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Abstract

This paper proposes a method for estimating a hierarchical model of bounded rationality

in games of learning in networks. A cognitive hierarchy comprises a set of cognitive types

whose behavior ranges from random to substantively rational. Speci�cally, each cognitive

type in the model corresponds to the number of periods in which economic agents process

new information. Using experimental data, we estimate type distributions in a variety of

task environments and show how estimated distributions depend on the structural properties

of the environments. The estimation results identify signi�cant levels of behavioral hetero-

geneity in the experimental data and overall con�rm comparative static conjectures on type

distributions across task environments. Surprisingly, the model replicates the aggregate pat-

terns of the behavior in the data quite well. Finally, we found that the dominant type in the

data is closely related to Bayes-rational behavior.

Journal of Economic Literature Classi�cation Numbers: C51, C92, D82, D83.
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�Human rational behavior ... is shaped by a scissors whose two blades are the structure of

task environments and the computational capabilities of the actor�, Herbert A. Simon (1990).

1 Introduction

A major controversy in economics and psychology surrounds the rationality of human behavior.

While substantive rationality is considered unrealistic by many if not most economists, there ap-
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pears to be little consensus on how to model bounded rationality. As Simon�s scissors metaphor

suggests, any serious attempt to study human rationality, either theoretically or empirically,

should, on one hand, provide a variety of task environments and, on the other hand, be �exible

enough to accommodate the full spectrum of economic agents�cognitive abilities.

The existence of a vast diversity of cognitive abilities is a fact of life. Recent experimental

studies on beauty-contest games1 present well-documented evidence that individuals inside and

outside the laboratory exhibit di¤erent levels of sophistication. A natural way of capturing such

diversity is through a cognitive hierarchy consisting of a set of cognitive types whose behavior

ranges from random to substantively rational.

The objective of this paper is to provide a method for estimating a hierarchical model of

bounded rationality. Conceptually, we think of the distribution of cognitive types as being

determined in an evolutionary equilibrium by the marginal costs and bene�ts of increasing

one�s cognitive type. Using experimental data, we estimate the type distributions found in a

variety of task environments and then show how estimated distributions depend on the structural

properties of the task environments.

The opportunity to estimate a cognitive hierarchy model is provided by a rich data set

produced in the laboratory by Choi, Gale and Kariv (2005, 2006; henceforth CGK05, CGK06).

The data set has a couple of advantages from our point of view. First, the experimental design

contains a number of di¤erent tasks that vary systematically in terms of their cognitive di¢ culty.

Secondly, the data contain a large number of individual decisions of di¤erent levels of di¢ culty for

each subject, thus allowing us to identify both the individual decision rules and the heterogeneity

of those rules.

The experiments performed by CGK05 consisted of various games of social learning in net-

works. The following example is typical. Consider a network consisting of three players, A,

B, and C. The network is star-shaped, with A at the center of the star and B and C at the

periphery. A is linked to B and C and B and C are linked to A but not to each other. The

network governs each player�s information �ow: a player observes another player�s choices if and

only if he is linked to that player by the network. Thus, in the star network, A observes the

behavior of B and C, and B and C can observe the behavior of A, but B cannot observe C and

C cannot observe B (See Figure 1).

At the beginning of the game, Nature randomly selects (i.e., with equal probabilities) one of

two states of the world. With probability q each player independently receives a binary private

signal that is correlated with the unknown state. With probability 1 � q, no information is
received. Time is divided into a �nite number of periods, t = 1; 2; :::; T . In each period, players

1As part of testing the solution cocept of dominance in game theory, many researchers have experimentally

tested beauty-contest games and related behavioral heterogeneity in the laboratory to various cognitive limitations.

To name a few, Nagel (1995), Ho, Camerer and Weigelt (1998), and Costa-Gomes and Crawford (2004). Camerer

(2003) provided an excellent survey on this literature.
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simultaneously choose which state is more likely to have occurred at the beginning of the game.

Their payo¤s, which are not revealed until the end of the game, are assumed to be an increasing

function of the number of correct guesses.

This game has a very nice structure, in the sense that the cognitive di¢ culty of the players�

decision tasks increases as the game proceeds. In period 1, a player bases his decision on his

private signal (if he has one) or his prior (if he does not get a signal). In the second period,

A observes the actions of B and C in the �rst period, whereas B and C can only observe A�s

�rst-period action. Before making a decision in the second period, each player has to think

about what information his neighbor�s action reveals and update his beliefs accordingly. Then

at the beginning of the third period each player observes what his neighbors did in the second

period and re�ects on what that implies about his neighbor�s neighbor�s action in the �rst period.

For example, in the third period B should notice that A�s action in the second period is based

on what B and C did in the �rst period as well as A�s private signal (if any). Similary, A

should know that B�s action at the second period is based on A�s action in period 1 as well

as B�s private signal (if any). In each period, the inference problem becomes more demanding

because it requires a player to consider higher order beliefs. In this sense, the sequence of tasks

constitutes a cognitive hierarchy.

This cognitive hierarchy of tasks suggests a natural hierarchy of cognitive types. The lowest

cognitive type would be someone who randomly guesses the state of nature, without processing

any information. The second lowest type would be someone who could process his signal in

period 1 but make no use of information obtained from observing his neighbor(s) at periods

2; 3; :::; T . The next lowest type would be someone who could process his signal in period 1 and

make an inference about his neighbor(s)�signal(s) in period 2, but could not make any higher

order inferences in periods 3; 4; :::; T . Note that each of these types corresponds to the number

of periods in which the player processes new information and that is exactly how we shall de�ne

the cognitive hierarchy. It consists of T types � = 0; :::; T �1 where type � processes information
in the �rst � periods and learns nothing from information received in the last T � � � 1 periods.
The details of the type�s information processing problem will be made clear later.

Higher types will clearly do at least as well as lower types since they have at least as much

information. At the same time, since there is a �xed amount of information in the network (the

private signals observed by the di¤erent players at the beginning of the game) we expect that the

marginal bene�t of processing information will decline over time. So the gain from being type

� + 1 rather than type � will be decreasing as � increases. Depending on the cognitive costs of

implementing a higher type of strategy, we may expect the tradeo¤ between costs and bene�ts

would lead to a distribution of types concentrated on the lower types. This is an empirical

question, of course, and it is this question we hope to answer.

Our approach of modeling a hierarchy of cognitive types can be illustrated as follows. A
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group of agents are randomly selected from the population to play a game of social learning.

Before playing a game, each of them compares the bene�ts and costs of being each cognitive

type. The bene�t of processing information in the �rst � periods, V� , is captured by the sum

of ex ante expected increments of maximized expected utilities over all time periods. And the

cost of processing information in the �rst � periods, c� , is related to individual-level cognitive

costs. Thus, depending on the level of cognitive cost, di¤erent agents adopt di¤erent cognitive

types whose behavior ranges from random to substantively rational. In equilibrium, the bene�ts

of information processing V� and the type distrbution � are endogeneously determined. Since

the di¤erent task environments relate to di¤erent values of V� , the equilibrium type distribution

di¤ers in di¤erent task environments.

The notion of optimality that underlies our approach raises an interesting question. How can

agents choose decision rules �optimally,� taking into account the corresponding computation

costs and value of information, without having solved the decision problem corresponding to

each cognitive type? We adopt an evolutionary point of view, in which evolution or learning

through lifetime experiences is assumed to reveal to agents the expected bene�ts associated with

di¤erent cognitive types without the necessity of solving a formal optimization problem. Given

this point of view, it is not unreasonable to think that individuals of di¤erent levels of cognitive

ability will be led to choose the decision rules or cognitive types that are optimal for them. The

speci�cation of types from which the evolving subjects are assumed to choose is somewhat ad

hoc, but without some such assumptions, it is impossible to open the black box that determines

the relation between bounded rationality and task complexity, still less confronts the empirical

data and suggests cross-environment comparisons.

In the cognitive hierarchy model an equilibrium distribution over cognitive types depends

on the structure of the task environment. As the information parameter q and the network

architecture change, the cognitive di¢ culty of the di¤erent tasks and the value of information,

in other words, the bene�ts of being a higher type, will vary. For instance, when the value of

information parameter q decreases, the marginal bene�t of information processing in the �rst

two periods becomes uniformly lower, holding constant the network structure, and it usually

takes more periods of information processing to extract all valuable information. We discuss a

number of comparative static conjectures in a later section and test them in the data.

Other approaches to modeling a cognitive hierarchy can be found in the literature on het-

erogeneity of strategic behavior in normal-form games such as beauty-contest games (e.g., see

Camerer, Ho and Chong (2004)). This literature assumes that each agent believes that the rest

of the population consists of agents who are less sophisticated than he is. Suppose one wants to

analyze a one-shot, normal form game. A hierarchy can start from type 0 players who choose

a strategy randomly. Type 1 players believe that all other players are type 0 and choose a best

response to the distribution of type 0 strategies. Type 2 players believe that all other players
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belong to types 0 and 1 and choose a best response to the distribution of those types. And so

on. The highest type will be close to choosing a best response to the entire population and thus

is approximately substantively rational. However, the beliefs of most players are not consistent

with the actual type distribution or with the actual play of the game. Our notion of a cognitive

hierarchy is somewhat di¤erent. While the hierarchy we use could be justi�ed by the belief that

each type of agent believes that the rest of the agents have a lower type, in practice we assume

that agents are responding to the true type distribution (including higher types) and the true

distribution of strategies. Another di¤erence arises from the fact that we study a dynamic game

which involves learning over time. Because we choose to identify types with the number of peri-

ods of information processing, this imposes a very particular structure on the strategies chosen.

It also makes it possible to identify the types from the data generated over time, whereas in a

one shot game it is very hard to distinguish a player�s type from a simple mistake.

The approach we adopt here in order to explain behavioral heterogeneity in the data leads us

to a natural speci�cation for econometric analysis. The speci�cation is a type-mixture model in

which subjects randomly draw cognitive types from a common distribution. Then the estimation

procedure searches for a type distribution that maximizes the likelihood of the empirical data.

This structural model and its empirical application provide new insights into the relationship

between bounded rationality and task complexity. Among the main results of the paper are the

following.

� First, we propose a hierarchical model of bounded rationality in which the equilibrium
type distribution depends on the task environments.

� Secondly, the cognitive hierarchy model provides a set of testable conjectures regarding
cross-environment comparisons of type distributions. The estimation results overall con-

�rm the conjectures, suggesting the structural approach is a good tool for understanding

behavior in the laboratory.

� Thirdly, we found that the dominant cognitive type across all treatments is closely related
to Bayes-rational behavior. Despite the presence of multiple cognitive types in the subject

pool, this �nding tells us that the Bayesian paradigm has considerable explanatory power

as far as the majority of subjects is concerned.

� Finally, we perform a goodness-of-�t test for the cognitive hierarchy model. Surprisingly,

the cognitive hierarchy model replicates the empirical patterns of average herd behavior

across networks and information treatments at the aggregate level. This sheds light on

the potential importance of structural approaches allowing individual heterogeneity in

explaining even aggregate patterns of data.

The rest of the paper is organized as follows. The next section introduces the model of
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cognitive hierarchy and presents some theoretical predictions. Section 3 illustrates the experi-

mental data brie�y, presents the econometric method for estimating the CH model and reports

the estimation results. Sections 4 and 5 include discussion and conclusions.

2 The Cognitive Hierarchy Model

In this section we sketch a hierarchical model of bounded rationality in the three-person networks

studied by CGK05. A network consists of three agents indexed by i = A;B;C. Each agent i

has a set of neighbors, that is, agents whose actions he can observe. Let Ni denote a set of

neighbors for agent i. The neighborhood structure G = fNA; NB; NCg de�nes a three-person
network. The span of three-person, connected2 networks is illustrated by Figure 1.

[Insert F igure 1]

There are two equally likely states of nature denoted by ! 2 
 = f�1; 1g. With probability
q, an agent is informed and receives a private signal at the beginning of the game. Private

signals take two values � = �1; 1 and the probability that the signal � equals the true state ! is
2=3. For notational convenience, we assume that an uninformed agent receives a signal � = 0.

Agents�signals are assumed to be independently and identically distributed conditional on the

true state.

Time is divided into a �nite number of periods, indexed by t = 1; 2; :::; T . At each period t,

agents simultaneously choose the state they think is more likely to be the true state, denoted

by at 2 A = f�1; 1g. Agents have a common payo¤ function at each period, for 0 < M <1;

u (a; !) =

(
M

0

if a = !

otherwise
.

The true state is realized at the end of the �nal period T and the total payo¤ in the game is

the sum of per-period payo¤s. We assume that agents maximize per-period payo¤s at each time

period t conditional on available information.

2.1 Equilibrium

There are a large number of agents in the population who di¤er in their (constant) unit costs

of cognition at each period, c, where 0 � c � c <1. Let F denote a cumulative distribution of
cognitive costs on the interval [0; c], which is assumed to be common knowledge among agents.

Agents with heterogeneous costs are randomly selected from the population to play a social

learning game.

2A network is connected if and only for any pair of two agents (i; j) there is a path from agent i and agent j.

6



Let Iit =
�
�i;
�
(ajs)

t�1
s=1

�
j2Ni

; �

�
denote the information set at location i in time period

t and F (Iit) be a �-�eld generated by that information set. Let � denote a distribution over
a set of cognitive types in which � (�) is the relative frequency in the population of type �

which processes information in the �rst � periods only. When information in the �rst t periods

is processed in location i of a network G with information parameter q, the ex ante expected
increment of maximized expected utility at time period t is de�ned by

vt ((G; i; q) ; �) = E0
�
max
a2A

E [u (a; !) jFit]
�
�max

a2A
E0u (a; !)

=M

"X
It

Pr (It)

�
max fPr (! = 1jIt) ;Pr (! = �1jIt)g �

1

2

�#
,

where E0 (�) denotes the expectation with respect to prior information over the states and thus
maxa2AE0u (a; !) =M=2. Note that vt ((G; i; q) ; �) = 0 for t = 0.

Then the value of processing information in the �rst � periods, called value of information

for type � , is de�ned by the sum of ex ante expected increments of maximized expected utilities

over all time periods:

V� ((G; i; q) ; �) =
�X
t=0

vt ((G; i; q) ; �) + (T � �) v� ((G; i; q) ; �) .

An equilibrium, de�ned below, maps the distribution of cognitive costs F into the distribution

of cognitive types �. Let 1 f�g denote an indicator function.

De�nition 1 A weak perfect Bayesian equilibrium consists of the distribution � over cognitive

types and a sequence of random variables fXitg and �-�elds fFitg for an agent with cognitive
cost c such that

(i) �c 2 argmax
s
fVs ((G; i; q) ; �)� s � cg ;

(ii) Fit =

8>>>><>>>>:
F0 if �c = 0

F
��
�i;
�
(Xjs)

t�1
s=1

�
j2Ni

; �

��
if t � �c

F
��
�i;
�
(Xjs)

�c�1
s=1

�
j2Ni

; �

��
otherwise

,

(iii) Xit : 
! A is Fit �measurable,

(iv) E [u (Xit (!) ; !) jFit] � E [u (x (!) ; !) jFit] ;
for any Fit �measurable function x : 
! A;

and

(v) � (�) =

cZ
0

1 f�c = �g dF; for � = 0; 1; :::; T .

7



Note that the equilibrium concept requires agents to have rational expectations about the

distribution of cognitive types and the value of information for each type is computed on the

equilibrium path. The value of information depends on the network architecture and information

parameter q as well as the distribution of cognitive types. It is thus fundamental to understand

the relationship between the value of information on the one hand and the network architecture

and information parameter on the other, in order to make comparative static conjectures on the

relation between the distribution of cognitve types and the task environment.

2.2 Value of information

LetMV� ((G; i; q) ; �) denote the marginal gain in the value of information of being type � rather
than being type � � 1, for � = 1; 2; :::; T . Then

MV� ((G; i; q) ; �) = V� ((G; i; q) ; �)� V��1 ((G; i; q) ; �)
= (T � � + 1) [v� ((G; i; q) ; �)� v��1 ((G; i; q) ; �)] .

We call MV� ((G; i; q) ; �) the marginal value of information for type � .
As a benchmark, we compute the marginal value of information in the model where all

agents are Bayes-rational and there is no cognitive cost. Because of the analytical di¢ culty of

computing the marginal values, we rely on simulations with many replications of independent

games3. Table 1 presents the simulated marginal values of information across time periods for

three networks and information parameter q = 1; 2=3; 1=3, which were used in CGK05. The

payo¤ for a correct action is chosen to be M = $2. When individuals are indi¤erent between

two actions, we use randomization with equal probabilities as the tie-breaking rule in simulations

throughout the paper.

[Insert Table 1]

Let us �rst take a look at the time series patterns of marginal values of information for each

network and each information parameter. The marginal values decline as time period increases

and eventually they become zero. This simply re�ects the fact that learning eventually ends

and there is no valuable information from that point onwards. The marginal values decrease

monotonically in the complete network and the center of the star network, whereas they do not

necessarily decline monotonically in the periphery of the star network and in the circle network.

For example, in the periphery (for example, agent B) of the star network with q = 1, the marginal

value starts at 1:98 in the �rst period and then becomes zero in the second period. However, in

the third period it again becomes positive with a value of 0:60. This re�ects the fact that the

information at the second period (agent A�s �rst-period action) makes agentB at most indi¤erent

between two actions and thus there is no marginal gain from this information. However, agent

3The number of replications in the simulation throughout the paper is 10000.
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A�s second-period action together with his �rst-period action reveals the information on his

neighbor�s (agent C�s) �rst-period action, which would make agent B switch to follow agent A

at some history and thus create a positive marginal gain.

Now compare the patterns of marginal values of information as the network architecture and

information parameter change. Figure 2 presents graphically the marginal values of information

across networks and values of the information parameter.

[Insert F igure 2]

First of all, holding constant the network architecture, the marginal value in the �rst period

falls, as q decreases, from 1:98 when q = 1 to 1:32 when q = 2=3, and 0:66 when q = 1=3. Note

that the marginal value in the �rst period depends neither on the network architecture nor on

the distribution of cognitive types, since the decision is only based on a private signal. In the

complete network and the center of the star network, the marginal value at the second period

becomes lower as well when q decreases (Figure 2A and 2C), whereas this is not the case in the

circle network and the periphery of the star network (Figure 2B and 2D). Nonetheless, it takes

at least as many periods to extract all valuable information when q decreases and the sum of all

marginal values falls when q decreases. Therefore, agents either make more e¤ort or get smaller

bene�ts from extracting all valuable information when q decreases.

As we have seen, holding constant the information parameter, the marginal values in the

�rst period are the same across all locations and networks. For su¢ ciently high q, the marginal

value in the second period is higher when agents observe the behavior of the other two agents

than when agents only observe the behavior of one other agent. Also, it takes at least as many

periods to extract all valuable information and the sum of all marginal values is lower when

agents only observe the behavior of one other agent. See Figures 2E, 2F and 2G. In the same

vein, agents either make more e¤ort or get smaller bene�ts in extracting all valuable information

when they observe only one other agent.

The patterns of marginal values revealed by the simulation of the Bayesian model are in-

teresting in their own right, but they also suggest comparative static conjectures regarding the

equilibrium type distributions in the cognitive hierarchy model. These will be discussed in a

later section.

2.3 Some predictions on learning dynamics

One main result about learning dynamics in the Bayesian model is that (asymptotic) uniformity

of actions is a robust phenomenon in connected networks (Gale and Kariv, 2003). The cognitive

hierarchy model encompasses the Bayesian model as a degenerate case. Hence, it can generate

the same behavior but also allows for richer patterns of learning dynamics. First, the presence of

multiple cognitive types may result in slower convergence to a uniform action, since agents may
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have to wait longer in order to learn others�types as well as their private signals. Secondly, herd

behavior, de�ned as the uniformity of actions from some time period on, may not arise either

because of the inertia of lower cognitive types or because information transmission is blocked by

lower cognitive types. Finally, a group of agents in a network may end up in an incorrect herd,

relative to the distribution of private signals, more frequently in the cognitive hierarchy model

than in the Bayesian model.

We illustrate these predictions below with the examples from the three networks.

Slower convergence Consider the complete network when q = 1. Suppose that the signal

distribution is given by (�A; �B; �C) = (�1; 1; 1). In the Bayesian model each agent follows his
own signal in the �rst period, which results in (aA1; aB1; aC1) = (�1; 1; 1). Since each neighbor�s
�rst-turn action reveals perfectly his private signal, learning e¤ectively ends at the second turn.

Thus, herd behavior emerges from the second period onwards. On the other hand, the learning

dynamics in the cognitive hierarchy model depends on the distribution of cognitive types. If the

probability of cognitive type 0, � (0), is su¢ ciently high, then higher cognitive types should wait

longer before they join a herd. The following diagrams show a comparison of learning dynamic

between Bayesian model and cognitive hierarchy model.

Bayesian model (�A; �B; �C) = (4; 4; 4)

Period Agent / Signal Period Agent / Signal

A B C A B C

�1 1 1 �1 1 1

1 �1 1 1 1 �1 1 1

2 1 1 1 2 �1 1 1

3 1 1 1 3 1 1 1

4 1 1 1 4 1 1 1

::: ::: ::: ::: ::: ::: ::: :::

No convergence Consider the star network when q = 1. Suppose that the signal distribu-

tion is given by (�A; �B; �C) = (�1; 1; 1). In the Bayesian model, agent A will switch to action 1
from the second period on. Thus, a herd will emerge at least from the third period onwards. On

the other hand, suppose that the following types (�A; �B; �C) = (1; 1; 5) are randomly matched

to play a game in the cognitive hierarchy model. Then, the two type-1 agents in locations A and

B will follow their own private signals from the �rst period on, whereas agent C will eventually

switch to follow agent A�s actions. Due to the persistent con�ict in action choices between agents

A and B, there is no chance that a herd arises. The following diagrams summarize a case of no
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convergence in the cognitive hierarchy model.

Bayesian model (�A; �B; �C) = (1; 1; 5)

Period Agent / Signal Period Agent / Signal

A B C A B C

�1 1 1 �1 1 1

1 �1 1 1 1 �1 1 1

2 1 1 1 2 �1 1 1

3 1 1 1 3 �1 1 �1
4 1 1 1 4 �1 1 �1

::: ::: ::: ::: ::: ::: ::: :::

Incorrect herds Consider again the star network when q = 1. Suppose that the signal

distribution is given by (�A; �B; �C) = (�1; 1; 1). Given the signal distribution, the optimal
action is 1. In the Bayesian model agent A will switch to follow other two agents�actions from

the second period on. On the other hand, since an agent in the center of the star network plays

the role of an information channel between the two agents on the periphery, all agents may end

up choosing action �1. Suppose that the following types (�A; �B; �C) = (1; 5; 5) are randomly

selected for each location. Since agent A will only process the information from his private

signal, he will continue to choose action �1. But the other two agents are sophisticated enough
to eventually follow agent A�s action, i.e., to switch to �1. This is illustrated in the diagrams
below.

Bayesian model (�A; �B; �C) = (1; 5; 5)

Period Agent / Signal Period Agent / Signal

A B C A B C

�1 1 1 �1 1 1

1 �1 1 1 1 �1 1 1

2 1 1 1 2 �1 1 1

3 1 1 1 3 �1 �1 �1
4 1 1 1 4 �1 �1 �1

::: ::: ::: ::: ::: ::: ::: :::

3 Econometric Analysis

This section describes the experimental data brie�y and then presents an econometric analysis

of the data based on the cognitive hierarchy model.
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3.1 Experimental Data

The experimental data we use were collected by CGK05. The experimental design focuses on

three-person, connected networks: the complete, star and circle networks. In addition, there are

three information treatments, corresponding to di¤erent values of the probability of receiving

a private signal: full information (q = 1), high information (q = 2=3), and low information

(q = 1=3).

There is a total of nine sessions. In each session, the network and information treatment are

held constant. A session consists of 15 independent games and each game consists of 6 decision

periods. At the beginning of a session, subjects were randomly assigned to one of three locations,

which remained constant through the session. Subjects were randomly matched to form a group

of three players at the beginning of each game. The computer randomly selected one of the six

decision periods at the end of each game and each subject who guessed the correct state in the

selected period earned $2 and otherwise earned nothing. See CGK05 for more details.

As motivated in the previous section, the type structure is intuitively plausible but, more

importantly, it is not too di¢ cult to see that these types really do exist in the experimental data.

In certain cases we can easily identify the decision rules corresponding to di¤erent numbers of

periods of information processing. The following �gure presents the relative frequencies of three

decision rules that are observed in two di¤erent networks, the complete and the star networks,

when every subject was informed (q = 1). We focus on histories of play where a player�s

neighbor(s) always choose(s) the state that is di¤erent from the one indicated by the player�s own

signal. So if the player received a signal indicating that state 1 was more likely, his neighbor(s)

always choose state 2. The following three behaviors are clearly observed in the data. First,

there is behavior that looks as if it never uses any information and corresponds to the random

type � = 0. Secondly, there is behavior that corresponds to type � = 1, who follows his own

private signal. Finally, there is a large proportion of subjects who respond to their neighbors�

behavior by switching to follow them. This corresponds to a sophisticated cognitive type � for

some � su¢ ciently large.

[Insert F igure 3]

The heterogeneity in the data has profound consequences for information aggregation in the

experiments. Sometimes it caused subjects to choose an incorrect action and other times it

might block completely the transmission of information. One consequence is that the overall

frequency of herd behavior (uniformity of actions) is signi�cantly lower than the Bayesian model

predicts. Herd behavior is said to arise in time period t when, from that period on, all subjects

take the same action. Table 2 reports the average herd behavior from the empirical data and

data simulated from the Bayesian model.

[Insert Table 2]

12



The comparison between simulated and empirical data for each network and information treat-

ment is quite informative. Figure 4 presents these comparisons graphically for the full informa-

tion treatment.

[Insert F igure 4]

First, the average herd behavior from the data is uniformly lower than the Bayesian model

predicts. Secondly, despite the gaps between the theoretical and empirical averages of herd

behavior, the shapes of the two graphs are remarkably similar (see Figure 4). For instance,

the theoretical herd behavior in the star network jumps in the second and third periods and

remains constant afterwards. The increase of herd behavior in the second period is because

agent A learns by observing the other two agents and joins a herd after some history, while the

jump in the third period is due to learning by agents B and C. We �nd the same pattern in

the empirical data. Given the presence of multiple decision rules in the data, we expect that

these two features can be explained by the cognitive hierarchy. This can be con�rmed after we

estimate the cognitive hierarchy model.

3.2 Identi�cation

From the experimental design, there are in principle 6 cognitive types, starting with type 0 and

ending with type 5. Not all cognitive types are identi�able from the data, however. In order

to separately identify two di¤erent types, we need to have some history in equilibrium where

the two types predict di¤erent choices of actions. To �x ideas, consider the full information

case. At the beginning of the game, there are two possible histories: one where every agent

receives the same signal and the other where one agent receives a di¤erent signal. It is clear to

see that type 0 and higher cognitive types can be identi�ed from the play of the game starting

at the �rst history. At the second history, when there is an initial diversity of signals, we are

able to identify lower cognitive types, who stop processing information before it is optimal to

switch to follow neighbors, and higher cognitive types, who process information long enough to

switch to follow neighbors. Finally, once herd behavior emerges, all cognitive types who process

information at least until that period would choose the same behavior. Of course, under high

and low information, there are other histories at the beginning to be considered. Nonetheless,

similar arguments still remain valid.

There is another reason to prefer a smaller number of types. A theory that requires fewer

types to explain the data is more parsimonious and, since the types are not directly observable,

parsimony should lead us to minimize the number of types used, other things being equal.

The concerns about identi�cation and parsimony lead us to use the following speci�cation of

types in the econometric estimation. We include three basic types in the complete network and

the star network: type 0 (called T0), type 1 (called T1), and some higher types who respond

to neighbors�behavior (called SB). In order to make type 0 and type 1 distinguishable under
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high and low information, we consider T1 a hybrid of type 1 if an agent receives a signal and

type 2 if an agent does not receive a signal. Finally, in the circle network it is much harder to

identify between T1 and SB. Hence, we only include T0 and SB in the circle network. Note

that, depending the network and type distribution, T1 could incorporate types higher than type

1 as long as such types stop processing information before they would respond to neighbors�

behavior.

3.3 Testable conjectures

In order to make predictions about cross-network and cross-information (q) comparisons of equi-

librium type distributions, we have to take account of the endogenous determination of the value

of information and the type distribution in equilibrium. Although it is very hard to pin down the

precise equilibrium distribution of types, the series of simulation results can provide reasonable

conjectures on the qualitative di¤erence of equilibrium type distribution across networks and

information parameters. Table 3 collects the simulated marginal values of information for three

type distributions: (Pr (T0) ;Pr (T1) ;Pr(SB)) = (0:2; 0:2; 0:6), (0:4; 0:0; 0:6), and (0:0; 0:4; 0:6).

[Insert Table 3]

Although the simulation results are delicate to interpret, what we want to see from the

simulation results is whether the patterns of marginal values of information we have found in the

Bayesian model remain valid when there is some proportion of lower cognitive types. Note that

the type distribution has no in�uence on the �rst-period marginal values. First, holding constant

the network architecture and the type distribution, it generally takes as many time periods to

extract all valuable information when q decreases and the sum of the marginal values falls when

q decreases. Secondly, holding the information treatment and the type distribution constant, it

takes at least as many periods to extract all valuable information and the sum of all marginal

values is lower when agents only observe the behavior of one other agent. This somewhat clari�es

the general shift of the equilibrium type distributions when the task environment changes.

Given the types we include in the estimation, we expect that, holding constant a network,

there would be higher proportion of T0 when q decreases. This re�ects the fact that there is a

signi�cant drop of marginal value at the �rst period when q decreases. On the other hand, there

would be lower proportion of SB when q decreases since the marginal values starting from the

second period when q = 1 are higher than the marginal values starting from the third period

when q = 2=3 or 1=3. Secondly, although it is less clear, we expect that, holding constant q,

there would be higher proportion of SB in the complete and star network than in the periphery

of the star network. The conjectures are summarized below.

Conjecture I (Information) Given each location in a network, (i) Pr(T0; q) decreases in q.
That is, the probability of T0 is highest under low information and lowest under full
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information. (ii) Pr(SB; q) increases in q. That is, the probability of SB is lowest under

low information and highest under full information.

Conjecture II (Network) Given an information parameter q, (i) the probability of SB is

higher in the center (location A) of the star network than in the periphery (location B and

C) of the star network. (ii) The probability of SB is higher in the complete network than

in the periphery of the star network.

3.4 Likelihood function

The econometric speci�cation of the cognitive hierarchy model is a type-mixture model in which

a subject�s type is randomly drawn from a common distribution over three types: T0, T1 and

SB. We assume that subjects�types are independently drawn from a common distribution at

each game rather than that an initially drawn type remains constant across all 15 games.4, 5

We observe the set of action choices and the associated evolution of information sets at

each game,
n
fant; IntgTt=1

oN
n=1

, where N denotes the number of total observations. Then the

likelihood function can be constructed as follows:
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In order to have a well-de�ned likelihood function, we assume further that the choice from

each type is stochastic. This is done by combining the Quantal response equilibrium (QRE)

approach by McKelvey and Palfrey (1995, 1998) with the cognitive hierachy model. We call it

CH-QRE throughout the section.

For tractability, we assume that all types receive idiosyncratic preference shocks to the

expected payo¤ from an action in each period and that the shocks follow the type I extreme

value distribution. We also assume that the preference shocks are independently and identically

distributed across subjects, decision periods, and types. Then the likelihood function can be

4We found that some subjects appear to use di¤erent decision rules in similar decision situations. Such

behavioral instability across games might be caused by learning e¤ects or experimentation motives. But there is

no evidence of learning e¤ects when we split the data between the �rst-half and second-half of a single session.
5We tried to estimate the cognitive hierarchy model under the alternative assumption of constant types. The

estimation results under this speci�cation usually yielded overestimation of T0 and had worse performance in

terms of the goodness of �t.
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further written as follows:
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where Pr

�
antjInt; k; f�sgts=1 ; f�kgk2fT0;T1;SBg

�
denotes the probability that action ant is chosen

conditional on the information set Int when the type is k.

The equilibrium choice rule for type k 2 fT0; T1; SBg in the CH-QRE model can be sum-
marized by the following logistic choice probability function: for any period t with information

set It
Pr (at = 1jIt; k) =

1

1 + exp (��t�t (It; k))
,

where at is the action of the subject at time period t, It is the subject�s information set at period t,

�t is a coe¢ cient parameter determining the sensitivity of the choice function to expected payo¤

di¤erences, and �t (It; k) is the di¤erence between the expected payo¤s for type k from actions

at = 1 and at = �1. Since T0 does not use any information, we adopt the convention that the
expected payo¤ di¤erence for T0 is zero in all time periods and thus the choice probability for

T0 is always 1=2.

The speci�c cognitive types for SB vary across networks and information treatments. In the

complete network and the center of the star network under full information, SB is speci�ed as

cognitive type 3, whereas SB is speci�ed as type 4 in the periphery of the star network under

full information.6 In all other treatments, SB is speci�ed as cognitive type 5.

The estimation proceeds treatment-by-treatment. We assume that one beta coe¢ cient in

each period applies to all types and all network positions. In the complete and circle network,

we estimate a single type distribution applying to all positions because the network is infor-

mationally symmetric. Thus, we have 8 parameters to estimate in the complete network under

each information treatments: a series of beta coe¢ cients, f�tg6t=1, and two type probabilities,
(�T0; �T1). In the circle network under each information treatment, there are 7 parameters to

be estimated: a series of beta coe¢ cients, f�tg6t=1, and one type probability, �T0. On the other
hand, in the star network, due to the asymmetry of the network, we separately estimate the type

distributions for the center and the periphery. Therefore, we have 10 parameters to estimate: a

series of beta coe¢ cients, f�tg6t=1, two type probabilities in the center,
�
�AT0; �

A
T1

�
, and two type

probabilities in the periphery,
�
�BT0; �

B
T1

�
.

The likelihood function is constructed recursively using the beta coe¢ cients at previous

periods and also the type distribution. The method can be illustrated with reference to the

6We tried alternative speci�cations for SB up to the �fth turn at each treatment. The results are essentially

unchanged.

16



complete network and SB type. In order to compute the choice probability in the �rst decision

period, the di¤erence in expected payo¤s between two actions, �1 (I1), is calculated using the

information (a private signal) from the �rst period. (Indeed, all types except the 0-type make

this computation in the �rst period). Then, the choice probability is determined by the �rst-

period beta coe¢ cient, �1, and the payo¤ di¤erence �1 (I1). In the second decision period,

processing information of their neighbors� actions in the �rst period requires agents to infer

whether their neighbors are T0 and whether they �trembled�in choosing their actions. Because

of these inferences, the di¤erence in expected payo¤s in the second period depends on �T0 and

�1, and so is denoted by �2 (I2;�T0; �1). (T1 conducts this step of information processing if he is

uninformed but otherwise his second-period payo¤ di¤erence is the same as �1 (I1)). Then, the

choice probability in the second period has the logistic functional form and depends on �2 and

�2 (I2;�T0; �1). In the third decision period, the information processing gets more complicated.

Since agents need to consider how their neighbors made inferences and how such inferences were

re�ected in their second period actions, SB players need to make an inference about whether

their neighbors are T0, T1, or SB, and also whether they trembled in the second period. Thus,

the di¤erence in expected payo¤s at the third period is a function of �T0, �T1, and the previous

betas, denoted by �3 (I3;�T0; �T1; �1; �2). This payo¤ di¤erence, together with �3, determines

the choice probability in the third period. Continuing in this way, the entire sequence of choice

probabilities for each type can be constructed and these probabilities are then used to construct

the conditional likelihood functions on types. The procedure in other networks is analogous,

but must take into account the process of updating beliefs that is speci�c to that network. The

details are relegated to Appendix I.

We used the method of maximum likelihood estimation separately for each of the nine treat-

ments. In order to get around the problem of local maxima, we used the simplex algorithm of

Nelder and Mead to maximize the likelihood function with a large step size and a variety of

starting values to be con�dent that a global maximum was achieved.7

3.5 Estimation results

Table 4 presents the maximum likelihood estimation results for the CH-QRE model. The stan-

dard errors are reported in parentheses.

[Insert Table 4]

All the beta coe¢ cients and type probability estimates are signi�cantly positive and some beta

coe¢ cients are quite high in the star network under low information.

7The Fortran 90 program is used to do the ML estimation. The program codes are available on request to the

author.
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One of the surprising �ndings is that SB is dominant in all networks and information treat-

ments. The estimated probabilities of SB are at least 50% in all networks and information

treatments except the star network under low information. This implies that the majority of

subjects in the experiment behave as if Bayes-rational. On the other hand, the estimated distri-

bution varies signi�cantly across networks and information treatments. In fact, the comparative

static properties of the estimated distribution are largely consistent with the predictions of the

cognitive hierarchy model, as is clearly seen below.

First, we summarize the comparative-static comparisons of estimated probabilities of T0 and

SB across information treatments in a given network.

Result 1 (Information) (i) In all network locations except the center of the star network,
the estimated probability of T0 is lowest under full information and highest under low

information. In the center of the star network, the estimated probability of T0 is lowest

under high information and highest under low information. (ii) In the complete network

and the star network, the estimated probability of SB is highest under high information

and lowest under low information. In the circle network, the estimated probability of SB

is highest under full information and lowest both under high and low information.

Figure 5 graphically shows the changes of estimated probabilities of T0 and SB across

information treatments.

[Insert F igure 5]

Part (i) of Result 1 strongly con�rms Conjecture I. Part (ii) of Result 1, however, is less clear cut

but the probability of SB is noticeably lower under the low information treatment as required

by Conjecture I. We conclude that the predictions of the cognitive hierarachy model, associated

with the change of q, are overall con�rmed by the experimental data.

Next, we describe the comparative-static comparisons of estimated probabiltiies of SB across

networks in an information treatment.

Result 2 (Network) (i) Under all information, the estimated probability of SB is higher in

the center (location A) of the star network than in the periphery (location B and C) of

the star network. (ii) Under high and low information, the estimated probability of SB

is higher in the complete network than in the periphery of the star network. Under full

information, the estimated probability of SB is higher in the periphery of the star network

than in the complete network.

Part (i) of Result 2 strongly supports Conjecture II. However, part (ii) of Result 2 is also

consistent with it, since the estimated probability of SB is lower in the periphery of the star

network than in the complete network under high and low information. The comparison of

estimated probabilities of SB between the periphery of the star network and the complete
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network under full information is less signi�cant since the estimates are within one standard

deviation of each other. We conclude that the experimental data also con�rms the predictions

related to the change of network architecture from the cognitive hierarachy model.

3.6 How di¤erently did individuals behave?

The estimation results of the CH-QRE model also lead us to investigate individual-level behavior

across network and information treatments. Given a sequence of actions and the associated

evolution of the information sets, fat; Itg6t=1, the individual type distribution is computed as
follows, using the estimated values of the parameters: for any type � = T0; T1, and SB,

Pr
�
� j fat; Itg6t=1

�
=

6Q
t=1
Pr (atjIt; �) Pr (�)

P
� 0

�
6Q
t=1
Pr (atjIt; � 0) Pr (� 0)

� .
For each subject in all treatments, we have 15 sequences of actions and associated evolution of

information sets. The individual-level estimated type distribution often yields sharp predictions

on what type the behavior of a subject is close to. The analysis con�rms that there are signi�-

cant patterns of behavioral heterogeneity in the subject pool at each network and information

treatment.

Figure 6 presents a collection of scatter diagrams for estimated type distributions across 15

games for representative subjects across networks and information treatments. An estimated

distribution is shown as a point in the two dimensional simplex in each scatter diagram. Each

vertex of the simplex stands for the degenerate distribution where one type has probability 1

and the other two types have probability 0.

[Insert F igure 6]

Interestingly, some subjects are consistently close to SB or T1 in all plays of the game in

the laboratory . Other subjects often switched among several decision rules. In other words,

they sometimes played the game as if they were SB but other times they seemed to use less

sophisticated rules such as T0 and T1.

In summary, there are signi�cant levels of behavioral heterogeneity across subjects. Some-

times, there is even behavioral heterogeneity across games for a single subject. The �ndings

of the individual-level analysis strongly suggest that behavioral heterogeneity in learning is an

important ingredient of any structural model of this data.

3.7 Is sophistication rewarded?

Each decision rule in the cognitive hierarchy model is associated with a tradeo¤ between the

complexity of decision problems and the accuracy of the resulting decision. On the one hand, the
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complexity of information processing increases in later periods. On the other, more periods of

information processing leads to higher accuracy. It is interesting to see whether actual individual

performance in the lab is related to the degree of sophistication in a decision rule, as the theory

would predict. We compute the average probability of being SB for each subject over all

treatments and compare these probabilities with the average actual earnings they would have

obtained if they were paid in each period of a given game.

Figure 7 presents the scatter diagram between average probabilities of being SB and actual

earnings for subjects over all treatments. The bottom horizontal line in the �gure represents

expected earnings when randomization is used. The top horizontal line stands for expected

earnings for a hypothetical agent who has access to the complete signal distribution in a network

under full information.

[Insert F igure 7]

The simple linear regression (red line) reveals the relationship between the two variables:

\Earning = b� + b� � Pr(SB),
where b� = 13:78 (0:84) and b� = 7:07 (1:22). Interestingly, the relationship between the actual
earnings and average probabilities of SB is signi�cantly positive. Note that the top horizontal

line is an upper bound on the theoretical expected payo¤ whereas actual payo¤s are random

because they depend on the signal distribution.

3.8 Model comparison and goodness of �t

In this section we measure the goodness of �t of the CH-QRE model and also compare it with

that of the Bayesian QRE model. First, we reproduce the maximum likelihood estimation results

of the Bayesian QRE model with the game-by-game estimation8. Table 5 presents the results

of game-by-game maximum likelihood estimation of the Bayesian QRE model. Standard errors

are reported in parentheses.

[Insert Table 5 here]

We brie�y summarize the estimation results of the Bayesian QRE model. First, all beta coef-

�cients across all networks and information treatments are signi�cantly positive. Secondly, the

magnitude of beta estimates is between 1.5 and 4 in most cases. Finally, the estimated beta

series in the complete network are stable across decision periods. However, in the star and circle

networks, the beta series decrease slightly across decision periods. For more details, see CGK.

8 In CGK06, we pooled homogeneous data in each decision period to estimate a single beta coe¢ cient. For

example, we used the data from all treatments to estimate one beta coe¢ cient in the �rst period. On the other

hand, we estimated separately the betas for the subjects in the center and in the periphery of the star network

because of information asymmetry. Overall, the estimation results are consistent with each other.
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Interestingly, the estimated series of beta coe¢ cients from the CH-QRE model are uniformly

higher than those from the Bayesian QRE model. The following result summarizes the di¤erence

between them.

Result 3 (Trembling) Over all treatments, the estimated beta series of the CH-QRE model
are uniformly higher than those of the Bayesian QRE model. That is, the rates of trembling

of the CH-QRE model are much lower than those of the Bayesian QRE model.

The intuition for this result is quite easy to understand. The Bayesian QRE model treats

any deviation from the best response action as trembling, given a single Bayesian decision rule.

However, in the CH-QRE model, noise in the data is decomposed into two parts: one resulting

from heterogeneous decision rules and the other from pure trembling given each decision rule.

Therefore, the CH-QRE model in principle explains the behavior in the laboratory with greater

precision within a speci�ed set of the decision rules.

Another notable comparison of the betas between the two models is that the beta series of the

CH-QRE model is not always stable across decision turns. For example, in the complete network,

there are some big jumps in the beta series at later decision turns. This may suggest that many

of the deviations at later turns in the complete network are explained by heterogeneity.

Now we turn attention to each model�s goodness of �t. First, we compare the changes of the

log likelihood values at the ML estimates between the CH-QRE model and the Bayesian QRE

model. Over all treatments, the log likelihood values of the CH-QRE model are signi�cantly

higher than those of the Bayesian QRE model. Under the current speci�cation of SB type

in the cognitive hierarchy model, it is not necessarily true that the cognitive hierarchy model

encompasses the Bayesian model as a degenerate case. But the results suggest that it is nearly

true.

The most noticeable increase in the log likelihood values occurs in the complete network

under full information, the star network under full information, and the circle network under high

information. In the complete network under full information, the log likelihood value increased

from �441:40 to �237:64, the highest avlue among all information treatments. Similarly, in the
star network under full information, the log likelihood value increased from �552:78 to �343:10.
And in the circle network under high information it increased from �719:41 to �643:87.

In order to test the goodness of �t of each model, we compare the simulated aggregate

behavior of each model with the aggregate behavior of the experimental data. This is mainly

done by comparing the average herd behavior from the experimental data with the simulated

herd behavior from the two models. Herd behavior is said to arise in the laboratory when,

from some decision period on, all subjects in a group take the same action. Table 6 presents

the average level of herd behavior from the experimental data, the simulated data from the
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estimated Bayesian QRE model and the simulated data from the estimated CH-QRE model.

[Insert Table 6]

For the purpose of measuring the goodness of �t, we compare the frequencies of herd behavior

from the two models and the experimental data in each network and information treatment.

Result 4 (Herd behavior) ( i) The CH-QRE model generates almost the same frequency of
herd behavior across decision periods as the experimental data in the complete and star

networks under full information and in the circle network under high information. Over

other treatments, the frequency of herd behavior in the CH-QRE model is lower than in

the experimental data. ( ii) Over all treatments, the Bayesian QRE model generates a

frequency of herd behavior that is uniformly lower than the experimental data.

Support for these results is presented in Figure 8 which shows, period by period, the relative

frequencies of herd behavior in the two models and in the experimental data, in each network

under all information treatments.

[Insert F igure 8]

One caveat should be noted regarding the comparison of herd behavior from the simulated

data for the two models and the experimental data: the measure of herd behavior is highly

discontinuous because uniformity of actions in earlier decision periods may not be counted as

a herd if there is a single deviation in the last period. Nonetheless, the CH-QRE model �ts

the experimental data well in regard to herd behavior. In particular, the goodness of �t in the

complete and star networks under full information is nearly perfect. However, there are other

treatments in which the CH-QRE model produces lower frequencies of herd behavior than the

experimental data.

Another feature of the CH-QRE model is its success in replicating the patterns of learning.

In the complete network under full information, the frequency of herds in the experimental data

increases dramatically from the �rst period to the second period and increases slowly later on.

This implies that learning in the laboratory mainly occurs in the second decision period and

subjects rapidly converge to an uniform action from that period onwards. In the star network

under full information, learning mainly continues until the third period and, as a result, the

frequency of herds jumps up between the second period and the third period.

The apparent overall failure of the Bayesian QRE model to �t the empirical frequency of

herd behavior calls our attention to the earlier caveat that the measure of herd behavior is

highly discontinuous. The Bayesian QRE model usually generates more trembling in simulations

because of the lower values of the beta estimates. The only way that the Bayesian QRE model

can capture noise in the data from heterogeneous decision rules is by having the lower beta

estimates.

22



The cognitive hierarchy model�s goodness of �t highlights the performance of individual-level

heterogeneity in replicating and interpreting patterns of aggregate behavior. One conclusion

that can be drawn from the CH-QRE model�s superior performance is that individual-level

heterogeneity is too important to be ignored.

4 Discussion

There exist various hierarchical models of bounded rationality designed to analyze heterogeneous

strategic behavior. Most of them focus on static normal form games, especially dominance-

solvable games such as the beauty-contest game or sequential games with one-shot decision.

The literature includes Nagel (1995), Stahl and Wilson (1995), Ho, Camerer and Weigelt (1998),

Costa-Gomes, Crawford and Broseta (2001), Costa-Gomes and Crawford (2004), Camerer, Ho

and Chong (2004) and Kübler andWeiszsäcker (2004). One of the main motivations of the

literature is the apparent lack of empirical evidence con�rming Nash equilibrium even in simple

dominance-solvable games, which might re�ect limited ability of real players to do inductive

thinking. The models are quite successful in explaining the behavior of players in the laboratory

and often perform better than Nash equilibrium.

In particular, Camerer, Ho and Chong (2004) provide a synthetic approach where an agent

mistakenly believes that his strategy is the most sophisticated with respect to the number of steps

of iterative thinking. This behavioral assumption is often justi�ed by psychological evidence of

persistent overcon�dence (e.g., Camerer and Lovallo (1999)) and the limitations of the brain�s

capacity, such as working memory.

Their approach could generate a hierarchy of cognitive types in our setting but it turns out

to be less clear. Suppose we start with 0-step players who simply randomize without using any

information. Then 1-step players believe that all others are 0-step and thus it is optimal for

them to use only the information they have in the �rst period, that is, their private signals.

The 2-step players believe that their neighbors are either 0-step or 1-step and so would reveal

at most their own private signals. However, this does not guarantee that 2-step players should

necessarily stop processing information after the �rst period, because they might think that by

continuing to observe others�behavior they may learn whether they are 0-step or 1-step. In

order to make this approach �t the dynamic structure of our games, one may need to impose

some ad hoc restrictions such as that k-step thinkers stop using information after k-th period.

Our model of cognitive hierarchy is di¤erent from those found in the literature in several

respects. First, we focus on dynamic games rather than static games. The dynamic structure

in our games naturally de�nes steps of thinking, whereas the literature imposes a �pseudo-

sequential�structure of thinking in order to analyze the data from normal-form games. Secondly,

we use an equilibrium approach in which all agents have the same expectations regarding the

potential bene�t of information processing, but each of them chooses a di¤erent cognitive type
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because of their di¤erent levels of cognitive costs. The literature, by contrast, relaxes mutual

consistency of beliefs and adopts a disequilibrium approach. Finally, the literature does not

provide any rationale for how the type distribution emerges in di¤erent task environments. In

contrast, our equilibrium approach provides a good sense of how the type distributions relate to

di¤erent task environments.

In addition, the current approach in the paper advances the literature by linking the type dis-

tributions of cognitive hierarchy with the di¢ culty of task environments. The model produces

intuitive comparative-static predictions of how type distributions change with respect to the

parameters determining the di¢ culty of task environments. Overall, such predictions are con-

�rmed by the data. The methodological tool and the �ndings deliver a very important message

of studying the bounded rationality in line with Simon�s scissors metaphor.

One main empirical conclusion in the literature is that on average people seem to conduct

very few steps of thinking in playing the normal-form games. For example, Camerer et al. �nd

that an average of 1:5 steps of thinking �ts data from many games well. This seems at variance

with one main �nding in the present paper: the dominant type is SB across all networks and

information treatments. We hesitate to make precise comparisons between the �ndings in the

literature and in this paper for the following reasons. First of all, the nature of the games we

consider is di¤erent from those in the literature: dynamic versus static. We hypothesize that

the dynamic structure helps people conduct longer chains of reasoning. Secondly, the SB type

is the same as lower cognitive types in some treatments. For example, given the estimated type

distribution, SB in the complete network under full information behaves no di¤erently from

type 2. The question of how di¤erently real people behave in dynamic games compared to static

games will be better understood when there have been more empirical studies on this important

topic.

5 Conclusion

This paper proposed a cognitive hierarchy model in games of learning in networks. The model is

�exible enough to capture a diversity of cognitive types whose behavior ranges from random to

substantively rational. More importantly, the model predicts di¤erent distributions of cognitive

types as the task environment changes with respect to the architecture of networks and structure

of information. This allows a set of conjectures regarding comparative static comparisons of type

distributions, which can be tested using empirical data.

Using experimental data produced in the laboratory by Choi, Gale and Kariv (2005, 2006),

we estimated a cognitive hierarchy model. Quite surprisingly, we found that the dominant

cognitive type across all treatments is closely related to Bayes-rational behavior. Despite the

presence of multiple cognitive types in the subject pool, this �nding tells us that the classical

Bayesian paradigm has considerable explanatory power as far as the majority of subjects is
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concerned. This seems at variance with the �ndings in the literature on hierarchical models

of bounded rationality, e.g., Camerer, Ho and Chong (2004). They found that an average of

1.5 steps of thinking �ts the data from many static games such as the beauty-contest game, as

experimentally studied by Nagel (1995). We resist any direct comparions between the �ndings

in the literature and in this paper for the following reasons. First of all, the nature of the games

we consider is di¤erent from those in the literature: dynamic versus static. We hypothesize that

the dynamic structure helps people conduct longer chains of reasoning. Secondly, the behavior

of types resembling Bayesian rationality is the same as that of lower cognitive types in some

treatments. For example, given the estimated type distribution, the sophisticated Bayesian type

in the complete network under full information behaves no di¤erently from type 2. The question

of how di¤erently real people behave in dynamic games compared to static games is an important

future research topic.

We also tested a set of conjectures from the theory. One of the �ndings is that, holding

constant the network architecture, the probability of a type whose behavior is random increases

as the value of q (the probability of receiving a private signal) decreases. At the same time, we

also found that the probability of the sophisticated Bayesian type decreases as the value of q

decreases. Regarding changes of network structures, the theory has a weaker prediction on the

type distribution. Nonetheless, somewhat consistently with the theory, we found that, holding

constant the value of q, the probability of the sophisticated Bayesian type is signi�cantly higher

in the center of the star network than in the periphery of the star network. One important

research topic for the future is to extend the theoretical framework and experimental design

to larger and more complex network architectures. Especially, the design of experiments with

larger networks should be done in a way that allows clear-cut theoretical predictions of changes

on equilibrium type distributions across networks.

Finally, we performed a goodness-of-�t test for the cognitive hierarchy model. This has been

mainly done by comparing the simulated average herd behavior with the average herd behavior

from the data. Surprisingly, the cognitive hierarchy model closely replicates the empirical pat-

terns of herd behavior across networks and information structures at the aggregate level. This

highlights the potential importance of structural approaches allowing individual heterogeneity

in explaining patterns in aggregate data.

The model and techniques we have developed in this paper provide a foundation for future

theoretical and empirical research for various dynamic games. One of the many interesting

questions is how to apply the notion of a cognitive hierarchy to dynamic games in which the

standard equilibrium concept requires backward induction. One natural starting point may be

applying a cognitive hiearchy with various levels of limited foresight to such dynamic games.
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6 Appendix

This section presents the construction of likelihood functions for the CH-QRE model. The CH-

QRE model assumes that each cognitive type receives idiosyncratic preference shocks. Formally,

for an agent i of type � 2 fT0; T1; SBg, the random utility function from choosing action ait = 1
rather than ait = �1 is given by

Uit (Iit; k) = �t�(Iit; k) + "it;

where �(Iit; k) is the di¤erence between the expected payo¤s for type k from actions ait = 1

to ait = �1, conditional on information set in period t, Iit, and coe¢ cient �t parametrizes the
sensitivity of action choices to payo¤ di¤erences. �(It; k) is de�ned as

�(Iit; k) =

(
M [2 Pr (! = 1jIit)� 1]
M [2 Pr (! = 1jIik)� 1]

if

if

t � k
t > k

.

Random variable "it represents the agent�s preference shock, which is assumed to be pri-

vately observed by that agent. For tractability, we have the following assumptions on the error

structure. First, "it is assumed to be independently and identically distributed according to the

logistic distribution with cumulative distribution F (") = 1= (1 + exp (�")), for each agent and
each period t = 1; 2; :::; T . Secondly, "it is independent of the type of each agent. Then the

stochastic choice function has the following form of logistic distribution:

Pr(ait = 1jIit; k) =
1

1 + exp(��t�(Iit; k))
.

The posterior probability of a unknown state conditional on an information set is determined

by Bayes�rule. The Bayesian belief updating contains essentially two inference problems: infer-

ring other agents�private signals as well as other agents� types. Such inference problems vary

the degree of complexity, depending on networks and information treatments.

LetN i = fig[Ni denote a set of agent i�s neighbors and himself and let Iit =
n
�i; (ajs)

t�1
s=1 j j 2 N i

o
denote agent i�s information set in period t. The posterior belief that the true state is ! = 1

conditional on Iit is given by

Pr (! = 1jIit; k) =

8<:
P
f�jgj2Ni

Pr
�
! = 1jIit; f�jgj2Ni

�
Pr
�
f�jgj2Ni jIit

�
P
f�jgj2Ni

Pr
�
! = 1jIik; f�jgj2Ni

�
Pr
�
f�jgj2Ni jIik

� if

if

t � k
t > k

.

The �rst probability in each summand on the right side, Pr
�
! = 1jIit (or Iik) ; f�jgj2Ni

�
, is the

posterior belief on the state ! = 1 conditional on the assumption that his neighbor j�s type

is �j . The second probability in each summand, Pr
�
f�jgj2Ni jIit (or Iik)

�
, represents agent i�s

inference on types for each of his neighbors. For expositional convenience, suppose throughout

the section that agent i is of k-type, for k � t.
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The probability of the true state being ! = 1 conditional on Iit and f�jgj2Ni can be written
further by, via Bayes�rule,

Pr
�
! = 1jIit; f�jgj2Ni

�
=

Pr (�ij! = 1)
t�1Y
s=1

Y
j2Ni

Pr (ajsj! = 1; Iis; �j)

X
!

Pr (�ij!)
t�1Y
s=1

Y
j2Ni

Pr (ajsj!; Iis; �j)
.

The posterior belief of his neighbors�types, conditional on information set at turn t, Iit, can be

also further written into, via Bayes�rule,

Pr
�
f�jgj2Ni jIit

�
=

Pr
�
f�jgj2Ni

� t�1Y
s=1

Pr
�
(ajs)j2Ni jIis; f�jgj2Ni

�
X

f� 0jgj2Ni

Pr

�n
� 0j

o
j2Ni

� t�1Y
s=1

Pr

�
(ajs)j2Ni jIis;

n
� 0j

o
j2Ni

� ,

where

Pr
�
(ajs)j2Ni jIis; f�jgj2Ni

�
=
X
!

Pr
�
!jIis; f�jgj2Ni

� Y
j2Ni

Pr (ajsj!; Iis; �j) .

The precise form of Pr (ajsj!; Iis; �j) depends on the observational structure of networks. Appen-
dix I in Choi, Gale and Kariv (2006) illustrates the details of this probability with regard to the

network structure, when agents are Bayesian. The derivation of the probability, Pr (ajsj!; Iis; �j),
is straightforward while taking into account that agents are di¤erent with respect to the number

of periods in which they process new information. Thus, for more details, we refer to Appendix

I in CGK.
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Information Network Position 1 2 3 4 5
Complete All 1.98 0.45 0.00 0.03 0.00

Full Circle All 1.98 0.00 0.00 0.00 0.00
(q = 1) Star A 1.98 0.45 0.00 0.00 0.02

B&C 1.98 0.00 0.16 0.06 0.02

Complete All 1.32 0.30 0.16 0.03 0.00
High Circle All 1.32 0.30 0.04 0.03 0.00

(q = 2/3) Star A 1.32 0.30 0.20 0.00 0.02
B&C 1.32 0.30 0.04 0.06 0.02

Complete All 0.66 0.30 0.16 0.00 0.00
Low Circle All 0.66 0.30 0.04 0.03 0.00

(q = 1/3) Star A 0.66 0.30 0.16 0.00 0.00
B&C 0.66 0.30 0.04 0.06 0.00

Information Network Position 1 2 3 4 5
Complete All 1.98 0.15 0.08 0.00 0.00

Full Circle All 1.98 0.00 0.00 0.00 0.00
(q = 1) Star A 1.98 0.10 0.04 0.03 0.00

B&C 1.98 0.00 0.00 0.03 0.04
Complete All 1.32 0.20 0.12 0.03 0.00

High Circle All 1.32 0.25 0.00 0.00 0.02
(q = 2/3) Star A 1.32 0.25 0.08 0.03 0.02

B&C 1.32 0.25 0.00 0.03 0.00
Complete All 0.66 0.20 0.12 0.03 0.00

Low Circle All 0.66 0.20 0.08 0.00 0.00
(q = 1/3) Star A 0.66 0.20 0.12 0.00 0.02

B&C 0.66 0.20 0.04 0.03 0.00

Information Network Position 1 2 3 4 5
Complete All 1.98 0.75 0.00 0.00 0.00

Full Circle All 1.98 0.00 0.20 0.15 0.00
(q = 1) Star A 1.98 0.75 0.00 0.00 0.00

B&C 1.98 0.00 0.40 0.00 0.00
Complete All 1.32 0.55 0.08 0.03 0.00

High Circle All 1.32 0.40 0.04 0.03 0.00
(q = 2/3) Star A 1.32 0.55 0.16 0.00 0.00

B&C 1.32 0.40 0.08 0.09 0.00
Complete All 0.66 0.35 0.20 0.03 0.00

Low Circle All 0.66 0.35 0.04 0.06 0.02
(q = 1/3) Star A 0.66 0.35 0.24 0.00 0.00

B&C 0.66 0.35 0.12 0.03 0.04

Time period

(Pr(T0), Pr(T1),Pr(SB)) = (0.0, 0.4,0.6)
Time period

* Payoff is M = 2 and randomization is the tie-breaking rule.

Table 3. Simulated marginal values of information in the CH model with various type distributions

(Pr(T0), Pr(T1),Pr(SB)) = (0.2, 0.2,0.6)
Time period

(Pr(T0), Pr(T1),Pr(SB)) = (0.4, 0.0,0.6)



Complete Turn
1
2
3
4
5
6

Type
T0
T1
SB

logL

Star Turn
1
2
3
4
5
6

Type A B&C A B&C A B&C
T0 0.12 (0.02) 0.03 (0.02) 0.04 (0.03) 0.08 (0.03) 0.33 (0.06) 0.38 (0.04)
T1 0.10 0.32 0.14 0.26 0.20 0.22
SB 0.78 (0.06) 0.65 (0.07) 0.81 (0.07) 0.65 (0.06) 0.47 (0.07) 0.39 (0.05)

logL

Circle Turn
1
2
3
4
5
6

Type
T0
SB

logL

3.11 (0.35)

-599.75

3.24 (0.53)
3.38 (0.49)

0.08 (0.02)
0.92

Table 4.  Maximum likelihood estimates of the cognitive hierarchy QRE model

Full High Low
8.67 (2.45) 5.65 (0.93) 5.15 (1.00)
5.54 (0.69) 6.33 (1.07) 6.74 (1.46)
6.08 (0.98) 5.73 (0.97) 7.36 (1.74)

16.23 (5.58) 7.84 (2.20) 5.11 (0.73)
8.51 (3.13) 6.37 (1.30) 5.49 (0.90)

19.89 (15.98) 9.94 (3.28) 20.69 (9.03)

0.08 (0.02) 0.14 (0.02) 0.26 (0.04)
0.33 0.14 0.24

0.59 (0.07) 0.72 (0.04) 0.50 (0.06)
-237.64 -450.98 -806.39

Full High Low
5.82 (0.71) 5.75 (0.98) 5.24 (1.10)
4.19 (0.43) 3.19 (0.36) 9.70 (1.91)
9.99 (3.66) 4.11 (0.59) 7.49 (0.72)
6.09 (1.51) 3.11 (0.43) 38.04 (24.14)

12.08 (7.80) 3.77 (0.54) 10.50 (2.07)
5.72 (0.69) 2.52 (0.34) 30.48 (24.64)

-343.10 -651.68 -838.30

High LowFull
5.72 (0.76)
4.63 (1.70)
2.64 (0.32)

5.83 (0.93) 10.62 (1.43)
6.87 (0.81) 8.55 (1.13)
6.06 (0.77) 6.67 (0.85)
5.29 (0.90) 6.42 (1.19)
4.60 (0.76) 9.65 (2.74)
5.29 (1.20) 5.64 (0.84)

0.18 (0.02) 0.17 (0.02)
0.82 0.83

Standard errors are given in parentheses.

-643.87 -592.03



Complete Turn Full High Low
1 3.25 ( 0.31 ) 2.79 ( 0. 31 ) 2.67 ( 0.42 )
2 2.58 ( 0.33 ) 2.46 ( 0.33 ) 2.34 ( 0.38 )
3 2.82 ( 0.40 ) 2.59 ( 0.42 ) 2.51 ( 0.40 )
4 2.54 ( 0.48 ) 2.52 ( 0.40 ) 2.20 ( 0.36 )
5 2.60 ( 0.37 ) 2.66 ( 0.40 ) 2.08 ( 0.37 )
6 2.69 ( 0.58 ) 2.32 ( 0.35 ) 2.85 ( 0.43 )

log L -441.40 -556.18 -891.30

Star Turn Full High Low
1 3.38 (0.32) 4.10 ( 0.41 ) 2.60 ( 0.40 )
2 2.47 (0.32) 2.25 ( 0.25 ) 2.43 ( 0.36 )
3 2.26 (0.47) 2.72 ( 0.31 ) 2.33 ( 0.47 )
4 2.60 (0.42) 1.99 ( 0.27 ) 2.70 ( 0.49 )
5 2.08 (0.60) 2.44 ( 0.30 ) 1.98 ( 0.38 )
6 2.17 (0.42) 1.60 ( 0.23 ) 2.45 ( 0.44 )

log L -552.78 -682.91 -921.96

Circle Turn Full High Low
1 4.04 ( 0.41 ) 3.99 ( 0.52 ) 6.48 ( 1.53 )
2 2.41 ( 0.32 ) 2.83 ( 0.34 ) 3.29 ( 0.52 )
3 2.11 ( 0.23 ) 2.51 ( 0.34 ) 3.62 ( 0.58 )
4 2.05 ( 0.27 ) 2.13 ( 0.36 ) 3.09 ( 0.61 )
5 2.20 ( 0.28 ) 2.43 ( 0.33 ) 3.02 ( 0.57 )
6 2.19 ( 0.32 ) 1.56 ( 0.30 ) 2.34 ( 0.39 )

log L -630.27 -719.41 -637.90

Table 5. Maximum likelihood estimates of the Bayesian QRE model

Standard errors are given in parentheses.
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Figure 2. M
arginal values of inform

ation across netw
orks and inform

ation param
eter 
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Figure 2A. M
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Figure 2C
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Figure 2D
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Figure 3. Relative frequencies of decision rules when one's neighbor continues to 
choose actions different from one's own signal 
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Figure 4. A
 com

parison of average herd behavior from
 the experim

ental data and the B
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Figure 5. CH-QRE Estimated probabilties of T0 and SB across networks and 
information treatments 
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Figure 6. Selected individual-level estimated type distributions across treatments 
 

 
 

 
 

 



Figure 7.  The scatter diagram between average probabilities of SB and  
average actual earnings 

 

 
 
* The Red line is obtained from a simple linear regression of average actual earnings on the 
probabilities of SB with a constant term.  
 
* The bottom horizontal line represents average expected actual earnings when randomization is 
used.  
 
* The top horizontal line stands for average expected actual earnings for a hypothetical agent 
who has an access to the complete signal distribution in a network under full information.  
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