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Abstract
CATH is a protein database of structural domains which are assigned 

to superfamilies through evidence of a common evolutionary ancestor. These 

superfamilies are further grouped by overall structural similarity into folds. 

This thesis explores several automated methods for recognising homologous 

relationships between these domains using the structural data from the 

Protein Data Bank (PDB). The aim of this work was to aid the manual 

classification of domains into the database and provide putative functional 

assignments to structures solved by the structural genomics initiatives.

A fast and novel algorithm, CATHEDRAL, was developed to make 

fold assignments to regions of polypeptide chains. By combining a fast 

secondary-structure method (GRATH) and a slower residue-based method 

(SSAP), the algorithm was able to accurately assign boundaries for distant 

relatives, undetectable by sequence methods.

Sequence and structural conservation patterns were combined in a 

novel algorithm, FLORA, to develop structural templates specific to catalytic 

function. FLORA was able to predict the correct functional site in 80% of 

cases and combined with global structure comparison, it was able to assign 

domains to enzyme families within diverse superfamilies.

Techniques in structure comparison were also applied to ab initio 

models of protein domains, in order to assign them to fold groups within the 

CATH database. A novel scoring method was developed to pre-select 

models that were more likely to have adopted the correct fold. A selected 

sample of models for each target structure was then compared against 

representatives from the CATH database using the MAMMOTH and SSAP 

algorithms. Data from these alignments were combined using a Support 

Vector Machine to assign the target to a fold group within CATH.

This work was generously supported by the Engineering and Physical 

Sciences Research Council.
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1.1 What are proteins?
Proteins comprise approximately 15% of our body mass and are fundamental 

to the majority of biological processes. Through the polymerisation of just 20 

amino acids, these macromolecules perform a vast array of functions, from 

reaction catalysis to providing mechanical support within the cell. In 

addition, they are capable of forming complex interaction networks that 

govern both inter and intra-cellular signalling pathways and gene 

transcription. Key to the huge diversity of protein function is the subtly 

different ways in which polypeptide chains of a given sequence can fold into 

a unique three-dimensional structure. To fully understand how protein 

functions are achieved at the molecular level is one of the major goals of 

modem biology, as it would provide an unparalleled insight into the 

underlying mechanisms of development and disease. Furthermore, it could 

bring about a revolution in dm g development through the rational design of 

molecules able to affect known disease-associated targets with a high degree 

of specificity.

1.1.1 Primary structure
The primary structure of a protein describes the sequence of amino acids 

along the polymer chain. All amino acids have a central C-a carbon attached 

to an amine group (NH2), carboxyl group (COOH) and a hydrogen; but the 

distinguishing feature of each is the 'sidechain' group. Sidechains vary 

considerably in their physicochemical properties, but can be broadly 

grouped into three main classes: mainly hydrophobic, charged and polar 

(Figure 1.1). Glycine is the exception as its sidechain is simply a hydrogen 

atom, although it is sometimes classified as a hydrophobic residue. 

Polypeptide chains are synthesised on the ribosome in a condensation 

reaction between the carboxyl and amino termini to form the am ide/peptide 

bond.
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1.1.2 Secondary structure

Water-soluble, globular proteins are energetically driven to fold into their 

three-dimensional structure by the packing of mainly hydrophobic amino 

acids into the interior, leaving a surface of hydrophilic sidechains. The main 

chain polar N-H and C=0 groups, which are similarly buried with the 

hydrophobic sidechains, are neutralised by the formation of hydrogen bonds. 

These often give rise to regular hydrogen bonding patterns to create 

secondary structure elements. The configuration of the amino acids units 

relative to one another in these elements can be described by the angles 

between the C-a, carbonyl carbon and amide nitrogen. Two angles, phi and 

psi denote the angles around the N—Ca bond and the Ca—carbonyl carbon 

bonds respectively. The two main types of secondary structure are the alpha- 

helix and the beta-sheet, although there are a number of less stable hydrogen 

bonded motifs observed in nature.

Small
Proline

/

Tiny

Aliphatic s-s

S-H

Charged

' Negative

Polar
Aromatic

Positive

Hydrophobic

Figure 1.1 A Venn diagram describing the chemical and physical 

properties of amino acids (Taylor, 1986). The single letter code is translated 

in the abbreviations section.
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In an alpha helix, the C=0 group of residue i forms a hydrogen bond to the 

N—H of residue i+4, causing the chain to adopt a cylindrical helix structure 

with approximately 3.6 residues per turn. The helix is right-handed with psi 

and phi angles of -60 degrees and -50 respectively.

Beta sheets are made up of two or more continuous regions of beta-strand. 

Hydrogen bonds form in such a way as to allow the C=0 and N-H groups of 

adjacent residues to bond to one another. Fully-formed beta sheets can be 

described as parallel, anti-parallel or mixed, depending on the bonding 

patterns between individual strands. Parallel sheets have average ph i/psi 

angles of -119 and 133 respectively; anti-parallel, an average of -139 and 135.

In addition, other less stable and thus rarer secondary structure elements 

exist. The 3io helices are invariably short and frequently found at the termini 

of regular alpha helices. In this case, the helix is tighter, with hydrogen 

bonding occurring between the i and i+3 residues. The dipoles of the 3io helix 

are not so well aligned and hence it is less stable. In much rarer cases, a n- 

helix forms at the a id  of regular helices, where bonding occurs between i 

and i+5 but this is again very unstable. The beta-tum is much more common 

and arises when the protein chain turns upon itself and is stabilised by 

hydrogen bonding. A proline residue forms an intramolecular hydrogen 

bond between its side chain and main chain nitrogen, forcing a bend. The 

region is also glycine-rich, which introduces little steric hindrance and 

promotes flexibility in the chain.

1.1.3 Super-secondary structure
Secondary structure elements might also combine to form small secondary 

motifs or super-secondary structures. Some are associated with particular 

functions, such as DNA binding, whereas others are merely components of 

larger structural and functional assemblies.
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p-hairpins consist of two adjacent anti-parallel strands, joined by looped 

region. They can occur either in isolation or as part of a more complex beta- 

sheet. Sibanda and Thornton (Sibanda and Thornton, 1991) showed that 70% 

of beta-hairpins are less than 7 residues in length, with the "two-residue 

turns' being the most distinctive. Concatenation of several anti-parallel beta 

strands connected by beta-hairpins form a motif known as a beta meander.

The helix-tum-helix motif (EF hand) frequently has a specific functional role 

in binding calcium ions and was first discovered in parvalbumin where two 

of the three calciums interact in this way. The positive charge of the calcium 

is neutralised by the negative sidechain carboxyl groups and main chain 

carbonyl. Similarly, the helix-loop-helix motif is associated with DNA 

binding and found in proteins that control transcription, such as the Cro 

repressor in bacteriophage \ .

1.1.4 Tertiary structure
Secondary structure elements and larger motifs pack together to form the 

overall three-dimensional conformation or tertiary structure of a protein. A 

combination of electrostatic, Van de Waals forces, and covalent disulfide 

bonds act to stabilise the globular fold. This unit is often described as a 

domain.

1.1.5 Protein domains
Richardson (Richardson, 1981) described the protein domain as a semi­

independent globular folding unit that formed the building blocks for larger, 

multi-domain chains. Structural domains are often defined by the 

observation that residue contacts are greater within the domain, than 

between other folding units. In addition, secondary structure elements 

(particularly beta-strands) are rarely shared between domains (Taylor 1999). 

As a consequence, connecting loop regions between domains can be sites for 

residue insertions, as they do not disrupt the overall fold of the protein.
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1.1.6 Quaternary structure
Two or more protein chains can associate via electrostatic and covalent 

bonds to form oligomeric complexes, conferring a quaternary structure. These 

multimeric complexes further increase the functional repertoire of proteins 

and can also facilitate regulation, as these associations are often temporary or 

transient. This allows mechanisms such as allosteric control, where co-factors 

can modulate the shape of enzymatic sites and hence affect the reaction rate. 

In addition, new active sites can form at interfaces between chains, which 

allow a convenient way to build signalling networks and molecular 

machines (Liu and Eisenberg, 2002).

1.2 Evolution of protein domains
It is a widely accepted tenet of modem biology that organisms have evolved 

through a process of mutation and natural selection to produce the huge 

diversity of species we see in nature today. At the molecular level, it is the 

recombination and mutation of DNA that results in the myriad of proteins 

observed in the cell.

Proteins with similar structures and evidence of a common evolutionary 

ancestor are termed homologues. Despite often retaining the same function, 

they may differ significantly in their primary sequence as they have mutated 

independently from their parent ancestral gene. Identifying homologous 

relationships is often possible through comparative sequence analysis; 

however, protein structure is generally more conserved than protein 

sequence (Chothia and Lesk, 1986) and therefore structural similarities can be 

more informative when these data are available. Proteins that perform the 

same function in different organisms are termed orthologues (Figure 1.2).

When a gene duplicates, the new copy is not subject to the same evolutionary 

pressures as its parent gene and is potentially free to evolve a different
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function. Genes related by this mechanism are termed paralogues (Figure 1.2). 

New functions can evolve through an extensive modification of functionally 

active regions of the protein structure, or through amino acid substitutions of 

key catalytic or substrate binding residues. As with homologue detection, 

paralogues can be identified through sequence similarities, although they 

tend to be more diverse and hence often require structural information.
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Figure 1.2 Schematic representation of the progression from close 

homologues, through more remote (twilight zone) (Doolittle, 1986) and 

very remote (midnight zone) (Rost, 1997) homologues and finally 

analogous/homologous structural relatives.

Orthologues
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1.3 Aligning protein sequences
Aligning the primary sequence of a novel protein chain or domain to 

previously characterised proteins is often the first step in deriving 

information about its function and/or evolutionary origin. However, if two 

thirds or more of the residues have mutated, the quality of the alignment 

tends to deteriorate, regardless of the algorithm is used to align them (Martin 

et ah, 1997).

When aligning a pair of proteins, the primary objective is to find those 

residues which are evolutionarily related. For two alleles of a gene that only 

differ by a couple of point mutations, this is a fairly trivial task. However, for 

more distant relatives with substantial insertions and deletions, it can be 

highly problematic. There are a plethora of sequence and structural 

alignment algorithms (see Sections 1.3.3 and 1.6), but all aim to assess 

potential alignments by optimising a scoring function. For close relatives, 

this is often simply the percentage of identical residues (sequence identity, 

SI), but for more distant homologues this might be a score that accounts for 

insertions and deletions. In addition, sequence methods often make use of 

substitution matrices which calculate the evolutionary probability of specific 

residue mutations.

Alignment methods can usually be split into two types: local and global. The 

latter optimise equivalences across the entire length of two protein chains. 

This is useful when aligning two known homologues. However, for multi­

domain chains that share only one common domain, a method which is 

biased towards local similarities (local alignment method) is more 

appropriate.

1.3.1 Substitution Matrices
1.3.1.1 Using physicochemical properties

As discussed in Section 1.1.1, amino acid residues can be grouped according
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to shared chemical or physical properties. It is a reasonable assumption that 

the substitution of one residue for another is more likely to be tolerated in 

evolution if they possess similar characteristics. A mutation of leucine to 

valine, for example, is likely to have a minimal effect on the stability and 

function of a protein structure, as they share comparable hydrophobicity and 

molecular size.

2.3.2.2 Dayhoffor Point Accepted Mutation (PAM) Matrices

This approach of property comparison can be extended by calculating amino 

acid similarity based on an empirically-derived evolutionary method. By 

examining a large number of alignments of known relatives, substitutions 

probabilities between all 20 amino acids can be calculated and used to fill a 

mutation data matrix (MDM).

In the late 1970s, Margaret Dayhoff and co-workers used the sequences in 

their database of protein families to generate alignments of close 

evolutionary relatives (>85% sequence identity) (Dayhoff, 1978). The 

alignments were subject to a so-called global optimisation, where sequence 

identity was optimised to give maximum sequence identity across the whole 

protein sequence. The frequencies of residue substitutions were calculated 

and normalised so that each probability represented a residue substitution in 

an evolutionary period of one mutation every 100 residues.

2.3.2.3 The BLOcks Substitution Matrices (BLOSUM)

In a similar way, BLOSUM matrices are generated from regions of locally 

aligned sequences from the BLOCKS database (Henikoff and Henikoff, 1991). 

Proteins with a sequence identity greater than a given threshold are clustered 

together. Substitution values are calculated and used to populate a matrix, 

representing different evolutionary distances (e.g. BLOSUM50 clusters 

sequences at 50% identity). These matrices have been shown to be more 

effective in searching for homologous relationships than PAM matrices 

(Henikoff and Henikoff, 1993)
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1.3.2 Methods for identifying conserved residues positions
Global sequence comparison methods seek to identify proteins showing 

significant sequence similarity and a high probability of being evolutionarily 

related and thus possessing similar functions. Many groups have developed 

more general algorithms to detect amino acid conservation across families in 

an effort to predict functional sites. Valdar and Thornton (Valdar and 

Thornton, 2001) developed the ScoreCons program to analyse and predict 

protein-protein interfaces. They calculated the diversity, or entropy, of amino 

acids at each position in a multiple alignment, quantified by using 

mutational matrices of evolutionary distance. This was then used to predict 

conserved residues that may be important for binding. A review of other 

methods can be found in Valdar (2002).

1.3.3 Protein sequence alignment methods
Proteins do not only evolve simply through substitutions: DNA 

recombination and the presence of transposable elements can also cause a 

gene sequence to expand or contract (insertions and deletions, indels). In the 

translated protein structure, these indels often occur in the loop regions 

connecting secondary structure elements as this is less likely to disrupt the 

overall stability of the fold; however, they are still able to modulate the 

ligand binding capabilities and hence, the function. When comparing the 

sequences of more diverse proteins, an alignment algorithm must be able to 

account for indels of varying lengths. An optimal alignment ought to 

consider every possible combination of residues, including potential indels. 

Nevertheless, this is computationally expensive and can become impractical 

when searching large databases.

2.3.3.2 Global Alignment

Needleman and Wunsch (Needleman and Wunsch, 1970) were the first to 

apply the dynamic programming algorithm to the field of bioinformatics —
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it is still widely used today. The method begins by populating a matrix 

containing scores that reflect the similarity of all residues in protein A with 

those in protein B. The algorithm then starts at the bottom right hand comer 

to populate an accumulation matrix, as depicted in Figure 1.3. Each cell in 

this matrix takes the value of the scoring function S(if), which is determined 

by the values of previous cells to the below and to the right. It should be 

noted that if the value diagonally below S(i+l,j+l) is not selected, a gap 

penalty is invoked to penalise the introduction of a gap in the alignment. The 

final stage is to traceback through the matrix to determine the highest scoring 

path and hence the optimal alignment.
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S (i, j) = S(i, j ) + max
S(i+l,j+l)

S(i+\,j+2.J)+G  
S(i+2.J,j+l) + G

Where I = length of the row, J = length of column and G = gap penalty
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Each cell (i, j) is scored using the 
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Gap penalty(G) -2
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3 3 8 ^3 5 0
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Starting with the highest scoring 
cell, trace a path back through 
the matrix by selecting the 
highest score from the next row 
or column:

S(i, j) = max S(i+1, j+1..J) 
S(i+1..1, j+1)

S eq u en ce A _ _ S L V I  L R
S eq u en ce B I  L S L V -  - R

Figure 1.3 The Needleman and Wunsch dynamic programming algorithm. 

Each residue in sequence A and B is scored for similarity and these scores 

are used to populate a matrix. The accumulation step populates another 

matrix using the function S(i,j), where gaps are penalised. The final 

traceback step looks for the highest scoring path.
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A modification of this algorithm was introduced by Smith and Waterman 

(1981) that focused on providing local, rather than global, alignments. When 

tracing back through the matrix, the paths can start anywhere and are 

terminated when the score falls below zero.

1.3.3.2 Local alignment and BLAST

Dynamic programming methods are ideal for pairwise sequence alignment, 

but computationally expensive. Hence, for searching large databases the 

FASTA (Pearson and Lipman, 1988) and Basic Local Alignment Search Tool 

(BLAST) (Altschul et al.f 1990) algorithms were developed, which concentrate 

on discovering smaller, local matches, which can subsequently be extended 

to a full alignment.

BLAST splits each database sequence into tri-peptide fragments (although 

this size can be varied). The query sequence is then searched against all 

fragments, with scope for mutations allowed by invoking BLOSUM 

substitution probabilities. For example, ACE is allowed to match ACE, GCE, 

GME and AME. Each tri-peptide match is then extended in both directions to 

create the largest possible segment pair. The pairs are scored, assigned E- 

values and ranked to determine the highest scoring segment pair (HSP) for 

each sequence matched in the database. Although BLAST is essentially a 

local alignment method, it copes with indels by refining the alignment of 

good hits using dynamic programming.

1.3.3.3 Profile-based sequence comparison

Remote homologues (sequence identity < 35%) can often be detected more 

effectively by algorithms that focus on conserved regions or sequence motifs. 

Protein motifs represent small, highly conserved stretches of contiguous 

sequence, which may be associated with a particular evolutionary family or 

biological function. Searching for these recurring 'fingerprints' is frequently 

successful in the twilight zone (Doolittle, 1986), where global pairwise 

sequence similarity becomes unreliable. In a more sophisticated way,
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sequence profile methods, such as Hidden Markov Models (HMMs) (Eddy, 

1996) and PSI-BLAST (Altschul et ah, 1997), have made it possible to capture 

the probability of certain residue mutations and insertions/deletions 

occurring across families of related proteins. These methods effectively 

measure the likelihood of finding a given amino acid or gap at each position 

in the alignment.

Not all residues in a protein are of equal evolutionary importance. Those that 

are critical for molecular interactions, catalysis or the stability of the fold are 

subject to far greater evolutionary conservation than the average residue. 

Hence, the actual probability of residue substitution is dependent both on the 

type of amino acid exchange and location in the three-dimensional (3D) 

structure.

By aligning a large family of protein sequences, one can observe specific 

amino acids which remain invariant despite substantial sequence diversity 

across the whole population. It follows that these residues are likely to have 

some functional or structural importance for the protein. By combining 

positional information with residue exchange probabilities, a Position 

Specific Score Matrix (PSSM) can be generated, which acts as a profile or 

sequence 'fingerprint7 for the family.

PSI-BLAST (Altschul et ah, 1997) is an extension of the popular BLAST 

algorithm, which uses an iterative approach to refine a profile of the original 

query sequence. An initial BLAST database search is used to find close 

relatives, from which a multiple alignment can be built. A PSSM is then 

generated based on the residue propensities at each position in the multiple 

alignment. This is invoked to detect more remote homologues in subsequent 

searches of the database. The multiple alignment is then rebuilt and the 

PSSM refined. PSI-BLAST iterates through this process until no more 

relatives can be found below a given E-value cut-off.



HMMs (Karplus et al, 2005; Eddy, 1996) have been shown to outperform PSI- 

BLAST (Park et al., 1998) and are widely used by protein family databases, 

such as Pfam. HMMs implement a statistical framework which is based on 

state-transition probabilities in a multiple sequence alignment. A probability 

is calculated for each position for one of three states: match, delete or insert. 

The match state is further quantified by the distribution of residues at that 

position. Transition probabilities are calculated between all states and 

positions in the alignment. By traversing this probabilistic network, a 

distribution of residues is 'emitted' at each position to create the model 

(Figure 1.4). Each new sequence can be scored against the model and an E- 

value calculated. The most commonly used methods are SAM-T and 

HMMER.

Ml M2 M3 M4

D1 D3 D4

Figure 1.4 Overview of Hidden Markov Model (HMM), showing transition 

probabilities between match (M), delete (D) and insert (I) states.

1.4 Sequence Based Protein Family 

Classifications
Since the advent of genome sequence projects, the sequence repositories have 

always been several orders of magnitude larger than the structure databases.
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There has, in fact, been an exponential increase in the sizes of both types of 

data since the early 1970s but the largest sequence database, GenBank 

(Benson et al, 2006) still contains nearly three million non-redundant 

sequences (October 2006), compared to ~35000 protein entries in the Protein 

Data Bank (PDB) (Berman et al, 2000) (see Section 1.5).

These data can be exploited to investigate the mechanisms of evolution and 

annotate novel genes with a putative function, based on their similarity to 

experimentally characterised proteins. The two areas of research are 

intimately linked as more effective annotation can be achieved through an 

understanding of how differences between genes affect their function. Small 

mutations can inactivate an enzyme's ability to catalyse a reaction; yet a 

given enzyme can exhibit large sequence diversity across different organisms 

and still retain its primary role in the cell. Hence, finding a universal 

sequence similarity cut-off where function is preserved is impossible. Thus 

classifying proteins into evolutionary families can be helpful, as patterns of 

sequence conservation can be analysed used to detect new relatives and infer 

functional properties.

The earliest protein family classifications used pairwise sequence comparison 

to detect evolutionary relatives. However, these methods become unreliable 

in the so-called 'Twilight Zone' of sequence similarity (<30% sequence 

identity) (Doolittle, 1990). Fortunately, the rapid expansion of the sequence 

databases over that past ten years has increased the populations of the 

protein families, enabling the derivation of family-based sequence profiles 

and motifs.

Despite the success of the new profile methods (e.g. PSI-BLAST, HMMs), 

very distant homologues can still be undetectable at low error rates. 

However, members that share significant sequence similarity may possess 

similar or identical biological functions. Many resources choose to cluster 

whole protein chains. However, databases such as Pfam (Bateman et al,
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2002) now identify separate domains within genes (often defined using 

protein structure data) and group them accordingly. Thus, one gene may 

comprise several domains that are members of different protein families. In 

reviewing the databases below, the distinction between those which simply 

cluster whole protein chains and those which focus on the domain level is 

highlighted.

Table 1.1 summarises the current populations of the major sequence family 

databases and the methodologies used to create them. An important recent 

development has been the establishment of the Integrated Resource of 

Protein Families, Domains and Sites (InterPro) Database (Apweiler et al, 

2001) at the EBI. This resource integrates all the major protein family 

classifications and provides regular mappings from these family resources 

onto primary sequences in the UniProt database (Apweiler et at, 2004) which 

contains over 3 million sequences as of July 2005. InterPro is a collaboration 

that aims to provide an integrated interface of protein signature databases. 

Databases in the collaboration include UniProt, PROSITE (Hulo et al, 2004), 

PRINTS (Attwood et at, 2003), Pfam (Bateman et at, 2004), ProDom (Corpet 

et al, 1998) , SMART (Ponting et al, 1999), TIGRFAMs, PIR SuperFamily, 

SUPERFAMILY (Gough, 2002) and Gene3D (Buchan et al, 2002).
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R e s o u r c e G r o u p S o u r c e (s) N o .

Fa m il ie s

M e t h o d URL

PRINTS Zygouri SWISSPROT,

TrEMBL

1800

entries,

10,931

m otifs

Iterative

m otif

searches

http: /  /  w w w .b ioin f.m an. 

ac.u k /dbb row ser/P R IN  

T S /

Pfam Eddy SWISSPROT,

TrEMBL

7459

fam ilies

HMM w w w .san ger.ac .u k /Soft 

w are/P fam

SMART Bork Selected

proteins

667

dom ains

HMM http :/ /  w w w .sm art.em bl 

-heidelberg.de

ProDom Kahn SWISSPROT,

TrEMBL

501,917

families,

(186,303

non­

singleton)

PSI-BLAST h ttp :/ /  w w w .protein .toul 

ou se.inra .fr /p rod om /cur  

ren t/h tm l/h o m e.p h p

InterPro Zbobnov UniProt,

PROSITE,

PRINTS, Pfam,

ProDom,

SMART,

TIGRFAMs,

PIR

SuperFamily,

SUPERFAMILY

11,007

entries

(including

2573

dom ains,

8166

families)

M ultiple

m ethods

(HMM, PSI-

BLAST,

Regular

Expression)

h ttp ://w w w .eb i.a c .u k /i

nterpro

TIGRFAMs White SWISSPROT,

TrEMBL

1976

fam ilies

HMM h ttp :// w w w .tigr .ore/T I  

GRF A M s /  index. shtm l

A D DA H olm SWISSPROT, 

TrEMBL, PIR, 

PDB,

WORMPEP,

ENSEMBL

34.000 

fam ilies

60.000 

singleton)

http: /  /  ekhidna .biocenter 

,helsinki.fi:8080/exam ple  

s /se r v le ts /a d d a  /  index.h  

tml

CHOP Rost 62 com plete 

genom es

63,300

clusters

(plus

118,108

singleton

clusters)

PSI-BLAST http ://cubic .b ioc.colum b  

ia .ed u /serv ices/C H O P

http://www.bioinf.man
http://www.sanger.ac.uk/Soft
http://www.smart.embl
http://www.protein.toul
http://www.ebi.ac.uk/i
http://www.tigr.ore/TI
http://cubic.bioc.columb
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R e s o u r c e G r o u p S o u r c e (s) N o .

F a m il ie s

M e t h o d URL

TRIBES O uzounis 83 Com plete 

G enom es

60,934 or 

82,692 

depending  

on

granularity

TribeMCL http://m aine.ebi.ac.uk:8  

0 0 0 / serv ices/ tribes

ProtoNet Linial SWISSPROT,

TrEMBL

User-

defined

BLAST h ttp :/ /  w w w .protonet.hu  

ii.ac.il

SYSTERS Vingron SWISSPROT, 

TrEMBL, 

ENSEMBL 

(complete 

genom es), the 

Arabidopsis 

Information 

Resource, SGD 

and GeneDB

158,153

disjoint

clusters

BLAST h ttp ://systers.m olgen .m  

pg.de

SWISSPROT Schneider Primary

database

153,871

proteins

N /A h ttp ://u s .e x p a sy .o rg /sp 

rot

COG/KOG Natale 66 unicelluar 

and 7 

eukaryotic 

complete 

genom es

4873 COG, 

4852 KOG

Bidirectional 

best hit

http: /  /  w w w .ncbi.nlm .ni 

h .gov /C O G

Table 1.1 Protein family resources (compiled July 2005)

1.4.1 Families of sequence domains

Pfam (Bateman et al., 2004) is a highly comprehensive resource providing an 

optimised set of Hidden Markov Model profiles for protein domain families. 

Families are defined using multiple sequence alignments and HMMs which 

cover many common protein domains and families. Pfam consists of two 

parts, the first is the curated part of Pfam (Pfam-A), the second is an 

automatically generated supplement called Pfam-B.

Similarly, the Simple Modular Architecture Research Tool (Ponting et al,

http://maine.ebi.ac.uk:8
http://www.protonet.hu
http://systers.molgen.m
http://us.expasy.org/sp
http://www.ncbi.nlm.ni
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1999) (SMART) domain families are selected with a particular emphasis on 

mobile eukaryotic domains and as such are widely found among nuclear, 

signalling and extracellular proteins. SMART domain families are annotated 

with function, sub-cellular localization, phylogenetic distribution and tertiary 

structure.

COG and KOG (Tatusov et ah, 2003) are databases of clusters of orthologous 

groups of proteins, defined by groups of three or more proteins in complete 

genomes. KOG contains 7 eukaryotic genomes whilst COG contains 66 

complete unicellular genomes.

1.4.2 Families of whole protein chain sequences
TIGRFAMs protein families are built in a similar fashion to Pfam but also 

contain whole protein chains. ProtoNet developed by Linial and co-workers 

(Sasson et ah, 2003), uses three clustering methods (harmonic, geometric and 

arithmetic) to group sequences in the UniProt database on the basis of their 

similarity. Likewise, the SYSTERS (Krause et ah, 2000) and TRIBES (Enright et 

ah, 2003) methods make use of graph-based methods and Markov clustering 

respectively to generate protein families of varying granularity.

The PRINTS database (Attwood et ah, 2003) is a collection of protein 

'fingerprints' — conserved sequence motifs used to characterise a protein 

family. These motifs are generated via multiple protein sequence alignments 

by identifying regions of local sequence conservation. They can subsequently 

be used to scan a larger sequence set (e.g. UniProt (Apweiler et ah, 2004)) to 

recruit new family members. The majority of families are defined by multiple 

motifs and all must be present for a relative to be added to the group.

A number of other resources exist that automatically cluster sequences from 

the completed genomes or from the large sequence repositories (e.g. 

GenBank or UniProt) into putative domain families. The ProDom resource 

(Corpet et ah, 1998) contains protein sequence families derived from
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sequences in UniProt. These protein sequences are chopped into protein 

domains using an iterative PSI-BLAST domain boundary prediction 

algorithm and have been used to seed the majority of Pfam families.

Holm and co-workers developed the ADDA algorithm to cluster sequences 

into domain families (Heger et ah, 2005), which takes alignments from all- 

against-all sequence comparison to define domains within protein sequences 

and cluster them into families. Recently, almost 800,000 non-redundant 

sequences were condensed into 100,000 domain families (33% of the families 

containing more than one member) covering all of the currently available 

sequence space. A related algorithm, CHOP (Liu and Rost, 2004) designed by 

Rost and co-workers, assigns domain boundaries by BLAST sequence 

comparison and then clusters the subsequent domain-like fragments into 

sequence families using the CLUP clustering method. 62 completed genomes 

were chopped and clustered into 118,108 single and 63,300 multi-member 

clusters. Gene3D (Yeats et ah, 2006) clusters families at a range of sequence 

identities and now contains over 2000 domain superfamilies.

There are an ever-increasing number of web-accessible classifications of 

protein sequence families (see Table 1.1). The number of families identified 

by those performing automated clustering of large sequence repositories 

varies from 65,000 to 186,000 depending on the algorithm used. Ouzounis 

and co-workers revealed that each newly sequenced genome leads to an 

increase in the total number of protein families characterised (Janssen et ah,

2003). That is, currently a certain proportion of genome sequences (between 

10 and 25%) in every genome are singletons, or belong to families not present 

in other sequenced genomes. This may reflect limitations in the current 

sequence-based homologue detection algorithms; or alternatively these may 

be genuinely novel families that have arisen following speciation. The 

organism-specific families may be important for expanding the functional 

repertoire and phenotype of the organism, perhaps by providing unique 

biological processes or changes in gene regulation.
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1.5 The Protein Data Bank (PDB) and 

Macromolecular Structure Database 

(MSD)
The Protein Data Bank (PDB) (Berman et al.f 2000) was established in 1971 as 

a worldwide repository for the three-dimensional structures of proteins and 

nucleic acids. It contains structures solved using experimental techniques, 

such as X-ray crystallography, nuclear magnetic resonance (NMR) and 

cryoelectron microscopy. PDB files hold standardised coordinate data for 

atoms in the structures. However, other data is non-standardised, with many 

of the fields accepting free text of the author's choice.

The Macromolecular Structure Database (MSD) (Velankar et al., 2005) is 

curated at the European Bioinformatics Institute (EBI) in Cambridge and is 

also a database of macromolecular structures. However, unlike the PDB, 

which was designed as a data bank, the MSD focuses on providing a more 

rigid framework for data and optimising automatic searching. Manual 

intervention has been employed to correct errors such as spelling mistakes 

and the consistent nomenclature of amino acids residues and other chemical 

groups.

1.6 Aligning protein structures
As two proteins diverge from a common ancestor, their sequences can 

change beyond recognition. However, their three-dimensional structures 

usually remain similar. This was originally demonstrated in 1986 by Chothia 

and Lesk who plotted sequence similarity against structural similarity for 

homologues in the PDB (Chothia and Lesk, 1986). A more recent analysis of 

several hundred well populated superfamilies in the CATH database, 

containing three or more sequence families, confirmed that even in very 

remote relatives (<20% sequence identity) at least 50% of the structure
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remains conserved (Reeves et ah, 2006). The most highly conserved positions 

usually correspond to residues in secondary structures in the buried core of 

the protein.

Computational structure comparison methods were introduced in the 1970s, 

shortly after the advent of the PDB. Although they can be used to align entire 

multi-domain chains, it is often useful to separate proteins into their 

constituent domains, as the connectivity and orientation of domains can vary 

widely and this can have negative effects on the quality of the structural 

alignment.

There are well over 50 different structure comparison algorithms cited to 

date but most are variations on a number of techniques. In general, the 

alignment is determined in two stages: a measure of similarity of residues 

and/or secondary structure features between both proteins is calculated and 

then an optimisation strategy is employed to find an alignment that 

maximises the score of aligned positions. The majority of methods use the 

geometric properties of Ca or Cp atoms and/or secondary structure 

information, such as distances or intramolecular vectors. Physicochemical 

properties, such as hydrophobicity, hydrogen bonding and solvent 

accessibility are also sometimes used to identify equivalent residues (Orengo 

and Taylor, 1993).

1.6.1 Calculating Structural Similarity
Irrespective of the method used to align two protein structures, a 

transformation matrix can be calculated to superpose them in the same co­

ordinate space. If a quantitative measure of similarity is required, the most 

widely used is the Root Mean Square Deviation (RMSD). This is simply the 

square root of the average squared distance between equivalent atoms 

((Equation 1.1).
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r2 
i

(Equation 1.1 Root Mean Square Deviation (RMSD))

Similar protein folds tend to give an RMSD below 4.0; however, this can be 

higher for the folds of distant relatives with more than 400 residues. 

Moreover, superposing the same protein with and without its bound ligands, 

can also result in a large RMSD if there is a sizeable conformational change 

during binding (Grindley et al, 1993). This makes it highly sensitive to hinge 

movements between two domains and this highlights the main problem with 

using RMSD as a measure of similarity: namely, that it is dependent on the 

number of aligned positions. It is therefore important to consider both the 

RMSD and the number of equivalent residue pairs when assessing the 

significance of the similarity. Despite its limitations, RMSD remains a widely 

used and valuable measure.

1.6.2 Rigid body superposition methods
It is possible to treat two protein structures as rigid objects and simply find 

the best way of minimising the distance between them when superposing 

one on top of the other. It should be noted that this is distinct from structural 

alignment, which maps equivalent residues between two proteins. Rigid 

body superposition was the rationale of the methods pioneered by Rossman 

and Argos in the 1970s and can be thought of in three stages:

1. Moving both structures to a common position in the co-ordinate 

frame, usually by translating their centre of mass to the origin.

2. Finding putative equivalent positions to start the optimisation.

3. Rotating one protein, relative to the other, around to three major axes 

to look for the "best fit" (i.e. giving the lowest RMSD).

RMSD =

N

i = i

N
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The major difficulty with this method lies in identifying putative equivalent 

positions to begin the optimisation and reduce the search space. For close 

relatives (>35% sequence identity), standard sequence alignment methods 

can be used. However, for more distantly related proteins, this is unreliable 

and the algorithm often requires manual input to define known equivalent 

residues, such as catalytic residues in the active site.

Therefore, rigid body superposition is generally only used to compare 

closely related proteins, or to superpose structures once alternative 

algorithms with the ability to handle extensive insertions and deletions have 

determined equivalent positions.

1.6.3 Secondary Structure Based Methods
One approach to handling insertions and deletions (indels) in distant 

homologues is simply to compare the secondary structures, as a large 

proportion of indels occur in the loops connecting secondary structures. 

Graph theoretical methods (Grindley et al., 1993; Artymiuk et al., 1994; 

Harrison et al., 2003) tend to dominate this approach to structure comparison, 

as they are both fast and effective. The majority concentrate on the distances 

and angles between secondary structures in both proteins, which are then 

compared to find equivalent pairs.

1.6.3.1 GRATH, SSM

Graph theory is a comprehensive branch of mathematics that has been 

applied to many different areas of biology and computer science. A graph 

consists of points, nodes, in two-dimensional space connected by lines, edges, 

which describe the relationship between them. A protein structure can be 

reduced to a graph where the nodes are secondary structures and the edges 

describe the geometric relationships between them (e.g. distances, angles). 

Grindley and co-workers (Grindley et al., 1993), were the first to use these 

techniques in 1993, although Harrison et al. (2002; Harrison et al, 2003) have 

applied them more recently to detect fold similarities as part of the
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classification procedure in the CATH database (Orengo et al., 1997) 

(GRATH).

In the GRATH method, linear vectors are used to represent the secondary 

structures and the edges are then labelled with distances between the 

midpoints and angles, describing the tilt and rotation between the vectors 

(Figure 1.5). The resulting two protein graphs are then evaluated to detect 

common secondary structure 'cliques or complete sub-graphs', by 

identifying equivalent edges that are labelled with similar distances and 

angles (Harrison et al, 2003). This forms the basis of the correspondence 

graph, where each node represents two secondary structures (one from each 

protein) and edges are constructed where their angles and distances are 

within prescribed cut-offs. The Bron-Kerbosch method (Bron and Kerbosch, 

1973) is then used to detect the common secondary clique. The algorithm 

operates in a recursive fashion by gradually eliminating nodes that do not 

have sufficient edges, until the clique is found.

Krissinel and co-workers (Krissinel and Henrick, 2004) have optimised a sub­

graph matching algorithm, on which they base their SSM method. Much like 

GRATH, it labels edges with distances and angles to determine equivalent 

relationships (Figure 1.5). However, a greater emphasis is placed on the 

similarity between the sizes of secondary structures, a feature which was 

explicitly found to be unhelpful by Harrison et al. (Harrison et al, 2003). The 

major difference is that SSM does not search for fully-connected cliques. This 

is compensated for by also examining equivalent connectivity, i.e. matched 

secondary structures must be in the same order along the protein chain.

Methods based on secondary structure matching are extremely fast at 

searching databases of protein folds (particularly for proteins that contain < 

20 secondary structures elements) and very effective at identifying distant 

fold similarities. They are often used to find putative structural relatives,
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which can then be aligned more accurately to the query structure using 

residue-based methods.
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secondary structure 
is represented by 

a node in the greph

Figure 1.5 Illustration of graph theory-based structure comparison 

algorithms, a) Linear vectors are calculated through each secondary 

structure and used to represent each node in a graph. The relationships 

between these vectors (e.g. angles and midpoint distances) then annotate 

the edges between them, b) Two protein graphs are compared by looking 

for equivalent edges (highlighted in bold). Whereas SSM looks only for 

common sub-graphs, GRATH looks for fully-connected cliques. The 

resulting secondary structure graphs can represent a common topology 

shared by the two protein domains.

1.6.32 VAST

Entrez at the NCBI provides a web resource of structural alignments and 

superpositions of around 10,000 domain substructures within the PDB using 

the VAST (Vector Alignment Search Tool) algorithm (Madej et al, 1995). In a 

similar way to graph theory methods, VAST focuses on the relationship 

between secondary structures. The authors define "units" of similar tertiary
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structure as pairs of secondary structure elements that share equivalent 

types, relative orientation and connectivity. Two protein domains are aligned 

using dynamic progi amming to give the optimal superposition score across 

all pairs of secondary structure elements (SSEs). A statistical method is then 

employed to measure the likelihood that this similarity would be seen by 

chance, by calculating the probability that the score would be obtained when 

random pairs of SSE combinations in the two domains were superposed. The 

method yields a significance score that appears to be highly discriminatory at 

identifying structural relatives.

1.6.4 Residue Distance and Contact Map Based Methods
Some of the earliest structural comparison methods were based on distance 

plots. These are 2D matrices, shaded according to the distances between 

residues in a protein. In a similar vein, a contact map can also be generated 

which records those residues that are in contact (within a threshold distance 

~8A). These contacts may be based on Ca atoms or any other atoms in the 

residue side chains. The patterns arising in the resulting matrix are often 

characteristic of a particular protein fold. For example, dense stretches of 

contacts indicate closely packed secondary structures. Protein structures can 

be aligned by overlaying their contact maps. However, as with rigid body 

methods, it is difficult to overlay the maps of distant homologues; although 

some strategies have been developed to cope with indels, which are 

described below.

1.6.4.1 DAUandCE

One approach to aligning distant structural relatives is to divide each protein 

into fragments. The Combinatorial Extension (CE) algorithm (Shindyalov 

and Bourne, 1998b) and DALI (Holm and Sander, 1993) are popular 

examples of methods that discover equivalent fragments and subsequently 

combining them to calculate a global alignment, using some manner of 

optimisation strategy.



Holm and Sander developed the DALI algorithm (Holm and Sander, 1993), 

which fragments protein structures into hexapeptides and compares their 

contact maps (Figure 1.6). Potentially equivalent fragments are identified by 

looking for similar patterns of distances between residues, within a specific 

threshold. These pairs are then concatenated to extend the alignment using a 

Monte Carlo optimisation. An RMSD value is calculated to assess the quality 

of the extension as the concatenation progresses.

In a similar way, CE fragments the polypeptide chain into octapeptides and 

aligns residues based on the characteristics of their local geometry (as 

defined by vectors between Ca positions). Matching fragments are termed 

Aligned Fragment Pairs (AFPs). Heuristics are used to define a set of optimal 

paths joining AFPs, with gaps inserted as required. The pairs with the best 

RMSD are subjected to dynamic programming to achieve an optimal 

alignment. For specific families of diverse proteins, additional characteristics 

are used to weight the alignment.



48

A  B
A B H  S 3

k-i" j?  , ri

Generate distance 
maps for structures

Compare distance 
maps tor hexapeptides

Concatenate matching 
he xa peptides

Concatenate further fragments 
us»ng Monte Carlo optimization

Check RMSD ot 
concatenated 

fragments

Figure 1.6 The DALI method of Holm and Sander(1993). Proteins are 

fragmented into hexapeptides and their contact maps compared to find 

equivalent fragments. Fragments are concatenated and their RMSD 

checked to find valid extensions. Monte Carlo optimisation is used to 

guide the extension process to a full alignment.

1.6.4.2 SSAP

Another approach to comparing distances between residues was developed 

by Taylor and Orengo (Taylor and Orengo, 1989). They sought to deal with 

the structural embellishments observed between distant relatives by 

applying the dynamic programming techniques used in sequence alignment 

methods. In the SSAP algorithm, dynamic programming is in fact utilized 

twice; firstly to compare residue environments and secondly to determine 

the optimal global alignment (Figure 1.7).

At the heart of the comparison lies the concept of 'residues views'. These are 

vectors calculated between a specific Cp (side chain carbon) atom and all Cp 

atoms within a structure. The vectors are compared between the two proteins
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by a score based on the magnitude of the vector between them. The number 

of potentially equivalent residues is also limited by selecting on secondary 

structure properties (e.g. accessibility, phi and psi angles). A Residue-level 

score matrix' is constructed for each pair of putatively equivalent residues, 

containing scores that reflect the similarity of a given pair of vectors. For 

example, vectors from residue (i) to all other residues in protein A are 

compared to vectors from residue (j) in protein B to all other residues in 

protein B. Dynamic programming is used to find the highest scoring path 

through the matrix, which results in a putative alignment.

The second step is to amalgamate the information from the residue level 

matrices into a summary score matrix. Pairs of residues are determined to be 

potentially equivalent based on the score of the best path through their 

residue level matrix. All optimal paths returning scores above a given 

threshold are collated in the summary matrix and an overall optimal path 

calculated using dynamic programming.

The SSAP algorithm has historically been used to classify domains in the 

CATH database. In keeping with the idea of vector comparison, SSAP bases 

its primary scoring scheme on an average of the vector environment 

similarity of equivalent residues.
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Figure 1.7 Flowchart of the SSAP algorithm. Vector environments are 

compared between pairs of potentially equivalent residues in each protein. 

A residue level score matrix is constructed for each pair and optimal paths 

(putative alignments) are calculated by dynamic programming. High 

scoring paths are then added to the summary score matrix. Dynamic 

programming is then applied to the summary matrix to generate the final 

optimal alignment of the two structures.

1.6.4.3 COMPARER

COMPARER (Sali and Blundell, 1990) uses intermolecular superposition and 

then subsequently assesses relationships between residues within each 

structure. Residue properties, such as secondary structure type, side-chain 

orientations and torsional angles are then compared between proteins and 

used to populate a 2D matrix. These are combined with intramolecular 

information (Ca distances, hydrogen bonding patterns, distances to the 

protein's centre of mass) to find equivalent residues. Putative equivalences 

are optimised by rigid body superposition followed by a technique known as 

simulated annealing. This applies a probabilistic Boltzmann energy function, 

which calculates drops in energy as temperature decreases to find optimal
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solutions to the superposition of the proteins. The final alignment is then 

optimised using dynamic programming.

1.7 Protein structure classification
Although advances in sequence comparison methods are now able to detect 

many more remote homologues (below 35% sequence identity), a significant 

number of relationships can still only be identified through protein structure 

comparison. Therefore, structure-based classifications are highly important 

resources for recognising distant relatives and providing datasets for more 

extensive analyses of protein family evolution. A summary of current 

resources is tabulated in Table 1.2.

Since 1994, there have been two major structural databases, SCOP (Murzin et 

ah, 1995) and CATH (Orengo et ah, 1997), which group protein domains into 

evolutionary superfamilies. Domains are further classified under a hierarchy, 

the top level of which corresponds to the protein class -  the proportion of 

residues adopting a-helical or P-strand conformations. This gives rise to 

three major classes, mainly-a, mainly-p and a-p, although SCOP divides the 

alpha-beta class into alternating a/p and a+p, depending on the segregation 

of a-helices and P-strands along the polypeptide chain.

1.7.1 SCOP
The Structural Classification of Proteins (SCOP) database was established in 

1995 by Murzin and co-workers (1995) and uses almost entirely manual 

validation for recognising structural similarities between proteins to generate 

evolutionary superfamilies. Although time consuming, this has resulted in a 

very high quality resource where domain boundaries are also manually 

assigned. Domains are further clustered at the family level if they share 

greater than 30% sequence identity, or have a close structural or functional 

relative.
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1.7.2 CATH
CATH is an acronym of its hierarchy of: Class, Architecture, Topology, 

Homologous superfamily Figure 1.8. It uses a combination of manual and 

automated approaches. Robust structure comparison methods (SSAP, CORA, 

GRATH) have been developed to recognise structural relatives; although 

evolutionary relationships are only assigned following manual assessment of 

all available data. Several automatic methods are used for domain boundary 

recognition but, again, assignments are all manually validated.

Within each of the three protein classes defined in CATH, structures are 

grouped by architecture, which describes the overall arrangement of 

secondary structures. For example, the ubiquitous three-layer a-p-a 

sandwich which is defined by a core p-sheet surrounded by two alpha helical 

regions. The topology (or fold) level further delineates domains by the 

different connectivities of their secondary structure elements. Significant 

structure similarity, often identified through structural comparison, must be 

in evidence for domains to share the same fold level.

Finally, proteins are only grouped at the superfamily (H) level where there is 

additional evidence of an evolutionary relationship (e.g. high 

structural/sequence similarity or comparable functions). Two of the 

following criteria must be met:

1. Similar structures (SSAP score > 80) with at least 60%overlapping 

residues.

2. Similar sequence (> 35% identity or significant HMM E-value).

3. Functional similarity (e.g. sharing of first 3 E.C. numbers).

Version 2.6 of the CATH database contained 67, 054 domains in 1572 

superfamilies, 907 folds and 39 unique architectures. Within each 

superfamily, proteins are further sub-clustered by sequence identity into 

families of close relatives (e.g. > 35%) (Figure 1.8). The vast majority of
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structures in the same sequence family (S35 group) share very high structural 

and functional similarity. As such, datasets of domains can be reduced in size 

by only taking one representative from each S35 cluster -  this is termed the 

SRep.
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Figure 1.8 Diagram of the CATH hierarchy
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1.7.3 Other structural resources
In addition to hierarchical classifications, there are several online resources 

(e.g. FSSP (Holm and Sander, 1997), MMDB (Marchler-Bauer et al., 1999)) that 

provide lists of structural neighbours for a given query. FSSP provides a 

search tool that exploits the DALI algorithm to find structural relatives. 

Although a high structural similarity suggests homology, it is up to the user 

to assess the likelihood of this based on the data provided. The MMDB 

exploits the vector-based VAST algorithm to automatically find similar 

structures within the PDB. It provides alignments annotated with automatic 

domain assignments and graphical structural superposition. The PDB 

resource itself makes use of the CE (Shindyalov and Bourne, 1998b) program 

to search for structural neighbours automatically. Again, it is up to the user 

to further group these into individual protein families.

1.7.4 Evaluating protein structure alignment methods
As described in Section 1.6, there are a vast number of different approaches 

to protein structure alignment, all of which have their strengths and 

weaknesses. Where secondary structure comparison methods (such as 

GRATH and SSM) are fast and effectively detect similarities between a large 

proportion of proteins, they can miss more distant homologues and fold 

similarities. However, some residue-level methods, such as DALI and SSAP, 

can be slow when comparing large data sets of structures.

Both Novotny et al. (2004) and Kolodny et al. (2005), have recently looked at 

the relative performance of different structure comparison methods. 

Novotny et al. benchmarked 11 publicly available fold comparison 

webservers (the GRATH algorithm attached to the CATH database server 

was excluded at it did not provide multiple hits per fold, which was required 

for their assessment) for determining whether a given query structure 

represented a novel fold, according to the CATH classification. The authors 

concluded that CE, DALI and VAST performed well for detecting similar
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folds, although recommended using a combination of algorithms to be able 

to confidently assume that a given query structure had a novel fold.

Kolodny et al. (2005) took a subset of structure comparison methods to align 

representative domains from the CATH database with 6 different structure 

comparison methods, including SSAP. The authors compared the native 

structural similarity scoring schemes with their own geometric scores based 

on the RMSD upon superposition of aligned residues. Interestingly, they 

concluded that SSAP, among other methods, performed better in Receiver- 

Operator Curve (ROC) analysis of all domain pairs related at the fold level 

when using their geometric scores, rather than the native scoring of a given 

method. However, it was also suggested that ROC curve analysis with 

respect to CATH could unfairly penalise methods that detect structural 

similarities between domains in different folds.

To further evaluate the comparative performance of each method, Kolodny et 

al. examined the fraction of all same-fold domain pairs that were aligned 

with a transformed RMSD score (SAS) below a given cut-off. By this analysis, 

SSAP is judged to perform poorly compared with the other structural 

alignment methods. However, the authors note that when greater emphasis 

is given to the number of aligned residues, SSAP is the best performing 

algorithms, despite fairing worse than STRUCTAL in their other 

benchmarks.

It could be argued that one of the problems with the authors' conclusions is 

that a correct structural alignment cannot purely be judged on the geometric 

superposition score. Although it is important for a given structure 

comparison method to provide a score that performs well for identifying fold 

similarities and homologous relationships, it is also designed to produce a 

biologically meaningful alignment. As the SSAP algorithm is used 

extensively in this thesis, its relative performance for generating structural 

alignments and scoring structural similarity will be assessed and revised in
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Chapter 2.

Summary table of protein structure databases and structural comparison 

algorithms
D a t a b a s e L o c a t io n  a n d  

a u t h o r

C o v e r a g e S t r u c t u r e

COMPARISON

METHOD

T ype D e s c r ip t io n

CAMPASS Cam bridge 7580 dom ains COMPARER Structure- CAM bridge

University, in  1409 (Sali and based database of

UK superfam ilies Blundell 1990), sequence Protein

Sowdhamini SEA (Rufino alignm ents of Alignm ent

and Blundell, SCOP organised as

1994) superfamilies. Structural

Superfamities. 

Provides 

sequence 

alignm ents of 

structural 

dom ains w ithin  

a superfamily.

CATH UCL, London, 58,000 SSAP (Taylor Automatic CATH is a

Gene3D UK dom ains in and Orengo structural and hierarchical

Orengo 1459 1989), GRATH sequence classification of

superfam ilies (Harrison et comparison protein dom ains

al., 2002) m ethods are structures,

com bined clustered by

w ith manual Class,

validation of Architecture,

superfamily T opology and

alignm ents H om ologous

and dom ain Superfamily.

boundaries.

CE SDSC, A ll chains in CE Fully Combinatorial

La Jolla, PDB (Shindyalov automatic. Extension o f the

CA, and Bourne Nearest optim al path. A

USA 1998) neighbours. database of

Bourne structural

alignm ents and  

sim ilarities 

betw een  all
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structures in  the 

PDB.

DHS UCL, London  

UK

1459 SSAP (Taylor

superfam ilies and Orengo, 

in  CATH 1989) CORA

(Orengo 1999)

Fully 

automatic 

m ultiple 

structure 

alignm ents of 

close relatives 

in CATH  

superfamilies.

Dictionary of 

H om ologous  

Superfamilies. 

M ultiple 

structure 

alignm ents of 

hom ologous  

dom ains as 

defined by  

superfam ilies in  

the CATH  

database. These 

are further 

annotated w ith  

functional 

information  

from UniProt, 

ENZYME, GO, 

KEGG.

ENTREZ/M M  NCBI, A ll in  PDB

DB Bethesda, MD,

USA

Bryant

VAST (Madej 

eta l., 1995)

Fully

automatic.

Nearest

N eighbours

MMDB contains 

pre-calculated 

pairwise 

structural 

com parisons 

and alignm ent 

between all 

structures in  the 

PDB.

HOMSTRAD Cam bridge 7500 dom ains COMPARER Manual H OM ologous

U niversity, in over 1400 (Sali and classification STRucture

UK superfam ilies Blundell, 1990) of close Alignm ent

Blundell protein Database,

hom ologues Database of 

annotated

structural 

alignm ents for 

hom ologous  

protein fam ilies, 

utilising SCOP, 

Pfam and
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SMART to

identify

relatives.

SCOP LMB-MRC, 54745 Manual M anual Structural

SUPERFAMIL Cambridge, dom ains in  classification Classification O f

Y UK  1294 Proteins.

M urzin  superfamilies Hierarchical

classification by  

Class, Fold, 

Superfamily, 

Family.

Table 1.2 Protein Structure databases (July 2005)

1.7.5 Structural Genomics Initiatives

Although solving the structure of proteins at the atomic level is a non-trivial 

task, it can provide important insights into the mechanics of protein function. 

Such efforts can enable us to rationalise why certain proteins interact and 

elucidate the unique molecular apparatus afforded by enzymes to catalyse 

chemical reactions under physiological conditions. Nevertheless, given the 

large number of proteins in nature, it is unrealistic to hope to solve all 

structures with current techniques. The 'Holy Grail' of structural 

bioinformatics is therefore to be able to accurately predict structure from 

sequence.

Proteins are molecules, albeit very large ones, which obey the laws of 

chemistry and quantum physics, and therefore many believe it should be 

feasible to go from sequence to structure using ab initio methods (for a 

review, see Hardin et al. (2002). However, the process of protein folding is far 

from well understood and the best performing structure prediction 

techniques have been those that utilise empirical data on known sequence- 

structure relationships. These include 'threading' sequences through a 

library of structural templates (Jones et al, 1992) and modelling from
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homologous structures (homology modelling). Working on this principal 

structural genomics is aiming to put each protein sequence within the reach 

of these reliable homology modelling methods.

1.8 Predicting protein function
As discussed in the previous sections, annotating novel proteins with 

function can be achieved by finding close relatives through global sequence 

or structure comparison. Many studies have shown that enzyme domains 

which share at least 40% sequence identity are highly likely to share a 

common function (Todd et al. 2001), although this figure must be raised to 

60% for multi-domain proteins. Indeed, algorithms such as BLAST and 

FAST A are widely used to rapidly scan large databases of genome sequences 

in order to detect close relatives with experimentally characterised functions.

1.8.1 Defining Protein Function
Trotein Function' is a term frequently used in the literature, but should 

always be carefully defined. If we take glycogen synthetase as an example, 

we can say that its physiological function is to store excess blood glucose as 

glycogen in muscle and liver tissue. At a cellular level, it interacts with other 

metabolic enzymes to interconvert carbohydrates. On the molecular level, it 

catalyses the polymerisation of glucose-6-phosphate to glycogen. These three 

very different descriptions illustrate that when designing methods to predict 

protein function, it is important to decide on which level of function one is 

trying to focus.

Analysis of primary sequence and structure are most likely to give us 

information on a protein's biochemistry and molecular interactions. We can 

hope to identify motifs associated with a particularly binding property, such 

as ATP-binding, or enzymatic function and even cellular localisation. 

However, an important caveat in genome annotation is that although we 

may be able to predict the binding partners and reaction chemistry, these
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descriptions can be of limited use to experimentalists. For example, protein 

kinases are so ubiquitous in cell signalling pathways that simply identifying 

a protein's ability to catalyse phosphorylation says nothing about its role in a 

cellular context. It would be helpful to go further to predict its substrates and 

interaction partners.

1.8.2 Whole protein function vs. domain function
As reviewed above, polypeptide chains can fold to form a number of distinct 

structural domains. Furthermore, several chains can interact via electrostatic 

and hypdrophobic interactions to form protein complexes. Functional sites 

and enzymatic cavities can span more than one chain or arise in the gap 

between two globular domains. Even when the catalytic site is entirely 

located on a specific chain or domain, it may only be active in the full- 

complexed state. Hence, it is often only valid to ascribe a function to a whole 

protein, rather than a chain or domain. This is confirmed by the large range 

of functions observed across superfamilies of domains in the CATH database 

(Pearl et al., 2005).

1.8.3 Structured descriptors of protein function
As was highlighted in Section 1.8.1, protein function can be described on a 

number of levels. To further complicate matters, many enzymes and 

substrates have a number of synonyms. Therefore, several efforts have been 

made to more formally and consistently describe the huge diversity of 

functions observed in nature. One of the earliest in the field, was the Enzyme 

Classification (E.C.) (Bairoch, 2000) which groups enzymes into six major 

classes based on the chemistry of the reactions they catalyse. Each E.C. 

number consists of 4 digits (e.g. 2.7.7.1) where the first three describe the 

catalytic action of the enzyme and the forth usually denotes its substrate 

specificity. Rison and co-workers (Rison and Thornton, 2002) have shown 

that proteins are recruited into metabolic pathways based on their reaction 

chemistry and allowed to evolve the required substrate specificity. Hence,
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many different enzymes in the same superfamily frequently share the same 

reaction chemistry (i.e. first 3 E.C. numbers).

The Gene Ontology (GO) (Ashbumer et al, 2000) was set-up to provide 

consistent descriptors of proteins in every species. The consortium developed 

three controlled vocabularies (ontologies) to describe a protein's molecular 

function, its role in biological processes and its association with other cellular 

components. Unlike the hierarchical E.C. classification, each ontology is 

constructed as a directional graph, where each term may have multiple 

parents. For example, an ATP-dependent DNA helicase is a child of 'DNA 

binding', 'DNA helicase' and 'ATP-binding'. One of the major goals of GO is 

to facilitate automatic annotation of newly sequenced genomes by 

comparison to well-characterised genes in experimentally tractable 

organisms. For example, Cdc9p in yeast is able to perform DNA ligation 

during replication, repair and recombination. It is not known whether this is 

true for the equivalent enzyme in higher organisms, but the ontology 

captures these three functions independently and therefore gives the 

experimentalist the opportunity to test each individually.

1.8.4 Predicting functional residues through incorporating 

sequence and structural information
Even profile-based sequence methods can result in sub-optimal alignments 

of distant relatives. Assigning function from remote homologues frequently 

requires structural data and many groups have sought to combine this with 

sequence information.

Lichtarge and co-workers (1996) pioneered a method known as the 

'Evolutionary Trace' to identify sequence motifs associated with specific 

functions, such as ligand binding specificity. A phylogenetic tree is built 

from protein families and the conservation at each alignment position is 

calculated at different levels of global sequence similarity across the tree.



62

Conserved residues specific to certain clades of the tree were mapped onto a 

representative structure to locate the functional site and identify binding 

residues, as they often clustered together in three dimensions. Landgraf et al.

(2001) extended this to automatically select a representative structure from a 

cluster of functionally related homologues and identify conserved residue 

clusters that characterized protein surfaces, such as SH2 domains. A global 

conservation score was calculated for each position in the multiple alignment 

and a second score measured the local conservation in a 10A radius around 

each position. After statistical analysis, they generated a regional 

conservation score, C(x), and a similarity deviation score, S(x), for each 

residue in the alignment. C(x) defined the conservation of the local 

environment relative to the whole protein and was particularly effective at 

identifying poorly conserved transient interfaces in the MAPK transcription 

factor, ERK2. Whereas S(x) detected highly variable residue clusters that 

were shown to confer the various binding specificities to members of a 

family of aldolases.

1.8.5 Using electrostatics to predict functional sites
Molecular interactions in the cell — either between protein surfaces or 

proteins and their ligands — rely on electrostatic contacts between charged 

or polar residues. Many groups have examined ways of analysing and 

classifying proteins by the physico-chemical properties of their surfaces. 

Pawlowski and Godzik (Pawlowski and Godzik, 2001) took a molecular 

cartography approach to reduce protein surfaces to a spherical map. 

Focussing on charged and hydrophobic residues, they were able to calculate 

the similarity between two protein maps. They showed that this simple 

measure was capable of identifying functional subgroups within protein 

families, such as distinguishing between monomeric and tetrameric 

haemoglobin subunits. This method has been made available as a Webserver 

(Sasin et al, 2007). A similar resource (the electrostatic-surface of functional 

site (ef-Site) database (Kinoshita and Nakamura, 2004)) provides information
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about electrostatic potential surfaces that can be used to identify similar 

patterns of charge in binding and interaction sites.

1.8.6 Using knowledge-based catalytic structural templates
To retain function through evolution, the structure of two proteins may stay 

the same, despite significant divergence of their sequences. This can be due 

to the constraints of maintaining the overall fold, but structure is also 

particularly conserved in the environment of functional sites.

In 1997, Wallace and co-workers (1997) built a database of catalytic sites 

(PROCAT) that were characterised by hand. This has now been superseded 

by the Catalytic Site Atlas (Porter et al., 2004) and contains over 14,000 

structures, with each catalytic residue (up to 6 per protein) annotated with 

information from the literature. The 3D conformation of these functional 

residues is often conserved over evolution to preserve function, even when 

other regions of the structure may vary. A fast search algorithm (JESS) is 

used to compare small catalytic templates to structures of unknown function 

to assign a putative E.C number (Barker and Thornton, 2003). In spite of this, 

there are two main problems with the approach.

Firstly, catalytic residues can frequently move relative to one another when 

the substrate binds, causing their geometry to vary considerably between 

structures with and without bound ligands. Secondly, the probability of 

these small templates matching regions in functionally-unrelated proteins is 

high, making it difficult to distinguish between true and false matches 

simply by RMSD. The SiteSeer algorithm (Laskowski et ah, 2005) attempts to 

address this problem by also comparing the local environments of the known 

catalytic residues and the corresponding residues in the matched protein. 

They exploit the idea that the environment around the active site often 

exhibits higher sequence similarity than suggested by a global alignment of 

the query and match structures. A statistical scoring function improves
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matters by producing a more biologically-meaningful ranking for each 

search of a given query protein.

Other methods (DRESPAT (Wangikar et al., 2003), PINTS (Stark and Russell,

2003)) look for structural motifs that are common to both the annotated and 

"hypothetical proteins". They have the advantage of not requiring a user 

definition of functionally relevant residues; however, there is no guarantee 

that structural similarities are not a product of stabilising the protein fold, 

rather than true functional conservation.

1.8.7 Using surface cleft analysis to identify binding 

pockets
One of the key reasons enzymes can catalyse reactions so effectively is that 

they are able to isolate their substrates in binding pockets or clefts, creating a 

unique chemical environment. Indeed, the active site is usually found in one 

of the two largest surface clefts (Laskowski et al., 1996). In a similar fashion to 

the template searching discussed in the previous section, binding sites in 

unannotated proteins can be compared against a library of known sites, such 

as those implemented in the pvSOAR/CASTp server (Liu et al., 2007). 

SiteEngine (Shulman-Peleg et ah, 2005) goes further than similar geometric 

matching by also examining the physico-chemical properties of the amino 

acids in the site. The conservation of charge and hydrophilidty often 

provides an important addition to pick out genuine functional homologues.

Although these methods can be used to effectively assign function, they are 

again constrained by the fact that similar binding sites can exhibit different 

geometries depending on the presence, absence or identity of the bound 

ligand.

1.9 Support Vector Machines (SVMs)
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Support Vector Machines (SVMs) are a class of learning machines that aim to 

distinguish between two classes of data based on different values of common 

features. For example, given ion and enzyme levels in samples of human 

blood, an SVM could conceivably distinguish between diseased and non­

diseased patients. SVMs aim to maximise a particular mathematical function 

with respect to a given data set and have been used extensively in 

bioinformatics over recent years in protein-fold recognition (Rangwala and 

Karypis, 2005; Rangwala and Karypis, 2006; Miller et al, 1996), structural 

class prediction, secondary structure prediction and subcellular localisation. 

SVMs are underpinned by statistical learning theory, which provides a 

theoretical framework from which to fit a function to separate two classes of 

data by placing a division (or hyperplane) between them (Vladimir 

N.Vapnik, 1995).

1.9.1 Calculating a separating hyperplane
To construct a classifying function to separate two classes of data, the SVM 

calculates a hyperplane. Figure 1.9a shows an example where, with respect to 

two variables, the two classes can be fairly easily delineated. However, there 

are obviously many different hyperplanes that could separate these data. A 

statistical learning theorem shows that the most probable hyperplane 

classifier between two classes of data is the one that adopts the maximal 

distance (soft margin) from the nearest data points, i.e. in the middle of the 

two sets. Clearly, real data sets rarely separate this cleanly and for the SVM 

to come to a solution, it has to be able to deal with imperfect solutions. This is 

achieved by introducing a user-defined parameter (C, or soft margin), which 

essentially determines how many of data points are allowed to be 

misclassified when training the SVM without affecting the chosen 

hyperplane.



1.9.2 Choosing a SVM kernel
Some data sets can be easily separated by a linear hyperplane, whereas in 

other cases such a solution is not possible. However, SVMs can be extended 

to use more complex kernels. Figure 1.9b shows two classes described by two 

features, one of which does not vary. However, by squaring the variable 

feature (effectively placing the solution in higher dimensions), it is possible 

to separate the classes using a linear hyperplane. This approach is referred to 

as the "kernel trick". Figure 1.9d shows a more realistic example where the 

data points have been transformed into 4 dimensions by the kernel function, 

producing a non-linear solution in 2 dimensions.
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Figure 1.9 a) Separating two classes of data using a linear hyperplane. The 

soft margin (C parameter) is shown by the dotted lines, b) Two classes of 

data that cannot be separated in two dimensions using a line, c) By 

squaring the x feature in b) using the 'kernel trick', a linear solution can be 

found, d) A line separating two classes of data, which is linear in 4 

dimensions, but not in 2.
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1.9.3 Training and evaluating SVMs
As with any method that optimises a set of parameters on a given training 

data set, it is important to assess the classification performance of the 

algorithm on an unseen data set to prevent the algorithm from achieving 

artificially impressive results by over-fitting the training set. Two common 

approaches are k-fold cross-validation and leave-one-out cross validation. In 

the former, the data set is split into k different sets and one is removed before 

training the SVM but used to test the classification performance. This is done 

successively for each of the k sets and the performance is averaged over all. 

Leave-one out cross-validation is a more thorough version of k-fold, where 

all but one of the data points is using the train the SVM and the resulting 

model is used to classify the remaining example. The overall performance is 

measure by summing these classifications.

1.10 Aims of the Thesis
The principle aim of this thesis is to develop automatic methods for detecting 

fold similarities, homologous relationships and functional similarity between 

proteins in the PDB for classification of protein domains into the CATH 

database.

1.10.1 Chapter 2
In contrast to SCOP, the CATH database has always utilised structure 

comparison methods to aid in the classification of novel structures. However, 

assigning domain boundaries to multi-domain chains is still one of major 

bottlenecks in the curation process. However, upto 90% of new structures 

contain previously observed folds. Chapter 2 details the development of 

CATHEDRAL: a new algorithm to automatically assign domain folds and 

boundaries. It compares a query multi-domain protein chain against a library 

of previously-classified folds in CATH by modifying and combining features 

from the GRATH and SSAP algorithms.
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Around 50 structural comparison algorithms have been published in the 

literature over the last 30 years, the vast majority of which are not in regular 

use by the bioinformatics or structural biology community. Those which 

have gained popularity tend to have a web-based interface for users to 

submit their own structures or structures from the PDB. CATHEDRAL was 

designed to be implemented as a crucial stage in the CATH classification 

protocol and to be made available to the scientific community.

1.10.2 Chapter 3
Chapter 3 concerns another new algorithm, FLORA, which exploits multiple 

structure alignments of functionally similar domains to discover structural 

motifs, which can then be used to assign function to new domains.

The central goal of this work was to exploit sequence and structural data to 

detect conserved patterns in protein families that recur in enzymes with 

similar catalytic mechanisms, as defined by their E.C. number. A novel 

algorithm, FLORA, was developed to analyse multiple structural alignments 

of domains in these families and discover a conserved motif. Patterns of 

sequence conservation and residue accessibility were combined with 

structural conservation data to identify these motifs, which were then 

encoded into templates and compared against new structures using a graph 

matching program, FLORAScan. The primary focus of the method was to 

discriminate between domains with different functions, yet a common 

evolutionary origin (i.e. from the same CATH superfamily) in a more 

effective way than global structure comparison.

1.10.3 Chapter 4
Chapter 4 takes structure comparison methods a step further through 

combination with SVM technology to predict the fold of ab initio models. The 

aim of the work presented here was to further the efforts of De La Cruz et al



(2002) and Simons et al. (Simons et al., 2001) in utilising structural 

comparison methods to compare ab initio predictions (models) for a given 

target sequence to a library of known domains in CATH in order to assign it 

to a fold group. Once a fold prediction is made, the structural alignment 

between a model and library structure can be combined with homology 

modelling methods to further refine the structure prediction.
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Chapter 2 CATHEDRAL: 

Detecting homologues and 

assigning domain boundaries

2.1 Background and Aims
Over 7000 new proteins structures were deposited in the Protein Data Bank 

(PDB) (Berman et al., 2000) in 2005, many of which contain multiple 

polypeptide chains. Furthermore, as observed in structural classification 

databases, a significant fraction of protein chains comprise two or more 

domains (known as multi-domain structures). Indeed, nearly 50% of 

polypeptide chains classified in version 2.6 (May 2005) of the CATH database 

(Orengo et al., 1997) are multi-domain and the proportion of this type of 

structure in the PDB in likely to increase with improvements in techniques 

for experimental structure determination. Figure 2.1 shows that the majority 

of multi-domain chains in v2.6 of CATH comprise two domains, although 

some larger structures have been solved with 3, 4 and even over 5 domains. 

Moreover, recent analyses of completed genomes have suggested that the 

proportion of multi-domain structures in some organisms, particularly 

eukaryotes, may be as high as 80% (Apic et al., 2001).

To classify such structures into the CATH domain database, it is necessary to 

delineate their domain boundaries and subsequently assign each component 

domain to a homologous superfamily, with both processes requiring 

significant manual intervention. However, the majority of newly solved 

structures contain previously observed domain folds and accordingly it is 

feasible to exploit structural comparison methods to recognise these folds in 

their multi-domain context. Even a recent analysis of domains solved by the 

Structural Genonomics Initiatives (SGIs) (Todd et al, 2005) — which aim to
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target novel folds — showed that approximately 90% adopt structures 

similar to those already observed in the PDB.
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Figure 2.1 Percentage of multi-dom ain chains w ith  a given num ber of 

component domains.

Proteins are comprised of individual folding units known as domains. In 

general, each domain takes the form of a specific topology and it is estimated 

that there are up to several thousand such folds in nature (Chothia, 1992; 

Orengo et al, 1994; Grant et al, 2004). Domains are thought to be important 

evolutionarily conserved units, and structural classification databases, such 

as SCOP (Murzin et al, 1995) and CATH (Orengo et al, 1997), aim to classify 

their structures into fold groups and superfamilies. Although members of 

domain superfamilies can exhibit sequence similarity of < 30%, relatives 

generally maintain comparable topologies in the core of their structures 

(Orengo et al, 1997; Reeves et al, 2006).

Various structural methods have been developed to detect domain 

boundaries through a ■priori knowledge of domain structure, folding and 

interactions. The method of Taylor (1999) uses a technique similar to an

Number of domains in protein chain
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Isling model in which the structural elements of the model changes state 

according to a function of the state of their neighbours. Each residue in the 

protein chain is assigned a numerical label and if a residue is surrounded by 

neighbours that possess (on average) a higher label, its label increases. The 

DOMAK algorithm of Siddiqui and Barton (1995) assumes that a domain 

makes more internal contacts (intra-domain) than external contacts (contact 

with residues in the remainder of the structure). A "split value" is calculated 

from the number of contacts measured when a protein is divided into two 

parts at different points, which is highest when the two parts of the split 

structure are distinct domains. By contrast, the DETECTIVE algorithm 

(Swindells, 1995) aims to determine the hydrophobic core in each domain 

unit. The Parser for protein Unfolding Units (PUU) algorithm by Holm and 

Sander (1994) uses a harmonic model to describe inter-domain dynamics and 

this is then used to define domains for the FSSP database (Holm and Sander, 

1998).

The original CATH classification protocol, (Jones et al., 1998), attempted to 

use a consensus of the results from the three independent methods: PUU, 

DOMAK, DETECTIVE. However, although many of these individual 

methods reported between 70-80% accuracy in benchmarking tests, this does 

not seem to have been bom out on a practical level when updating CATH 

and manual validation becomes the only secure way to resolve conflicting 

predictions. An additional complication is that approximately 30% of 

domains are discontiguous in sequence — i.e. the structure of the individual 

domains is formed from disconnected regions of the polypeptide chain -  and 

assigning these types of domains remains a problem for most automated 

methods (Jones et al., 1998).

Another problem with ab initio domain prediction is that it provides no 

indication of whether each domain is similar to other folds in CATH. Hence, 

even after manually validating the domain boundaries, it is still necessary to 

compare each domain against a database of known structures if one is to
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classify the fold. As has been suggested, there are a limited number of folds 

in nature and newly solved multi-domain structures are likely to contain at 

least one previously observed fold. Therefore, exploiting the concept of 

domain recurrence appears a sensible strategy to classify the majority of new 

polypeptide chains. The idea of automatically detecting recurring domains is 

not new and has been successfully exploited by the DALI Domain Database 

(Holm and Sander, 1998), which uses a combination of structural comparison 

and automated domain detection to classify new structures.

Several powerful structural comparison algorithms exists — GRATH 

(Harrison et al., 2003), SSAP (Taylor and Orengo, 1989), CE (Shindyalov and 

Bourne, 1998a), DALI(Holm and Sander, 1993), SSM (Krissinel and Henrick,

2004), STRUCTAL (Kolodny et al, 2005) and VAST (Madej et al, 1995) — 

each of which have been reviewed in more detail in Section 1 of this Thesis. 

The performance of any alignment method should be measured on its ability 

to generate biologically-meaningful alignments and its capacity to accurately 

detect similar folds and structural homologues by means of a robust scoring 

scheme. As a recent analysis by Kolodny and co-workers (2005) highlighted, 

the accuracy of the latter feature is vital when comparing novel structures 

with a database such as CATH. They found that the RMSD of a given 

alignment, normalised by the number of aligned residues (termed the SAS 

score), was the best score for discriminating domains with genuine fold 

similarities. However, the original RMSD is still dependent on the number of 

equivalent residues in the alignment — although the SAS score provides a 

more uniform measure across proteins of different sizes, it may still score 

small motif matches disproportionately highly. Hence, a good SAS score 

does not necessarily indicate that a globally optimal alignment with the 

maximum number of equivalent residues has been found. For the purpose of 

assigning accurate domain boundaries from structural comparison, it is 

particularly important to align as many residues as possible, as this 

alignment will be used to allocate the domain region. Simply superposing
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the conserved core of two domains with the same fold will often leave the 

equivalences in the rest of the structure to guesswork.

This chapter concerns the development of the CATHEDRAL algorithm, a 

novel domain identifier that exploits the fold-recurrence philosophy. 

CATHEDRAL is an acronym for CATH's Existing-Domain Recognition 

ALgorithm. It compares a query multi-domain protein chain against a library 

of previously-classified folds in CATH by modifying and combining features 

from the GRATH and SSAP algorithms.

SSAP is a residue-based method that uses double dynamic programming to 

produce accurate alignments, even for distant structural relatives. However, 

it attempts to solve a highly computationally intensive problem and is slow 

for large-scale analysis and protein structure database scanning. Conversely, 

GRATH is extremely fast and seeks the largest common "clique7 of equivalent 

secondary structures between two structures. It is able to identify equivalent 

folds with high sensitivity and selectivity, but unlike SSAP does not provide 

a detailed or globally optimised alignment.

To improve the speed yet maintain the fidelity of detecting domains with 

similar folds, this work explores using GRATH as a filter for pre-selecting 

similar structures in the CATH database, which can then be aligned more 

accurately with SSAP. Initially, this was optimised by comparing domains 

which had already been classified in CATH. By using GRATH to pre-filter 

putative structural relatives before generating more accurate SSAP 

alignments, a 100 fold increase in speed is achieved, depending on the size of 

the query structure, at no cost to the quality of the domain alignments. This 

approach was shown to perform well against several other publicly available 

structure comparison methods at the domain level.

Assigning individual domains to multi-domain chains poses a more 

challenging problem for structural comparison, not least because in some
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cases the definition of a 'domain region' can be highly subjective. Scanning 

newly solved chains against the CATH library using GRATH often 

effectively identifies constituent domain folds; however, it can also 

erroneously match highly recurrent structural motifs that are present across 

many areas of fold space. Several measures (e.g. SAS score, RMSD, number 

of aligned residues, number of matched secondary structures) should be 

taken into consideration when gauging whether a valid fold assignment can 

be made to the query chain. When developing an algorithm, many workers 

choose to experiment manually with different scoring schemes and then 

optimise the parameters on their chosen test set. However, machine learning 

methodologies, such as Support Vector Machines (SVMs), can also be used in 

order to enable this optimisation to be performed automatically, rendering 

the process easier and potentially more powerful.

Around 50 structural comparison algorithms have been published in the 

literature over the last 30 years, the vast majority of which are not in regular 

use by the bioinformatics or structural biology community. Those which 

have gained popularity tend to have a web-based interface for users to 

submit their own structures or structures from the PDB. CATHEDRAL has 

been implemented as a crucial stage in the CATH classification protocol and 

another aim of this chapter was to make these tools available to the scientific 

community. Hence, a new Webserver was created to allow users to make 

their own domain assignments.

2.2 Methods
2.2.1 Overview of Methods
This section briefly details some of the more technical methods and 

optimisations used in the development of the CATHEDRAL algorithm. The 

main steps of the algorithm are outline in Section 2.3.2. SVM technology was 

used to predict fold assignments and this optimisation is also included.
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2.2.2 Data sets
2.22.1 Selecting domain library and CathScop data sets for benchmarking GRATH 

and SSAP

Representative domains were taken from 6003 sequence families (SReps) in 

CATH v2.6.0 to form a data set where potential evolutionary relationships 

could not be identified reliably by sequence methods with all domains 

sharing less than 35% sequence identity. These formed the domain library 

with representatives from all 907 fold groups.

GRATH and SSAP were benchmarked against four other structural 

comparison methods: STRUCTAL, DALI, LSQMAN and CE. An all-against- 

all structural comparison was performed between all domains in the domain 

library, for each of the different structural comparison methods, giving over 

18 million individual comparisons. To minimise any bias towards CATH 

classifications, a second data set that was subset of CATH v2.6.0 and SCOP 

vl.65 was constructed. Each of 6003 CATH (SRep) domains was checked to 

see if it had an equivalent SCOP domain with at least 80% residue overlap 

and was in the same SCOP family sharing 80% of the members. This created 

the CathScop data set with 1779 SReps encompassing 406 folds.

2.2.22 Selecting a dataset of proteins chains for optimising CATHEDRAL 

A  set of 1071 non-redundant (at 35% sequence identity) representatives 

(SReps) from multi-domain sequence families were selected. From this set, 

those chains containing domains from folds with less than 2 SReps were 

removed. The remaining set contained 680 chains with 1593 constituent 

domains.

2.2.3 Benchmarking SSAP against other publicly available 

structure comparison methods
There are several publicly available methods that have been endorsed by 

widespread community use and /o r validation by comparative
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benchmarking against established methods. The programs selected here 

were based on those previously benchmarked by Kolodny and co-workers 

(2005) for performance in fold recognition and alignment accuracy. These 

were: CE, LSQMAN, DALI and STRUCTAL.

Structure alignment methods were compared using Receiver-Operator 

Curves (ROC). These plot true positive rate (sensitivity) against the false 

positive rate (1 - specificity) for different similarity scores returned by the 

individual methods. A binary classifier was defined by the CATH hierarchy 

whereby a positive match is one where both domains share the same fold or 

superfamily classification whilst negative match does not. The matches for 

each method were ordered by the structural similarity score of their 

alignment, and the number of true positives and true positives calculated at 

varying thresholds.

Kolodny and co-workers tested several measures for assessing the accuracy 

of structural alignments. They found the most useful to be the SAS score (see 

(Equation 2.1), which normalises Root Mean Squared Deviation (RMSD) by 

the number of aligned residues and penalises alignments where less than 100 

residues have been aligned.

o ^ o - i n n  rmsdo^4o — l U U X - ^  (Equation 2.1 SAS score, nAl = aligned residues)

In addition to this geometric measure, alignment accuracy was also assessed 

by comparison against a set of manually curated alignments. BAliBASE 

(Thompson et ah, 1999) is a database of manually-refined multiple structure 

alignments specifically designed for the evaluation and comparison of 

multiple sequence alignment programs. The alignments in BAliBASE are 

selected from the FSSP (Holm and Sander, 1997) or HOMSTRAD (Mizuguchi 

et al., 1998) structural databases, or from manually constructed structural 

alignments taken from the literature. Functional sites are identified using the
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PDBsum database (Laskowski et ah, 1997) and the alignments are manually 

verified and adjusted, in order to ensure that conserved residues and 

secondary structure elements are well aligned.

Fourteen BaliBase multiple alignments were selected comprising 108 

pairwise structural comparisons. All the alignments represented single 

protein domain chains that shared less than 25% sequence identity, making 

alignment non-trivial. All protein classes were represented and the quality of 

the alignments generated by the different structure comparison methods was 

measured by the score, fm, which is the number of amino acids correctly 

aligned in the structural alignment divided by the total number of aligned 

residues in the BaliBase alignment. CE was not appropriate for this analysis 

as the alignments it outputs only show the largest continuous motif.

2.2.4 Guiding residue alignments using SSAP
Although secondary structure matching using GRATH is both fast and 

effective at finding fold similarities, it tends only to identify highly conserved 

regions of secondary structure. A large amount of structural variation 

around this common core is observed across some superfamilies (Reeves et 

al, 2006), even more so within a fold group. Conversely, the SSAP algorithm 

has been optimised to find as many equivalent residues and hence the 

optimal global alignment between two domains.

The first step in SSAP is to find putative equivalent pairs of residues, by 

selecting those that share comparable torsional angles and solvent 

accesbility. Each pair is then aligned using dynamic programming to 

compare their residue environments. For two large domains, the numbers of 

putative residues pairs can run into several hundred, each of which must be 

subjected to the same computational expensive algorithm. The paths from 

these matrices are added to a summary matrix, provided their total score 

exceeds a threshold. The top 20 highest scoring residue pairs are then 

compared again using dynamic programming. The summary matrix is then
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reset and these 20 paths are added. From this, the final alignment is 

calculated using dynamic programming. Previous versions of SSAP have 

sought to increase the speed of the process by performing an initial 

secondary structure alignment (Orengo et ah, 1992). It was proposed that the 

conserved clique identified by GRATH alignment could similarly be used to 

reduce the search space in SSAP in this way.

When a clique of secondary structures is matched, it aligns equivalent 

secondary structures in a pair of domains. This was used to guide a more 

comprehensive residue-level alignment, by modifying SSAP to use the clique 

to guide the initial selection of residue pairs. This is achieved by populating 

a binary matrix, which dictates which residue pairs are selected, based on the 

equivalent secondary structures identified by GRATH.

In the first step, residues in equivalent secondary structures are simply 

paired with one another. As equivalent strands and helices can vary in length 

(e.g. a helix with 11 residues could be aligned to one with 8), it must be an 

All-vs-All pairing (represented by a square of 'V  values in the matrix). 

Similarly, residues on the end of aligned secondary structures could 

potentially be paired with residues in the loop regions, so the boundary is 

extended by 10 residues on either side.

Secondly, although the alignment for residues outside the clique is unknown, 

it is possible to exclude certain pairings. The clique effectively orientates the 

alignment and dictates that if helix 1 in protein A is equivalent to helix 2 in 

protein B, it cannot simultaneously be equivalent to helix 3 in protein B. 

Moreover, it sets the overall direction of the alignment and allows the 

regions between the clique secondary structures to be linked together.

Finally, the alignment of the beginning and end of the domains, outside 

embellishments to the core secondary structures in the clique is unspecified. 

However, it is known that these cannot be aligned to any of the core residue
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pairs. Hence, the starts and ends of the domains are paired up for SSAP to 

decide where the equivalences lie.

As is standard in the SSAP algorithm, the torsional angles and accessibility of 

the potentially equivalent residue pairs are still assessed to determine which 

to select in the first phase of dynamic programming, which helps to reduce 

the search space further.

2.2.5 Training an SVM to recognise domain folds in multi­

domain chains
Both GRATH and SSAP SAS scores give a good measure of the structural 

similarity of two domains (see Section 2.3.1). Nevertheless, their ability to 

discriminate between genuine fold similarities and simply matching smaller 

structural motifs also relies on accounting for the alignment overlap in 

relation to the largest domain. Indeed, recognising domain folds within a 

multi-domain context poses a more difficult problem if the domain 

boundaries are unknown, as it is not possible to accurately determine the 

overlap with the largest domain. In this case, all factors (such as the number 

of aligned residues, domain size and structural similarity) should be 

considered. In order to develop a robust scoring scheme for CATHEDRAL, 

an SVM was used to combine a series of scores from GRATH and SSAP and 

other indicators of alignment quality for the data set of protein chains 

described in Section 2.2.2.2. The primary aim was to generate a combined 

score that could be easily calculated to rank potential folds matches to a 

query chain.

The SVMLight package (Joachims 1999) was used in this instance to train a 

classifier. It provides a choice of 4 kernels: linear, polynomial, radial-basis 

function (RBF) and sigmoid. In addition, the user can define a tailored 

knowledge-based kernel. Initial investigations showed that the RBF kernel 

did not perform any better than using a linear kernel. Therefore, since the
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SVMLight outputs linear weightings for each of the inputs in the latter case, 

and this could be directly implemented in the source code of CATHEDRAL, 

the linear kernel was chosen.

2.2.5.2 Creating a dataset as input to the SVM

Machine learning with neural networks or SVMs is usually undertaken using 

a training set where there are equal numbers of positive and negative 

examples. Unbalanced sets can bias the optimisation function to predict the 

majority class exclusively. However, SVMLight allows to user to modify the 

relative weighting of positive and negative inputs when training the kernel 

(using the -j parameter). This feature lends itself to CATHEDRAL as the 

negative examples in a database scan can outweigh the genuine matches by 

as much as 4 times. It also allows the SVM to train on all available examples, 

which is not the case when artificially balancing the data sets by randomly 

sampling negative examples. Therefore, we used this feature to weight 

genuine hits according to the ratio by which they were overrepresented by 

unrelated domains.

In order to ensure fair testing in machine learning applications, it is vital to 

assess the performance of the model on a separate dataset to the one on 

which it has been trained. An extension of this is five-fold cross-validation, 

which was used here. In this procedure, the dataset is split into 5 sets and 

each one is successively taken as the test set, while the model is trained on 

the other 4 sets. The performance is then calculated as an average over the 5 

test sets. This guarantees that evaluation of the classifier is not biased by the 

any random fluctuations in the composition of the training or test sets.

2.2.52 Feature selection

As inputs to the SVM, measures of structural similarity and other alignment 

features from GRATH and SSAP were calculated. The features used are 

listed below:
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1. GRATH score

2. GRATH clique size

3. SSAP score

4. Residue overlap (as calculated by SSAP)

5. RMSD

6. Number of aligned residues (as calculated by SSAP)

7. SAS score from SSAP alignment

To improve the performance and speed of the classifier, all features were 

normalised between values 0 and 1.

22.5.3 Optimising and assessing the performance of the SVM  

The performance of machine learning methods can be measured in several 

ways: Error rate, percentage of correct assignments, Matthews Correlation 

Coefficient, ROC curve analysis. The latter is simply a plot of the true 

positive versus false positive rates over a range of score cut-offs. It is a useful 

measure of a score's ability to discriminate between correct and incorrect 

classifications. In this work, it was used to evaluate different scoring 

mechanisms for domain assignment.

When using a linear SVM, it is still advantageous to optimise the penalty 

variable, C. This determines how much each wrongly classified example is 

penalised when evaluating different hyperplanes. Depending on how the 

SVM is going to be used and the size of the data set, different values of C can 

result in classifiers with better or worse performance. In this instance, C was 

optimised by exploring a range of values and assessing performance based 

on the average area under a ROC curve. The results in Figure 2.2 show that a 

value of C of 10 or above gives the optimum performance. However, the 

overall increase is very small (< 0.02) and hence varying the C parameter has 

little effect (< 0.12 increase in ROC Area) on the dataset.
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Figure 2.2 Optimisation of SVM Light cost parameter on chain  

CATHEDRAL dataset

2.3 Algorithm Development and Results
The ultimate aim of this work was to assign domains to multi-domain chains 

using the GRATH and SSAP structural comparison algorithms, using the 

CATHEDRAL algorithm. However, to ensure that the resultant method was 

going to be accurate, it was desirable to first benchmark the performance of 

these two component approaches for recognising structural similarity at the 

single domain level.

2.3.1 Assessing performance of GRATH and SSAP
GRATH and SSAP were compared to assess their ability to correctly identify 

foid and superfamily relatives from a data set of domains from CATH 

(CathScop data set, see Section 2.2.2.1). GRATH is several orders of 

magnitude faster than SSAP, however, it is limited by solely comparing 

secondary structure elements and the scoring scheme is based on the number 

of shared equivalent secondary structures. Although this can be effective at 

detecting the conserved core, it does not give a measure of the overall 

similarity between two domains. Conversely, SSAP calculates a SAS score (

h

i------------- 1------------- 1------------- 1------------- r



85

(Equation 2.1) based on the RMSD of a residue superpostion, which gives a 

more accurate quantification of protein fold similarity.

2.3.1.2 Ranking fold matches with GRATH and SSAP database scans 

The coverage and accuracy of GRATH and SSAP was assessed by scanning 

the dataset against a library of CATH domains and the results ranked by 

GRATH E-value, SSAP SAS score. The rank of the first appearance of the 

correct fold was noted and a frequency distribution calculated. It can be seen 

that SSAP finds the correct fold as the top hit over 94% of the time compared 

to nearly 84% for the GRATH E-value. Nevertheless, the correct fold is 

within the top 10 hits nearly 94% of the time for GRATH. SSAP appears to be 

a superior discriminator of fold similarities, yet the performance of GRATH 

is impressive given its superior speed and the simplicity of its approach.

2.3.12 Ranking superfamily matches with GRATH and SSAP database scans 

For ranking homologous superfamily matches, SSAP maintains the same 

high performance with the correct hit at the top of the list 94% of the time 

(Table 2.1). However, GRATH drops to 76% as it unable to distinguish 

between homology and fold similarity. Interestingly, SSAP is better at 

discriminating superfamily matches than fold matches. This could be due to 

the fact that the correct hits are closer structural matches to the search 

domain. Moreover, fold groups are a more arbitrary grouping within CATH 

and different levels of structural variability are tolerated in different areas of 

fold space.
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FOLD SUPERFAMILY

Rank GRATH

E-value

SSAP

SAS

GRATH

E-value

SSAP

SAS

1 83.8 94.6 76.2 93.7

2 4.2 1.5 5.8 1.9

3 1.6 0.5 2.9 0.7

4 1.3 0.3 2.1 0.4

5 0.6 0.3 1.0 0.3

6 0.3 0.2 0.6 0.1

7 0.5 0.1 1.1 0.1

8 0.5 0.2 0.6 0.3

9 0.3 0.1 0.5 0.1

10 0.3 0.1 0.4 0.2

>10 6.6 2.1 8.9 2.2

Table 2.1 A dataset of domains was scanned against the CATH library using 

GRATH and SSAP and the ranked by GRATH and SSAP scores respectively. The 

percentage of domains with the correct fold or superfamily at each ranking is 

tabulated.

2.3.2.3 ROC analysis

To further compare the ability of GRATH and SSAP to discriminate between 

different folds and superfamilies, Receiver-Operator Curves (ROC) were 

plotted for each method, Figure 2.3. These help to assess the ability of a score 

to differentiate between two classes, in this case (same fold/superfamily). A 

perfect ROC curve would form a mirror image of the x and y axes, with a 

true positive rate of 1 with 0 false positives. A random predictor would result 

in a linear graph of unit gradient, with true positive and false positives rates 

of 0.5. Integrating the area under the curve gives a measure of the overall 

performance of the score.

For fold prediction (Figure 2.3a), SSAP and GRATH perform fairly similarly, 

with SSAP performing slightly better. The area under the SSAP and GRATH
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E-value curves are 0.91, 0.88 respectively, indicating that both methods 

perform well. Again, the main reason for the methods' lower than optimal 

performance is probably the inconsistency of fold clustering. It has been 

suggested that fold space is in fact a continuum (Harrison et al., 2002); 

however, CATH and SCOP show a generally good correlation which 

suggests there is at least a common consensus for many areas of fold space 

(Hadley and Jones, 1999).

For predicting homologous relationships (Figure 2.3b), SSAP performs very 

well, significantly better than GRATH. The area under the SSAP and GRATH 

curves are 0.97, 0.90 respectively. Nevertheless, both methods appear to be 

better at identifying genuine homologues than fold matches. This again may 

be due to the aforementioned fact that folds are less well defined than 

superfamilies. However, it could also be that homologues are generally more 

structurally similar and the more distant fold matches are harder to assess by 

a simple geometric score.
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Figure 2.3 ROC curve analysis of GRATH and SSAP scores for a) fold 

assignment, b) superfamily assignment.

2.3.1.4 Comparing SSAP to other publicly available methods

SSAP was also compared against the performance of several other publicly

available methods (DALI, STRUCTAL, LSQMAN, CE) using the alternate
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CathScop data set (see Section 2.2.2.1). GRATH was not benchmarked as it 

only provides secondary structure equivalences and not an overall 

alignment. This part of the analysis was carried out in collaboration with Tim 

Dallman.

-•-SSAP —  DALI —  STRUCTAL —  LSQMAN —  CE
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Figure 2.4 ROC curve analysis of different structure comparison methods 

for domains at the CATH fold level.

It can be seen from Figure 2.4 that SSAP returns the highest proportion (53%) 

of true positives for a 1% (0.01 on the graph) error rate, followed by DALI 

and STRUCTAL. However, DALI has 4% better coverage at a 5% error rate. 

This is not entirely unexpected as DALI is well-established and popular with 

experimentalists, presumably because its performance is consistently high. 

LSQMAN and CE do not perform as well as the other methods, which may 

be because they tend to score only residues that superpose well. This might 

suggest that maximising alignment length and calculating global similarity is 

most informative for detecting fold/superfamily relationships.

As well as the ability of the SAS score to discriminate between true and false 

fold matches, for the purpose of developing a domain boundary recognition
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algorithm it is important to identify the closest relative within a fold group in 

order to obtain the best alignment. Therefore, the correct fold should rank 

highly in the list of matches. It can be seen from Figure 2.5 that SSAP assigns 

the correct fold as its top hit over 96% of the time. When the percentage of 

correct fold matches with the top ten matches are considered, it can be seen 

that the SSAP performance rises to 98%, with STRUCTAL also performing 

well. Again, LSQMAN and CE do not perform as well, which may be 

because they are inclined to only calculate similarity between the conserved 

protein core.

♦ SSAP * CE x LSQMAN « DALI •  STRUCT AL

1 -i-------------------------------------------------------------------------------

0.88 J! ----------------------------

0 . 8 6  1-------------1--------- 1------- 1-------- 1-------------1--------- 1------ 1--------- 1 1--------- 1 1--------- 1 1------ 1 1 1 1-------------

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Rank

Figure 2.5 Plot of percentage of correct folds matched against the ranked 

native score for the CATH-SCOP data set.

2 3.1.5 Comparison to manually-curated alignments

The only true way to assess automatic structure alignments is to compare 

them to a manually validated dataset. We therefore compared all methods 

(excluding CE, see Section 2.2.3) against curated alignments in the BAliBASE. 

Figure 2.6 shows that DALI and SSAP produce alignments closer to the 

BaliBase alignments with nearly 60% of DALI and SSAP alignments having 

at least 50% residues correctly aligned, compared to 45% for LSQMAN and
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40% for STRUCTAL. For LSQMAN, this is most likely due to the fact that it 

restricts its alignments to the 100 most conserved positions. However, it is 

interesting to note that although STRUCTAL does not align as many residues 

as SSAP and DALI, it still performs well in discriminating similarities at the 

fold level.

—  SSAP -»-DALI -a-LSQMAN -"-STRUCTAL

100
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S

<
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£
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% of correctly aligned residues

Figure 2.6 Percentage of alignments with a range of percentage correctly 

aligned residues.

2.3.2 Assigning domains to multi-domain chains 

(CATHEDRAL)

Assigning domain folds to multi-domain chains using structural comparison 

methods can initially appear as straightforward as scanning the chain against 

a domain library and allocating the highest ranking hit for each region. 

However, there are number of important caveats to this solution.

GRATH is very good at identifying common secondary structure motifs in 

two domains. These overlaps can often be large and indicative of a particular 

fold (Harrison et ah, 2002). However, they may also represent motifs that are 

observed in unrelated folds across the whole of the protein universe. A small 

domain containing a beta-alpha-beta motif, for example, may match a region
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of the query chain which is in fact part of a much larger domain. This hit 

would score highly if only the overlap to the small domain was considered. 

Indeed, as well as hitting genuine relatives, folds such as the Rossmann will 

match many such motifs in small domains (Figure 2.7). Clearly, when 

scanning with a single domain, the largest match will still be at the top of the 

list of hits; however, when scanning a multi-domain chain, motif matches can 

score highly and outrank genuine fold matches. This is because it is not 

possible to calculate the overlap between the clique as a percentage of the 

largest domain, as the size of the domain region in the multi-domain chain is 

unknown (Figure 2.7). This problem is compounded when dealing with

Query protein chain with 2 domains 

I I_________________________

Small domain with 

Overlapping inccorect fold

common motif

domains which are discontiguous in sequence.

Figure 2.7 The problem of matching common structural motifs in small domains 

when scanning protein chains against the domain library, which leads to false 

domain boundaries despite a high local structural similarity.

The solution proposed here was to develop an iterative algorithm 

(CATHEDRAL), where domains are allocated in a stepwise fashion and the 

remainder of the chain re-scanned against the library for each assignment. 

This permits larger domains to be assigned first before comparing the 

remainder of the chain to smaller domains. The algorithm is summarised in 

Figure 2.8.
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YESIf more than 5 
secondary structures 
remaining in chain

Excise best hit from chain

Scan chain against large domain 
library using GRATH

Scan against small domain library 
using GRATH/SSAP

Compare N top hits within the top 
10 folds using SSAP

Finalise fold and domain

boundary assignments

Use SVM to re-rank hits based on
SSAP/GRATH

Figure 2.8 Flow chart of CATHEDRAL algorithm for assigning folds and 

domain boundaries to protein chains.
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2.32.1 Scanning a chain against a library of domains using GRATH 

The first step in the algorithm is to compare the query protein chain against 

the CATH domain library of folds using GRATH. To lessen the impact of 

motif matching to small domains, the library is split into domains with 5 or 

more secondary structures (large library) and those domains with less than 5 

(small library). All small domain assignments are made at the end of the 

protocol. Chains are scanned against the large library and the hits ranked by 

the GRATH E-value.

N  representatives from each of the top 10 folds identified by GRATH are 

taken forward for further analysis using SSAP. In Section 2.3.1.1, it was 

shown that this should cover 94% of correct folds. The motivation for this 

was to increase the chance of finding the closest structural match, which 

should result in the best domain boundaries.

2.3.22 Compare top hits using SSAP

Although GRATH is effective at matching common secondary structures, 

residue-based methods, such as SSAP, produce alignment scores that better 

represent the similarity between the two domain regions. The top 10 fold 

representatives from GRATH were therefore subjected to a SSAP alignment, 

guided by the secondary structure clique as described in Section 2.2.4. The 

scoring scheme used in SSAP for domain-vs-domain alignments involves 

normalisation over the size of the largest protein. When aligning a chain 

against a domain, the length of the putative domain region in the chain is 

unknown. Hence, it was decided to take the length of the region of the chain 

that had been assigned to the matched domain as a substitute of the largest 

domain size.

2.32.3 Excising the top hit and re-scanning

The hits are then re-ranked by an SVM (see Section 2.2.5) score and the top 

hit is excised from the chain. The assigned regions are determined by the 

SSAP alignment, which provides a list of residues in the chain which are to
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be excluded for future searches of the library. A new secondary structure 

graph for the chain is created, where any secondary structures within the 

assigned region are excluded. If the chain contains more than 3 secondary 

structures it is then re-scanned against the library using GRATH.

Potentially valid fold representatives are selected as before and passed to 

SSAP. After the first iteration, SSAP was modified to exclude any residues 

assigned to the previous domain. The reasons for this are two-fold. Firstly, 

and most importantly, it avoids SSAP attempting to align residues that have 

already been assigned. Although the SSAP score penalises gaps as it assesses 

potential alignments, it also looks for the best global alignment along the 

length of the whole chain. Excluding these residues therefore increases the 

chance that SSAP will find the best alignment to the hit domain. This is 

especially pertinent when aligning discontiguous domains, as the gaps 

between segments are not penalised. Secondly, SSAP can be very slow to 

align large chains, so excising previously assigned regions can reduce the 

search space and hence enhance the speed. CATHEDRAL continues for up to 

10 iterations or until there are less than 5 secondary structures left to be 

assigned.

2.32.4 Scanning the small library and collating results

After cycling through the iterative scans against the large library of domains, 

the remaining stretches of the protein chain are compared against the small 

library. The top 10 folds are selected as before for SSAP alignment. The 

results of all the GRATH and SSAP comparisons so far are then collated and 

written out as a list of hits, ranked by their SVM score.

2.3.2.5 Analysis of SVM score

The CATHEDRAL algorithm was used to generate a list of potential domain 

matches to all chains in the dataset. The parameters described in Section 2.2.5 

were used to train the SVM and it was optimised using five-fold cross- 

validation. A ROC curve analysis was used to assess the performance of
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different scoring schemes (Grath E-value, SAS, RMSD) at low error rates, as 

this would be crucial in determining the correct fold match for each domain 

in the chain. As can be seen in Figure 2.9, the SVM score outperforms all 

other measures of structural similarity, with RMSD performing the worst. At 

a false positive rate of 0.02, the SVM has coverage of 0.70 compared to less 

than 0.60 for the SAS score. Interestingly, the GRATH E-value curve has a 

greater area than the SAS and RMSD, despite only looking at secondary 

structure similarities. Overall, these data appear to confirm the hypothesis 

that combining alignment scoring features in the SVM is more effective at 

separating true and false fold matches.
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Figure 2.9 Comparison of GRATH, SSAP and RMSD scores with the SVM 

score for assigning domains to multi-domain chains.

2.3.2.6 Testing the algorithm

A non-redundant set of multidomain chains (see Section 22.2.2) were 

scanned against the domain database using the CATHEDRAL algorithm to 

assign domains. Any matches to domains with >35% sequence identity were 

discarded as Trivial hits' that could be picked up by sequence methods (such 

as BLAST or HMMs), so assignments were only made for distant relatives. 

These may be genuine homologues or domains with similar folds.
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2.3.2.7 Assigning folds and domain boundaries

Although folds are assigned to the chain during the iterative scanning 

algorithm, the final domain assignment is reserved until all the results have 

been collated. This is for two reasons. Firstly, although the top hits for each 

cycle were selected previously, they are not necessarily valid matches. 

CATHEDRAL does not use any empirical cut-offs in the first structure 

comparison stage, so there may simply be no valid fold match in the CATH 

library to a domain region. Secondly, the assignment of small domains (less 

than 5 secondary structures) is still required, in addition to domains with less 

than 3 secondary structures which cannot be identified by GRATH. The SVM 

score was used in all subsequent benchmarking studies.

In this post-processing stage, CATHEDRAL ranks all the domain hits that 

have been collated over the iterative process described above and assigns 

each region of the chain in turn. After the first domain has been annotated, 

the algorithm looks for hits to other regions of the chain. The process 

continues until no more domains can be assigned, i.e. all subsequent matches 

overlapped with assigned parts of the chain.
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Figure 2.10 Percentage of domain assigned (blue) and percentage of 

domain boundaries within 10 residues of verified boundaries (pink) at a 

range of SVM score cutoffs.

Figure 2.10 shows that CATHEDRAL was able to assign 90% of domains in 

the query data set to the correct fold group, with 86% of these within 15 

residues of the actual boundary. Although the data set only contained multi­

domain chains where all component domains were represented in the CATH 

library, this is not always the case in classifying novel structures. Indeed, 

assigning erroneous folds to chains could adversely affect the quality of the 

domain boundaries. However, no improvement in domain boundary 

assignment performance could be achieved by increasing the SVM score cut­

off above 1.5, suggesting that this is an appropriate threshold to use in 

CATHEDRAL.

2.3.2.8 Optimising number of fold representatives aligned in each iteration 

The major speed increase in CATHEDRAL is due to the fact that GRATH 

pre-selects representatives for SSAP to align to the query chain. By default, it 

takes all relatives (SReps) in each fold group, even if this produces thousands 

of comparisons, as it does with large folds such as the Rossmann. This can
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result in much longer running times for some query chains. Nevertheless, it 

was important to find the closest structural relatives for each assignment, to 

reduce the number of unassigned regions and therefore increase the accuracy 

of the domain boundary.

It was hypothesised that perhaps only a limited number of relatives from 

each fold could be taken, without comprising the fidelity of the domains 

boundaries. However, given that GRATH does not accurately discriminate 

between homologues and domains with the same fold, it was decided to 

sample each superfamily in the target fold group and explore the effect of 

varying the number of representatives from each superfamily.

CATHEDRAL was run as described above (by targeting the top 10 fold 

groups at each iteration) but the number of representatives ifr) taken from 

each superfamily to be aligned by SSAP was varied. Figure 2.11 shows the 

number of correctly assigned domain boundaries (within 15 residues of 

manually validated boundary) at each of these levels. It appears that taking 

any more than 7 reps does not increase the number of good assignments and 

hence was an appropriate level to set th e /r parameter.
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Figure 2.11 Percentage of dom ains w ith  correct dom ain boundaries (within  

15 residues) w hen varying the num ber of representatives taken from each 

superfamily in  the targeted fo ld  groups.

2.32.9 Correcting domain boundaries

When CATHEDRAL determines which fold to assign to a region of the 

protein chain, it is also making judgement of where the domain boundaries 

lie. The fidelity of this latter process is arguably dependent on the structural 

similarity between the domain region in the chain and the domain it has 

matched in the library. A number of methods were employed to increase the 

accuracy of the boundaries.

Firstly, domains were allowed to overlap by a maximum of 30% of their 

length with other assigned domains. This conflict was resolved by assuming 

that the highest scoring domain is most likely to have the correct boundaries. 

The boundaries of the other domain were cropped to exclude the shared 

region.

Secondly, some chains may contain small regions at the start and end that are 

unassigned. This was often less than 20 residues and unlikely to contain
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another domain, or comprise an additional segment of a discontiguous 

domain. In these instances, CATHEDRAL assigns the extra residues at the 

beginning and end of the chain to the first and last domains respectively. 

Similarly, some chains contained small regions between assigned segments 

belonging to different domains. In these cases the algorithm, splits the 

unassigned residues equally between the two neighbouring segments.

Dealing with discontiguous domains has been found to be problematic with 

other domain boundary prediction algorithms (Jones et al, 1998). For 

CATHEDRAL, one of the reasons for this is that even domains with the same 

fold can vary considerably in size (Reeves et al., 2006). Therefore, it is difficult 

to determine whether an insertion in the alignment between a given matched 

domain to the query chain is genuine, or indicates that the gap is part of 

another fold in the chain. The algorithm deals with this by re-examining the 

chain for unassigned regions after all domains have been allocated. For a gap 

of less than 40 residues, it looks to see whether other assigned domains have 

residues that have aligned to residues in that gap and extends these to create 

two discontiguous domains. If not, it assumes there is an insertion and 

extends the size of the initial domain accordingly.

2.3.2.10 Domain assignment vs sequence identity

Figure 2.12 shows the relationship between the accuracy of the domain 

boundary and the sequence identity between the assigned domain region 

and best structural match used to assign the boundary. As sequence identity 

increases above 10%, there is an increase in the number of correct domain 

boundaries. It might be expected that the closer the relative from which the 

assignment is made, the greater chance of it being correct. However, it is 

encouraging to note that 60% of assignments with sequence identities 

between 5% and 10% show very little deviation from the manually verified 

boundaries.
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Figure 2.12 A plot of the percentage o f correct (w ithin 15 residues) domain  

boundaries against the sequence identity betw een the assigned region and 

the matched domain

2.3.3 The CATHEDRAL Server
The structural comparison and domain assignment methods in this chapter 

were implemented as a server on the World Wide Web for access to the 

bioinformatics and structural biology community. Users can upload their 

own structures in PDB file format or use a PDB code to access the structures 

files stored at University College London (UCL) on a mirror of the PDB 

(Figure 2.13a). Once submitted, the PDB file is analysed and only peptide 

chains are selected. The user can then choose which chains they wish to 

submit for analysis (Figure 2.13b). Domain hits to each chain are displayed 

graphically in the context of the query chain (Figure 2.13c).
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Figure 2.13 The CATHEDRAL server, a) Users can upload their own 

structures or select those from the PDB. b) Peptide chains are extracted 

from the PDB file and can be selected individually for analysis by 

CATHEDRAL, c) The results are displayed as graphics.

2.4 Discussion
A protocol for domain boundary assignment in multi-domain proteins 

(CATHEDRAL) was developed, which exploits the recurrence of folds in 

different multidomain contexts. This was devised since a high proportion 

(currently >90%) (Todd et al, 2005) of domains in newly determined 

structures comprise folds which have been previously classified in CATH.
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CATHEDRAL scans a query structure against a library of folds from the 

CATH databases. The algorithm first exploits graph theory to perform a 

secondary structure-based comparison and identify putative domain fold 

matches in the query structure. Representatives from the top 10 folds are 

then re-compared against the putative domain region of the query protein to 

obtain better alignment and refine the domain boundaries. This latter step 

uses a double dynamic programming algorithm (SSAP) that has been guided 

by information on equivalent secondary structures, identified by the graph 

theory match.

CATHEDRAL combines the power of two established structural comparison 

algorithms in order to develop a fast and accurate protocol for homologue 

recognition and domain assignment. CATHEDRAL misses -10% of the 

domains in the target data set. Of these -30% are too small and so are 

ignored by the CATHEDRAL protocol, as GRATH cannot match domains 

with less than three secondary structures. Manual inspection revealed that a 

further -20% are distorted or irregular structures giving poorly defined 

graphs. The remaining -50% are missed because they do not pass the score 

similarity cut-off, as the relatives are too distant and related structural motifs 

in neighbouring fold groups are better matched. This percentage should 

reduce as new structures are solved and CATH becomes more highly 

populated.

The CATH classification of protein folds gives a discrete description of fold 

space (Orengo et ah, 1997). However, there are difficulties in identifying 

distinct folds in some populated regions of fold space where the structural 

universe can more reasonably be represented as a continuum (Orengo et ah, 

1994). In many cases, as the size of the protein increases, the repertoire of 

folds appears to consist of extensions to existing motifs. It has been shown by 

Koppensteiner et al. (2000) that it is possible to "walk" from one a /p  

sandwich fold to another, through the extension of a /p  motifs. Furthermore, 

certain motifs, described as "attractors", occur as the core of a protein's
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structure more frequently than others (Holm and Sander, 1996). Recent 

analyses of the overlaps between fold groups has shown that for some 

protein architectures (ap sandwiches and mainly-p sandwiches) extensive 

overlaps between fold groups are observed due to large common structural 

motifs (Harrison et ah, 2002).

For 86% of the multi-chain data set, all domain boundaries within the multi­

domain were correctly assigned within 15 residues of the true boundaries. 

This is a considerable improvement over a previous consensus protocol 

(DBS, (Jones et ah, 1998)), described above, for which on average only 10-20% 

of domains could be identified as having reliable boundary assignments 

from agreement between 3 independent methods. Especially since domain 

folds recognised by CATHEDRAL can be simultaneously classified in the 

CATH database, without the need for further structure comparison as in 

previous classification protocols (Orengo et ah, 1997). Furthermore, the data 

set used excluded hits with > 35% sequence identity, which would be non­

trivial for a sequence-comparison method to identify.

Since CATH aims to maintain high quality domain boundary assignments 

(Veretnik et ah, 2004), results returned by the CATHEDRAL algorithm will be 

manually assessed. However, the high accuracy of the approach will 

considerably facilitate this process. Since the proportion of domain folds 

classified within CATH is likely to increase significantly over the next 

decade, due to the progress of the structural genomics initiatives, the 

CATHEDRAL algorithm will considerably enhance the speed of 

classification of new multi-domain structures and their constituent folds 

within CATH.

2.5 Future Work
As discussed above, CATHEDRAL generally fails to assign domains 

boundaries correctly when GRATH misses the correct fold in the list of hits
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passed to SSAP. Smaller alpha domains cause the most difficulty and work is 

in progress to separate these into a library that can be compared purely using 

SSAP. As these contain fewer residues, it should not increase the overall 

runtime significantly.

Although a difference of 15 residues between the CATHEDRAL result and 

manually validated boundaries for 86% of query chains is fairly small, it 

could certainly be improved. The post-processing of CATHEDRAL results to 

assign domain boundaries presented here is fairly basic. For example, gaps 

between assigned domains are resolved simply by placing the domain 

boundary in the centre of the gap. Although this may still be useful if the 

data are to be subsequently adjusted manually, it does not lend itself to full 

automation. Work is now in progress to implement a more sophisticated 

decision algorithm that takes each residue in unassigned regions and 

calculates its proximity in three-dimensions to assigned domain regions in 

the chain. It also takes into account secondary structure e.g. preferring not to 

place domain boundary within a beta sheet or alpha helix.

Another problem that arises is that of unassigned regions or fragments in the 

CATH domain definitions file. Removing regions of coil at the termini of 

protein structures and domain linker regions is often desirable before 

assigning domain boundaries, as it produces neater definitions for sequence 

profile comparisons. However, this can be confusing for CATHEDRAL, as it 

aims to assign as much of the chain as possible. Currently, post-processing 

techniques to detect domain linkers and disordered termini is being explored 

by seeking sections of solvent accessible residues.
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Chapter 3 FLORA: Using 

structural data to build functional 

templates
3.1 Background and Aims
One of the major goals of molecular biology is to understand the functions of 

all genes in nature, both biochemically and in the context of the cell. 

Bioinformatics techniques, such as sequence and structure comparison, can 

aid the functional annotation of novel genes by finding homologous 

relationships with experimentally characterised proteins. However, no 

methods are currently able to achieve 100% accuracy, as the level of global 

similarity required to transfer function varies considerably between protein 

families. The inherent problem with relying on overall sequence or structural 

homology is that even small mutations can inactivate a catalytic site or 

change the binding partners of a protein; hence, modifying its function. To 

further complicate matters, training a functional prediction algorithm relies 

on the assumption that proteins with the "same function" can be grouped 

together in the first place. Although this concept may be fairly straight­

forward when looking at related enzymes which perform equivalent 

functions in two similar organisms (orthologues), it becomes more complex 

when attempting to transfer function between more distant evolutionary 

relatives where many aspects of their role in the cell might have been 

modified. Therefore, any prediction method must seek to clearly define the 

level(s) of functional similarity it is trying to detect (e.g. catalysing the same 

chemical reaction). In order to enhance both the scope and fidelity of in silico 

predictions, it is vital to develop a better understanding of the sequence- 

structure-function paradigm and how it relates to different levels of 

functional conservation.
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The success of large-scale genome sequencing projects has provided a flood 

of genomic data; however, our knowledge of the three-dimensional structure 

of the proteins they encode is far more limited. This is primarily due to the 

substantial experimental overheads involved in crystallising proteins 

compared to sequencing DNA. Hence, over the last six years the Structural 

Genomics Initiatives (SGIs) (Todd et al., 2005) have sought to redress the 

balance, by targeting protein families where little or no structural data was 

present in the Protein Data bank (PDB) (Berman et al, 2000) -  more 

specifically, those families whose genes are more likely to adopt novel folds. 

Advances in high-throughput robotic techniques then allow multiple 

experimental parameters to be explored simultaneously, drastically reducing 

the time taken to grow viable crystals. This approach is in sharp contrast to 

that taken by crystallographers over the last 50 years, where structures were 

determined to complement experimental data for well-characterised genes. 

As a result, an increasing number of structures being deposited in the PDB 

come with little or no functional annotation (frequently denoted as 

"hypothetical proteins"). This compounds the practical problems associated 

with assigning new domains to superfamilies in the CATH database (Orengo 

et al, 1997).

Pair-wise sequence comparison algorithms, such as BLAST, are still 

commonly used to assign function by identifying close relatives which 

perform the same biological function. However, several groups (Todd et al, 

2002a; Rost, 2002; Tian and Skolnick, 2003) have highlighted the need to 

apply simple pair-wise identity cut-offs with caution. Where a close 

homologue cannot not be found for a given query protein, sequence profile 

methods (HMMs (Eddy, 1996), PSI-BLAST (Altschul et al, 1997)) can be used 

to detect more distant evolutionary relationships and identifying proteins 

that may perform the same function. The power behind these methods is due 

to the ability of profiles to detect patterns of amino acid conservation that are 

specific to a given protein family, rather than applying universal rules across
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the whole of sequence space. This permits the construction of resources, such 

as Pfam (Bateman et al., 2004), where sequence domains are grouped 

according to a common evolutionary source, which often correlates with 

function. However, to maintain the accuracy of this approach requires 

extensive manual adjustment of multiple alignments and HMM cut-off 

values for an individual family, as it remains problematic to construct 

universal rules about the sequence-function relationship.

As structure is more conserved across protein families than sequence 

(Chothia and Lesk, 1986), structure comparison methods are able to detect far 

more distant relationships than the most powerful profile methods. 

However, even domains in the same superfamily can exhibit large amounts 

of structural variation (Reeves et al., 2006). This may be due to different 

protein or domain interactions, or requirements to attach to distinct cellular 

environments, or might simply be due to random evolutionary drift. 

Consequently, these structural deviations can mean that even an accurate 

alignment of two structures can produce a global similarity score that falls 

below reliable thresholds for transferring a specific function.

In a similar vein to the way PRINTS (Attwood et at, 2003) and PROSITE 

(Hulo et al., 2006) focus on smaller conserved sequence patterns, there are 

several approaches to identifying local structure motifs that are associated 

with specific functions. For example, the Catalytic Site Atlas (Porter et al.,

2004) concentrates on building 3D motifs of residues that are directly 

involved in ligand binding or the catalytic mechanism in an enzyme. As ab 

initio prediction of functional residues is a complex problem in itself, the 

Thornton group at the European Bioinformatic Institute (EBI) have focussed 

on mining the primary literature to obtain the information on which to build 

templates. Torrance et al. (2005) analysed the performance of this approach 

for enzymes with more than 2 catalytic residues. They were able to 

discriminate related proteins from random with 85% accuracy and found 

that it was important to focus on C-alpha/C-beta residues as their position is
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better conserved than side chain atoms. However, even by capturing the 

correct functionally active residues — for example, the catalytic triad in the 

serine proteases — the flexibility of active sites significantly impacts on the 

ability of these templates to detect these mobile residues in X-ray crystal 

structures with different bound ligands.

In contrast to exploiting information on known functional residues, the 

DRESPAT method (Wangikar et al., 2003) uses graph theory to extract 

recurring structural patterns across superfamilies in the SCOP database 

(Murzin et al., 1995). DRESPAT makes no assumptions about the location or 

nature of the motif positions, except by excluding hydrophobic residues. A 

statistical model is built to assess the significance of each recurring pattern 

and the authors were able to identify different metal binding sites in 

distantly related proteins. However, as with many methods which seek small 

structural motifs, distinguishing between genuine similarities and 

background is hampered by high false positive rates.

The PINTS methods (Stark and Russell, 2003) also shows promise for 

automatically detecting structural motifs in protein families, although is not 

able to annotate novel proteins with high accuracy. Again recurring side 

chain patterns are identified through a pair-wise comparison of diverse 

members within a protein family. These motifs can then be used to scan 

against a novel structure.

Instead of detecting 3D templates based on their structural conservation 

across an enzyme family, Polacco and Babbitt (Polacco and Babbitt, 2006) 

used a genetic algorithm (GASP) to generate a functional template from a 

given structure based on its ability to identify members of the same enzyme 

superfamily against a background of unrelated proteins in the SCOP 

database. An initial PSI-BLAST step builds a multiple sequence alignment for 

each enzyme structure that is used to create a set of conserved residues, from 

which a small number (-10) are selected at random to build a template. The
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performance of each template is then evaluated by using a geometric 

matching algorithm, SPASM, to score matches to the functional relatives and 

the SCOP library. Interestingly, the best template generally contains known 

functional amino acids, although there are also a few additional residues 

with no known functional role. This method is a promising development, 

although each template takes up to 18 hours to generate and the performance 

was only evaluated for five superfamilies.

The central goal of this work was to exploit sequence and structural data to 

detect conserved patterns in protein families that recur in enzymes with 

similar catalytic mechanisms, as defined by their E.C. number. A novel 

algorithm, FLORA, was developed to analyse multiple structural alignments 

of domains in these families and discover a conserved motif. Patterns of 

sequence conservation and residue accessibility were combined with 

structural conservation data to identify these motifs, which were then 

encoded into templates and compared against new structures using a graph 

matching program, FLORAScan. The primary focus of the method was to 

discriminate between domains from different enzyme families, yet having a 

common evolutionary origin (i.e. from the same CATH superfamily).

3.2 Methods
3.2.1 Overview of methods
This section will outline the creation of a data set of enzyme families from 

diverse superfamilies and the more technical details of the FLORA 

algorithm. All the optimisation studies and a full outline of the algorithm are 

presented in section 3.3.

3.2.2 Multiple structure alignment using CORA
The CORA multiple alignment program (Orengo, 1999) is an integral part of 

the FLORA algorithm. Based on the double-dynamic programming (DDP) 

approach used in SSAP (described in Chapter 2), CORA uses an iterative
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alignment approach to build a multiple structure alignment of protein 

domains, which can be used to analyse structural conservation within a 

superfamily or fold group. For example, Reeves et al. (2006) previously 

showed how a CORA alignment can be used to analyse structural changes 

across functionally variable superfamilies. The addition of secondary 

structure embellishments, for example, can modulate the active site and 

facilitate functional divergence.

CORA begins by calculating a SSAP pairwise comparison between all unique 

protein domain pairs to be aligned. Starting with the closest pair of structural 

relatives, vectors between Cp atoms are compared to score the similarity of 

the structural environments of residues pairs. The first stage of dynamic 

programming is then used to find putative alignment paths through the 

matrix of scores for each residue pair. High-scoring paths above a certain 

score threshold are added to a summary matrix. The top 20 highest scorings 

residue pairs are then recalculated and used to populate a final summary 

matrix, which is then subjected to a second stage of dynamic programming 

to discover the optimal global alignment of the two domains. From this 

alignment, equivalent residue pairs are selected and used to build a 

"consensus structure" based on the average vectors between aligned residues. 

The next domain in the list is then selected and aligned to the consensus, 

using the same double dynamic algorithm. This iterative protocol is applied 

until all domains are aligned and a full multiple structure alignment has 

been calculated.

3.2.3 Data set: selecting enzyme families from diverse 

superfamilies
Domains in v2.6 of CATH were annotated with a 4 digit Enzyme 

Classification (E.C.) number using PDBSProtEC (Martin, 2004). Protein 

domains frequently do not have a clearly delineated enzymatic function of 

their own, hence the E.C. number (Bairoch, 2000) assignment merely
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designates them as a component of the enzymatic function of their protein 

chain. Furthermore, the quaternary structure of a protein can result in a 

complex that catalyses more than one chemical reaction and may possess 

multiple E.C. numbers. For simplicity, domains in this category were 

removed from the dataset.

The first 3 E.C. numbers describe the overall catalytic mechanism performed 

by the enzyme, whereas the 4th generally denotes the substrate specificity. 

Preliminary analysis revealed a number of superfamilies that contained E.C. 

annotations which only deviated in their 4th digit. It was hypothesised that 

structural templates could capture this conserved catalytic framework. A 

group of domains which share their first 3 E.C. numbers will be subsequently 

referred to as an enzyme family. A data set of CATH superfamilies predicted 

to contain more than one of these enzyme families was compiled for testing 

the FLORA algorithm.

386 highly populated superfamilies (> 3 SReps) in CATH were analysed and 

reduced initially to 71 superfamilies, containing at least one enzyme family 

with three or more SReps (redundant at 35% sequence identity) and 

complete functional annotation. Of these, only 12 superfamilies contained 

more than one different enzyme family, resulting in a total of 21 enzyme 

families. The domains in these 21 families were selected to comprise a dataset 

for testing FLORA. For all families in this dataset, a representative was 

removed to construct a test data set. The remaining SRep relatives in the 

dataset were used to build templates for the corresponding enzyme family. 

This was done using a jack-knifing approach whereby all domains were used 

as the test domain at some stage -  this produced 125 test domains with 125 

different templates.

3.2.4 CoraXPlode
After using CORA to produce multiple structure alignments of each enzyme 

family, a modified version of the CoraXPlode protocol (Sillitoe et al, 2005)
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was applied to search for related sequences in the UniProt90 NRDB 

(Apweiler et al., 2004) that could be used for sequence conservation analysis 

in the FLORA algorithm.

The first step in the original version of CoraXPlode is to take the sequence of 

each domain in the enzyme family and build a HMM profile using the SAM- 

799 program. Each profile is then used to search for related sequences in 

UniProt90 NRDB (Wu et al., 2006). However, in this case, a more conservative 

profile was desired that would be biased towards closer relatives of the 

query enzyme sequence where function was conserved, i.e. mainly 

orthologous sequences. SAM-T99 was replaced by PSI-BLAST using a 1 x 10' 

40 E-value cut-off with 10 iterations, in accordance with the work of Bartlett et 

al. (2002) that examined conservation patterns of catalytic residues in known 

enzyme structures.

After CoraXPlode has identified close sequence relatives for each structure in 

the enzyme family, these sequences need to be integrated into the multiple 

structure alignment. Instead of realigning the new relatives with the original 

structures, these sequences are simply inserted into the CORA alignment 

according to their alignment to the query sequence given by PSI-BLAST (see 

Figure 3.1). Any extra residues in the UniProt sequences that are not present 

in the query structures are then discarded.
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Figure 3.1 Flowchart showing main steps in the CoraXPlode protocol

3.2.5 Benchmark of PSI-BLAST

In order to place the performance of FLORA in context, it was compared 

against PSI-BLAST. PSI-BLAST (Altschul et al, 1997) was chosen as an 

established standard method for assigning function and the performance was 

measured by taking all domains in the enzyme data set as query sequences. 

These sequences were also embedded in the Uniref90 database (Apweiler et 

al, 2004) to allow for PSI-BLAST to build a sufficient profile. An E-value cut­

off of 3 x 10'3 was used for acceptance into the profile at each iteration, with 

an overall E-value cut-off of 1 x 10‘3 for hits over 5 iterations. These 

parameters are identical to those used by George et al. (2006) for searching 

for enzyme homologues.

3.2.6 Benchmark of SSAP

PSI-BLAST does not make use of structural data, so it could be argued that it 

is at a disadvantage compared to FLORA. Therefore, to assess the 

performance of FLORA with respect to global structure comparison, all

domains in the data set were aligned and scored using SSAP (Taylor and
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Orengo, 1989). The results were assessed by ranking the hits for each query 

by their SSAP score and also by using the SSAP score in a Receiver-Operator 

Curve (ROC) analysis (see Section 3.3.6).

3.2.7 Benchmark of SiteSeer
In contrast to FLORA, the SiteSeer reverse template method (Laskowski et ah,

2005) generates a number of small (3 residue) templates for a given query 

structure and compares these to a library of representatives from the PDB. 

The theory behind this is that one of these templates will correspond to a 

local pattern of functional residues and that the local environment (1 0 A) of 

the matched region will show high sequence conservation.

The performance of SiteSeer on the diverse data set was applied in the same 

way as SSAP, by using each domain succesively as a query and comparing 

this to the remainder of the data set. The program was kindly run and results 

were provided by Roman Laskowski at the European Bioinformatic Institute 

in Cambridge, UK.

3.3 Algorithm Development and Results
This section outlines the main steps of the FLORA algorithm to produce 

templates for enzyme families within CATH superfamilies and the 

optimisations that were undertaken. A second program, FLORAScan, was 

developed to compare these templates against the enzyme test set from 

CATH v2.6. In addition, the performance of FLORA templates was 

compared to PSI-BLAST, SSAP, CORA and the SiteSeer template method.

3.3.1 FLORA -  designing structural templates specific for

catalytic function
The main steps of the FLORA algorithm are outlined in Figure 3.2.
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3.3.1.1 Generating multiple alignments using CORA

All the SRep domains in the data set (described in Section 3.2.3) for a given 

enzyme family were aligned using the multiple structural alignment 

algorithm CORA. For those domains with annotations in the Catalytic Site 

Atlas (CSA), a sample of the alignments was inspected manually to confirm 

that they had been aligned correctly with respect to known catalytic residues.

3.3.1.2 Expanding alignments with sequence relatives

In order for FLORA to predict a putative functional site, it first requires an 

analysis of sequence conservation at each position in the alignment. Since 

many of the enzyme families contained as few as three structural domains, 

extra sequence relatives were required to more accurately calculate the 

sequence conservation at each alignment position. The CoraXPlode protocol 

(see Section 3.2.4) was utilised to expand the CORA alignment with sequence 

homologues for each domain in the alignment by generating a relatively 

conservative PSI-BLAST profile (as described in Section 3.2.4).

3.3.1.3 Calculating sequence conservation using ScoreCons

An optimised version of ScoreCons (Valdar and Thornton, 2001) (re­

implemented in the C programming language) was used to calculate 

sequence conservation at each position in the multiple alignments of each 

enzyme family. A Diversity of Positions (DOPs) score was calculated as 

described in Valdar and Thornton (2001) to measure the evolutionary 

variation in the multiple alignment. Although ScoreCons accounts for 

sequence redundancy across the alignment, conservation scores at each 

position are only considered accurate if there is sufficient overall sequence 

diversity across the multiple alignment. This is reflected in a DOPs score of 

greater than 0.9. All alignments were found to meet these criteria, which may 

be expected as the original structural domains shared less than 35% pair-wise 

sequence identity.
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3.3.1.4 Identifying and clustering sequence-conserved alignment positions in 3D to 

locate the functional site 

Many function prediction methods, such as the evolutionary trace (Yao et al, 

2006; Lichtarge et al, 1996), rely on the premise that residues that are highly 

conserved across protein families are important for function and can 

therefore be used to locate the functional site. However, work on protein 

folding has also shown that hydrophobic residues in the core are often also 

well conserved. These are thought to act by promoting stability through the 

formation of intermediates in the folding pathway (Mirny and Shakhnovich, 

2001). Others (Bartlett et al, 2002; Wangikar et al, 2003) have reported that 

catalytic residues are far more likely to be polar residues. Accurately 

predicting residues that may be involved in substrate binding or catalysis 

based on sequence conservation is a more challenging problem than defining 

the general area of the functional site. Consequently, a straight-forward, yet 

effective, approach was taken with the FLORA algorithm.

All positions in the multiple alignments were ranked by the sequence 

conservation calculated by ScoreCons. This set was reduced to only those 

positions where residues were present in all sequences (i.e. non-gapped 

positions in the alignment). The top 20 residues conserved by sequence were 

then selected (sequence seeds).

Manual inspection of a selection of enzyme families revealed that the 

sequence seeds tended to be present both within the active site and in the 

hydrophobic core of the protein, as expected. To bias the selection towards 

putative functional residues, all seeds where 80% or more of the residues 

were hydrophobic were eliminated. To generate a list of putative active sites, 

the remaining hydrophilic seed residues were clustered together using a 

complete linkage approach and a cut-off of 7A. We initially used a cut-off of 

5A, in keeping with the Drespat method (Wangikar et al, 2003) but manual 

inspection revealed this produced too many singleton clusters. For each
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enzyme family, the collection of clustered residue positions will be referred 

to as the seed clusters.

3.3.1.5 Predicting a putative active site

Although there maybe several functionally-relevant regions of the domain, 

the aim of FLORA was to capture one active site associated with the catalytic 

action of each enzyme family. Hence, it was necessary to select one seed 

cluster from the previous stage that was most likely to co-locate with the 

active site. Across all enzyme families in the data set, it was found that 

clusters varied considerably in size and average sequence conservation. As 

active sites tend to possess conserved residues near the protein surface 

(Bartlett et al., 2002), the solvent accessibility of each residue across the 

enzyme family was also calculated using the NAccess program (Hubbard 

and Thornton, 1993).

A small manual analysis was performed on 16 enzyme families where the 

catalytic residues had been annotated from the literature in the CSA. This 

revealed that the largest seed cluster with the highest accessibility and 

sequence conservation tended to co-locate with the catalytic residues. 

Moreover, only one seed cluster containing residues with these properties in 

each enzyme family overlapped with the known catalytic residues. It was 

observed that choosing the seed cluster (ignoring singletons) with the 

greatest sequence conservation and an average surface accessibility greater 

than zero produced the correct functional cluster for 80% of enzyme families. 

This is referred to as the top seed cluster.

3.3.1.6 Expanding the sequence seeds by selecting residues in the local environment 

of the predicted functional site

The goal of FLORA was to build a static template of structurally conserved 

residues important for function. However, catalytic residues often move 

during enzyme catalysis and hence might change their relative positions 

depending on whether a ligand is bound or not in the structure. This does
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not only apply to functional residues and substantial change can be observed 

within the same protein, depending on the bound ligand or absence thereof. 

This compounds the problem of detecting regions of structural conservation 

between relatives that perform similar functions. To address this problem in 

FLORA, although the top seed cluster was chosen to predict the functional site 

on the domains in each enzyme family, it was hypothesised that other 

residues in the vicinity could provide a more static, structurally conserved 

framework. To identify these residues, the centre of mass (CoM) of the top 

seed cluster was calculated for each domain in the enzyme family. Any 

residues that fell within a 12A of the CoM in each domain were used to 

generate a set of site positions (the top seed cluster residues being a subset of 

the site positions). As with the identification of the sequence seeds, 

alignment positions without a residue present in all domains (i.e. gapped 

positions) were excluded. Initially, a cut-off of 10A was chosen as this is 

consistent with other function prediction methods (e.g. SiteSeer (Laskowski 

et al., 2005)), but this did not identify a sufficient number of residues for the 

template sizes explored later in the protocol, hence the radius was expanded 

to 12A. The process of identifying other residues in the locality of the active 

site is shown in the first 2 steps of Figure 3.3.
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2. Expand to local environment (12A)1. Conserved sequence seeds

3. Identify structural clique

Conserved sequence seeds 

locate the putative active site.

The local environment is then 

explored to discover 

structurally conserved residue 

cliques, specific to an enzyme 

family.

Figure 3.3 Structural representation of the major steps in the FLORA 

algorithm.

3.3.1.7 Calculating the structural conservation of the site positions 

At this point in the algorithm, FLORA has predicted a putative functional 

site for each enzyme family and selected a set of site positions. The final step is 

to reduce this to a collection of structurally conserved positions, which can 

then be used to build a structural template associated with each enzyme 

function (Figure 3.3).
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Vectors were calculated between all Cp atoms of the site positions in each 

structural domain in the multiple alignments (d i,x,y is the length of the vector 

between positions x and y in domain i,

(Definition 3.1). A fully-connected graph was built where each node 

represented a site position and the edges were labelled with a structural 

conservation measure, SC ( ). This is the minimum difference between the 

reciprocal of the length of the vector connecting the two alignment position 

nodes, x and y, across all N domains in the family. This essentially quantifies 

how variable the distance between two site positions can be, with a high 

value of SC being desirable and representing high structural conservation.

ri x := co-ordinates of site position x in domain i.

d i x y = 1  ri x — ri y | (Definition 3.1)

SCx,y = min"
10

\di,x,y di+iX) + 1 (Definition 3.2)

where N  = number of domains in family

3.3.2 Building templates
3.3.2.1 Calculating structurally conserved cliques of site positions 

At this stage in the algorithm, each pair of site positions has been assigned a 

structural conservation score, SC, that represents the maximum variation 

observed across the multiple alignment. A logical approach would then be to 

select site positions for the template, which are above a given cut-off value 

for SC. However, Figure 3.4 demonstrates that even at relatively high cut-off 

values for SC, there is a vast range of template sizes when applied across all 

enzyme families. For example, using a cut-off of 1.9, the largest template 

contains 39 residues and the smallest only 3. This disparity causes problems 

as these large templates are slow to scan and those with few residues do not 

have sufficient power to effectively discriminate from false positives.
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Figure 3.4 Minimum, maximum and mean size of templates generated over 

a range of SC cut-offs.

This result is not unexpected, as protein superfamilies exhibit different levels 

of structural variation within an enzyme family. The aim of FLORA was to 

capture a 3D configuration of residues that appears to be conserved within 

the functional site of an enzyme family. Given that the amount of variation is 

dependent on the plasticity of the fold, it was decided to optimise FLORA to 

obtain a template of a given size and develop specific cut-offs for each 

family. Therefore, a range of cut-off values for SC were explored for each 

enzyme family until a minimum template size was reached. This permitted 

the production of larger template for more flexible families.

To do this, a graph of site positions was constructed and edges were labelled 

by the value of SC. The Bron-Kerbosch algorithm (Bron and Kerbosch, 1973) 

was then used to find the largest clique of positions in this graph. The value 

of SC cut-off was lowered until a template of the specified size was obtained. 

This variable was optimised in Section 3.3.4. The final cut-off that was used
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to produce a clique of a given template size will be referred to as SC template as 

it also provided a cut-off for the template scanning process (see Section 3.3.3)

3.32.2 Generating a template for an enzyme family from the selected structurally 

conserved positions

Once FLORA has identified a clique of structurally conserved positions of a 

given size associated with a specific enzyme family, the information was 

encoded into a template file to be used in a predictive manner. Average 

vectors between all Cp atoms in the clique were calculated across the 

multiple structure alignment of the enzyme family. In addition, information 

was recorded on the order of the residues in the primary sequence and the 

torsional angles of their Ca atoms. Torsional angles were chosen as Taylor 

and Orengo (1996) found these to be useful when determining equivalent 

residues in structural alignment. Regardless of the algorithm used for 

scanning structural templates against novel proteins, it is useful to encode as 

much information in the template as possible to reduce the search space and 

potentially increase the fidelity of the matching.

3.3.3 FLORAScan -  scanning the enzyme family test set 

domains against FLORA structural templates
3.3.3.1 Template-matching algorithm

A clique-matching algorithm, FLORAScan, was written to compare each 

template against new domains with the aim of identifying functional 

relatives. Graph-theoretical alignment methods that operate on the residue 

level are often slow as the graph involved is so large and highly connected. 

Although the problem is abated with smaller templates, comparisons with 

large domains can still be slow. The torsional angle and sequence order data 

in each template was used to reduce the search space and increase the speed 

of the graph matching algorithm.

For each comparison, vectors in the template were used to build a graph 

where the template positions were represented as nodes and the edges were



127

labelled with the length of the averaged vector calculated in the final stage of 

FLORA (Section 3.3.2.2). A similar graph was built from the Cp co-ordinates 

of the query domain, against which the template was being scanned. To 

assess the overlap between template residues and those in the query domain, 

a correspondence graph was calculated. Each node in this graph represented 

a template residue and a domain residue pair. Hence, the maximum size of 

the graph is equal to the number of template positions multiplied by the 

number of residues in the query domain. Nodes would then be connected by 

an edge if the distance between a pair of template residues was similar to a 

pair in the domain. As the speed of the clique detection algorithm (Bron and 

Kerbosch, 1973) is dependent on the number of edges in the graph, two 

initial conditions were added to reduce the size of the graph.

Firstly, edges were only constructed where domain residues shared the same 

sequence order as those in the template. For example, a node which 

corresponded to domain residue 42 (ti) and template residue 51 (t2) could be 

joined to a node representing domain residue 49 (di) and template residue 65 

(d2), as these are both vectors to residues further along the primary sequence. 

Secondly, a given template-domain residue pair in the correspondence graph 

must share comparable torsional angles (i.e. be within a torsional cut-off, 

which is optimised in Section 3.3.4).

The final condition for edge creation was a score based on distance similarity. 

The value of SCtem piate that was used to produce the template for each 

enzyme family was implemented in FLORAScan. Another variable (margin) 

was implemented as an error tolerance, to be subtracted from SCtempiate and 

allow each template to match positions in the query domain that may be 

correct, but where the inter-residue distances were larger than those 

observed in the alignment of the enzyme family. Hence, the distance between 

two template-domain residue pairs in the correspondence graph needed to 

satisfy (Definition 3.3.
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template domain_

Hi + 1
> SCtempiate m  (Definition 3.3)

3.3.3.2 Scoring template matches to query domains

FLORA was designed to produce a template of residues conserved within all 

relatives of a specific enzyme family. Therefore, it should follow that when 

scanning these templates against new domains, template residues would 

constitute a complete sub-graph of the new domain in that family. However, 

the structural data is often incomplete, so FLORA may have selected residues 

in the template that are not always present in an enzyme family and hence 

may not be found in new functional relatives. Hence, it was decided to also 

explore the value of using a measure of overlap in scoring the match of a 

template to a query structure.

Hits were scored by RMSD, normalised by the number of matched residues:

FLORAScore =
n + 1

where n = number of matched residues

The overlap is defined as:

_ , number ■ o f  • matched • residues
Overlap = -----------------------------------------

template • size

3.3.4 Parameter optimisation
The dataset described in Section 3.2.3 was used to optimise FLORA and 

FLORAScan to ensure that the algorithm was able to distinguish between 

structurally related domains with different functions, rather than simply 

detecting homologous relationships that can already by achieved effectively 

by methods such as SSAP. All 125 test domains were scanned against all 125 

templates, generated by jack-knifing the dataset. Three parameters: the



129

template size, torsional angle cut-off, margin were optimised in turn. A range of 

overlap cut-offs was also explored for the template size optimisation.

3.3.4.1 Optimising the template size

Big templates tend to provide more structural information about residues 

that may be important for function, but they create larger graphs that are 

much slower to process with the clique detection algorithm. Conversely, 

small templates are fast to scan but highly likely to hit unrelated proteins. It 

was thus desirable to have as small a template as possible for each family, 

while retaining specificity.

Initial investigation showed that using a margin of 1.0 and a torsional cut-off of 

100 found the correct enzyme family in the top 3 hits for the majority of 

enzyme families. Therefore, FLORA was used to build templates of sizes 

ranging between 10 and 28 using the latter cut-offs as defaults. An upper 

limit of 28 was chosen for practical purpose, as tests showed that templates 

above this size are very slow to scan with a negligible increase in 

performance. The performance was measured by calculating the number of 

domains in the data set that matched the correct template in the top 3 hits, 

when ranked by their FLORAScore. As FLORAScore is proportional to the 

RMSD of the residues in the matched clique, a small value indicates a better 

match.

Figure 3.5 shows a plot of the performance against the overlap cut-off for the 

range of template sizes, when taking the template for the enzyme family 

(built from the top seed cluster) to each domain in the test set. There is a clear 

trend that larger templates perform best, with a template size of 1 0  only 

ranking 38% of hits in the top 3 compared to 67% for a template size of 25. 

For most template sizes, the performance appears to drop when the overlap 

cut-off is set to 60 or above. However, for a template size of 16 or 19, the 

performance does rise by about 1% using an overlap cut-off of 50%. Given 

that the margin and torsional angle cut-offs were suboptimal at this stage, it
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was decided to continue to evaluate the effect of using overlap to reduce the 

number of hits — this could also be applied in a post-processing stage, rather 

than making changes to the FLORA algorithm.

16 - * - 1 9  - # - 2 2 2510 13

0.7

0.65

0.6

IE 0.55

0.45

§ . 0.35 
2

0.3

0.25

0.2
0 20 40 60 80 100

Overlap cut-off

Figure 3.5 Performance (measured as percentage of correct hits in top 3) of 

FLORA over a range of overlap cut-offs, when varying the minimum 

template size. This was assessed by using the template from each enzyme 

family built from the selected seed cluster.

The performance of FLORA appeared to vary considerably with template 

size and at 65% was not as high as it was hoped compared to other published 

methods (Polacco and Babbitt, 2006; Laskowski et al, 2005), so a different 

approach was explored. The program was instead used to build templates 

from all the seed clusters generated in Section 3.3.1.4. The jack-knifed data set 

was then re-scanned against all of these templates and the highest scoring 

template from each enzyme family was used to assign function to the test set 

domains.
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Figure 3.6 shows an equivalent plot to Figure 3.5 but using the highest 

scoring cluster template for a given enzyme family to assign function to a test 

set domain. The preference for large templates is again evident, although 

there is a smaller drop in performance at higher overlap cut-offs, suggesting 

more residues are being matched. For larger templates there is a very slight 

increase in performance by taking the highest scoring template rather than 

the top cluster seed template.

13 16 - * - 1 9  -* -2 2 2510

0.7
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u 0.45
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0.3
0 20 40 60 80 100

Overlap cut-off

Figure 3.6 Performance (measured as percentage of correct hits in top 3) of 

FLORA over a range of overlap cut-offs, when varying the minimum 

template size. This was assessed by taking the best template match from 

each enzyme family to the test set domain.

Again, given that the margin and torsional angle cut-offs were still to be 

optimised, it was decided that taking the best template match for each 

enzyme family rather than the top seed cluster provided more consistent 

results and was less dependent on the overlap cut-off. Subsequent 

optimisations were undertaken by scanning all cluster templates for each 

enzyme family and taking the best match.
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3.3.4.2 Optimising the margin and torsional cut-off

The error margin and torsional cut-offs used by FLORAScan affect the 

specificity of the template matching. If these are too liberal, the templates 

will match too many false positives. Conversely, if they are too conservative, 

genuine matches might not be recognised. A minimum template size of 25 

was chosen and the best matched template for each enzyme family was used, 

as described above. This time the performance was measured by looking at 

the percentage of test set domains, where the correct enzyme family was 

identified as the top hit, as this is a more important criterion for classifying 

structures into families. The margin cut-off was explored over the range: 0 -  

1 .6 , while keeping the torsional angle cut-off at 1 0 0  and using an overlap of 

50 (Table 3.1). The torsional angle cut-off was explored over the range: 0 -  

140 degrees, while keeping the margin variable at 1.2 and using an overlap 

cut-off of 50 (Table 3.2). The most optimal cut-off values (1.2, 120) rank the 

correct family as the top hit 72% of the time.
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margin % of correct matches ranked 

as the Top hit

0 30

0.2 32

0.4 41

0.6 60

0.8 63

1.0 67

1.2 72

1.4 70

1.6 69

Table 3.1 The performance of FLORA for finding the correct top hit over a 

range of margin cut-offs, w hile  keeping the torsional angle cut-off at 100 

and u sing  an overlap of 50.

Torsional angle cut-off % of correct matches ranked 

as the Top hit

0 52

20 57

40 58

60 64

80 65

100 67

120 72

140 70

Table 3.2 The performance of FLORA for find ing the correct top hit over a 

range of torsional angle cut-offs, w hile keeping the margin variable at 1.2 

and using an overlap of 50.



134

By analysing the results for each query domain, it appeared that a large 

proportion of the failed template matches were in the P-loop hydrolase 

superfamily (3.40.50.300). This is widely acknowledged to be the most 

diverse domain superfamily in the protein universe (Lee et ah, 2005). Closer 

inspection of the CORA alignments of its constituent enzyme families 

revealed that on average only 14% of the alignment of each family was 

ungapped positions (i.e. there was an equivalent residue in all domains). 

This meant that FLORA was often unable to build templates larger than 

around 1 0  residues, as there were not a sufficient number of fully-aligned 

positions in the expanded radius. Furthermore, Table 3.3 shows the values of 

SCtem piate for different enzyme families in the data set and the P-loop 

superfamily (3.40.50.300) has the lowest conservation and hence the most 

permissive cut-off for template matching. Analysis of the P-loop enzyme 

families showed more than 3-fold differences in domain size. CORA would 

have problems aligning such diverse structures. The solution will be to sub­

cluster the families into coherent structural sub-groups (SSGs) which has 

been used in other applications to help with this problem (Reeves et ah, 2006). 

If the P-loop superfamily is removed from the analysis, the top FLORA 

match was the correct enzyme family for 85% of the test set.
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Enzyme family 
(C.A.T.H/Enzyme family)

SC tem piate

3.40.50.300 Phosphotransferases with an alcohol 
group as acceptor

0.474

3.40.50.300 Phosphotransferases with a phosphate 
group as acceptor

0.492

3.40.50.720 Oxidoreductases, acting on the CH-OH 
group of donors, with NAD(+) or NADP(+) as acceptor.

0.612

3.40.640.10 Aminotransferases 0 .6 6 8

3.20.20.90 Intramolecular oxidoreductases, 
nterconverting aldoses and ketoses

0.563

3.20.20.90 Carboxy-lyases 0.653

3.40.640.10 Carbon-sulfur lyases 0.682

3.40.710.10 Cyclic amide hydrolases 0.864

3.90.550.10 Nucleotidyltransferases 0.877

3.40.50.720 Oxidoreductases, 
with NAD(+) or NADP(+) as acceptor

1 .0 2 1

3.40.630.10 Aminopeptidases 1.089

3.40.630.10 Metallocarboxypeptidases 1.219

3.90.550.10 Hexosyltransferases 1.314

2.160.20.10 Glycosidases 1.349

3.40.710.10 Serine-type carboxypeptidases 1.523

2.160.20.10 Polysaccharide lyases 1.706

3.40.50.720 Carbohydrate isomerases 2.005

3.20.20.90 Oxidoreductases with oxygen as acceptor 2.365

3.40.50.1820 Ether hydrolases 3.107

Table 3 . 3  Values of SC tem piate for different enzyme families in the data set, 

where a high value indicates good structural conservation.

3.3.5 Comparing the performance of FLORA to other 

methods for assigning function
3.3.5.1 Using PSI-BLAST to find  functional homologues in the diverse data set 

To put the performance of FLORA in detecting functional homologues in 

context, each domain in the data set was used as a query sequence for a PSI-
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BLAST comparison, as PSI-BLAST is a method frequently used by biologists 

to assign function and used by other developers of structure-based function 

prediction algorithms to asses the value of their approach. For each query, 

the other domains within the same superfamily were embedded in the Uniref 

database, as detailed in Section 3.2.5. Only CATH domain-domain pairs 

were extracted from the final iteration of PSI-BLAST and ranked by their E- 

value. The P-loop hydrolase superfamily was included in this analysis.

Rank FLORA PSI-BLAST

1 72.0% 72.8%

2 2 .1 % 0 %

3 2 % 0 %

4 1 % 0 %

5 1 % 0 .8 %

>5 for FLORA/Not found by PSI-BLAST 18% 26.4%

Table 3.4 Rank of correct hit (same enzyme family) when scanning diverse 

domains using PSI-BLAST

Table 3.4 shows that PSI-BLAST is able to find the correct enzyme family as 

the top hit over 72% of the time, which is slightly higher than FLORA. 

However, FLORA finds 76.1% of functional relatives in the top 3 hits and 

PSI-BLAST does not find any correct hits for 26.4% of the query domains. 

The coverage might be improved by using more liberal cut-offs for PSI- 

BLAST, however this may also cause the profile to drift and pick up domains 

in the same superfamily whose function has diverged.

3.3.5.2 Using SSAP to find functional homologues in the diverse data set 

SSAP is highly effective at recognising relatives at the superfamily level by 

global structural comparison. However, FLORA templates were designed to 

discriminate between enzyme families within diverse superfamilies as well 

as identify more distant homologues. The performance of SSAP in 

recognising functional homologues was tested by an all-vs-all comparison of
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the 125 domains in the data set. Again, the P-loop hydrolase superfamily was 

included in this analysis. The results for each query domain were then 

ranked by the native SSAP score to see where a domain within the same 

enzyme family lay in the list of hits.

Table 3.5 shows that SSAP is able to find the correct enzyme family as the top 

hit nearly 90% of the time -  this is markedly higher than the 72% achieved by 

FLORA. It appears in this instance that using a consensus local template for 

each enzyme family actually performs worse than simply finding the closest 

functional relative using global structure comparison. This is most likely due 

to the fact that FLORA has not correctly identified a motif that is able to 

discriminate between those relatives which have conserved their function 

during evolution and those that have diverged. Another reason might be that 

the enzyme families from which the templates were built are structurally 

diverse. In order to maintain the sensitivity of FLORA, it was often necessary 

to set quite liberal values for SCtem piate. Although this ensured that a given 

test domain was able to find its correct superfamily, it also decreased the 

specificity.

Rank FLORA SSAP

1 72.0% 89.6%

2 2 .1 % 3.2%

3 2 % 0 %

4 1 % 4.8%

5 1% 1 .6 %

>5 18% 0 %

Table 3.5 Rank of correct hit (same enzyme family) when comparing 

diverse domains using SSAP
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3.3.5.3 Using SiteSeer to find functional homologues in the diverse data set 

In order to compare the performance of FLORA with other local template 

methods, the SiteSeer program (Laskowski et ah, 2005) was applied to the 

diverse data set.

SiteSeer creates a large number of tri-peptide templates from the query 

structure and compares the templates to a library of other protein structures. 

The query structure is then superposed onto each matched structure based 

on the equivalent residues found by the template. The algorithm scores each 

match based on the sequence similarity of the local environment around the 

template region and converts the score to an E-value. The library structures 

are then ranked by the E-value of the most similar random template built 

from the query structure.

For this analysis, each domain in the diverse data set was compared using 

SiteSeer to produce an E-value score for each pair. Table 3.6 shows that 

SiteSeer is able to rank the domain with the correct function as the top hit in 

80% of cases. It therefore outperforms FLORA by nearly 8 %, although lags 

behind SSAP by 10%. This again suggests that it is difficult for a local 

template method to outperform global structure comparison, although 

SiteSeer comes closer than FLORA. An important area that SiteSeer exploits 

when scoring template matches that was not addressed by FLORA is that of 

the sequence similarity of the local environment around the template. Bartlett 

et al. (2 0 0 2 ) showed that sequence similarity is higher in the active site than 

when calculated across the whole domain or protein. Future developments of 

FLORA to incorporate local sequence similarity are discussed in more detail 

in Section 3.4.
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Rank FLORA SiteSeer

1 72% 80.0%

2 2 % 6.4%

3 2 % 3.2%

4 1 % 1 .6 %

5 1 % 1 .6 %

> 5 18% 6 .8 %

Table 3.6 Rank of correct hit (same enzyme family) when comparing 

diverse domains using SiteSeer

3.3.6 Generating a local scoring scheme from global SSAP 

alignments of domain pairs in the diverse data set
As discussed above, it appears that local templates were unable to assign the 

correct enzyme family to the test domains as effectively as global structure 

comparison. More specifically, that transferring annotation from the closest 

structural relative in a superfamily is able to correctly assign function to a 

domain in nearly 90% of cases. However, this does not tell us much about 

how function is conserved (i.e. which residues are important for function) 

and how to predict when it changes. It also relies on having a protein of 

similar function in the library of structures against which you are comparing 

the query.

To test whether adapting global structure comparison to focus on local 

similarities could discriminate better between domains in different enzyme 

families, a local scoring scheme was developed for comparing domain pairs 

in the data set, aligned by SSAP.

The CORA alignments from each enzyme family were analysed and all 

positions that did not contain gaps were selected (CORA positions). For each 

CORA position, the corresponding residues in each domain were noted and
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annotated as conserved residues. SSAP was then used to align each domain 

pair in the diverse data set in the same way as in Section 3.3.5.2. The global 

SSAP score normalises the similarity of the vectors between aligned residues 

by the length of the largest protein, so it does not assign high scores to motif 

matches. It was hypothesised that in the case of determining functional 

equivalences a local scoring scheme might actually be more appropriate.

To develop a local scoring system, domains were aligned using SSAP but 

vector similarities were only summed over the conserved residues identified 

by CORA. The score was then normalised over the conserved residues. For 

each query domain, the results were ranked by this new score, denoted as 

CORASCORE. Table 3.7 shows that this approach (SSAP-CORA) is able to 

identify the correct top hit in 7% (79% vs 72%) more cases than FLORA, 

although it still falls short of the 89% identified by SSAP. This might suggest 

that it is useful to take account of indels, as in the SSAP global similarity 

score, when seeking the closest functional relative.

Rank FLORA SSAP-CORA

1 72% 79%

2 2 % 4%

3 2 % 0.7%

4 1 % 0 .2 %

5 1 % 5%

>5 18% 10.7%

Table 3.7 Rank of correct hit (same enzyme family) when comparing 

diverse domains using FLORA and SSAP-CORA (CORASCORE)

To view the performance of the CORASCORE in a different way, a ROC 

curve was calculated to assess how well the CORASCORE was able to 

recognise all the functional homologues (i.e. domains in the same enzyme 

family) for a given cut-off. This was compared to the global SSAP score at 

low false positive rates.
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Figure 3.7 shows that at low error rates the pair-wise score between two 

domains in the data set is actually better represented by the local 

CORASCORE, which focuses on conserved residues, rather than the global 

SSAP score. This might suggest that concentrating on residues that are 

conserved across an enzyme family is a better method for recognising some 

of the more diverse relatives in an enzyme family.

Most automatic methods for functional annotation rely on taking the highest 

scoring match. However, as with sequence profile methods, it is also 

important to have reliable score cut-offs that can be used to transfer function 

even from distant relatives. These thresholds can be derived from the ROC 

analysis. This idea is discussed in more detail in Section 3.4.
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Figure 3.7 A Receiver-Operator Curve (ROC) comparing the ability of the 

local CORASCORE to discriminate between domains from the same 

enzyme family and false matches in the data set with respect to the global 

SSAP score.
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3.4 Discussion
This work describes the development of a novel algorithm (FLORA) for 

generating structural templates to characterise enzyme families. Overall this 

work has established a protocol for classifying functional relatives into 

CATH enzyme families. Global structure comparison by SSAP was shown to 

recognise functional homologues in nearly 90% of the cases but provides not 

information on the functional sites. The FLORA method for identifying 

conserved functional sites was able to locate sites in 80% of the families 

tested and is therefore a valuable complement to using SSAP.

In FLORA, a template is built by selecting positions in the local environment 

of the predicted functional site, which are structurally conserved across a 

multiple alignment of an enzyme family. The optimisation process in Section

3.3.1.7 revealed that using an absolute measure of structural conservation 

produced too great a range of template sizes and hence it was decided to 

focus on creating templates of a given size for each family. The rationale 

behind this was that templates of sufficient size would still capture the 3D 

geometry of the area around the functional site.

A comprehensive optimisation process revealed that larger templates of 

around 25 residues provided the optimal balance of specificity and coverage. 

The correct match was ranked top for 85% of domains in a test set, when 

scanned against the library of templates. This performance was achieved 

when excluding the P-loop hydrolase enzyme families, where CORA was not 

able to find a large number of equivalent residues across all domains. This 

could be due to the inherent structural diversity in the family; indeed, some 

domain pairs had SSAP scores below 50 (with 100 being identical structures). 

However, it is also possible that one or more of the domains in the 

superfamily were annotated with an incorrect E.C. number, which would 

have caused CORA to produce an incorrect multiple alignment.
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For the remaining 15% of domains where FLORA was unable to match the 

correct template as the top hit, the errors were mainly caused by matches to 

templates built from other enzyme families within the same superfamily. 

This suggests that the current implementation of FLORA was not always 

able to capture structural motifs for different functions, or that the FLORA 

templates were not focussing on the areas of the structure that are 

responsible for modifying the function. A slightly different approach would 

be to compare templates generated from different enzyme families within the 

same superfamily, to look for commonalities. These common superfamily 

motifs could then be removed from the clique-matching process and perhaps 

better focus on the family-specific regions of the structure. In addition, given 

that the problems with the P-loop hydrolase enzyme families appeared to lie 

with the original CORA alignment, it is possible that the domains were too 

structurally diverse to be accurately aligned. This problem could be 

addressed by clustering together more similar domains within each enzyme 

family and building templates from each sub-group. Although this would 

produce multiple templates per enzyme family, it might shed more light on 

whether the limitations lie with CORA or with the FLORA method presented 

here.

Preliminary work suggested that the FLORAScore was the most effective 

score for identifying the correct enzyme family for a given query domain. 

However, by looking at the data for the 15% that failed, it is clear that other 

scoring schemes may be better in some circumstances: for example, by 

combining the overlap with the FLORAScore or calculating the average score 

over all templates built from different seed clusters for a given enzyme 

family, rather than taking the best hit. Furthermore, the superior 

performance of SiteSeer over FLORA suggested that taking into account the 

sequence conservation to score template matches might also provide a useful 

discriminatory signal.
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To put the work in context, a comparison of FLORA against both PSI-BLAST 

and SSAP showed that it was able to outperform PSI-BLAST if the top 3 hits 

are considered (76.1% for FLORA vs 72.1% for PSI-BLAST). However, PSI- 

BLAST was not able to find as great a percentage of functional homologues 

at a low error rate as SSAP. This demonstrates that global structure 

comparison remains powerful for detecting domains with similar functions. 

FLORA was still unable to outperform SSAP, which suggests that focussing 

solely on the functional site does not necessarily yield a significant 

improvement when seeking functional similarities between more distant 

evolutionary relatives. The work of Reeves et al. (2006) has shown that 

structural embellishments across a larger region of the structure can impact 

on function and global comparisons may capture this information more 

effectively. However, for function prediction a combination of using SSAP to 

find the closest functional relative and FLORA to predict the active site could 

provide useful complementary information.

3.5 Future Work
The relatively poor performance of FLORA compared to global structure 

comparison (SSAP) could be due to the current implementation or might be 

due to the fact that a more global similarity of domains must be taken into 

account to establish the closest functional relative in a superfamily. The 

SSAP-CORA (CORASCORE) method in Section 3.3.6 appeared to perform 

well and ROC curve analysis suggested that it was able to identify more 

functional relatives at a low error rate than SSAP. However, the 

CORASCORE only found the correct enzyme family as the top hit in 79% of 

cases, compared with 89% for SSAP. This might suggest that finding the 

closest functional relative is achieved more effectively by using a global 

method, yet when looking for a motif associated with all domains from a 

given enzyme family, it is useful to focus on local conservation patterns.
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To take this work forward, it is planned to look in more detail at the 

conserved residues identified by SSAP-CORA and see if they can be further 

reduced based on their sequence conservation, local structural conservation 

and /or solvent accessibility. For each enzyme family, it should also be 

possible to down-weight the effect of residues that are conserved to maintain 

the protein fold in the superfamily, rather than being specific for function.

In addition, FLORA did not recognise the correct functional site in ~20% of 

the enzyme families in the data set. This leaves scope for using alternative 

methods, such as the evolutionary trace, which exploit phylogenic 

information (Lichtarge et ah, 1996) for identifying functional residues, 

followed by building templates based on the local structural environment.



Chapter 4 Improving ab initio 
structure predictions by assigning 

models to fold groups in CATH

4.1 Background
The ability to predict the tertiary structure of a protein directly from its 

sequence remains a significant goal of structural biology, as there is a large 

discrepancy between the number of available sequences and structure. 

Furthermore, structural data can be useful for understanding protein 

function. X-ray crystallography and NMR spectroscopy are the current 

methods of choice for experimental structure prediction. However, both 

approaches have limitations and cost implications, and hence cannot be 

applied indiscriminately to all genome sequences of interest. High- 

throughput methods can reduce the time and effort required, but highly 

flexible proteins and those which reside in cell membranes remain 

problematic. To facilitate this process, it is often necessary to modify the 

structure by mutating the sequence, although this risks moving further away 

from the native structure of the protein. Conversely, NMR is able to capture 

the intrinsic flexibility in a given protein by producing a series of models that 

fit the experimental data. However, current technology means that it is 

generally only possible to obtain models for small molecules (< 50 KDa). As a 

result, even with modem high-throughput methods, it is currently 

impractical to produce experimental structures for all known genes. 

Therefore, developing computational approaches to predict structure directly 

from a protein's sequence remains a useful complementary area of research 

as they provide a faster and cheaper alternative to experimental methods.
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However, this does require developing a greater understanding of the 

complex interactions involved in protein folding.

4.1.1 Ab initio prediction of structure from sequence
The two greatest difficulties in predicting how a given sequence folds in 

three dimensions are the huge number of possible residue conformations 

available and how residues interact with one another to stabilise the protein 

structure. Algorithms that aim to predict protein structure ab initio require 

vast amounts of computational power and therefore even modelling small 

peptides becomes hugely time consuming. To combat this, many methods 

attempt to mimic the native folding process so that the search space can be 

collapsed at various stages in the algorithm. Each step seeks an energy 

minimum where the structure is at its most stable. However, exploring this 

energy landscape can still prove challenging as there is often no guarantee 

the algorithm will converge on the global energy minimum and may instead 

find local energy minima. As an alternative, several groups have chosen to 

exploit knowledge of known structures by using known conformations for 

small peptide fragments in conjunction with predicting physicochemical 

interactions from first principles (Simons et al, 1997).

One way of building heuristics for ab initio methods is to predict structural 

features from the sequence, before attempting to model the whole fold. For 

example, predicting the secondary structure of each residue or the overall 

secondary structure content of the protein (protein class).

4.1.1.1 Predicting protein class

Many groups have endeavoured to predict the overall secondary structure 

content or protein class (e.g. mainly alpha, mainly beta, alpha-beta) based 

solely on amino acid composition (reviewed in Chou (2005)). The most 

accurate methods rely on machine learning algorithms (e.g. SVMs) and 

incorporate analysis of dipeptide/tripeptide fragments as well as
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propensities of different residues to adopt certain secondary structures 

conformations (Rost and Sander, 1993; Eisenhaber et ah, 1996).

4.1.1.2 Predicting secondary structure

Predicting the secondary structure state (helix, strand or random coil) of 

individual residues in a sequence is the starting point for many structure 

prediction methods. It has long been known that some amino acids are more 

likely to be present in certain secondary structure elements than others 

(Chou and Fasman, 1974). For example, the pyrrolidine side chain of proline 

and the Cp atom of the preceding residue results in steric hindrance, which 

limits the use of proline in alpha helices. Chou and Fasman (1974) were the 

first to exploit this concept by analysing residue propensities in the small 

data set of protein structures that was available at the time. Although this 

method showed some predictive power, Gamier et al. (1978) showed that the 

performance could be substantially improved by looking at a given amino 

acid in context with its neighbouring residues in the sequence. They used 

information theory to analyse a 'w indow ' of 16 residues to calculate a more 

accurate probability of the secondary structure state of each amino acid.

This approach can be taken a step further by looking for small patterns of 

residues in multiple alignments of related sequences that regularly coincide 

with specific secondary structure elements. For example, certain 

arrangements of hydrophilic and hydrophobic residues occur in helices 

where some of the side chains face the hydrophobic environment of the 

protein core, whereas others interact with the solvent. Furthermore, 

insertions in these alignments usually coincide with random coil regions, 

rather than conserved helices or strands. Comparing protein sequences 

across a family allows a more accurate assessment of residue propensities by 

distinguishing between genuine conservation and random mutations .

The most successful methods of secondary structure prediction have sought 

to combine conservation patterns and residue properties using machine
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learning methods, such as neural networks. The PHD method (Rost et ah, 

1994) was the first to use sequence profiles to train a neural network to 

accurately assign a secondary structure state to more than 70% of residues in 

a benchmark test set of sequences. Jones (1999) increased this performance to 

77% in his PSIPRED method by improving the quality of the sequence 

profiles used to train the network.

4.1.1.3 Predicting residue contacts

Although predicting the number and type of secondary structure elements 

can give clues as to the overall fold and class of a protein, the tertiary 

structure may still adopt many different conformations. One way of 

restricting the conformational space is to predict interactions between 

residues in the chain. If a sufficient number of these residue contacts can be 

identified, then it is possible to generate a reasonable model of the tertiary 

structure.

Several groups (Taylor and Hatrick, 1994; Pollastri and Baldi, 2002) have 

shown that networks of residues act to stabilise a protein fold. Mutations at 

positions in spatial proximity are often subject to correlated mutations. That 

is, if one stabilising residue is mutated so that its physicochemical or 

stereochemical properties are changed then those amino acids with which it 

interacts may also change in order to avoid steric hindrance and the breaking 

of hydrogen/electrostatic bonds. By analysing mutation rates across protein 

families, it is possible to identify pairs of residues in sequences that are close 

to one another in 3D (Pollastri and Baldi, 2002).

Again, many groups have attempted to recognise these patterns of correlated 

mutations by training neural networks on multiple alignments of known 

sequence families. However, this has proved far more problematic than 

analogous methods of secondary structure prediction due to the vast number 

of related sequences required. One reason for this is that it is not just pairs of 

residues that interact, but networks of several residues that act to stabilise the
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fold. As they are all dependent on one another, it means that two residues 

may have similar mutation rates but are not necessarily in contact in the 

structure. Hence, any identifiable sequence pattern may actually be specific 

to a given structural family, rather than observable across a wide range of 

proteins.

4.1.1.4 Predicting tertiary structure

Most approaches that predict tertiary structure ab initio directly from the 

sequence can be broken down into two discrete parts: a procedure for 

generating possible chain conformations and a potential energy function that 

assesses the likelihood that a given structure is adopted by the sequence on 

energetic grounds.

As previously mentioned, one of the biggest problems with structure 

prediction is the enormous number of possible conformations that could 

feasibly be adopted by a given protein chain. Two popular approaches for 

reducing this number are to either restrict the number of positions a given 

residue may occupy to discrete points in a 3D lattice (Hinds and Levitt, 1994; 

Park and Levitt, 1995) or constrain the range of permitted torsional angles 

between residues (Dandekar and Argos, 1994; Srinivasan and Rose, 1995). 

True ab initio methods will then assess the viability of each model based on 

the physicochemical properties of amino acids and their interactions e.g. size 

and charge. However, other prediction algorithms compare the properties of 

potential models with known structures (e.g. threading (Jones et al., 1992)). 

Whilst this knowledge-based approach can improve the accuracy of the 

methods, it has the inherent limitation of only being able to provide models 

for sequences that adopt previously observed folds.

4.1.1.5 The Rosetta method of structure prediction

Over the past five years, The Baker group (Simons et al, 1997; Simons et al, 

1999) have developed a structure prediction algorithm (Rosetta) that splits up 

the target protein sequence into small peptides, less than 10 residues in
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length. The local interactions of each fragment are then modelled by 

observing sequence-similar regions in experimental structures. These 

fragments can then be concatenated to produce models that are consistent 

with reasonable hydrophobic burial, electrostatic interactions, main-chain 

hydrogen bonding and excluded volume. Structures which meet these 

requirements are then refined by minimizing the non-local interaction energy 

using Monte Carlo simulation. However, although this can help to eliminate 

models that do not form "protein-like" molecules, it can be difficult to gauge 

those which are most similar to the native structure. Hence, the algorithm 

produces a number of models, resulting from different random seed values, 

which aims to address the problem of finding non-optimal models from local 

energy minima in the optimisation procedure.

4.1.2 Assigning structural predictions to fold groups
Structure comparison methods have proved very successful in detecting 

distant structural relationships between experimentally derived structures 

(Orengo and Taylor, 1996; Holm and Sander, 1998; Kolodny et al, 2005). 

Indeed, Chapter 2 described the ability of the CATHEDRAL algorithm to 

assign a putative fold to novel structures in the PDB by scanning against 

previously characterised representatives from the CATH database.

A previous collaboration between the CATH group and the De La Cruz et al. 

(de la Cruz et al, 2002) explored the use of structure comparison for 

assigning a known fold to ab initio models generated by the Rosetta method. 

They found that the correct CATH fold could be recognised as the top hit 

using models within 6A of the native structure, for half the data set. 

Although this result showed that structural comparison methods can still be 

applied to theoretical models, it was only tested on 4 proteins. Furthermore, 

it relied on a relatively slow structural comparison algorithm (SSAP) and was 

not able to determine automatically good models in advance.
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Simons et al. (Simons et al, 2001) took a similar approach by comparing their 

Rosetta models against the PDB using DALI (see Section 1). Although the 

closest relative in the PDB was only found for around 50% of models, for 

matches with a Z-score greater than 4, they showed that structural 

comparison methods were applicable for models that deviated from the 

native structure by as much as 7k. They suggest that as ab initio methods 

improve, it may even be possible to recognise functional families for novel 

genes through an intermediate structure prediction stage.

4.1.2.1 Comparing protein structure models using MAMMOTH 

In choosing structure comparison algorithms for matching ab initio models to 

fold groups in CATH or SCOP, an important consideration is how well the 

algorithm can cope with model structures in which the secondary structures 

are not well defined. A recent structure comparison method (MAMMOTH, 

(Ortiz et al., 2002)) was specifically designed for comparing theoretical 

models with experimental structures. The algorithm was designed to focus 

purely on Ca co-ordinates, avoiding any dependence on primary sequence, 

secondary structure or contact maps. This can be especially important when 

using ab initio models where the latter two features may not be fully formed 

with respect to the native structure.

MAMMOTH calculates its alignments in four stages. Firstly, each protein 

structure is broken into heptapepide fragments. Each heptapeptide is then 

described by a set of unit vectors between successive Ca atoms and 

translated to the origin. Using standard minimisation technique (McLachlan, 

1979), a rotation matrix and unit vector root mean square (URMS) is 

calculated between all fragments pairs and converted to a similarity score 

based on the expected URMS between two random sets of n unit vectors 

(URMS11). Scores between all possible pairs of heptapeptides are then taken 

to populate a matrix, from which a global alignment is calculated using 

dynamic programming (Needleman and Wunsch, 1970). An overall 

structural similarity between two given structure is calculated using a
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variant of the MaxSub algorithm to determine the percentage of 

corresponding residues (PSI) less than 4A in 3D. The PSI is then converted 

into a P-value using a distribution of random structural alignments from a 

data set of unrelated SCOP domains. MAMMOTH is able to detect 50% of 

fold matches at the 99% confidence level, compared to 60% for DALI. Given 

its superior speed, the authors suggest this makes it a relatively accurate tool 

for structure comparison of large databases. It certainly lends itself to 

suggesting putative fold matches, which may then be aligned with a more 

accurate, computational intensive method.

4.2 Aims
The purpose of the method presented here was to build on the work of de la 

Cruz group in Barcelona, Spain (de la Cruz et al., 2002) by developing a fast 

and novel protocol (MODMATCH) for determining the correct fold for a 

given target structure by comparing ab initio models from the Rosetta 

method to the CATH fold library. This work was undertaken in collaboration 

with Xavier de la Cruz.

The first objective was to reduce a large set of initial predictions (999 models 

per target structure) to a smaller sample, ideally of higher quality. This was 

to both increase the speed of the structure comparison and reduce the noise 

generated by erroneous hits between CATH library domains and bad 

models. The second aim was to optimise the accuracy of fold assignments by 

combining structural similarity scores from the MAMMOTH (Ortiz et al., 

2002) and SSAP (Taylor and Orengo, 1989) algorithms using a Support 

Vector Machine (SVM).

For this work, the MAMMOTH algorithm was utilised to identify putative 

folds from a CATH library which could then be more accurately aligned with 

SSAP. This is analogous to the approach presented in Chapter 2 in the 

implementation of CATHEDRAL, where GRATH was used to pre-select
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similar CATH folds within multi-domain protein chains to be aligned by 

SSAP. However, CATHEDRAL was thought to be unsuitable for this work as 

it was not designed to handle low resolution models where secondary 

structures (which form the basis of the GRATH algorithm) may not be fully 

formed. The use of SSAP in this work as an accurate structure comparison 

method was thought to be an improvement on DALI (used by Simons et 

al.(1999)) because DALI relies on conserved contacts to align residues, which 

again may not necessarily be present in theoretical protein structure models. 

The overall goal was to improve the assignment of folds to ab initio models 

by developing a fast, accurate protocol whereby the ab initio models could be 

assigned a fold in the CATH database, in a similar fashion to the way 

experimental structures are classified.

4.3 Methods
This section describes the data sets used to benchmark the MODMATCH 

protocol and the details of the superposition of structures and models used 

in this method.

4.3.1 Dataset of ab initio structure predictions
A dataset was obtained from the Baker group (Simons et al.f 2001) of ab initio 

structure predictions for 34 single domain target structures. This spanned all 

of the three major CATH protein classes (mainly alpha, mainly beta, alpha- 

beta, few secondary structures) (Table 4.1). A total of 999 predictions were 

provided by the Rosetta method for each target, resulting in a total of 33966 

models (34 x 999) that could potentially be scanned against the CATH 

database.

Class Num ber of target structures
1 (mainly alpha) 14
2 (mainly beta) 7
3 (alpha-beta) 12
4 (few secondary structures) 1

Table 4.1 Class distribution of target structures in the data set
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4.3.2 Comparing ab initio models to native structure
The quality of the models was assessed by superposing them onto their 

native structure. However, for a given target structure, the Rosetta models do 

not consistently predict conformation for all of the residues. Therefore, these 

residues were removed from the co-ordinate (PDB) file for each native 

structure before the superposition.

4.3.3 Superposition of models
For each target PDB, all 999 models were superposed (against one another 

and against their native structure) using their sequence and a Root Mean 

Squared Deviation (RMSD) was calculated on the C-alpha co-ordinates. From 

this, a SAS score ( (Equation 4.1) was also determined, as this has been 

shown to be a useful discriminator of structural similarity across proteins of 

different sizes by accounting for the number of aligned residues (Kolodny et 

al, 2005).

100 x RMSD
o^4o = -------— (Equation 4.1 SAS score. N  = aligned residues)

4.3.4 Representatives from CATH v2.6
A library of 6003 structures from CATH v2.6 was obtained by selecting 

representatives (SReps) from each cluster of 35% sequence identity relatives 

to provide a representative sample of domains for the fold assignment in the 

MODMATCH protocol. These will subsequently be referred to as the library 

structures. CATH folds are described by a code in the format: 

"Class.Architecture.Fold" (e.g. 1.10.10).

4.4 Protocol development and Results
The speed of the MODMATCH protocol was increased by reducing the 

number of Rosetta models that were required to be compared to the CATH
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library. In addition, a scoring scheme was optimised using a Support Vector 

Machine to increase the accuracy of fold assignments for each target 

structure in the data set. This section is divided into three main parts:

1. Assessment of the relative performance of MAMMOTH and SSAP for 

identifying the correct fold group in a database search.

2. Exploring the correlation between the quality of ab intio models and 

protein class.

3. Development and optimisation of the MODMATCH protocol

a. Selecting a reduced sample of models to search against the 

CATH library using MAMMOTH.

b. Optimising the number of putative fold groups identified by 

the MAMMOTH search to scan again using the slower, more 

sensitive SSAP algorithm.

c. Developing a new scoring scheme to predict the correct CATH 

fold for each target structure, by exploiting a Support Vector 

Machine (SVM) to combine alignment scores from 

MAMMOTH and SSAP.

4.4.1 Assessing the performance of the MAMMOTH 

structure comparison method as a fast filter for 

MODMATCH
It was hypothesised that the speed of the MODMATCH protocol could be 

enhanced by applying a fast initial search of the CATH library using 

MAMMOTH. Therefore, both SSAP and MAMMOTH were assessed to 

determine their comparative performance in detecting structures with 

similar folds.

Structure comparison methods have been shown to vary in performance for 

detecting fold similarities (Kolodny et al., 2005). This is especially true for 

small domains, such as alpha helical bundles where the addition of one helix 

can change the overall fold. In order to investigate the performance that
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could be expected on the Rosetta model data set, the equivalent native 

structure in the PDB for each target was scanned against the CATH library 

using MAMMOTH and SSAP. Comparisons were scored and ranked using 

the MAMMOTH Z-score and SSAP SAS score.

Table 4.2 shows that MAMMOTH and SSAP demonstrate comparable 

performance when seeking to match the correct fold in the CATH library. 

MAMMOTH finds the correct fold as the top hit for 23 out of 34 of the native 

structures, compared to 26 for SSAP. Given that MAMMOTH is around 50 

times faster than SSAP, this is an impressive performance. However, the 

ROC curve analysis shown in Figure 4.1 suggests that overall SSAP is a better 

at recognising fold similarities when all SReps in the fold groups are 

considered, with coverage of 75% versus 58% for MAMMOTH at a 5% error 

rate. Combined with the ranking results, this supports the assertion that 

using SSAP to compare models against the CATH library would add value 

for fold prediction, after an initial MAMMOTH filter.

Rank Mammoth SSAP
1 23 26
2 3 1
3 0 1
4 0 0
5 1 0
6 1 0
7 0 0
8 1 1
9 0 0

10 1 0
>10 1 2

Table 4.2 The frequency at which the correct fold appears when scanning 

the native structure against the CATH library using MAMMOTH/SSAP.
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Figure 4.1 ROC curve analysis of MAMMOTH/SSAP for comparing native 

structures to the CATH library.

4.4.2 Exploring the correlation of model quality with 

protein class

The work of de la Cruz et al. (2002) suggested that the average quality of ab 

initio models varies with protein class. More specifically, that protein 

structures containing beta-sheets were harder to predict than those that 

contained mainly alpha helices. This is because helices are formed from local 

interactions, whereas beta sheets are more dependent on the tertiary 

structure of the protein. In order to explore whether the performance of the 

Rosetta modelling protocol varied with the class of the target structure and 

whether the MODMATCH protocol needed to be tuned for different classes 

of protein, all models were superposed onto their native structure as detailed 

in Section 4.3.2.

Figure 4.2 shows that ab initio predictions can vary considerably from the 

native structure, with only 16% of models possessing a RMSD less than 5A. 

Furthermore, there is a substantial number of models with a RMSD greater 

than 9A. However, looking at Table 4.3 it can be seen that the average RMSD
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of models against each target structure varies from around 2 to 10A, which 

suggests that the Rosetta method is better at modelling some targets than 

others.

Table 4.4 shows the average RMSD to the native structure for models within 

a particular CATH structural class. De la Cruz et al. (de la Cruz et al, 2002) 

found that beta sheets tend to be harder to predict, however, the class 2 

models in the data set only have a slightly higher RMSD to native than class 

1. Looking at the distributions of RMSDs for each protein class in Figure 4.3, 

it can be seen that classes 1 (all alpha) and 2 (all beta) look fairly similar (with 

a peak around 9A), although class 1 also shows some models below 4A that 

are not seen in class 2. The distribution for class 3 (alpha-beta) shows a 

similar peak at 9A, although the largest peak is at 6A. It is hard to say 

whether this is peculiar to the data set used, or whether folds with a mixture 

of alpha and beta regions are easier to predict. The distribution for class 4 

(few secondary structures) is narrow and initially appears to be different to 

the other classes; however, it is probably due to the fact that there is only one 

class 4 protein in the data set -  its mean is still around 8A (Table 4.4).
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structure, for different protein classes (according to CATH) in the data set
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Target PDB Average RMSD to Native CATH Fold Size (residues)
Ires 2.263 1.10.10 35
lerd 5.850 1.10.10 29
2fow 8.030 1.10.10 66
lleb 9.297 1.10.10 63
2ezh 9.814 1.10.10 65

lm zm 9.071 1.10.110 71
lu tg 9.605 1.10.210 62
lnkl 7.722 1.10.225 70
5icb 8.945 1.10.238 72
lhsn 8.129 1.10.30 62
2hp8 8.728 1.10.810 56
2erl 7.292 1.20.50 35
lnre 9.722 1.20.81 66
lc5a 8.765 1.20.91 62
lnxb 9.581 2.10.60 53
ltpm 8.110 2.10.70 41
2bds 6.581 2.20.20 21
lpft 5.373 2.20.25 36
lqyp 8.443 2.20.25 42
lsro 9.201 2.40.50 66
lcsp 10.026 2.40.50 64
lpgx 7.116 3.10.20 57
lgb l 7.641 3.10.20 54
2ptl 9.357 3.10.20 60
lore 7.396 3.30.240 56
laa3 8.569 3.30.250 56
laho 5.547 3.30.30 31
layj 8.405 3.30.30 46
2sn3 8.965 3.30.30 50
lhev 6.049 3.30.60 25
lpce 6.615 3.30.60 30
ltih 7.453 3.30.60 37
lctf 8.362 3.30.70 67
lvtx 8.110 4.10.40 36

Table 4.3 Average RMSD of all models against their native structure.
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Class Average RMSD to native 
for targets in data set

1 (mainly alpha) 7.77
2 (mainly beta) 8.19
3 (alpha-beta) 7.62
4 (few secondary structures) 8.11

Table 4.4 Average RMSD to native for all models in a particular structural 

class in CATH

Overall, comparison of the quality of the models for the different protein 

classes did not show a difference in RMSD large enough to merit timing the 

protocol for different protein classes.

4.4.3 Development and optimisation of the MODMATCH 

protocol
A new protocol (MODMATCH) was developed for increasing the speed and 

accuracy of identifying the correct fold in a search of the CATH library with 

a sample of ab initio models for a given target structure. This was achieved by 

performing a fast initial scan of the library using the MAMMOTH program 

to identify putative fold matches which were then explored further using the 

slower, yet more sensitive, SSAP algorithm. A further increase in speed was 

gained by reducing the number of models searched against the CATH library 

for a given target structure. The steps involved in the MODMATCH protocol 

are shown in Figure 4.4. The parameters M and N were optimised to increase 

the proportions of correct folds recognised, while maintaining the speed of 

the protocol. The optimisation procedure is described in the following 

sections.



163

Re-compare M best 
models against N best 
fold hits using SSAP

Select M models based on 
their Modmean score

Scan M models against 
the CATH library using 

MAMMOTH

Identify N best fold hits

Combine MAMMOTH/ 
SSAP scores for M models 

against N fold hits 
comparisons in an SVM to 

predict the correct fold

Figure 4.4 Outline of the protocol for scanning R osetta  m odels for a given  

target PDB structure, against the CATH fold  library

4.4.3.2 Optimising the selection of representative models from each target structure 

Reducing the set of 999 models for each target structure to a smaller set for 

structure comparison will increase the speed of the protocol and reduce the 

noise from bad models. This section describes the strategy used for selecting 

better models for the structure comparison stage. During the ab initio 

prediction optimisation, models are generated using a suitable energy 

function that seeks protein-like features. It was hypothesised that it would be 

possible to identify a subset of such models which would comprise a
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majority of structurally similar predictions with a smaller number of outliers. 

More specifically, that the predictions that (on average) superposed best onto 

the other models, were most likely to be closer to the native structure.

All models were superposed onto one another (as detailed in Section 4.3.3) 

and RMSD and SAS scores were calculated. Both scores were analysed to 

assess which would prove most useful for selecting models across all target 

structures in the data set. Figure 4.5 shows distributions of these scores for all 

models in the data set. It can be seen that the models are quite diverse in 

their similarity to one another, with the majority between 7A  and 10A. As 

both RMSD and SAS distributions are approximately normal, calculating the 

average superposition score for a given model over all other models would 

give a meaningful measure of its relationship to these models for a particular 

target structure. (Equation 4.2 shows the calculation of this score,

Modmean, for both RMSD and SAS scores.

1 ”ModmeanmSD -  — V  RMSD(msel, mi) (Equation 4.2 b)

1 nModmean ms = —V  SAS (msel, mt) (Equation 4.2 b)
n m

Calculation of the average RMSD of a model to all other models; b)

Calculation of the average SAS score of a model to all other models; where n

= 998 and msei is the given m odel.
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Figure 4.5 Distribution of (a) RMSD (b) SAS scores for superpositions 

between all models of each target PDB structure.

To explicitly test the hypothesis that better quality models will have lower 

values of Modmean, the Modmean scores were plotted against the RMSD and 

SAS scores obtained by comparing the models to the native structure (Figure
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4.6). As can be seen there is a linear correlation, albeit not a strong one, for 

both ModmeariRMSD and ModmeansAS. Hence, it seems that models which 

superpose well onto the native structure are indeed generally similar to the 

other predictions of the target. For effective fold assignment through 

structure comparison, it could be argued that it is not necessary to use all 

good models, simply to reduce the number of bad ones. As the correlation 

coefficient (R2) is slightly better for ModmeansAS (0.6768 vs 0.6267), it was 

decided to use this measure for the selection of models. It will subsequently 

be referred to simply as M odm ean.
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Figure 4.6 a) Plot of the RMSD score to the native structure for a given  

m odel against ModmeariRMSD b) Plot o f the SAS score to the native 

structure for a given m odel against ModmeansAS.
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4.4.32 Selecting a smaller sample of good quality models for each target structure 

A varying number (M) of models were selected by using their Modmean score 

to see to what extent the model set could be reduced in numbers whilst 

ensuring that a sufficient number of good models remained.

For each target structure, the models were ranked by Modmean and the top M 

models in this list were selected, where M ranged between 1 and 150 (Figure

4.7). An analysis was made of the number of "good" models (i.e. those within 

the top 50 models when ranked by their SAS score to the native structure) to 

observe how many of these occurred within this set of N models. It can be 

seen from Figure 4.7 that the percentage of good models appears to increase 

linearly as more models are taken from the Modmean ranked list.

To calculate the number of good models that would be expected by chance, 

the list of models for each target structure was also sorted randomly. This 

process was repeated 1000 times and the average percentage of good models 

in this random set plotted in Figure 4.7, for each sample size as before. It is 

clear that ranking by Modmean does indeed enrich the sample set with good 

models. For example, a random sample of 50 models would only contain 5% 

of the good models on average, as opposed to 17% if a sample is selected 

using the Modmean score.

Since this seemed to be a reasonable proportion of 'good' models and to 

maintain the speed of the protocol, the top 50 Modmean ranked models 

(Mod50) for each target structure were selected for scanning against the 

CATH library.
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Figure 4.7 Models were ranked by their mean SAS score to other models 

(ModmeansAS) and a sample of varying size was taken. The performance 

was assessed based on the percentage of "good models" (within the top 50 

when ranked by their SAS score to the native structure). This was 

compared to selecting random models

4.4.3.3 Determining a reliable scoring scheme for the fast matching of the Mod50 

models to the CATH library using MAMMOTH 

Although MAMMOTH might not find the best alignment between two 

structures, it is a valuable tool for identifying putative fold matches that may 

then be analysed with a more accurate structural comparison method, such 

as SSAP, to give improved alignments and structural similarity measures. To 

optimise the performance of MAMMOTH as a filter, different scoring 

schemes were explored. A multi-processor computer farm was used to scan 

the Mod50 models for each target structure against the CATH domain 

library, using MAMMOTH. The aim was to discover the best score to 

discriminate between genuine fold matches and incorrect hits in the 

database.
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MAMMOTH scores its structural comparison using a Z-score. As many of 

the models may not be accurate representations of the true fold, a 

considerable number of false matches would be expected. Moreover, some 

areas of fold space are especially structurally diverse and hence a good 

model may not produce high scores to all members of the correct fold in the 

same way the native structure might. The efficacy of two scoring schemes 

was explored to determine the best measure for detecting fold similarities 

between the Mod50 models and domains in the CATH library.

Firstly, the average Z-score obtained for the Mod50 comparisons against all 

library structures (SReps, see Section 4.3.4) in each fold was calculated (AvZ). 

Secondly, the maximum Z-score (MaxZ) obtained between any model-SRep 

pair was determined for each fold. Both scoring schemes were examined 

using ROC curve analysis, where positive hits correspond to the CATH fold 

group in which the native structure was classified.

Figure 4.8 shows that the MaxZ score to each fold group appears to be a 

better discriminator of true matches than AvZ  across the whole range of false 

positive rates. It shows coverage of 50% at a low error rate (5%) compared to 

only 40% for AvZ. This suggests that taking the highest scoring match for 

each fold group would provide the best route to determining the correct fold. 

This might be due to the inherent diversity of many fold groups and the fact 

that even a good model could give a low score to a relative within the correct 

fold group if it is very structurally different from the native target structure.
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Figure 4.8 Comparison of MaxZ and AvZ scoring schemes for discovering 

fold matches using MAMMOTH. TPR = True positive rate or Coverage; 

FPR = False positive rate or coverage of domain pairs which are not in the 

same CATH fold

4.43.4 Optimising the number of putative fold groups to re-compare against the 

Mod50 models using SSAP 

The protocol was designed to identify N putative fold groups, from which a 

representative structure (SRep) would be compared with SSAP against all the 

Mod50 models for each target. As discussed in Chapter 2, when selecting the 

most likely fold group matches to take forward to a SSAP scan, it is necessary 

to consider the degree of residue overlap involved in the model/fold match 

as well as the score (MaxZ). Matching smaller structural motifs may produce 

a reasonable score; however, it is not necessarily indicative of an overall fold 

similarity. Nevertheless, setting too stringent an overlap cut-off can cause 

genuine hits to be lost. Different overlap cut-offs were explored to see 

whether these could be used to reduce the number of fold hits that were 

taken forward for the SSAP comparison. For each target structure, the fold 

hits were ranked by their score (MaxZ) and a range of overlap cut-offs 

explored.



172

Figure 4.9 shows a cumulative plot of coverage versus the rank of the true 

hit. It is evident that even an overlap value of 40% gives a 20% increase in 

coverage when taking the top 100 fold hits. Increasing the overlap cut-off to 

70% results in the loss of some true fold matches and hence the curve levels 

off at 91% coverage. As MAMMOTH is used here as a pre-filter for SSAP, it 

was undesirable to lose many true fold matches where SSAP may have 

found a better alignment. Nevertheless, to enhance the speed of the protocol 

it was important to reduce the number of SSAP comparisons as much as 

possible. It was decided that an overlap cut-off of 55% provided the best 

balance between coverage and speed, as this ensured that 97% of true hits 

were in the top 100 hits. It was felt that taking the top 100 fold hits forward 

for rescanning by SSAP provided a reasonable compromise between 

coverage and speed for the MODMATCH protocol.
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Figure 4.9 Cumulative coverage plot showing the MaxZ score performance 

at a range of overlap cut-offs (%). Normal denotes that no overlap cut-off 

was used.

Table 4.5 shows the rank (by MaxZ) of the correct fold in the MAMMOTH hit 

list for each target structure using an overlap cut-off of 55%, along with the 

average RMSD of the models to the native structure. It is perhaps surprising 

to note that targets where the average quality of models is good, such as laho 

and lhev, rank the correct fold fairly low in the list. By contrast, target 2ezh 

has a generally poor selection of models, yet MAMMOTH ranks the correct 

fold as the top hit. This may be due to the fact that selecting models using the 

Modmean score fails for laho and lhev and produces a bad sample, hence 

creating noise in the data set. A future improvement to MODMATCH might 

require exploring other strategies for reducing the model data set (see 

Discussion). Alternatively, it could be because these Rosetta models are built 

from a fragment library of known structures and hence highly populated 

folds like the arc repressor fold group (1.10.10) to which 2ezh belongs, could 

be better modelled.



174

Target PDB Average RMSD to Native Rank CATH
Fold

Ires 2.263 1 1.10.10
lpft 5.373 8 2.20.25
laho 5.547 24 3.30.30
lerd 5.850 8 1.10.10
lhev 6.049 276 3.30.60
2bds 6.581 172 2.20.20
lpce 6.615 40 3.30.60
lpgx 7.116 1 3.10.20
2erl 7.292 38 1.20.50
lore 7.396 0 3.30.240
ltih 7.453 45 3.30.60
lg b l 7.641 1 3.10.20
lnkl 7.722 1 1.10.225
2fow 8.030 1 1.10.10
ltpm 8.110 23 2.10.70
lvtx 8.110 220 4.10.40
lhsn 8.129 1 1.10.30
lctf 8.362 1 3.30.70
layj 8.405 3 3.30.30
lqyp 8.443 4 2.20.25
laa3 8.569 1 3.30.250
2hp8 8.728 3 1.10.810
lc5a 8.765 1 1.20.91
5icb 8.945 1 1.10.238
2sn3 8.965 4 3.30.30

lmzm 9.071 1 1.10.110
lsro 9.201 1 2.40.50
lleb 9.297 1 1.10.10
2ptl 9.357 1 3.10.20
lnxb 9.581 2 2.10.60
lutg 9.605 318 1.10.210
lnre 9.722 1 1.20.81
2ezh 9.814 1 1.10.10
lesp 10.026 2 2.40.50

Table 4.5 Table showing rank of correct fold for each target PDB and the 

average RMSD to native.
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4.43.5 Re-comparing the Mod50 sample of ah initio models to the CATH library 

using SSAP

To implement the second structure comparison stage in the protocol, SSAP 

was used to realign the Mod50 models against the best matched SRep from 

the top 100 fold groups (FoldHitslOO). This resulted in 5000 (50 x 100) 

comparisons per target structure. A SAS score was calculated for the match 

of each of the 50 models (Mod50), for a given query target structure, against 

each fold group (FoldHitslOO). Then, for each fold group the maximum SAS 

score (MaxSAS) was determined. This was compared with the MaxZ score 

(with no overlap cut-off) from the earlier MAMMOTH comparisons. The 

performance was again assessed using a ROC curve.

Figure 4.10 shows that both SSAP and MAMMOTH perform well, although 

SSAP actually performs better at low error rates (a 15% increase in coverage 

at a 5% error rate). This confirms that the superior performance of SSAP 

compared to MAMMOTH for identifying fold similarities shown in Section

4.4.1 is not confined to experimental structures.
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Figure 4.10 ROC curve analysis of SSAP and MAMMOTH for Mod50 vs. 

FoldHitslOO comparisons.

4.4.3.6 Optimising the scoring scheme to predict the correct fold for ah initio 

models using an SVM 

Although SSAP appears to be superior to MAMMOTH for identifying the 

correct fold when scanning the Rosetta models against the CATH library, it is 

conceivable that each method performs better with different types of 

structures. Furthermore, it has been shown that the performance of both 

algorithms can be improved by accounting for the percentage of aligned 

residues, as well as using different measures of structural similarity (SSAP 

MaxSAS and MAMMOTH MaxZ). To make use of all this information, a 

Support Vector Machine (SVM, see Section 1) was optimised to ascertain 

whether it could detect fold similarities more accurately by combining scores 

from MAMMOTH and SSAP alignments.

For each target structure, scores for each fold were extracted from the 

MAMMOTH and SSAP results, giving a set of structural similarity scores for



each fold in the CATH library. The SVMLight package was trained to 

combine these scores (overlap, protein class, structural similarity scores) 

using an RBF kernel. The aim was to produce a score that was superior at 

scoring folds hits for each target structure than the MAMMOTH or SSAP 

scores alone.

For each target PDB structure, a series of scores from the Mod50 versus the 

top 100 fold comparisons using MAMMOTH and SSAP were encoded in a 

pattern file. Each feature set corresponds to values for each fold for each 

target PDB structure — this gave 3400 feature sets (34 target structures 

multiplied by 100 fold representatives).

1. Average MAMMOTH Z-score (AvZ).

2. Average percentage of aligned residues from MAMMOTH.

3. Highest Z-score from MAMMOTH (MaxZ).

4. Highest percentage of aligned residues from MAMMOTH.

5. Average SSAP SAS score (AvSAS).

6. Average percentage of aligned residues from SSAP.

7. Lowest SAS score from SSAP (MaxSAS).

8. Highest percentage of aligned residues from SSAP.

Each feature in the pattern file was then scaled to values between 0 and 1, to 

avoid any bias towards a specific score in the SVM. It is more than possible 

that there might be some redundancy in the list of features above (for 

example, average and highest MAMMOTH Z-scores), which can affect the 

performance of other machine learning methods, such as neural networks. 

However, SVMs appear to not be affected by irrelevant or duplicated 

features (A. Lobley, personal communication).

Given that the training file only contained 34 true positives out of a total of 

3400 patterns, an option in SVMLight that adds more weighting to 

misclassification of positive examples was used. This -j parameter was set to
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108, which was the ratio by which the negative examples outweigh the 

positive hits.

A Radial Basis Function (RBF) kernel was chosen, which required 

optimisation of two parameters, C and y. This optimisation was performed 

using a cross-validation approach, whereby the scores for a given target PDB 

were successively removed while the SVM was trained on the remaining 

targets — i.e. for a given optimisation cycle, data from 33 targets were used 

for training and the remaining target was used as the test set. For each pair of 

values for C and y, the performance was measured as the area under a ROC 

curve (essentially the same graph as Figure 4.10 but using the SVM score) 

and averaged over all training sets.

Table 4.6 shows a selection of the optimisation results, sorted by the ROC 

curve area. A value of 0.0625 was taken for both C and y in the final SVM 

model as this gave the maximal ROC area from range of optimisation values 

explored.

c Y ROC
Area

0.0625 0.0625 0.8583
0.03125 0.125 0.8582
0.125 0.03125 0.8573
0.0625 0.03125 0.8558
0.03125 0.0625 0.8554
2 0.5 0.7986
8 0.25 0.7959
1 1 0.7902
2 1 0.7893
4 16 0.6517
8 16 0.6513
16 16 0.6510

Table 4.6 Optimisation of SVM parameters, C and y, when training on 

MAMMOTH/SSAP alignment scores.
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Results from the optimised SVM described above were compared against the 

performance of SSAP and MAMMOTH (Figure 4.11). It can be seen that the 

resulting score from the SVM produces a 15% increase in coverage over 

SSAP at a low false positive rate (5%). Moreover, that the SVM produces a 

superior score at all error rates, suggesting it is better at discriminating 

between true and false fold matches.

The overall objective of this protocol was to assign a fold to each of the 34 

target structures. With this in mind, each fold was ranked by its SVM score to 

determine how often the top hit was the correct fold. This was compared to 

ranking folds by their MaxZ and MaxSAS scores for MAMMOTH and SSAP 

respectively. Table 4.7 shows that SSAP outperforms MAMMOTH by nearly 

10%, when looking at the top hit. However, the SVM finds the correct fold 

45.5% of the time as the top hit and coverage of 57.6% in the top 3 folds, 

compared with 51.5% and 42.4% for SSAP and MAMMOTH respectively. 

This suggests that an SVM is able to score structural similarity more 

effectively by combining measures of alignment quality (such as overlap and 

superposition scores), than MAMMOTH or SSAP are able to encapsulate in a 

single score.
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Figure 4.11 ROC curve comparison of SSAP, MAMMOTH and SVM scores 

for assessing the correct fold for model matches.

Rank MAMMOTH SSAP SVM
1 33.3 42.4 45.5
2 6.1 6.1 6.1
3 3.0 3.0 6.1
4 3.0 3.0 6.1
5 3.0 3.0 0.0
6 6.1 3.0 3.0
7 0.0 3.0 0.0
8 3.0 0.0 0.0
9 0.0 0.0 0.0

10 3.0 0.0 0.0
>10 39.4 36.4 33.3

Table 4.7 Table showing percentage of correct fo 

MAMMOTH, SSAP and SVM score

ds when ranking hits by

4.5 Discussion and Future Work
The MODMATCH protocol presented in this work was designed to provide 

a rapid and accurate means of assigning ab initio models from the Rosetta
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method (Simons et ah, 1997) to fold groups in the CATH database. A novel 

approach was developed to provide a subset of models from the large 

number of models for each target whereby bad models could be eliminated. 

It was shown that ranking each list of models by their respective Modmean 

scores enabled a subset to be selected that was approximately three times 

more enriched with good models than would be expected by random 

selection. This might be specific to the Rosetta algorithm, but it is not 

unreasonable to think that other modelling techniques would conform to this 

trend. Given that the correlation between the Modmean score and model 

quality was not especially strong, the work could perhaps be improved by 

creating clusters of similar models based on their RMSD. The average 

Modmean score for each cluster could then be calculated and used in the 

model selection process. This may produce a better quality set to be scanned 

against the CATH library, by eliminating clusters models that have a low 

Modmean score. This will reduce the effect of large groupings of relatively 

poor models.

There did not appear to be a class-bias between the average qualities of the 

Rosetta models compared to their native structures. However, the average 

size of the models was not identical between classes and it could be argued 

that this should be taken into account, as larger structures can be harder to 

predict (Simons et ah, 2001). For future studies, it would be interesting to 

perform a more thorough analysis to see if, when length is taken into 

account, the all-beta structures do in fact produce lower quality models.

MAMMOTH was shown to be fast and reasonably accurate (55% coverage 

for a 5% error rate) for identifying folds in the CATH library that were in the 

same fold group to models in the data set. It was able to rank the correct fold 

in the top 5 matches for over 50% of the data, although the correct fold was 

below rank 100 for 4 of the targets. This performance was lower than 

obtained when using MAMMOTH with native structures, which suggests 

the drop was due to poor model quality. Despite the fact that MAMMOTH
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was specifically designed for comparing theoretical models with 

experimental structures, it still does not perform as well as SSAP. The fact 

that the SVM score (which combined SSAP and MAMMOTH scores) showed 

superior performance to both SSAP and MAMMOTH suggests these 

structure comparison methods were complimentary to some extent. It would 

be interesting to investigate for which cases each method excels or fails at 

identifying the correct fold.

The overall protocol described here is both fast and suitable for large scale 

fold assignment for theoretical structures. The SVM score here is able to 

assign the correct fold at nearly 60% coverage with a 5% error, versus the 

50% annotation achieved by Simons et al. (2001). As techniques improve for 

ab initio fold prediction, the strategy presented in this chapter could make the 

use of structure comparison a viable addition for genome annotation.



183

Chapter 5 Discussion and 

Conclusions

The aim of the work presented in this thesis was to develop a range of 

computational methods to improve the automated classification of protein 

structures into the CATH domain database. Where Chapter 2 dealt with 

detecting domain folds within the context of multi-domain proteins, Chapter 

3 aimed to distinguish between functional sub-families within diverse 

evolutionary superfamilies. Chapter 4 applied structure comparison methods 

to theoretical ab initio models to predict the corresponding fold group in the 

CATH database.

Chapter 2 described the development of CATHEDRAL for assigning domain 

boundaries and folds to multi-domain proteins by exploiting the recurrence 

of folds in different multi-domain contexts. CATHEDRAL combines the 

power of two established structural comparison algorithms (GRATH and 

SSAP) to produce a fast and accurate protocol for fold recognition and 

domain assignment. On the data set used, CATHEDRAL found the correct 

domain boundaries within 15 residues in 86% of cases. However, it is unable 

to assign -10% of the domains. These domains are often missed by GRATH 

due to their small size or because their secondary structures are poorly 

defined. Alternatively, although the correct domain is identified, it is 

distantly related to the query, so this structural variation results in 

incomplete alignments and hence erroneous domain boundaries. For these 

more difficult cases, it is essential that domain boundaries are manually 

verified so as not to propagate errors in the CATH database.

In order for CATHEDRAL to assign domain boundaries, it must perform a 

residue-based structural alignment (in this case using SSAP). Despite the fact
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that automatic protein structure comparison and alignment can be traced 

back to the pioneering work of Rossmann and Argos in the 1970s, it is still an 

active area of research. It can be argued that one of the reasons for this is that 

structure comparison methods are applied to a vast number of different 

problems. For example, using algorithms to calculate the structural change 

that occurs on ligand binding requires a different emphasis to aligning all 

equivalent residues to determine how proteins have changed their 3D 

structure within an evolutionary superfamily. The latter problem of 

homologue detection can be performed very effectively using secondary 

structure methods such as GRATH (Harrison et ah, 2003) or SSM (Krissinel 

and Henrick, 2004) for more closely related proteins. However, within 

diverse superfamilies, creating alignments between proteins and assigning 

their significance can be problematic, as paralogous genes where function 

has changed substantially can show a large amount of structural variation, 

despite sharing a common fold (Reeves et ah, 2006).

On a practical level, even the most powerful structural alignment methods 

such as DALI, SSAP and STRUCTAL are optimised to achieve a balance 

between structural similarity and aligning all equivalent residues. As such, 

the resulting alignment might be limited to the conserved core of the fold, 

rather than determining all evolutionary equivalent parts of the structures. 

This is evinced by the fact that even DALI and SSAP are often unable to find 

a full alignment (50% of residues in 50% of protein pairs) when compared to 

manually curated data sets such as HOMSTRAD and BaliBase. Kolodny et al. 

(2005) suggested that no single structure alignment algorithm will always 

find the best alignment between two structures and hence it is better to apply 

several methods and choose the one that produces the best RMSD on 

superposition. However, their assessment did not take into account the fact 

that those alignments with higher RMSD might have actually aligned more 

biologically equivalent residues. Again, the choice of structural comparison 

algorithm depends on the application. A method that generally aligns fewer 

residues but is able to accurately assess the significance of the alignment to
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detect homologues or fold relatives is useful for structural clustering and 

even classification. However, if one seeks to analyse how proteins have 

evolved within their structural superfamilies, it is vital to have as full an 

alignment as possible. Without this, important information on how domains 

have evolved new functions could be lost.

CATHEDRAL was benchmarked to detect the component folds within a 

multi-domain context. However, some argue (Kolodny et ah, 2006) that the 

idea of partitioning protein structure space into discrete fold groups is no 

longer appropriate. Indeed, there is evidence for a fold continuum, certainly 

within some areas of fold space (Harrison et ah, 2002). As such, 

benchmarking structure comparison methods in a binary fashion using 

SCOP or CATH, might unfairly penalise a method for finding genuine 

structural similarities that are not represented by the classification system. 

However, as was shown in Chapter 2, it is vital to consider the relative length 

of the structural overlap discovered by structure alignment, otherwise the 

alignment may simply represent the detection of super-secondary structure 

motifs that are present in a diverse range of folds and thus are not indicative 

of a meaningful homologous relationship or fold similarity. In fact, recent 

analysis of the CATH database has shown that the majority of "structural 

overlaps" detected by some structural comparison algorithms are actually 

the result of these common motifs occurring between small domains with 

less than 6 secondary structures (A. Cuff, unpublished data).

Although the CATHEDRAL algorithm was optimised to make CATH fold 

assignments to multi-domain chains, it is certainly possible that this might 

not always be necessary to correctly assign domain boundaries. In some 

cases, finding a similar fold could still allow CATHEDRAL to effectively 

detect the hydrophobic core of each domain. Indeed, looking for such 

structural cores are the basis of other domain prediction methods (e.g. 

(Swindells, 1995)). Nevertheless, as the fidelity of predicted domain 

boundaries in the query protein is dependent on the similarity to the
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matched domain in CATH, these boundaries might still be of suspect quality. 

However, future work is underway to use a more intelligent system for 

refining domain boundaries in these cases. One of the most common sources 

of errors for all domain prediction methods is the lack of a concrete definition 

for a domain. It would be interesting to examine whether this problem could 

be alleviated by first assigning folds using CATHEDRAL and then adapting 

other approaches (e.g. (Swindells, 1995; Holm and Sander, 1994; Taylor, 

1999)) to refine the boundaries. For the purposes of building sequence 

profiles, such as HMMs, for the analysis of genomic data, it is vital that these 

boundaries are correct. Furthermore, as the PDB expands, it will become 

increasingly difficult to manually classify structures into CATH and if 

CATHEDRAL can be relied on to make more accurate assignments, manual 

intervention will be restricted to novel folds and superfamilies. Other 

additions to CATHEDRAL could be to annotate multi-domain chains at the 

superfamily level, with the aim of aiding the assignment of protein function 

through domain architecture information.

Chapter 3 dealt with designing a novel algorithm (FLORA) to predict the 

functionally related protein domains in enzyme families from their structural 

similarities. By combining patterns of sequence conservation and solvent 

accessibility, the method was able to correctly predict the active site in -80% 

of cases. However, the templates it selected from structurally conserved 

positions around this site did not always discriminate well between 

functional homologues within a superfamily, in comparison with finding the 

closest relative using global structure comparison (SSAP).

It could be argued that Designing algorithms to detect functional similarities 

between proteins one of the most difficult problems in bioinformatics, not 

least because a definition of protein function is highly context dependent. 

Finding close homologues to the query protein via sequence or structure 

similarity is often sufficient to transfer a whole range of functional 

similarities such as enzymatic activity, cognate ligands and biological
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pathway information. However, as genes mutate randomly in different 

organisms, they often become quite structurally different from their ancestral 

protein. To predict at what point a mutation or indel will result in a change 

in function is problematic as it is highly dependent on where they occur. As a 

consequence, the vast majority of methods to predict function from structure 

focus on identifying changes and similarities within known or predicted 

functional sites. However, even within evolutionary families where proteins 

exhibit similar functional (e.g. enzyme) activities, they might have converged 

on a solution through different evolutionary pathways. For example, two 

related proteins might have a highly similar enzymatic function but utilise 

catalytic residues from slightly different parts of the structure (Todd et at, 

2002b) and therefore encompassing this function in a structural template 

might become problematic.

Given the difficulties associated with characterizing protein function when 

developing prediction methods, it is vital to clearly define the criteria on 

which novel algorithms are benchmarked. Even if one looks to group 

proteins by a common catalytic activity (as was done in Chapter 3), it is 

important to select a representative data set. Given the very different ways in 

which function changes across different superfamilies, it is important to 

include as many as possible to show that a novel method is able to work 

equally as effectively across the entire protein universe. A consistent 

benchmark is currently lacking in the literature; there is not currently a 

standard data set against which new methods should be compared. The most 

probable reason for this is that assembling such a data set requires time 

consuming manual analysis, especially to cover some of the largest protein 

families, such as the P-loop hydrolases or the aldolases.

Furthermore, it is also important for the community to arrive at a consensus 

as to the most pressing problems that need to be solved. The majority of 

structure-based prediction methods are justified on the basis that there are 

hundreds of new structures coming out of the structural genomics initiatives
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(SGIs) and it is therefore important to identify their function in order to 

assess whether they should be prioritised for further experimental 

investigation. The broad aim of the SGIs was to put the vast majority, if not 

all, genomic sequences within the reach of homology modelling methods. 

The result being that every protein would have a structure, should we need 

to better understand its function for biotechnological or medical gain.

A successful protein function prediction algorithm should be able to rank the 

closest functional relatives at the top of a database search and also provide a 

reliable scoring function that is able to accurately discriminate between true 

and false matches. The latter problem is often far more difficult to solve due 

to the large structural variation observed in some protein superfamilies. 

However, it could be argued that a method which is able to identify the 

conserved residues that are particular to a specific biological function can tell 

us more about how proteins evolve. The P-loop hydrolase superfamily 

performed poorly using FLORA and this was most likely due to the 

structural diversity observed across each of its constituent enzyme families. 

As a consequence, CORA was unable to align a large number of residues 

across the multiple structure alignment. New local scoring schemes could be 

developed to increase the power of the CORASCORE for finding the closest 

functional relative and providing a normalised score cut-off that can be used 

to transfer function between all relatives within an enzyme family. As one of 

the problems with the FLORA method was optimising both the template 

construction and scanning procedures together, it would be interesting to use 

SSAP to align relatives within a superfamily and instead look at which 

residue positions are best able to identify domains with the same function.

Chapter 4 described the development of a new protocol (MODMATCH) for 

assigning ab initio predictions of structural domains to folds within the 

CATH database. The focus of the work was to ensure the method was 

accurate in its fold assignments by implementing a two-stage structure 

comparison process, following by machine learning using a SVM to combine
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alignment scores. By reducing the ab initio models for each target to a sample 

set of models which on average were closer to the native structure (using the 

Modmean score), it was possible to drastically reduce the number of 

structure comparisons required. Although this latter process appeared to 

work effectively for the test data set as a whole, it would be interesting to 

look at targets where the Modmean score does not correlate with the quality 

of the models. For example, to analyse whether it is more effective for models 

that are generally close to the native structure, or whether it is particularly 

powerful for models where the mean RMSD to native is low due to a smaller 

number of outliers.

Over the past few years, substantial progress has been made in the field of ab 

initio structure prediction, especially using the approaches of the Baker 

group. Of particular interest is the work of Malmstrom et al. (Malmstrom et 

ah, 2007), that applied the Rosetta algorithm to small domains in the Yeast 

proteome for which a structure prediction could not be made using 

homology or fold recognition methods. The MAMMOTH structure 

comparison method was used to make putative assignments for these 

models to superfamilies in SCOP. A Bayesian approach was then used to 

combine these data with functional annotation predictions to confirm 

superfamily assignments. The authors' use of MAMMOTH is 

understandable given that it is such a fast algorithm and specifically 

designed to compare protein structure models against experimental 

structures, such as representatives from the SCOP database. However, as 

was demonstrated in Chapter 4, SSAP was shown to significantly outperform 

MAMMOTH for finding genuine structural relatives in the CATH database 

from Rosetta models. Given that the Baker group had previously used DALI 

to make such assignments (Simons, 2001), it is interesting that they chose 

MAMMOTH for their automated pipeline due to its superior speed. It could 

be argued that using a combination of MAMMOTH and SSAP could have 

increased the number of assignments from Rosetta models.
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Overall, this thesis has shown that global structure comparison methods can 

be modified and integrated into novel algorithms to assign domain 

boundaries, inherit functional annotations and make fold predictions from 

theoretical models. Despite this, there is still scope for improvement to the 

basics of structure comparison methods. Ye and Godzik (Ye and Godzik, 

2003), Shatsky et al. (Shatsky et ah, 2004) and Menke et al. (Menke et ah, 2008), 

have all developed methods based on the idea that structural alignments 

should incorporate a degree of flexibility to allow for conformational 

changes. As some structures continue to be released from the structural 

genomics projects with little functional annotation, as well as the prospect of 

homology detection via structure prediction, there is likely to be increasing 

focus on predicting function from structure. Although local motif methods 

continue to be important, there is certainly scope for further utilising global 

structure alignment in novel ways in order to improve methods' ability to 

detect homologous genes and better understand the relationship between 

protein structure and function.
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