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my p a r e n t s



"We shall not cease from exploration 

And the end of all our exploring 

Will be to arrive where we started 

And to know the place for the first time”

T S Eliot (1888-1965)



Abstract

The decision to treat cancer patients with Iressa (Gefitinib, tyrosine kinase 

inhibitor of EGFR) and Herceptin (Trastuzumab, monoclonal antibody for 

HER2) is frequently based on EGFR or HER2 receptor over-expression. 

However, even in these selective groups of patients, the response rate is poor 

and unpredictable. The underlying mechanisms contributing to drug resistance, 

as well as predicting the success of these drugs in cancer patients are still 

poorly understood. One of the reasons for poor response rates based on HER 

(ErbB) levels is that over-expression 'per se' fails to consider receptor 

activation for example through autocrine expression of one of its several 

ligands. Over-expression as a criterion for treatment fails to account for 

patients having receptor activation without up-regulation. It was hypothesized 

that using Forster Resonance Energy Transfer (FRET) to measure the 

functional status of EGFR in tumour arrays should provide more quantitative 

prognostic information than using immunohistochemistry alone. After 

validating a high throughput fluorescence lifetime microscopy (FLIM) system 

in a series of cell lines, it was shown that EGFR phosphorylation, reflected in 

high FRET efficiency, is correlated with worsening Disease Free Survival 

(DFS) in a set of head and neck tumour arrays.

The FRET methodology was applied further to assess the phosphorylation of 

HER2 and other HER family receptors in various breast cancer cell lines in 

relation to Iressa and Herceptin treatments. Monotherapy with Iressa while 

targeting EGFR and decreasing phosphorylation of HER3, induced proteolytic 

cleavage of HER4 and dimerisation between HER2 and HER4, leading to 

HER2 phosphorylation, as a result of ligand release. Therefore the activation 

of alternative pathways like HER2 and HER4 may mediate resistance to Iressa. 

It was also demonstrated that Herceptin while targeting HER2, paradoxically 

induced the phosphorylation of all HER receptors due to antagonist-induced 

ligand secretion. Therefore, it has been shown that Iressa and Herceptin 

treatment in breast cancer cells induces activation of alternative HER 

pathways, thus providing an insight into possible mechanisms of resistance for 

targeted therapies in breast cancer. The results suggest alternative treatments to



overcome resistance to these targeted therapies in patients.

FRET was also applied to assess HER2 phosphorylation in a set of HER2 

positive breast tumour arrays using automated FLIM. It was shown that FRET 

maybe used to stratify HER2 positive breast cancer patients into different 

prognostic groups. It is proposed to utilise this assay for prospective 

stratification of patients in randomised trials of EGFR and HER2 inhibition. 

The methodology shows great promise and can also be applied to assess the 

activation of other signalling pathways (e.g. PKB and MAPK) in relation to 

various cancer treatments.
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1 Introduction

1.1 Background

Cancer treatments are becoming increasingly complicated as basic science 

research has led to the introduction of new biological agents or targeted 

therapies for clinical use. These agents bring great promise to cancer patients 

since they were developed to target specific abnormal signalling pathways in 

cancers, in contrast to the conventional radiotherapy and chemotherapy which 

are non-specific and affect both cancer and normal cells. However, the 

challenge remains of how to identify appropriate patients who will benefit 

from such agents. Moreover, many questions remain unanswered, including 

the best method of using these drugs in combination with radiotherapy, 

chemotherapy and endocrine therapy; what kinds of patients should receive 

these drugs; which are the appropriate biomarkers to predict response; the 

mechanisms of primary and secondary resistance to these drugs and how to 

prevent the onset of resistance in responders.

Dysregulation of epidermal growth factor receptors (HER or ErbB) receptors 

has been implicated in various epithelial cancers (Yarden and Sliwkowski, 

2001). Drugs that target epidermal growth factor receptor family (ErbB or 

HER receptors' family) including EGFR (ErbB-1 or HER1) inhibitors and 

HER2 (ErbB2) monoclonal antibodies are among the very first generation of 

targeted therapies that were translated from basic science research into clinical 

use (Herbst, 2004). These drugs are gaining an increasingly important role in 

the treatment of various cancers, particularly the HER2 monoclonal antibody 

Herceptin (Trastuzumab) in breast cancer (Piccart-Gebhart et al., 2005; 

Romond et al., 2005)

The decision to treat cancer patients with EGFR inhibitor and HER2 

monoclonal antibody have been based on EGFR and HER2 receptor over­

expression (or gene amplification) respectively (Arteaga, 2002; Yaziji et al.,

2004). More recently, EGFR inhibitors have been given to patients without



measuring EGFR concentration since the response of EGFR inhibitors do not 

necessarily correlate with the response to the drugs (Chung et al., 2005). The 

criteria of Herceptin treatment is still currently based on HER2 over­

expression shown by immunohistochemistry (IHC) or HER2 gene 

amplification determined by fluorescence in situ hybridization (FISH) (Yaziji 

et al., 2004). However, despite the selection of these patients based on IHC and 

FISH, only about one third of these patients respond to Herceptin monotherapy 

(Vogel et al., 2002). Aside from the costs of the drugs and unpredictable 

response, up to 5-10% patients may have worsening cardiac function if given 

this drug with chemotherapy (Piccart-Gebhart et al., 2005). Therefore, to select 

the “right” patients who will benefit from this drug while sparing the “non­

responders” from potential drug-induced cardiac problems is of utmost 

importance.

The present methods to select patients for HER receptor inhibitors based on 

immunohistochemistry (IHC) or fluorescence in situ hybridization (FISH) 

measure only receptor concentration without measuring the functional status of 

the receptors. Moreover, these methods are poor predictors for response to 

targeted therapies. There is a need for a better biomarker to predict response 

than the present methods. One specific approach is to measure the 

phosphorylation status of HER receptors since a number of mechanisms other 

than over-expression of HER receptors may cause increased activation and 

phosphorylation of HER receptors, including over-expression of ligands, 

dimerisation with other HER receptors to induce potent signalling as well as 

constitutively activated mutant HER receptors (Arteaga, 2002; Dei Tos AP, 

2005). This may explain why the response to these drugs as monotherapy 

based on receptor concentration alone has been disappointing and the response 

rate rarely sustains long periods of time among the responders.

This thesis is based on a translational project that was performed using an 

interdisciplinary approach, integrating clinical oncology with cell biology, 

biophysics, chemistry as well as engineering and software interface for high 

throughput processing of the tumour samples. The project employed Forster 

Resonance Energy Transfer (FRET) (Lakowicz, 1999; Valeur, 2002) 

monitored by high throughput Fluorescence Lifetime Microscopy (FLIM) 

(Larijani, 2006) to answer some of the clinical questions regarding HER
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receptors and the targeted therapies created by the introduction of these drugs 

from basic science research into clinical use. FRET has been shown to have 

many applications including the studies of protein-protein interaction, 

activities of protein kinases as well as study of protein conformation changes 

(Calleja et al., 2007). It was postulated that FRET could be exploited to assess 

the phosphorylation status of HER receptors in tumour arrays in comparison 

with the current IHC method. Although IHC staining for phosphorylated HER 

receptors is possible, being a single antibody method the results may be 

affected by various factors including non-specific staining and its specificity 

may be affected by the usage of high antibody concentration (Dei Tos AP, 

2005). The FRET assay developed in this study uses a two-site assay 

overcomes the non-specificity problems encountered in the one-site assay used 

in immunohistochemistry.

In this thesis, FRET in combination with classical biochemistry were 

performed to assess the phosphorylation status of HER receptors in relation to 

targeted therapies in cell lines. The responses of HER receptors and 

mechanisms of resistance to EGFR and HER2 inhibitors were investigated in 

breast cell lines. In addition, a high throughput method was established in 

tumour arrays to assess phosphorylation status of EGFR and HER2 in relation 

to the prognosis of cancer patients.

In this chapter, the general aspect of tumour carcinogenesis and cellular 

signalling related to HER receptors will be discussed before an in-depth 

discussion of HER receptors and their inhibitors. The chapter will proceed to 

discuss the present methods of selection criteria for targeted therapies using 

IHC and FISH together with the principle of FRET monitored by FLIM before 

concluding with the aims and objectives of this thesis.

1.2 Carcinogenesis and cellular 
signalling

The continuous improvement in cancer treatment and the arrival of targeted 

therapies against HER receptors result from basic understanding of the cellular
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carcinogenesis processes. To understand the importance of HER receptors and 

the targeted therapies against these receptors, one needs to put in context HER 

receptors in the overall carcinogenesis processes and cellular signalling. 

Carcinogenesis results from successive mutations in specific cellular genes, 

leading to the activation of oncogenes and inactivation of tumor suppressor 

genes. (Bertram, 2000). The mutations at the gene level may result in the over­

expression of certain proteins or reduction of inhibitory proteins and may lead 

to dysregulation in the normal cellular signalling process as well as abnormal 

proliferation of the cells (Vogt, 1993).

1.2.1 Oncogenes and tumour suppressor 
genes

Normal cells are tightly regulated for their signalling and proliferation. The 

main difference of a normal cell and a tumour cell is that the latter may 

proliferate in an uncontrolled manner, due to either mutations in and/or 

dysregulation of multiple genes (Grander, 1998) However, not all mutations 

contribute to carcinogenesis since most cells that harbour such genes are 

destined for repair or elimination (e.g. through apoptosis) (Polverini and Nor,

1999). The genes that contribute to tumourigenesis can be divided into two 

categories: oncogenes and tumour suppressor genes (King, 2000). Each gene 

in a cell contains two alleles and mutation of one of these may transform the 

normal “proto-oncogene” to an activated, transforming, dominant oncogene. 

An oncogene represents a gain-of-function mutation that may results in the 

production of a protein product that is constitutively active and not regulated in 

the normal way, resulting in tumourigenesis (King, 2000; Tannock et al.,

2005). By contrast, tumour suppressor genes are recessive and require the loss 

or the inactivation of both alleles before malignant transformation (King, 2000; 

Tannock et al., 2005). Hence a tumour suppressor gene represents a loss-of- 

function mutation. Carcinogenesis may result from either the activation of 

oncogene (s) or the inactivation of tumour suppressor gene (s) or both 

(Han ah an D, 2000).
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An oncogene activation resulting from the mutation or deregulation of a 

proto-oncogene, produces protein products leading to tumourogenesis (Vogt, 

1993). There are many ways that these oncogenes may be activated. For 

example, some retroviruses may incorporate their viral form of the oncogenes 

into the host DNA, in which regulatory viral sequences alter host gene activity 

resulting in the deregulated activity of the protein product (King, 2000). 

Chromosomal translocation may also lead to constitutive expression and 

activation of oncogenes, e.g. in Burkin’s lymphoma, the reciprocal 

translocation of chromosome 8 with chromosome 14 resulting in the myc gene 

being transcribed by the active immunoglobulin regulatory region (Taub et al., 

1982). Lastly the amplification of the genomic locus containing a proto­

oncogene can also lead to oncogene activation since multiple copies of the 

gene are produced and the encoded protein is highly expressed disrupting a 

particular regulatory balance (Tannock et al., 2005). For example HER2 gene 

amplification has been shown in human breast cancer and correlates with the 

poor prognosis in breast cancer patients (Slamon et al., 1987).

The mutations and deregulation of oncogenes act in a dominant manner and 

are associated with sporadic tumours. By contrast most inherited cancers are a 

consequence of the mutations or inactivation of tumour suppressor genes 

(King, 2000). Tumour suppressor genes are recessive at the somatic level and 

require the loss or the inactivation of both alleles before malignant 

transformation. In 1971, Knudson investigated the epidemiology of familial 

retinoblastoma (a hereditary form of retinal cancer) and found that patients 

with familial disease were more likely to develop a more severe, bilateral or 

multifocal disease at an earlier age of onset compared to sporadic cases of 

retinoblastoma (Knudson, 1971). He proposed that two mutations or two hits 

were required for retinoblastoma (Knudson’s two hit hypothesis). In familial 

cases, the first mutation is transmitted through the germline and is present in 

all cells but the tumour develops when the second mutation occurs somatically 

(Knudson, 1971; Tannock et al., 2005). In sporadic cases both mutations have 

to occur within the same somatic cell, this being more probable event may 

explain the late onset of the disease (Knudson, 1971; Tannock et al., 2005). 

His hypothesis highlights the cooperation between inherited and somatic 

mutations and deregulation in human cancers. The retinoblastoma gene Rb is
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the tumour suppressor gene implicated in retinoblastoma and loss of 

retinoblastoma gene Rb is a frequent event in human cancers, including breast 

cancers (Lee et al., 1988). Other tumour suppressor genes that are involved in 

human carcinogenesis include p53 gene (Vousden and Prives, 2005), PTEN 

(Depowski et al., 2001; McMenamin et al., 1999) and BRCA1 and BRCA2 

genes (Suthers, 2007). The p53 gene is the gene most frequently altered in 

human cancers and loss of p53 activity appears to be important for malignant 

progression (Vousden and Prives, 2005). Loss of pTEN is associated with poor 

prognosis and outcomes for several cancers including breast cancer and 

prostate cancers (Depowski et al., 2001; McMenamin et al., 1999). Mutations 

of BRCA1 and BRCA2 are associated with increased risk of cancers (Chen 

and Parmigiani, 2007), with the cumulative lifetime risk in developing breast 

cancer being 50-60% and the equivalent risk of ovarian cancer is 20-40% 

(Suthers, 2007).

The oncogenes and tumour suppressor genes can generate carcinogenesis on 

their owns. However, more commonly synergism occurs between cooperating 

oncogenes and tumour suppressor genes, e.g. APC, K-ras and p53 mutations in 

colon carcinogenesis (King, 2000). Therefore, oncogenes and tumour 

suppressor genes cooperate in carcinogenesis (Grander, 1998).

1.2.2 Cellular signalling

Tumour oncogenes and tumour suppressor genes may result in the over­

expression of certain proteins or reduction in the expression of others and thus 

may lead to dysregulation of the normal cellular signalling process with 

consequent abnormal cellular proliferation (Grander, 1998). For example, 

EGFR gene amplification may lead to over-expression of EGFR and ligand- 

independent cellular dysregulation and proliferation (Chung et al., 2006; 

Nicholson et al., 2001). Cellular signalling is normally a well-regulated 

process through an elaborate network of intracellular signals transmitted by 

changes in the protein phosphorylation of the receptors (King, 2000). The 

regulation is typically controlled by growth factors which are secreted
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polypeptides that trigger cascades of signalling processes within cells via their 

interaction with specific transmembrane receptor tyrosine kinases (RTKs) 

(Blume-Jensen and Hunter, 2001). There have been a large number of growth 

factors or ligands identified with diverse functions including cell growth, 

proliferation, differentiation, survival and metabolism although only a few has 

been associated with carcinogenesis (Tannock et al., 2005). These growth 

factors have variable specificities for these RTKs receptors in different cells 

and thus create diverse signalling processes between them (Robinson et al.,

2000). They are usually small monomeric (single chain) polypeptides (e.g. 

EGF) although they can exist as dimeric polypeptides (e.g. PDGF) (Tannock et 

al., 2005). They interact with specific domains of the RTKs in the extracellular 

domain to cause intracellular signalling (Cho et al., 2003; Franklin et al., 

2004).

Receptor protein tyrosine kinases (RTKs)

HER receptors belong to the receptor protein tyrosine kinases (RTKs) which 

represent a large family of molecules (Yarden and Sliwkowski, 2001). More 

than 60 of them have been identified and they are also subdivided into 

different families according to the their distinct structural components (van der 

Geer et al., 1994). Most of the RTKs consist of extracellular domains which 

are connected to the intracellular (cytoplasmic) domains by single short 

hydrophobic helix transmembrane components (Robinson et al., 2000). The 

cytoplasmic domain is comprised of regulatory sequences and a conserved 

kinase domain. The kinase domain is capable of phosphorylating tyrosine 

residues of a protein by catalysing the transfer of a phosphate group from 

adenosine trisphosphate (ATP) onto the protein substrate. The regulatory 

sequences contain sites of tyrosine phosphorylation and usually regulate 

catalytic activities as well as signal transmission (Robinson et al., 2000). 

Without the growth factor, the intracellular kinase domain is usually inactive 

and is held in a repressed conformation by intramolecular interactions. Upon 

the binding of growth factor or ligand, the extracellular domain undergoes 

conformational changes that facilitate dimerisation between the receptors (Cho 

et al., 2003). The dimerisation of two receptors bring their catalytic domains
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together, resulting in intermolecular transphosphorylation of tyrosine residues 

within the catalytic domain and in the noncatalytic regulatory sequences of the 

cytoplasmic domain (Schlessinger, 2002). The phosphorylation of key residues 

within the kinase activation loop induces the alignment of the catalytic site and 

allows access to ATP and protein substrates (Robinson et al., 2000). The 

phosphorylation of tyrosine residues in non-catalytic regions creates docking 

sites for downstream signalling molecules that are essential for signal 

transduction.

Carcinogenesis may result from abnormal RTKs which are ligand 

independent and deregulated with increased catalytic activity. For example, the 

amplification of HER2 oncogene results in the over-expression of HER2 RTKs 

(Slamon et al., 1987) that increase the concentration of active dimers in 

generating continuous and uncontrolled cellular signalling.

Formation of protein complexes and activation of downstream pathways

Upon ligand binding, a network of downstream signalling pathways of RTKs 

is created through interaction of specific proteins (Tannock et al., 2005) 

(Figure 1.1). The activation of RTKs creates a number of docking sites for 

cytoplasmic proteins including those that contain SH2 (Src homology 2), PTB 

(phosphotyrosine binding domain), SH3 (Src homology 3) and PH (Pleckstrin 

homology) domain (Figure 1.1) (Tannock et al., 2005). These proteins mediate 

the formation of signalling complexes following the activation of receptor 

tyrosine kinases. Different SH2 domains recognise specific tyrosine 

phosphorylated motifs in the non-catalytic regions (Songyang et al., 1993). 

The PTB domains recognise phosphotyrosine in a specific sequence motif 

where amino acids on the amino terminal side of the tyrosine are critical for 

binding specificity (van der Geer and Pawson, 1995). SH3 can bind to proline 

rich motifs in target proteins and the interaction is not dependent on changes 

induced by phosphorylation. They function in the assembly of multiprotein 

complexes, and as regulatory domains in intramolecular interaction. A number 

of PH domains interact specifically with membrane phosphoinositides and 

recognise specific phosphoinositides such as PtdIns(3,4,5)P3 that are 

transiently produced following growth factor receptor activation (Bazley and 

Gullick, 2005).
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The activated RTKs may associate with phospholipase C (PLCy) via the SH2 

domain, hydrolysing phosphatidyl inositol (PIP2) into inositol triphosphate 

(IP3) and diacylglycerol (DAG) (Figure 1.1) (Tannock et al., 2005). Many 

activated growth factor receptors also result in the activation of PI-3 kinases, 

comprises a catalytic subunit pi 10 and a regulatory subunit p85, leading to the 

activation of PKB and PDK1 via PH domain, the refined mechanisms of which 

have recently been proposed by Calleja et al (2007) (Calleja et al., 2007).

The binding of growth factors to RTKs results in the phosphorylation of the 

intracellular domain on tyrosine residues, which are targets of the adaptor 

proteins (Figure 1.1) (Tannock et al., 2005). The adaptor proteins (e.g. growth 

factor receptor bound-2, grb2) are composed entirely of SH2 and SH3 domains 

without catalytic activity (Bazley and Gullick, 2005). They however interact 

with signalling enzymes which do not contain SH2 domains, thereby coupling 

them to tyrosine kinase signalling complex (Pawson and Scott, 1997). Each of 

these adaptor molecules has a different capacity to form protein complexes due 

to binding specificities of its SH2 and SH3 domains, resulting in an organised 

network of protein-protein interactions within the extensive intracellular 

signalling network (Tannock et al., 2005). The adaptor protein grb2 plays an 

important role in the activation of the small GTPase protein, Ras. The Ras 

protein is a central transducer of growth factor receptor signals and it is a 

membrane-associated molecule that is activated when bound to the guanine 

nucleotide GTP (Downward, 2006). The SH2 domain of grb2 associates with 

the some of the receptors when activated while the SH3 domains are bound to 

SOS (Son-of-Sevenless), which is a guanine nucleotide exchange protein that 

activates Ras (Figure 1.1) (Bazley and Gullick, 2005). The small GTPase Ras 

cycles between the inactive GDP bound state and the active GTP bound state 

and Ras is activated when SOS promotes the exchange of GDP for GTP 

(Downward, 2006). The activation of Ras leads to the downstream signalling 

including activation of the extracellular signal regulated kinase 1 and 2 

(ERK1/2) (mitogen activated protein kinase MAPK signalling pathways) 

(Figure 1.1).

The formation of protein complexes and activation of downstream pathways 

described above is common to a large family of RTKs and its dysregulation 

may lead to carcinogenesis processes. HER receptors are among the most
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important RTKS implicated for human carcinogenesis (Nicholson et al., 2001) 

and the specific details of HER receptors will be described in the next section.
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Figure 1.1: Receptor protein tyrosine kinases and recruitment of cytoplasmic 
signalling molecules. See list of abbreviations. Figure taken from Tannock et al 2005.
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1.3 HER (ErbB) family

The epidermal growth factor (HER or ErbB) family comprises four receptors: 

EGFR (also known as HER1 or ErbBl), HER2 (ErbB2), HER3 (ErbB3) and 

HER4 (ErbB4) (Bazley and Gullick, 2005). ErbB receptors were originally 

named because of their close homology to the erythroblastoma viral oncogene 

protein sequences, v-erbB (Downward et al., 1984). These receptors belong to 

subclass I of the superfamily of RTKs which are transmembrane receptors with 

an intrinsic ability to phosphorylate their tyrosine residues in the cytoplasmic 

domains to transduce signals (Citri and Yarden, 2006). However, HER2 and 

HER3 are not autonomous since HER2 has no known ligand and the kinase 

activity of HER3 is defective (Yarden and Sliwkowski, 2001). These two 

receptors can form heterodimeric complexes with each other as well as other 

HER receptors to generate potent signals (Olayioye et al., 2000).

A number of ligands can activate HER receptors (see table below). These 

ligands include epidermal growth factor (EGF), amphiregulin (AR), 

transforming growth factor-a (TGFa) for EGFR; betacellulin (BTC), heparin- 

binding EGF (HB-EGF) and epiregulin (EPR) for EGFR and HER4; 

neuregulin (NRG) 1-4 (also called heregulin or neu differentiation factor) for 

HER3 and HER4 (NRG-1 and NRG-2 bind to HER3 and HER4 but NRG-3 

and NRG-4 bind to HER4 only) (Olayioye et al., 2000) (Figure 1.2A). 

However, no direct ligand for HER2 has been identified.

HER receptors Ligands

EGFR - EGF, AR, TGFa

- BTC, HB-EGF and EPR (co-ligands with HER4)

HER2 - No direct ligand

HER3 - NRG (heregulin) 1-2 (co-ligands with HER4)

HER4 - NRG (heregulin) 1-4 (co-ligands with HER3);

- BTC, HB-EGF and EPR (co-ligands with EGFR)



The ligands determine which receptor dimers are formed and thus influence 

the activation of various signalling pathways (Beerli and Hynes, 1996). The 

HER receptors are able to dimerise (homodimerisation) or interact with 

different receptors (heterodimerisation) upon ligand binding (Bennasroune et 

al., 2004). The homo- or hetero-dimerisation of the receptors results in the 

activation of the intrinsic tyrosine kinase domain and autophosphorylation of 

specific tyrosine residues in the C-terminus. Depending on the pattern of 

phosphorylated tyrosine residues in the C-terminus, different subsets of SH2- 

and PTB-binding signalling molecules are recruited to the activated receptors 

(Figure 1.2B). The specific characteristics of each HER receptor will be 

discussed below.
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Figure 1.2: A, HER (ErbB) receptors and their ligands. B, Specific phosphoty­
rosine residues and binding sites of signalling molecules to the cytoplasmic 
domains of HER receptors. For E rbB l, the sites for the Src kinase are in black, 
including Y845 in the kinase domain (indicated by asterick) (Figures taken 
from Olayioye et al 2000)
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EGFR

EGFR was the first receptor discovered and was originally known as the 

Epidermal Growth Factor Receptor (Downward et al., 1984). It is now also 

known as HER1 or ErbBl. Upon ligand binding it can form either EGFR 

homodimers or can dimerise with other HER receptors. Compared to other 

HER receptors it has the most signalling molecules recruited to the 

phosphorylated receptor upon activation (Olayioye et al., 2000) (Figure 1.2B). 

It also has the highest percentage of tyrosine residues with more than one 

binding partner (Schulze et al., 2005). The binding of Grb2 and She to EGFR 

(Figure 1.2B) is responsible for the recruitment of Ras and activation of the 

MAPK cascade. The recruitment of the ubiquitin ligase Cbl to Tyr 1045 (see 

Figure 1.2B) would commit the receptor to internalisation and recycling and 

therefore negatively regulate EGFR signalling. In fact it is the only HER 

receptor with a binding site for Cbl and this explains why it is the only HER 

receptor with a ligand-dependent down-regulation mechanism whereas other 

HER receptors (HER2-HER4) show impaired ligand-induced rapid 

internalisation, downregulation and degradation (Baulida et al., 1996). No 

direct binding site for PI3K is present on EGFR and therefore it cannot activate 

PI3K-PKB pathway directly but it couples to the Ras-MAPK pathway as well 

as to the Ras-PI3K-PKB pathway (Citri and Yarden, 2006).

HER2

Ligand induced HER receptor dimerisation follows a strict hierarchy and 

HER2 has been shown to be the preferred dimerisation partner (Graus-Porta et 

al., 1997). Using intracellular expression of specific antibodies (scFVO to 

down regulate surface EGFR and HER2), Graues-Porta et al 1997 showed that 

HER3 and HER4 preferentially dimerised with HER2 upon heregulin 

stimulation and would only dimerise with EGFR when HER2 was not 

available partner (Graus-Porta et al., 1997). In addition, they showed that EGF 

and betacellulin induced HER3 activation was dramatically impaired in the 

absence of HER2, suggesting that HER2 mediates lateral transmission between 

other HER receptors. They also showed that HER2 enhanced and prolonged 

MAPK signalling in response to various ligands. Over-expression of HER2



may cause ligand independent activation as well as activation of EGFR 

(Worthylake et al., 1999). HER2 containing dimers have defective endocytosis 

and enhanced recycling properties (Lenferink et al., 1998; Sorkin et al., 1993).

HER3

HER3 is kinase defective but it can form functional dimers with other HER 

receptors. Upon dimerisation and tyrosine phosphorylation of its cytoplasmic 

domain, HER3 can recruit PI3K to six distinct sites (Y1035, 1178, 1203/05, 

1241, 1257 and 1270) and She to one site (Figure 1.2B). Together with HER2 

it can generate downstream signalling both through the Ras-Erk pathway for 

proliferation, and through the PI3K-PKB pathway for survival (Citri et al., 

2003). Wallasch et al (1995) showed that the tyrosine phosphorylation of 

HER2 and HER3 receptors upon heregulin stimulation did not occur when the 

kinase-inactive HER2 mutation was co-expressed with HER3 in cells; whereas 

HER2/HER3 transphosphorylation was stimulated by heregulin when HER2 

was coexpressed with the kinase-inactive HER3 receptor mutant (Wallasch et 

al., 1995). Therefore, activation of the signalling potential of the HER2/HER3 

dimer upon heregulin stimulation is due to unidirectional transphosphorylation 

of HER3 by the HER2 kinase.

HER4

HER4 shares recognition and signalling features with EGFR, including 

common ligands (betacellulin, HB-EGF and epiregulin) and an ability to 

recruit GRB2, She and STAT5 (Citri and Yarden, 2006). An isoform of HER4 

(CYT-1) can also activate PI3K (Elenius et al., 1999). Moreover, it has been 

shown that proteolytic cleavage of HER4 occurs in cells at a low basal level 

and can be increased by TPA, heregulin, or other growth factors that bind 

HER4 (Zhou and Carpenter, 2000) (Figure 1.3). The ectodomain cleavage of 

HER4 is mediated by tumour necrosis factor-<*=-converting enzyme (TACE), a 

transmembrane metalloprotease. Proteolysis produces a membrane-anchored 

fragment (80 kD) which consists of the entire cytoplasmic and transmembrane 

domain (Carpenter, 2003; Vecchi and Carpenter, 1997). The m80 HER4 

fragment from ectodomain cleavage was found to associate with full length 

HER2 (Cheng et al., 2003). In addition, the transmembrane m80 was found to
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be cleaved by y-secretase and the soluble fraction (S80) was found to be 

associated with STAT5A as well as translocated to the nucleus to influence 

transcription (Ni et al., 2001; Williams et al., 2004). The growth factor- 

dependent HER4 cleavage seems to involve endocytosis while TPA-dependent 

cleavage does not (Figure 1.3) (Carpenter, 2003).
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Figure 1.3: Proteolytic cleavage pathway for HER4 (ErbB4). The ectodomain cleavage of HER4 can occur upon TPA treatment 
or growth factors that bind to HER4.This process is mediated by TACE, producing a membrane-anchored fragment, m80, consisting of 
entire cytoplasmic and transmembrane domain.The transmembrane m80 was then cleaved again by gamma-secretase (PS-1). Growth 
factor-dependent HER4 cleavage seems to invlove endocytosis, while TPA-dependent HER4 cleavage does not although either route 
produces m80 which is found in the nucleus (Figure taken from Carpenter et al 2003).



1.4 HER receptors and cancers

Dysregulation of HER receptors is implicated in various epithelial cancers, 

the mechanisms of which include over-expression of receptor ligands, receptor 

over-expression (e.g. due to gene amplification) and activating mutations 

(Mendelsohn and Baselga, 2006). These mechanisms are discussed below.

Over-expression of ligands

Over-expression of ligands has been implicated in both the prognosis and 

progression of various cancers. The most important of which is TGF-a which 

has been implicated in prostate, pancreas, lung, ovary, colon cancers (Salomon 

et al., 1995; Scher et al., 1995; Yamanaka et al., 1993). It is also implicated in 

the prognosis of head and neck cancers (HNSCC) (Endo et al., 2000; Rubin 

Grandis et al., 1996; Todd et al., 1989). Using gene expression patterns from 

60 HNSCC samples assayed on cDNA microarrays to allow categorisation of 

HNSCC tumors into different subtypes, Chung et al (1994) showed that the 

worst outcome of all the subtypes was the group that were characterised by the 

high expression of TGFa (Chung et al., 2004), confirming the prognostic role 

of TGF-a in HNSCC.

Over-expression or gene amplification of HER receptors

Over-expression of various HER receptors has been implicated in various 

cancers (Salomon et al., 1995; Yarden and Sliwkowski, 2001). EGFR over­

expression was found to be a strong prognostic indicator for head and neck 

cancer, ovarian, cervical, bladder and oesophageal cancer; a moderate 

prognostic marker for gastric, breast, endometrial and colorectal carcinoma but 

a weak prognostic marker for non-small cell lung carcinoma (Nicholson et al., 

2001). For head and neck cancer, several studies have shown a correlation of 

over-expressed EGFR with overall survival (OS), disease-free survival (DFS), 

increased loco-regional recurrence and decreased sensitivity to radiation 

treatment in these patients (Ang et al., 2002; Dassonville et al., 1993; Gupta et 

al., 2002; Sheridan et al., 1997). Gene amplification of EGFR was also shown



to be associated with prognosis of head and neck cancer (Chung et al., 2006). 

The amplification of HER2 was first shown to be a significant predictor for 

both overall survival and time to relapse in breast cancer patients (Slamon et 

al., 1987). The protein expression of HER2 was also found to correlate with 

the prognosis of breast cancer patients (Hartmann et al., 1994; Marks et al., 

1994; Rosen et al., 1995; Ross and Fletcher, 1999).

Mutation of HER receptors

Several mutations involving HER receptors have been reported. One of the 

commonest mutations in EGFR is the deletion of a section of the extracellular 

domain resulting in a constitutively active receptor, e.g. in glioblastoma 

(Moscatello et al., 1995) although the mutation is rare in breast cancers and 

other cancers (Rae, Scheys et al. 2004). Mutations of EGFR, either small, in­

frame deletions or amino acid substitutions (including L858R) clustered 

around the ATP-binding pocket of the tyrosine kinase domain, have been 

detected in human lung cancer (Lynch et al., 2004). They seem to increase the 

kinase activity and predict a dramatic response to Iressa (Lynch et al., 2004). 

The mutations are associated with bronchioloalveolar pathology that arise in 

non-smoker, and in individuals of East Asian descent (Paez et al., 2004). 

However, EGFR kinase domain mutations rarely present in other types of 

cancers although they have been reported in a few cancer types including small 

cell lung cancer, ovarian, oesophageal and pancreatic carcinoma (Kwak et al., 

2006; Okamoto et al., 2006; Schilder et al., 2005). In head and neck cancer, 

where the majority of patients have over-expression of EGFR most Caucasian 

patients do not have the mutations seen in non-small cell lung cancer, except in 

a small proportion of patients from certain ethnic origins (Loeffler-Ragg et al., 

2006). Furthermore, the activating mutations in EGFR exons are also 

uncommon in sporadic breast cancer (Generali et al., 2007). HER2 mutation 

(including a G776YVMA insertion in exon 20) has also been found in lung 

cancer, resulting in constitutive activation of HER2 and EGFR. The mutations 

rendered the cells resistant to EGFR tyrosine kinase inhibitors but the cells 

remained sensitive to HER2 inhibitors (Wang et al., 2006). However, the 

HER2 kinase domain mutations are only found in a small proportion of
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patients in gastric carcinoma, colorectal and breast cancer (5% or less) (Lee et 

al., 2006).

1.5 HER receptors and targeted 
therapies

Since over-expression of ligands as well as the HER receptors are implicated 

in the carcinogenesis, various targeted therapies against these HER receptors 

are increasingly used in various cancers. These include inhibitors of EGFR and 

HER2 receptors and the mechanisms of these drugs and their clinical use will 

be discussed in this section.

In order to understand how these inhibitors work on EGFR and HER2 

receptors, the crystal structure of HER receptors needs to be discussed. HER 

receptors comprise an extracellular domain, transmembrane region, a small 

intracellular juxtamembrane domain preceding a cytoplasmic protein tyrosine 

kinase domain, and a C-terminal tail, on which the phosphotyrosine-binding 

molecules are recruited (Cho et al., 2003). The extracellular region of about 

630 amino acids, consists of four subdomains: I, II, HI and IV (Cho et al., 

2003) (Figure 1.4a). The subdomains I (LI) and HI (L3) are leucine-rich 

repeats and subdomains II (CR1 or SI) and IV (CR2 or S2) are laminin-like, 

cysteine-rich domains. The crystal structure revealed that ligands bind to 

domain I and HI. Domain H mediates inter-receptor dimerisation via its long- 

finger-like projection although it is in intramolecular contact with domain IV 

when the receptors are not activated. The unliganded receptors exist in an 

autoinhibited (‘closed’) form but become ‘open’ upon ligand stimulation when 

domains I and HI are brought close together, breaking the domain n  and IV 

interaction and allowing domain n  to participate in dimerisation of the 

receptors. The only exception is HER2 receptor since its extracellular domain 

is always in the ‘open’ conformation with the projection of domain II ready for 

dimerisation even when monomeric (Figure 1.4a) (Franklin et al., 2004). This 

fixed ‘open’ conformation of HER2 in the absence of ligand binding 

(mimicking the ligand-bound form in the EGFR structure) may account for
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why it is the preferred dimerisation partner for other HER receptors (Cho et al.,

2003).

EGFR inhibitors

The two principal classes of EGFR inhibitors are monoclonal antibodies that 

bind to the extracellular domain (e.g. Cetuximab) and quinazoline small 

molecular inhibitors of the intracellular kinase domain (e.g. Gefitinib and 

Erlotinib) (Mendelsohn and Baselga, 2003).

Cetuximab is a human-murine monoclonal antibody to EGFR. Cetuximab has 

been most extensively investigated compared to other existing anti-EGFR 

monoclonal antibodies. For EGFR to change its conformation resulting in the 

extension of the dimerisation arm of domain n, ligand must engage sites on 

both domain I and III for high affinity binding (Mendelsohn and Baselga, 

2006). Cetuximab binds to extracellular domain III of EGFR occluding the 

ligand binding on this domain and prevents the receptor from adopting the 

conformation required for dimerisation. Therefore it blocks activation of 

receptor tyrosine kinase by the ligands. Cetuximab has been used in cancers of 

colon and head and neck. It has been shown to have a modest activity in 

chemotherapy refractory colon carcinoma that express EGFR with a partial 

response rate of 9% (Saltz et al., 2004). In a randomised trial, 329 patients 

were assigned to either Cetuximab monotherapy or Cetuximab in combination 

with chemotherapy for treatment of EGFR expressing metastatic colon 

carcinoma that are refractory to standard Irinotecan (topoisomerase-1 inhibitor) 

chemotherapy (Cunningham et al., 2004). The response rate for Cetuximab 

monotherapy was 10% and that of the combination therapy was 23%. In head 

and neck cancer, a phase III trial which randomly assigned 424 head and neck 

cancer patients to receive either radiation therapy alone or radiation with 

concurrent Cetuximab showed that Cetuximab nearly doubled the median 

survival in these patients (Bonner et al., 2006). Cetuximab is now licensed for 

treatment of colon carcinoma and head and neck cancer.

Gefitinib (ZD 1839, Iressa) and Erlotinib (Tarceva) are reversible tyrosine 

kinase inhibitors of EGFR. These low molecular weight inhibitors act 

intracellularly by competing with ATP for binding to the tyrosine kinase 

domain of EGFR and thus inhibiting the enzymatic activity (Mendelsohn and
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Baselga, 2006). It has been shown that these inhibitors may induce inactive 

EGFR homodimers and EGFR/HER2 dimers and thus prevent EGFR mediated 

transactivation of EGFR and HER2 activities (Arteaga et al., 1997; Geyer, 

2006; Lichtner et al., 2001). It has also been shown that they inhibit PI3K and 

PKB pathways via inhibition of EGFR/HER3 (Engelman et al., 2005). 

Moreover, they are also effective in HER2 over-expressing breast cancer cells 

through the inhibition of EGFR mediated lateral heterodimerisation (Anderson 

et al., 2001; Anido et al., 2003; Moulder et al., 2001). Both Iressa and Tarceva 

have been used in non-small cell lung carcinoma (NSCLC) with some modest 

response. Patients with advanced stage NSCLC, who had progressed on first- 

line or second chemotherapy were randomised to either Tarceva or placebo 

(Shepherd et al., 2005). NSCLC patients who received Tarceva had a 

statistically significant increase in overall survival by 2 months compared to 

those who received placebo alone although the response rate was only 8.9%. 

Iressa has also been used in NSCLC patients with a similar response rate to 

Tarceva but the difference in overall survival compared to placebo was not 

statistically significant (Fukuoka et al., 2003; Kris et al., 2003). Some of these 

patients have mutations around the ATP-binding pocket of tyrosine kinase 

domain which render these patients highly sensitive to Iressa (Lynch et al.,

2004). Iressa has been tested in a phase II trial in head and neck cancer 

(HNSCC) and the response rate was about 10% (Cohen et al., 2003).

HER2 inhibitors

The drugs that target HER2 are a monoclonal antibody that binds to HER2 in 

the extracellular domain, Trastuzumab (Herceptin); inhibitor of HER2 

dimerisation that also acts extracellularly, Pertuzumab; and the small 

molecular inhibitor targeting the tyrosine kinase activities of EGFR and HER2, 

Lapatinib.

Herceptin binds to the juxtamembrane region of HER2 of domain IV (Cho et 

al., 2003) (Figure 1.4b). There have been several proposals of mechanisms of 

Herceptin to explain its clinical benefits but the precise mechanisms of action 

are still not known. The current proposed primary mechanisms of action for 

HER2 include HER2 receptor downregulation and inhibition of aberrant 

receptor tyrosine kinase activity (Cuello et al., 2001; Sliwkowski et al., 1999).
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There was also suggestion of immune mediated mechanisms from the 

interaction of Herceptin’s human Fc region with immune effector cells, 

resulting in the stimulation of natural killer cells and activation of antibody- 

dependent cellular cytotoxicity (Clynes et al., 2000; Cooley et al., 1999). More 

recently it was shown that Herceptin increased PTEN membrane localization 

and phosphatase activity by reducing PTEN tyrosine phosphorylation via Src 

inhibition (Nagata et al., 2004). Moreover, PTEN deficiency is predictive for 

Herceptin resistance (Nagata et al., 2004). Other proposed mechanisms include 

inhibition of basal and activated HER2 ectodomain cleavage in breast cancer 

cells (Molina et al., 2001), and increased p27Kipl levels and interaction with 

CDK2, resulting in decreased CDK2 activity (Lane et al., 2001). Unlike 

Pertuzumab, Herceptin does not prevent dimerisation of other receptors with 

HER2 (Agus et al., 2002). Herceptin was first shown to increase an objective 

response, longer time to disease-free progression and longer survival for 

metastatic breast cancer patients where tumours over-express HER2 receptors 

(Slamon et al., 2001). More recently however, Herceptin has been given as an 

adjuvant treatment in non-metastatic HER2 positive breast cancer patients 

since several trials have shown an improvement of disease-free survival and 

overall survival for Herceptin given to this group of patients in the early course 

of the disease before any sign of recurrence (Piccart-Gebhart et al., 2005; 

Romond et al., 2005; Smith et al., 2007).

Pertuzumab binds to different epitopes in the extracellular domain of HER2 

from Herceptin. It binds near the centre of domain II, preventing HER2 

receptor dimerisation with other HER receptors and thus blocking the 

signalling from dimerisation (Franklin et al., 2004). It has been shown to 

prevent dimerisation of HER2/HER3, which was not the case in Herceptin 

(Agus et al., 2002). This may explain why it may be effective against cancers 

that may not over-express HER2 (Agus et al., 2002). HER2 undergoes 

proteolytic cleavage upon activation by 4-aminophenylmercuric acetate 

(APMA), a well-known matrix metalloprotease activator, resulting in the 

release of the extracellular domain and the production of a truncated 

membrane-bound fragment, p95 (Molina et al., 2001). Herceptin inhibits basal 

and induced HER2 cleavage and prevention of the production of an active 

truncated HER2 fragment (Molina et al., 2001). Pertuzumab however does not
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inhibit this proteolytic cleavage of HER2. Pertuzumab had been used in 

ovarian carcinoma and prostate carcinoma, with no clinical significant activity 

as a single agent in hormone-resistant prostate cancer (Agus et al., 2007; de 

Bono et al., 2007) and a response rate of 4.3% in heavily treated advanced 

ovarian carcinoma patients (Gordon et al., 2006).

Lapatinib is a potent dual tyrosine kinase inhibitor of EGFR and HER2. 

Unlike other reversible 4-anilinoquinazoline inhibitors of EGFR like Iressa and 

Erlotinib (Tarceva), Lapatinib is bound to an inactive-like conformation of 

EGFR and HER2, reducing the rate of inhibitor dissociation from the 

intracellular domains of these receptors, so that the autophosphorylation of 

these receptors recovers very slowly in tumour cells after treatment (Wood et 

al., 2004). Lapatinib was found to reduce growth of human breast cancer 

xenografts in athymic mice and the combination of Lapatinib and Herceptin 

was synergistic in exerting anti-proliferative effects in HER2-over-expressing 

cell lines (Konecny et al., 2006). Moreover, it retained significant in vitro 

activity against breast cell lines treated in long-term Herceptin-containing 

culture medium, providing a rationale of its use in patients who are clinically 

resistant to Herceptin. In a randomised trial, women with advanced HER2- 

positive breast cancer women who had progressed on chemotherapy and 

Herceptin, were randomly assigned to either Capecitabine (oral 5-FU 

chemotherapy) alone or Capecitabine with Lapatinib and the results showed 

that combination of Lapatinib and Capecitabin increased median time to 

progression in these patients (Geyer et al., 2006).
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Herceptin Fab

Figure 1.4: Crystal structure of HER2 receptor. A, Four domains of HER 2 receptors. B, Herceptin’s binding 
site on HER2 receptor (Figures taken from Cho et al 2003).



1.6 Current methods of assessing  
HER receptors: IHC and FISH

In the previous section, the mechanisms of action and clinical use of various 

EGFR and HER2 inhibitors were discussed. These drugs have been used with 

increased frequencies in cancer patients over the past decade. As discussed 

previously, the decision to treat cancer patients with these targeted therapies, 

e.g. Iressa (Gefitinib) and Herceptin (Trastuzumab) have been based on EGFR 

(HER1) and HER2 receptor over-expression (or gene amplification) 

respectively. More recently, EGFR inhibitors have been given to patients 

without measuring EGFR concentration since the response of EGFR inhibitors 

does not necessarily correlate with the response to the drugs or survival 

(Chung et al., 2005; Perez-Soler et al., 2004). The criteria of Herceptin 

treatment is still currently based on HER2 over-expression shown by 

immunohistochemistry (IHC) or HER2 gene amplification determined by 

fluorescence in situ hybridization (FISH). In this section, the discussion will be 

based on these two present methods in terms of their scoring systems and their 

cut-off points.

1.6.1 Immunohistochemistry (IHC)

Immunohistochemistry is a relatively quick and simple technique to localize 

proteins in cells of a tissue section by exploiting the principle of antibodies 

binding specifically to antigens. It is used widely in histopathology 

departments for the diagnosis and treatment decisions in cancer. It has the 

benefit of preserving the cellular morphology and tissue integrity of the 

tumours (Dei Tos AP, 2005). It usually involves the staining of the tissue 

samples with appropriate antibodies to detect specific antigens and the 

antibody-antigen interaction can then be visualised by a variety of methods. 

For example, an antibody may be conjugated to an enzyme, such as peroxidase 

(Press et al., 1994), that can catalyse a colour-producing reaction or



alternatively an antibody can be tagged to a flurophore, such as rhodamine. 

The antibodies used for specific detection may be either polyclonal or 

monoclonal. The monoclonal antibodies are considered to have greater 

specificities since polyclonal antibodies are a heterogeneous mix of antibodies 

that recognise several epitopes.

Both direct and indirect methods can be used in IHC. The direct method 

utilises only one labelled antibody reacting directly with the antigen in tissue 

section (Ramos-Vara, 2005). However, this method may have low sensitivity 

due to little signal amplification and it is not used widely compared to the 

indirect method. In the indirect method, the unlabelled primary antibodies 

recognise a specific antigen of interest while the labelled secondary antibodies 

react with the primary antibodies (Ramos-Vara, 2005). The secondary 

antibodies recognise immunoglobulins of a particular species and are 

conjugated to a reporter or fluorophore (Press et al., 1994). For example, a 

biotinylated secondary antibody may be coupled with streptavidin-horseradish 

peroxidase which reacts with 3,3’-Diaminobenzidine (DAB) to produce a 

brown staining (Walker, 2006). The indirect method has greater sensitivity 

since the signal may be amplified through several secondary antibody 

reactions with different antigenic sites on the primary antibody (Ramos-Vara, 

2005).

1.6.1.1 EGFR scoring by IHC

The EGFR IHC scoring is based on the assessment of proportion of positively 

stained tumour cells as well as the intensity of the observed staining using an 

antibody detecting EGFR antigen. IHC has been used in many studies to 

measure EGFR expression and many investigators have developed various 

algorithms to score them by either proportion of staining or intensity of 

staining or a combination of both methods, resulting in a variety of scoring 

systems (Chung et al., 2005; Cunningham et al., 2004; Hirsch et al., 2003; 

Kersemaekers et al., 1999). An example of a scoring system is illustrated in the 

table below and Figure 1.5 (Chung et al., 2005):
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Score Criteria

0 No membranous staining in any of the tumor cells

1+ Membranous staining in less than 10% of the tumor cells with 

any intensity or in less than 30% of the tumor cells with weak 

intensity

2+ Staining in 10% to 30% of the tumor cells with moderate to 

strong intensity or staining in 30% to 50% of the tumor cells 

with weak to moderate intensity

3+ Staining in more than 30% of the tumor cells with strong 

intensity or more than 50% of the tumor cells with any 

intensity

The scoring systems are not strictly quantitative despite the numerical scoring 

being assigned to them since the assessment of the intensity and the actual 

percentage of staining may represent only a rough estimate by the scorers and 

such visual interpretation of the stained samples may be subjective and may 

vary between individuals (Walker, 2006). In addition, the choice of antibodies 

and IHC protocol is not consistent and may cause variation in the sensitivity to 

detect EGFR expression (Dei Tos AP, 2005). Therefore, current EGFR 

scorings by IHC for epithelial cancers may vary between laboratories. The 

variation may be partially controlled by using a panel of tissue control slides 

and consensus scoring system by several observers (Adams et al., 1999). 

However, a standardised scoring system is urgently needed to allow direct 

comparison between studies and laboratories (Adams et al., 1999; Dei Tos AP, 

2005).
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Figure 1.5: EGFR scoring by immunohistochemistry in colorectal carci­
noma. A, 0. B, 1+. C, 2+. D, 3+ (Figure taken from Chung et al 2005)



1.6.1.2 HER2 scoring by IHC

Like EGFR scoring, assessment of HER2 over-expression by IHC has also 

produced variable results between laboratories due to non-standardised 

procedures (the antigen-retrieval process, usage of antibodies) or different 

scoring systems. For antigen-retrieval processes, the solution used (e.g. citrate 

buffer or EDTA and their pH), the duration of heating and antigen-retrieval 

may all affect the detection of the HER2 antigen by IHC (Yaziji et al., 2004). 

The other major variable is the anti-HER2 used for IHC staining. For example, 

in a study by Mitchell et al (1999), R60 (rabbit polyclonal antibody) uniformly 

stained cell membranes in paraffin-embedded tissue sections of breast cancers 

containing two to five copies of HER2 gene. However, 4D5 (monoclonal 

antibody to HER2) stained the majority of these sections with more than 5 

copies of the gene and lastly TA-1, another anti-HER2 antibody failed to stain 

even cells with more than five copies of the gene (Mitchell and Press, 1999). 

The HercepTest (Dako, Carpinteria, CA) using A0485 antibody was proposed 

as the standardised IHC method to overcome the problems between inter-lab 

variations. The scoring system uses the intensity of HER2 staining as its basis 

(Vincent-Salomon et al., 2003):

Scoring Criteria

0+ Absence of membranous staining,

1+ > 10% stained cells with a weak staining intensity

2+ > 10% stained cells with moderate staining intensity

3+ > 10% stained cells with a strong intensity

The College of American Pathologists (CAP) also issued its own guideline 

and a tumour is considered to be HER2 over-expressed if it scored 2+ or 3+ 

using the Herceptest reporting system or if > 60% cells had a moderate or 

strong membranous staining (Fitzgibbons et al., 2000). Beside the variability 

from the IHC procedures, the question also arises as to whether HER2 protein



may still be intact after fixation and being made into paraffin sections and this 

will be discussed in greater details in Chapter 6.

1.6.2 Fluorescence In Situ Hybridization 
(FISH)

Fluorescence in situ hybridization (FISH) has been used to detect HER2 

amplification for selecting breast cancer patients for Herceptin treatment 

(Wolff et al., 2007). It is a cytogenetic technique which detects and localises 

specific DNA sequences on chromosomes using complementary probe 

sequences (Fan et al., 1990). The procedures involve constructing a 

fluorescence probe that hybridizes specifically to its target on the 

chromosomes before adding it to a sample DNA (Fan et al., 1990). The sample 

is denatured to separate the complementary strands within the DNA double 

helix structure. The fluorescence probe hybridises with the sample DNA at the 

target sites as it re-anneals back into the double helix. The fluorescence probe 

signal is visualised through a fluorescence microscope and the sample DNA 

can then be scored for the presence or absence of the signal. FISH has been 

used in many other applications in addition to detection of HER2 gene 

amplification, e.g. to diagnose specific chromosomal abnormalities in genetic 

counselling (Fan et al., 1990).

Fluorescence in situ hybridization (FISH) can directly detect amplification of 

HER2 genes within the cells and this may be assessed by various methods, 

including INFORM assay (commercial kit from Oncor Inc, Gaithersburg- 

Maryland, USA) or PathVysion assay, the HER2 DNA probe kit from Vysis 

(Wang et al., 2000). In the INFORM assay, the cells were counted for HER2 

gene signal in each specimen (Wang et al., 2000). Gene amplification is 

considered when there are more than four HER2 gene copies per nucleus. For 

PathVysion, the cells are counted for both HER2 gene and chromosome 17 

centromere (Wang et al., 2000). The result is reported as the ratio of the 

average number of the HER2 gene to that of the chromosome 17 centromere. 

When the specimens with a signal ratio of less than 2 they are considered as 

“non-amplified” and when the signal is 2 or greater, they are classified as
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“amplified” (Wang et al., 2000). The difference of HER2 gene amplification 

by FISH from HER2 expression determined by IHC methods will be discussed 

in the next section.

1.6.3 IHC versus FISH in HER2 
assessm ent

As discussed in the background (Section 1.1), the current criteria to choose 

breast cancer patients for Herceptin treatment is based on either HER2 over­

expression by IHC or HER2 gene amplification by FISH (Wolff et al., 2007). 

The usage of IHC versus FISH for testing HER2 levels is however the subject 

of debate (Seelig, 1999; Wiley and Diaz, 2004). Although both methods are 

supposed to measure HER2 level, the two methods are essentially different 

with IHC measuring its protein level and FISH, the gene level. The gene 

amplification of HER2 is supposed to be the surrogate marker for protein 

expression of HER2, but this difference of measuring gene level or protein 

level may produce disparity between the two methods (Wang et al., 2000). For 

example, IHC 2+ patients have been found to contain significant amount of 

FISH negative patients (Kakar et al., 2000) and patients with polysomy of 

chromosome 17 may also produce high HER2 over-expression detection from 

IHC without true HER2 gene amplification (Salido et al., 2005). When the two 

methods are discordant, e.g. IHC-positive/FISH-negative or IHC- 

negative/FISH-positive, it may cause problems in decision-making for 

Herceptin treatment. Gene amplification of HER2 was first shown to correlate 

with relapse and survival of breast cancer patients in 1987 (Slamon et al., 

1987). Initially assessment of HER2 gene amplification was found to be 

superior to IHC (Pauletti et al., 2000). However, FISH is more expensive and 

labour-intensive than IHC. In addition, there is a lack of clinical data regarding 

negative gene amplification and response to Herceptin; Herceptin acts at the 

protein level and not gene level. IHC assesses HER2 at the protein level and 

therefore it is potentially more directly relevant for assessment of patients for 

Herceptin treatment. However, HER2 assessment by IHC has produced
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variable results, e.g. HercepTest (Dako, Carpinteria, CA) (Section 1.6.1.2) for 

IHC was found to have high false-positive results (Kakar et al., 2000). The 

discrepancy of IHC methods may be due to the choice of antibody, technical 

procedures, tissue fixation, cut-off levels and subjective interpretation and 

analysis between assessors and centres (Yaziji et al., 2004). Although the two 

methods may be discordant in their results, one study showed a close 

correlation of the two methods if quality control and quality assurance was in 

place (Yaziji et al., 2004). This particular study recommended IHC to be used 

first and then to perform FISH for intermediate over-expression of HER2.

Determining a cut-off point for high HER2 concentration is also problematic 

for both IHC and FISH. In IHC, there is a problem of using the criteria either 

based on the intensity of the membranous staining or the percentage of stained 

cells. One study recommended reporting IHC-HER2 as a continuous variable 

and selecting patients for Herceptin based on high percentage of positive 

tumour cells (Vincent-Salomon et al., 2003). In FISH, the choice of using 

different FISH ratios to classify “amplification of HER2” (see Section 1.6.2) 

affects whether it correlated with shorter survival (Kakar et al., 2000). The 

recent American Society of Clinical Oncology (ASCO) / College of American 

Pathologists (CAP) defined HER2 positive or negative based on either IHC 

(see Section 1.6.1.2) or FISH (gene copies or FISH ratio, see Section 1.6.2):

HER2 status IHC or FISH criteria

HER2 positive - IHC 3+ (Uniform, intense membranous staining of > 

30% of invasive tumour cells)

- FISH > 6 HER2 gene copies per nucleus or

- FISH ratio > 2.2 (the ratio of HER2 gene signals to 

chromosome 17 signals)

HER2

negative

-IHC 0-1+

- FISH < 4 HER2 gene copies per nucleus

- FISH ratio <1.8

Equivocal

HER2

-IHC 2+

- FISH 4-6 gene copies per nucleus

- FISH ratio 1.8-2.2
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The panel recommended extra testing for equivocal cases: IHC 2+ to have 

FISH test and FISH equivocal cases, to either retest or count additional 

cells or test with IHC. Nevertheless, not all centres adopt the 

recommendations, especially those centres outside the USA since they may 

use their own HER2 systems, creating variability in the definition of HER2 

status between centres.

Therefore, the current methods using IHC and FISH to select patients for 

Herceptin have a variable scoring systems and cut-off points which are not 

standardised between centres; a tumour that is “HER2 positive” may be 

negative under the criteria used by another centre and this may cause 

problems in patient selection for Herceptin treatment. However, more 

important and urgent issues are how these tests that are supposed to select 

correct patients for targeted therapies for Herceptin perform as predictive 

markers for such therapies. These issues will be discussed in the next 

section.

1.7 HER receptor concentration and 
response to targeted therapies

Increasingly targeted therapies have been used in all types of cancers. 

Although the EGFR and HER2 inhibitors are meant to target the over­

expression of receptors, the response to these drugs has been disappointing 

based on receptor concentration criteria monitored by IHC or FISH.

The two phase II head and neck cancer trials revealed a relatively low 

response rate (around 10%) of patients to Cetuximab despite the fact that the 

majority of the patients had a 2 to 3+ staining for EGFR (Baselga et al., 2005; 

Herbst et al., 2005). Iressa had a similar low response rate of about 10% in 

head and neck cancer (Cohen et al., 2003). In non-small cell lung carcinoma, a 

similar poor response rate was noted for Iressa (Fukuoka et al., 2003; Kris et 

al., 2003) unless the patients had mutations around the ATP-binding pocket of 

the tyrosine kinase domain which rendered these patients highly sensitive to 

Iressa (Lynch et al., 2004; Paez et al., 2004). However, these mutations are
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associated with brochioloalveolar pathology that arise in non-smokers, and in 

individuals of East Asian descent (Lynch et al., 2004; Paez et al., 2004). EGFR 

kinase domain mutations are rarely present in other types of cancers. In head 

and neck cancer, where the majority of patients have over-expression of EGFR 

most Caucasian patients do not have these mutations seen in non-small cell 

lung cancer, except in a small proportion of patients from certain ethnic origin 

(Loeffler-Ragg et al., 2006). In two colon cancer two trials the relationship 

between the expression of EGFR and response rate to Cetuximab was 

examined and a relationship was not found (Cunningham et al., 2004; Saltz et 

al., 2004). In fact another trial has reported objective responses to Cetuximab 

in chemotherapy-refractory colorectal cancer even when EGFR expression was 

not detected by IHC (Chung et al., 2005). When the tyrosine kinase inhibitors 

of EGFR were first used, they were given to patients with over-expression of 

EGFR. However, it was found that the EGFR level does not necessarily predict 

the response to targeted therapy (Parra et al., 2004) and now they may be 

administered to patients irrespective of EGFR expression (Shepherd et al.,

2005).

Chung et al (2004) found, by molecular classification of HNSCC using 

patterns of gene expression, that the poorest outcome group was the group with 

tumours characterised by the high expression of TGF-°c with evidence of 

activation of EGFR pathway (Chung et al., 2004). In addition, another study 

has shown that it is the over-expression of multiple receptors, mainly EGFR, 

with other HER receptors (HER2-4) that correlates more with metastatic 

disease (Bei et al., 2004). Based upon our understanding of the behaviour of 

these receptors, these studies indicate that not only is the actual level of EGFR 

expression important, but specifically the activation/phosphorylation state of 

these receptors.

Despite the selection of HER2 positive breast cancer patients based on IHC 

and FISH, only about one third of these patients respond to Herceptin given as 

monotherapy (Vogel et al., 2002). It was also shown that non-HER2 over­

expressing tumours may also respond to Herceptin through its activation via 

heregulin over-expression (Arteaga, 2006; Menendez et al., 2006). One of the 

reasons accounting for poor predictive value using receptor concentration is 

that over-expression per se fails to consider receptor activation e.g. through
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autocrine expression of one of the several ligands. In addition, over-expression 

as a criterion for treatment fails to account for patients having receptor 

activation without up-regulation through other HER receptors since it is the 

preferred dimerisation partner for other HER receptors (Graus-Porta et al., 

1997). Therefore, it may be assumed that some patients without HER2 over­

expression may have a highly active HER2 receptor and may also benefit from 

HER2 inhibitors like Herceptin. Therefore, like EGFR inhibitors, it is assumed 

that assessing HER2 phosphorylation may be a better predictor for response to 

Herceptin treatment.

In summary, this section discussed the poor relation between the expression 

of EGFR and HER2 receptors and the response to targeted therapies. It is 

therefore of critical importance to determine how EGFR and HER2 activation 

status, rather than concentration, track with response to these and related 

EGFR and HER2-directed treatments. The next section will discuss various 

methods that can be used to assess the phosphorylation status of HER 

receptors.

1.8 A ssessm ent of HER receptor 
phosphorylation status

To assess phosphorylation status of HER receptors, various methods can be 

used, including IHC, eTag or FRET methods. IHC that is currently used to 

determine the expression of HER receptors (Section 1.6.1) may also be used to 

monitor the phosphorylation status of HER receptors in tumours. However, 

using IHC methods to detect phoshorylated HER receptors will have the same 

limitations relating to EGFR and HER2 scorings by IHC (Section 1.6.1.1 and 

1.6.1.2). And not being a two-site assay, it specificity may be influenced by 

background staining and high antibody concentration and thus it is difficult to 

be optimise quantitatively to obtain reliable results. Using eTag reporters 

(fluorescence molecules) conjugated to different HER antibodies, the eTag 

assay platform have been shown to be potentially useful in assessing HER 

activation and dimerisation (Chan-Hui et al., 2004). The amount of released
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eTag reporter is said to be proportional to HER concentration. The problem 

with such assays is that it depends on fluorescence intensity which may be 

influenced by multiple factors including dye concentration, background 

fluorescence, photo-bleaching, and concentration of antibodies conjugated to 

fluorescence reporters. Moreover, it does not provide any spatial data which is 

of critical importance when assessing HER receptors in the tumours. A more 

quantitative method would be required that is not affected by the problems 

encountered in IHC and eTag.

FRET is measured by variation in the changes of lifetime and is independent 

of dye concentration and fluorescence intensity (Larijani, 2006). It was 

proposed that FRET may provide spatial data about the interaction between the 

HER antibodies and may be used to assess phosphorylation status of HER 

receptors as well as dimerisation of HER receptors. For these reasons, FRET 

was chosen to assess HER receptor activation in relation to cancer treatments 

in this thesis. The principle of FRET will be discussed below.

1.9 Principles of Forster Resonance 
Energy Transfer

In this thesis, Forster Resonance Energy Transfer (FRET) monitored by 

Fluorescence Lifetime Imaging Microscopy (FLIM) was exploited to assess 

the phosphorylation of various HER receptors. Since the thesis aims to present 

a translational project, using FRET as a tool to assess HER receptor activation 

in cells and tumour arrays, in-depth discussion on the photophysics of the 

flurophores, mathematic calculations of FRET and physics of FLIM 

instruments will not be given here and may be obtained from other sources 

(Lakowicz, 1999; Larijani, 2006; Valeur, 2002). The relevant details of FRET 

and principles relevant to the project will be described below.

1.9.1 Fluorescence
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When the electrons of the molecules of a fluorophore are excited to a higher 

energy state, the absorbed energy can be released by the emission of a photon 

(radiative) before returning to the ground state, resulting in two types of 

luminescence: fluorescence and phosphorescence (Larijani, 2006).

Fluorescence occurs when there is immediate release of energy (between the 

states of the same spin state of the electrons, e.g. SI to SO) through the 

emission of a photon (Figure 1.6). If the spin states of the initial and final 

energy levels of the electrons are different (e.g. from T1 to SO), the emission of 

the photon is called phosphorescence (Figure 1.6). Fluorescence is statistically 

much more likely to happen than phosphorescence and the lifetimes of 

fluorescent states are very short (1-10 nanoseconds) and phosphorescence 

greater (1 x 10'4 seconds to minutes or even hours). The two processes may be 

illustrated using the Jablonski diagram (Figure 1.6). However, not all the 

excited electrons of the fluorescent molecules return to the ground state via 

luminescence since many other non-radiative competing processes may occur. 

These include internal conversion to the ground state (a non-radiative 

transition between energy states of the same spin state, e.g. via heat);

intersystem crossing to triplet state (a non-radiative transition between

different spin states where energy may be dissipated); collisional quenching 

(when the excited state fluorophore is deactivated upon contact with other 

molecules or the quencher) (Lakowicz, 1999; Larijani, 2006) and resonance 

energy transfer (RET or Forster resonance energy transfer, FRET). These 

radiative decay and non-radiative decay processes compete to depopulate the 

molecules in the excited state.

Fluorescence lifetime of a fluorophore is defined as the mean time the 

electrons of fluorescent molecules spend in the excited state before coming 

back to ground state or the probability of the molecule existing in the excited 

state. Fluorescence lifetime is thus affected by the rate of various radiative and 

non-radiative processes. Measuring the lifetime of a fluorescence probe may 

inform on the local environment of the molecule since the local environment 

may change the rate of non-radiative decay (Lakowicz, 1999; Valeur, 2002). 

Therefore fluorescence has been exploited to investigate structure and the 

dynamics of molecules in their microenvironment since the emission of
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fluorescence molecules is sensitive to physical and chemical parameters such 

as pH, pressure, viscosity, electric potential, quenchers, temperature and ions 

(Larijani, 2006). Forster resonance energy transfer is one of the photophysical 

processes that are responsible for the de-excitation of fluorescent molecules 

and has been used as a reporter of molecular environment (Larijani, 2006). In 

this thesis FRET has been exploited to answer some important clinical 

questions regarding HER receptors and cancer treatment. The following 

sections will focus on various methods of FRET measurement and its 

application.
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1.9.2 Fdrster Resonance Energy 
Transfer

FRET is a process whereby the energy of an excited donor fluorophore is 

transferred to an acceptor fluorophore without emission of a photon (non- 

radiatively) (Lakowicz, 1999; Valeur, 2002). It was first proposed by Forster 

that the transfer occurs due to the dipole-dipole resonance interaction between 

the donor and acceptor fluorophores (Forster, 1948). The process is distance 

dependent (Stryer and Haugland, 1967), typically occurs with the distance 

between the two fluorophores of less than 10 nm and when the emission 

spectrum of the donor fluorophore overlaps with the absorption spectrum of 

the acceptor fluorophore. It was shown that the spatial proximity relationship 

of two fluorescence-labelled molecules may be determined in biological 

samples and therefore establishes FRET as a “spectroscopic ruler” (Stryer and 

Haugland, 1967).

FRET efficiency is the probability of the occurrence of energy transfer per 

donor excitation event (Yasuda, 2006) and this efficiency depends on the 

distance between the two fluorophores:

E = Ro6/ (Ro6 + r6) (Equation 1)

Where r (nm) is the distance between the two fluorophores and Ro is the 

Forster distance (the distance between the two fluorophores that gives 50% 

FRET efficiency). Therefore, FRET efficiency is inversely proportional to the 

sixth power of the distance between the donor and acceptor fluorophores.

Reported Forster distance Ro may typically range between 1-7 nm (10-70 A) 
but up to 12 nm may be measured (Wu and Brand, 1994). The Ro may be 

affected by various parameters given by the equation below:

Ro = [k2 x J  (A,) x nA x Q]m  x 9.7 x 102 (Equation 2)



Where K2 is the relative orientation of the transition dipoles of the flurophores, 

J {X) is the overlap integral between the donor emission and acceptor 

absorption spectra, n is the index of refraction of the medium and Q is the 

quantum yield of the donor. From the equation it can be determined that the 

energy transfer rate depends on three parameters: (1) the overlap of the donor 

emission and acceptor absorption spectra; (2) the relative-orientation of the 

donor absorption and acceptor transitions moments; and (3) the refractive 

index (Jares-Erijman and Jovin, 2003). These factors as well as the distance r 

between the two fluorophores will influence FRET efficiency from the donor 

to the acceptor fluorophores.

1.9.3 Methods to measure FRET

FRET may be quantified and monitored by both steady-state and time- 

resolved methods (Wu and Brand, 1994). The steady-state methods include 

intensity-based measurements like ratiometric imaging and donor 

dequenching; and the time-resolved methods are comprised of fluorescence 

lifetime imaging microscopy (FLIM) and anisotropy imaging.

In the steady-state measurement, the fluorescence sample is illuminated 

continuously and the emission of photons is measured. The steady state is 

reached immediately when the sample is first exposed to light. The intensity of 

the fluorescence is measured and this depends on the concentration of the 

probe. The time-resolved measurements are used to measure intensity decays 

or anisotropy decays. For this type of measurement, the sample is exposed to a 

short pulse of light and the decays are recorded with a high-speed detection 

system.

The detection of FRET using intensity-based methods and time-resolved 

FLIM methods will be discussed in this section. Since anisotropy imaging is 

not used in this thesis, the details of anisotropy will not be explained in this 

section and may be obtained elsewhere (Lakowicz, 1999; Valeur, 2002).
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1.9.3.1 Intensity-based m ethods

In the intensity-based methods (steady-state measurement), FRET is 

quantified using intensities of donor and acceptor fluorescence, and typically 

involving the decrease in donor fluorescence and increases in the acceptor 

fluorescence. FRET based on intensity-based methods can have many pitfalls 

including the insensitivity, high background and the signal is dependent on the 

concentration of the fluorophores (Parsons et al., 2004). Ratiometric imaging 

and donor quenching methods are two examples of intensity-based 

measurement and will be discussed below.

Ratiometric imaging

In this method, the donor fluorophore is selectively excited and the ratio of 

acceptor emission Ia and donor emission Id is used to measure relative FRET 

efficiency ( I a /I d )  (Parsons et al., 2004). The donor and acceptor fluorescence 

can be separated by appropriate dichroic filters that detect the donor and 

acceptor fluorescence at different wavelengths. However, the excitation source 

may directly excite the acceptor and therefore the emission of the acceptor may 

not be due to the transfer of energy from the donor fluorophore (Lakowicz, 

1999). In addition, the donor fluorescence may bleed through into the acceptor 

detection channels and make the FRET efficiency difficult to measure (Parsons 

et al., 2004). For the method to be reliable, the donor and acceptor 

stoichiometry needs to remain constant (Lakowicz, 1999). Otherwise 

correction for the spectral bleed through needs to be done.

Donor dequenching (acceptor photobleaching)

In this method, donor fluorescence is measured quantitatively while the 

acceptor fluorophore is photobleached selectively (Parsons et al., 2004). As a 

result, the donor is no longer quenched by the acceptor i.e. donor dequenching 

and the intensity of the donor increases (Lakowicz, 1999). FRET efficiency 

can be obtained using the equation below:

E  =  1 -  Id / I d a
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Where Id  is the donor fluorescence intensity and I d a  is the donor fluorescence 

intensity after acceptor photobleaching (Parsons et al., 2004). The method may 

be used reliably when the bleed-through of the acceptor into the donor channel 

is negligible. It also does not depend on the relative concentration of the donor 

and acceptor fluorophores (Parsons et al., 2004).

1.9.3.2 Fluorescence lifetime imaging
microscopy (FLIM)

FLIM is a time-resolved method and it may be monitored by either time- 

domain or frequency-domain measurements. FLIM measures fluorescence 

lifetime as a readout for FRET efficiency. Unlike the steady state methods 

where the intensity of the fluorophore may change in a way that is difficult to 

quantitate, a key advantage of using time-resolved method is that Fluorescence 

lifetime is relatively independent of fluorophore concentration, light scattering 

and the excitation intensity (Larijani, 2006). Therefore FLIM using either 

time-domain or frequency-domain measurements may be exploited to measure 

quantitatively the environmental factors that affect the excited state in fixed 

and live cells (Larijani, 2006).

Time-domain method

In the time-domain method, the fluorescence sample is excited with a short 

pulse of light (usually in the orders of tens to hundreds of picoseconds), 

producing a population of fluorophores in the excited-state, which will relax to 

the ground-state by emitting photons. The resulting emission decay in intensity 

may be reconstructed using various methods including multiple time gating 

method or time correlated single photon counting (TCSPC). The most common 

method is TCSPC and in this method the time delay between the emitted 

photon and the excitation pulse is recorded (Alcor D, 2007). An entire decay 

curve is built by plotting the number of photons versus delay time. The 

excitation profile needs to be measured so that a deconvolution may be done to 

separate the excitation pulse from the emission profile. The fluorescence 

lifetime of the fluorophore may be determined by fitting the decay curves
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(Figure 1.7A) (Lakowicz, 1999). Recent advances have also enabled the use of 

multi-photon or confocal laser scanning microscopes to measure FRET, 

yielding highly improved spatial resolution, controlled depth of field and the 

potential to generate a three-dimensional reconstruction of FRET signals 

within a cell by acquiring multiple optical sections (Calleja et al., 2007; 

Parsons et al., 2004).

Frequency domain method

FRET data presented in this thesis is measured by frequency-domain FLIM. 

The fluorescence sample is excited by a continuous wave laser in a frequency- 

domain method as opposed to a pulsed laser in the time-domain method. The 

light source is modulated via an acousto-optical modulator and the sample is 

excited by a sinusoidally modulated light (Larijani, 2006). The emitted light 

appears as a sine wave but it is demodulated and phase-shifted from the 

excited light due to Stokes shift (with a lower energy) (Figure 1.7B). The 

phase shift and demodulation are used to obtain the lifetimes x of the 

fluorophore from the equations below:

cox = Tan (O)

cox = V 1/M2 - 1

where co is the angular modulation frequency (co = 27tf), f is the modulation 

frequency, O is the phase difference and M is the demodulation. To obtain the 

maximum sensitivity, the angular modulation frequency should be roughly the 

inverse of the lifetime obtained. Therefore, the typical modulation frequencies 

are between 20 to 200 MHz since the lifetimes are usually between 1-10 ns. 

The FLIM instrument used in Cell Biophysics Lab uses a single modulation 

frequency of 80 MHz and the range of lifetime detected is between 1.5 ns to 

2.6 ns.

The frequency-domain method is more rapid than the time-resolved method 

in detecting the lifetime of fluorescence although it is not the best tool to 

directly measure multiple exponential decays (Larijani, 2006). However, 

multiple-frequency FLIM instruments may be used to detect multiple
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exponential decays that may arise due to heterogeneity of the local 

environment of the fluorophore (Larijani, 2006).
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Figure 1.7: A, Time-domain method. B, Frequency-domain method
(Figures taken from Olympus microscope website)
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1.9.4 Application of FRET

FRET may be used to detect changes or interaction of intra- and inter- 

molecular distances in the 1-10 nm range and is therefore capable of resolving 

molecular interactions and conformations with a spatial resolution (Jares- 

Erijman and Jovin, 2003). It has been used to detect protein-protein interaction 

(e.g. Grb2 with EGFR) (Sorkin et al., 2000), protein-lipid interaction (e.g. 

PITP and phospholipids PI) (Larijani et al., 2003), conformational change of a 

protein (e.g. PKB conformation change) (Calleja et al., 2007), study of the 

activities of protein kinases (Miyawaki, 2003; Yasuda, 2006), dimerisation of 

receptors (e.g. CXCR4 receptor dimerisation) (Toth et al., 2004), high 

throughput screening (Mere et al., 1999) and many other applications. In this 

thesis, FRET was exploited to assess the phosphorylation status of HER 

receptors in relation to cancer prognosis and treatments.

1.10 Aims, strategy and objectives

1.10.1 Aims

As discussed in Section 1.8, there is a lack of relationship between EGFR 

expression and response to EGFR inhibitors. There is a need for a quantitative 

method to assess the activation and phosphorylation of HER receptors since 

this may prove to be a better predictive marker for cancer prognosis and 

response to these inhibitors. The overall aim of this thesis was to establish a 

methodology whereby phosphorylation of HER receptors may be assessed by 

FRET monitored by high throughput FLIM and to apply such methodology to 

formalin-fixed, paraffin-embedded cancer tissues in relation to prognosis and 

treatments of various cancers. The ultimate long-term goal is to develop a 

validated methodology using various assays to assess activation of a whole



range of other pathways like PKB and MAPK activation in a high throughput 

manner in relation to cancer prognosis and treatments.

1.10.2 Strategy

To assess HER receptor activation state by FRET, a pair of anti-non- 

phosphoHER and anti-phosphoHER antibodies may be employed and 

conjugated to Cy3b and Cy5 respectively. The strategy is illustrated in Figure 

1.8 using EGFR as an example. The hypothesis was that when EGFR was not 

phosphorylated, only EGFR-Cy3b would bind to the tyrosine kinase domain of 

EGFR. However, when the EGFR was phosphorylated, either from the 

autocrine loop (basal condition) or from exogenous ligand stimulation (e.g. by 

adding EGF), there would be autophosphorylation of the tyrosine residues of 

the C-terminal of EGFR resulting in the binding of pEGFR-Cy5 to the 

phosphotyrosine sites. This would bring the two conjugated antibodies into 

proximity, resulting in the quenching of the donor EGFR-Cy3b and a decrease 

in the lifetime of donor EGFR-Cy3b. Therefore, it was hypothesized that the 

decrease of lifetime could be used as a reporter of EGFR phosphorylation.
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Figure 1.8: Strategy to assess EGFR phosphorylation by FRET.
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1.10.3 Objectives

In this thesis, one of the first objectives was to develop an assay that can 

assess HER receptor phosphorylation by FRET monitored by high throughput 

FLIM using the strategy outlined in Section 1.10.2. EGFR pathway was 

chosen to be the one of the main and first HER pathways to be assessed by 

FRET since EGFR over-expression was found to be a strong prognostic 

indicator for a variety of cancers including head and neck cancer, ovarian, 

cervical, bladder and oesophageal cancer and EGFR inhibitors are now used in 

many of these cancers (Nicholson et al., 2001). A431 was chosen as the test 

cell line to establish the assay, because of its high EGF receptor expression and 

its extensive use for nearly 20 years in the analysis of EGFR function. The 

FRET assay to assess EGFR phosphorylation was also tested in other cell lines 

with less EGFR receptors to assess the robustness of the methodology. The 

assay was established first in various cell lines so that it could be applied for 

use in paraffin-embedded tumour tissue. Since majority of head and neck 

tumours express or over-express EGFR, the established methodology from cell 

lines was applied to an archive of formalin-fixed and paraffin-embedded head 

and neck tumour arrays as a test of principle. The EGFR phosphorylation 

determined by FRET was correlated with survival data of head and neck 

patients to assess the prognostic value of FRET assay. In addition, the 

prognostic value of FRET was compared with conventional IHC in the head 

and neck arrays.

The other main HER pathways to be chosen for assessment by FRET in this 

thesis is HER2 since it has been shown to be the preferred dimerisation partner 

(Graus-Porta et al., 1997) as well as a strong prognostic factor for breast cancer 

(Hartmann et al., 1994; Marks et al., 1994; Rosen et al., 1995; Ross and 

Fletcher, 1999). Therefore, one of the objectives of this thesis was to establish 

an assay to assess HER2 phosphorylation by FRET in cell lines and breast 

tumour arrays.

Both EGFR and HER2 play in role in the prognosis of breast cancers and thus 

both EGFR and HER2 inhibitors (alone or combination) have been used in



breast cancer patients (Geyer et al., 2006; Piccart-Gebhart et al., 2005; 

Polychronis et al., 2005; Romond et al., 2005; Smith et al., 2007). The 

intention was that the FRET will eventually be applied to prospective trials of 

HER receptor inhibitors in breast cancer patients (e.g. adjuvant Herceptin and 

Lapatinib trials (Geyer et al., 2006; Piccart-Gebhart et al., 2005; Romond et 

al., 2005; Smith et al., 2007)). Therefore, it was essential to first assess the 

responses of HER receptors in relation to EGFR and HER2 inhibitors in breast 

cell lines. Moreover, the mechanisms of action and resistance to these drugs 

are still poorly understood. Since FRET can be used to assess the 

phosphorylation status in vivo, it was used to monitor HER receptors’ 

responses to these drugs in combination with classical biochemical analysis. 

The results from cell lines are also essential before such assay may be applied 

to prospective trials to assess responses of HER receptors by FRET in relation 

to HER receptor inhibitors.

It is often assumed that the phosphorylated antigens (including that of HER 

receptors) may survive the conventional IHC procedures for the tumours to be 

fixed and made into paraffin sections. However, if this was not the case, FRET 

could not have been used to assess the phosphorylation of these HER 

receptors. Therefore one of the objectives of the thesis was to investigate 

whether phosphorylated antigens may survive the conventional IHC 

procedures as well as the best way to fix and preserve the phosphorylated 

antigens. These results will be useful in providing guidelines for tumour 

fixation procedures of tumour samples used for FRET experiments in 

prospective trials. To assess the best way to preserve phosphorylated antigens 

(using HER2 phosphorylated antigens as a reporter), the MDAMB-453 breast 

tumours were grown in xenograft model. The tumours were fixed with either 

formalin or liquid nitrogen after varying the durations of delay in fixation. 

These tumours were subsequently assessed for their HER2 phosphorylation 

status using both conventional IHC and FRET.

Other than the potential problems with preservation of phosphorylated 

antigens, the optimisation of the established HER2 FRET assay from cell lines 

was necessary in archives of human breast tumour arrays before it may be 

applied to prospective trials. This would identify the difficulties of using such 

methodology in breast tumour arrays and to solve all the potential problems
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before applying the assay to prospective trials. For this purpose, the established 

HER2 FRET methodology was applied to assess HER2 phosphorylation in 

archives of HER2 positive breast tumour arrays as well as mixed HER2 breast 

tumour arrays (consisting of both HER2 positive and HER2 negative cases).

In summary, the work of this thesis had the following objectives:

- First, the establishment of an assay that can assess EGFR 

phosphorylation by FRET monitored by high throughput FLIM.

- Second, the establishment of an assay that can assess HER2 

phosphorylation by FRET in cell lines, and to assess the responses of 

HER receptors in relation to EGFR and HER2 inhibitors in breast cell 

lines.

- Third, the assessment of the best way to preserve phosphorylated 

antigens in xenograft breast tumours.

- Fourth, the establishment of HER2 phosphorylation by FRET in breast 

tumour arrays.
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2 M aterials and M ethods

2.1 Materials

2.1.1 Mammalian Cell lines

A431, COS-7, MCF-7, SKBR3, MDMB-231 and MDAMB-453 cells were 

provided by the cell services at Cancer Research UK London Research 

Institute (CR-UK LRI) and MCF-12F cells were obtained from American Type 

Culture Collection (ATCC), USA.

2.1.2 Mice for xenograft work
Nude mice and Severe Combined Immune Deficiency (SCID) mice were 

obtained from Transgenic Lab at Cancer Research UK London Research 

Institute.

2.1.3 Tissue microarrays (TMAs)

Tissue arrays were prepared from formalin-fixed, paraffin-embedded tumour 

blocks derived by surgical resection from the Pathology Department, John 

Radcliffe Hospital, Oxford. Quality control for tumour specimens was 

undertaken and all slides were examined by at least one specialist consultant 

pathologist. It was not possible for each core to be uniformly involved by the 

tumour and naturally there was variation between the individual cores with the 

percentage of the tumour. The tonsil sections were provided as a reference 

point for slide orientation and contain heterogeneous tissues including 

squamous tissue, lymphoid and vascular tissues as well as supporting stromal
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tissues. 500 p.m cores were taken and transferred to an 8 x 15 core recipient 

array block using a Beecher Instruments Manual Tissue Arrayer-1 (Beecher 

Instruments Incorporated, Sun Prairie, WI). 5 pm sections were cut from each 

array block and made into slides which were stored at 4 0 C.

The work was carried out with the approval of the Oxford Ethics Committee. 

For head and neck tumour arrays, 133 consecutive cases from the Ear Nose 

Throat department, Radcliffe Infirmary, Oxford, were analysed. Surgical 

approach was the primary approach always in these patients unless they were 

not encompassable in an appropriate surgical field. If, after primary surgery, 

margins were positive then radiotherapy was given to the patients. No 

chemotherapy was given to these patients. No primary radiotherapy cases are 

included here and patients who had previously been treated for HNSCC were 

also excluded. Two sets of breast arrays were used, one with a mixture of 

HER2 positive and HER2 negative cases (n=115) and the other set with only 

HER2 positive cases (n=55). All patients had conventional treatment including 

surgery, radiotherapy, chemotherapy and hormonal therapy according to their 

TNM staging and guidelines from medical oncology department at the 

University of Oxford.

2.1.4 Antibodies

Name Species Application Source
Anti-EGFR, F4 

(recognizing 

intracellular 

residues 985-996)

Mouse WB 1: 10000 Cancer Research 

UK

Anti-

phosphotyrosine,

FB2

Mouse WB 1:500 Cancer Research 

UK

Anti-EGFR

(Tyr845)

Rabbit WB 1:1000 Cell Signalling

Anti-HER2 Rabbit WB 1:1000 Cell Signalling
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(intracellular) IP 1:100

Anti-

phosphoHER2

(Tyrl248)

Rabbit WB 1:1000 Cell Signalling

Anti-

phosphoHER2 

(Tyr1221/1222)

Rabbit WB 1:1000 Cell Signalling

Anti-HER3

(monoclonal)

Mouse WB 1:100 Sigma

Anti-

phosphoHER3 

(Tyr1289)

Rabbit WB 1:1000 Cell signalling

Anti-HER4 83B10 

(intracellular)

Rabbit WB 1:1000 Cell signalling

Anti-HER4 111B2 

(intracellular)

Rabbit WB 1:1000 Cell signalling

Anti-HER4 (C- 

terminus)

Rabbit IP 1:25 Santa Cruz

Anti-

phosphoHER4

(Tyrl284)

Rabbit WB 1:1000 Cell signalling

Anti-

phosphotyrosine

(p-TyrlOO)

Mouse WB 1:2000 Cell signalling

Anti-Akt (PKB) Rabbit WB 1:1000 Cell signalling

Anti-phosphoPKB

(Thr308)

Rabbit WB 1:1000 Cell signalling

Anti-phosphoPKB

(Ser473)

Rabbit WB 1:1000 Cell signalling

Anti-p44/42 MAP 

Kinase

Rabbit WB 1:1000 Cell signalling

Antiphospho- 

p44/42 MAP

Rabbit WB 1:1000 Cell signalling
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Kinase

(Thr202/Tyr204)

Anti-beta actin Mouse WB 1:20000 Sigma

Anti-pTEN Rabbit WB 1:2000 Santa Cruz

Anti-Human IgG Mouse WB 1:5000 Sigma

HRP-conjugated 

anti-mouse whole 

IgG

Sheep WB 1:10000 (F4 

and FB2); 1:2000 

(for others)

Amersham (GE 

healthcare UK 

Limited)

HRP-conjugated 

anti-rabbit IgG

Goat WB 1:2000 Amersham (GE 

Healthcare UK 

Limited)

Anti-human TGF- 

a

Goat WB 1:2000 

(0.05 pg/ml)

Cell viability 

1:40

(1 pg/ml)

Sigma

Anti-heregulin-a

(Ab-1)

Goat WB 1:10000 

(0.1 pg/ml)

Cell viability 

1:100 (10 (ig/ml)

Calbiochem

Anti-heregulin-1

precursor

Rabbit (human 

and mouse 

cross­

reactivity)

WB 1:10000 

(0.05 |Xg/ml)

Upstate

Anti-betacellulin Mouse WB 1:10000 

Cell viability 

1:25 (0.02 g/ml)

Sigma

2.1.5 Growth factors

Name Species Dose Source
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Epidermal Growth Factor (EGF) Mouse 50-100 ng/ml Sigma

Transforming Growth Factor-a 

(TGF-a)

Human 100 ng/ml

Heregulin p* Human 100 ng/ml

Heregulin pi* Human 100 ng/ml

Betacellulin Human 20 ng/ml

* Heregulin p: Recombinant EGF domain of heregulin P3 (amino acid 

residues 178-241) of neuregulin 1 gene (Sigma product information), 

f  Heregulin pi: Recombinant EGF domain of heregulin p i (amino acids 176 

to 246) of neuregulin 1 gene (Sigma product information).

2.1.6 Inhibitors and drags

Generic name Trade name Typical

dose

Company

4-(3-Chloroanilino)-

6,7-

dimethoxyquinazoline

AG 1478; 

Tryphostin AG 

1478

3 pM Calbiochem

Gefitinib (ZD 1839) Iressa 1 pM Astrazeneca

Trastuzumab Herceptin 40 pg/ml Roche

TNF-a Protease 

Inhibitor-1 (TACE 

inhibitor)

TAPI-1 100 pM Calbiochem

2.1.7 Solutions

PBS: 130.37 mM NaCl, 3.19 Mm KCL, 9.6 mM Na2HP04, 1.75 mM KH2P04, 

1.1 mM CaCU, ImM MgCl2, pH 7.2

PBST: 0.2 % (v/v) Tween 20 (polyoxyethylene-sorbitan monolaurate) in PBS
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Trypsin / versene: 0.05 % (w/v) trypsin, 0.02 % (w/v) EDTA, 27 Mm NaCl, 

1.62 mM Na2 HP04, 0.3 mM KH2P04, 0.0003% (v/v) phenol red 

Cell lysis buffer: 20 mM Tris-HCl (pH 7.4), 150 mM NaCl, 100 mM NaF, 10 

Mm Na2P2C>7 , 10 mM EDTA, supplemented with 1% (v/v) Triton X-100 and 1 

protease inhibitor cocktail tablet per 10 ml of cell lysis buffer 

4xSDS sample buffer: 250 mM Tris-Cl (pH 6.8), 20 % (w/v) glycerol, 4 % 

(w/v) SDS, 0.01 % (w/v) Bromophenol Blue, 50 mM p-mercaptoethanol 

8 % (v/v) SDS polyacrylamide resolving gel: 8 % (v/v) acrylamide mix, 

0.375 M Tris pH 8.8, 0.1 % (w/v) SDS, 0.1 % (w/v) ammonium persulfate, 

0.06 % (v/v) TEMED

5 % (v/v) SDS polyacrylamide stacking gel: 5 % (v/v) acrylamide mix, 

0.126 M Tris pH 6.8, 0.1 % (w/v) SDS, 0.1 % (w/v) ammonium persulfate, 0.1 

% (v/v) TEMED

Tris-glycine electrophoresis buffer: 25 mM Tris, 250 mM glycine, 0.1 % 

(w/v) SDS, pH 8.3

Tris-glycine transfer buffer: 24 mM Tris, 192 mM glycine, 20% (v/v) 

methanol

Stripping buffer: 500 mM glycine -  acetic acid, pH 2.5

Ponceau S: 5% acetic acid (v/v), 2% Ponceau S (w/v) in water

Coumassie Blue stain: 40% (v/v) methanol, 10 % (v/v|) glacial acetic acid,

0.04 % (w/v) Coumassie Brilliant Blue R-250

4% PFA (paraformaldehyde): 8g PFA in 200 ml PBS

0.2% (v/v) Triton X-100: 50 pi of Triton X-100 in 25 ml PBS)

1 mg/ml Sodium borohydrate: 0.05g sodium borohydrate in 50 ml PBS 

1% (w/v) BSA (Bovine Albumin): 0.5g in 50 ml PBS 

Reaction buffer (for protein tyrosine phosphatase YOP): 50 mM Tris- 

HCL, 150 mM NaCl, 5 mM DTT, 2.5 mM Na2EDTA, 100 pg/ml BSA 

Mowiol: 10% (v/v) Mowiol, 25% glycerol, 100 Mm Tris-HCl, pH 8.5 

OCT™: Polyvinyl alcohol (<11 %), Carbowax (<5%), non-reactive

ingredients (> 85%)
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2.1.8 Reagents

Application Reagents Source

Cell culture Foetal Bovine Serum Bioclear

Dulbecco’s Modified 

Eagle Medium (DMEM)

Cancer Research UK

Trypsin / versene

Cell lysis Protease inhibitor 

cocktail tablets

Roche

Triton X-100

(t-Octylphenoxypoly-

ethoxyethanol

Sigma

Protein assay Bio-Rad Protein Assay Biorad

SDS-PAGE Acryl/Bis 30 % (v/v) Amresco

Tris, Ammonium 

Persulfate, TEMED

Sigma

RPN 800 Molecular 

Weight Markers

Amersham

4-12 % pre-cast gels Invitrogen

NuPAGE MOPS SDS 

running buffer x20

Western blotting Immobile® IM-P PVDF 

membrane

Millipore

ECL Western Blotting 

Detector System

Amersham

30 % solution Bovine 

Albumin

Sigma

Ponceau S solution

Medical X-Ray film AGFA

RPN800 Full range 

Rainbow Molecular 

Weight markers

GE healthcare
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FRET Cy3b GE Healthcare

Cy5 GE Healthcare

DMF

(N,N-

Dimethylformamide)

Sigma

4%PFA

(paraformaldehyde)

Sigma

Triton X-100

(t-Octylphenoxypoly-

ethoxyethanol)

Sigma

Sodium borohydrate Sigma

BSA (Bovine Albumin) Sigma

p-Nitrophenyl Phosphate Calbiochem

Protein Tyrosine 

Phosphatase, YOP 

(Yersinia enterocolitica)

Calbiochem

Cell viability Trypan Blue (Vi- 

CELL™ Reagent Pak)

Beckman Coulter

DMSO

(Dimethylsulfoxid 99.8% 

Methyl sufoxide 99.8%)

Aldrich

Liquid nitrogen 

fixation

OCT Sakura
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2.2 Methods

2.2.1 Mammalian cell culture

A431, MCF-7, SKBR3, MDAMB-453 were routinely cultured as monolayers 

in Dulbecco’s modified eagle’s medium (DMEM) supplemented with 7.5 % 

(v/v) foetal bovine serum (FBS) at 37°C CO2  humidified atmosphere. The cells 

were obtained from Cancer Research UK cell services and were split before 

they were confluent. The cells were grown to a maximum of 30 passages 

before being discarded and new cells would be obtained from cell services. 

When splitting the cells, the cells were washed once with PBS to get rid of the 

dead cells and to clear the serum which contained inhibitors that would 

otherwise suppress trypsin. The cells were then incubated with 2 ml of 

trypsin/versene in a 10-cm plate for a maximum of few minutes before the 

trypsination was inhibited by adding 8 ml of 10% FBS. Following splitting the 

new cells were seeded at 1:10 - 1:20 dilution for MCF-7, SKBR3 and 

MDAMB-453 and 1:20 to 1: 40 dilution for A431 cells (since these cells have 

a faster proliferation rate).

2.2.2 Determination of protein 
concentration

Bio-Rad’s protein assay (based on the Bradford’s dye-binding procedure) was 

used to determine the protein concentration (Bradford 1976) before sample 

loading for SDS polyacrylamide gel eletrophoresis. Near confluent cells were 

first washed with cold PBS (4°C) before adding lysis buffer (Section 2.1.7) for 

10 minutes at 4°C. The total protein concentration of the cell lysate was 

determined using the Coomassie Brilliant Blue G-250 dye that binds to 

basic/aromatic acid residues and changes its colour in response to various

concentrations of the protein. Bovine serum albumin (BSA) was used as a
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standard and a stock solution of 10 pg / pi was diluted with dHaO (0.2, 0.5, 

1.0, 1.5, 2.0, 3.0, 4.0 pg / pi) to produce a standard curve. The dye Reagent 

was first diluted with water (1:5 ratio) and 500 pi of this was transferred into 

each reaction vial. 2 pi of each standard solution or each cell lysate was mixed 

with 500 pi of diluted dye Reagent. After 10 minutes of incubation, a duplicate 

of each condition (200 pi) was loaded into a 96-well microtitre plate. The 

absorbance of the dye-protein complex was measured at 585 nm in a 

SpectraMax plate-reader from Molecular Devices and the protein 

concentration of the cell lysate was determined from the BSA standard curve 

(using lysis buffer as the blank measurement).

2.2.3 Immunoprecipitation

All experiments were performed using Protein G Agarose beads (Roche) 

which were washed with PBS for three times before each experiment to get rid 

of the storage ethanol. The cells were grown to near confluency before being 

lysed with lysis buffer (Section 2.1.7) on ice. The cell lysate was centrifuged 

for 5 minutes at, a speed of 20817 ref (14000 rpm) in a 5417R centrifuge (from 

Eppendorf) before transferring the supernatant to a new reaction vial. The 

supemanatant was presorbed with beads for 2 hours at 4°C. The mixture of cell 

lysate and beads was then centrifuged for 5 minutes at a speed of 20817 ref 

(14000 rpm) before transferring the supernatant to another new reaction vial. 

The antibodies anti-HER4 (concentration 1:100, C-terminal; Santa Cruz) or 

anti-HER2 (concentration 1:100, intracellular; Cell signalling) were added to 

the supernatant and were incubated overnight at 4°C. The next day, the 

immune-complex was collected by the addition of new beads and further 

incubation for 2 hours at 4°C. The beads were washed thoroughly with lysis 

buffer before boiling with 1 x SDS. 40 pi was loaded in each lane in SDS- 

PAGE for western blot analysis.
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2.2.4 SDS polyacrylamide gel 
electrophoresis (SDS-PAGE)

Following protein determination by Bradford Assay, the cell lysate was 

mixed with 4X SDS (with a reducing agent, p-mercaptoethanol). The SDS and 

cell lysate mixture was boiled for 10 minutes at 95°C to dissociate the protein 

into their individual polypeptide subunits. Equal amounts of protein based on a 

Bradford Assay were then loaded onto an SDS-PAGE gel. In the first half of 

my PhD, the SDS polyacrylamide resolving and stacking gels (Section 2.1.7) 

were routinely made and SDS-PAGE was performed in a Tris-glycine 

electrophoresis buffer using a Biorad Mini Trans Blot electrophoresis cell. 

However, to improve the resolution, pre-cast gels were subsequently used to 

perform SDS-PAGE with lx NuPAGE MOPS SDS running buffer and 

Invitrogen Novex Mini-Cell. The gels which contained separated polypeptides 

with the molecular marker were transferred onto the PVDF membrane for 

western blot analysis.

2.2.5 Protein transfer

Using the Biorad Trans-Blot Semi-Dry Transfer apparatus, the separated 

polypeptides and the molecular markers on the gel were transferred to 

Immobilon™-P PVDF membranes. For each gel, a PVDF membrane was 

initially equilibrated with methanol and two sets of Whatman paper (3mm, 4 

pieces in each set) were immersed in Tris-glycine buffer before protein 

transfer. The gel was placed on top of the soaked PVDF membrane and both 

were then sandwiched between the two sets of Whatman papers. The transfer 

was performed using the Transfer apparatus at 12 V for 2 hours at room 

temperature. The membrane was then used for western blot analysis. To check 

for efficient protein transfer, the membrane was stained with Ponceau S 

solution and de-stained with water before western blot analysis.
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2.2.6 Western blot analysis

After transfer, the PVDF membrane was washed with PBS first at room 

temperature for 5 minutes. The membrane was then incubated for 1 hour at 

room temperature or overnight at 4 0 C with blocking buffer, 3% (v/v) BSA in 

PBS supplemented with 0.2% Tween-20 (PBST). Following blocking, the 

membranes were incubated with the appropriate primary antibody for 2 hours 

at room temperature, followed by four washes (15 minutes each) with PBST 

containing 1% (w/v) low fat milk powder. The membranes were then 

incubated with the appropriate HRP-conjugated secondary antibody (section 

2.1.4) in PBST (containing 5% (w/v) low fat milk powder) for 1 hour at room 

temperature and another four washes with PBST (15 minutes each) containing 

1% (w/v) low fat miik powder. The membranes were then washed twice with 

PBST and once with PBS before incubation with a 1:1 mixture of the 

Amersham ECL reagents for 2 minutes. The membranes were then put in 

Kodak BioMax MS cassette and exposed to photographic AGFA Cronex 5 

Medical X-Ray Film for variable durations before being developed using an 

IGP Compact 2 Developer. All the western blot experiments were repeated at 

least three times and represented blots were shown in the results’ section.

Western blot for experiments on growth factor stimulation and drug 

treatment in cell lines

The cells were grown to 80% -100% confluent in a 6-well cell culture plate 

after seeding 30,000 cells per well. The cells were grown for at least 24 hours 

before treated with drugs, e.g. 3 flM AG 1478, 1 pM Iressa and 40 |ig/ml 

Herceptin for different durations according to the experiments (unless 

indicated otherwise, these will be the doses used for these drugs). The dosage 

for TAPI inhibitor, TAPI-1 was 100 jiM. For growth factor experiments, the 

cells were treated with 50 ng/ml EGF, lOOng/ml heregulin p (P3 of NRG1, 

Section 2.1.5) and lOOng/ml heregulin-pi (Pi of NRG1, Section 2.1.5) for 10 

minutes following serum starvation of 16 hours. The cells were then obtained 

after 30-minute treatment with lysis buffer (Tris HC1, 20 mM; NaCl, 150 mM; 

NaF 100 mM; Na4 ? 2 0 7  10 mM; EDTA 10 mM with 1% Triton and protease
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inhibitor cocktail-Roche) and centrifuged at 4°C to remove of the insoluble cell 

pellets. Polyacrylamide gel electrophoresis was carried out employing 10 pg of 

protein in each lane. Western blots were performed using primary antibodies 

mentioned above. A dilution of 1:1000 was used for the primary antibodies 

unless otherwise indicated in Section 2.1.4. Antibodies were incubated 

overnight at 4°C. They were detected using horseradish peroxidase-linked 

secondary antibody (a dilution of 1:2000 sheep anti-rabbit IgG) and visualized 

with an enhanced chemiluminescent (ECL) system (Amersham).

2.2.7 Cell viability

To test cell viability, cells were grown in 24-well plates after seeding 

approximately 15,000 cells per well. The cells were left to grow for at least 24 

hours before treatment with either 40 pg/ml Herceptin or 1 pM Iressa. For the 

Iressa experiments, a DMSO control (1:1000) was also performed. On the day 

of the experiment, the cells were trypsinised and diluted with PBS. The viable 

cells were counted in cell viability analyzer (Vi-cell ™ XR, Beckman Coulter) 

using Trypan Blue to stain the dead cells. The viable cells for each condition 

were compared with the control.

2.2.8 Xenograft experiments

MDAMB-453 (2.5-5xl06) and SKBR3 cells (5-10xl06 cells) both in 100 |il 

serum-free medium were bilaterally injected subcutaneously into the flanks of 

SCID mice (n=2 for each cell type). SKBR3 cells were not tumourigenic in 

SCID mice but xenograft tumours were successfully grown in the bilateral 

flanks of the two SCID mice using MDAMB-453 cells. These two mice were 

killed using C02 chamber after two months when the tumours grew to about 

lcm3. Only xenograft tumours from one mouse were used for tissue fixation 

experiments with either formalin (NBF) or liquid nitrogen.
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The largest tumour measuring 1.1 cm was cut into three parts. One part was 

fixed immediately with formalin (NBP), one was left in the pot for 1 hour at 

27° C before fixation with NBP, one was left in the pot for 1 hour at 4 0 C 

before fixation with NBP. The tumours fixed with formalin were processed 

and embedded into paraffin block before being sectioned and made into slides 

by the staff at the Experimental Pathology Department.

The second tumour measuring 0.8 cm was cut into two parts. One part was 

frozen within 15 minutes with liquid nitrogen and the other part was left in 

20% sucrose/PBS solution (cryopretection solution) for 24 hours before 

fixation with liquid nitrogen. To prevent damage to the tumour tissues from 

sudden freezing by liquid nitrogen, the following steps were used in 

Experimental Pathology Department. The tumours were first immersed in OCT 

solution (Section 2.1.7) contained in an aluminium foil mould. The mould 

containing tumour tissues and OCT was then submerged for 5-10 seconds in 

thawing isopentane when it was semi-liquid and having first frozen by liquid 

nitrogen. OCT would crack if the mould was submerged in isopentane for a 

significant amount of time (instead of 5-10 seconds). The frozen tumour 

tissues in OCT were transferred immediately to -  70 °C for storage or to 

cryostat at -  20 °C for sectioning.

2.2.9 Antigen retrieval

Antigen retrieval was applied to cells fixed with 4% PFA or paraffin- 

embedded xenograft tumour slides or tissue microarrays (TMA) to recover the 

buried epitopes. Before the antigen retrieval, tumour slides or TMAs were de­

waxed in Xylene and rehydrated through graded alcohols to water. For the 

cells fixed with 4% PFA, this additional step was not required. For antigen 

retrieval, 0.01M of citrate buffer (pH 6) was heated in an 800-watt microwave 

oven at full power for 4 minutes. The samples were then placed in the buffer 

and heated in the microwave for a further 4 minutes at full power. The citrate 

buffer was then topped up and microwave heated again for 4 minutes. The 

citrate solution and sections were then allowed to cool for 10 minutes before
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handling. For IHC anti-pHER2 staining and HER2 FRET experiment, the New 

England Biolabs’ protocol was used. This procedure is similar to the antigen 

retrieval process using citrate buffer, except that the tissue slides were brought 

to boiling in 1 mM EDTA pH8, followed by 15 minutes at a sub-boiling 

temperature.

2.2.10 Immunohistochemistry (IHC)

As discussed in the Introduction, the IHC scoring may vary depending on 

different laboratories and countries as well as the antibodies and the epitopes 

used. The scoring systems for TMAs in the histopathology department at the 

University of Oxford were previously validated by the department and they are 

based on either intensity or /and percentage of cell staining.

Intensity is scored as either 0 (negative staining); 1+ (weak intensity); 2+ 

(moderate intensity); or 3+ (strong intensity). Percentage of staining is scored 

as either 0 (negative staining); 1+ (1-10% staining); 2+ (11-50% staining); 3+ 

(51-80%) or 4+ (81-100%). These scoring systems are shown in the table 

below:

Scoring Intensity Percentage of staining

0 Negative staining Negative staining

1+ Weak intensity 1-10% staining

2+ Moderate intensity 11-50% staining

3+ Strong intensity 31-80% staining

4+ 81-100% staining

The score from intensity may be multiplied by the score from percentage of 

staining to give an overall score. The exact criteria may vary depending on 

antibodies used and may depend on the detected epitopes and tumours as well 

as locations of staining (membranous versus cytosolic versus nuclear).

For EGFR scoring reported in this study, F4 (anti-EGFR) antibody was used 

and intensity of the membranous staining (based on University of Oxford
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histopathology department as classified above) is used. For HER2 scoring, 

HercepTest (DAKO) using A0485 (anti-HER2) antibody was used to screen 

for HER2 positivity (2+ and 3+) in breast tumour arrays. The scoring system 

of HercepTest based on intensity of anti-HER2 staining is illustrated in 

Introduction.

5 pm sections of TMAs were dewaxed in Xylene and rehydrated through 

graded alcohols to water. High temperature antigen retrieval was performed in 

0.01 M citrate buffer pH 6 heated for 1 minute in a microwaveable pressure 

cooker. The sections were then cooled and washed in water. Following 

peroxidase block, sections were protein blocked for 15 minutes in 2.5% normal 

horse serum. The primary monoclonal antibody F4 (anti-EGFR) was incubated 

on the sections for 1 hour at room temperature with an antibody concentration 

of 10 pg/ml and then washed twice in PBS. The primary antibody was 

visualised using an HRP Vectorlabs Immpress Mouse Kit (Vector 

Laboratories, Burlingam, CA) and the sections were developed with 

diaminobenzidine (DAB). After washing in water, sections were mounted on 

cover slips with aqueous mounting medium.

2.2.11 FRET monitored by frequency- 
domain FLIM

FRET involves the transfer of energy from an excited donor molecule to a 

nearby (1-10 nm) spectrally overlapping acceptor. As discussed in the 

Introduction, various methods may be used to quantify FRET including FLIM 

used in this thesis. FRET can be quantified by measuring fluorescence lifetime 

of the donor, which is reduced as energy is non-radiatively transferred via a 

dipole-dipole interaction. Spatial aspects of fluorescence lifetime may be 

assessed by using FLIM (Larijani et al., 2003). In this thesis, the donor Cy3b 

lifetime variations were monitored in the frequency (phase) domain where the 

excitation light was sinusoidally modulated at 80.224 MHz to excite the 

sample. The emitted light oscillated at the same modulation frequency but with 

a phase shift and a decrease in amplitude (demodulation). Determining these
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two parameters permitted measurement of phase (xp) and modulation depth 

(Tm) of the fluorescence. The average lifetime, <T>, is the average of phase 

shift and relative modulation depth (xm + xp) / 2 of the emitted fluorescence 

signal. The efficiency of FRET can be mapped in a single cell by determining 

the excited state lifetime of the donor fluorophore at each pixel of the image. 

FRET efficiency is calculated as E = 1 -  [<Xd/a > /< X d > ]  x 100, where <Xd/a>  is 

the lifetime map of the donor in the presence of the acceptor, and <X d> is the 

average lifetime of the donor in the absence of the acceptor (Larijani et al., 

2003; Wu and Brand, 1994).

2.2.11.1 Frequency-domain FLIM system  and 
set-up

The single frequency-domain FLIM used in this thesis at the Cell Biophysics 

Laboratory, consisted of several key components connected to an inverted 

microscope (Carl Zeiss Ltd) mounted on a 2xlm optical table (Technical 

Manufacturing Corporation) (Figure 2.1). The key components were:

(a) Light source. The light source was from Argon/Krpton monochromatic 

laser (Innova Spectrum 70C, Coherent UK Ltd) which was tuneable to select 

an appropriate wavelength for the excitation (e.g. 488 nm for GFP and 514 nm 

for Cy3b).

(b) Standing-wave acousto-optic modulator (SW-AOM; Intra-Action 

Corporation). The light source was sinusoidally modulated with SW-AOM at a 

modulation frequency of 80 MHz. Since the FLIM used was a single frequency 

set-up, the modulation frequency of 80 MHz was not changed and the 

maximum sensitivity of lifetime it could detect is around 2 ns (explanation in 

Section 1.9.3.2). Therefore, it was optimal for GFP (488 nm) or Cy3b (514 

nm) since their lifetimes are around 2 ns in cells. The room temperature was 

kept close to 18° C to prevent thermal phase drift in AOM, which was essential 

for phase coherence between the fluorescent signal and the modulated gain of
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the detector. With the help of an array of mirrors, the modulated light source 

was directed to an iris diaphragm to selectively isolate the central (zero-order) 

beam from the higher-ordered diffracted beams. The modulated central light 

beam was further directed into a multi-mode fibre light scrambler (a 1.5-metre 

step index silica fibre, 1-mm core, numerical aperture 0.37; Technical video 

Ltd) that disrupted the coherence of the laser light by vibrating the fibres at 

frequencies of around 100 Hz. This resulted in a randomly moving speckled 

illumination of the specimen and was subsequently integrated during detection.

(c) Frequency synthesisers (2023 Marconi). The AOM was driven by a 

frequency synthesiser (slave) to a resonance frequency of about 40.112 MHz 

and this produced the intensity oscillations in the laser light beam at 80.224 

MHz (twice the driving frequency). The master frequency synthesiser driving 

the micro-channel plate (MCP) and the image intensifier head was set at 

80.224 MHz which was the value that exactly double that driving the AOM 

(40.112 MHz).

(d) Phase-sensitive detection system. The resulting fluorescence was separated 

using a combination of dichroic beam splitter (Q565 LP; CHROMA 

technology Corp.) and narrow band emitter filter (BP 610/75; Delta Lys and 

Optik). The fluorescence was imaged onto the photocathode of the image 

intensifier head (Hamamatsu C5825) which then focused the photoelectrons 

ejected from the photocathode onto the face of a MCP. An intensified light 

image was generated when the electron image at the output of the MCP hit the 

phosphor screen. The effective gain of the image intensifier was modulated at 

a frequency equal to that of the SW-AOM (80 MHz) for homodyne detection. 

The outputs from the two synthesisers were used to provide sinusoidal voltages 

sources for modulating both the excitation laser light via the SW-AOM and the 

gain of the image intensifier unit. The amplified image was then projected 

from the phosphor screen of the MCP onto the chip of a charged-coupled 

device (CCD) camera (Quantix, Photometries). Two-by-two binning for cell 

experiments and three-by-three binning for tumour arrays were typically set as 

the readout of the CCD. The gain was adjusted according to the fluorescence 

intensity of the sample and it was usually set either two or three.
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(e) Other components. 100-W Mercury arc lamp (Carl Zeiss Ltd) was used as a 

source of illumination for acceptor fluorophores and to bleach the acceptors as 

required. A variable density filter wheel was used to select the intensity of the 

excitation light.
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Figure 2.1: Simplified schematic diagram of frequency-domain FLIM 
at the Cell Biophysics Lab.
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2.2.11.2 Im age acquisition and d a ta  analysis

All images (a cycle of 16 phase-dependent images) were taken using a Zeiss 

Plan-APOCHROMAT x 100/1.4 NA phase 3-oil objective for cell experiments 

and using x 10/0.5 NA phase 1 objective for TMAs experiments. Before 

proceeding to obtain the lifetimes of donor Cy3b, a reference image (a cycle of 

16 phase-dependent images, each separated by 22.5°C) using a scattering foil 

was first obtained. Before taking images of the foil, the intensity of the 514 nm 

laser line was reduced to minimum using the variable density filter wheel. The 

reference measurement taken with this scattering foil was used to determine 

the phase setting at which the maximum intensity was reached in the image 

series. This was used to calibrate the phase of the master frequency synthesizer 

that must be set at a maximum in order to acquire a phase-dependent FLIM 

data. The phase value was set to zero degree on the master frequency 

synthesizer and another cycle of 16 phase images from the foil was taken and 

saved as a zero lifetime reference. This procedure was repeated every hour to 

ensure that the phase of the master frequency synthesizer remained at zero 

during the experiments. The reference measurement from foil also revealed a 

modulation value, indicating the modulation of the excitation laser source. The 

modulation value was approx 0.50 for the experiments done in this thesis. In 

addition, an arbitrary value of intensity (which is saturated at a value of 4095 

counts) may be obtained with the scattering foil. If the intensity of the 

scattering foil was low (less than 1000 counts) or the modulation value was not 

near 0.50, it was due to the misalignment of the laser. The FLIM therefore 

needed to be optimised and aligned using the scattering foil before performing 

any experiments. In addition, when the wavelength of the tunable laser source 

was changed (between 488 nm and 514 nm), it was also essential to check that 

the laser alignment by assessing the modulation and intensity values of the 

scattering foil.

To obtain the lifetimes of donor Cy3b in cells or tumour cores, the intensity 

of the excitation light was restored to a maximum using the variable density 

filter wheel and the Cy3 filter set (excitation, HQ 545/30 band pass filter,
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dichroic mirror, Q565 long pass; emission, HQ610/751 band pass filter; 

Chroma) was moved into excitation path. Two contiguous series of 16 phase- 

dependent images (one forward and one reverse cycle, 45 degree phase- 

stepped) and a background image from the samples were taken. The exposure 

time of the acquisition was chosen depending on the fluorescence intensity and 

may vary from 50 to 1000 ms. To acquire acceptor images, the laser source 

was switched to 100-W mercury arc lamp using a rotating mirror and the Cy5 

filter set (excitation, HQ620/60 band pass filter; dichroic mirror, Q660 long 

pass; emission, HQ 700/75 band pass filter; Chroma) was set in the detection 

path.

Using these images from acquisition and the zero lifetime reference from the 

foil, the donor lifetimes (phase xp and modulation xm parameters) were 

obtained using IPLab Spectrum software (version 3.1.2c Scanalytics, Inc.) 

based on Fourier transformation. An average of the lifetime phase and 

modulation is calculated for each pixel ([xp + xm]/2) although these 

independent parameters cannot be averaged if the Tp and xm do not have close 

values (Alcor D, 2007). To help visualization, the average lifetime map may be 

represented with pseudo-colour scale (higher lifetimes in blue and shorter 

lifetimes in red). However, since the pseudo-colour scale may differ for each 

set of experiments, it is essential to consider the values of the lifetimes in each 

experiment. Previously, the determination of the correct thresholding and the 

average lifetime map was done by the operator manually. In collaboration with 

Pierre Leboucher at College de France, an automatic analysis of the data was 

implemented, resulting in an increased speed in the non-biased data analysis 

and improved reproducibility of the results (Alcor D, 2007).

2.2.11.3 Choice of fluorophores and conjugation 
of fluorophores to  antibodies

As discussed in the Introduction, FRET efficiency depends on several 

parameters including the quantum yield of fluorescence of the donor and the 

overlap between the emission spectra of the donor and the absorption spectra
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of the acceptor (Section 1.9.2). Therefore, a suitable pair of donor and acceptor 

fluorophores needed to be chosen for FRET experiments. The FLIM 

instrument used in Cell Biophysics Lab uses a modulation frequency of 80 

MHz and the maximum sensitivity of lifetime to be detected is around 2 ns 

(explanation Section 1.9.3.2). Cy3b was chosen as a donor fluorophore 

because of its near 2 ns lifetime as well as being a fluorophore that has high 

quantum yield (source from GE healthcare, formerly Amersham). Cy5 was 

chosen as the appropriate acceptor for Cy3b since the emission spectrum of 

Cy3b overlaps with the absorption spectrum of Cy5, which makes FRET 

possible between the pair. Both Cy3b and Cy5 have good photo-stability and 

therefore they are a suitable pair of fluorophores for FRET experiments.

F4 (anti-EGFR or anti-ErbB-1), anti-HER2 (anti-ErbB-2) and anti-HER4 

(ErbB-4) were conjugated to Cy3b (donor fluorophore) and FB2 (anti- 

phosphotyrosine), anti-phospho-HER2 and pTyr-100 (anti-phosphotyrosine) 

were conjugated to Cy5 (acceptor fluorophore). The resulting pairs of F4-Cy3b 

/ FB2-Cy5, HER2-Cy3b / pHER2-Cy5, HER4-Cy3b / pTyr-Cy5 were used to 

assess EGFR and HER2 phosphorylation as well as HER4 proteolytic cleavage 

respectively. 100 j l l I  of N, N-Dimethylformamide (DMF) was added to 1 mg 

Cy3b to make a 10 mg/ml stock solution (15 mM). The stock 10 mg/ml Cy3b 

was diluted in DMF 10 fold to 1 mg/ml (1.5 mM). 50 pi of Cy3b / DMF from 

a stock of 1 mg/ml was added drop by drop into 450 pi anti HER receptor 

antibody / 50 pi Bicine (1M, pH 8) with continuous stirring. The final 

concentration of conjugated anti-HER receptor antibodies with Cy3b was 

approximately 100 pg/ml (150 pM). The solution was stirred in the dark for 2 

hours. To conjugate FB2, anti-HER2 and anti-pTyr-100 with Cy5, 20 pi of 

DMF was added to a Cy5 vial. Cy5 dye in DMF was then added drop by drop 

to 450 pi antibodies (FB2, anti-HER2 and anti-pTyr-100) / 50 pi Bicine (1M, 

pH 8) while stirring. The solution was stirred in the dark for 2 hours. The 

conjugated antibodies were separated from free dyes by column 

chromatography (desalting column, Bio-Rad). The matrix of the column 

excluded solutes greater than 6000 Daltons (i.e. conjugated antibodies with 

Cye dyes) and retained the smaller contaminants (free dyes). The column was 

first washed and equilibrated with 3 x 5 ml PBS before the loading. The
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labelled antibody and unconjugated Cy3 were eluted with PBS. The labelled 

antibody was collected and the dye/protein ratio was measured by UV/visible 

spectroscopy: detection of the antibodies’ concentrations at 280 nm; F4-Cy3b, 

HER2-Cy3b and HER4-Cy3b at 561 nm; and FB2-Cy5, pHER2-Cy5 and 

pTyr-Cy5 at 650 nm wavelength. An example is given in Figure 2.2. The D/P 

ratios (aiming for 1-2) were calculated using the protocols provided by GE 

Healthcare (formerly Amersham Biosciences) for Cy™3B and Cy5 mono­

reactive dyes:

D/P = [(Absorption Amax) x (Antibody Extinction Coefficient)] / [(A2 8 0  -  

correction factor x Amax) x (Cy Dye Extinction Coefficient)]
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Figure 2.2: Dye/protein ratios (D/P) of F4-Cy3b and FB2-Cy5 were determined by UV spectroscopy.
50ul of F4-Cy3b was put in a cuvette and the absorbance of F4 was determined at 280 nm wavelength, and Cy3b 
at 561 nm by the UV spectroscopy. For FB2-Cy5,the absorbance of FB2 was determined at 280 nm and that of Cy5 
at 650 nm by the UV spectroscopy. PBS solution was used as "blank" before measuring D/P ratios of F4-Cy3b and 
FB2-Cy5.The D/P ratios were then calculated by the formulas supplied by GE Healthcare (see text for details).



2.2.11.4 In-sltu FRET experim ents

Cells were grown in 24-well plates with cover slips after seeding 

approximately 15,000 cells per well for A431 cells and 30,000 cells per well 

for breast cell lines (SKBR3, MCF-7 and MDAMB-453). The cells were left to 

grow for at least 24 hours before treated with drugs, 3 pM AG 1478, 1 pM 

Iressa and 40 pg/ml Herceptin (unless indicated, otherwise this will be the 

doses used for these drugs). For growth factor experiments, the cells were 

treated with 50 ng/ml EGF, 100 ng/ml heregulin p and 100 ng/ml heregulin-pi 

for 10 minutes following serum starvation of 16 hours. Following stimulation, 

the cells were fixed with 4% PFA at room temp for 10 minutes. 500 pi of 0.2 

% (v/v) Triton X-100 was added in the well for 5 minutes to make the cell 

membrane permeable. This is followed by incubation with 1 mg/ml fresh 

sodium borohydrate in PBS for 10 minutes to quench the background 

fluorescence. The cells were then blocked with 1% w/v BSA in PBS for 1 

hour. The cells were incubated and labelled with conjugated donor antibodies 

(e.g. F4-Cy3b, HER2-Cy3b or HER4-Cy3b) for 2 hours. For cells that required 

detection with the acceptor fluorophores, further incubation with conjugated 

acceptor antibodies (e.g. FB2-Cy5, pHER2-Cy5 or pTyr-Cy5) was done for 2- 

4 hours. The cover slips were mounted on the slide with Mowiol mounting 

medium containing 2.5% (w/v) 1,4-diazabicyclo (2.2.2) octane as an anti-fade. 

The slides were left at 37°C incubator for 1 hour and then left at room 

temperature overnight prior to image acquisition.

For phosphatase experiments, the protein tyrosine phosphatase from Yersinia 

enterocolitica (YOP), 50 units of phosphatase in 50 pi reaction buffer (50mM 

Tris-HCL, pH 7.2, 150 mM NaCl, 5mM DTT, 2.5 Mm Na2 EDTA, and 100 

pg/ml BSA as recommended by Calbiochem) was used for each coverslip on 

the laboratory film (Parafilm “M”) after fixing with 4% PFA. The rest of the 

procedures are the same as above.



2.2.11.5 FRET Data Interpretation and 
S tatistical analysis

For FRET experiment, at least three to five measurements of lifetimes from 

single cell(s) were obtained from each condition and the results were 

represented in either two-dimensional (2-D) histograms or scatter diagrams.

Two-dimensional histograms

The two-dimensional histograms showed both the phase (tp) and modulation 

(Tm) measurements for lifetimes for all recorded pixels and they quantified the 

reduction of the phase and modulation lifetimes of donor Cy3b when there was 

FRET. The error bars represent the standard deviations from all the 

measurements (n > 3 or 5).

Scatter diagrams of average lifetimes of donor

An average lifetime was obtained from the average of phase and modulation 

components of the lifetimes and the distribution of average lifetimes of donor 

fluorophore (e.g. EGFR-Cy3b) from each condition was shown as scatter 

diagrams. The basal condition was defined as the basal phosphorylation of the 

HER receptor, indicated by the decrease of lifetime of the donor in the 

presence of the acceptor without growth factor stimulation or drug treatment. 

The basal phosphorylation was due to autocrine ligand release of the cancer 

cells (Van de Vijver et al., 1991). The enhanced decrease in the average 

lifetime indicated further phosphorylation of the receptor due to its 

dimerisation with its partners. The medians of these measurements were 

displayed in the scatter diagram. Mann-Witney test was used to compare the 

medians of the average lifetimes between the basal condition and those 

stimulated with ligands or treated with drugs.

2.2.11.6 FRET experim ent for tissu e  
m icroarrays (TMAs)
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To label the tumour arrays with conjugated donor antibodies (F4-Cy3b, 

HER2-Cy3b), the arrays were immersed with 0.2 % (v/v) Triton X-100 for 5 

minutes to permeabilise the membrane. This was followed by incubation with 

1 mg/ml fresh sodium borohydrate / PBS for 10 minutes to quench background 

fluorescence. 1 % w/v BSA in PBS was used for blocking. The tumour arrays 

were incubated with the donor (either F4-Cy3b or HER2-Cy3b) for 2 hours 

and the acceptor (either FB2-Cy5 or pHER2-Cy5) for 2 hours. The arrays were 

then mounted on a glass cover with Mowiol mounting medium containing 

2.5% (w/v) 1,4-diazabicyclo (2.2.2) octane.

Automation of frequency-domain FLIM and high throughput processing 

for TMAs

The advantage of frequency-domain FLIM is its speed in acquiring images 

compared to time-domain FLIM. The frequency-domain FLIM was 

programmed by our consultant engineer Pierre Leboucher (College de France, 

Paris) and my primary supervisor Banafshe Larijani to process the TMAs and 

to analyse the data in a high throughput manner. This was achieved by writing 

a special script (“APierre”) in the computer so that the motorized stage driver 

unit (x,y,z) which controlled the stage of the inverted microscope would be 

automated. Before processing the tumour arrays, the tumour cores were first 

mapped in IPLab Spectrum (Signal Analytics). The stage was first initialized 

and the first cell (in this case, first tumour core) was selected. The motorized 

stage driver unit needed to be set at zero value for this first cell by pressing 

“perform stage” on this first cell. The other tumour cores could then be 

mapped and the mapping of the tumour cores on the slide was named and 

saved in the slide mapping file. Following the mapping of the tumour cores, 

the processing of the tumour array was done automatically by “APierre” script 

after selecting the saved file. To analyse the data automatically, a copy of the 

foil from the experiment was saved in the desktop of the computer. The file

(containing the list of data to be analysed) in IPLab was first opened. The data
«

to be analysed was put in the same named folder and the data was analysed 

under “script automation 01.00” by pressing “run script”. This automation of 

the data analysis listed all the parameters of lifetimes (phase, modulation and 

average) and the intensity of the donor fluorophore as well as number of pixels
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and bad data analysed in an excel sheet which could then be exported into 

other files.

The automation of frequency-domain FLIM is essential if the FRET 

methodology is going to be applied for wide clinical use for. The first proof of 

principle for the automated high throughput FLIM was done in HNSCC 

tumour arrays described in chapter 3. However, the automation of FLIM as 

well as the analysis of the data at cell biophysics Lab are continuously being 

improved and upgraded by Pierre Leboucher and Banafshe Larijani.

HNSCC tumour arrays

HNSCC tumour arrays were labelled with donor F4-Cy3b and acceptor FB2- 

Cy5 to assess EGFR phosphorylation of the tumour cores. Using the 

automated FLIM system, each tumour core was mapped according to the 

position on the arrays. All images (a cycle of 16 phase-dependent images) of 

the tumour cores were taken using a Zeiss Plan-APOCHROMAT xlO / 0.5 NA 

phase 1. The readout of the CCD was set for three-by-three binning and the 

gain was set at two. Images from each tumour core were acquired 

automatically from the arrays according to their positioning. The phase, 

modulation and average lifetimes of each tumour core were calculated 

automatically and the average FRET efficiency for each tumour core was 

obtained. Average FRET efficiency for each tumour core was correlated with 

survival data. A pilot study was first carried out to assess the first set of arrays 

with the automated system. To validate the pilot study, a new set of arrays 

were prepared with new antibodies and fluorophores and the arrays were 

processed with automated FLIM. In the validation study, the system was 

programmed to run two loops so that two lifetime measurements were taken 

from each tumour core (n = 2, i.e. 574 tumour cores in total). However, in any 

one array a patient would have a duplicate sample, so for each patient the final 

lifetime represents an average of four measurements. In total 1114 tumour core 

recordings were made and analysed in the validation study.

To obtain the EGFR status by FLIM, the donor intensity was calculated. For 

each tumour core, images were acquired and an intensity distribution 

histogram was plotted using Matlab version 7 and the median of the intensity 

distribution was calculated by Matlab 7. This median was normalised to the
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background intensity. The average of two median intensity values from the 

two tumour cores of the same patient was used in each array. Thereafter these 

values were used to correlate with immunohistochemistry stains and average 

FRET efficiency.

Breast tumour arrays

The breast tumour arrays were labelled with donor HER2-Cy3b and pHER2- 

Cy5 to assess HER2 phosphorylation of the tumour cores. The tumour cores 

were mapped and processed automatically like HNSCC tumour arrays. In 

HNSCC tumour arrays the signal-to-noise ratio was not a problem when 

assessing EGFR phosphorylation in these tumour cores since almost all 

HNSCC tumours contain high EGFR. The problem only arrived when a 

particular tumour core contained very little tumour tissue or contained mostly 

stromal tissue. In breast cancer, less than a third of the breast tumours over­

express HER2. Assessing HER2 phosphorylation was a problem for some of 

the breast tumour cores with low HER2 expression and for tumour cores with 

very little tumour tissues since inadequate signal-to-noise ratio was reached for 

some of the tumour cores. These specific problems were encountered and the 

details are described in Chapter 5.

Statistical analysis for TMAs

Disease-free Survival (DFS) is defined as the length of time after treatment 

during which no cancer is found and overall survival (OS) is a defined period 

of time that the subjects in a study have survived since diagnosis or treatment. 

All statistical analyses were done using Graphpad Prisms 3cx (Macintosh 

Version) except the univariate and multivariate analysis for prognostic factors 

which were done using ‘R’ (see below). The Kaplan-Meier survival curves 

were used to compare between the groups and a log-rank test was used to 

assess the hazard ratios. For the univariate and multivariate analysis of the 

prognostic factors, the data was analysed by fitting cox proportional hazard 

models to the data, using top 10% FRET efficiency as the group indicator with 

a common baseline hazard function, and including immunohistochemistry, 

UICC tumour stage, grade, necrosis, age and sex variously as covariates. To 

fit the models, the 'coxph' function was used from the 'survival' package within
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R. R is a language and environment for statistical computing and is available 

as Free Software under the terms of the Free Software Foundation's GNU 

General Public License in source code form.
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3 A ssess in g  EGFR activation and 
phosphorylation s ta te  in c e lls  and 
head and neck  tumour arrays

3.1 Introduction

As discussed in the Introduction, the current methods of measuring EGFR 

levels including immunohistochemistry (IHC) cannot be unequivocally 

endorsed as predictive of patient prognosis or response to treatment (Arteaga, 

2002). Therefore there is a need for a quantitative method to be set up to 

measure EGFR and its activation status. To achieve this, Forster Resonance 

Energy Transfer (FRET) monitored by Fluorescence Lifetime Imaging 

Microscopy (FLIM) was exploited as a reporter for EGFR (ErbBl or HER1) 

phosphorylation and as a molecular prognostic tool to identify HNSCC 

patients who show over-expression and/or phosphorylation of the EGFR. To 

establish an assay to assess EGFR phosphorylation, a suitable pair of donor 

(Cy3b) and acceptor fluorophores (Cy5) were conjugated to F4 (anti-EGFR 

cytoplasmic domain antibody) and to FB2 (anti-phosphotyrosine antibody) 

respectively to monitor FRET between the fluorophores detected by FLIM 

upon EGF stimulation. The main aim was to establish a FRET method to 

evaluate EGFR phosphorylation in cell lines, which was applicable to paraffin 

sections. The assay was tested in a few cell lines and a series of optimisations 

were done to ensure that the assay was robust. The results presented in this 

chapter illustrate that the FRET associated with the co-incident binding of the 

labelled monoclonals was specific. These established reagents have been 

applied to head and neck tumour arrays using a high throughput automated 

FLIM. Using this highly selective FRET assay in tumour arrays, increased 

FRET efficiency (indicating high levels of EGFR phosphorylation) was shown 

to correlate with disease recurrence and prognosis of the patients. The EGFR
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status determined by IHC or by average fluorescence intensity was also 

correlated with EGFR activation by FRET.

3.2 Results

3.2.1 Establishment of an assay to 
a sse ss  EGFR phosphorylation by FRET in 
cell lines

To develop a phosphorylation state readout with suitable specificity for the 

EGFR, it was hypothesised that following EGFR activation FRET would be 

detectable in fixed cell samples between F4-Cy3b (a monoclonal to the 

cytoplasmic domain of the receptor linked to a donor fluorophore, Cy3b) and 

FB2-Cy5 (an EGFR autophosphorylation site monoclonal linked to an acceptor 

fluorophore, Cy5). A431 cells were chosen as the test cell line to validate the 

assay, because of its high EGF receptor expression and its extensive use for 

nearly 20 years in the analysis of EGFR function. Initially, the specificity of 

the antibodies F4 and FB2 was tested through western blot of A431 cell lysates 

(Figure 3.1 A). The receptor is specifically detected by the F4 monoclonal, 

while FB2 recognises both the phosphorylated receptor and two pairs of faster 

migrating (phospho-) proteins. The degree of immuno-recognition of the 

receptor by FB2 specifically increased in response to EGF as expected for this 

phosphotyrosine site-directed monoclonal. Importantly, this immunoreactivity 

was reduced in a dose-dependent manner by the selective EGFR tyrosine 

kinase inhibitor AG 1478. It should be noted that in these cells there is basal 

EGFR phosphorylation consistent with prior data indicating a degree of 

autocrine receptor activation (Van de Vijver et al., 1991). Moreover, the 

additional recognition of faster migrating protein species by the FB2 

monoclonal does not interfere with the two-site FRET assay reported here, 

since the specificity of the analysis is determined by F4 (this is an important 

feature of the two-site IHC assay) (Figure 3.1 A).
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Fixed A431 cells were employed to test whether in an IHC format, the 

coincident binding of F4-Cy3b and FB2-Cy5 to phosphorylated EGFR 

produced a specific FRET signal. Cells were treated with or without EGF, 

fixed and processed (see Methods Section 2.2.11.4). Employing this assay, it 

was found that following EGF stimulation there is a marked increase in FRET 

as illustrated in Figure 3. IB. This is a specific property of the coincident 

binding of the two fluorescently labelled antibodies, since the lifetime change 

observed for the donor fluorophore following EGF treatment, is not observed if 

the antibody-acceptor conjugate is omitted. In the absence of the EGF stimulus 

there is a reduced degree of FRET, but with lifetimes for the donor in the 

presence of the acceptor below those observed for donor alone (Figure 3. IB).

To determine whether the EGF-induced increase in FRET reflected an 

increase in immuno-recognition of tyrosine phosphorylated receptor by the 

FB2 antibody-acceptor conjugate, cells were pre-treated with AG 1478. At 

effective doses of this EGFR inhibitor (1.5 and 3.0 jiM -  Figure 3.1 A), FRET 

was reduced to the basal unstimulated level. Pre-treating the cells with AG 

1478 did not reverse the basal degree of FRET. An example of donor Cy3b 

intensity images and their corresponding average lifetime maps from the same 

FRET experiment are illustrated in Fig. 3.2A. The average lifetime of F4-Cy3b 

in these studies decreased from 1.63 ns to 1.50 ns when the acceptor FB2-Cy5 

was present and decreased further to 1.38 ns upon EGF stimulation. The 

changes in lifetime induced by EGF are localised mainly at the plasma 

membrane as seen from the pseudocolour changes of the lifetime map. This is 

entirely consistent with the expected increase in tyrosine phosphorylated 

receptor at the cell surface following a ten-minute stimulation with EGF. 

Concentrations of 1.5 |xM and 3 |iM of AG 1478 reversed the donor lifetime to 

1.49 ns. The 2-D histograms representing the phase lifetime and modulation 

can also be represented as average lifetime (the average of phase and 

modulation lifetimes) in the scatter diagram (See Methods Section 2.2.11.5, 

Figure 3.2B, Table 3.1 A). This type of representation although it loses the 

information on the individual components of phase and modulation lifetimes, it 

can be particularly useful in assessing the response of targeted therapy since 

heterogeneity in terms of responses between cells may be seen. Dose
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dependence studies in A431 cells showed that at lower concentrations (0.3 JIM 

and 0.6 pM) FRET was not reversed (Table 3. IB), correlating with the western 

blot results shown in Figure 3.1 A. With higher doses of AG 1478, the lifetimes 

and average FRET efficiency values were reversed to basal levels.
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Figure 3.1: EGF induced phosphorylation of the EGFR is prevented by AG 
1478 and its activation is monitored by FRET. A, A431 cells were stimulated with 
50 ng/ml of EGF for 10 minutes. Cell lysates were probed with F4 (antibody against the 
cytoplasmic domain of EGFR) and FB2 (EGFR autophosphorylation site monoclonal). 
The 170 kDa F4 immunoreactive band (EGFR) co-migrates with the major signal from 
FB2 (arrow). Cells were pre-treated with increasing doses of AG 1478 as indicated and 
then stimulated with EGF. B, The 2-D histogram of phase and modulation lifetimes of 
F4-Cy3b. A431 cells were incubated with either donor alone (F4-Cy3b) or donor and 
acceptor (F4-Cy3b+FB2-Cy5) to assess EGFR phosphorylation after pre-treated with AG 
1478 with or without EGF stimulation as illustrated. The error bars represent the stan­
dard deviations of 5 measurements.
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Figure 3.2: The lifetime maps and 2-D histograms representing data of 
Figure 3.1 B. A, The diagrams show an average lifetime for F4-Cy3b of 1.63 ns.The 
average lifetime remains the same in the presence of EGF but decreases with the 
acceptor (FB2-Cy5).The decrease in average lifetime to 1.38 ns is most noticeable at 
the plasma membrane, as seen from the colour changes of the lifetime map. In the 
presence of AG 1478 (1.5 pM and 3 pM),the average lifetime returns to a higher lifetime 
of 1.49 ns. B, The 2-D histogram representing the phase and modulation lifetimes 
shown in Figure 3.1 B can also be represented as average lifetimes (the average of 
phase and modulation lifetimes) in the scatter diagram.
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A
A431 cells 
Conditions 
(n=5)

Phase (ns) Mod (ns) Ave (ns) Ave FRET 
efficiency %

F4-Cy3b 1.61 ns ± 
0 . 0 1

1.65 ns ± 
0 . 0 1

1.63 ns ± 
0 . 0 1

0 . 0 0  ± 0 . 0 0

EGF + F4-Cy3b 1.59 ns ± 
0 . 0 2

1.65 ns ± 
0 . 0 2

1.62 ns ± 
0 . 0 2

0 . 0 0  ± 2 . 0 0

F4-Cy3b + 
FB2-Cy5

1.47 ns ± 
0.03

1.53 ns ± 
0 . 0 2

1.50 ns ± 
0 . 0 2

7.79 ± 0.51

EGF+F4-
Cy3b+FB2-Cy5

1.30 ns ± 
0.05

1.46 ns ± 
0.04

1.38 ns ± 
0.04

15.11 ±2.10

AG 1.5 \iM 1.45 ns ± 
0.04

1.53 ns ± 
0 . 0 2

1.49 ns ± 
0.04

8.39 ± 2.50

AG 3.0 1.46 ns ± 
0.03

1.53 ns ± 
0.03

1.50 ns ± 
0 . 0 2

7.96 ± 1.96

B
A431 cells 
Conditions (n=3)

Phase (ns) Mod (ns) Ave (ns) Ave FRET 
efficiency %

F4-Cy3b 1.66 ±0.015 1.74 ±0.032 1.70 ±0.02 0 . 0 0  ± 0 . 0 0

EGF+F4-Cy3b 1.67 ±0.015 1.72 ±0.021 1.70 ±0.02 0 . 0 0  ± 0 . 6 8

F4-Cy3b+FB2-Cy5 1.63 ±0.006 1.67 ±0.032 1.65 ±0.02 2.93 ± 1.62
EGF+F4-
Cy3b+FB2-Cy5

1.41 ±0.006 1.54 ±0.036 1.48 ±0.02 12.96 ±0.76

AG 0.3 jiM 2 hours 1.44 ±0.020 1.49 ±0.061 1.47 ±0.04 13.65 ± 1.99
AG 0.6 jaM 2 hours 1.48 ±0.020 1.55 ±0.026 1.52 ±0.01 10.69 ± 1.76
AG 1.5 |*M 2 hours 1.56 ±0.023 1.64 ±0.021 1.60 ± 0 . 0 2 5.87 ±2.44
AG 3 fiM 2 hours 1.55 ±0.010 1.59 ±0.044 1.58 ±0.01 6.48 ±1.55
AG 9 fiM 2 hours 1.59 ±0.006 1.65 ±0.053 1.62 ± 0 . 0 1 4.42 ± 1.32

Table 3.1: A, The phase, modulation and average lifetimes of F4-Cy3b in 
different conditions, same experiment as Figure 3.1B. The values in the table 
represent the average of 5 measurements per condition. B, Lifetimes and FRET 
efficiency values of F4-Cy3b in A431 cells in a dose-dependent study of AG 1478.
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To verify that the signal was indeed due to phospho-tyrosine recognition, the 

protein tyrosine phosphatase from Yersinia enterocolitica (YOP) was 

employed. Pretreatment with YOP abolished both the basal and EGF-induced 

FRET (Figure 3.3A and 3.3B). This suggests that FRET between F4-Cy3b and 

FB2-Cy5 in the basal state is not be due to the direct auto-activation of the 

EGFR receptor (AG 1478 sensitive), but is probably mediated by hetero- 

dimerisation with other activated epidermal growth factor receptors or by other 

receptor-associated proteins, which are not inhibited by AG 1478. The 

observed ligand-induced FRET, the inhibitor dependent reduction of FRET 

and the defined plasma membrane response, coupled with the specificity of the 

F4 monoclonal antibody, establishes the use of the F4-FB2 antibody pair to 

monitor EGFR expression (F4 immuno-reaction) and EGFR activation (F4- 

FB2 co-incident immunorecognition).
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A
Effects of YOP on FRET in A431 cells
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Phase (ns)

B
A431 cells 
Conditions (n=10)

Phase
lifetime (ns)

Modulation 
lifetime (ns)

Average
lifetime
(ns)

Average
FRET
efficiency

F4-Cy3b 2 . 0 2  ± 0.026 2.06 ± 0 . 0 1 1 2.04 ± 0.02 0 . 0 0  ± 0 . 0 0

EGF+F4-Cy3b 2.06 ±0.031 2.04 ±0.037 2.05 ± 0.01 0 . 0 0  ± 0 . 0 0

F4-Cy3b+FB2-Cy5 1.93 ±0.055 1.95 ±0.062 1.94 ±0.04 5.03 ±2.27
EGF+F4-
Cy3b+FB2-Cy5

1.79 ± 0.047 1.90 ±0.062 1.85 ±0.03 9.64 ± 1.53

Y OP+F4- 
Cy3b+FB2-Cy5

2.08 ± 0.081 2.02 ± 0.052 2.05 ± 0.02 0.00 ±0.74

YOP+EGF+F4-
Cy3b+FB2-Cy5

2.07 ± 0.087 1.99 ±0.069 2.03 ± 0.03 0.00 ±1.64

Figure 3.3: Treatment with protein tyrosine phosphatase from Yersinia 
enterocolitica (YOP) diminishes both the basal and EGF induced EGFR 
phosphorylation in A431 cells. A, The 2-D histogram of phase and modula­
tion lifetimes of F4-Cy3b in A431 cells after the cells were treated with different 
conditions as illustrated. The diagram shows that YOP reverses the lifetime 
changes of F4-Cy3b in the presence of the acceptor FB2-Cy5 (with or without 
EGF stimulation) to that of control F4-Cy3b. B, The changes in EGFR phos­
phorylation indicated by FRET efficiency and lifetimes of F4-Cy3b 
(representing the data in Figure 3.3A are shown in the table.
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3.2.1.1 A ssessm ent of EGFR phosphory-lation
in the  MDMAB-231 b reast cell line

Since A431 cell line over-expresses EGFR it may not be representative of 

other cell lines which have less EGFR receptors. It was decided to assess 

EGFR phosphorylation by FRET in the breast cell line MDAMB-231 cells 

which have around 70000 EGF binding sites per cell (Davidson et al., 1987) 

compared to greater than a million EGF binding sites in that of A431 cells. The 

2-D histogram of phase and modulation lifetimes of F4-Cy3b in MDAMB-231 

cells shows that the lifetimes of F4-Cy3b alone do not change in the presence 

of growth factor EGF (Figure 3.4A). However, the lifetimes decrease (diagonal 

decrease) in the presence of acceptor (FB2-Cy5) even without EGF. The 

lifetimes decrease further in the presence of EGF but with AG 1478 at 1.5 pM 

and 3 |iM the lifetimes of Cy3b return to basal level. The values of the 

lifetimes and FRET efficiency are illustrated in Figure 3.4B. The results are 

similar to those seen in A431 cells although the basal and EGF induced 

phosphorylation as indicated by FRET efficiencies are slightly less than A431 

cells which have higher levels of EGFR. The experiments indicate that FRET 

to assess EGFR phosphorylation state may be applied in various cell lines with 

different amounts of EGFR.
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A
L ife tim es o f F4-C y3b in MDAMB-231 ce lls
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1.60 1.70

B
MDAMB 231 
Conditions (n=5)

Phase
lifetime (ns)

Modulation 
lifetime (ns)

Average 
lifetime (ns)

Average
FRET
efficiency

F4-Cy3b 1.48 ± 0 .0 4 1.67 ± 0 .0 2 1.57 ± 0 .03 0.00 ±  0.00
EGF+F4-Cy3b 1.51 ± 0 .0 6 1.69 ± 0 .0 5 1.60 ± 0 .0 4 0.00 ± 2.00
F4-Cy3b+FB2-Cy5 1.46 ± 0 .0 4 1.61 ± 0 .03 1.54 ± 0 .03 2.35 ± 1.75
EG F+F4-
Cy3b+FB2-Cy5

1.39 ± 0 .05 1.54 ± 0 .0 6 1.46 ± 0 .0 5 6.91 ± 3 .3 7

AG 1.5 2 hours 1.46 ± 0 .03 1.61 ± 0 .0 5 1.53 ± 0 .03 2.51 ± 3 .0 5
AG 3 2 hours 1.42 ± 0 .0 7 1.64 ± 0 .0 7 1.53 ± 0 .0 6 2.88 ± 4 .81

Figure 3.4: AG 1478 diminishes EGF induced EGFR phosphorylation in 
MDAMB-231 cells. A, The 2-D histogram of phase and modulation lifetimes of 
F4-Cy3b in MDAMB-231 cells after the cells were treated with different conditions 
as illustrated and incubated with either donor alone F4-Cy3b or donor and accep­
tor (F4-Cy3b+FB2-Cy5) to assess EGFR phosphorylation. B, The changes in 
EGFR phosphorylation indicated by FRET efficiency and lifetimes of F4-Cy3b 
(representing the data in Figure 3.4A) are shown in the table.
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3.2.1.2 Optimising the  use of F4-Cy3b in A431 
cells

A serial dilution of donor F4-Cy3b was performed in A431 cells to assess its 

dynamic range. This control experiment aimed to establish the optimum 

concentration of donor F4-Cy3b relative to the acceptor FB2-Cy5 to assess 

EGFR phosphorylation state by FRET. F4-Cy3b was diluted by factors of 1/5, 

1/10 and 1/50 while the concentration of acceptor FB2-Cy5 remained constant. 

Table 3.2A shows the individual components of lifetimes (phase and 

modulation) as well as average lifetimes of donor F4-Cy3b with or without 

acceptor in a serial dilution. Table 3.2B shows the calculated FRET 

efficiencies based on the average lifetimes of donor alone and donor and 

acceptor (see Methods Section 2.2.11). The results were also represented by 2- 

D diagrams of phase and modulation lifetimes of F4-Cy3b shown in Figure 

3.5A-C.

114



A
Dilution factor 
of F4-Cy3b

Conditions Phase
lifetime (ns)

Modulation 
lifetime (ns)

Average 
lifetime (ns)

1/5 F4-Cy3b 1.52 ns ± 
0 . 0 2

1.43 ns ± 
0.08

1.48 ns ± 
0.04

1/5 EGF + F4-Cy3b 1.54 ns ± 
0 . 0 2

1.48 ns ± 
0 . 0 2

1.51 ns ± 
0 . 0 2

1/5 F4-Cy3b + 
FB2-Cy5

1.38 ns ± 
0.04

1.37 ns ± 
0.03

1.38 ns ± 
0.03

1/5 EGF 50 ng/ml 1.16 ns ± 
0.04

1.25 ns ± 
0.04

1 . 2 0  ns ± 
0.04

1 / 1 0 F4-Cy3b 1.59 ns ± 
0.03

1.46 ns ± 
0.06

1.52 ns ± 
0.04

1 / 1 0 EGF+F4-Cy3b 1.41 ns ± 
0.03

1.41 ns ± 
0 . 0 2

1.41 ns ± 
0 . 0 2

1 / 1 0 F4-Cy3b + 
FB2-Cy5

1 . 2 2  ns ± 
0 . 0 2

1.26 ns ± 
0.04

1.24 ns± 
0.03

1 / 1 0 EGF 50 ng/ml 1 . 0 1  ns ± 
0 . 0 2

1.13 ns ± 
0.04

1.07 ns ± 
0.03

1/50 F4-Cy3b 1.42 ns ± 
0.03

1.49 ns ± 
0.03

1.46 ns ± 
0.03

1/50 EGF + F4-Cy3b 1.43 ns ± 
0 . 0 1

1.41 ns ± 
0.08

1.42 ns± 
0.03

1/50 F4-Cy3b + 
FB2-Cy5

1.14 ns ± 
0 . 0 2

1.25 ns ± 
0.04

1.19 ns± 
0.03

1/50 EGF 50 ng/ml 0.95 ns ± 
0.04

1.14 ns ± 
0.08

1.04 ns ± 
0.06

B
F4-Cy3b Dilution Factor Basal EGFR 

phosphorylation (FRET 
efficiency)

EGF-induced EGFR 
phosphorylation (FRET 
efficiency)

1/5 6 .8 % ± 2.03 18.9% ± 2.7
1 / 1 0 18.4% ± 1.97 29.6% ± 1.97
1/50 18.5% ±2.05 28.8% ±4.11

Table 3.2: A, The average lifetimes of F4-Cy3b (± standard deviations from 
three measurements) in A431 cells with different dilution factors of F4-Cy3b. B, 
The changes in EGFR phosphorylation indicated by FRET efficiency (± standard 
deviations from three measurements) with different dilution factors of F4-Cy3b.
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Figure 3.5: The effect of different dilution factors of F4-Cy3b on the 
lifetimes of F4-Cy3b shown by 2-D histogram. A, Dilution factor of F4- 
Cy3b 1/5. B, Dilution factor of F4-Cy3b 1/10. C, Dilution factor of F4-Cy3b
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The intensities of F4-Cy3b were observed to be greater than the arbitrary 

value of 1000 for all dilutions (see Methods Section 2.2.11.2). This meant that 

there was adequate amount of F4-Cy3b binding to EGFR proteins and high 

enough signal-to-noise ratios to calculate the lifetimes of F4-Cy3b in A431 

cells even with a dilution factor of 1/50. The results also showed that EGFR 

phosphorylation induced by EGF may be assessed by FRET in all dilutions up 

to 1/50 (Table 3.2A and Figure 3.5). At a dilution factor of 1/5, the basal FRET 

efficiency was 6 .8 % ± 2.03 and EGF-induced FRET efficiency of 19.8% ± 

2.70 (Table 3.2B), similar to the results of non-diluted donor F4-Cy3b, basal 

FRET efficiency of 7.79% ± 0.51 and EGF-induced FRET efficiency of 

15.11% ± 2.70 (Table 3.1 A). When the donor F4-Cy3b was diluted to 1/10 and 

1/50 concentrations, the basal FRET efficiencies were increased significantly 

compared to the results of dilution factor of 1/5 of donor F4-Cy3b (Table 3.2B 

and Figure 3.5). This is because the dilution of donor F4-Cy3b resulted in 

more acceptors FB2-Cy5 per donor F4-Cy3b and thus increased the quenching 

of the donor F4-Cy3 by the acceptor FB2-Cy5. This caused depopulation of 

the donor excited state and hence lowering the lifetime of F4-Cy3b. The basal 

FRET efficiencies were not due to non-specific FRET since EGF stimulation 

increased FRET efficiencies by about 10% in all dilutions (Table 3.2B and 

Figure 3.5) and previously it was shown that YOP phosphatase was able to 

remove basal FRET.

Altogether the results showed that donor F4-Cy3b may be diluted to a factor 

of 1/50 without affecting the ability for the assay to assess EGF induced 

phosphorylation state. The dilution of donor F4-Cy3b resulted in an increase in 

the basal FRET efficiency due to quenching of the donors by excess acceptors. 

The control experiment emphasises the importance of having internal controls 

for each experiment since the basal FRET values may differ with different 

dilution factors of donor F4-Cy3b. Therefore, in order to compare the 

difference of EGFR phosphorylation by FRET for example between two 

different cell lines, the concentration of donor F4-Cy3b needs to be the same in 

both cases for the results to be valid and comparable.
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3.2.1.3 A serial dilution of acceptor FB2-Cy5
concentration in A431 cells

A serial dilution of acceptor FB2-Cy5 concentration was also performed in 

A431 cells to establish the optimum concentration of acceptor FB2-Cy5 

relative to donor F4-Cy3b to assess EGFR phosphorylation by FRET. Table 

3.3A shows the lifetimes of donor F4-Cy3b and Table 3.3B shows the basal 

and EGF induced FRET efficiencies with different dilution factors of FB2- 

Cy5. The results show that as the concentration of acceptor FB2-Cy5 

decreased, the amount of basal FRET efficiency decreased (Table 3.3B). 

However, EGF stimulation induced further FRET (Table 3.3B) indicating that 

the assay may be used to assess EGF induced EGFR phosphorylation. The 

decrease of basal FRET efficiency was due to less acceptors FB2-Cy5 per 

donor F4-Cy3b, resulting in the decreased quenching of the donor F4-Cy3b 

and increase of donor lifetime. This control experiment again emphasises the 

importance of using internal control for each experiment and the acceptor 

concentration needs to be maintained constant to compare FRET efficiencies 

(e.g. between two cell lines).
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A
Conditions FB2 dilution 

factor
Phase lifetime 
(ns)

Modulation 
lifetime (ns)

Average 
lifetime (ns)

F4-Cy3b NA 2 . 1 2  ns ± 0 . 0 2 2 . 2 2  ns ± 
0.06

2.17 ns ± 
0 . 0 2

EGF + F4-Cy3b NA 2.16 ns ±0.09 2 . 2 2  ns ± 
0 . 0 2

2.19 ns ± 
0.06

F4-Cy3b + 
FB2-Cy5

1 / 1 1.84 ns ± 0.04 2.06 ns ± 
0.08

1.95 ns ± 
0.06

EGF 50 ng/ml 1 / 1 1.57 ns ± 0.02 1.95 ns± 
0 . 0 2

1.76 ns ± 
0 . 0 1

F4-Cy3b + 
FB2-Cy5

1/5 1.87 ns±0.02 2 . 1 2  ns ± 
0.03

2 . 0 0  ns ± 
0 . 0 1

EGF 50 ng/ml 1/5 1.77 ns ±0.02 2.09 ns ± 
0.05

1.93 ns ± 
0.03

F4-Cy3b + 
FB2-Cy5

1 / 1 0 1.92 ns ± 0.01 2.14 ns ± 
0.04

2.03 ns ± 
0 . 0 2

EGF 50 ng/ml 1 / 1 0 1 . 6 8  ns ± 0.06 2.05 ns ± 
0.08

1.87 ns± 
0.07

F4-Cy3b + 
FB2-Cy5

1 / 2 0 1.92 ns ± 0.03 2.13 ns ± 
0.07

2.03 ns ± 
0 . 0 2

EGF 50 ng/ml 1 / 2 0 1.74 ns ±0.04 2.08 ns ± 
0.05

1.91 ns ± 
0.04

F4-Cy3b + 
FB2-Cy5

1/40 1.93 ns ± 0.02 2.14 ns ± 
0.04

2.04 ns ± 
0 . 0 2

EGF 50 ng/ml 1/40 1.85 ns±0.04 2 . 1 2  ns ± 
0 . 1 0

1.98 ns± 
0.07

B
FB2-Cy5 Dilution Factor Basal EGFR 

phosphorylation (FRET 
efficiency)

EGF-induced EGFR 
phosphorylation (FRET 
efficiency)

1 / 1 1 0 .1 % ± 2 . 8 18.9% ±0.5
1/5 7.8% ±0.5 11.1% ±1.4
1 / 1 0 6.5% ±0.9 13.8% ±2.8
1 / 2 0 7.3% ±0.9 1 2 .0 % ± 1 . 8

1/40 6.0% ±0.9 8 . 8  % ± 2 . 8

Table 3.3: A, The average lifetimes of F4-Cy3b (± standard deviations from 
three measurements) in A431 cells with different dilution factors of FB2-Cy5. B, 
The changes in EGFR phosphorylation indicated by FRET efficiency (± stan­
dard deviations from three measurements) with different dilution factors of 
FB2-Cy5
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3.2.1.4 The effect of prolonged Incubation 
periods of acceptor FB2-Cy5 in A431 cells

The effect of incubation periods of acceptor FB2-Cy5 in A431 cells was also 

assessed to obtain an optimum incubation period of acceptor FB2-Cy5 and to 

investigate the effect of prolonged incubation with FB2-Cy5 on FRET 

efficiencies in A431 cells. Table 3.4A shows the lifetimes (phase, modulation 

and average) and Table 3.4B shows the FRET efficiencies of F4-Cy3b when 

the cells were incubated with different periods of acceptor FB2-Cy5. As the 

incubation periods were gradually prolonged, the basal and EGF induced 

FRET efficiencies increased (Table 3.4B). The results showed that for 

incubations between two and four hours the basal and EGF-induced FRET 

efficiencies were relatively constant. The main significant increase of both 

basal and EGF-induced FRET efficiencies occurred after 8 hours of acceptor 

incubation. Prolonged acceptor incubation increases quenching of the donor, 

resulting in a significant decrease of lifetime but non-specific FRET due to 

non-specific binding as a result of prolonged acceptor incubation cannot be 

excluded. The results show that the optimum incubation period of acceptor 

FB2-Cy5 is between 2-4 hours.
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A
Conditions FB2

incubation
period

Phase
lifetime (ns)

Modulation 
lifetime (ns)

Average 
lifetime (ns)

F4-Cy3b NA 2.12 ns ± 
0.02

2.22 ns ± 
0.06

2.17 ns ± 
0.02

EGF + F4- 
Cy3b

NA 2.16 ns ± 
0.09

2.22 ns ± 
0.02

2.19 ns± 
0.06

F4-Cy3b + 
FB2-Cy5

1 hr 1.87 ns ± 
0.01

2.15 ns± 
0.05

2.01 ns ± 
0.03

EGF 50 ng/ml 1 hr 1.54 ns ± 
0.03

2.11 ns ± 
0.06

1.83 ns ± 
0.04

F4-Cy3b + 
FB2-Cy5

2 hrs 1.72 ns ± 
0.05

2.06 ns ± 
0.04

1.89 ns ± 
0.03

EGF 50 ng/ml 2 hrs 1.59 ns ± 
0.01

2.02 ns ± 
0.02

1.80 ns ± 
0.02

F4-Cy3b + 
FB2-Cy5

4 hrs 1.76 ns ± 
0.06

2.09 ns ± 
0.02

1.92 ns ± 
0.01

EGF 50 ng/ml 4 hrs 1.54 ns ± 
0.04

1.95 ns ± 
0.06

1.75 ns ± 
0.05

F4-Cy3b + 
FB2-Cy5

8 hrs 1.75 ns ± 
0.08

2.00 ns ± 
0.01

1.88 ns ± 
0.04

EGF 50 ng/ml 8 hrs 1.35 ns ± 
0.06

1.88 ns ± 
0.06

1.62 ns ± 
0.02

F4-Cy3b + 
FB2-Cy5

18 hrs 1.52 ns ± 
0.04

1.86 ns ± 
0.06

1.69 ns ± 
0.05

EGF 50 ng/ml 18 hrs 1.18 ns ± 
0.07

1.67 ns ± 
0.04

1.43 ns ± 
0.04

F4-Cy3b + 
FB2-Cy5

28 hrs 1.26 ns ± 
0.01

1.79 ns ± 
0.04

1.53 ns ± 
0.02

EGF 50 ng/ml 28 hrs 1.09 ns ± 
0.04

1.58 ns ± 
0.03

1.34 ns ± 
0.02

B
FB2-Cy5
Incubation periods

Basal EGFR 
phosphorylation 
(FRET efficiency)

EGF-induced EGFR 
phosphorylation (FRET 
efficiency)

1 hour 7.4 % ± 1.4 15.7% ± 1.8
2 hours 12.9% ± 1.4 17.1% ±0.9
4 hours 11.5% ±0.5 19.4% ±2.3
8 hours 13.4% ± 1.8 25.3% ±0.9
18 hours 22.1% ±2.3 34.1% ± 1.8
28 hours 29.5% ±0.9 38.2% ±0.9

Table 3.4: A, The average lifetimes of F4-Cy3b (± standard deviations from 
three measurements) in A431 cells with different incubation periods of FB2-Cy5. 
B, The changes in EGFR phosphorylation indicated by FRET efficiency with 
different incubation periods of FB2-Cy5 in A431 cells.
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3.2.1.5 Assessing the minimum exogenous EGF 
concentration in inducing FRET

In the section 3.2.1, it was demonstrated that FRET efficiency was increased 

by exogenous EGF stimulation due to enhanced EGFR phosphorylation, 

indicating that FRET may be used to assess EGFR phosphorylation. It was 

intended to assess whether a decrease in the exogenous EGF dose would result 

in a decrease of FRET efficiency due to inadequate EGFR phosphorylation. 

This control experiment was important as it would prove that EGF-induced 

FRET was specific and indicative of EGFR phosphorylation if a decrease in 

EGF dose also resulted in the loss of EGF-enhanced FRET.

Table 3.5A shows the lifetimes (phase, modulation and average components) 

and Table 3.5B shows the FRET efficiencies with difference doses of 

exogenous EGF stimulation in A431 cells. The results show that as the 

exogenous EGF dose was decreased below 30 ng/ml, the dose became 

ineffective such that EGF did not induce further FRET compared to basal level 

(Table 3.5B). EGF concentration was calculated in nanomolar (nM) unit and 

the relationship between EGF concentration and FRET was plotted in a graph; 

it was shown that EGF induced FRET (EGFR phosphorylation) was saturated 

at an EGF concentration between 2.5 nM and 5nM (Table 3.5B).
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A
Conditions Phase lifetime 

(ns)
Modulation 
lifetime (ns)

Average 
lifetime (ns)

F4-Cy3b 2.12 ns ±0.02 2.22 ns ± 0.06 2.17 ns ±0.02
EGF+F4-Cy3b 2.16 ns ±0.09 2.22 ns ± 0.02 2.19 ns ±0.06
F4-Cy3b
+FB2-Cy5

1.86 ns ± 0.01 2.03 ns ± 0.07 1.95 ns ±0.05

EGF 50 ng/ml 1.57 ns ±0.02 1.95 ns ± 0.02 1.76 ns ± 0.01
EGF 30 ng/ml 1.62 ns ±0.03 2.00 ns ± 0.03 1.81 ns ± 0.02
EGF 10 ng/ml 1.77 ns ± 0.06 2.04 ns ± 0.06 1.91 ns ± 0.06
EGF 1 ng/ml 1.87 ns ± 0.05 2.11 ns ± 0.06 1.99 ns ± 0.05
EGF 0.1 ng/ml 1.80 ns ±0.01 2.08 ns ± 0.04 1.94 ns ± 0.02

B
EGF concentration EGF-induced EGFR phosphorylation 

(FRET efficiency)
No EGF (basal) 8.0% ±2.3
EGF 50 ng/ml 15.5% ±0.5
EGF 30 ng/ml 15.5% ±0.9
EGF 10 ng/ml 8.5% ±2.8
EGF 1 ng/ml 4.5% ±2.3
EGF 0.1 ng/ml 6.7% ± 0.9

>, 20-joc«
& 15' 4>
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10-
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3.2.2 The activation-state of EGFR in 
head and neck tumours

The series of control experiments established the optimum conditions to 

assess EGFR phosphorylation by FRET. Furthermore, they illustrated the 

importance of strict internal controls and constant conditions of the donor and 

the acceptor for the experiments to obtain meaningful results. The aim was to 

apply the optimised FRET assay in cells to assess EGFR phosphorylation of 

tumour cores in paraffin sections of tumour arrays in a high throughput manner 

by automated FLIM.

The established two-site FRET assay was applied to determine the pattern of 

EGFR phosphorylation in a series of HNSCC. An archive of head and neck 

tumour samples from 130 patients embedded in paraffin blocks were converted 

into three arrays (Figure 3.6). The arrays contained 286 tumour cores (a 

duplicate of a tumour core from each patient) and several cores comprised 

normal tonsil tissue as negative controls. These arrays were prepared for FRET 

experiments using the parameters established in A431 cells.

A duplicate of each array was also prepared. One array was labelled with 

donor alone (F4-Cy3b) and the other with donor and acceptor (F4-Cy3b + 

FB2-Cy5). For each tumour core a pair of average lifetimes was obtained, one 

from the array with donor alone and one from the array that was labelled with 

donor and acceptor (Figure 3.7). Comparing the two arrays, average FRET 

efficiency was calculated for each tumour core (See Methods Section 

2.2.11.6). Therefore average FRET efficiency was utilised as the main 

parameter to correlate with the clinical data (Figure 3.8). The survival data of 

130 head and neck cancer patients were compared with average FRET 

efficiency. The average FRET efficiencies of the normal tonsil tissue samples 

were used as controls, th e  values of the negative controls ranged from 0% to 

8.90% with a median average FRET efficiency of 4.86%. For the tumours, the 

average FRET efficiencies ranged from 0% to 14.70% and the median was 

4.13%. The patients were ranked according to their average FRET efficiency
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and the groups split for comparison into (i) upper median versus lower median, 

(ii) upper tertile versus lower two tertiles, and (iii) upper 10% versus lower 

90% range of average FRET efficiency. The Kaplan Meier method was used to 

compare the survival curves between the groups of patients and log-rank test 

utilised to calculate the hazard ratios (see method). It was found that higher 

FRET efficiency was correlated with worse DFS and it was statistically 

significant in the groups split by upper tertile and upper 10% but not the 

median. Comparing the patients in the lower two tertiles with the upper tertile, 

the log-rank test revealed a hazard ratio of 0.57 (95% Cl 0.29 to 0.99, p=0.05) 

(Figure 3.8A). Patients in the lower 90% range of average FRET efficiency 

had a hazard ratio of 0.43 (95% Cl 0.09 to 0.89, p=0.03) compared with the 

patients in the upper 10% range (Figure 3.8B). However, there was no 

statistical significance in overall survival between the upper tertile and lower 

two tertile groups (hazard ratio for lower two tertile = 0.91, 95% Cl 0.48 to 

1.72, p=0.76) (Figure 3.8C).

To ensure inter-assay validity, the above experiments were repeated in a new 

set of six tumour arrays, which contained tumour cores from the same patients. 

New preparations of conjugated antibodies were used and average FRET 

efficiencies were calculated from each tumour core using automated high 

throughput FLIM. The automated system was programmed to perform 

multiple loops and two loops were performed for each array (See Methods). 

Thus, two measurements were acquired for each process (574 measurements 

were acquired). The Kaplan Meier survival curves were used to compare 

between the patients in the upper 10% FRET efficiency and lower 90% 

efficiency and the log-rank test was used to compare the hazard ratio. The 

results were similar to the initial study in that the patients in the lower 90% 

range of average FRET efficiency had a better DFS compared with the upper 

10% range (hazard ratio for lower 90% range = 0.38, 95% Cl 0.075 to 0.69, 

p=0.001) (Figure 3.8D). From these FRET efficiency studies it was deduced 

that phosphorylation of EGFR assessed by high throughput FLIM correlates 

with DFS. The study illustrated that there was a prominent correlation between 

EGFR activation and DFS.
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Figure 3.6: Head and neck tissue micro-array (TMA). The left 
panel shows a diagrammatic representation of a standard Oxford 8x15 
TMA. The right panel shows an example of a tumour core with conven­
tional EGFR immunostaining of F4 antibody (monoclonal against EGFR 
cytoplasmic domain, which is the same monoclonal antibody used in 
FRET experiments).
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P atien t 1
Intensity Lifetime map

F4-Cy3b+FB2-Cy5

P atien t 2

F4-Cy3b+FB2-Cy5

FRET efficiency: E(%) 

E = [ 1 - ( ^ L  )] x  100%

Figure 3.7: EGFR phosphorylation can be mapped by variations in FRET 
in Head and Neck tumour cores. The left panels show the intensity images of 
tumour cores from the array. The right panels are lifetime maps of the cores. The 
upper tumour core of patient 1 was from an array labelled with donor alone (F4- 
Cy3b). The average donor lifetime of the tumour core was 2.00 ns.The donor and 
acceptor (F4-Cy3b+FB2-Cy5) core was from a duplicate array. There was no change 
in the lifetime with a FRET efficiency of 0%. The second set of donor and acceptor 
cores from patient 2 indicates a further decrease of the average lifetime (2.20 ns to 
1.90 ns) with a FRET efficiency of 11%. The decrease in donor lifetime induced by 
FRET is used to calculate the FRET efficiency.
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Figure 3.8: Kaplan-Meier curves using average FRET efficiency as a prognostic marker illustrate that FRET effi­
ciency is correlated with disease free survival. A, Pilot study: Disease-free survival (DFS) between patients in upper tertile 
versus the lower two tertiles of average FRET efficiency. B, Pilot study: DFS between patients in upper 10% versus lower 90% of 
average FRET efficiency. C, Pilot study: OS between patients in upper 10% versus lower 90% of average FRET efficiency between 
patients in upper tertile versus the lower two tertiles of average FRET efficiency. D, Validation study: DFS curves comparing the 
upper 10% range with the lower 90% of average FRET efficiency.



3.2.3 Conventional IHC does not reveal a 
correlation of EGFR over-expression with 
disease free survival and overall survival

Previously, IHC analysis of EGFR expression has been shown to correlate 

with survival, particularly disease free survival (DFS) and hence was 

considered useful in predicting disease recurrence (Ang et al., 2002; 

Dassonville et al., 1993). To assess whether in this patient cohort conventional 

IHC revealed a correlation between levels of EGFR expression and survival 

data, the same tumours from the head and neck cancer patients were labelled 

with the F4 antibody using conventional IHC methods although only 122 

patients’ IHC scores were obtainable due to inadequate tumour sample or loss 

of tumour sample from the array slide.

Table 3.6A shows the characteristics of patients according to the subsites of 

head and neck tumours and 3.6B shows the tumour characteristics according to 

IHC EGFR scores. The majority of the tumours were of UICC tumour stage 3 

and 4 and moderate to poor grade. 57 of the 122 patients (47%) have over­

expression of EGFR scored either 2+ or 3+ with only 17 of the 122 patients 

(14%) scored at 3+. As described previously, the same statistical tests were 

used to determine the correlation between DFS, OS and EGFR expression. 

Figures 3.9A and 3.9B show that EGFR over-expression (scores 2+ and 3+) by 

IHC was not correlated with DFS or OS. Kaplan-Meier curves show that there 

was no correlation of EGFR over-expression (2-3+) and DFS [(hazard ratio for 

EGFR (0-1+) = 0.89, 95% Cl 0.5 to 1.6, p=0.67)] or EGFR over-expression (2- 

3+) and OS [(hazard ratio for EGFR (0-1+) =0.64, at 95% Cl 0.35 to 1.05, 

p=0.74)]. The statistical results showed that in this retrospective study, 

conventional IHC did not reveal a correlation with DFS and therefore was not 

informative as a single parameter to predict disease recurrence.
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A

Anatomical sites Male Female Median age
Oral cavity (n=38) 19 19 64.5
Oropharynx (n=42) 29 13 53.5
Hypopharynx (n=18) 13 5 64.3
Larynx (n=23) 21 2 62.4
Others (n=l) 1 0 70.1
Total (n=122) 83(68%) 39 (32%) 58.5

B
EGFR Score 0 (n=36) 1+ (n=29) 2+ (n=40) 3+ (n=17) Total =122

Humour Stage
I 3 0 5 1 9 (7%)
II 6 5 5 2 18(15%)
III 11 6 9 0 26 (21%)
IV 16 18 21 14 69 (57%)

Grade
Well 2 4 2 0 8 (7%)
Moderate 17 10 19 8 54(44%)
Poor 17 15 19 9 60 (49%)

Table 3.6: A, T h e ch a rac te ris tic s  o f p a tie n ts  a c c o rd in g  to  s u b s ite s  o f  h e a d  a n d  
n eck  tu m o u rs . B, T h e ch a rac te ris tic s  o f  tu m o u rs  in re la tio n  to  im m u n o h is to c h e m - 
istry  s ta in s.
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Figure 3.9: EGFR concentration does not reveal a correlation with 
disease free survival or overall survival. Kaplan-Meier curves were used to 
compare the disease-free survival (A) and overall survival (B) between EGFR (0-1+) 
and EGFR (2-3+).
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3.2.4 EGFR concentration does not 
correlate with its phosphorylation status

To address whether EGFR expression itself was correlated with its activation, 

average donor fluorescence intensity measurements (i.e. F4 immunoreactivity) 

were compared to average FRET efficiency. It is important to note that average 

fluorescence intensity measurements of F4-Cy3b were related to the amount of 

receptor in each tumour core (see Methods Section 2.2.11.6). To test the 

correlation between EGFR expression and its activation (phosphorylation) the 

linear regression was calculated between the average fluorescence intensity 

and average FRET efficiency. The analysis showed that there was no linear 

relationship between the two parameters [(r2 = 0) (Figure 3.10A)]. These 

studies illustrated that there was minimal correlation between EGFR 

expression and its phosphorylation. To address whether EGFR 

phosphorylation calculated from the average FRET efficiency was correlated 

with EGFR expression by IHC, the Mann-Witney test was utilised. Figures 

3.1 OB illustrates that there was no correlation between IHC EGFR scoring and 

average FRET efficiency (p= 0.24).
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Fig. 3.10: EGFR concentration does not correlate with EGFR phos­
phorylation. A, The linear regression shows no correlation between donor 
intensity Cy3b and average FRET efficiency (r2=0). In these studies expres­
sion of EGFR is not correlated with its phosphorylation state. B, Mann- 
Witney test illustrates that there is no correlation between average FRET 
efficiency and EGFR immunochemistry scoring (log-rank test p=0.24).
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3.2.5 Determination of the prognostic 
value of average FRET efficiency

The results from Section 3.2.2 showed that patients with high FRET 

efficiency specifically those in the top 10% had a poorer DFS. To assess 

whether the top 10% may be used as a prognostic factor, the prognostic value 

of the top 10% FRET efficiency was determined by analysis of the DFS and 

OS using univariate and multivariate analysis (see Methods Section 2.2.11.6). 

Table 3.7A shows the prognostic value of top 10% FRET efficiency in 

comparison with IHC using univariate analysis. In this study, the top 10% 

FRET efficiency was a significant parameter (p= 0.04) for DFS but not OS (p= 

0.35) and over-expression of EGFR (2-3+) by IHC was not a significant 

parameter for either DFS or OS. Table 3.7B shows the prognostic value of the 

top 10% FRET efficiency for DFS and OS with UICC tumour stage and grade 

as covariates. The most significant parameter for DFS was top 10% FRET 

efficiency (p= 0.03) and none of the other parameters were significant for OS 

by multivariate analysis. Further analysis including age and sex as covariates 

in addition to UICC tumour stage and grade showed again that top 10% FRET 

efficiency was the only significant parameter for DFS (p= 0.013) (Table 3.7C). 

To confirm that the FRET efficiency is an independent parameter, Mann- 

Witney tests were used to test the association of average FRET efficiency with 

other known prognostic factors. It was shown that average FRET efficiency 

was not associated with grade or UICC (International Union Against Cancer) 

tumour stage (Figure 3.11A and 3.1 IB).
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A
Univariate analysis Statistical significance value p

Disease-free survival
EGFR (2-3+) by IHC (n= 122) 0.71
Top 10% FRET efficiency (n= 130) 0.04

Overall Survival
EGFR (2-3+) by IHC (n=122) 0.08
Top 10% FRET efficiency (n=130) 0.35

B
M ultivariate analysis Statistical significance value p
Disease-free Survival (n =130)

Top 10% FRET efficiency 0.029
UICC stage 2 0.960
UICC stage 3 0.610
UICC stage 4 0.860
Grade (Linear) 0.190
Grade (Quadratic) 0.970

Overall survival (n=130)
Top 10% FRET efficiency 0.32
UICC stage 2 0.60
UICC stage 3 0.73
UICC stage 4 0.45
Grade (Linear) 0.84
Grade (Quadratic) 0.36

C
Multivariate analysis Statistical significance value p
Disease-free Survival (n =130)

Top 10% FRET efficiency 0.013
UICC stage 2 0.960
UICC stage 3 0.580
UICC stage 4 0.830
Grade (Linear) 0.260
Grade (Quadratic) 0.970
Age 0.240
Sex 0.510

Table 3.7: A, Prognostic value of the top 10% FRET efficiency by univariate 
analysis as compared to conventional IHC. B, Prognostic value of top 10% 
FRET efficiency by multivariate analysis with UICC tumour stage and grade as 
covariates. C, Prognostic Value of Top 10% FRET efficiency for DFS by multi­
variate analysis with UICC stage, grade, age and sex as covariates.
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3.3 Discussion

In this study a FRET assay was tested and established to report the 

phosphorylation of EGFR in cell lines and paraffin-embedded tumour arrays. 

The assay was first established in cell lines including A431 and MDAMB-231 

cells. A series of control experiments were also performed to obtain optimum 

conditions for the FRET assay as well as to establish the assay to assess EGFR 

phosphorylation. The control experiments illustrated the importance of 

maintaining internal controls, constant donor and acceptor concentrations as 

well as incubation periods of the assay to compare a difference in EGFR 

phosphorylation either between cell lines or tumour cores by FRET. The assay 

is designed to provide a two-site assay for phosphorylation of the EGFR using 

coincidence detection of protein and phospho-site selective monoclonal 

antibodies, which increases the specificity of the assay. This is of particular 

importance in the context of tissue microarrays where there is no opportunity 

to test the validity of the immunoreactions observed. This assay has been 

developed for automated data capture in a format appropriate for tissue 

microarray analysis and was applied to HNSCC tumour arrays to determine the 

relationship between EGFR phosphorylation and prognosis. The study reveals 

10% of patients with a high degree of EGFR autophosphorylation (as 

evidenced by those with the highest FRET efficiency) have a poor DFS. 

Importantly this phosphorylation status does not correlate with EGFR 

concentration per se and this latter variable itself does not correlate with DFS. 

However, this retrospective study had a small sample size of 130 patients and 

10% of the patients represented only 13 patients and thus a type I error cannot 

not be excluded.

Several studies have shown a correlation of EGFR expression with OS and 

DFS (Ang et al., 2002; Dassonville et al., 1993; Gupta et al., 2002; Sheridan et 

al., 1997). In this retrospective study, conventional immunochemistry scores 

failed to show the correlation of EGFR expression (2-3+) with DFS and OS as 

in other prospective studies. This may be due to a small sample size in this 

retrospective study. But using high throughput FLIM, FRET efficiency was



shown to correlate with DFS in the same group of patients. It is proposed that 

future IHC experiments may include only those tumours with 3+ expression 

(i.e. excluding 2+ expression) in the EGFR over-expression group to assess the 

prognostic value.

The pilot study showed a statistically significant result in the upper tertile 

range of average FRET efficiency in its correlation with DFS. However, 

further measurements and validation study only showed statistically significant 

results in the top 10% range. This means that the exact cut-off points for high 

FRET efficiency may vary between studies depend on the design of the study. 

A large prospective trial is needed to determine the cut-off point and to 

validate the FRET methods for wider clinical use (Hayes et al., 1996; Hayes et 

al., 1998).

The results presented in this chapter represent a proof of principle that the 

phosphorylation of EGFR may be assessed by FRET and that such assay may 

be applied to paraffin sections of tumour arrays to assess the prognosis of 

cancer patients. It was shown that the assay can be applied to assess EGFR 

phosphorylation in head and neck tumour arrays in a high throughput manner. 

It was therefore postulated that the assay may also be applied to assess the 

phosphorylation of other HER receptors and other signalling pathways in 

variety of cancers. The ultimate aim is for such assays to be applied to assess 

phosphorylation of HER receptors in relation to targeted therapies against 

HER receptors in patients.
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4  Activation of alternative HER 
receptors m ediates res ista n ce  to  
tyrosine k inase inhibitors (TKIs) in 
breast can cer c e lls

4.1 Introduction

The HER receptors plays a crucial role in breast cancer and many other type 

of cancers (Yarden and Sliwkowski, 2001). Recently, there has been 

accelerated use of drugs targeting EGFR and HER2 receptors in breast cancer, 

including Herceptin (Trastuzumab, a monoclonal antibody for HER2), Iressa 

(Gefitinib or ZD 1839, a tyrosine kinase inhibitor of EGFR) and Lapatinib (a 

tyrosine kinase inhibitor of EGFR and HER2) (Baselga, 2002; Piccart-Gebhart 

et al., 2005; Romond et al., 2005). As discussed in the Introduction, although 

over-expression of HER receptors has been used to select patients for these 

drugs, their expression does not necessarily correlate with the response of 

these drugs (Arteaga, 2006; Chung et al., 2005; Menendez et al., 2006). The 

underlying mechanisms contributing to the resistance as well as predicting the 

success of these drugs in cancer patients are still poorly understood.

The response rate to targeted therapies against HER family therapy depends 

on more than just the receptor concentrations or the mutations of the particular 

HER receptor (Arteaga, 2006; Chung et al., 2005; Menendez et al., 2006). It is 

likely that multiple interacting HER receptors and ligands are involved in 

mediating response to targeted therapy. For example Iressa which targets the 

EGFR receptor also inhibits the PI3K and PKB pathway via HER3 (Engelman 

et al., 2005). Moreover, Iressa is also effective in HER2 over-expressing breast 

cancer cells (Moulder et al., 2001). Therefore, the treatment to reduce the 

tyrosine kinase activity of EGFR receptors may also affect HER2 and HER3 

receptors. Therapy based on receptor concentration, ignoring the activation and
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phosphorylation state of the receptor and its interaction with other HER 

receptors will continue to yield a relatively low response rate (Arteaga, 2002; 

Kong et al., 2006). Activation of alternative HER receptors through their 

ligands may mediate resistance to targeted therapy.

Targeting HER2 has been the main focus in breast cancer although 

increasingly, inhibition of EGFR in combination with HER2 blockage is also 

seen to be important in breast cancer therapy (Baselga, 2002; Piccart-Gebhart 

et al., 2005; Romond et al., 2005). In vitro, Iressa is effective in HER2 over­

expressing breast cancer cells (Moulder et al., 2001). Moreover, EGFR 

expression had also been shown to play a role in hormone resistant breast 

cancer patients (Nicholson et al., 1989) and this has led to the use of Iressa 

with aromatase inhibitors in breast cancer (Polychronis et al., 2005). More 

recently Lapatinib that targets the tyrosine kinase activities of both EGFR and 

HER2 has been successfully used in HER2 positive patients who had 

progressed after Herceptin treatment, confirming the role of EGFR inhibition 

in breast cancer.

The purpose of this study was to assess the change in activation status of all 4 

HER receptors to EGFR tyrosine kinase inhibitors (TKIs) in breast cancer cell 

lines and their relationship to resistance towards these therapies. Firstly, the 

establishment of an assay to assess HER2 phosphorylation was performed in 

A431 cells as a test bed. Secondly, the effect of EGFR TKIs on HER2 

phosphorylation by FRET as well as its effect on the dimerisation pattern of 

other HER receptors with HER2 in breast cancer cells were investigated.

4.2 Results

4.2.1 HER2 phosphorylation sta te  
monitored by FRET

The purpose of this study was to assess the response of HER receptors in 

relation to targeted therapies against EGFR and HER2 in breast cancer cell
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lines since inhibition of EGFR together with HER2 is increasingly thought to 

be important for breast cancer as suggested by the use of the combination 

inhibitor Lapatinib (Geyer et al., 2006; Konecny et al., 2006). Having 

established the assessment of EGFR phosphorylation state by FRET in A431 

cells (Chapter 3), the method was applied to assess HER2 phosphorylation 

state in relation to targeted therapy. HER2 is not known to have its own ligand 

although it is the preferred dimerisation partner for other HER receptors 

(Graus-Porta et al., 1997). To establish an assay for HER2 phosphorylation, it 

was necessary to demonstrate HER2 phosphorylation via other HER receptors. 

A431 cells was chosen as a test bed because of their extensive prior use for the 

analysis of EGFR and other HER receptors.

To assess HER2 phosphorylation, an anti-HER2 antibody was conjugated to a 

Cy3b chromophore (HER2-Cy3b) and an anti-phosphoHER2 antibody to Cy5 

(pHER2-Cy5). It was hypothesized that upon HER2 phosphorylation, there 

would be coincident binding of HER2-Cy3b and pHER2-Cy5 inducing Forster 

resonance energy transfer (FRET). The specific quenching of the donor 

chromophore Cy3b results in the decrease of lifetime of HER2-Cy3b. 

Therefore, a decrease in lifetime of HER2-Cy3b would be indicative of HER2 

phosphorylation.

To show in situ that HER2 could be activated consequent to dimerisation 

with other members of the HER family, A431 cells were stimulated with EGF, 

heregulin P (P3 of NRG1, Materials Section 2.1.5) and heregulin-pi (Pi of 

NRG1, Materials Section 2.1.5). EGF is the ligand for EGF and heregulin p 

and heregulin p-1 are both ligands for HER3 and HER4. The average lifetime 

of the donor HER2-Cy3b alone (detecting HER2 protein) was 2.20 ns and EGF 

stimulation alone did not affect the donor lifetime (Figure 4.1 A). In the 

presence of acceptor pHER2-Cy5 (detecting phosphorylated HER2), the donor 

lifetime HER2-Cy3b decreased to 1.75 ns due to basal HER2 phosphorylation. 

A further decrease of the average lifetime of HER2-Cy3b was measured upon 

EGF, P and P-1 heregulin (Figure 4.1 A). The significant decreases in average 

lifetime compared to the basal levels (p<0.01) indicate an increase in HER2 

tyrosine phosphorylation and therefore activation in A431 cells. To verify the 

measurements were not due to unspecific FRET, the phosphatase YOP was
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used after EGF treatment to dephosphorylate the tyrosine on HER2 in the fixed 

preparations. The average lifetime reverted to the control values (yellow 

triangles) indicating a loss of FRET. Independently, an increase in HER2 

phosphorylation on Tyrl221 and 1222 in a total cell lysate was shown by 

western blot using a phospho-specific antibody (upper panel) (Figure 4. IB).

As expected, heregulin P and P-1 did not cause EGFR phosphorylation in 

A431 cells (Figure 4.1C) since HER2 is the preferred dimerisation partner for 

HER3 and HER4. In this experiment, the cells were incubated with either 

donor EGFR-Cy3b (F4-Cy3b) or donor and acceptor pEGFR-Cy5 (FB2-Cy5) 

to assess EGFR phosphorylation (Since several HER pathways will be 

analysed by FRET in this chapter, F4-Cy3b will be referred to as EGFR-Cy3b 

and FB2-Cy5 will be termed pEGFR-Cy5). Basal phosphorylation was 

indicated by a decrease in the median lifetimes from 2.3 ns to 2.1 ns in the 

presence of the acceptor pEGFR-Cy5. Not surprisingly, EGF caused further 

EGFR phosphorylation as shown by the significant decrease of lifetime to 1.8 

ns (p < 0.01). However, heregulin p and heregulin p-1 did not cause a 

significant decrease in lifetime.

Since A431 cells were used only as a test cell line, three other breast cancer 

cell lines (MCF-7, MDAMB-453 and SKBR3 cells) were also used for this 

study. The amount of EGFR and HER2 receptors of A431 cells in relation to 

the three breast cell lines (MCF-7, MDAMB-453, SKBR3 cells) is illustrated 

in Figure 4.2A. The assay to assess HER2 phosphorylation was also applied in 

MCF-7 cells that have ‘normal’ levels of EGFR and HER2. It was shown that 

EGF and heregulin p-1 activated HER2, indicated by a decrease in the median 

lifetimes from a basal level of 1.93 ns to 1.81 ns and 1.86 ns respectively (p< 

0.001 for both conditions) in MCF-7 cells (Figure 4.2B). Altogether these data 

indicated that HER2 phosphorylation by ligands for other HER receptors 

family members could be monitored in intact cells by FRET.
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Figure 4.1: HER2 is the preferred dimerisation partner for other HER recep­
tors. A, To assess HER2 phosphorylation in A431 cells by FRET, the cells were 
incubated with either donor alone (HER2-Cy3b) or donor and acceptor (HER2- 
Cy3b+pHER2-Cy5) after 10-minute stimulation with either EGF, heregulin beta or 
heregulin beta-1. To remove phosphotyrosine, the phosphatase YOP was used 
following stimulation of the cells with EGF. B, For western blot, near confluent 
A431 cells were stimulated with EGF, heregulin beta and heregulin beta-1 for 10 
minutes and whole cell lysate was obtained after treated with lysis buffer. 10ng of 
proteins were used for each lane for western blot analysis and the phosphorylation 
of HER2 on Tyr 1221/1222 was determined with anti-phosphospecific antibody. C, 
Same experiment as A but A431 cells were incubated with either donor alone 
(EGFR-Cy3b) or donor and acceptor (EGFR-Cy3b+pEGFR-Cy5) after ligand 
stimulation to assess EGFR phosphorylation.
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phosphorylation after ligand stimulation.
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4.2.2 Effect of tyrosine kinase inhibitors 
(TKIs) on HER2 activation state

HER2 phosphorylation induced by other HER receptors via their respective 

ligands was determined in A431 cells and MCF-7 cells while EGFR was 

inhibited or not with tyrosine kinase inhibitor (TKI) AG 1478. Since A431 

cells over-express EGFR, it was expected that AG 1478 would prevent 

phosphorylation of HER2 by EGF stimulation and to exert a possible 

inhibitory effect of the interaction of HER2 with HER3 and HER4. However, 

AG 1478 failed to abolish EGF-induced and heregulin P-induced HER2 

phosphorylation in A431 cells (Figure 4.3A). Moreover, it increased HER2 

phosphorylation with heregulin p-1, indicated by a decrease in average donor 

lifetime compared to those with no AG 1478 pre-treatment (p=0.008) (Figure 

4.3A). In MCF-7 cells, AG 1478 also did not abolish EGF induced HER2 

phosphorylation (Figure 4.3B). Moreover, both heregulin p and heregulin p-1 

enhanced HER2 phosphorylation when cells were pretreated with AG 1478 (p 

< 0.01 for both conditions; Figure 4.3B). Increased doses of AG 1478 up to 

300 pM failed to prevent EGF induced HER2 phosphorylation in A431 cells 

(Figure 4.4A), despite its effect on PKB and ERK1/2 activation (Figure 4.4B). 

In MCF-7 cells higher doses of AG 1478 (up to 300 pM) could inhibit EGF- 

induced HER2 phosphorylation but not the basal HER2 phosphorylation 

(Figure 4.4C).
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Figure 4.3: AG 1478 does not diminish EGF induced HER2 phosphoryla­
tion and enhances heregulin induced HER2 phosphorylation. A, In this 
experiment, A431 cells were pretreated with tyrosine kinase inhibitor 3pM AG 1478 
for two hours before stimulated with either EGF, heregulin beta or heregulin beta-1. 
The average lifetimes of HER2-Cy3b of those pre-treated with AG 1478 were com­
pared with those without treatment and the medians of the average lifetimes were 
compared using Mann-Witney test. B, The same experiment was also done in 
MCF-7 cells.
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utes. The cells were incubated suitable pair of antibodies to assess HER2 phosphory­
lation. B, A431 cells were pretreated with AG 1478 with or without EGF stimulation 
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using phospho-specific antibodies and the total endogenous levels of PKB and 
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To exclude that the inability to inhibit HER2 phosphorylation by AG 1478 

was not due to simultaneous EGF stimulation, the effect of AG 1478 treatment 

alone was assessed in A431 cells and two other breast cell lines, MDAMB-453 

and SKBR3 cells which over-express HER2 since these HER2 over-expressing 

breast cancer cells have been shown to be sensitive to tyrosine kinase 

inhibitors (Anderson et al., 2001; Moulder et al., 2001). However, treatment of 

AG 1478 alone without EGF stimulation also failed to abolish HER2 

phosphorylation in these cells despite its ability to decrease phosphorylation of 

PKB and ERK1/ERK2 during acute treatment of AG 1478 (Figure 4.5A). The 

western blot results are consistent with the FRET data. A two-hour treatment 

with AG 1478 alone failed to reverse basal HER2 phosphorylation in A431, 

MDAMB-453 and SKBR3 cells (Figure 4.5B). There was evidence to suggest 

partial HER2 inhibition indicated by an increase in lifetime in some of the 

MDAMB-453 cells. But overall inhibition of HER2 phosphorylation was not 

prevented after a two-hour treatment with AG 1478.

Since Iressa is more potent than AG 1478 and it is the tyrosine kinase 

inhibitor of EGFR used in clinical settings, it was intended to assess whether 

Iressa had the same effect on HER2 phosphorylation. In addition, inhibition of 

EGFR is increasingly important in breast cancer with the introduction of 

Lapatinib recently (Geyer et al., 2006; Konecny et al., 2006) and the use of 

Iressa in hormone-resistance breast cancer (Gee et al., 2003; Polychronis et al., 

2005). The results showed that in different cell lines pretreatment with 1 pM 

Iressa (physiological dose) had a variable effect on HER2 phosphorylation. At 

a time-point of 2.5 days, Iressa decreased HER2 phosphorylation in A431 cells 

with growth inhibition (Figure 4.6A). On the contrary, MCF-7 cells with 

normal levels of EGFR, had increased HER2 phosphorylation at 2.5 days of 

Iressa treatment and cell viability confirmed that cells were highly proliferative 

at this point; MCF-7 cells were not sensitive to 1 pM Iressa (Figure 4.8B). 

Some SKBR3 and MDAMB-453 (HER2-over-expressing) cells showed partial 

HER2 inhibition but the majority of cells showed no suppression of basal 

HER2 phosphorylation (Figure 4.6A). SKBR3 cells were shown to be sensitive 

to Iressa with prolonged 1 jliM  Iressa treatment (Figure 4.8D). Therefore, the
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results showed that acute 1 pM Iressa (physiological dose) was not able to 

abolish basal HER2 phosphorylation in breast cell lines.

Since TKIs including AG 1478 and Iressa failed to decrease basal HER2 

phosphorylation in breast cell lines like MCF-7 and SKBR3, it suggested that 

the persistence of HER2 phosphorylation in these cells was not be due to 

phosphorylation from EGFR/HER2 dimerisation, but from either HER2/HER3 

or HER2/HER4 dimerisation. The fact that EGFR inhibition enhanced HER2 

phosphorylation by exogenous heregulin stimulation in MCF-7 cells (Figure 

4.3B) suggested that HER2/HER3 and HER2/HER4 dimers occurred to sustain 

HER2 phosphorylation. However, TKIs abolished HER3 phosphorylation with 

a corresponding decrease in phospho-PKB and phospho-ERKl/2 (data on AG 

1478 shown in Figure 4.6B, data on Iressa shown later Figure 4.13B). The 

decrease of HER3 phosphorylation but increased HER2 phosphorylation with 

heregulin (Figure 4.3B) and AG 1478 treatment in MCF-7 cells indicated the 

involvement of HER4 since heregulin activates both HER3 and HER4. It was 

postulated that maintenance of HER2 phosphorylation and the additional 

HER2 phosphorylation by heregulin stimulation following two hour pre­

treatment with AG 1478 may be due to activation of HER4 with subsequent 

HER2 phosphorylation. It was therefore decided to assess HER4 activation and 

its interaction with HER2 following EGFR inhibition by AG 1478 and Iressa 

in breast cell lines like MCF-7 and SKBR3.
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Figure 4.5: The effects of AG 1478 in A431 cells and three breast cell 
lines. A, A431, MDAMB-453 and SKBR3 were grown to near confluency before 
lysed to assess the total levels of HER2 and EGFR by western blot. On the right 
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AG 1478 for 2 hours to assess HER2 phosphorylation by FRET
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Iressa on pHER3 and downstream signalling pathways by western 
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ern blot after treated with either 3pM AG 1478 for 2 hours or had no treat­
ment.
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4.2.3 TKIs induce proteolytic cleavage 
of HER4 as well as dimerisation between 
HER2 and HER4

As discussed in the Introduction (Section 1.3), proteolytic cleavage of HER4 

occurs in cells at a low basal level and can be increased by heregulin, or other 

growth factors that bind to HER4 (Zhou and Carpenter, 2000). The ectodomain 

cleavage of HER4 is mediated by tumour necrosis factor-°c-converting enzyme 

(TACE), a transmembrane metalloprotease that produces a membrane- 

anchored fragment (80 kD) which consists of the entire cytoplasmic and 

transmembrane domain (Carpenter, 2003; Vecchi and Carpenter, 1997). The 

m80 HER4 fragment from ectodomain cleavage was shown to associate with 

full length HER2 (Cheng et al., 2003). In addition, the transmembrane m80 

was shown to be cleaved by y-secretase and the soluble fraction (S80) was 

shown to be associated with STAT5A as well as translocated to nucleus with 

transcriptional activity (Ni et al., 2001; Williams et al., 2004).

It was postulated from the previous section that EGFR inhibition may activate 

HER4 and increase HER2 and HER4 dimerisation and thus may mediate 

EGFR tyrosine kinase inhibitor resistance. Figure 4.7A illustrates the cleavage 

of HER4 and production of m80 upon heregulin stimulation in SKBR3 and 

MCF-7 cells. Moreover, acute treatment with tyrosine kinase inhibitors (TKIs) 

AG 1478 and Iressa also induced the cleavage of HER4 and production of m80 

in both SKBR3 and MCF-7 cells (Figure 4.7A). Upon tyrosine kinase 

inhibition the m80 fragment accumulation was augmented compared to 

stimulation with exogenous heregulin. Since HER2 may be the preferred 

dimerisation partner of HER4, it was therefore postulated that the activation 

and cleavage of HER4 induced by tyrosine kinase inhibitors may induce 

dimerisation between HER2 and HER4. Figure 4.7B (upper panels) illustrates 

the co-immunoprecipitation with intracellular anti-HER4. A similar response 

to heregulin stimulation was seen with AG 1478 and Iressa which induced 

dimerisation between HER2 and HER4 in SKBR3 and MCF-7 cells (Figure 

4.7B). The co-immunoprecipitation with intracellular anti-HER2 in MCF-7
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cells also demonstrated that AG 1478 and Iressa induced dimerisation between 

HER2 and HER4 (Figure 4.7B, lower panels). In addition, the m80 fragment 

was shown to dimerise with HER2 upon AG 1478 and Iressa treatments.

In summary, acute treatment with AG 1478 and Iressa inhibited downstream 

signalling pathways. The inhibition was due to the prevention of EGFR 

homodimer, EGFR/HER2 and EGFR/HER3 heterodimer formation (Anido et 

al., 2003; Arteaga et al., 1997; Engelman et al., 2005). However, the 

proteolytic cleavage of HER4 and heterodimerisation of HER2/HER4 

sustained HER2 phosphorylation.

153



A CM
00 (Nl

(Uk_O CZ (Z  cd
O  X  X  <

250
160

M80

SKBR3

oo

«  CM 
v Tf TO 

CD 0  $
cz cz o  ox  i  <  —

M80 L U L i  J IP HER4 
Blot HER4

MCF-7

B
c
oO

u_ CD 
CD (Z 
lU X

CD
CZ
X

CM
00

3

CM(0
(A c

oO

CM
00h-

3

CMajw

250-

160-

SKBR3
1 3 IP HER4 

Blot HER2

MCF-7

c
oO

sz
CM
00r*»M"

3

CMro0)
(A<u

250

160

M80

MCF-7
IP HER2 
Blot HER4

Figure 4.7: AG 1478 and Iressa induce proteolytic cleavage of HER4 as 
well as dimerisation between HER2 and HER4 in breast cancer cell lines 
via the release of the ligands. A, Both MCF-7 and SKBR3 were immunoprecipi- 
tated with intracellular HER4 antibody after being treated in the conditions as illus­
trated Following the immunoprecipitation, the cell lysate without the beads were 
loaded unto a SDS gel and a western blot analysis was performed. The membrane 
was probed with anti-HER4 antibody. B, In the upper panels, both MCF-7 and 
SKBR3 were immunoprecipitated with intracellular HER4 antibody after treated 
with the conditions illustrated before western blot analysis. The membrane was 
probed with anti-HER2 antibody. In the lower panel, MCF-7 cells near confluency 
were lysed and immunoprecipitated with intracellular HER2 antibody after treated 
with either AG 1478 or Iressa.The membrane was probed anti-HER4 antibody.
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4.2.4 TKIs induce the release of ligands

It has been shown in the previous section that acute treatment of AG 1478 

and Iressa caused activation and proteolytic cleavage of HER4 as well as 

dimerisation of HER2/HER4, a similar process to heregulin stimulation. This 

suggested that TKIs which target EGFR may trigger the release of ligands that 

activate HER4. Indeed it was observed that AG 1478 and Iressa induced the 

cleavage of the precursor proheregulin-1 producing a band between 35 and 50 

kDa, which is mature heregulin (Figure 4.8A, left panels). The maximum 

cleavage of proheregulin-1 was seen with acute AG 1478 treatment although 

there was also an increase of cleavage with Iressa treatment. The acute 

treatment of both drugs increased further the production of betacellulin in 

MCF-7 cells. In contrast to heregulin release, the maximum increase of 

betacellulin was seen with acute Iressa treatment rather than AG 1478 (Figure 

4.8A, right panel). The differential effect of these two agents is likely due to 

their different affinities and efficacies in the two cell lines. Therefore, AG 

1478 and Iressa may produce a different ligand response in MCF-7 cells since 

Iressa has a higher affinity than AG 1478. Betacellulin is the ligand for 

EGFR/HER4 and heregulin is the ligand for HER3/HER4 and their release in 

response to drugs may be different. AG 1478 is less potent that Iressa in EGFR 

inhibition and thus produced a minimal betacellulin release. Due to the greater 

potency of Iressa compared to AG 1478, more betacellulin was induced.

MCF-7 cells are generally considered to be resistant to Iressa. Using cell 

viability assays it was confirmed that during acute treatment with Iressa, MCF- 

7 growth was not prevented and furthermore there was an increase in cell 

proliferation compared to control (Figure 4.8B). In MCF-7 cells, the apparent 

resistance may be due to the acute Iressa treatment that resulted in enhanced 

HER2 phosphorylation, with dimerisation between HER2 and HER4. After 

seven days of treatment, MCF-7 cells were only minimally inhibited by ljiM 

Iressa and the cleavage of proheregulin-1 persisted after seven days of Iressa 

treatment. Therefore, the compensatory mechanism from the HER4 activation 

due to ligand release (including heregulin) and its subsequent dimerisation
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with HER2 predicts that Iressa has a minimal cell proliferation inhibitory 

effect in MCF-7 cells.

In SKBR3 cells which are known to be sensitive to Iressa (Anderson et al., 

2001; Moulder et al., 2001), there was also an increase of cleavage of 

precursor pro-heregulin-1 as well as an increase in betacellulin production 

induced by two hours of Iressa treatment (Figure 4.8C). However, the release 

of ligands was not sustained in these sensitive cell lines. Over the seven-day 

treatment of Iressa, the release of these ligands diminished. The cell viability 

experiments confirmed that lpM Iressa decreased the viability of SKBR3 cells 

to 50% of the control in contrast to MCF-7 cells (Figure 4.8D).

The results showed that the activation and cleavage of HER4 during acute 

treatment of TKIs of EGFR correlated with the release of ligands including 

betacellulin and heregulin. The activation of HER4 and dimerisation of 

HER2/HER4 may mediate primary resistance to Iressa in resistant MCF-7 

cells. In sensitive SKBR3 cells, the release of some ligands including 

betacellulin and mature heregulin-1 diminished with prolonged Iressa 

treatment.
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SKBR3 cells were pre-treated with Iressa or DMSO as illustrated before the cells were lysed for western blot experiment.The membrane was probe with 
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4.2.5 Assessm ent of HER4 cleavage by 
FRET

To attribute the sensitivity of SKBR3 to the decrease of ligands for HER4, all 

the ligands activating HER4 needed to be tested in the cell lysate and the 

medium. Since there are multiple ligands for HER4 and multiple isoforms of 

heregulin, it would be more appropriate to assess the effect of long-term 

treatment on HER4 receptors directly instead of their ligands. Although the co- 

immunoprecipitation with anti-HER4 antibody to assess HER4 activation and 

cleavage was appropriate for acute treatment, the effect of long-term treatment 

using the same method would be limited by the effect of long-term Iressa 

treatment which has anti-proliferative effect. Therefore, the effect of long-term 

Iressa treatment on HER4 activation and cleavage in-situ by FRET was 

assessed.

To assess HER4 activation and cleavage, a new assay needed to be 

established. The intracellular anti-HER4 antibody conjugated with Cy3b 

(HER-Cy3b) recognises the residues of the kinase domain near the carboxy- 

terminus of human HER4 and the anti-phosphotyrosine antibody conjugated to 

Cy5 (pTyr-Cy5) binds to sites of tyrosine phosphorylation in the carboxyl- 

terminus. It was hypothesised that upon heregulin stimulation, there would be 

an increase of lifetime due to HER4 cleavage. The loss of FRET was 

postulated to be due to inaccessibility of the anti-phosphotyrosine antibody to 

phosphotyrosine residues as a result of the HER4 cleavage (Ni et al., 2001; 

Williams et al., 2004). The results showed that at the basal state there was 

HER4 phosphorylation resulting in a decrease of average lifetime of HER4- 

Cy3b (Figure 4.9B), consistent with report that HER4 can homodimerise with 

autophosphorylation (Carpenter, 2003). As expected, upon heregulin p-1 

stimulation, there was an increase of the median of average lifetimes of HER4- 

Cy3b (p=0.001 compared to the basal level), indicating the proteolytic 

cleavage of HER4 (Figure 4.9A). However, the cells were not sensitive to 

heregulin p. Although a few cells showed increase of lifetime of HER4-Cy3b,
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overall the median of the average lifetime of HER4-Cy3b upon heregulin p 

stimulation did not change significantly (Figure 4.9A). There are four 

heregulin (or neuregulin) genes, denoted 1, 2, 3 and 4; and they can exist in 

different isoforms due to alternative splicing, with different affinities to HER3 

and HER4 (Bazley and Gullick, 2005). This particular product heregulin P 

from Sigma (recognising p3 of NRG1, Materials Section 2.1.5) had been 

shown to activate mainly HER3 with a crossover ability to activate HER4. 

This would explain the minimal HER4 cleavage compared with heregulin P 

stimulation. Heregulin pi (pi of NRG 1, Materials Section 2.1.5) however, was 

shown to activate both HER3 and HER4 and would explain the results seen in 

Figure 4.9A. As a negative control the cells were also stimulated with EGF. 

An increase of lifetime of HER4-Cy3b was not detected. Unlike the FRET 

experiment assessing HER2 phosphorylation, the increase of lifetime upon 

heregulin P-1 stimulation in HER4-FRET experiments did not mean a loss of 

activation. Instead, it indicated activation of HER4 and cleavage of HER4 

tyrosine kinase cytoplasm domain, resulting in the separation between HER4- 

Cy3b and pTyr-Cy5.

The decrease in lifetime on heregulin P-1 stimulation is due to HER4 

cleavage rather than dephosphorylation, as supported by immunoprecipitation 

results (Figure 4.7) and the literature (Zhou and Carpenter, 2000). 

Furthermore, phosphatase YOP which dephosphorylated the HER4 

phosphorylation could not reverse the change of HER4-Cy3b lifetime 

significantly following the cleavage of HER4 by heregulin p-1 stimulation 

compared to EGF and heregulin P which did not cause significant HER4 

cleavage (Figure 4.9A and Figure 4.9B)

To further establish the assay for HER4 cleavage by FRET, the cells were 

pretreated with 100 pM TAPI-1 (TACE inhibitor). The hypothesis was that if 

the ectodomain cleavage of HER4 is mediated by TACE (Carpenter, 2003; 

Vecchi and Carpenter, 1997) inducing the loss of FRET (increase of lifetime), 

then TAPI-1 should reverse the loss of FRET to prove that the assay is 

specific. MCF-7 and SKBR3 cells were pretreated with 100 pM TAPI-1 or 

DMSO (as control) for 1 hour before the cells were stimulated with either 

heregulin p-1 (MCF-7 cells are more sensitive to heregulin p-1 as shown
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above) or heregulin P (SKBR3). Figure 4.9C and 4.9D show that while 

heregulin induced the loss of FRET (increase of lifetime, p < 0.01 for both 

MCF-7 and SKBR3 cells compared to basal condition) due to HER4 cleavage, 

TAPI-1 reversed the loss of FRET.

The results indicate that activation of HER4 is associated with a decrease in 

FRET with the reagents employed here and that this correlates with cleavage 

of HER4. This effect is blocked if cleavage is blocked. Therefore in the case of 

HER4 and in the context of active TACE, an increase of lifetime can be used 

as a reporter of its activation and cleavage.
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4.2.6 Application of FRET assay to 
a ssess  HER4 cleavage in relation to TKIs

Having established the increase of lifetime of HER4-Cy3b as a reporter of 

HER4 cleavage, the method was applied to assess HER4 activation and 

cleavage in MCF-7 cells to investigate the role of HER4 in mediating 

resistance to TKIs of EGFR as well as to verify the observations from 

immunoprecipitation. The results showed that pretreatment with AG 1478 

treatment with either simultaneous EGF or heregulin (3 stimulation increased 

lifetime of HER4-Cy3b in MCF-7 cells (p < 0.01 for medians between those 

treated with AG 1478 and those without treatment), indicative of the 

proteolytic cleavage of HER4 (Figure 4.10A). The effect of pretreatment with 

AG 1478 on HER4 cleavage with simultaneous heregulin P-1 is additive but 

the difference is not statistically significant (p=0.07) since heregulin P-1 

stimulation already induced cleavage of HER4 (Figure 4.10A). The data of 

Figure 4.10A was represented in Figure 4.1 OB as lifetime maps of HER4-Cy3b 

in MCF-7 cells using a pseudocolour scale (blue colour indicating longer 

lifetime and red indicating shorter lifetime). The average lifetime of HER4- 

Cy3b decreased in the presence of the acceptor (pTyr-Cy5) indicating the basal 

HER4 phosphorylation and FRET. The loss of FRET indicated by blue colour 

was seen with heregulin p-1 stimulation and with two-hour pretreatment of AG 

1478 indicating the proteolytic cleavage of HER4. The two conditions were 

additive on the increase of lifetime of HER4-Cy3b (loss of FRET, indicative of 

HER4 cleavage). Moreover, the effect of Iressa was also assessed on HER4 

cleavage in MCF-7 cells. Following a two-hour treatment with 1 pM Iressa in 

MCF-7 cells, an increase in lifetime of HER4-Cy3b was again observed 

regardless of ligand stimulation (the medians of the average lifetimes of those 

cells treated with 1 pM Iressa are significantly increased compared to basal 

levels, p < 0.01 for all conditions) (Figure 4.11 A). The increase of lifetime of 

HER4-Cy3b persisted after 7 days of treatment with Iressa 1 pM (p < 0.001 

compared to the basal) (Figure 4.1 IB) with minimal inhibition of cell
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proliferation (Figure 4.11C). However, increasing the dose of Iressa to 10 pM 

inhibited the HER4 cleavage with no increase of lifetime of HER4-Cy3b. 

However, at this dose, DMSO 1:100 concentration was toxic to MCF-7 cells. 

In addition, 1 pM Iressa is the achievable physiological dose, therefore, the 

effect of 10 pM Iressa was not pursued further.

FRET was also applied to assess HER4 cleavage in sensitive SKBR3 cells 

after they were pretreated with Iressa for seven days. Figure 4.12A shows the 

decrease of average lifetime of HER4-Cy3b in the presence of pHER4-Cy5 

from a median of 2.25 ns to a median of 2.1 ns, indicating the basal 

phosphorylation of HER4. After pretreatment with Iressa 1 pM for 2.5 days, 

there was an increase of average lifetime of HER4-Cy3b indicating activation 

and proteolytic cleavage of HER4 (p<0.01 compared to basal), consistent with 

immunoprecipitation results (Figure 4.7). However, the amount of HER4 

cleavage decreased with seven-days of lpM Iressa treatment as indicated by 

the lifetime of HER4-Cy3b returning to basal state (p=0.32 compared to basal) 

(Figure 4.12A). The lifetime map of HER4-Cy3b representing this data is 

illustrated in Figure 4.12B. The diagram shows an average lifetime for HER4- 

Cy3b was decreased with the acceptor (pTyr-Cy5) indicating the basal degree 

of HER4 activation and FRET as illustrated by the change of colour. The 

increase of lifetime of HER4-Cy3b was seen with 2.5 days of pretreatment 

with lpM Iressa. The increase of lifetime of HER4-Cy3b was inhibited when 

the cells were treated for longer durations with 1 pM Iressa. The results 

therefore show that there was activation and proteolytic cleavage of HER4 

during the acute treatment of Iressa in sensitive SKBR3 but this process 

diminished after 7 days of treatment (Figure 4.12A and 4.12B) with the 

decrease in the release of ligands for HER4 including betacellulin and 

heregulin (Figure 4.8C). The diminished HER4 cleavage would explain why 

seven-day treatment with lpM Iressa is able to decrease the proliferation of 

SKBR3 cells to 50% of that DMSO control in contrast to resistant MCF-7 

cells.

In summary, the results showed that the activation and cleavage of HER4 

during acute treatment of tyrosine kinase inhibitors of EGFR correlated with 

the release of ligands including betacellulin and heregulin. The activation of
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HER4 and dimerisation of HER2/HER4 may mediate primary resistance to 

Iressa in resistant MCF-7 cells. In sensitive SKBR3, there was evidence to 

suggest that the release of some ligands including betacellulin and mature 

heregulin-1 diminished with prolonged Iressa treatment, correlated with 

decrease in HER4 cleavage shown by FRET. Therefore, the induction of 

inactive EGFR homodimers and EGFR/HER2 dimers by Iressa (Arteaga et al., 

1997) and the decrease in HER4 activation may explain Iressa sensitivity of 

SKBR3 cells which over-express HER2 with moderate amount of EGFR. 

However, since assessment of all the ligands or all types of heregulin are 

difficult to achieve, it could not excluded that other ligands may remain 

activated after prolonged Iressa treatment in sensitive SKBR3 cells.
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4.2.7 Prolonged Iressa treatment caused  
reactivation of phospho-HER3

Iressa has been shown to inhibit the PI3K/PKB pathway via HER3 

(Engelman et al., 2005). Figure 4.6B showed the rapid decrease of phospho- 

HER3 and phospho-PKB (Ser473) upon acute treatment of Iressa through 

inhibition of EGFR/HER3 (Anido et al., 2003; Engelman et al., 2005). 

However, acute treatment of Iressa induced the release of heregulin in both 

MCF-7 and SKBR3 causing dimerisation of HER2 and HER4 (Figure 4.7 and 

4.8). Since heregulin is the ligand for HER3 and HER4, it was thought that 

acute Iressa treatment may have induced dimerisation of HER2/HER3 as well 

as HER2/HER4, causing HER2 phosphorylation. Figure 4.13A shows that 

Iressa was not able to abolish HER2 phosphorylation even in surviving 

sensitive SKBR3 cells. The remaining surviving cells had even more HER2 

phosphorylation compared to basal condition after seven days of Iressa 

treatment (p=0.03) (Figure 4.13A). Since in SKBR3 cells the activation and 

cleavage of HER4 decreased with prolonged Iressa treatment, it was postulated 

that the persistent HER2 phosphorylation after seven days of Iressa treatment 

maybe due to HER2/HER3 dimerisation. Figure 4.13B shows phospho-HER3 

was reactivated with prolonged Iressa treatment. The reactivation occurred 

after the initial decrease in HER3 phosphorylation via EGFR/HER3 

(Engelman et al., 2005) in both SKBR3 and MCF-7 cells. The reactivation was 

not due to the degradation of the drugs since the dose of Iressa was replenished 

after a few days. There was also a recovery of downstream signalling pathways 

phospho-PKB (Ser473) and phospho-ERKl/2 within 48 hours (Figure 4.13 B), 

consistent with activation of alternative HER pathways via the ligands 

including HER2/HER3 and HER2/HER4.

In summary, the results showed that EGFR inhibition by AG 1478 and Iressa 

treatment induced the release of multiple ligands including heregulin and 

betacellulin, which caused cleavage of HER4 and dimerisation of 

HER2/HER4. However the release of heregulin also caused activation of 

HER3 and PKB phosphorylation via the HER2/HER3 dimerisation after the
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initial inhibition of PKB activation via EGFR/HER3 (Engelman et al., 2005). 

The release of these ligands mediates primary resistance in MCF-7 cells. In 

sensitive SKBR3 cells although there is a decrease of HER4 cleavage with 

prolonged Iressa treatment, the reactivation of phospho-HER3 may mediate 

secondary resistance to Iressa.
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4.2.8 HER4 mediates resistance to 
Iressa in sensitive SKBR3 cells via induced 
autocrine ligand release

To test the hypothesis that activation of alternative HER receptors through 

their ligands mediate resistance to Iressa, sensitive SKBR3 cells were 

stimulated with TGF-a, heregulin-p, heregulin P-1 or betacellulin while the 

cells were treated with Iressa for 96 hours. Figure 4.14A shows that all the 

ligands made SKBR3 cells resistant to Iressa but the greatest effect was seen 

with Iressa treatment in combination with either heregulin P or heregulin P-1. 

The results are consistent with previous experiments that EGFR inhibition by 

tyrosine kinase inhibitors sensitises the cells to exogenous heregulin 

stimulation in terms of HER2 activation (Figure 4.2) and hence induced 

enhanced proliferation. The experiment confirms the role of ligands in 

mediating resistance to Iressa, including HER3/HER2 and HER4/HER2 

through heregulin since heregulin activates HER3 and HER4 via HER2 

(Graus-Porta et al., 1997; Lewis et al., 1996).

Since it was shown that Iressa induced the release of ligands including 

betacellulin and heregulin, it was postulated that antibodies neutralising the 

ligands may potentiate an anti-proliferative effect. Therefore, an anti- 

betacellulin antibody (which blocks the effects of betacellulin) was used in 

combination with Iressa and it was determined that it potentiated the effect of 

Iressa in an anti-proliferative manner (Figure 4.14B). In summary, HER4 may 

mediate resistance to Iressa via induced autocrine ligand release.
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Figure 4.14: Ligands mediate resistance in SKBR3 cells. A, SKBR3 cells 
were grown in 24-well plates after seeding approximately 25000 cells per well.The 
cells were left to grow for at least 24 hours before treated with either DMSO 
(1:1000); Iressa 1 pM alone; or stimulated with either 100 ng/ml TGF, 100 ng/ml 
heregulin beta, 100 ng/ml heregulin beta-1 or 20 ng/ml betacelluin while pre­
treated with Iressa 1 pM.The viable cells were counted in cell viability analyzer after 
96 hours using Trypan blue to stain the dead cells. B, SKBR3 cells were left to grow 
in 24 well plate for at least 24 hours before treated with either DMSO or Iressa alone 
or Iressa in combination with 20 pg/ml anti-betacellulin.
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4.2.9 Combined therapy with Iressa and 
Herceptin is additive in SKBR3

It has been shown that the combined treatment with Herceptin and Iressa in 

SKBR3 was either additive (Moasser et al., 2001) or synergistic (Normanno et 

al., 2002) in exerting anti-proliferative effects as well as having enhanced 

antitumour activity in BT-474 xenografts (Britten, 2004; Moulder et al., 2001). 

The cell viability experiments confirmed that the combined treatment was 

more prominent in its anti-proliferative effect than either Iressa or Herceptin 

treatment alone (Figure 4.15A). FRET was used to assess the effect of 

combined therapy on EGFR and HER2 phosphorylation in sensitive cells. 

Figure 4.15B shows the decrease of average lifetime of EGFR-Cy3b with 

pEGFR-Cy5 from 2.45ns to 2.15ns, indicating basal phosphorylation of EGFR 

in these cells. Pre-treatment with lpM Iressa partially suppressed EGFR 

phosphorylation with the increase of the average lifetime of EGFR-Cy3b from 

2.15 ns to 2.3 ns (p < 0.001 compared to basal). The incomplete suppression of 

EGFR phosphorylation by Iressa may be explained by the compensated 

increase in ligand release (including betacellullin production) induced by 

Iressa (Figure 4.8). However, combination of lpM Iressa with 40 pg/ml of 

Herceptin suppressed EGFR phosphorylation (p<0.001 compared to basal) 

(Figure 4.15B). This result depicts the additive effect of combined therapy in 

the cell viability experiments (Figure 4.15A). The assessment of HER2 

phosphorylation by FRET shows that HER2 phosphorylation increased from 

basal levels during the first 2.5 days of treatment. However, after five days of 

treatment we observed a decrease of HER2 phosphorylation (increase in 

average lifetime of donor HER2-Cy3b), in concordance with an enhanced anti­

proliferative effect (Figure 4.15C). And after 7 days of treatment, there are 

very few cells remaining for FRET analysis.

In summary, combined treatment of cells with Herceptin and Iressa exerts a 

greater suppression in EGFR and HER2 phosphorylation and induced an 

enhanced anti-proliferative effect.
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Figure 4.15: Combined therapy of Iressa and Herceptin is additive. A, SKBR3 
cells were grown in 24-well plate and left to grow for at least 24 hours before treated 
with either DMSO or Iressa 1 pM or Iressa 1 pM with Herceptin 40 pg/ml for 7 days.The 
viable cells were counted in Cell viability analyzer using Trypan blue to stain the dead 
cells, after seven days of treatment. B, SKBR3 were pre-treated with either Iressa 1 pM 
or combined treatment of Herceptin 40 pg/ml and Iressa 1 pM different durations to 
assess EGFR phosphorylation by FRET. C, After pre-treated the SKBR3 cells with differ­
ent durations of 40 pg/ml Herceptin and 1 pM Iressa, the cells were incubated with 
suitable pairs of antibodies to assess either HER2 phosphorylation of by FRET.
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Figure 4.16: Model of resistance to TKIs, AG 1478 and Iressa. Quinazoline 
tyrosine kinase inhibitors of EGFR have been shown to induce inactive EGFR 
homodimers, EGFR/HER2 dimer as well as inhibiting EGFR/HER3 dimers, 
resulting in a decrease in PKB and MAPK activities. However, the inhibition of 
EGFR activation by AG 1478 and Iressa caused the release of various ligands 
including heregulin and betacellulin, resulting in HER4 activation and proteo­
lytic cleavage with dimerisation between HER2 and HER4. Moreover, the 
heregulin release also reactivated HER3 via HER2/HER3 dimers and down­
stream signalling pathways after the initial decrease of HER3 activation via 
EGFR/HER3 dimerisation.
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4 .3  D iscu ssion

The EGFR receptor concentration does not predict the response to EGFR 

inhibitors (Arteaga, 2002; Chung et al., 2005); EGFR tyrosine kinase inhibitor 

monotherapy results in a relatively poor response rate and the response is not 

usually sustained for the responders (Cohen et al., 2003). HER receptors are 

highly dynamic and the hierarchy of their activation changes with the 

availability of HER receptors and with drug treatment (Graus-Porta et al., 

1997; Knowlden et al., 2003). For example, MCF-7 cells are not driven by 

HER2 over-expression and have a low level of EGFR. Yet when these cells are 

treated with the anti-oestrogen, tamoxifen, it has been shown that the 

EGFR/HER2 heterodimer levels become elevated and their autocrine loops are 

activated (Knowlden et al., 2003). Iressa has been used to overcome hormone 

resistance in oestrogen deprived MCF-7 cells (Knowlden et al., 2003). Thus, 

the response to these drugs may depend more on the activation and 

phosphorylation status of HER receptors as well as their dimerisation, rather 

than the receptor concentration alone.

Although it has been speculated that alternative HER receptor activation 

mediates resistance to targeted therapies, this is the first time that a molecular 

mechanism is provided to explain drug resistance in breast cancer cell lines. 

Quinazoline tyrosine kinase inhibitors of EGFR have been shown to induce 

inactive EGFR homodimers and EGFR/HER2 dimers in EGFR over­

expressing cancer cells (Arteaga et al., 1997) as well as inhibits EGFR/HER3 

dimers (Engelman et al., 2005). However here, the inhibition of EGFR 

activation by AG 1478 and Iressa caused the release of various ligands 

including heregulin and betacellulin. The release of these ligands resulted in 

dimerisation between HER2 and HER4, and proteolytic cleavage of HER4. 

Moreover, the heregulin release also reactivated HER3 via HER2/HER3 

dimers and downstream signalling pathways after the initial decrease of HER3 

activation via EGFR/HER3 dimerisation. These processes offer an explanation 

for the primary resistance to Iressa in MCF-7 breast cell lines. In Iressa 

sensitive SKBR3 cells, although there is evidence to suggest that HER2 and 

HER4 dimerisation decreases with prolonged Iressa treatment, alternative HER
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activation including HER2/HER3 dimers may mediate secondary resistance to 

Iressa, despite the initial anti-proliferative effect from the inhibition of EGFR 

homodimers, EGFR/HER2 and EGFR/HER3. The model of resistance to 

Iressa is shown in Figure 4.16.

The current literature seems to suggest that HER2 phosphorylation is 

abolished by TKIs in HER2 over-expressing breast cancer cell lines (Anido et 

al., 2003; Moasser et al., 2001). The study presented here does not contradict 

the current literature, rather the FRET provides a novel insight into the present 

knowledge of HER receptor activation. FRET has the unique ability to 

specifically monitor the phosphorylation status of proteins at the single cell 

level. For example, it can often detect HER2 phosphorylation in individual 

cells even when the HER2 phosphorylation signal is below the detection limits 

of western blot. In cell lines which are sensitive to Iressa, chronic Iressa 

treatment may actually cause down-regulation of EGFR and HER2 levels and 

thus HER2 phosphorylation maybe below detection limit of western analysis 

for the whole cell lysate even though HER2 remains activated in the individual 

cells and may be monitored by FRET. The apparent difference from the 

current literature is also more an issue of different experimental conditions of 

EGFR inhibitor treatments. For example, in Moasser et al (2001), the 

experiments on HER2 phosphorylation were a dose dependent study of Iressa 

on SKBR3 cells (Moasser et al., 2001). HER2 phosphorylation was only 

partially suppressed by 1 pM Iressa and only fully abolished when the dose 

was increased to 10 pM. Similar experiments were performed here but 10 pM 

drug was found to be toxic to cells in part through the vehicle.

In a recent paper by Zhou et al (2006) the authors found that among various 

genes examined in 44 different non-small cell lung cancer cell lines, only the 

expression of heregulin significantly correlated with insensitivity to Iressa 

(Zhou et al., 2006). Although HER3 expression was only very weakly 

correlated with Iressa sensitivity, the authors concluded that it is the heregulin- 

induced HER3 activation rather than the level causing insensitivity to Iressa 

(Zhou et al., 2006). It has been shown in this study that HER3 phosphorylation 

was suppressed by Iressa upon immediate treatment in three breast cancer cell 

lines as well as A431 cells through suppression of EGFR/HER3 dimerisation. 

However, the release of ligands (including heregulin and betacellulin) induced
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by Iressa treatment resulted in dimerisation between HER4 and HER2 as well 

as HER3 and HER2. The effects of these dimerisations were the reactivation of 

phospho-HER3 and phospho-PKB (Ser473).

Sergina et al (2007) also observed the reactivation of phospho-HER3 with 

prolonged Iressa treatment (Sergina et al., 2007). The reactivation of HER3 

may occur within several hours of Iressa treatment after the initial suppression 

of HER3 activation. The group explained that the reactivation of HER3 with 

prolonged Iressa treatment was due to a compensatory shift in the HER3 

phosphorylation-dephosphorylation equilibrium as a result of increased HER3 

expression and reduced phosphatase activity (Sergina et al., 2007) without 

giving consideration to the importance of ligand release. The results on 

activation of the alternative HER receptors have contributed to the gaps in 

understanding the mechanisms of resistance to these targeted therapies.

Although exogenous heregulin enhanced aggregation (Tan et al., 1999) and 

increased invasiveness in breast cell lines (Xu et al., 1997), it has been 

reported to have an anti-proliferative effect (Sartor et al., 2001) and thus may 

challenge the role of HER4 in mediating resistance to Iressa. Aguilar et al 

(1999) reported that some of the disparity on various effects of heregulin is due 

to variations in the cell lines, ligand dosage and the methodologies used 

between different investigators (Aguilar et al., 1999). The group found no 

evidence that heregulin had any growth-inhibitory effects in human epithelial 

cells after using several different in vitro and in vivo assays in nine different 

cell lines. The study presented here has also shown that exogenous heregulin 

induced proliferation rather than exerting an anti-proliferative effect upon 

Iressa treatment, confirming the role of heregulin in mediating resistance to 

tyrosine kinase inhibitors of EGFR. Moreover, the role of HER4 in mediating 

resistance to Iressa was confirmed since anti-betacellulin antibody potentiated 

the anti-proliferative effect in combination with Iressa treatment.

The combined therapy of Herceptin and Iressa is additive in suppression of 

EGFR and HER2 phosphorylation as well as exerting its anti-proliferative 

effect, consistent with the report that a combination of targeted therapies 

against both EGFR and HER2 is more effective that single agents in breast 

cancer (Normanno et al., 2002). There are other signalling pathways such as 

VEGF that are independent but interrelated to EGFR. For instance EGF and
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TGF-a both induce VEGF expression but EGFR inhibition does not block 

VEGF and tumour angiogenesis is maintained (Tabemero, 2007). VEGF 

upregulation may contribute to resistance to EGFR inhibition and both pre- 

clinical and clinical studies have confirmed the additive effects of VEGF and 

EGFR inhibitors. This example also presents a rationale for using combined 

therapies for cancer patients (Ciardiello et al., 2006; Tabemero, 2007). The 

results here indicate how apparent targeted therapies for breast cancer patients 

have complex effects, offering treatment opportunities to overcome resistance 

in patients. It is anticipated that future therapy for breast cancer may involve 

targeting various HER receptors, their ligands (Zhou et al., 2006) as well as 

metalloproteinases that mediate the cleavage of the ligands (Fridman et al., 

2007).
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5 TACE-mediated ligand re lea se  
induces activation of alternative  
HER receptors in resp on se  to  
Trastuzumab (Herceptin) 
treatm ent in breast ca n cer  c e lls

5.1 Introduction

Herceptin, a humanised murine monoclonal antibody against HER2, is now 

used in the adjuvant treatment of breast cancer (Piccart-Gebhart et al., 2005; 

Romond et al., 2005). It binds to the domain IV of the juxtamembrane region 

of HER2 (Cho et al., 2003). As discussed in the Introduction (Section 1.5),o

there have been several proposals of mechanisms of Herceptin to explain its 

clinical benefits. These include HER2 receptor downregulation and inhibition 

of aberrant receptor tyrosine kinase activity (Cuello et al., 2001; Sliwkowski et 

al., 1999); activation of antibody-dependent cellular cytotoxicity (Clynes et al., 

2000; Cooley et al., 1999); activation of pTEN (Nagata et al., 2004); inhibition 

of basal and activated HER2 ectodomain cleavage in breast cancer cells 

(Molina et al., 2001); increased p27Kipl levels and interaction with CDK2, 

resulting in decreased CDK2 activity (Lane et al., 2001). However, the exact 

mechanisms of action are still unknown. Moreover, the reasons why some 

patients are resistant and the responders eventually develop resistance to 

Herceptin have not been explained through experimental procedures.

Here using established FRET methods and western blot to assess 

phosphorylation status of HER receptors, the study assessed the change in 

activation status of all 4 HER receptors in relation to Herceptin treatment in 

breast cancer cell lines.
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5.2 Results

5.2.1 The effects of Herceptin on HER2 
receptors and phosphorylation status in 
SKBR3 cells

In the previous chapter, it was shown that Iressa failed to diminish HER2 

phosphorylation due to activation of alternative HER3 and HER4 receptors via 

various ligands. Since Herceptin targets the HER2 receptor, it was decided to 

investigate whether Herceptin would abolish HER2 phosphorylation in 

SKBR3 cells. Assessing HER2 phosphorylation by FRET, the decrease of 

average lifetime of HER2-Cy3b with pHER2-Cy5 from 2.15 ns to 1.5ns 

indicates the basal phosphorylation of HER2 in SKBR3 (Figure 5.1 A). After 

two days of Herceptin treatment, there was suppression of HER2 

phosphorylation (increase of average lifetime) with an increase in its median 

compared to basal phosphorylation (p=0.03) but the difference was not 

significant after five days. There was however a considerable amount of 

heterogeneity between cells, with suppression of HER2 phosphorylation in 

some cells (yellow box) although the phosphorylation of HER2 was 

maintained in the majority of cells (Figure 5.1 A). After 10 days of Herceptin 

treatment, the remaining treated surviving cells still had persistent HER2 

phosphorylation (Figure 5.1 A). The heterogeneity of responses to Herceptin 

shown in Figure 5.1 A was presented as lifetime maps of HER2-Cy3b in 

SKBR3 cells using pseudocolour; some cells showed reversal of HER2 

phosphorylation (indicated by blue colour) and paradoxically in other cells 

HER2 phosphorylation was increased (indicated by red colour) and two 

examples of each condition are shown in the Figure 5.IB. The inability of 

Herceptin to abolish HER2 phosphorylation after 10 days of Herceptin 

treatment was also confirmed by western blot despite the effect on the viability 

of SKBR3 cells (Figure 5.2A and 5.2B). However, after 10 days treatment of
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SKBR3 cells with Herceptin, the HER2 receptors were downregulated (Figure 

5.2B).

In summary, the results showed that although Herceptin downregulated 

HER2 receptors in HER2 over-expressing SKBR3 breast cancer cells, the 

remaining surviving cells had persistent HER2 phosphorylation. The 

downregulation of HER2 receptors would result in the decrease of HER2 

homodimers which are known to cause ligand independent activation in these 

cells (Worthylake et al., 1999). Therefore, the continued HER2 

phosphorylation in these cells would imply that HER2 phosphorylation may be 

maintained by other HER receptors, e.g. EGFR/HER2, HER3/HER2 and 

HER4/HER2 since Herceptin binds to HER2 receptors without affecting their 

dimerisation with other HER receptors.
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bodies to assess HER2 phosphorylation by FRET after pretreated with 40 pg/ml Herceptin as illustrated. B, The lifetime maps of 
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Figure 5.2: The effect of Herceptin on HER receptors and downstream 
signalling pathways in sensitive SKBR3. A, SKBR3 cells were grown in 24-well 
plates and left to grow for at least 24 hours before treated with 40 pg/ml Herceptin 
as illustrated. The viable cells were counted in cell viability analyzer using Trypan 
Blue to stain the dead cells. The proportion of viable cells in each condition was 
normalised to DMSO and plotted as bar chart above B, In the parallel experiment 
with the cell viability, SKBR3 cells were lysed for western blot analysis after pre­
treatment with 40 pg/ml Herceptin. 10 ng of protein was loaded in each lane and 
four parallel SDS-PAGE gels were run. Proteins were transferred and different 
molecular weight ranges were probed for different antigens. (Note that at 160 kDa 
is a non-specific band and EGFR molecular weight is 175kDa and HER2 is 185 kDa).
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5.2.2 The effects of Herceptin on EGFR 
and other HER receptors in SKBR3 cells

HER2 amplification has been shown to induce constitutive activation of 

EGFR in addition to HER2 (Worthylake et al., 1999). HER2 over-expressing 

breast cancer cells have also been shown to be sensitive to tyrosine kinase 

inhibitors selective for the EGFR (Anderson et al., 2001; Moulder et al., 2001) 

indicating the importance of EGFR-driven activation in these cells. Since 

SKBR3 over-express HER2 and moderately express EGFR, it was intended to 

assess the effect of Herceptin on EGFR receptors and their phosphorylation 

status. The western blot analysis showed that the cells had increased 

phosphorylation of EGFR receptors upon immediate Herceptin treatment 

(Figure 5.2B). However, since western blot cannot detect the EGFR 

phosphorylation in vivo, the effect of acute Herceptin treatment on EGFR 

activation was assessed in SKBR3 cells by FRET. Using FRET, it was shown 

that there was EGFR basal phosphorylation in SKBR3 cells, indicated by the 

decrease of lifetime of EGFR-Cy3b in the presence of pEGFR-Cy5 from 2.45 

ns to 2.15 ns (Figure 5.3A). Upon the acute treatment with Herceptin 

treatment, there was a group of cells showing increase of lifetime compared to 

basal level (indicative of decrease in EGFR phosphorylation). However, there 

was another group of cells where EGFR activation was not affected. These 

cells in fact had increased EGFR phosphorylation compared to basal level, 

suggesting that these cells were not affected by the inhibitory effect of HER2 

by Herceptin. Long-term treatment of Herceptin downregulated EGFR to an 

undetectable level in western blot and this had occurred in concordance with 

downregulation of HER2 receptors and an effect on the cell viability (Figure 

5.2A and 5.2B).

The western blot analysis also showed that there was increased activation of 

phospho-HER3 and phospho-HER4 (Figure 5.2B). In the previous chapter, it 

was shown that Iressa induced activation and proteolytic cleavage of HER4 as 

well as dimerisation of HER2/HER4. It was intended to assess whether 

Herceptin also induced similar processes in SKBR3. Using
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immunoprecipitation it was demonstrated that there was an increased cleavage 

of HER4 as well as dimerisation between HER2 and HER4 induced by acute 

Herceptin treatment (Figure 5.3B). Using the established method to assess 

HER4 cleavage by FERT, it was shown that Herceptin induced the cleavage of 

HER4 indicated by increase of lifetime of HER4-Cy3b, which persisted over 1 

week treatment with Herceptin (Figure 5.3C).

In summary, the results showed that although Herceptin downregulated 

EGFR and HER2 receptors in SKBR3 which are known to have constitutive 

activation of EGFR and HER2, the phosphorylation of EGFR and HER2 was 

not abolished in the treated surviving cells. In addition, these cells have 

increased HER3 and HER4 levels. Furthermore, Herceptin induced the 

cleavage of HER4 as well as HER2/HER4 dimerisation in these cells.
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Figure 5.3: The effect of Herceptin on EGFR and HER4
activation/cleavage. A, SKBR3 cells were pretreated with different durations of 
40 pg/ml Herceptin to assess EGFR phosphorylation by FRET. B, SKBR3 cells were 
immunoprecipitated with intracellular HER4 antibody. Following the immunopre­
cipitation, the cell lysate without the beads were loaded unto a SDS gel and a west­
ern blot analysis was performed. The membrane was probed with either anti-HER4 
antibody (left panel) or anti-HER2 antibody (right panel). C, SKBR3 cells were 
pretreated with 40 pg/ml Herceptin as illustrated to assess HER4 cleavage by FRET.
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5.2.3 The effects of Herceptin on 
downstream signalling pathways in 
relation to HER receptors in SKBR3 cells

Analysing the downstream signalling pathways by western blot analysis in 

relation to HER receptors’ responses, it was found that the effect of Herceptin 

on phosphorylation of PKB and ERK1/2 was not concordant (Figure 5.2B). In 

the acute treatment of Herceptin there was immediate reduction of PKB 

phosphorylation which did not correspond to activation of HER receptors by 

western blot. Other group had shown that the initial decrease of PKB 

activation upon Herceptin treatment is due to activation of pTEN (Nagata et 

al., 2004). However, FRET data had shown that there was evidence of 

decreased EGFR and HER2 activation in some of the Herceptin treated cells 

during acute Herceptin treatment (Figure 5.1 and Figure 5.3), which may 

explain decrease in PKB activation from decrease activities from HER2 

homodimers and EGFR/HER2 dimers. Discordantly, there was increased 

phosphorylation of ERK1/2 that corresponded to increased phosphorylation of 

EGFR, HER2 and HER4 induced by Herceptin (Figure 5.2B). Subsequent rise 

of phospho-PKB (Ser 473) corresponded to increase of HER3 

phosphorylation. With prolonged treatment, the decrease in the levels and 

phosphorylation of PKB and ERK1/2 was correlated with the downregulation 

of EGFR and HER2.

5.2.4 Control experiments on Herceptin

The results from Section 5.2.1 to 5.2.3 have shown that Herceptin induced 

activation of all HER receptors and such mechanism may mediate its 

resistance in breast cell lines. To conclude such results, several control 

experiments were done to exclude other possibilities.

It was shown that the loss of pTEN predicts Herceptin resistance (Nagata et 

al., 2004). The study however did not find such evidence in SKBR3 and MCF-
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7 cells (Figure 5.4A). Moreover, it was possible that the degradation of 

Herceptin would diminish its effect, resulting in its resistance in breast cell 

lines. To exclude the degradation of Herceptin over the treatment period, a 

western blot analysis was performed on the medium containing SKBR3 cells 

treated with 40 pg/ml Herceptin as well as medium containing 40 pg/ml 

Herceptin that was kept in incubator for up to 10 days. The medium was 

denatured in SDS and was loaded in SDS PAGE. The membrane was probed 

with monoclonal anti-human immunoglobulin antibody that recognizes the Fc 

component of Herceptin. The results showed that degradation of Herceptin did 

not happen for up to 10 days in the experiments (Figure 5.4B). As control, the 

effect of Herceptin on HER2 phosphorylation in normal breast cell line MCF- 

12F was also assessed. Even though Herceptin was unable to abolish HER2 

phosphorylation in SKBR3 cells due to activation of alternative HER 

pathways, it caused almost complete reversal of HER2 phosphorylation 

(shown by increase of lifetime) in MCF-12F (Figure 5.4B).

These control experiments confirmed that the activation of HER receptors in 

SKBR3 cells seen in Section 5.2.1 to 5.2.3 was not due to loss of pTEN or 

degradation of drugs. Moreover, the inability for Herceptin to abolish HER2 

phosphorylation was only seen in SKBR3 cells and not normal breast cells, 

MCF-12F.
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Figure 5.4: Control experiments of Herceptin. A, SKBR3 and MCF-7 cells 
were treated with 40 ug/ml Herceptin for different durations before the cells 
were lysed for western blot analysis and the membrane was blotted with anti- 
pTEN antibody. B, Western blot experiment using the medium from the SKBR3 
cells treated with 40 mg/ml Herceptin as well as medium containing 40 mg/ml 
Herceptin that was kept in incubator for up to 10 days. The medium was denatured 
with SDS-PAGE and boiled for 10 minutes and 40pl was loaded in each lane of SDS- 
PAGE gel.The membrane was probed with monoclonal anti-human immunoglobu­
lin antibody which recognizes the Fc component of Herceptin. C, MCF-12F were 
incubated with suitable pair of antibodies to assess HER2 phosphorylation by FRET 
after pretreated with different durations of 40 pg/ml Herceptin.
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5.2.5 Herceptin treatment induces 
activation of HER receptors via ligands

In the HER2 negative MCF-7 cells as well as A431 cells which are resistant 

to Herceptin, HER2 homodimers do not play a major part. Like SKBR3 cells, 

it was confirmed that Herceptin also induced activation of all HER receptors in 

MCF-7 and A431 cells after seven days of treatment (Figure 5.5A). Therefore, 

the activation of all HER pathways in these cells may mediate primary 

resistance to Herceptin.

In the previous chapter, it was shown that TKIs treatment induce activation of 

alternative HER receptors in breast cancer cells via ligand release. It was 

postulated that the increased activation of HER receptors in response to 

Herceptin treatment could also be due to the release of the ligands, as in the 

case of TKIs. It was therefore decided to investigate the effect of Herceptin 

treatment on ligand release in SKBR3 and MCF-7 cells, using betacellulin as 

an example. In MCF-7 and SKBR3 cells acute Herceptin treatment induced the 

release of betacellulin, as in the case of AG 1478 and Iressa (Figure 5.5B). 

Since betacellulin is the ligand for EGFR and HER4, it would account for the 

enhancement of EGFR and HER4 activation as well as HER2 phosphorylation 

seen in Figure 5.2B. Furthermore, its release induced by acute Herceptin 

treatment also increased cleavage of HER4 and its dimerisation with HER2 

(Figure 5.3B and 5.3C).

Therefore, the results showed that ligand release (including betacellulin) is 

responsible for activation of alternative HER receptors during Herceptin 

treatment in breast cancer cells, a similar process to the treatment with TKIs of 

EGFR. Despite its anti-viability effects, the activation of alternative HER 

receptors may mediate resistance to Herceptin in SKBR3 cells.

5.2.6 The release of ligands induced by 
Herceptin is mediated by TACE
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The release of ligands from their membrane-anchored precursors (ectodomain 

shedding) has been shown to be mediated by TACE (Shirakabe et al., 2001; 

Sunnarborg et al., 2002). Since it was shown that Herceptin induces the 

activation of HER receptors via the release of their respective ligands, it was 

postulated that TACE inhibitors would decrease HER2 phosphorylation by 

inhibiting ligand release. Assessing HER2 phosphorylation by FRET, the 

decrease of average lifetime of HER2-Cy3b with pHER2-Cy5 indicates the 

basal phosphorylation of HER2 in SKBR3 cells and MCF-7 cells (Figure 5.6A 

and B). Acute Herceptin treatment did not reverse lifetime change in SKBR3 

and MCF-7 cells (Figure 5.6A and B). However, with concurrent treatment of 

Herceptin and TAPI-1, there was increased suppression of HER2 

phosphorylation (increase of average lifetime) with an increase in its median 

compared to basal phosphorylation in both SKBR3 and MCF-7 cells (Figure 

5.6A and B).

The results therefore confirmed that the activation of HER receptors in 

response to Herceptin in breast cancer cells is due to TACE-mediated ligand 

release.
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Figure 5.5: The effect of Herceptin on HER receptors and ligand release.
A, A431 cells,MCF-7 and SKBR3 cells were treated with either nothing or 40 ug/ml 
Herceptin for 7 days before western blot analysis. The phosphorylation of EGFR on 
Tyr 845, HER2 on Tyr 1221/1222, HER3 on Tyr 1289 and HER4 on Tyr 1284 were 
assessed using appropriate antibodies. B, MCF-7 cells were pretreated with either 
3 uM AG 1478 or 1 uM Iressa or 40 ug/ml Herceptin as illustrated before the cells 
were lysed for western blot experiment. The membrane was probed with anti- 
betacellulin antibody.
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Figure 5.6 TACE inhibitor decreases HER2 phosphorylation main­
tained by activation of alternative HER receptors induced by Her­
ceptin treatment. A and B, FRET experiments to assess HER2 phospho- 
rytlation in SKBR3 and MCF-7cells. The cells were treated with 40 ug/ml 
Herceptin for 1 hour with or without TACE inhibitor (TAPI-1). The medians of 
the lifetimes were compared with the basal condition using Mann-Witney 
test and the significance value is denoted as *.
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Figure 5.7: Herceptin (Trastuzumab) induces the activation of HER receptors via 
TACE mediated ligand release. Herceptin downregulates EGFR and HER2 recep­
tors in HER2 over-expressing SKBR3 breast cancer cells with decreased EGFR and 
HER2 activation in some cells (most likely through an effect on HER2 homodimers or 
EGFR/HER2 dimers). However, the treated cells have increased total HER3 and 
HER4 protein with increased phosphorylation of all HER receptors, suggesting the 
activation of these receptors via alternative dimers in the surviving cells, e.g. 
EGFR/HER3 and HER3/HER4 as well as HER4 cleavage and HER2/HER4 dimers. 
The increased activation of all HER receptors is due to TACE-mediated ligand release. 
In the acute Herceptin treatment, an immediate reduction of PKB phosphorylation has 
been shown to be due to activation of pTEN by other group. However, it may also be 
due to decreased activation from EGFR/HER2 or HER2/HER2 dimers. Discordantly, 
Herceptin increases ERK1/2 phosphorylation, corresponding to increased phosphory­
lation of EGFR, HER2 and HER4 receptors (and formation of alternative dimers 
including HER2/HER4 dimers) induced by Herceptin treatment. Subsequent rise of 
PKB phosphorylation corresponds to an increase of the HER3 phosphorylation 
induced by Herceptin treatment.

195



5.3 Discussion

As discussed in the Introduction (Section 1.1), the present criteria for 

Herceptin treatment based on receptor concentration treatment results in an 

unsatisfactory response rate and the response is not usually sustained for the 

responders for Herceptin monotherapy (Cohen et al., 2003; Vogel et al., 2002). 

The study here has presented evidence from breast cell lines to propose a 

model of how the secondary resistance to Herceptin develops (Figure 5.7). The 

results showed that Herceptin down-regulated HER2 receptors in SKBR3 cells 

consistent with report that Herceptin induces the endocytosis and down 

regulation of HER2 homodimers in HER2 over-expressing breast cancer cells 

(Menard et al., 2003). It was also shown that Herceptin downregulated EGFR 

in HER2 over-expressing SKBR3 breast cancer cells. This is not unpredicted 

since HER2 amplification has been shown to induce constitutive activation of 

EGFR (Worthylake et al., 1999) and HER2 over-expressing breast cancer cells 

have been shown to be sensitive to EGFR TKIs (Anderson et al., 2001; 

Moulder et al., 2001), indicating the importance of EGFR driven activities in 

these cell. On the contrary to current belief that Herceptin reduces tyrosine 

kinase activity of HER2 and other HER receptors, western blot results showed 

that Herceptin treatment increased the activation of all HER receptors in 

SKBR3 cells despite the down-regulation of EGFR and HER2. However, 

analyzing the effects of Herceptin by FRET showed great heterogeneity 

between cells. There is evidence that Herceptin decreased EGFR and HER2 

activation in some of these cells (probably through effect on HER2 

homodimers or EGFR/HER2 dimers), correlated with decreased cell viability 

in Herceptin-treated SKBR3 cells. But overall, there was activation of EGFR 

and HER2 receptors despite the down-regulation of these receptors in the 

treated cells. Furthermore, the treated cells had increased total HER3 and 

HER4 protein with increased phosphorylation of all HER receptors. The 

increased activation of all HER receptors was found to be due to TACE 

mediated ligand release, consistent with report that unlike Pertuzumab, 

Herceptin does not prevent dimerisation of HER2 with other receptors (Agus
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et al., 2002). The activation of downstream signalling pathways (Section 5.2.3) 

in relation to HER receptors is also illustrated in Figure 5.7. This model of 

secondary resistance to Herceptin explain why Herceptin as monotherapy is 

seldom tumouricidal despite a response in HER2 positive tumours since ligand 

mediated activation of other HER receptors through TACE will rescue the 

signalling pathway lost by HER2 homodimers or EGFR/HER2 dimers. The 

model is further supported by the fact that TACE inhibitor diminished 

persistent HER2 phosphorylation in surviving SKBR3 cells. In the HER2 

negative MCF-7 cells which are resistant to Herceptin, HER2 homodimers do 

not play a major part. Herceptin induces activation of all HER pathways 

through TACE-mediated ligand release and may mediate primary resistance to 

Herceptin with no effect on cell viability.

It was shown that Herceptin decreases the viability of treated SKBR3 cells to 

less than 50% of that control. However, the surviving cells continued to have 

HER2 phosphorylation with activation of alternative HER pathways. There are 

two possible explanations. Firstly, breast cancers are a heterogeneous group of 

diseases with different gene expression and protein levels between different 

cell lines as well as within the same cell type (Sorlie et al., 2003). Therefore in 

a pool of SKBR3 cells, there may already be some cells which are resistant to 

Herceptin at the outset and they undergo clonal expansion while the sensitive 

cells undergo apoptosis. The other possibility is that the surviving cells 

represent those that have adapted the environment by shifting the dependence 

of EGFR/HER2 pathway to other pathways. The results suggest that both of 

these two explanations maybe true. Upon Herceptin treatment there were 

immediately two responses on EGFR activation (Figure 5.3A), which 

highlights the possibility of heterogeneous group of cells and the difference in 

their genetic expression, that determine the difference in response to drugs. But 

the results also illustrated here that Herceptin treatment induces the release of 

ligands through TACE and cause activation and dimerisation of alternative 

HER receptors to compensate the drug effect. It seems that Herceptin treatment 

has eliminated the cells that are highly dependent on EGFR activation or 

HER2 homodimers, and the surviving cells have shifted the dependence to 

HER3 and HER4 signalling pathways.

197



Lapatinib in combination with Capecitabine was found to be superior in 

women with HER2 positive breast cancer that has progressed after 

chemotherapy and Herceptin (Geyer et al., 2006). The results presented here 

may explain why this is the case. Herceptin treatment in HER2 over­

expressing breast cancer cell may result in activation of all HER receptors 

regardless of response, including activation of EGFR and HER2. This explains 

why Lapatinib which inhibits tyrosine kinase activity of EGFR and HER2, is 

effective in HER2 positive patients who have progressed on Herceptin. 

However, all these patients will invariably progress, implying that other 

pathways like HER3 and HER4 may play a part in the escaping mechanisms.

In this and previous chapters, FRET was applied to assess activation of HER 

receptors in relation to Herceptin and Iressa treatments in breast cancer cells, 

revealing the possible mechanisms of resistance to these drugs. The next 

chapter describes the use of FRET to assess HER2 phosphorylation in 

xenografts and in breast tumour arrays.
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6 A ssessin g  HER2 phosphorylation  
sta te  by FRET in xenograft 
tumours and breast tumour 
arrays

6.1 Introduction

In Chapter 4, an assay to assess HER2 phosphorylation status by FRET was 

established in cell lines. The long-term aim is to apply such an assay in 

stratification of breast cancer patients for targeted therapies in the prospective 

trials. To apply such assay to prospective trials, optimisation of the assays needed 

to be performed in cell lines, xenograft models and archives of paraffin-embedded 

breast tumour arrays. The optimisation will enable problems to be identified 

before applying this novel method to assess HER2 phosphorylation in breast 

cancer patients.

The first objective was to assess the effect of antigen-retrieval in cell lines, in 

particular whether the detection of HER2 phosphorylation by FRET would be 

increased by antigen retrieval through recovery of the epitopes since antigen 

retrieval is routinely applied to paraffin-embedded tumour arrays in IHC. The 

second objective was to assess whether the phosphorylated HER2 epitopes of 

xenograft tumours would be preserved after being removed from Severe 

Combined Immune Deficiency (SCID) mice and being embedded into paraffin 

tissues or whether the phosphorylated epitopes would decay rapidly after removal. 

If the phosphorylated epitopes were to degrade rapidly, FRET would not be useful 

in monitoring the phosphorylation status of HER receptors in tumours. Knowing 

the extent of this decay will also help to develop guidelines for the handling of 

tumours in future prospective trials used for FRET experiments. The differences 

between IHC and FRET in detecting HER2 phosphorylation also were determined 

also. Although formalin is used routinely to preserve human tissues before the
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tumours are paraffin-embedded, it was intended to assess whether liquid nitrogen 

could also be used in preserving the epitopes of phosphorylated HER2. In 

addition, the impact of the delay in fixation on the pHER2 antigen would be 

assessed since it is possible that this delay may occur when the tumours are 

removed surgically. The method of fixation (either by formalin or liquid nitrogen) 

and the effect of delay in fixation as well as the differences between IHC and 

FRET in detecting HER2 phosphorylation will be described in this chapter. The 

third objective was to assess the differences in HER2 phosphorylation between 

different regions of heterogeneous breast tissues (tumour area versus stromal 

area) and between HER2 positive and HER2 negative breast tumour slides. The 

FRET assay was also applied to assess HER2 phosphorylation in a set of breast 

tumour arrays (containing a mixture of HER2 positive and HER2 negative breast 

tumour cores) using automated FLIM. The optimisation of automated FLIM on 

archives of paraffin-embedded breast arrays is essential before its application to 

prospective trials. Lastly the assay was applied to a HER2 positive breast tumour 

array and it was intended to assess whether FRET to assess HER2 

phosphorylation could be used to stratify HER2 positive patients further into 

different prognostic groups. The variation in HER2 phosphorylation between IHC 

and FRET in breast tumour arrays was determined.

6.2 Results

6.2.1 Effect of antigen retrieval on HER2 
phosphorylation in cell lines

Antigen retrieval is routinely performed to recover the epitopes from the 

formalin-fixed, paraffin-embedded tumour arrays during IHC processing. 

However, before FRET could be applied to assess HER2 phosphorylation in 

xenograft tumours and paraffin-embedded tumour arrays, the effect of antigen 

retrieval on HER2 phosphorylation was assessed in cell lines. It was intended to
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assess whether the detection of HER2 phosphorylation by FRET would be 

increased by the recovery of the epitopes through antigen retrieval.

A431 cells and MCF-7 cells were treated with an additional antigen retrieval 

process following fixation with 4% PFA and then incubated with either donor 

HER2-Cy3b with or without acceptor pHER2-Cy5. Figure 6.1 shows the lifetimes 

of HER2-Cy3b with or without prior EGF stimulation to assess HER2 

phosphorylation in A431 cells. The lifetimes and FRET efficiencies obtained 

were compared with the non-antigen retrieval (Figure 4.1) and the results are 

shown in Figure 6. IB. The antigen retrieval increased the detection of basal 

phosphorylation due to recovery of epitopes compared to the non-antigen retrieval 

process (Figure 6. IB). At the basal level, the lifetime of HER2-Cy3b in A431 

cells decreased from 2.2 ns to 1.41 ns in the presence of acceptor (a FRET 

efficiency of 37.1%), in contrast to a decrease of lifetime from 2.19 ns to 1.75 ns 

in the case of non-antigen-retrieval process (a FRET efficiency of 19.8%) (Figure 

6. IB). EGF stimulation induced further phosphorylation, decrease of lifetime 

from 1.4 ns to 1.28 ns (FRET efficiency 42.9%) compared with non-antigen 

retrieval process (lifetime decreased from 1.75 ns to 1.56 ns with EGF 

stimulation, a FRET efficiency of 37.1%) (Figure 6. IB). Similar patterns were 

observed in MCF-7 cells (Figure 6.1C and Figure 4.1C).

In summary the results showed that antigen retrieval increased the detection of 

HER2 phosphorylation by FRET through the recovery of the epitopes.
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6.2.2 Xenografts

One of the anticipated problems is whether the delay in fixation of the 

tumours after operation may result in degradation of the phosphorylated 

epitopes of HER receptors and whether these antigens are preserved from the 

processes of tumour removal to their fixation and being made into paraffin- 

embedded tumour arrays. The assumption was that phosphorylated antigens 

are preserved after the tumours are made into paraffin sections and thus anti- 

phosphospecific antibodies will be useful in determining the phosphorylation 

status of the tumours. To test this assumption, HER2 over-expressing breast 

cancer cell lines (SKBR3 and MDAMB-453 cells) were inoculated in nude 

mice. Unfortunately, the tumours did not grow successfully in nude mice. The 

same experiment was later repeated in SCID mice but only MDMAB-453 cell 

lines were grown successfully and SKBR3 cells were found to be non 

tumourigenic in SCID mice. It was intended to assess whether the 

phosphorylated HER2 epitopes (pHER2) of the xenograft tumour would 

decrease by delaying the fixation process. Both formalin and the liquid 

nitrogen were used for tumour fixation to compare the phosphorylation status 

of HER2 by IHC and FRET.

6.2.3 Comparison between IHC and 
FRET in assessing HER2 
phosphorylation in formalin-fixed 
xenograft tumours

The largest tumour from one SCID mouse was cut into three parts (see 

Methods): one was fixed immediately with formalin (NBF) and another was 

left at room temperature for 1 hour and the third one was left on ice for 1 hour 

before fixation with formalin. These tumours were processed according to the 

standard protocol and made into paraffin-embedded slides. To perform IHC 

staining, the slides were dewaxed and the antigen-retrieval process was
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performed according to the guidelines from New England Biolabs’ protocols 

on anti-pHER2 IHC staining (see Methods Section 2.2.9). Figure 6.2A shows 

anti-pHER2 IHC staining of the MDAMB-453 xenograft tumour slides. The 

anti-pHER2 staining shown by the brown membranous staining was present in 

all three slides. However, differences in intensity or percentage of cell staining 

between the three slides could not be detected (Figure 6.2A). The control slide 

without primary pHER2 antibody (stained only with rabbit secondary 

antibody) does not show membranous staining (Figure 6.2A). Therefore, the 

results demonstrated that the phosphorylated antigens of HER2 were retained 

up to an hour of delay in fixation with formalin and differences could not be 

detected between the three conditions using IHC method.

To compare IHC and FRET methods, duplicate paraffin slides from the three 

conditions were prepared. The same procedure for dewaxing and antigen- 

retrieval was used. For each condition, a pair of slides were used, one labelled 

with donor HER2-Cy3b alone and the other with donor HER2-Cy3b and 

acceptor pHER2-Cy5 to assess HER2 phosphorylation. The lifetimes of donor 

alone and donor with acceptor were obtained. The FRET efficiency for each 

condition was calculated (see Methods Section 2.2.11). HER2 phosphorylation 

indicated by the FRET efficiency was different in the three conditions. Figure 

6.2B shows a median FRET efficiency of about 15% in a tumour, which was 

fixed immediately by NBF. And in the two tumour samples, which were left 

for 1 hour either at room temperature or on ice, showed a lower FRET 

efficiency, indicative of a decrease in HER2 phosphorylation (Figure 6.2B).
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Figure 6.2: Comparison between assessment of HER2 phosphorylation by 
IHC and FRET in MDAMB-453 Xenograft tumour fixed with formalin (NBF).
A, A MDMAB-453 xenograft tumour was removed and cut into three parts to be 
fixed in three ways: (1) fixed immediately by NBF, (2) left on ice at 4 degree C for 
I hour before NBF fixation, (3) left at 1 hour room temp before NBF fixation. The 
tumours were made into paraffin-embedded tumour slides. The tumour slides 
were subjected to antigen-retrieval as per protocol before anti-pHER2 staining 
was done on all slides. Rabbit seconday antibody was used following primary 
antibody staining. One slide without primary pHER2 antibody was stained with 
only with rabbit secondary antibody as control. B, Duplicate slides were labelled 
with either donor alone (HER2-Cy3b) or donor and acceptor (HER2-Cy3b 
+pHER2-Cy5) to assess HER2 phosphorylation by FRET.
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6.2.4 Comparison between IHC and 
FRET in assessing HER2 
phosphorylation status of the 
xenograft tumours fixed with liquid 
nitrogen

Although formalin is routinely used to fix the tumours in histopathology, it 

was intended also to assess whether liquid nitrogen is useful in preserving 

pHER2 in xenograft tumours. Another MDMAB-453 xenograft tumour was 

removed from the SCID mice and it was sectioned into two parts (see Methods 

Section 2.2.8): one was fixed immediately by liquid nitrogen and another was 

left at 4 °C before fixation with liquid nitrogen. The effect of delay in fixation 

with liquid nitrogen fixation (immediate versus 24 hours) on HER2 

phosphorylation in these xenograft tumours was assessed using IHC and 

FRET. Although the architecture of the tumours was not well preserved 

compared to formalin fixation, the antigenicity of pHER2 was retained even 

after 24 hours at 4 °C before fixation with liquid nitrogen (Figure 6.3A). Using 

IHC, the difference in anti-pHER2 staining could not be detected between 

immediate fixation and 24-hour fixation with liquid nitrogen. FRET however 

revealed that the phosphorylation of HER2 had decreased from immediate 

fixation to 24-hour fixation, indicated by the decrease in the average FRET 

efficiency from a median of 7.5 % to about 5% (Figure 6.3B).

All together the xenograft experiments showed that the variations in HER2 

phosphorylation due to delay in fixation with either formalin or liquid nitrogen 

may be detected by FRET, which would otherwise not be quantified by IHC.
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IHC and FRET in MDAMB-453 Xenograft tumour fixed with liquid nitrogen.
A, A MDMAB-453 xenograft tumour was obtained and cut into two parts. They 
were fixed either immediately in liquid nitrogen or left at 4 degree C for 24 hours 
before fixation with liquid nitrogen. The tumours in the two conditions were then 
made into tumour slides and stored in - 80 degree C. On the day of experiment, 
the slides were thawed before being stained with anti-pHER2 antibody. B, The 
tumour slides were prepared in the same manner as A. But after thawing, the 
slides were labelled with either donor alone (HER2-Cy3b) or donor and acceptor 
(HER2-Cy3b + pHER2-Cy5) to assess HER2 phosphorylation.
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6.2.5 Determination of HER2
phosphorylation by FRET in breast 
tumour slides

Before proceeding to breast TMAs, a set of paraffin-embedded formalin-fixed 

breast tumour slides containing both HER2 positive and HER2 negative cases 

were obtained to assess the variation in lifetimes by FRET between different 

regions of the breast tumour tissues and between HER2 positive tumours and 

HER2 negative tumours. The understanding of the variation in lifetimes 

between different regions will be useful for interpretation of TMAs since it is 

not uncommon for tumour cores in the TMAs to differ in the composition of 

tumour and stromal / adipose tissues. It is also essential to assess whether 

FRET may be used to measure HER2 phosphorylation in “HER2 negative” 

breast tumours since breast TMAs may contain a mixture of HER2 positive 

and HER2 negative cases.

The assessment of HER2 positive breast tumour slides was performed first. 

Figure 6.4A shows the Haematoxylin & Eosin (H&E) stain of the HER2 

positive breast tumour slides. For each slide, a pathologist from Oxford 

marked the tumour areas, and the difference between the tumour area and 

stromal / adipose tissues can be visualised by microscopy (Figure 6.4A). The 

variations in the lifetimes of HER2-Cy3b (indicating HER2 phosphorylation) 

between different regions of a HER2 positive breast tumour slide are shown in 

Table 6.1 A. The average lifetimes taken from the tumour areas were below 

1.5ns, whereas the average lifetimes of the stromal areas were in the region of 

2 ns. Figure 6.4B shows examples of these differences represented by lifetime 

maps. The figures show the donor intensity images (left panels), DC images 

(middle panels) and the lifetime maps (right panels) of HER2-Cy3b of a 

tumour region and a stromal region from a HER2 positive tumour slide. In the 

upper panels, the images were acquired from a tumour region and even within 

this region there were differences in donor intensities (indicative of HER2 

expression). As shown (Figure 6.4B, upper panels), only the lifetimes from the
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area with adequate signal-to-noise ratio may be obtained, as represented by the 

pseudo-colour of the lifetime map (red indicates shorter lifetimes). In the lower 

panels, the images were acquired from a stromal region of the tumour slide. 

The average lifetime of the region of interest was higher (i.e. lower HER2 

phosphorylation) as indicated by pseudo-colour of the lifetime map (blue 

indicates higher lifetimes). All together, the data show that the tumour regions 

have a higher HER2 phosphorylation compared to stromal area, as indicated 

by lower lifetimes of HER2-Cy3b.

HER2 phosphorylation by FRET was also assessed in HER2 negative (IHC 0 

or 1+) breast tumour slides. Table 6. IB exemplifies the lifetimes of HER2- 

Cy3b in several tumour areas of a HER2 negative breast tumour slide. In a 

HER2-negative slide the tumour areas had longer lifetimes than the HER2 

positive cases (Table 6.1 A), i.e. lower HER2 phosphorylation. However, in 

some areas, bright spots were noted (an example from tumour area 2 shown in 

Figure 6.5A, upper panels), indicating a high HER2 intensity (concentration). 

If the region of interest included this area, the overall lifetime of HER2-Cy3b 

decreased from 2.1 ns to 1.91 ns (tumour area 2, Table 6. IB). Figure 6.5 shows 

the diagrams of tumour area 2 (representing the data in table 6. IB). It shows 

that there were differences in the maximum intensities of the donor HER2- 

Cy3b within the tumour region. The left upper panel shows a very bright 

region (indicating high HER2 expression) within the tumour area. The lifetime 

map shows that the lifetime of this bright region is below 1.5 ns indicating 

high HER2 phosphorylation. However, average the lifetime of the whole 

region of interest resulted in an average lifetime of 1.91 ns. When the bright 

spot was excluded the average lifetime increased to 2.1 ns.

In summary, the experiments showed that the tumour areas of the HER2 

positive slide had a higher HER2 phosphorylation than the stromal area. The 

tumour areas of HER2 positive slide also had a higher HER2 phosphorylation 

compared to the tumour areas from a HER2 negative slide. In addition it also 

illustrated that the “so-called” HER2 negative breast tumour may be 

heterogeneous and contain areas that have high HER2 concentration with an 

increased HER2 phosphorylation status. Therefore, the results showed the 

importance of selecting an appropriate region for the TMAs since the amount
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of breast tumour versus stromal tissues may influence the results significantly 

and introduce sample heterogeneity.
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A
HER2 positive 
tumour slide

Phase lifetime 
(ns)

Modulation 
lifetime (ns)

Average lifetime 
(ns)

Tumour area 1 0.85 ±0.35 1.30 ±0.58 1.08
Tumour area 2 1.03 ±0.20 0.79 ± 0.28 0.91
Tumour area 3 0.93 ±0.15 1.35 ±0.25 1.14
Tumour area 4 0.82 ±0.13 1.07 ±0.24 0.95
Stromal area 1 1.68 ±0.30 2.27 ±0.35 1.98
Stromal area 2 1.68 ±0.44 2.83 ±0.50 2.26

B
HER2 negative 
tumour slide

Phase lifetime 
(ns)

Modulation 
lifetime (ns)

Average lifetime 
(ns)

Tumour area 1 1.74 ± 0.60 2.15 ±0.65 1.95
Tumour area 2 
(including bright 
spot)

1.56 ±0.37 2.25 ± 0.49 1.91

Tumour area 2 
(excluding bright 
spot)

1.79 ±0.15 2.40 ± 0.39 2.10

Tumour area 3 
(including bright 
spot)

1.24 ±0.16 1.93 ±0.27 1.59

Tumour area 3 
(excluding bright 
spot)

1.79 ±0.44 2.81 ±0.49 2.3

Table 6.1: A, The average lifetimes of HER2-Cy3b in tumour areas and stromal 
areas of a HER2 positive breast tumour slide. B, The average lifetimes of 
HER2-Cy3b in tumour areas of a HER2 negative breast tumour slide.
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Figure 6.4: Assessment of HER2 phosphorylation by FRET in HER2 positive 
breast tumour slides. Formalin-fixed and paraffin-embedded HER2 positive 
tumour slides were labelled with donor HER2-Cy3b and acceptor pHER2-Cy5 
after antigen retrieval as per protocol. A, The tumour slides were marked for 
tumour regions and stromal regions (stromal and adipose tissue) after H&E stain, 
so that the lifetimes of the different regions within the tumour slide could be 
assessed. B, The diagrams from one tumour slide. The left panels show the 
donor intensity images, the middle panels show DC images and the right panels 
are lifetime maps. In the upper panels, the images were taken from a tumour 
region indicated by H & E stain. In the lower panels, the images were taken from 
a stromal area.
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Donor Intensity Lifetime Map

Figure 6.5: Assessment of HER2 phosphorylation by FRET in HER2 nega­
tive breast tumour slides. A, Formalin-fixed and paraffin-embedded HER2 
negative tumour slides were labelled with donor HER2-Cy3b and acceptor 
pHER2-Cy5 after antigen retrieval as per protocol. The diagrams were taken 
from the tumour region of one tumour slide. The left panels show the donor inten­
sity images of tumour region, the middle panels show DC images and the right 
panels are lifetime maps of the cores. B, Excluding the bright spot in the region 
of interest.
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6.2.6 Assessm ent of the HER2
phosphorylation status in mixed HER2 
breast TMAs

A set of breast tumour arrays (which contained 230 tumour cores with a 

mixture of HER2 positive and HER2 negative breast tumour cores) were 

labelled with either donor HER2-Cy3b alone (as control) or donor and 

acceptor pHER2-Cy5 according to the protocol to assess the HER2 

phosphorylation status by FRET, monitored by high throughput FLIM. The 

tumour cores were mapped in the automated FLIM and lifetimes of individual 

tumours cores were obtained. The results showed great heterogeneity in the 

intensity of donor HER2-Cy3b between the tumour cores due to different 

HER2 expression between them. In the mixed breast TMAs, some tumour 

cores had very low level of HER2 expression and thus very little amounts of 

HER2-Cy3b would have bound to the HER2 receptors. This would result in a 

low signal to noise ratio and the intensity from such sample would be too low 

relative to the background scattering foil to calculate the lifetime (See Methods 

Section 2.2.11). Such problems however did not occur in the tumour cores 

with high HER2 expression. The heterogeneity problem was further 

highlighted when different exposure times of the excitation source were used 

since the tumour cores with high expression of HER2 only required a very 

short exposure time while the tumour cores with low HER2 expression would 

require a longer exposure time to reach an adequate signal to noise ratio. 

Moreover, when exposed to a longer exposure time, the tumour cores with 

high HER2 expression may reach a saturated intensity (> arbitrary threshold 

value of 4900) for the software to calculate the lifetime (See Methods Section 

2 .2 .11).

Due to the heterogeneity problem in the intensity between the tumour cores, 

cores were initially exposed manually to different exposure times to optimise 

and calibrate the automated FLIM instrument. Figure 6.6 shows the diagrams 

from the optimisation in a tumour core. When the exposure time of pulsed 

laser excitation was 2000ms, the intensities of both tumour core and
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background were high and the average lifetime of donor HER2-Cy3b was 2.04 

ns (Figure 6.6A). When the exposure times were decreased to 1500ms and 

1000ms, the contrast of the donor intensity between the tumour core and the 

background was more obvious and the average lifetimes were 2.04 ns and 2.01 

ns respectively (Figure 6.6B and 6.6C). When the exposure time was 

decreased to 500 ms, the maximum intensity of the donor HER2-Cy3b had 

decreased to a threshold of about 1000 (arbitrary value) and the signal-to-noise 

ratio was too low to calculate the lifetime of HER2-Cy3b. In another tumour 

core, the intensity of the donor fluorescence was saturated with 2000 ms 

exposure (> arbitrary value of 4095), resulting in an inability to calculate 

lifetimes (Figure 6.7A). However, when the exposure times were decreased, 

the lifetimes could be calculated (Figure 6.7A). In some of the tumour cores, 

the donor intensities of the tumour core were saturated even with an exposure 

time of 1000 ms and lifetime was only obtained when the exposure was 

decreased to 500 ms (Figure 6.7B).

In summary while processing the mixed breast TMAs, it was found that there 

was a great heterogeneity problem between the intensity of the tumour cores 

making it difficult to process the TMAs in a high throughput manner by the 

FLIM. To optimise the instrument, a calibration curve was plotted so that the 

relationship between exposure times and maximum intensities of donor HER2- 

Cy3b of the breast tumour cores could be determined.

To obtain the calibration curve, several breast tumour cores were manually 

exposed to different exposure times and the intensities of the donor HER2- 

Cy3b were recorded. Figure 6.8 shows examples of four tumour cores 

(TA15DA0001, 0003, 0005 and 0011) and the maximum intensities of the 

donor HER2-Cy3b (y-axis) were plotted against the exposure times (x-axis) of 

the tumour cores. In TA15DA0001 and 0011, the intensities were already 

saturated at an exposure time around 700 ms. Therefore, using an exposure 

time greater than 1000 ms would result in not being able to calculate the 

lifetime of HER2-Cy3b. There was however a linear relationship between 

exposure times and maximum intensities below 700 ms. For tumour cores 

TA15DA0003 and 0005, the maximum intensities relative to the exposure 

times were linear although the intensities decreased below the threshold of 

1000 if the exposure time was less than 500 ms (Figure 6.8). The maximum
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intensity was not saturated even with an exposure time of greater than 2000 ms 

(Figure 6.8).

Therefore, at this stage the lifetimes of the arrays with a mixture of HER2 

positive and HER2 negative breast tumour cores could not be acquired by 

FLIM automatically, due to heterogeneity in the intensities of HER2-Cy3b as a 

result of variable HER2 expression among the tumour cores. The calibration 

curve however provided the relationship between the exposure times and the 

maximum intensities of the tumour cores and this information was used for 

further automation of the instrument which will be discussed in the next 

section.
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Figure 6.6: Optimisation of exposure times for a TMA containing a mix­
ture of HER2 positive and HER2 negative tumour cores. Breast tumour 
cores labelled with donor HER2-Cy3b and acceptor pHER2-Cy5 were 
exposed to different durations of pulsed laser excitation: 2000 ms (A), 1500 
ms (B), 1000 ms (C) and 500 ms (D).
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Figure 6.7: Optimisation of exposure times for an array containing a mixture of HER2 positve and HER2 negative breast 
tumour cores. Breast tumour cores labelled with donor HER2-Cy3b and acceptor pHER2-Cy5 were exposed to different durations 
of pulsed laser excitation. Two examples are illustrated here. A, The intensity of the donor fluoresecence of a tumour core was satu­
rated in the case of 2000 ms exposure and the lifetime of donor HER2-Cy3b was not quantifiable until the exposure times were 
decreased to 1500 ms. B, The donor intensities of another tumour core were saturated when exposed to pulsed laser excitation of 
greater than 1000 ms and lifetimes were not quantifiable until the exposure was reduced to 500 ms.
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Figure 6.8: The calibration curve between the exposure times of the 
pulsed laser excitation and the maximum intensities of donor HER2-Cy3b 
of the breast tumour cores. Breast tumour cores labelled with donor HER2- 
Cy3b and acceptor pHER2-Cy5 were exposed to different durations of pulsed 
laser excitation. The diagram shows examples of four tumour cores 
(TA15DA0001, 0003, 0005 and 0011). The maximum intensities of the donor 
HER2-Cy3b (y-axis) were plotted against the exposure times of the pulsed 
laser excitation (X-axis).of the tumour cores.
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6.2.7 Automation of the exposure tim es 
for high throughput FLIM

To process the breast array with a mixture of HER2 positive and negative 

cores in a high throughput manner, further automation of the instrument was 

required. The aim was to process the array by automatically varying the 

exposure times for tumour cores according to donor intensities of HER2-Cy3b 

(i.e. the amount of HER2 expression) of the tumour cores, so that the tumour 

cores with high HER2 over-expression were not over-exposed with saturated 

intensities and tumour cores with low HER2 expression were not under­

exposed with low signal-to-noise ratios. In collaboration with, Pierre 

Leboucher from College de France (CNRS), re-programming of the FLIM 

software was performed to overcome the problems. During automatic 

acquisition of lifetime, a higher exposure time (e.g. 2000 ms) was first set in 

order to reach a higher signal-to-noise ratio for all the tumour cores. If a 

tumour core was over-exposed with this exposure time, the acquisition of the 

lifetime of that tumour core would be repeated with a lower exposure time 

(e.g. 1900 ms). The cycle (i.e. acquisition with a lower exposure time) would 

continue to eliminate over-exposure of the tumour cores. Before acquisition, 

the operator needed to choose the maximum and minimum acceptable 

intensities (e.g. arbitrary value of 4000 for maximum intensity and 2000 for 

minimum intensity) as well as the interval of decrease in exposure time (e.g. 

100 ms) so that the exposure time would decrease according to a pre-set 

interval during each re-run when the tumour cores were over-exposed. With 

this re-evaluation of the automation software, the tumour arrays with a mixture 

of HER2 positive and negative cases could be processed automatically by 

FLIM. However, out of the 234 tumour cores, only 71 samples could be 

analysed since the lifetimes of most tumour cores were still unobtainable 

despite adequate intensities of the tumour cores. This was because in some 

cases, the tumour and the background had similar intensities and by increasing 

the exposure times, the intensity of the background increased with the tumour
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so that the lifetime could not obtained. The Kaplan-Meier survival curves of 

those 71 were plotted using average FRET efficiency as a prognostic marker 

(split by median). The statistically significant differences the DFS and OS 

between the two groups were not obtained although there was a trend for 

patients with high FRET to have lower DFS (p=0.41) (Figure 6.9).

The automation of the FLIM is an ongoing project in the laboratory and is 

constantly upgraded by Pierre Leboucher and Banafshe Larijani. Since the last 

experiment shown in this section, the automated FLIM is now able to set 

suitable exposure times according to the intensity of HER2-Cy3b of a tumour 

core after the initial run at a low exposure time and the lifetimes of low HER2 

tumour cores can now be obtained. This will enable the arrays to be processed 

in a high throughput manner regardless of HER2 expression of the tumour 

cores.
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Figure 6.9: Kaplan-Meier curves using average FRET efficiency as a 
prognostic marker in a set of breast tumour arrays which contained both 
HER2 positive and HER2 negative cores. A, Disease-free survival (DFS) 
between patients in upper median versus the lower median of average FRET 
efficiency. B, Overall survival (DFS) between patients in upper median versus 
the lower median of average FRET efficiency.
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6.2.8 Assessm ent of the HER2
phosphorylation status by FRET in 
HER2 positive TMAs

The difficulty in achieving an adequate signal-to-noise ratio for HER2 

negative tumour cores in order to calculate their lifetimes was illustrated in 

Section 6.2.6. In Oxford at the IMM, the molecular oncology department had 

recently finished preparing a set of TMAs, which contained exclusively HER2 

positive tumour cores (n=55). This set of TMAs would not have the same 

heterogeneity problem in the intensity since all tumour cores had high 

expression of HER2 (and thus sufficient signal to noise ratio to calculate 

lifetimes).

It was hypothesized that using FRET to assess HER2 phosphorylation status, 

the patients could be stratified into different prognostic groups. The TMAs 

were processed according to the standard protocol (see Methods Section 

2.2.11.6) and were labelled with either donor alone or donor and acceptor to 

assess HER2 phosphorylation in these patients. The lifetimes were obtained for 

individual cores and FRET efficiency indicating HER2 phosphorylation was 

calculated for each patient (only 40 out of 55 patients had enough data to be 

analysed). To assess the prognostic value of FRET, the FRET efficiency was 

correlated with known prognostic factors of breast cancer patients, i.e. lymph 

node status, number of lymph nodes, tumour size, grade of tumour and 

hormone status of the tumour. Figure 6.10 and 6.11 show that increased HER2 

phosphorylation status indicated by high FRET efficiency was associated with 

poor prognostic factors in HER2 positive patients. Amongst the HER2 positive 

patients split by median, patients with high FRET efficiency had poorer 

prognostic factors, with greater proportions of patients having node-positive 

disease, 4 or more lymph nodes positive, tumours greater than 4 cm, high- 

grade tumours and ER negative disease (Figure 6.10 and Figure 6.11). To 

further determine the prognostic value of FRET, the data was also correlated 

with the survival data of these breast cancer patients. Using average FRET 

efficiency as a prognostic marker, Kaplan-Meier curves illustrate that high
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FRET efficiency (indicating high HER2 phosphorylation) had a trend towards 

a poorer disease-free survival (DFS) and overall survival (OS), although the 

number of patients was too low to reach statistical significance (p=0.4 for DFS 

and p=0.38 for OS between low FRET and high FRET) (Figure 6.12).

In summary, the results showed that using FRET to assess HER2 

phosphorylation, HER2 positive breast cancer patients could be stratified 

further into different prognostic groups.

224



Nodal s ta tus split by median FRET efficiency

B

100

I Node negative 
I Node positive

High FRET efficiency Low FRET efficiency

The number of patients with 4 or more nodes involvement

100

* 80

!  60
0
Si
2 40
C1ui

20

I < 4 nodes
14 nodes or > 4 nodes

High FRET efficiency Low FRET efficiency

Proportion of patients with tum our g rea ter  than 4cm

100

80

a  60

uai
2 40

20

I TUmour < 4 cm 
I TUmour = />  4cn

High FRET efficiency Low FRET efficiency

225



D
Tumour grade split by median FRET efficiency

Low FRET efficiencyHigh FRET efficiency

E
P rop ortio n  o f p a tie n ts  h av in g  ER n e g a tiv e  d isease

■  ER positive
■  ER negative

Low FRET efficiencyHigh FRET efficiency

Figure 6.10 and Figure 6.11: Increased HER2 phosphorylation indicated 
by high FRET efficiency is associated with poor prognostic factors in 
HER2 positive patients. A set of HER2 positive tumour arrays containing 55 
tumour cores were labelled with donor HER2-Cy3b and acceptor pHER2-Cy5 
to assess HER2 phosphorylation by FRET. The FRET efficiency was obtained 
for individual core and the patients were split by median into high FRET 
efficiency group and low FRET efficiency group. The proportion of patients 
having different prognostic factors in the two groups were analysed: A, node 
positive disease, B, 4 or more lymph nodes. C, tumour greater than 4 cm. D, 
high grade tumours. E, ER negative disease
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Figure 6.12: : Kaplan-Meier curves using average FRET efficiency as a 
prognostic marker in a set of HER2 positive breast tumour arrays which 
contained 55 tumour cores. A, Disease-free survival (DFS) between 
patients in upper median versus the lower median of average FRET 
efficiency. B, Overall survival (DFS) between patients in upper median versus 
the lower median of average FRET efficiency.
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6.2.9 Correlation of IHC method with 
FRET to a ssess  HER2 phosphorylation 
status in HER2 positive TMAs

The focus of the study was to assess whether the IHC would correlate with 

FRET efficiency. The HER2 positive breast tumour arrays were stained with 

either anti-HER2 antibody (to confirm the presence of HER2) or anti-pHER2 

antibody (to assess HER2 phosphorylation) using IHC. An example of anti- 

HER2 staining and anti-pHER2 staining from a tumour core is shown in 

Figure 6.13A. All the tumour cores were HER2 positive although differences 

between tumour cores were observed (These tumour cores were all previously 

assigned to be HER2 positive by HercepTest which is based on the intensity of 

HER2 staining). For anti-pHER2 staining, all the tumour cores had a similar 

intensity (2+) using standard IHC scoring and differences could not be 

distinguished between the tumour cores. To further subdivide the tumour 

cores, percentages of cell staining for anti-pHER2 was determined for each 

tumour core (See Methods). The results showed that about half of the tumour 

cores had 4+ scoring (more than 80% cell staining) and the other half of them 

had 1-3+scoring (< 80% cell staining although almost all of them were 2-3+). 

The Kaplan Meier curves were plotted using anti-pHER2 percentage scoring as 

a prognostic marker (4+ versus 2-3+) (Figure 6.13B and 6.13C) and were 

compared to the results with FRET shown in Figure 6.12, Figure 6.13B and 

6.13C. These data show that the differences between the two groups were not 

significant for DFS (p=0.7) although there was a trend for the patients with 4+ 

scoring to have a lower OS (not statistically significant, p=0.1).

To further assess the difference between FRET and IHC, the Mann Witney 

test was used to compare the medians of the average FRET efficiency between 

the two groups (IHC pHER2 scorings 2-3+ versus 4+). Figure 6.14A shows 

that the median of tumour cores with a score of 4+ was higher than with a 

lower score although the difference was not statistically significant probably 

because of low number of tumour cores (p=0.27). The correlation of HER2
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level with FRET efficiency was also explored using the percentage of cell 

staining for anti-HER2 by IHC. The median of the FRET efficiency of tumour 

cores with a score of 4+ was higher than with a lower score (p=0.03, Figure 

6.14B).

In summary, the experiments on HER2 positive breast tumour array showed 

that FRET maybe used to stratify HER2 positive breast cancer patients into 

different prognostic groups. The difference in the intensity of anti-pHER2 

staining between different tumour cores using IHC was not significant. Further 

subdividing these patients by the percentage of cell staining using IHC showed 

that there was a trend for the tumour cores with > 80% cell staining (4+) to 

have a lower OS. These tumour cores also had higher FRET efficiency. 

Moreover, tumour cores with high percentage of anti-HER2 cell staining (> 

80%) had a higher FRET efficiency.
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Figure 6.13: Kaplan-Meier curves using anti-pHER2 staining as a 
pronostic marker in a set of HER2 positive breast tumour arrays 
which contained 55 tumour cores. A, IHC of anti-HER2 staining and 
anti-pHER2 staining of a tumour core. B, Disease-free survival (DFS) 
between patients with 4+ percentage of cell staining versus 1-3+ percent­
age of cell staining. C, Overall survival (OS) between patients with 4+ 
percentage of cell staining versus 1-3+ percentage of cell staining
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Figure 6.14: Correlation betweeen average FRET efficiency and IHC 
scorings of a HER2 positive breast tumour array. Same experiment as 
Figure 6.13. The tumour arrays were stained for either anti-pHER2 antibody 
(A) or anti-HER2 antibody (B) using IHC method. The tumour cores were 
split into two groups: more than 80% percentage staining (4+) or less than 
80% (2-3+). The medians of the average FRET efficiency were compared 
betweem two groups for both anti-pHER2 staining and anti-HER2 staining.
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6.3 Discussion

In this chapter, HER2 phosphorylation status by FRET was established in 

MDAMB-453 xenograft tumours and breast TMAs, to test for the assay to be 

applied for use in the future prospective trials. The assessment of HER2 

phosphorylation by FRET was compared with IHC in MDAMB-453 xenograft 

tumours and in archives of paraffin-embedded and formalin-fixed breast 

tumour arrays. The results showed that the phospho-antigen of HER2 was 

retained for tumours fixed immediately with formalin, after 1 hour on ice and 

at room temperature before fixation. Using IHC, anti-pHER2 staining was 

present in all three conditions and differences between them could not be 

detected. Using FRET to assess HER2 phosphorylation however revealed a 

decrease in FRET efficiency after 1 hour of delay in formalin fixation either on 

ice or at room temperature. The most likely explanation of the difference 

between IHC and FRET is that IHC depends on the subjective interpretation of 

the intensity of the membranous staining and the human eye does not have the 

dynamic range a camera has to enable a distinction. While the variation 

between the HER2 phosphorylation is small, the differences may be difficult to 

detect in a precise manner with the naked eye. Moreover, IHC can be affected 

by background staining which is less of a problem in FRET due to the use of 

two-site assay that increases the specificity of the method. The data therefore 

illustrate that variations in phosphorylation of HER2 can be detected by FRET 

whereas these differences cannot be quantified by IHC. The preservation of 

pHER2 was also assessed in MDAMB-453 xenografts using liquid nitrogen, 

either fixed immediately or left at 4°C for 24 hours before liquid nitrogen 

fixation. It was shown that FRET was more precise in determining HER2 

phosphorylation status since IHC could not detect the difference that was 

shown by FRET. HER2 phosphorylation decreased with delay in liquid 

nitrogen fixation but was retained up to 24 hours at 4° C before fixation. This 

is important considering that there maybe delays in the operating theatre when 

the tumours are removed. It is important to note that the experiments to assess 

HER2 phosphorylation status by IHC and FRET were performed in parallel in
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duplicate sets of tumour arrays. The processes for antigen-retrieval and the 

fixation of the tumour arrays with either formalin (NBF) or liquid nitrogen 

were therefore identical. It is speculated that the phosphotyrosine is retained 

may be in part because activated receptors will recruit SH2 domain 

adaptors/effectors that will help to protect the phosphotyrosine from 

dephosphorylation.

Although IHC staining for phosphorylated HER receptors is possible, the 

two-site FRET assay is more precise than IHC staining. The reason being that 

IHC may be affected by various factors including non-specific staining and 

concentration of the antibodies. HER2 is expressed in normal epithelial cells as 

well as some breast tumour cells. Background staining may be a problem in 

IHC when the concentration of primary antibodies is too high since the anti- 

HER2 or anti-pHER2 antibodies may bind to both normal cells and breast 

tumour cells. In contrast, background staining is not a problem in the two-site 

FRET assay. However, if the concentration of primary antibody is too low this 

may result in a low “signal-to-noise” ratio that in turn results in not being able 

to calculate the lifetime. The calculation of lifetime may also be affected by the 

concentration of the receptors. For example, in breast tumours with low HER2 

concentration, the intensity of HER2-Cy3b was found to be too low for the 

lifetime to be calculated as shown in section 6.2.6. In this case, the “signal-to- 

noise” ratio may be low regardless of the concentration of the primary 

antibody.

Proteins are unstable and one particular study has shown that the variability 

in the type of fixatives, duration of fixation, tissue processing and IHC 

techniques including antigen retrieval processes may all affect the sensitivity 

and specificity of IHC (Vincent-Salomon et al., 2003). The same study 

however showed that a high accuracy of HER2 assessment by IHC maybe 

achieved by using a calibration processes which include antigen retrieval 

procedure, high dilutions of anti-HER2 antibody (to reduce background 

staining) and the use of specific controls. This recommendation can also apply 

to FRET experiments to assess HER2 phosphorylation in tumour arrays since 

the process of tissue processing is essentially similar to IHC. Various antigen 

retrieval processes may be performed to assess whether it affects the detection 

of HER2 phosphorylation status by FRET.
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The quantity of tumour versus stromal components in tumour cores of TMAs 

may vary depend on how the tumour cores are collected and processed. In 

IHC, this variation of the stromal component may affect the IHC results since 

the scorings of IHC depends on the intensity of the staining as well as the 

percentage of staining cancer cells. In this chapter, using FRET, a variation of 

lifetime (indicating HER2 phosphorylation) was observed between the stromal 

component and tumour component of breast tumour slides. When selecting a 

region of interest that includes tumour and stromal areas, the intensity of the 

tumour area is much greater than the stromal area. The lifetime calculation will 

be based mainly on the area with greater intensity (i.e. the tumour area), and 

the stromal contribution may be minimal unless the tumour core contains 

minimal tumour tissue.

As discussed in the Introduction, determining a cut-off point for HER2 status 

by IHC and FISH is problematic and yet extremely important since the 

selection of patients for Herceptin is based on IHC (3+) or FISH (> 6 HER2 

gene copies per nucleus, or ratio > 2.2). Selecting a cut-off point for “high” 

HER2 phosphorylation by FRET is also not straightforward. FRET efficiency 

is a continuous variable and selecting a cut-off point may be based on either 

prognosis of breast cancer patients or prediction for targeted therapy. 

Nevertheless, this needs to be done using the data from a prospective trial to 

have significance. In the small series (n=55) of HER2 positive breast cancer 

cases (n=55) presented in this chapter, the median FRET efficiency was used 

as a cut-off point in the first instance. The results were encouraging in that 

FRET was shown to be able to stratify patients further into different prognostic 

group among HER2 positive cases (IHC 2-3+). However, further validation of 

the cut-off points for FRET need to be performed in a large prospective trial.

Since HER2 has been shown to be the preferred dimerisation partner for other 

HER receptors, it is possible that HER2 may be activated through over­

expression of other HER receptors or one of the ligands. It has been shown that 

Herceptin and Cisplatin were synergistic in MCF-7 cells (non HER2 over­

expressing) engineered to over-express heregulin. One of the reasons for 

Herceptin to be effective in these cells is thought to be due to activation of 

HER2 via HER2/HER3 dimerisation as a result of heregulin over-expression 

(Arteaga, 2006; Menendez et al., 2006). This implies that patients without
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HER2 over-expressing breast tumours may also respond to Herceptin in 

combination with chemotherapy. Using FRET may potentially be useful to 

select patients for Herceptin treatment regardless of the concentration status of 

HER2 by IHC or FISH and may be particularly useful in equivocal cases of 

IHC and FISH cases.

In this chapter, it is shown that FRET may be used to assess HER2 

phosphorylation in paraffin sections as well as liquid-nitrogen frozen sections. 

Moreover, it may be used to stratify HER2 positive breast cancer patients into 

different prognostic groups. However, the results presented in this chapter are 

only a pilot study and further work needs to be performed on another set of 

HER2 positive tumour arrays. More patients will be needed in order to achieve 

enough power to detect statistically significant differences between the high 

FRET group and low FRET group. Further validation may need to be 

performed in large prospective trials. The future aim is that the prognostic and 

predictive values of FRET as well as a cut-off value may eventually be 

determined from the prospective trials.
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7 Final D iscussion

7.1 Overview

As discussed in the Introduction, the HER (ErbB) receptors are implicated in 

the pathogenesis of several cancers, including EGFR in head and neck cancer 

and HER2 in breast cancer (Salomon et al., 1995). Targeted therapies against 

EGFR and HER2 receptors are gaining an increasingly important role in the 

treatment of various cancers. For example, Herceptin was originally 

recommended by NICE to use only for metastatic breast cancer with HER2 

over-expression due to the clinical benefits shown in a randomised trial 

(Slamon et al., 2001). Since the publication of the three trials in 2005 (NSABP 

B-31, NCCTG N9831, HERA) which showed a survival benefit for Herceptin 

to be given as adjuvant treatment during the early course of breast cancer 

(Piccart-Gebhart et al., 2005; Romond et al., 2005), there has been a 

worldwide increased use of Herceptin as adjuvant treatment in early breast 

cancer. The cost of adding this new drug to the management of breast cancer 

can be significant. It has been estimated that the cost of Herceptin is around 

£25 000 per patient per year (Dent and Clemons, 2005) and that treating early 

breast cancer for 75 patients would cost a hospital trust £1.9 millions on drug 

cost alone and £ 2.3 million when including other costs like pathology testing 

and cardiac monitoring for the drugs (Barrett A, 2006). Needless to say that the 

demand for this drug will have a lot of financial as well as ethical issues in the 

UK, with possible diversion of resources from other diseases. This is reflected 

by the constant debate among health care workers (Barrett A, 2006; Editorial, 

2005) as well as in the public domain (in several BBC news’ headlines) about 

the use of this drug since the publication of the three trials. Aside from the 

costs of the drugs and unpredictable response, up to 5-10% patients may have 

worsening cardiac function if given this drug with chemotherapy (Piccart- 

Gebhart et al., 2005). To correctly select cancer patients for these drugs in



order to exclude patients who will not benefit is a challenge for clinicians and 

scientists.

As discussed in the Introduction, over-expression and high levels of HER 

receptors do not necessarily reflect the functional state of their pathways, e.g. 

recent studies indicate that IHC reporting on EGFR expression levels is 

inconsistent in its predictions of disease recurrence and notably response to 

treatment (Arteaga, 2002; Dei Tos AP, 2005). EGFR inhibitors including 

Iressa are now given to patients without assessment of EGFR receptor 

concentration since EGFR has a poor predictive value (Chung et al., 2005). For 

breast cancer patients, despite the selection of patients by HER2 status (using 

either IHC or FISH), only about one third of these patients respond to 

Herceptin monotherapy (Vogel et al., 2002) and non-HER2 over-expressing 

breast tumours may also respond to Herceptin (Arteaga, 2006; Menendez et 

al., 2006). This emphasizes the need to understand at a higher level of detail 

the functional status of candidate markers employed in diagnostic, prognostic 

and therapeutic settings.

Monitoring response to treatment is of increasing importance with respect to 

trials of new molecular-directed therapeutics, as well as in seeking to optimise 

the use of those reaching the clinic. It is well accepted that the use of 

biomarkers in the development of new agents is important and it is implicit 

that these markers reflect the action of the target (whether direct or through a 

validated surrogate) and not simply its presence. The logic applied to the 

targeting and monitoring of inhibition for these targets is no less relevant to the 

question of prognostic indicators in relation to disease. The need to be able to 

determine the functional status of potential therapeutic targets or prognostic 

indicators is essential. Therefore, there is a need for a quantitative and 

objective method for assessing HER receptor phosphorylation to complement 

the current methods of HER receptor concentration testing by IHC.

7.2 Assessing HER receptor 
phosphorylation by FRET
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In this thesis, the assessment of EGFR phosphorylation by FRET was first 

established in cell lines. These established reagents were applied to head and 

neck tumour arrays using a high throughput automated FLIM. It was shown 

that increased FRET (indicative of EGFR phosphorylation) was correlated 

with disease recurrence and prognosis of the patients. Moreover, the results 

showed that EGFR concentration and phosphorylation determined by FRET in 

these patients were not correlated. This is not surprising given that a number of 

mechanisms other than over-expression of EGFR receptors may cause 

increased activation of EGFR, including over-expression of ligands for EGFR 

and other HER receptors, dimerisation with HER2 receptors to induce cellular 

signalling as well as constitutive activated mutant EGFR receptors (Arteaga, 

2002; Dei Tos AP, 2005). Other studies have shown that the response rate for 

EGFR inhibitors in head and neck cancer patients with over-expression of 

EGFR is only around 10% (Baselga et al., 2005; Cohen et al., 2003; Herbst et 

al., 2005) and patients without EGFR over-expression are also found to be 

responsive to Cetuximab in colon cancer (Chung et al., 2005). All these 

emphasise the importance of assessing EGFR phosphorylation rather than just 

concentration in these patients.

Currently the most accurate predictor of disease recurrence for HNSCC is the 

Tumour Node Metastasis (TNM) stage, particularly the lymph node status. 

There have been several studies seeking to find prognostic markers that can 

complement clinico-pathological information to predict survival and 

recurrence in HNSCC, e.g. EGFR over-expression level (Ang et al., 2002), 

TGF-a / EGFR mRNA (Dassonville et al., 1993) and p53 status (Boyle et al., 

1993; Brennan et al., 1995). At present, an elevated level of TGF-°c seems to 

be as important or even more important in classifying prognostic groups than 

EGFR expression level (Chung et al., 2004; Endo et al., 2000; Rubin Grandis 

et al., 1998; Todd et al., 1989; Wen et al., 1996). It is implicit that the ligand is 

engaging and activating its receptor and hence the assessment of activation 

status should be informative and indeed the data in this chapter supports this 

contention. The activation of the receptor measured by FRET gives prognostic 

information that is not available from analysing EGFR in the conventional way 

or even with phospho-antibodies as indicated by Chung et al 2004 (Chung et 

al., 2004).
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FRET to assess HER2 phosphorylation was also established in A431 cells 

and breast cell lines. The assay was applied to assess HER2 phosphorylation in 

MDAMB-453 xenograft tumours. The results showed that variation in HER2 

phosphorylation could be detected by FRET in xenograft tumours whereas 

these differences could not be quantified to the same extent by IHC that relies 

on subjective interpretation of the intensity staining. The FRET assay to assess 

HER2 phosphorylation was also applied to determine HER2 phosphorylation 

in a set of breast tumour arrays that was determined to be HER2 positive by 

IHC method. However, it was shown that FRET maybe used to stratify these 

HER2 positive breast cancer patients further into different prognostic groups, 

demonstrating the superiority of FRET over IHC.

7.3 Resistance to targeted 
therapies in breast cancer

Monotherapy with either EGFR and HER2 inhibitors (e.g. Iressa and 

Herceptin treatment), often results in a relatively poor response rate and the 

response is not usually sustained for the responders (Cohen et al., 2003; Vogel 

et al., 2002) due to primary and secondary resistance to these drugs. The FRET 

assay was used in breast cell lines, to measure the effect of these drugs on 

HER receptor phosphorylation. The method was established in cells prior to 

using it in clinical setting to stratify patients for targeted therapy. It was 

hypothesised that EGFR inhibition should abolish HER2 phosphorylation if 

HER2 is the preferred dimerisation partner for other HER receptors. This was 

however not the case. Using FRET to monitor HER2 phosphorylation, the 

responses of HER receptors in breast cancer cell lines were investigated when 

the cells were treated with targeted therapies. It was shown that the specific 

tyrosine kinase inhibitors of EGFR (HER1), AG1478 and Iressa decreased 

EGFR and HER3 phosphorylation through inhibition of EGFR/HER3 

dimerisation, but induced activation and cleavage of HER4. It is implied that 

the dimerisation between HER2 and HER4 leads to HER2 phosphorylation. 

These drug-induced processes were mediated by the release of ligands

239



including heregulin and betacellulin that activate HER3 and HER4 via HER2. 

Whereas anti-betacellulin antibody in combination with Iressa increased the 

anti-proliferative effect, ligands like heregulin and betacellulin rendered 

sensitive SKBR3 resistant to Iressa. These results confirmed the role of ligands 

and activation of alternative HER receptors in mediating resistance to Iressa. It 

was also shown that Herceptin which targets the extra-cellular domain of 

HER2, induced the phosphorylation of HER2 receptors and cleavage of HER4 

in SKBR3 cells through their ligands despite the ability to downregulate EGFR 

and HER2 in the long term. Therefore the results in cell lines provided a 

molecular mechanism for the resistance to Iressa and Herceptin through 

ligands-induced activation of alternative HER pathways. Both of these results 

highlight the complexity of action of targeted therapies and may indicate 

alternative strategies to investigate intervention.

The release of ligands from their membrane-anchored precursors 

(ectodomain shedding) is mediated by different metalloproteinases (including 

the ADAM family). For example, precursors of TGF-a are released by TACE 

(ADAM 17) (Sunnarborg et al., 2002) and precursors of neuregulin (heregulin) 

P~1 and P-4 are mediated by ADAM 19 (Shirakabe et al., 2001). However, 

many questions remain unanswered, including biosynthesis and activation of 

these metalloproteinases like TACE in the secretory pathway, their trafficking 

in different compartments, the regulation/specificity of TACE and other 

metalloproteinases in the processing and shedding of HER ligands and the 

exact cleavage sites of the ligand precursors (Dempsey et al., 2002). The 

specificity of metalloproteinases is particularly important since for example 

TACE has many substrates including the precursors of amphiregulin, TGF-a 

and heparin-binding EGF (Hinkle et al., 2004) as well as the HER 4 receptor 

(Carpenter, 2003; Vecchi and Carpenter, 1997). The complexities associated 

with the regulation of ectodomain shedding of these ligands by the 

metalloproteinases make it difficult to ascertain a definite role for a particular 

metalloproteinase in the processing of a HER ligand. Therefore, understanding 

the cleavage and activation of ligands by the metalloproteinases is key to 

providing further therapeutic intervention. Furthermore, investigating how this 

ectodomain shedding of the ligands is influenced by targeted therapy is also 

crucial. For example to understand the mechanisms of how betacellulin and
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heregulin are released through the inhibition of EGFR may provide a strategy 

to overcome resistance to Iressa via activation of alternative HER receptors. 

The common understanding is that EGFR inhibitors like Iressa must switch off 

all tyrosine kinase activities of EGFR but it was suggested that Iressa may 

inactivate inhibitory kinase like GAK kinase and thus antagonise the inhibitory 

effect of the drug on EGFR signalling (Brehmer et al., 2005). The question of 

whether this inactivation of GAK kinase by Iressa is related to the regulation 

and production of ligands like betacellulin and heregulin remains to be 

answered. INCB3619, a potent inhibitor of ADAM 10 and ADAM 17, is 

effective in preventing the cleavage of heregulin and other ligands mediated by 

these two ADAM family members (Zhou et al., 2006) and it is currently being 

evaluated in the clinic (Fridman et al., 2007). However, INCB3619 being an 

inhibitor of ADAM 10 and ADAM 17, may not be effective in preventing the 

cleavage of ligands by other metalloproteinases, e.g. ADAM 19 which 

mediates heregulin p-1 and P-4 (Shirakabe et al., 2001).

7.4 Future prospects

It has been shown in this thesis that FRET may be used to assess 

phosphorylation of HER receptors quantitatively, in contrast to IHC which is 

semi-quantitative and may be subjective (Dei Tos AP, 2005). FRET uses a 

two-site assay, overcoming the problems of non-specificity of single antibody 

in IHC. The assay has been adapted to assess activation and phosphorylation of 

HER receptors in various cell lines as well as paraffin-embedded formalin- 

fixed tumour slides and arrays. The long-term aim is to exploit the strength of 

the FRET method to assess phosphorylation of HER receptors in relation to 

resistance and sensitivity to targeted therapies. This methodology 

(complementary to current methods, IHC and FISH) may be applied to select 

cancer patients who will respond to targeted therapies like Herceptin, and to 

determine potential resistance mechanisms and develop new treatment 

strategies or rational combinations of therapy. The method can also be used to 

assess HER dimerisation patterns if a suitable pair of antibodies were used, e.g.
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conjugation of Cy3b to anti-HER2 and Cy5 to anti-HER3 to assess 

dimerisation of HER2/HER3. The dimerisation patterns of HER receptors are 

increasingly known to be important for the prognosis of several cancers and 

may predict sensitivity and resistance to targeted therapies. For example it was 

shown that HER2/HER4 and HER2/HER3 dimerisation partners maybe 

important in mediating resistance to EGFR inhibitors. Therefore, FRET may 

be exploited to assess phosphorylation of HER receptors as well as their 

dimerisation patterns to determine mechanisms of sensitivity and resistance to 

targeted therapies in breast cancer.

Since the studies in HNSCC and breast arrays presented in this thesis are 

only retrospective exploratory assessments of patients’ survival, a prospective 

protocol driven assessment for validation and determination of performance 

characteristics needs to be performed using FRET as described by Hayes et al 

(Hayes et al., 1996; Hayes et al., 1998) in order to validate the FRET methods 

for wider clinical use. This strategy will allow the assays to be utilised for 

prospective stratification of patients in randomised trials of EGFR and HER2 

inhibition.

The results from breast tumour arrays showed that FRET may be used to 

stratify patients further among HER2 positive patients, justifying the decision 

to apply this methodology to assess phosphorylation of HER2 and other HER 

receptors in a prospective breast cancer trial including adjuvant Herceptin 

(HERA) trial (Piccart-Gebhart et al., 2005; Smith et al., 2007). HERA trial is 

an international, multicenter, randomised trial compared one or two years of 

Herceptin given in HER2-positive breast cancer patients who had completed 

surgery, radiotherapy and chemotherapy (Piccart-Gebhart et al., 2005; Smith et 

al., 2007). It has been proposed that future work may involve assessing FRET 

as a prognostic tool and a predictive tool for DFS and OS in Herceptin and non 

Herceptin-treated patients of the (HERA) trial. In addition, the trial may also 

be used to validate the methodology as well as to select a cut-off point for 

FRET efficiency. The cut-off point may then be used to separate patients into 

good and bad prognostic groups and early relapse or late/non-relapse patients 

in the HERA trial. The cut-off point may be applied for other future trials once 

it is validated in this trial. This present investigation has shown that 

phosphorylation of alternative HER receptors may mediate resistance to
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targeted therapies in breast cancer cells. Therefore, the hypothesis may be 

tested further in human breast cancer samples from HERA trial by 

investigating whether time to relapse on Herceptin in these patients is related 

to activation of alternative HER receptors and their dimerisation patterns. The 

relapse rate and the onset of relapse may also be correlated with gene 

expression arrays between the control arm and the treated arm in the HERA 

trial to assess the factors that determine who will benefit from Herceptin in 

breast cancer. The overall aim for the proposed works in the HERA trial is to 

assess whether FRET may be used as a diagnostic parameter to assess 

functional status of HER2. The accuracy of this putative diagnostic parameter 

may be exploited to identify breast cancer patients at presentation that may 

benefit from Herceptin and other targeted therapies and exclude non­

responders from the potential side effects of the drugs. Similar strategies may 

also be applied to other prospective trials using the same methodology to 

assess the phosphorylation of HER2 and other HER receptors in breast cancer 

and other types of cancers in relation to targeted therapies.

Future research can also be done to further analyse the mechanisms of 

resistance to targeted therapies like Iressa, Herceptin and Lapatinib in hormone 

sensitive and resistant breast cell lines and in xenograft models. EGFR 

activation has been shown to play a role in hormone resistant breast cancer 

patients (Gee et al., 2003; Knowlden et al., 2003; Polychronis et al., 2005). 

Furthermore, HER receptors have been shown to interact with hormone 

receptors and contribute to resistance to hormone therapies in hormone- 

resistant breast cancer lines (Dowsett et al., 2005; Johnston et al., 2003; Martin 

et al., 2005; Martin et al., 2003). Future work may involve assessing EGFR 

and HER2 activation (as well as the dimerisation patterns of HER receptors) 

by FRET in hormone resistant MCF-7 cell lines with or without Iressa and 

Lapatinib treatment (acute versus long-term) in vitro and investigate their 

interaction with hormone receptors.

It has been shown that reactivation of HER3 occurs in prolonged Iressa 

treatment (Sergina et al., 2007) and heregulin mediated HER3 activation may 

play a role in mediating resistance to Iressa (Zhou et al., 2006). In this thesis it 

was demonstrated that acute treatment with Iressa and Herceptin (acute and up 

to 10 days of treatment) may induce activation of alternative HER receptors
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(including HER3 phosphorylation) in breast cell lines. The goal for future 

investigation may be to assess phosphorylation and dimerisation patterns of 

HER receptors by FRET in relation to targeted therapies, e.g. acute and long­

term treatment with Herceptin, Iressa and Lapatinib in breast cell lines and in 

xenograft models. Particularly HER3 phosphorylation and its dimerisation 

pattern with HER2 should be assessed. These results will be correlated with 

downstream signalling pathways like PKB and ERK1/2 phosphorylation using 

FRET to understand further the mechanisms of resistance to these drugs. These 

experiments can also be performed on human samples by for example 

conducting neoadjuvant Herceptin and Lapatinib trials, in order to understand 

the mechanisms of resistance to these drugs in human patients.

7.5 Concluding remarks

In this investigation, a novel method using FRET to assess HER receptor 

phosphorylation was established in both TMAs and cells. It was shown that the 

two-site assay FRET to assess HER phosphorylation is specific and may be 

applied to paraffin-embedded formalin-fixed head and neck as well as breast 

tissue arrays. Moreover, FRET may be used to stratify HER2 positive breast 

cancer patients into different prognostic groups. Using this method to assess 

HER receptors, it was demonstrated that Iressa and Herceptin treatment in 

breast cancer cells induced activation of alternative HER pathways, providing 

an insight into the mechanisms of resistance to these targeted therapies in 

breast cancer, and hence offering treatment opportunities to overcome 

resistance in patients. It is proposed to utilise this assay for prospective 

stratification of patients in randomised trials of EGFR and HER2 inhibition. 

Since it is applicable to paraffin sections, retrospective analysis of trials of 

EGFR and HER2 inhibitors will also be possible to define those who gain 

most, besides the patients with EGFR and HER2 mutations. In the longer term, 

the identification of these patients at presentation should provide guidance on 

more aggressive treatment or more specifically on appropriate targeted 

therapies. The methodology shows great promise and can also be applied to
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assess the activation of other signalling pathways (e.g. PKB and MAPK) in 

relation to various cancer treatments.
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