .0 >.999 -.4 .730 -.5 .338
* Since multiple experiments were performed the alpha level to indicate a significant difference between means was set at P=0.01 as described in section 2.3.2

Table 5.5. Results summary from five experiments for the effects of zoledronate (1.E-8 M to 1.E-4 M) on IL-1a-stimulated (10 ng/ml) GAG release from alginate beads 
containing chondrocytes and an established matrix.

Exp.

Mean % GAG 
release for 
IL-1a-stimulated 
control

Difference (A) in mean IL-1a-stimulated %GAG release between zoledronate and control; 
and significance level of the difference*

Zoledronate treatment concentration (M)

10° 10" 5x10" 10" 10 s 10*
A P value A P value A P value A P value A P value A P value

b.a3.2 72.0 -.3 .970 -.6 .789 +.3 .967
b.a4.2 47.0 -.5 .904 +.9 .586 -.2 .985
b.a4.4 57.6 +1.5 .383 +1.4 .467 +3.6 .011
b.a5.3 64.8 +1.1 .610 -1.6 .288 -2.6 .033 -2.8 .022
b.a6.3 61.5 +1.1 .663 +.9 .814 +3.0 .012 -1.7 .284
* Since multiple experiments were performed the alpha level to indicate a significant difference between means was set at P=0.01 as described in section 2.3.2
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Subsequent culture of alginate beads containing chondrocytes and an 

established matrix with IL-1 a stimulated GAG release from the beads. IL-1 a 

10 ng/ml stimulated GAG release in a time-dependent fashion (Fig. 5.2), which 

is consistent with a previous study that found a similar relationship for IL-1 (3 

stimulation in the same culture system (Beekman et al. 1998). In the present 

studies, the greatest separation between basal and IL-1 a stimulated GAG 

release occurred with two-day culture (Fig. 5.2) leading to the selection of this 

stimulation period in all subsequent experiments. IL-1 a at the concentration of 

10 ng/ml was used in nearly all experiments and, consistently, this stimulus was 

found to increase GAG release (Fig. 5.7). These observed effects of IL-1 a 

10 ng/ml support its use in the model to investigate chondrocyte-mediated 

proteoglycan degradation.

Later on in the studies, GAG release as a function of IL-1 a concentration in the 

model was explored to examine the possibility that GAG release might saturate 

at higher IL-1 a concentrations. Across three experiments, the IL-1 a 

concentration range evaluated was 0.05 ng/ml to 20 ng/ml. Surprisingly, though 

all IL-1 a concentrations tested did stimulate GAG release, the highest cytokine 

concentrations did not produce maximal stimulatory effects (Figs. 5.3 to 5.6). It 

is possible that chondrocytes may become initially desensitised to IL-1 a at high 

ligand concentrations since human dermal fibroblasts, another type of 

connective tissue cell, have been found to transiently down-regulate IL-1 

receptors on exposure to IL-1 a 5 ng/ml (though receptor expression then up- 

regulated on longer-term exposure to the cytokine) (Akahoshi et al. 1988). 

Alternatively, there may be a mild cytotoxic effect at higher IL-1 a 

concentrations, as is suggested by one of the viability experiments described in 

Chapter 3 in which IL-1 a 10 ng/ml treatment caused a 3.1% reduction in 

chondrocyte viability (Table 3.3). Clarification of these possible mechanisms 

would require further study.

IL-1 a 0.05 ng/ml, which was the lowest IL-1 a concentration evaluated, also 

produced a sub-maximal stimulatory effect on GAG release (Figs. 5.6). Taken
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together, the results suggest a biphasic relationship: at lower IL-1 a 

concentrations the amounts of GAG release increase with cytokine 

concentration up to a peak beyond which higher IL-1 a concentrations are less 

stimulatory for GAG release.

For evaluating the effects of zoledronate on GAG release in the culture model, it 

was considered that a milder stimulus of proteoglycan degradation might be 

more readily modulated by the bisphosphonate. Thus, IL-1 a 0.05 ng/ml was 

selected as a sub-maximal stimulus for the culture model in one experiment that 

tested the general hypothesis. However, in this experiment, IL-1 a 0.05 ng/ml did 

not stimulate GAG release significantly and, in addition, between-sample 

variation for GAG release was high (CV=42.2% for GAG release with IL-1 a 0.05 

ng/ml). The level of variability was unexpected since the cell source was 

standardised between samples, and it is assumed that variability was 

introduced during execution of the experimental methods. Additional work is 

needed on the model to identify relatively low concentrations of IL-1 a that mildly 

stimulate GAG release and, in further experiments, particular attention should 

be given to meticulous experimental technique.

In terms of within-experiment reproducibility for GAG release stimulated by 

IL-1 a 10 ng/ml, the culture model performed well. The mean intra-experimental 

CV for this measure was 3.6%, comparing favourably with that seen in the 

cartilage explant model (mean CV 18.4%; Table 4.3). Thus, of the two culture 

models, the bovine articular chondrocyte/ alginate bead model possesses 

greater sensitivity for detecting treatment effects on GAG release stimulated by 

IL-1a 10 ng/ml.

Interestingly, a recurring theme seen in the chondrocyte/ alginate bead culture 

system was inter-experimental variation. Firstly, the rate of bead GAG 

accumulation during the matrix-establishing culture period appeared to differ 

strikingly between experiments (Fig. 5.1), even in the absence of formal 

statistical comparisons which were not performed because the time points for
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measuring GAG accumulation were not uniform across studies. Secondly, the 

amounts of GAG released from the beads (both basal and IL-1a-stimulated) 

varied widely between experiments (Figs. 5.7 and 5.8). Thirdly, the IL-1 a 

concentration that was found to cause maximal GAG release was not uniform 

(IL-1 a 2 ng/ml in two experiments and IL-1 a 0.5 ng/ml in the third). Fourthly, IL- 

1a 0.05 ng/ml increased GAG release in one experiment but only led to a trend 

for increased GAG release in another experiment (Fig. 5.8).

Variability between experiments could have arisen from biological differences in 

the chondrocytes and/or differences in culture technique. The use of 10% FCS 

to supplement the culture medium in one experiment (b.a3) may have led to a 

reduced rate of bead GAG accumulation compared other experiments in which 

20% FCS was used since FCS is a known stimulus of proteoglycan synthesis in 

bovine articular chondrocytes (van Susante et al. 2000). In addition, the culture 

duration during which matrix was established in the beads prior to IL-1 a 

stimulation was different between experiments (it ranged from 21 days to 42 

days). Previous studies indicate that aspects of chondrocyte metabolism, such 

as the rates of cell proliferation and GAG synthesis, can vary with culture 

duration (Akmal et al. 2006). Catabolic responses of chondrocytes might also 

change according to in vitro culture duration, which would offer some 

explanation for the observed inter-experimental variation in bead GAG release.

Alternatively, inter-experimental variation may have reflected inter-animal 

differences in chondrocyte proteoglycan metabolism, though the use of at least 

two animals to source chondrocytes in most experiments is likely to have 

somewhat averaged-out such differences between experiments (Tables 5.2 and 

5.3). Since older age has been found to be associated with decreased 

responsiveness of articular cartilage to the effects of IL-1 (Hauselmann et al. 

1996a; Little et al. 1999; MacDonald et al. 1992), the variation in animal age in 

the present study (known ages of animals ranged from 13 months to 29 

months) may have been significant for between-experiment differences.
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Investigating the marked variation in chondrocyte metabolism seen in the 

present studies should identify model parameters to be standardised in further 

experiments and, in addition, could provide further insight into the role of IL-1 in 

OA and improve understanding of OA aetio-pathogenesis. Effects of differences 

in culture technique could be examined in a standardised cell line. Biological 

differences could be explored using standardised methodology for the culture 

model whilst varying the cell source, for example examining the responsiveness 

to IL-1 a of chondrocytes from various regions of the articular surface defined 

according to susceptibility to cartilage degeneration.

Effects of zoledronate on chondrocyte-mediated proteoglycan 

degradation
In the studies, zoledronate treatments at concentrations ranging from 10‘8 M to 

10‘4 M were not observed to have effects on unstimulated GAG release or GAG 

release stimulated by IL-1 a 10 ng/ml in the bovine articular chondrocyte/ 

alginate bead culture model (Tables 5.4 and 5.5). At specific zoledronate 

concentrations, sporadic trends for treatment effects were seen (both increases 

and decreases with effect sizes ranging from 4% to 10.6% compared to 

control), but since no trends were reproduced between experiments, they are 

not considered to be significant. Taken together, the negative findings can be 

interpreted to be biologically relevant for bovine animals in general as 

chondrocytes were sourced from different animals between experiments.

In order to explore the possibility that zoledronate might only have a moderate 

modulatory effect on IL-1a-stimulated proteoglycan degradation, an attempt was 

made to investigate effects of the bisphosphonate in the culture model but with 

a milder stimulus of GAG release. However, as described above (this section), 

a mild stimulus was not successfully identified in the present studies and further 

work is needed on the model in order to pursue this line of investigation. 

Ultimately, finding positive though mild modulatory effects on proteoglycan 

degradation may translate to clinical disease modification if the effects are
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sustained and, thereby, lead to increases in cartilage proteoglycan content over 

time.

Overall, no effects of zoledronate were found to support the general hypothesis. 

On the other hand, there were also no observable detrimental effects that would 

exclude zoledronate as a disease-modifying treatment for OA through an action 

on cartilage metabolism.

5.7 Conclusions

• Bovine articular chondrocytes that are cultured in alginate beads 

establish GAG in the beads. Subsequent exposure of these beads to 

IL-1 a 10 ng/ml stimulates GAG release with excellent between-sample 

reproducibility. Thus, the culture system provides an in vitro model of 

chondrocyte-matrix catabolism for sensitively investigating treatment 

effects on proteoglycan degradation.

• Generally, IL-1 a has stimulatory effects on GAG release in the model. 

GAG release as a function of IL-1 a concentration appears to be biphasic 

with positive correlation between GAG release and IL-1 a concentration at 

lower cytokine concentrations and negative correlation at higher IL-1 a 

concentrations.

• Between experiments, there were high levels of variation in the rate of 

GAG accumulation in alginate beads and the subsequent release of 

GAG from the beads (with and without IL-1 a stimulation). This inter- 

experimental variation could have arisen from biological differences in 

the chondrocytes and/or differences in culture technique. Further study of 

inter-animal variation in chondrocyte-mediated proteoglycan metabolism 

in the culture model could yield important insight into aetio-pathogenesis 

of cartilage degradation in OA.
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• Zoledronate treatments 10'8 M to 10'4 M were not observed to have 

effects on GAG release stimulated by IL-1 a 10 ng/ml from alginate beads 

containing matrix established by bovine articular chondrocytes. Thus, no 

evidence was found to support the hypothesis that the bisphosphonate 

can decrease the loss of cartilage glycosaminoglycan during the 

osteoarthritic process by reducing chondrocyte-mediated proteoglycan 

degradation.
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Chapter 6. General discussion

6.1 Aim of studies
The studies described in this thesis have explored the concept that zoledronate 

can alter the disease course in OA by testing the hypothesis that the 

bisphosphonate can modify cartilage metabolism to reduce the loss of cartilage 

proteoglycan during the OA disease process.

6.2 In vitro models employed in experiments
Effects of zoledronate on proteoglycan synthesis and degradation, that is both 

sides of the metabolic balance, were examined in vitro in models of chondrocyte 

and cartilage metabolism, in which IL-1 a was used to stimulate “OA-like” 

metabolic change. The two culture models employed, bovine articular cartilage 

explant culture model and bovine articular chondrocyte/ alginate bead culture 

model, were found to be effective for investigating effects on IL-1a-stimulated 

proteoglycan degradation (measured as tissue GAG release). In addition, the 

chondrocyte/ alginate bead model proved useful for evaluating effects of 

zoledronate on chondrocyte proteoglycan synthesis, as well as potential 

adverse effects on chondrocyte viability and proliferation.

In relation to the bovine cartilage explant culture model, an interesting 

observation was marked intra-joint variability in IL-1a-stimulated GAG release in 

cartilage. Heterogeneity in the biochemical composition of articular cartilage 

across the joint surface is well known. Previous reports indicate that GAG 

content (Brama et al. 2000), chondroitin sulphate sulphation pattern (Bayliss et 

al. 1999) and aggrecanase-generated aggrecan fragment distribution (Bayliss et 

al. 2001) differ according to the site sampled. In addition, susceptibility to IL-1 (3- 

stimulated GAG release has been found to vary in cartilage from different 

anatomical locations in the human OA knee joint (Barakat et al. 2002). Further 

work to examine if the susceptibility of articular cartilage to IL-1a-stimulated 

proteoglycan degradation relates to cartilage sites that develop OA change
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within a joint could provide additional insight into the mechanisms behind focal 

cartilage loss in OA.

The levels of intra-experimental variability in IL-1a-stimulated GAG release for 

the cartilage explant model posed a problem for experimental design.

Unfeasibly large sample numbers would have been required in the model to 

achieve adequate power to detect small-sized treatment effects (e.g. from 

sample size calculations: up to 102 samples per treatment group needed to 

detect a 10% effect size with 80% power). Another culture system, the 

chondrocyte/ alginate bead model which involved culturing a “cartilage-like” 

tissue in vitro, demonstrated much less between-sample variability within 

experiments and was also used to investigate the effects of zoledronate on IL- 

1a-stimulated GAG release. It is likely that the improved levels of variability 

resulted from standardisation of the cell source for samples; alginate beads for 

all samples within experiments were formed using the same homogenised pool 

of cells in which any topographical differences in chondrocyte metabolism would 

have been averaged out. In further studies, the model could be used to explore 

possible topographical variation in chondrocyte metabolism by examining 

response to IL-1 a in cells sourced from defined areas of an articular surface of a 

single joint.

In both culture models, marked inter-experimental variability was encountered 

for the amounts of tissue GAG released, an unexpected finding since sources 

for cartilage or chondrocytes were relatively standardised across experiments. 

The studies for this project were not designed to examine the basis for this 

variability but one possible explanation is metabolic variation between animals. 

Additional work to assess cartilage and chondrocyte proteoglycan metabolism 

in relation to animal characteristics (e.g. age, sex and weight) could provide 

new information on the link between aetiology and pathogenesis for cartilage 

proteoglycan loss in OA.
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6.3 Effects of zoledronate in the models of chondrocyte and cartilage 

metabolism
The usefulness of any potential treatment for OA with proposed effects on 

cartilage metabolism is in part defined by an absence of toxic effects on 

chondrocytes. Based on the assessment of effects on basic parameters of 

chondrocyte metabolism (i.e. cell viability, proliferation and proteoglycan 

synthesis), zoledronate concentrations <10'5 M appear safe. However, 

zoledronate 10‘4 M is clearly detrimental to bovine chondrocytes from the MCP 

joint. It would be advisable to avoid exposing cartilage to zoledronate 

concentrations > 10 4 M during clinical use, though pharmacokinetic data have 

yet to be reported on cartilage levels achieved with current dosing regimens. 

Furthermore, toxicity studies would need to be repeated using human 

chondrocytes in order to form firm conclusions.

Across the series of studies, no evidence was demonstrated to support the 

general hypothesis that zoledronate modifies cartilage metabolism to reduce the 

loss of cartilage glycosaminoglycan during the OA process. Specifically, no 

enhancing effects were observed with zoledronate 10'10 M to 10'4 M on 

proteoglycan synthesis in the chondrocyte/ alginate bead culture model and, 

furthermore, no modulating effects on proteoglycan degradation were seen with 

zoledronate 10"10 M to 10'5 M in the cartilage explant culture model or with 

zoledronate 10'8 M to 10’4 M in the chondrocyte/ alginate bead culture model.

Prior to performing the studies, it had been considered that inhibition of MMP or 

aggrecanase activity was a plausible biochemical mechanism for an inhibitory 

effect of zoledronate on proteoglycan degradation. However, proteinase 

inhibition requires high zoledronate concentrations, in the range 2.5x1 O'5 M to 

10'3 M (Heikkila et al. 2002; Teronen et al. 1999), and in the present studies 

only zoledronate treatment at concentrations <10'5 M appeared safe for bovine 

articular chondrocytes. Thus, at least for bovine articular cartilage, there is no 

therapeutic window for zoledronate to modulate proteoglycan degradation 

through proteinase inhibition.
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Overall, the negative findings for the general hypothesis may be interpreted in 

three ways: (i) the general hypothesis has not been adequately tested due to 

limitations of the experimental approach; (ii) the overall concept of zoledronate 

as a disease-modifying treatment in OA is valid but its activity arises from a 

mechanism of action other than a direct effect on cartilage proteoglycan 

metabolism; or (iii) zoledronate does not have OA disease-modifying properties.

6.4 Limitations of the studies
The present studies have looked for direct effects of zoledronate on cartilage or 

chondrocyte metabolism in vitro. Several limitations to the experimental 

approach are apparent.

Firstly, some characteristics of the in vitro culture systems that were employed 

in the experiments indicate that these models are less than accurate 

representations of in vivo metabolism:

a) Regulation of cartilage metabolism in vitro and in vivo: The 10 ng/ml 

concentration of IL-1 a employed in the models to stimulate proteoglycan 

degradation is nearly 100-fold higher than IL-1 levels (albeit IL-1 (3 rather 

than IL-1 a) seen in synovial fluid of knee OA joints (Westacott et al. 

1990). Furthermore, the use of a single cytokine to stimulate metabolism 

is simplistic compared to the in vivo setting, in which regulation of 

metabolism is governed by various other cytokines, biochemical factors 

and mechanical factors that, in addition, can interact with one another 

(discussed in section 1.2.3.6).

Several reports indicate that In vitro culture techniques introduce 

changes to metabolism in cartilage and chondrocytes. In vitro culture of 

cartilage explants or chondrocytes alters proteinase expression patterns, 

in comparison to those found in fresh cartilage tissue extracts (Bau et al.
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2002; Flannery et al. 1999).In addition, the cutting of articular cartilage 

releases tissue bound basic fibroblastic growth factor (Vincent et al.

2002) (a proposed extracellular mechanotransducer (Vincent and 

Saklatvala 2006)), increases cell proliferation and matrix synthesis at the 

wound edge (Redman et al. 2004), and induces IL-1 (Gruber et al. 2004). 

Furthermore, the initial removal of the peri-cellular matrix during 

chondrocyte isolation in the chondrocyte/ alginate bead culture model is 

likely alter cell metabolism since this domain of matrix is thought to be a 

transducer of biomechanical and biochemical signals (Guilak et al. 2006). 

However, a pre-culture period was employed to stabilise cartilage or 

chondrocytes prior to treatment culture in all but one of the experiments 

of the present studies and its use is likely to have minimised acute 

effects of tissue processing.

b) Differences in rate of change: The rate of matrix change observed in 

the in vitro models is more rapid than that in vivo. IL-1 a stimulation in 

vitro led to up to 62.9% of the proteoglycan being released from cartilage 

over a four-day culture period. In comparison, the proteoglycan content 

in OA cartilage from OA hips removed at arthroplasty has been reported 

to be 52% less than that in cartilage from normal control hips (Byers et 

al. 1977). Though effect sizes are similar, the time course for 

pathological change in the OA hips must have been over several years, 

implying that quantitatively small but sustained alterations to metabolism 

could be significant for cartilage proteoglycan loss in vivo.

Secondly, the specific use of young adult, healthy cartilage from the metacarpal 

articular surfaces of bovine MCP joints in the studies somewhat limits 

interpretation of the results. Cartilage composition and metabolism varies 

between species (Cawston et al. 1998; Hughes et al. 1998), in different joints 

(Eger et al. 2002) and in relation to age (Hardingham 2004). Thus, the negative 

findings from the present studies should be interpreted cautiously in the context 

of the heterogeneous nature of cartilage metabolism. In particular, the use of
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results derived from present studies to understand the mechanisms behind the 

reductions in cartilage degradation with zoledronate treatment seen in rabbits 

with experimentally-induced OA (Muehleman et al. 2002) is limited by the 

possibility of inter-species differences in cartilage metabolism.

Other study limitations relate to potential zoledronate treatment effects in the 

model that were not addressed. An attempt had been made to examine 

treatment effects on proteoglycan degradation stimulated by a milder stimulus 

(i.e. IL-1 a at the 0.05 ng/ml concentration rather than 10 ng/ml) but conclusions 

were not drawn because the culture model did not perform as expected. 

Preventative or delayed treatment effects also have yet to be examined. The 

maximum duration of zoledronate treatment in the present studies was four 

days and the bisphosphonate was added at the same time as the IL-1 a 

stimulus. In comparison, the zoledronate treatment period that led to reductions 

in cartilage degradation in the animal OA model commenced 24 hours before 

induction of cartilage damage and then continued for 28 days or 56 days prior to 

assessment (Muehleman et al. 2002), raising the possibility of preventative or 

delayed treatment effects. Furthermore, the inhibitory effects of etidronate and 

clodronate on mono-nuclear cell factor-stimulated collagenase production by 

chondrocytes have been found to be more pronounced when cells were pre­

treated with the bisphosphonates for several days than when they were added 

at the same time as the stimulating factor (McGuire et al. 1982), suggesting that 

bisphosphonates in general may have preventative or delayed effects on 

chondrocyte metabolism.

6.5 Zoledronate as a disease-modifying treatment in OA: possible 

mechanisms of action other than a direct effect on cartilage proteoglycan 

metabolism

An alternative target for zoledronate in cartilage is the metabolism of type II 

collagen. Observed reductions in urinary CTX-II in Paget’s disease patients 

treated with zoledronate (Garnero et al. 2001a) point toward an inhibitory effect
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on type II collagen degradation. As discussed above, zoledronate can inhibit 

MMP proteolytic activity, providing a biochemical mechanism, but there does 

not appear to be a therapeutic window for MMP inhibition in cartilage without 

adverse effects on chondrocytes.

Beyond cartilage, possible mechanisms of action for zoledronate as a disease- 

modifying treatment in OA include effects on any one of the other joint tissues 

involved in pathogenesis. In particular, subchondral bone is a plausible target 

and there has been considerable recent interest in the potential for agents with 

anti-resorptive effects on bone as therapies in OA (Abramson and Honig 2007; 

Burr 2004; Spector 2003). Numerous studies have reported positive effects with 

various bisphosphonates or calcitonin (another anti-resorptive) in animal OA 

models (Agnello et al. 2005; Doschak et al. 2004; Hayami et al. 2004; Manicourt 

et al. 1999; Meyer et al. 2001a; Meyer et al. 2001b; Muehleman et al. 2002; 

Papaioannou et al. 2007; Sondergaard et al. 2007). In addition, clinical trials 

have evaluated risedronate treatment in OA patients. Encouraging results were 

found in an initial study of 284 patients with knee OA (Spector et al. 2005) but a 

subsequent larger study of nearly 2500 knee OA patients did not find clinical 

improvements or reductions in joint-space narrowing with risedronate (Bingham, 

III et al. 2006). It has been suggested that the latter study was under-powered 

for primary outcome measures due to low numbers of OA patients 

demonstrating disease progression (Abramson and Honig 2007). An alternative 

explanation for the discrepant results for bisphosphonate efficacy between the 

human and animal studies is the difference in treatment timing in relation to the 

OA disease process. In many animals studies, anti-resorptive treatment 

commenced around the time that experimental OA was induced (Agnello et al. 

2005; Doschak et al. 2004; Hayami et al. 2004; Manicourt et al. 1999; Meyer et 

al. 2001a; Meyer et al. 2001b; Muehleman et al. 2002; Papaioannou et al. 2007; 

Sondergaard et al. 2007) whereas in the human study, the bisphosphonate was 

given to patients with established knee OA (Bingham, III et al. 2006). Thus, it 

may be that inhibiting bone resorption to alter OA pathogenesis may be only 

effective if inhibition occurs during the early stages of the OA process.
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It is interesting to speculate how reducing bone resorption might affect the OA 

disease process. In OA, articular surface deformity and limb malalignment are 

thought to arise partly from collapse of weakened sub-articular cancellous bone 

(Buckland-Wright 2004). Peri-articular bone loss, which is seen in the OA joint 

(Kannus et al. 1992; Karvonen et al. 1998; Leppala et al. 1999), could 

predispose to structural failure. Prevention of bone loss with anti-resorptive 

therapies may, therefore, ultimately result in improved mechanical 

characteristics of the OA joint. Reducing osteophyte formation, as has been 

observed for alendronate in an OA animal model (Hayami et al. 2004), is 

another way that inhibition of bone resorption could structurally modify the OA 

joint. However, this may not be ultimately beneficial because osteophytes may 

in fact improve joint stability (Pottenger et al. 1990).

An effect on proposed biochemical interactions between subchondral bone and 

articular cartilage is an alternative mechanistic explanation for a bone effect. 

Through biochemical interactions, abnormal osteoblasts from OA subchondral 

bone may be involved in promoting proteoglycan loss in adjacent articular 

cartilage (Sanchez et al. 2005; Westacott et al. 1997). If activation of abnormal 

osteoblasts occurs as part of the bone remodelling process, then inhibiting bone 

turnover in OA subchondral bone with anti-resorptive therapies may lead 

indirectly to improved proteoglycan retention in articular cartilage.

Lastly, increases in systemic BMD may have an effect on the OA process. High 

BMD has been reported as a risk factor for incident OA whereas low BMD is a 

risk factor for progressive disease in patients with established OA (Hart et al. 

2002; Zhang et al. 2000). If these risk factors prove to be causal in nature, then 

increasing BMD with anti-resorptive therapies would be expected to increase 

incident OA but reduce progressive OA.

A caveat to the hypothesis that inhibiting bone remodelling modulates the OA 

disease process is the finding that treatment efficacy for a range of 

bisphosphonates in the Duncan-Hartley guinea pig model of OA did not relate to
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the anti-resorptive potency of the bisphosphonates (Meyer et al. 2001a). 

Additional work is needed to examine the role of bone remodelling in OA and 

the efficacy of inhibiting bone turnover for modifying the disease process.

6.6 Is there a role for zoledronate as a disease-modifying treatment in OA?

Overall the findings from these present studies do not suggest a role for 

zoledronate as a disease-modifying treatment in OA through an effect on 

cartilage proteoglycan metabolism. However, as discussed above, there are 

limitations to the present studies and other mechanisms of action remain 

unexplored. Further work to address these issues may yet find evidence for a 

mechanism of action and, in addition, provide insight into the pathophysiological 

relationship between subchondral bone and articular cartilage in the OA joint.
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Chapter 7. General conclusions

. In vitro culture of bovine articular cartilage explants with and without IL-1 a 

10ng/ml stimulation provides a model for investigating cartilage proteoglycan 

degradation.

. In vitro culture of bovine articular chondrocytes in alginate beads provides a 

model for evaluating chondrocyte viability, proliferation and proteoglycan 

synthesis. In addition, following a period in culture to establish matrix in the 

alginate beads, subsequent culture of the beads with and without IL-1 a 10 

ng/ml provides a model for investigating chondrocyte-mediated proteoglycan 

degradation. Tissue GAG release is less variable in the chondrocyte/ alginate 

bead culture model than in the cartilage explant culture model. Thus, 

treatment effects on GAG release can be detected more sensitively in the 

former model.

. Zoledronate treatments at concentrations <1 O'5 M generally appear safe for 

bovine articular chondrocytes. However, zoledronate 10‘4 M has adverse 

effects on chondrocyte viability, proliferation and proteoglycan synthesis.

. No evidence was demonstrated that short-term treatment with zoledronate 

<10'4 M enhances chondrocyte proteoglycan synthesis or reduces IL-1 a- 

stimulated chondrocyte-mediated proteoglycan degradation. Thus, the results 

do not support the hypothesis that zoledronate has a role as a disease- 

modifying treatment in OA through an effect on cartilage to reduce the 

pathological loss of cartilage proteoglycan.

. Preventative or delayed zoledronate treatment effects on cartilage

proteoglycan metabolism remain unaddressed. In addition, it is possible that 

zoledronate can modify the OA disease process through effects on cartilage
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type II collagen metabolism or effects on another joint tissue, such 

subchondral bone.



Chapter 8. Further work

Optimising the models of cartilage or chondrocyte-matrix catabolism
Adjustments to parameters of the in vitro chondrocyte or cartilage culture 

systems used in these present studies could be made to improve their accuracy 

as models of in vivo metabolism. The OA disease process is slow and it can 

take many years before pathology becomes evident. The chronic nature to 

pathogenesis is seen clearly in patients with trauma to the knee causing injury 

to the anterior cruciate ligament or meniscus, in whom the first radiographic 

signs of OA appeared on average about 10 years after the injury (Roos et al. 

1995). It follows that even minor imbalances to degradation and repair in 

cartilage may be important for cartilage loss if they are sustained over long 

periods of time. Studies to characterise proteoglycan degradation as a function 

of time and IL-1 a concentration could be followed by the development of 

accurate in vitro models of in vivo cartilage metabolism in which GAG release 

stimulated by a gentle IL-1 a stimulus can be observed over long term culture.

In view of the marked inter-experimental variation in proteoglycan metabolism 

seen in the models of the present studies, future experiments should be 

performed with standardised cell / tissue sources (e.g. a single pool of cells or 

an immortalised chondrocyte cell line) and standardised culture techniques.

Additional testing of zoledronate for effects on cartilage proteoglycan 

metabolism
Further work should examine preventative and delayed treatment effects of 

zoledronate on cartilage proteoglycan synthesis and degradation since these 

have not been addressed in these present studies. In addition, subsequent 

experiments could use cartilage or chondrocytes from rabbits instead of a 

bovine source in the culture models. Findings from such experiments would be 

informative for understanding the mechanisms behind the beneficial effects of 

zoledronate treatment in rabbits with experimentally-induced OA (Muehleman et
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al. 2002) without being limited by inter-species differences in cartilage or 

chondrocyte metabolism.

Examining other mechanisms of action for zoledronate as a disease- 

modifying treatment in OA
Effects of zoledronate on cartilage type II collagen synthesis or degradation are 

unknown. In order to address this, an alternative culture model to those used in 

the present studies would be needed since little or no collagen degradation is 

induced by IL-1 in bovine articular cartilage explants (Caterson et al. 2000). One 

candidate model is the co-stimulation of collagen degradation in bovine nasal 

cartilage or human articular cartilage with IL-1 a and oncostatin M (Cawston et 

al. 1998).

More information about potential target tissues for zoledronate could be derived 

in animal OA models. Studies to reproduce the treatment effects previously 

demonstrated a rabbit OA model (Muehleman et al. 2002) could examine, in 

addition, the localisation of zoledronate within the joint. The absence of 

zoledronate in any particular joint tissue would exclude it from being a target 

tissue whereas the presence of the bisphosphonate would indicate a possible 

target tissue. These findings would be useful for directing further studies of 

target tissues to elucidate underlying metabolic mechanisms.

Overall, the continued search for disease-modifying treatments for OA may lead 

not only to the identification of clinically useful treatments but, if underlying 

mechanisms are known, also add to the understanding of OA pathogenesis.
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