Automated methods for the
determination of homologous
relationships and functional
similarities between protein

domains

Oliver Charles Redfern
Department of Biochemistry and Molecular Biology
University College London
A thesis submitted to the University of London in the Faculty of

Science for the degree of Doctor of Philosophy

June 2007



UMI Number: U593383

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

Dissertation Publishing

UMI U593383
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.
Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346



Abstract

CATH is a protein database of structural domains which are assigned
to superfamilies through evidence of a common evolutionary ancestor. These
superfamilies are further grouped by overall structural similarity into folds.
This thesis explores several automated methods for recognising homologous
relationships between these domains using the structural data from the
Protein Data Bank (PDB). The aim of this work was to aid the manual
classification of domains into the database and provide putative functional
assignments to structures solved by the structural genomics initiatives.

A fast and novel algorithm, CATHEDRAL, was developed to make
fold assignments to regions of polypeptide chains. By combining a fast
secondary-structure method (GRATH) and a slower residue-based method
(SSAP), the algorithm was able to accurately assign boundaries for distant
relatives, undetectable by sequence methods.

Sequence and structural conservation patterns were combined in a
novel algorithm, FLORA, to develop structural templates specific to catalytic
function. FLORA was able to predict the correct functional site in 80% of
cases and combined with global structure comparison, it was able to assign
domains to enzyme families within diverse superfamilies.

Techniques in structure comparison were also applied to ab initio
models of protein domains, in order to assign them to fold groups within the
CATH database. A novel scoring method was developed to pre-select
models that were more likely to have adopted the correct fold. A selected
sample of models for each target structure was then compared against
representatives from the CATH database using the MAMMOTH and SSAP
algorithms. Data from these alignments were combined using a Support
Vector Machine to assign the target to a fold group within CATH.

This work was generously supported by the Engineering and Physical

Sciences Research Council.
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Chapter 1 Introduction

1.1  What are proteins?

Proteins comprise approximately 15% of our body mass and are fundamental
to the majority of biological processes. Through the polymerisation of just 20
amino acids, these macromolecules perform a vast array of functions, from
reaction catalysis to providing mechanical support within the cell. In
addition, they are capable of forming complex interaction networks that
govern both inter and intra-cellular signalling pathways and gene
transcription. Key to the huge diversity of protein function is the subtly
different ways in which polypeptide chains of a given sequence can fold into
a unique three-dimensional structure. To fully understand how protein
functions are achieved at the molecular level is one of the major goals of
modern biology, as it would provide an unparalleled insight into the
underlying mechanisms of development and disease. Furthermore, it could
bring about a revolution in drug development through the rational design of
molecules able to affect known disease-associated targets with a high degree

of specificity.

1.1.1 Primary structure

The primary structure of a protein describes the sequence of amino acids
along the polymer chain. All amino acids have a central C-a carbon attached
to an amine group (NH>), carboxyl group (COOH) and a hydrogen; but the
distinguishing feature of each is the ‘sidechain’ group. Sidechains vary
considerably in their physicochemical properties, but can be broadly
grouped into three main classes: mainly hydrophobic, charged and polar
(Figure 1.1). Glycine is the exception as its sidechain is simply a hydrogen
atom, although it is sometimes classified as a hydrophobic residue.

Polypeptide chains are synthesised on the ribosome in a condensation

reaction between the carboxyl and amino termini to form the amide/peptide
bond.
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1.1.2 Secondary structure

Water-soluble, globular proteins are energetically driven to fold into their
three-dimensional structure by the packing of mainly hydrophobic amino
acids into the interior, leaving a surface of hydrophilic sidechains. The main
chain polar N-H and C=0 groups, which are similarly buried with the
hydrophobic sidechains, are neutralised by the formation of hydrogen bonds.
These often give rise to regular hydrogen bonding patterns to create
secondary structure elements. The configuration of the amino acids units
relative to one another in these elements can be described by the angles
between the C-a, carbonyl carbon and amide nitrogen. Two angles, phi and
psi denote the angles around the N—Ca bond and the Ca—carbonyl carbon
bonds respectively. The two main types of secondary structure are the alpha-
helix and the beta-sheet, although there are a number of less stable hydrogen

bonded motifs observed in nature.

mall
Sma Proline
Tiny
Aliphatic -5
s-H
Charged
' Negative
Polar
Aromatic .
Positive
Hydrophobic

Figure 1.1 A Venn diagram describing the chemical and physical
properties of amino acids (Taylor, 1986). The single letter code is translated

in the abbreviations section.
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In an alpha helix, the C=0 group of residue i forms a hydrogen bond to the
N—H of residue i+4, causing the chain to adopt a cylindrical helix structure
with approximately 3.6 residues per turn. The helix is right-handed with psi
and phi angles of -60 degrees and -50 respectively.

Beta sheets are made up of two or more continuous regions of beta-strand.
Hydrogen bonds form in such a way as to allow the C=0O and N-H groups of
adjacent residues to bond to one another. Fully-formed beta sheets can be
described as parallel, anti-parallel or mixed, depending on the bonding
patterns between individual strands. Parallel sheets have average phi/psi

angles of -119 and 133 respectively; anti-parallel, an average of -139 and 135.

In addition, other less stable and thus rarer secondary structure elements
exist. The 310 helices are invariably short and frequently found at the termini
of regular alpha helices. In this case, the helix is tighter, with hydrogen
bonding occurring between the i and i+3 residues. The dipoles of the 310 helix
are not so well aligned and hence it is less stable. In much rarer cases, a 1-
helix forms at the end of regular helices, where bonding occurs between i
and i+5 but this is again very unstable. The beta-turn is much more common
and arises when the protein chain turns upon itself and is stabilised by
hydrogen bonding. A proline residue forms an intramolecular hydrogen
bond between its side chain and main chain nitrogen, forcing a bend. The
region is also glycine-rich, which introduces little steric hindrance and

promotes flexibility in the chain.

1.1.3 Super-secondary structure
Secondary structure elements might also combine to form small secondary
motifs or super-secondary structures. Some are associated with particular

functions, such as DNA binding, whereas others are merely components of

larger structural and functional assemblies.
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B-hairpins consist of two adjacent anti-parallel strands, joined by looped
region. They can occur either in isolation or as part of a more complex beta-
sheet. Sibanda and Thornton (Sibanda and Thornton, 1991) showed that 70%
of beta-hairpins are less than 7 residues in length, with the ‘two-residue
turns’ being the most distinctive. Concatenation of several anti-parallel beta

strands connected by beta-hairpins form a motif known as a beta meander.

The helix-turn-helix motif (EF hand) frequently has a specific functional role
in binding calcium ions and was first discovered in parvalbumin where two
of the three calciums interact in this way. The positive charge of the calcium
is neutralised by the negative sidechain carboxyl groups and main chain
carbonyl. Similarly, the helix-loop-helix motif is associated with DNA
binding and found in proteins that control transcription, such as the Cro

repressor in bacteriophage A.

1.14 Tertiary structure

Secondary structure elements and larger motifs pack together to form the
overall three-dimensional conformation or tertiary structure of a protein. A
combination of electrostatic,c, Van de Waals forces, and covalent disulfide
bonds act to stabilise the globular fold. This unit is often described as a

domain.

115 Protein domains

Richardson (Richardson, 1981) described the protein domain as a semi-
independent globular folding unit that formed the building blocks for larger,
multi-domain chains. Structural domains are often defined by the
observation that residue contacts are greater within the domain, than
between other folding units. In addition, secondary structure elements
(particularly beta-strands) are rarely shared between domains (Taylor 1999).
~ As a consequence, connecting loop regions between domains can be sites for

residue insertions, as they do not disrupt the overall fold of the protein.
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1.1.6 Quaternary structure

Two or more protein chains can associate via electrostatic and covalent
bonds to form oligomeric complexes, conferring a quaternary structure. These
multimeric complexes further increase the functional repertoire of proteins
and can also facilitate regulation, as these associations are often temporary or
transient. This allows mechanisms such as allosteric control, where co-factors
can modulate the shape of enzymatic sites and hence affect the reaction rate.
In addition, new active sites can form at interfaces between chains, which
allow a convenient way to build signalling networks and molecular

machines (Liu and Eisenberg, 2002).

1.2  Evolution of protein domains

It is a widely accepted tenet of modern biology that organisms have evolved
through a process of mutation and natural selection to produce the huge
diversity of species we see in nature today. At the molecular level, it is the
recombination and mutation of DNA that results in the myriad of proteins

observed in the cell.

Proteins with similar structures and evidence of a common evolutionary
ancestor are termed homologues. Despite often retaining the same function,
they may differ significantly in their primary sequence as they have mutated
independently from their parent ancestral gene. Identifying homologous
relationships is often possible through comparative sequence analysis;
however, protein structure is generally more conserved than protein
sequence (Chothia and Lesk, 1986) and therefore structural similarities can be
more informative when these data are available. Proteins that perform the

same function in different organisms are termed orthologues (Figure 1.2).

When a gene duplicates, the new copy is not subject to the same evolutionary

pressures as its parent gene and is potentially free to evolve a different
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function. Genes related by this mechanism are termed paralogues (Figure 1.2).
New functions can evolve through an extensive modification of functionally
active regions of the protein structure, or through amino acid substitutions of
key catalytic or substrate binding residues. As with homologue detection,
paralogues can be identified through sequence similarities, although they

tend to be more diverse and hence often require structural information.
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Figure 1.2 Schematic representation of the progression from close
homologues, through more remote (twilight zone) (Doolittle, 1986) and
very remote (midnight zone) (Rost, 1997) homologues and finally

analogous/homologous structural relatives.
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1.3  Aligning protein sequences

Aligning the primary sequence of a novel protein chain or domain to
previously characterised proteins is often the first step in deriving
information about its function and/or evolutionary origin. However, if two
thirds or more of the residues have mutated, the quality of the alignment
tends to deteriorate, regardless of the algorithm is used to align them (Martin
et al., 1997).

When aligning a pair of proteins, the primary objective is to find those
residues which are evolutionarily related. For two alleles of a gene that only
differ by a couple of point mutations, this is a fairly trivial task. However, for
more distant relatives with substantial insertions and deletions, it can be
highly problematic. There are a plethora of sequence and structural
alignment algorithms (see Sections 1.3.3 and 1.6), but all aim to assess
potential alignments by optimising a scoring function. For close relatives,
this is often simply the percentage of identical residues (sequence identity,
SI), but for more distant homologues this might be a score that accounts for
insertions and deletions. In addition, sequence methods often make use of
substitution matrices which calculate the evolutionary probability of specific

residue mutations.

Alignment methods can usually be split into two types: local and global. The
latter optimise equivalences across the entire length of two protein chains.
This is useful when aligning two known homologues. However, for multi-
domain chains that share only one common domain, a method which is
biased towards local similarities (local alignment method) is more
appropriate.

1.3.1 Substitution Matrices
1.3.1.1 Using physicochemical properties

As discussed in Section 1.1.1, amino acid residues can be grouped according
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to shared chemical or physical properties. It is a reasonable assumption that
the substitution of one residue for another is more likely to be tolerated in
evolution if they possess similar characteristics. A mutation of leucine to
valine, for example, is likely to have a minimal effect on the stability and
function of a protein structure, as they share comparable hydrophobicity and

molecular size.

1.3.1.2  Dayhoff or Point Accepted Mutation (PAM) Mattices

This approach of property comparison can be extended by calculating amino
acid similarity based on an empirically-derived evolutionary method. By
examining a large number of alignments of known relatives, substitutions
probabilities between all 20 amino acids can be calculated and used to fill a

mutation data matrix (MDM).

In the late 1970s, Margaret Dayhoff and co-workers used the sequences in
their database of protein families to generate alignments of close
evolutionary relatives (>85% sequence identity) (Dayhoff, 1978). The
alignments were subject to a so-called global optimisation, where sequence
identity was optimised to give maximum sequence identity across the whole
protein sequence. The frequencies of residue substitutions were calculated
and normalised so that each probability represented a residue substitution in

an evolutionary period of one mutation every 100 residues.

1.3.1.3 The BLOcks SUbstitution Matrices (BLOSUM)

In a similar way, BLOSUM matrices are generated from regions of locally
aligned sequences from the BLOCKS database (Henikoff and Henikoff, 1991).
Proteins with a sequence identity greater than a given threshold are clustered
together. Substitution values are calculated and used to populate a matrix,
representing different evolutionary distances (e.g. BLOSUMS50 clusters
sequences at 50% identity). These matrices have been shown to be more
effective in searching for homologous relationships than PAM matrices

(Henikoff and Henikoff, 1993)
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1.3.2 Methods for identifying conserved residues positions

Global sequence comparison methods seek to identify proteins showing
significant sequence similarity and a high probability of being evolutionarily
related and thus possessing similar functions. Many groups have developed
more general algorithms to detect amino acid conservation across families in
an effort to predict functional sites. Valdar and Thornton (Valdar and
Thornton, 2001) developed the ScoreCons program to analyse and predict
protein-protein interfaces. They calculated the diversity, or entropy, of amino
acids at each position in a multiple alignment, quantified by using
mutational matrices of evolutionary distance. This was then used to predict
conserved residues that may be important for binding. A review of other

methods can be found in Valdar (2002).

1.3.3 Protein sequence alignment methods

Proteins do not only evolve simply through substitutions: DNA
recombination and the presence of transposable elements can also cause a
gene sequence to expand or contract (insertions and deletions, indels). In the
translated protein structure, these indels often occur in the loop regions
connecting secondary structure elements as this is less likely to disrupt the
overall stability of the fold; however, they are still able to modulate the
ligand binding capabilities and hence, the function. When comparing the
sequences of more diverse proteins, an alignment algorithm must be able to
account for indels of varying lengths. An optimal alignment ought to
consider every possible combination of residues, including potential indels.
Nevertheless, this is computationally expensive and can become impractical

when searching large databases.

1.3.3.1 Global Alignment
Needleman and Wunsch (Needleman and Wunsch, 1970) were the first to
apply the dynamic programming algorithm to the field of bioinformatics —
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it is still widely used today. The method begins by populating a matrix
containing scores that reflect the similarity of all residues in protein A with
those in protein B. The algorithm then starts at the bottom right hand corner
to populate an accumulation matrix, as depicted in Figure 1.3. Each cell in
this matrix takes the value of the scoring function S(i,j), which is determined
by the values of previous cells to the below and to the right. It should be
noted that if the value diagonally below S(i+1,j+1) is not selected, a gap
penalty is invoked to penalise the introduction of a gap in the alignment. The
final stage is to traceback through the matrix to determine the highest scoring
path and hence the optimal alignment.



29

S(i+1j+1)
S(G,j) =S(i,j)+max S(i+\j+2.J)+G
S(i+2.Jj+l) +G

Where I =length of the row, J=length of column and G = gap penalty

Sequence A
s L VvV I L R

m L
0 Comparison scores based on the
c S residue identities:
@ L
« v Identical residues +5
Starting in the bottom right
corner, fill the column (left) and
row (above) with the
comparison scores.
3 ACCUMULATION
i il 2 i3 i S
Each cell (i, j) is scored using the
function S(i, j).
S(i+l, 3j+1)
j S(i, j) = S(i, j) + max S(i+1l, j+2..J) + G
jtl S(i+2..1, j+1) + G
2 Gap penalty (G) -2
j+3 Length of Sequence A i

Length of Sequence B J

TRACEBACK
R
1 8 6 13 3 0 Starting with the highest scoring
cell, trace a path back through
1 6 8 6 8 0 A i
the matrix by selecting the
8 6 6 8 3 0 highest score from the next row
6 13 3 5 8 0 or column:

3 3 8 723 5 0 SG, 4 = max S(i+l, j+1..J)
0 0 0 0 5 ! S(i+1..1, 3j+1)
Sequence A - - SLVIULR
Sequence B I LSLYV--R

Figure 1.3 The Needleman and Wunsch dynamic programming algorithm.
Each residue in sequence A and B is scored for similarity and these scores
are used to populate a matrix. The accumulation step populates another
matrix using the function S(i,j), where gaps are penalised. The final

traceback step looks for the highest scoring path.
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A modification of this algorithm was introduced by Smith and Waterman
(1981) that focused on providing local, rather than global, alignments. When
tracing back through the matrix, the paths can start anywhere and are

terminated when the score falls below zero.

1.3.3.2 Local alignment and BLAST

Dynamic programming methods are ideal for pairwise sequence alignment,
but computationally expensive. Hence, for searching large databases the
FASTA (Pearson and Lipman, 1988) and Basic Local Alignment Search Tool
(BLAST) (Altschul et al., 1990) algorithms were developed, which concentrate
on discovering smaller, local matches, which can subsequently be extended

to a full alignment.

BLAST splits each database sequence into tri-peptide fragments (although
this size can be varied). The query sequence is then searched against all
fragments, with scope for mutations allowed by invoking BLOSUM
substitution probabilities. For example, ACE is allowed to match ACE, GCE,
GME and AME. Each tri-peptide match is then extended in both directions to
create the largest possible segment pair. The pairs are scored, assigned E-
values and ranked to determine the highest scoring segment pair (HSP) for
each sequence matched in the database. Although BLAST is essentially a
local alignment method, it copes with indels by refining the alignment of
good hits using dynamic programming.

1.3.3.3 Profile-based sequence comparison

Remote homologues (sequence identity < 35%) can often be detected more
effectively by algorithms that focus on conserved regions or sequence motifs.
Protein motifs represent small, highly conserved stretches of contiguous
sequence, which may be associated with a particular evolutionary family or
biological function. Searching for these recurring ‘fingerprints’ is frequently
successful in the twilight zone (Doolittle, 1986), where global pairwise

sequence similarity becomes unreliable. In a more sophisticated way,
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sequence profile methods, such as Hidden Markov Models (HMMs) (Eddy,
1996) and PSI-BLAST (Altschul et al., 1997), have made it possible to capture
the probability of certain residue mutations and insertions/deletions
occurring across families of related proteins. These methods effectively
measure the likelihood of finding a given amino acid or gap at each position
in the alignment.

Not all residues in a protein are of equal evolutionary importance. Those that
are critical for molecular interactions, catalysis or the stability of the fold are
subject to far greater evolutionary conservation than the average residue.
Hence, the actual probability of residue substitution is dependent both on the
type of amino acid exchange and location in the three-dimensional (3D)

structure.

By aligning a large family of protein sequences, one can observe specific
amino acids which remain invariant despite substantial sequence diversity
across the whole population. It follows that these residues are likely to have
some functional or structural importance for the protein. By combining
positional information with residue exchange probabilities, a Position
Specific Score Matrix (PSSM) can be generated, which acts as a profile or
sequence ‘fingerprint’ for the family.

PSI-BLAST (Altschul et al, 1997) is an extension of the popular BLAST
algorithm, which uses an iterative approach to refine a profile of the original
query sequence. An initial BLAST database search is used to find close
relatives, from which a multiple alignment can be built. A PSSM is then
generated based on the residue propensities at each position in the multiple
alignment. This is invoked to detect more remote homologues in subsequent
searches of the database. The multiple alignment is then rebuilt and the
PSSM refined. PSI-BLAST iterates through this process until no more

relatives can be found below a given E-value cut-off.



HMMs (Karplus et al, 2005; Eddy, 1996) have been shown to outperform PSI-
BLAST (Park et al., 1998) and are widely used by protein family databases,
such as Pfam. HMMs implement a statistical framework which is based on
state-transition probabilities in a multiple sequence alignment. A probability
is calculated for each position for one of three states: match, delete or insert.
The match state is further quantified by the distribution of residues at that
position. Transition probabilities are calculated between all states and
positions in the alignment. By traversing this probabilistic network, a
distribution of residues is 'emitted' at each position to create the model
(Figure 1.4). Each new sequence can be scored against the model and an E-
value calculated. The most commonly used methods are SAM-T and

HMMER.

Ml M2 M3 M4

D1 D3 D4

Figure 1.4 Overview of Hidden Markov Model (HMM), showing transition
probabilities between match (M), delete (D) and insert (I) states.

1.4 Sequence Based Protein Family

Classifications

Since the advent of genome sequence projects, the sequence repositories have

always been several orders of magnitude larger than the structure databases.
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There has, in fact, been an exponential increase in the sizes of both types of
data since the early 1970s but the largest sequence database, GenBank
(Benson et al., 2006) still contains nearly three million non-redundant
sequences (October 2006), compared to ~35000 protein entries in the Protein
Data Bank (PDB) (Berman et al., 2000) (see Section 1.5).

These data can be exploited to investigate the mechanisms of evolution and
annotate novel genes with a putative function, based on their similarity to
experimentally characterised proteins. The two areas of research are
intimately linked as more effective annotation can be achieved through an
understanding of how differences between genes affect their function. Small
mutations can inactivate an enzyme’s ability to catalyse a reaction; yet a
given enzyme can exhibit large sequence diversity across different organisms
and still retain its primary role in the cell. Hence, finding a universal
sequence similarity cut-off where function is preserved is impossible. Thus
classifying proteins into evolutionary families can be helpful, as patterns of
sequence conservation can be analysed used to detect new relatives and infer

functional properties.

The earliest protein family classifications used pairwise sequence comparison
to detect evolutionary relatives. However, these methods become unreliable
in the so-called ‘Twilight Zone’ of sequence similarity (<30% sequence
identity) (Doolittle, 1990). Fortunately, the rapid expansion of the sequence
databases over that past ten years has increased the populations of the
protein families, enabling the derivation of family-based sequence profiles

and motifs.

Despite the success of the new profile methods (e.g. PSI-BLAST, HMMs),
very distant homologues can still be undetectable at low error rates.
However, members that share significant sequence similarity may possess
similar or identical biological functions. Many resources choose to cluster

whole protein chains. However, databases such as Pfam (Bateman et al.,
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2002) now identify separate domains within genes (often defined using
protein structure data) and group them accordingly. Thus, one gene may
comprise several domains that are members of different protein families. In
reviewing the databases below, the distinction between those which simply

cluster whole protein chains and those which focus on the domain level is

highlighted.

Table 1.1 summarises the current populations of the major sequence family
databases and the methodologies used to create them. An important recent
development has been the establishment of the Integrated Resource of
Protein Families, Domains and Sites (InterPro) Database (Apweiler et al.,
2001) at the EBIL This resource integrates all the major protein family
classifications and provides regular mappings from these family resources
onto primary sequences in the UniProt database (Apweiler et al., 2004) which
contains over 3 million sequences as of July 2005. InterPro is a collaboration
that aims to provide an integrated interface of protein signature databases.
Databases in the collaboration include UniProt, PROSITE (Hulo et al., 2004),
PRINTS (Attwood et al., 2003), Pfam (Bateman et al., 2004), ProDom (Corpet
et al., 1998) , SMART (Ponting et al., 1999), TIGRFAMs, PIR SuperFamily,
SUPERFAMILY (Gough, 2002) and Gene3D (Buchan et al., 2002).
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Kahn
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Table 1.1 Protein family resources (compiled July 2005)

1.4.1

GROUP

Ouzounis

Linial

Vingron

Schneider

Natale

SOURCE(S)

83 Complete

Genomes

SWISSPROT,

TrEMBL

SWISSPROT,
TrEMBL,
ENSEMBL
(complete
genomes), the
Arabidopsis
Information
SGD

Resource,
and GeneDB
Primary
database

66 unicelluar
and 7
eukaryotic
complete

genomes

No.
FAMILIES
60,934 or
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depending
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granularity
User-
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158,153
disjoint
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153,871
proteins
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N/A
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URL
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Pfam (Bateman et al., 2004) is a highly comprehensive resource providing an

optimised set of Hidden Markov Model profiles for protein domain families.

Families are defined using multiple sequence alignments and HMMs which

cover many common protein domains and families. Pfam consists of two

parts, the first is the curated part of Pfam (Pfam-A), the second is an

automatically generated supplement called Pfam-B.

Similarly, the Simple Modular Architecture Research Tool (Ponting et al,
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1999) (SMART) domain families are selected with a particular emphasis on
mobile eukaryotic domains and as such are widely found among nuclear,
signalling and extracellular proteins. SMART domain families are annotated
with function, sub-cellular localization, phylogenetic distribution and tertiary
structure.

COG and KOG (Tatusov et al., 2003) are databases of clusters of orthologous
groups of proteins, defined by groups of three or more proteins in complete
genomes. KOG contains 7 eukaryotic genomes whilst COG contains 66

complete unicellular genomes.

1.4.2 Families of whole protein chain sequences

TIGRFAMSs protein families are built in a similar fashion to Pfam but also
contain whole protein chains. ProtoNet developed by Linial and co-workers
(Sasson et al., 2003), uses three clustering methods (harmonic, geometric and
arithmetic) to group sequences in the UniProt database on the basis of their
similarity. Likewise, the SYSTERS (Krause et al., 2000) and TRIBES (Enright et
al., 2003) methods make use of graph-based methods and Markov clustering
respectively to generate protein families of varying granularity.

The PRINTS database (Attwood et al., 2003) is a collection of protein
'fingerprints’ — conserved sequence motifs used to characterise a protein
family. These motifs are generated via multiple protein sequence alignments
by identifying regions of local sequence conservation. They can subsequently
be used to scan a larger sequence set (e.g. UniProt (Apweiler et al., 2004)) to
recruit new family members. The majority of families are defined by multiple
motifs and all must be present for a relative to be added to the group.

A number of other resources exist that automatically cluster sequences from
the completed genomes or from the large sequence repositories (e.g.
GenBank or UniProt) into putative domain families. The ProDom resource

(Corpet et al., 1998) contains protein sequence families derived from
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sequences in UniProt. These protein sequences are chopped into protein
domains using an iterative PSI-BLAST domain boundary prediction

algorithm and have been used to seed the majority of Pfam families.

Holm and co-workers developed the ADDA algorithm to cluster sequences
into domain families (Heger et al., 2005), which takes alignments from all-
against-all sequence comparison to define domains within protein sequences
and cluster them into families. Recently, almost 800,000 non-redundant
sequences were condensed into 100,000 domain families (33% of the families
containing more than one member) covering all of the currently available
sequence space. A related algorithm, CHOP (Liu and Rost, 2004) designed by
Rost and co-workers, assigns domain boundaries by BLAST sequence
comparison and then clusters the subsequent domain-like fragments into
sequence families using the CLUP clustering method. 62 completed genomes
were chopped and clustered into 118,108 single and 63,300 multi-member
clusters. Gene3D (Yeats et al., 2006) clusters families at a range of sequence

identities and now contains over 2000 domain superfamilies.

There are an ever-increasing number of web-accessible classifications of
protein sequence families (see Table 1.1). The number of families identified
by those performing automated clustering of large sequence repositories
varies from 65,000 to 186,000 depending on the algorithm used. Ouzounis
and co-workers revealed that each newly sequenced genome leads to an
increase in the total number of protein families characterised (Janssen et al.,
2003). That is, currently a certain proportion of genome sequences (between
10 and 25%) in every genome are singletons, or belong to families not present
in other sequenced genomes. This may reflect limitations in the current
sequence-based homologue detection algorithms; or alternatively these may
be genuinely novel families that have arisen following speciation. The
organism-specific families may be important for expanding the functional
repertoire and phenotype of the organism, perhaps by providing unique

biological processes or changes in gene regulation.
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1.5 The Protein Data Bank (PDB) and
Macromolecular Structure Database

(MSD)

The Protein Data Bank (PDB) (Berman et al., 2000) was established in 1971 as
a worldwide repository for the three-dimensional structures of proteins and
nucleic acids. It contains structures solved using experimental techniques,
such as X-ray crystallography, nuclear magnetic resonance (NMR) and
cryoelectron microscopy. PDB files hold standardised coordinate data for
atoms in the structures. However, other data is non-standardised, with many

of the fields accepting free text of the author’s choice.

The Macromolecular Structure Database (MSD) (Velankar et al.,, 2005) is
curated at the European Bioinformatics Institute (EBI) in Cambridge and is
also a database of macromolecular structures. However, unlike the PDB,
which was designed as a data bank, the MSD focuses on providing a more
rigid framework for data and optimising automatic searching. Manual
intervention has been employed to correct errors such as spelling mistakes

and the consistent nomenclature of amino acids residues and other chemical

groups.

1.6  Aligning protein structures

As two proteins diverge from a common ancestor, their sequences can
change beyond recognition. However, their three-dimensional structures
usually remain similar. This was originally demonstrated in 1986 by Chothia
and Lesk who plotted sequence similarity against structural similarity for
homologues in the PDB (Chothia and Lesk, 1986). A more recent analysis of
several hundred well populated superfamilies in the CATH database,
containing three or more sequence families, confirmed that even in very

remote relatives (<20% sequence identity) at least 50% of the structure
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remains conserved (Reeves et al., 2006). The most highly conserved positions
usually correspond to residues in secondary structures in the buried core of

the protein.

Computational structure comparison methods were introduced in the 1970s,
shortly after the advent of the PDB. Although they can be used to align entire
multi-domain chains, it is often useful to separate proteins into their
constituent domains, as the connectivity and orientation of domains can vary

widely and this can have negative effects on the quality of the structural
alignment.

There are well over 50 different structure comparison algorithms cited to
date but most are variations on a number of techniques. In general, the
alignment is determined in two stages: a measure of similarity of residues
and/or secondary structure features between both proteins is calculated and
then an optimisation strategy is employed to find an alignment that
maximises the score of aligned positions. The majority of methods use the
geometric properties of Ca or Cp atoms and/or secondary structure
information, such as distances or intramolecular vectors. Physicochemical
properties, such as hydrophobicity, hydrogen bonding and solvent
accessibility are also sometimes used to identify equivalent residues (Orengo
and Taylor, 1993).

1.6.1 Calculating Structural Similarity
Irrespective of the method used to align two protein structures, a

transformation matrix can be calculated to superpose them in the same co-
ordinate space. If a quantitative measure of similarity is required, the most
widely used is the Root Mean Square Deviation (RMSD). This is simply the
square root of the average squared distance between equivalent atoms

((Equation 1.1).
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(Equation 1.1 Root Mean Square Deviation (RMSD))

Similar protein folds tend to give an RMSD below 4.0; however, this can be
higher for the folds of distant relatives with more than 400 residues.
Moreover, superposing the same protein with and without its bound ligands,
can also result in a large RMSD if there is a sizeable conformational change
during binding (Grindley et al., 1993). This makes it highly sensitive to hinge
movements between two domains and this highlights the main problem with
using RMSD as a measure of similarity: namely, that it is dependent on the
number of aligned positions. It is therefore important to consider both the
RMSD and the number of equivalent residue pairs when assessing the
significance of the similarity. Despite its limitations, RMSD remains a widely

used and valuable measure.

1.6.2 Rigid body superposition methods

It is possible to treat two protein structures as rigid objects and simply find
the best way of minimising the distance between them when superposing
one on top of the other. It should be noted that this is distinct from structural
alignment, which maps equivalent residues between two proteins. Rigid
body superposition was the rationale of the methods pioneered by Rossman

and Argos in the 1970s and can be thought of in three stages:

‘1. Moving both structures to a common position in the co-ordinate
frame, usually by translating their centre of mass to the origin.

2. Finding putative equivalent positions to start the optimisation.

3. Rotating one protein, relative to the other, around to three major axes

to look for the “best fit” (i.e. giving the lowest RMSD).
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The major difficulty with this method lies in identifying putative equivalent
positions to begin the optimisation and reduce the search space. For close
relatives (>35% sequence identity), standard sequence alignment methods
can be used. However, for more distantly related proteins, this is unreliable
and the algorithm often requires manual input to define known equivalent

residues, such as catalytic residues in the active site.

Therefore, rigid body superposition is generally only used to compare
closely related proteins, or to superpose structures once alternative
algorithms with the ability to handle extensive insertions and deletions have

determined equivalent positions.

1.6.3 Secondary Structure Based Methods

One approach to handling insertions and deletions (indels) in distant
homologues is simply to compare the secondary structures, as a large
proportion of indels occur in the loops connecting secondary structures.
Graph theoretical methods (Grindley et al., 1993; Artymiuk et al., 1994;
Harrison et al., 2003) tend to dominate this approach to structure comparison,
as they are both fast and effective. The majority concentrate on the distances
and angles between secondary structures in both proteins, which are then

compared to find equivalent pairs.

1.6.3.1 GRATH, SSM

Graph theory is a comprehensive branch of mathematics that has been
applied to many different areas of biology and computer science. A graph
consists of points, nodes, in two-dimensional space connected by lines, edges,
which describe the relationship between them. A protein structure can be
reduced to a graph where the nodes are secondary structures and the edges
describe the geometric relationships between them (e.g. distances, angles).
Grindley and co-workers (Grindley et al., 1993), were the first to use these
techniques in 1993, although Harrison et al. (2002; Harrison et al., 2003) have
applied them more recently to detect fold similarities as part of the
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classification procedure in the CATH database (Orengo et al., 1997)
(GRATH).

In the GRATH method, linear vectors are used to represent the secondary
structures and the edges are then labelled with distances between the
midpoints and angles, describing the tilt and rotation between the vectors
(Figure 1.5). The resulting two protein graphs are then evaluated to detect
common secondary structure ‘cliques or complete sub-graphs’, by
identifying equivalent edges that are labelled with similar distances and
angles (Harrison et al., 2003). This forms the basis of the correspondence
graph, where each node represents two secondary structures (one from each
protein) and edges are constructed where their angles and distances are
within prescribed cut-offs. The Bron-Kerbosch method (Bron and Kerbosch,
1973) is then used to detect the common secondary clique. The algorithm
operates in a recursive fashion by gradually eliminating nodes that do not

have sufficient edges, until the clique is found.

Krissinel and co-workers (Krissinel and Henrick, 2004) have optimised a sub-
graph matching algorithm, on which they base their SSM method. Much like
GRATH, it labels edges with distances and angles to determine equivalent
relationships (Figure 1.5). However, a greater emphasis is placed on the
similarity between the sizes of secondary structures, a feature which was
explicitly found to be unhelpful by Harrison et al. (Harrison et al., 2003). The
major difference is that SSM does not search for fully-connected cliques. This
is. compensated for by also examining equivalent connectivity, i.e. matched

secondary structures must be in the same order along the protein chain.

Methods based on secondary structure matching are extremely fast at
searching databases of protein folds (particularly for proteins that contain <
20 secondary structures elements) and very effective at identifying distant
fold similarities. They are often used to find putative structural relatives,
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which can then be aligned more accurately to the query structure using

residue-based methods.
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Figure 1.5 Illustration of graph theory-based structure comparison
algorithms, a) Linear vectors are calculated through each secondary
structure and used to represent each node in a graph. The relationships
between these vectors (e.g. angles and midpoint distances) then annotate
the edges between them, b) Two protein graphs are compared by looking
for equivalent edges (highlighted in bold). Whereas SSM looks only for
common sub-graphs, GRATH looks for fully-connected cliques. The
resulting secondary structure graphs can represent a common topology

shared by the two protein domains.

1.6.32 VAST

Entrez at the NCBI provides a web resource of structural alignments and
superpositions of around 10,000 domain substructures within the PDB using
the VAST (Vector Alignment Search Tool) algorithm (Madej et al, 1995). In a
similar way to graph theory methods, VAST focuses on the relationship

n

between secondary structures. The authors define "units" of similar tertiary
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structure as pairs of secondary structure elements that share equivalent
types, relative orientation and connectivity. Two protein domains are aligned
using dynamic progr amming to give the optimal superposition score across
all pairs of secondary structure elements (SSEs). A statistical method is then
employed to measure the likelihood that this similarity would be seen by
chance, by calculating te probability that the score would be obtained when
random pairs of SSE combinations in the two domains were superposed. The
method yields a significance score that appears to be highly discriminatory at
identifying structural relatives.

1.6.4 Residue Distance and Contact Map Based Methods

Some of the earliest structural comparison methods were based on distance
plots. These are 2D matrices, shaded according to the distances between
residues in a protein. In a similar vein, a contact map can also be generated
which records those residues that are in contact (within a threshold distance
~8A). These contacts may be based on Cq atoms or any other atoms in the
residue side chains. The patterns arising in the resulting matrix are often
characteristic of a particular protein fold. For example, dense stretches of
contacts indicate closely packed secondary structures. Protein structures can
be aligned by overlaying their contact maps. However, as with rigid body
methods, it is difficult to overlay the maps of distant homologues; although
some strategies have been developed to cope with indels, which are
described below.

1.6.4.1 DALIand CE

One approach to aligning distant structural relatives is to divide each protein
into fragments. The Combinatorial Extension (CE) algorithm (Shindyalov
and Bourne, 1998b) and DALI (Holm and Sander, 1993) are popular
examples of methods that discover equivalent fragments and subsequently
combining them to calculate a global alignment, using some manner of

optimisation strategy.
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Holm and Sander developed the DALI algorithm (Holm and Sander, 1993),
which fragments protein structures into hexapeptides and compares their
contact maps (Figure 1.6). Potentially equivalent fragments are identified by
looking for similar patterns of distances between residues, within a specific
threshold. These pairs are then concatenated to extend the alignment using a
Monte Carlo optimisation. An RMSD value is calculated to assess the quality

of the extension as the concatenation progresses.

In a similar way, CE fragments the polypeptide chain into octapeptides and
aligns residues based on the characteristics of their local geometry (as
defined by vectors between Cq positions). Matching fragments are termed
Aligned Fragment Pairs (AFPs). Heuristics are used to define a set of optimal
paths joining AFPs, with gaps inserted as required. The pairs with the best
RMSD are subjected to dynamic programming to achieve an optimal
alignment. For specific families of diverse proteins, additional characteristics
are used to weight the alignment.
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Figure 1.6 The DALI method of Holm and Sander(1993). Proteins are
fragmented into hexapeptides and their contact maps compared to find
equivalent fragments. Fragments are concatenated and their RMSD
checked to find valid extensions. Monte Carlo optimisation is used to

guide the extension process to a full alignment.

1.64.2 SSAP

Another approach to comparing distances between residues was developed
by Taylor and Orengo (Taylor and Orengo, 1989). They sought to deal with
the structural embellishments observed between distant relatives by
applying the dynamic programming techniques used in sequence alignment
methods. In the SSAP algorithm, dynamic programming is in fact utilized
twice; firstly to compare residue environments and secondly to determine

the optimal global alignment (Figure 1.7).

At the heart of the comparison lies the concept of 'residues views'. These are
vectors calculated between a specific Cp (side chain carbon) atom and all Cp

atoms within a structure. The vectors are compared between the two proteins
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by a score based on the magnitude of the vector between them. The number
of potentially equivalent residues is also limited by selecting on secondary
structure properties (e.g. accessibility, phi and psi angles). A ‘residue-level
score matrix’ is constructed for each pair of putatively equivalent residues,
containing scores that reflect the similarity of a given pair of vectors. For
example, vectors from residue (i) to all other residues in protein A are
compared to vectors from residue (j) in protein B to all other residues in
protein B. Dynamic programming is used to find the highest scoring path
through the matrix, which results in a putative alignment.

The second step is to amalgamate the information from the residue level
matrices into a summary score matrix. Pairs of residues are determined to be
potentially equivalent based on the score of the best path through their
residue level matrix. All optimal paths returning scores above a given
threshold are collated in the summary matrix and an overall optimal path

calculated using dynamic programming.

The SSAP algorithm has historically been used to classify domains in the
CATH database. In keeping with the idea of vector comparison, SSAP bases
its primary scoring scheme on an average of the vector environment

similarity of equivalent residues.
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Figure 1.7 Flowchart of the SSAP algorithm. Vector environments are
compared between pairs of potentially equivalent residues in each protein.
A residue level score matrix is constructed for each pair and optimal paths
(putative alignments) are calculated by dynamic programming. High
scoring paths are then added to the summary score matrix. Dynamic
programming is then applied to the summary matrix to generate the final

optimal alignment of the two structures.

1.6.4.3 COMPARER

COMPARER (Sali and Blundell, 1990) uses intermolecular superposition and
then subsequently assesses relationships between residues within each
structure. Residue properties, such as secondary structure type, side-chain
orientations and torsional angles are then compared between proteins and
used to populate a 2D matrix. These are combined with intramolecular
information (Ca distances, hydrogen bonding patterns, distances to the
protein's centre of mass) to find equivalent residues. Putative equivalences
are optimised by rigid body superposition followed by a technique known as
simulated annealing. This applies a probabilistic Boltzmann energy function,

which calculates drops in energy as temperature decreases to find optimal



51
solutions to the superposition of the proteins. The final alignment is then
optimised using dynamic programming.

1.7 Protein structure classification

Although advances in sequence comparison methods are now able to detect
many more remote homologues (below 35% sequence identity), a significant
number of relationships can still only be identified through protein structure
comparison. Therefore, structure-based classifications are highly important
resources for recognising distant relatives and providing datasets for more
extensive analyses of protein family evolution. A summary of current

resources is tabulated in Table 1.2.

Since 1994, there have been two major structural databases, SCOP (Murzin et
al., 1995) and CATH (Orengo et al., 1997), which group protein domains into
evolutionary superfamilies. Domains are further classified under a hierarchy,
the top level of which corresponds to the protein class ~ the proportion of
residues adopting o-helical or B-strand conformations. This gives rise to
three major classes, mainly-o, mainly-B and o-B, although SCOP divides the
alpha-beta class into alternating o/p and o+, depending on the segregation
of o-helices and B-strands along the polypeptide chain.

1.7.1 SCOP

The Structural Classification of Proteins (SCOP) database was established in
1995 by Murzin and co-workers (1995) and uses almost entirely manual
validation for recognising structural similarities between proteins to generate
evolutionary superfamilies. Although time consuming, this has resulted in a
very high quality resource where domain boundaries are also manually
assigned. Domains are further clustered at the family level if they share
greater than 30% sequence identity, or have a close structural or functional

relative.
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1.7.2 CATH
CATH is an acronym of its hierarchy of: Class, Architecture, Topology,
Homologous superfamily Figure 1.8. It uses a combination of manual and
automated approaches. Robust structure comparison methods (SSAP, CORA,
GRATH) have been developed to recognise structural relatives; although
evolutionary relationships are only assigned following manual assessment of
all available data. Several automatic methods are used for domain boundary

recognition but, again, assignments are all manually validated.

Within each of the three protein classes defined in CATH, structures are
grouped by architecture, which describes the overall arrangement of
secondary structures. For example, the ubiquitous three-layer a-p-a
sandwich which is defined by a core p-sheet surrounded by two alpha helical
regions. The topology (or fold) level further delineates domains by the
different connectivities of their secondary structure elements. Significant
structure similarity, often identified through structural comparison, must be

in evidence for domains to share the same fold level.

Finally, proteins are only grouped at the superfamily (H) level where there is
additional evidence of an evolutionary relationship (e.g. high
structural/sequence similarity or comparable functions). Two of the

following criteria must be met:

1. Similar structures (SSAP score > 80) with at least 60%overlapping
residues.

2. Similar sequence (> 35% identity or significant HMM E-value).

3. Functional similarity (e.g. sharing of first 3 E.C. numbers).

Version 2.6 of the CATH database contained 67, 054 domains in 1572
superfamilies, 907 folds and 39 unique architectures. Within each
superfamily, proteins are further sub-clustered by sequence identity into
families of close relatives (e.g. > 35%) (Figure 1.8). The vast majority of
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structures in the same sequence family (S35 group) share very high structural
and functional similarity. As such, datasets of domains can be reduced in size

by only taking one representative from each S35 cluster - this is termed the

SRep.

mainly alpha alpha-beta mainly beta

architecture

32 architectures
barrel 3-layer sandwich 2-layer sandwich

-70 other
3-layer fold

topology families
or fold

-820 fold 9
groups

homologous
superfamily
-1400

superfamilies Lactate Dehydrogenase Ravodoxin
(9fdtA. domain 1) (2fox0, domain 1)

e LI\ /1NN

family (35%) 00000 00000

-4000 families

Figure 1.8 Diagram of the CATH hierarchy
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1.7.3 Other structural resources
In addition to hierarchical classifications, there are several online resources
(e.g. FSSP (Holm and Sander, 1997), MMDB (Marchler-Bauer et al., 1999)) that
provide lists of structural neighbours for a given query. FSSP provides a
search tool that exploits the DALI algorithm to find structural relatives.
Although a high structural similarity suggests homology, it is up to the user
to assess the likelihood of this based on the data provided. The MMDB
exploits the vector-based VAST algorithm to automatically find similar
structures within the PDB. It provides alignments annotated with automatic
domain assignments and graphical structural superposition. The PDB
resource itself makes use of the CE (Shindyalov and Bourne, 1998b) program
to search for structural neighbours automatically. Again, it is up to the user

to further group these into individual protein families.

1.74 Evaluating protein structure alignment methods

As described in Section 1.6, there are a vast number of different approaches
to protein structure alignment, all of which have their strengths and
weaknesses. Where secondary structure comparison methods (such as
GRATH and SSM) are fast and effectively detect similarities between a large
proportion of proteins, they can miss more distant homologues and fold
similarities. However, some residue-level methods, such as DALI and SSAP,

can be slow when comparing large data sets of structures.

Both Novotny et al. (2004) and Kolodny et al. (2005), have recently looked at
the relative performance of different structure comparison methods.
Novotny et al. benchmarked 11 publicly available fold comparison
webservers (the GRATH algorithm attached to the CATH database server
was excluded at it did not provide multiple hits per fold, which was required
for their assessment) for determining whether a given query structure
represented a novel fold, according to the CATH classification. The authors
concluded that CE, DALI and VAST performed well for detecting similar
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folds, although recommended using a combination of algorithms to be able

to confidently assume that a given query structure had a novel fold.

Kolodny et al. (2005) took a subset of structure comparison methods to align
representative domains from the CATH database with 6 different structure
comparison methods, including SSAP. The authors compared the native
structural similarity scoring schemes with their own geometric scores based
on the RMSD upon superposition of aligned residues. Interestingly, they
concluded that SSAP, among other methods, performed better in Receiver-
Operator Curve (ROC) analysis of all domain pairs related at the fold level
when using their geometric scores, rather than the native scoring of a given
method. However, it was also suggested that ROC curve analysis with
respect to CATH could unfairly penalise methods that detect structural

similarities between domains in different folds.

To further evaluate the comparative performance of each method, Kolodny et
al. examined the fraction of all same-fold domain pairs that were aligned
with a transformed RMSD score (SAS) below a given cut-off. By this analysis,
SSAP is judged to perform poorly compared with the other structural
alignment methods. However, the authors note that when greater emphasis
is given to the number of aligned residues, SSAP is the best performing
algorithms, despite fairing worse than STRUCTAL in their other
benchmarks.

It could be argued that one of the problems with the authors’ conclusions is
that a correct structural alignment cannot purely be judged on the geometric
superposition score. Although it is important for a given structure
comparison method to provide a score that performs well for identifying fold
similarities and homologous relationships, it is also designed to produce a
biologically meaningful alignment. As the SSAP algorithm is used
extensively in this thesis, its relative performance for generating structural

alignments and scoring structural similarity will be assessed and revised in
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Summary table of protein structure databases and structural comparison

algorithms

D ATABASE

CAMPASS

CATH
Gene3D

CE

LOCATION AND

AUTHOR

Cambridge
University,
UK

Sowdhamini

UCL, London,
UK

Orengo

SDSC,
La Jolla,
CA,
USA

Bourne

COVERAGE

7580 domains
in 1409

superfamilies

58,000
domains in
1459

superfamilies

All chains in

PDB

STRUCTURE
COMPARISON
METHOD

COMPARER
(Sali and
Blundell 1990),
SEA (Rufino
and Blundell,
1994)

SSAP (Taylor
and Orengo
1989), GRATH
(Harrison et

al., 2002)

CE
(Shindyalov
and Bourne

1998)

TYPE

Structure-
based
sequence
alignments of
SCop

superfamilies.

Automatic
structural and
sequence
comparison
methods are
combined
with manual
validation of
superfamily
alignments
and domain
boundaries.
Fully
automatic.
Nearest

neighbours.

DESCRIPTION

CAMbridge
database of
Protein
Alignment
organised as
Structural
Superfamities.
Provides
sequence
alignments of
structural
domains within

a superfamily.

CATH is a
hierarchical
classification of
protein domains
structures,
clustered by
Class,
Architecture,
Topology and
Homologous

Superfamily.

Combinatorial
Extension of the
optimal path. A
database of
structural
alignments and
similarities

between all
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ENTREZ/MM

DB

HOMSTRAD

UCL, London

UK

NCBI,
Bethesda, MD,
USA

Bryant

Cambridge
University,
UK

Blundell

1459
superfamilies

in CATH

Allin PDB

7500 domains
in over 1400

superfamilies

SSAP (Taylor
and Orengo,
1989) CORA

(Orengo 1999)

VAST (Madej
etal., 1995)

COMPARER
(Sali and

Blundell, 1990)

Fully
automatic
multiple
structure
alignments of
close relatives

in CATH

superfamilies.

Fully
automatic.
Nearest

Neighbours

Manual
classification
of close
protein

homologues
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structures in the
PDB.
Dictionary of
Homologous
Superfamilies.
Multiple
structure
alignments of
homologous
domains as
defined by
superfamilies in
the CATH
database. These
are further
annotated with
functional
information
from UniProt,
ENZYME, GO,

KEGG.

MMDB contains
pre-calculated
pairwise
structural
comparisons
and alignment
between all
structures in the

PDB.

HOMologous
STRucture
Alignment
Database,
Database of
annotated
structural
alignments for
homologous
protein families,
utilising SCOP,

Pfam and
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SMART to
identify
relatives.
sScop LMB-MRC, 54745 Manual Manual Structural
SUPERFAMIL Cambridge, domains in classification Classification Of
Y UK 1294 Proteins.
Murzin superfamilies Hierarchical

classification by
Class, Fold,
Superfamily,

Family.

Table 1.2 Protein Structure databases (July 2005)

1.7.5 Structural Genomics Initiatives

Although solving the structure of proteins at the atomic level is a non-trivial
task, it can provide important insights into the mechanics of protein function.
Such efforts can enable us to rationalise why certain proteins interact and
elucidate the unique molecular apparatus afforded by enzymes to catalyse
chemical reactions under physiological conditions. Nevertheless, given the
large number of proteins in nature, it is unrealistic to hope to solve all
structures with current techniques. The 'Holy Grail' of structural
bioinformatics is therefore to be able to accurately predict structure from

sequence.

Proteins are molecules, albeit very large ones, which obey the laws of
chemistry and quantum physics, and therefore many believe it should be
feasible to go from sequence to structure using ab initio methods (for a
review, see Hardin et al. (2002). However, the process of protein folding is far
from well understood and the best performing structure prediction
techniques have been those that utilise empirical data on known sequence-
structure relationships. These include 'threading' sequences through a

library of structural templates (Jones et al, 1992) and modelling from
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homologous structures (homology modelling). Working on this principal
~ structural genomics is aiming to put each protein sequence within the reach

of these reliable homology modelling methods.

1.8  Predicting protein function

As discussed in the previous sections, annotating novel proteins with
function can be achieved by finding close relatives through global sequence
or structure comparison. Many studies have shown that enzyme domains
which share at least 40% sequence identity are highly likely to share a
common function (Todd et al. 2001), although this figure must be raised to
60% for multi-domain proteins. Indeed, algorithms such as BLAST and
FASTA are widely used to rapidly scan large databases of genome sequences

in order to detect close relatives with experimentally characterised functions.

1.8.1 Defining Protein Function

‘Protein Function” is a term frequently used in the literature, but should
always be carefully defined. If we take glycogen synthetase as an example,
we can say that its physiological function is to store excess blood glucose as
glycogen in muscle and liver tissue. At a cellular level, it interacts with other
metabolic enzymes to interconvert carbohydrates. On the molecular level, it
catalyses the polymerisation of glucose-6-phosphate to glycogen. These three
very different descriptions illustrate that when designing methods to predict

protein function, it is important to decide on which level of function one is

trying to focus.

Analysis of primary sequence and structure are most likely to give us
information on a protein’s biochemistry and molecular interactions. We can
hope to identify motifs associated with a particularly binding property, such
as ATP-binding, or enzymatic function and even cellular localisation.
However, an important caveat in genome annotation is that although we

may be able to predict the binding partners and reaction chemistry, these
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descriptions can be of limited use to experimentalists. For example, protein
kinases are so ubiquitous in cell signalling pathways that simply identifying
a protein’s ability to catalyse phosphorylation says nothing about its role in a
cellular context. It would be helpful to go further to predict its substrates and
interaction partners.

1.8.2 Whole protein function vs. domain function

As reviewed above, polypeptide chains can fold to form a number of distinct
structural domains. Furthermore, several chains can interact via electrostatic
and hypdrophobic interactions to form protein complexes. Functional sites
and enzymatic cavities can span more than one chain or arise in the gap
between two globular domains. Even when the catalytic site is entirely
located on a specific chain or domain, it may only be active in the full-
complexed state. Hence, it is often only valid to ascribe a function to a whole
protein, rather than a chain or domain. This is confirmed by the large range
of functions observed across superfamilies of domains in the CATH database
(Pearl et al., 2005).

1.8.3 Structured descriptors of protein function

As was highlighted in Section 1.8.1, protein function can be described on a
number of levels. To further complicate matters, many enzymes and
substrates have a number of synonyms. Therefore, several efforts have been
made to more formally and consistently describe the huge diversity of
functions observed in nature. One of the earliest in the field, was the Enzyme
Ciassiﬁcation (E.C.) (Bairoch, 2000) which groups enzymes into six major
classes based on the chemistry of the reactions they catalyse. Each E.C.
number consists of 4 digits (e.g. 2.7.7.1) where the first three describe the
catalytic action of the enzyme and the forth usually denotes its substrate
specificity. Rison and co-workers (Rison and Thornton, 2002) have shown
that proteins are recruited into metabolic pathways based on their reaction

chemistry and allowed to evolve the required substrate specificity. Hence,
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many different enzymes in the same superfamily frequently share the same

reaction chemistry (i.e. first 3 E.C. numbers).

The Gene Ontology (GO) (Ashburner et al., 2000) was set-up to provide
consistent descriptors of proteins in every species. The consortium developed
three controlled vocabularies (ontologies) to describe a protein’s molecular
function, its role in biological processes and its association with other cellular
components. Unlike the hierarchical E.C. classification, each ontology is
constructed as a directional graph, where each term may have multiple
parents. For example, an ATP-dependent DNA helicase is a child of ‘DNA
binding’, ‘DNA helicase’ and ‘ATP-binding’. One of the major goals of GO is
to facilitate automatic annotation of newly sequenced genomes by
comparison to well-characterised genes in experimentally tractable
organisms. For example, Cdc9p in yeast is able to perform DNA ligation
during replication, repair and recombination. It is not known whether this is
true for the equivalent enzyme in higher organisms, but the ontology
captures these three functions independently and therefore gives the
experimentalist the opportunity to test each individually.

1.8.4 Predicting functional residues through incorporating
sequence and structural information

Even profile-based sequence methods can result in sub-optimal alignments

of distant relatives. Assigning function from remote homologues frequently

requires structural data and many groups have sought to combine this with

sequence information.

Lichtarge and co-workers (1996) pioneered a method known as the
‘Evolutionary Trace’ to identify sequence motifs associated with specific
functions, such as ligand binding specificity. A phylogenetic tree is built
from protein families and the conservation at each alignment position is

calculated at different levels of global sequence similarity across the tree.
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Conserved residues specific to certain clades of the tree were mapped onto a
representative structure to locate the functional site and identify binding
residues, as they often clustered together in three dimensions. Landgraf et al.
(2001) extended this to automatically select a representative structure from a
cluster of functionally related homologues and identify conserved residue
clusters that characterized protein surfaces, such as SH2 domains. A global
conservation score was calculated for each position in the multiple alignment
and a second score measured the local conservation in a 10A radius around
each position. After statistical analysis, they generated a regional
conservation score, C(x), and a similarity deviation score, S(x), for each
residue in the alignment. C(x) defined the conservation of the local
environment relative to the whole protein and was particularly effective at
identifying poorly conserved transient interfaces in the MAPK transcription
factor, ERK2. Whereas S(x) detected highly variable residue clusters that
were shown to confer the various binding specificities to members of a

family of aldolases.

1.8.5 Using electrostatics to predict functional sites

Molecular interactions in the cell — either between protein surfaces or
proteins and their ligands — rely on electrostatic contacts between charged
or polar residues. Many groups have examined ways of analysing and
classifying proteins by the physico-chemical properties of their surfaces.
Pawlowski and Godzik (Pawlowski and Godzik, 2001) took a molecular
cartography approach to reduce protein surfaces to a spherical map.
chussing on charged and hydrophobic residues, they were able to calculate
the similarity between two protein maps. They showed that this simple
measure was capable of identifying functional subgroups within protein
families, such as distinguishing between monomeric and tetrameric
haemoglobin subunits. This method has been made available as a webserver
(Sasin et al., 2007). A similar resource (the electrostatic-surface of functional
site (ef-Site) database (Kinoshita and Nakamura, 2004)) provides information
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about electrostatic potential surfaces that can be used to identify similar

patterns of charge in binding and interaction sites.

1.8.6 Using knowledge-based catalytic structural templates

To retain function through evolution, the structure of two proteins may stay
the same, despite significant divergence of their sequences. This can be due
to the constraints of maintaining the overall fold, but structure is also

particularly conserved in the environment of functional sites.

In 1997, Wallace and co-workers (1997) built a database of catalytic sites
(PROCAT) that were characterised by hand. This has now been superseded
by the Catalytic Site Atlas (Porter et al., 2004) and contains over 14,000
structures, with each catalytic residue (up to 6 per protein) annotated with
information from the literature. The 3D conformation of these functional
residues is often conserved over evolution to preserve function, even when
other regions of the structure may vary. A fast search algorithm (JESS) is
used to compare small catalytic templates to structures of unknown function
to assign a putative E.C number (Barker and Thornton, 2003). In spite of this,

there are two main problems with the approach.

Firstly, catalytic residues can frequently move relative to one another when
the substrate binds, causing their geometry to vary considerably between
structures with and without bound ligands. Secondly, the probability of
these small templates matching regions in functionally-unrelated proteins is
high, making it difficult to distinguish between true and false matches
simply by RMSD. The SiteSeer algorithm (Laskowski et al., 2005) attempts to
address this problem by also comparing the local environments of the known
catalytic residues and the corresponding residues in the matched protein.
They exploit the idea that the environment around the active site often
exhibits higher sequence similarity than suggested by a global alignment of
the query and match structures. A statistical scoring function improves
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matters by producing a more biologically-meaningful ranking for each

search of a given query protein.

Other methods (DRESPAT (Wangikar et al., 2003), PINTS (Stark and Russell,
2003)) look for structural motifs that are common to both the annotated and
‘hypothetical proteins’. They have the advantage of not requiring a user
definition of functionally relevant residues; however, there is no guarantee
that structural similarities are not a product of stabilising the protein fold,

rather than true functional conservation.

1.8.7 Using surface cleft analysis to identify binding
pockets
One of the key reasons enzymes can catalyse reactions so effectively is that
they are able to isolate their substrates in binding pockets or clefts, creating a
unique chemical environment. Indeed, the active site is usually found in one
of the two largest surface clefts (Laskowski et al., 1996). In a similar fashion to
the template searching discussed in the previous section, binding sites in
unannotated proteins can be compared against a library of known sites, such
as those implemented in the pvSOAR/CASTp server (Liu et al., 2007).
SiteEngine (Shulman-Peleg et al., 2005) goes further than similar geometric
matching by also examining the physico-chemical properties of the amino
acids in the site. The conservation of charge and hydrophilicity often

provides an important addition to pick out genuine functional homologues.

Aithough these methods can be used to effectively assign function, they are
again constrained by the fact that similar binding sites can exhibit different
geometries depending on the presence, absence or identity of the bound

ligand.

1.9  Support Vector Machines (SVMs)
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Support Vector Machines (SVMs) are a class of learning machines that aim to
distinguish between two classes of data based on different values of common
features. For example, given ion and enzyme levels in samples of human
blood, an SVM could conceivably distinguish between diseased and non-
diseased patients. SVMs aim to maximise a particular mathematical function
with respect to a given data set and have been used extensively in
bioinformatics over recent years in protein-fold recognition (Rangwala and
Karypis, 2005; Rangwala and Karypis, 2006; Miller et al., 1996), structural
class prediction, secondary structure prediction and subcellular localisation.
SVMs are underpinned by statistical learming theory, which provides a
theoretical framework from which to fit a function to separate two classes of
data by placing a division (or hyperplane) between them (Vladimir
N.Vapnik, 1995).

1.9.1 Calculating a separating hyperplane

To construct a classifying function to separate two classes of data, the SVM
calculates a hyperplane. Figure 1.9a shows an example where, with respect to
two variables, the two classes can be fairly easily delineated. However, there
are obviously many different hyperplanes that could separate these data. A
statistical learning theorem shows that the most probable hyperplane
classifier between two classes of data is the one that adopts the maximal
distance (soft margin) from the nearest data points, i.e. in the middle of the
two sets. Clearly, real data sets rarely separate this cleanly and for the SVM
to come to a solution, it has to be able to deal with imperfect solutions. This is
achieved by introducing a user-defined parameter (C, or soft margin), which
essentially determines how many of data points are allowed to be
misclassified when training the SVM without affecting the chosen
hyperplane.
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1.9.2 Choosing a SVM kernel
Some data sets can be easily separated by a linear hyperplane, whereas in
other cases such a solution is not possible. However, SVMs can be extended
to use more complex kernels. Figure 1.9b shows two classes described by two
features, one of which does not vary. However, by squaring the variable
feature (effectively placing the solution in higher dimensions), it is possible
to separate the classes using a linear hyperplane. This approach is referred to
as the ‘kernel trick’. Figure 1.9d shows a more realistic example where the
data points have been transformed into 4 dimensions by the kernel function,

producing a non-linear solution in 2 dimensions.
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Figure 1.9 a) Separating two classes of data using a linear hyperplane. The
soft margin (C parameter) is shown by the dotted lines, b) Two classes of
data that cannot be separated in two dimensions using a line, c¢) By
squaring the x feature in b) using the 'kernel trick', a linear solution can be
found, d) A line separating two classes of data, which is linear in 4

dimensions, but not in 2.
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1.9.3 Training and evaluating SVMs

As with any method that optimises a set of parameters on a given training
data set, it is important to assess the classification performance of the
algorithm on an unseen data set to prevent the algorithm from achieving
artificially impressive results by over-fitting the training set. Two common
approaches are k-fold cross-validation and leave-one-out cross validation. In
the former, the data set is split into k different sets and one is removed before
training the SVM but used to test the classification performance. This is done
successively for each of the k sets and the performance is averaged over all.
Leave-one out cross-validation is a more thorough version of k-fold, where
all but one of the data points is using the train the SVM and the resulting
model is used to classify the remaining example. The overall performance is

measure by summing these classifications.

1.10 Aims of the Thesis

The principle aim of this thesis is to develop automatic methods for detecting
fold similarities, homologous relationships and functional similarity between
proteins in the PDB for classification of protein domains into the CATH

database.

1.10.1  Chapter2
In contrast to SCOP, the CATH database has always utilised structure

comparison methods to aid in the classification of novel structures. However,
assigning domain boundaries to multi-domain chains is still one of major
bottlenecks in the curation process. However, upto 90% of new structures
contain previously observed folds. Chapter 2 details the development of
CATHEDRAL: a new algorithm to automatically assign domain folds and
boundaries. It compares a query multi-domain protein chain against a library
of previously-classified folds in CATH by modifying and combining features
from the GRATH and SSAP algorithms.
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Around 50 structural comparison algorithms have been published in the
literature over the last 30 years, the vast majority of which are not in regular
use by the bioinformatics or structural biology community. Those which
have gained popularity tend to have a web-based interface for users to
submit their own structures or structures from the PDB. CATHEDRAL was
designed to be implemented as a crucial stage in the CATH classification

protocol and to be made available to the scientific community.

1.10.2  Chapter 3

Chapter 3 concerns another new algorithm, FLORA, which exploits multiple
structure alignments of functionally similar domains to discover structural

motifs, which can then be used to assign function to new domains.

The central goal of this work was to exploit sequence and structural data to
detect conserved patterns in protein families that recur in enzymes with
similar catalytic mechanisms, as defined by their E.C. number. A novel
algorithm, FLORA, was developed to analyse multiple structural alignments
of domains in these families and discover a conserved motif. Patterns of
sequence conservation and residue accessibility were combined with
structural conservation data to identify these motifs, which were then
encoded into templates and compared against new structures using a graph
matching program, FLORAScan. The primary focus of the method was to
discriminate between domains with different functions, yet a common
evolutionary origin (i.e. from the same CATH superfamily) in a more

effective way than global structure comparison.

1.10.3  Chapter 4

Chapter 4 takes structure comparison methods a step further through
combination with SVM technology to predict the fold of ab initio models. The
aim of the work presented here was to further the efforts of De La Cruz et al.
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(2002) and Simons et al. (Simons et al, 2001) in utilising structural
comparison methods to compare ab initio predictions (models) for a given
target sequence to a library of known domains in CATH in order to assign it
to a fold group. Once a fold prediction is made, the structural alignment
between a model and library structure can be combined with homology
modelling methods to further refine the structure prediction.
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Chapter2 CATHEDRAL:
Detecting homologues and

assigning domain boundaries

21  Background and Aims

Over 7000 new proteins structures were deposited in the Protein Data Bank
(PDB) (Berman et al., 2000) in 2005, many of which contain multiple
polypeptide chains. Furthermore, as observed in structural classification
databases, a significant fraction of protein chains comprise two or more
domains (known as multi-domain structures). Indeed, nearly 50% of
polypeptide chains classified in version 2.6 (May 2005) of the CATH database
(Orengo et al., 1997) are multi-domain and the proportion of this type of
structure in the PDB in likely to increase with improvements in techniques
for experimental structure determination. Figure 2.1 shows that the majority
of multi-domain chains in v2.6 of CATH comprise two domains, although
some larger structures have been solved with 3, 4 and even over 5 domains.
Moreover, recent analyses of completed genomes have suggested that the
proportion of multi-domain structures in some organisms, particularly

eukaryotes, may be as high as 80% (Apic et al., 2001).

To classify such structures into the CATH domain database, it is necessary to
delineate their domain boundaries and subsequently assign each component
domain to a homologous superfamily, with both processes requiring
significant manual intervention. However, the majority of newly solved
structures contain previously observed domain folds and accordingly it is
feasible to exploit structural comparison methods to recognise these folds in
their multi-domain context. Even a recent analysis of domains solved by the

Structural Genonomics Initiatives (SGIs) (Todd et al., 2005) — which aim to
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target novel folds — showed that approximately 90% adopt structures
similar to those already observed in the PDB.
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Figure 2.1 Percentage of multi-domain chains with a given number of

component domains.

Proteins are comprised of individual folding units known as domains. In
general, each domain takes the form of a specific topology and it is estimated
that there are up to several thousand such folds in nature (Chothia, 1992;
Orengo et al., 1994; Grant et al., 2004). Domains are thought to be important
evolutionarily conserved units, and structural classification databases, such
as SCOP (Murzin et al., 1995) and CATH (Orengo et al., 1997), aim to classify
their structures into fold groups and superfamilies. Although members of
domain superfamilies can exhibit sequence similarity of < 30%, relatives
generally maintain comparable topologies in the core of their structures

(Orengo et al., 1997; Reeves et al., 2006).

Various structural methods have been developed to detect domain
boundaries through a priori knowledge of domain structure, folding and
interactions. The method of Taylor (1999) uses a technique similar to an
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Isling model in which the structural elements of the model changes state
according to a function of the state of their neighbours. Each residue in the
protein chain is assigned a numerical label and if a residue is surrounded by
neighbours that possess (on average) a higher label, its label increases. The
DOMAK algorithm of Siddiqui and Barton (1995) assumes that a domain
makes more internal contacts (intra-domain) than external contacts (contact
with residues in the remainder of the structure). A “split value” is calculated
from the number of contacts measured when a protein is divided into two
parts at different points, which is highest when the two parts of the split
structure are distinct domains. By contrast, the DETECTIVE algorithm
(Swindells, 1995) aims to determine the hydrophobic core in each domain
unit. The Parser for protein Unfolding Units (PUU) algorithm by Holm and
Sander (1994) uses a harmonic model to describe inter-domain dynamics and
this is then used to define domains for the FSSP database (Holm and Sander,
1998).

The original CATH classification protocol, (Jones et al., 1998), attempted to
use a consensus of the results from the three independent methods: PUU,
DOMAK, DETECTIVE. However, although many of these individual
methods reported between 70-80% accuracy in benchmarking tests, this does
not seem to have been born out on a practical level when updating CATH
and manual validation becomes the only secure way to resolve conflicting
predictions. An additional complication is that approximately 30% of
domains are discontiguous in sequence — i.e. the structure of the individual
domains is formed from disconnected regions of the polypeptide chain —and
assigning these types of domains remains a problem for most automated

methods (Jones et al., 1998).

~ Another problem with ab initio domain prediction is that it provides no
indication of whether each domain is similar to other folds in CATH. Hence,
even after manually validating the domain boundaries, it is still necessary to

compare each domain against a database of known structures if one is to
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classify the fold. As has been suggested, there are a limited number of folds
in nature and newly solved multi-domain structures are likely to contain at
least one previously observed fold. Therefore, exploiting the concept of
domain recurrence appears a sensible strategy to classify the majority of new
polypeptide chains. The idea of automatically detecting recurring domains is
not new and has been successfully exploited by the DALI Domain Database
(Holm and Sander, 1998), which uses a combination of structural comparison

and automated domain detection to classify new structures.

Several powerful structural comparison algorithms exists — GRATH
(Harrison et al., 2003), SSAP (Taylor and Orengo, 1989), CE (Shindyalov and
Bourne, 1998a), DALI(Holm and Sander, 1993), SSM (Krissinel and Henrick,
2004), STRUCTAL (Kolodny et al., 2005) and VAST (Madej et al., 1995) —
each of which have been reviewed in more detail in Section 1 of this Thesis.
The performance of any alignment method should be measured on its ability
to generate biologically-meaningful alignments and its capacity to accurately
detect similar folds and structural homologues by means of a robust scoring
scheme. As a recent analysis by Kolodny and co-workers (2005) highlighted,
the accuracy of the latter feature is vital when comparing novel structures
with a database such as CATH. They found that the RMSD of a given
alignment, normalised by the number of aligned residues (termed the SAS
score), was the best score for discriminating domains with genuine fold
similarities. However, the original RMSD is still dependent on the number of
equivalent residues in the alignment — although the SAS score provides a
more uniform measure across proteins of different sizes, it may still score
small motif matches disproportionately highly. Hence, a good SAS score
does not necessarily indicate that a globally optimal alignment with the
maximum number of equivalent residues has been found. For the purpose of
assigning accurate domain boundaries from structural comparison, it is
particularly important to align as many residues as possible, as this
alignment will be used to allocate the domain region. Simply superposing
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the conserved core of two domains with the same fold will often leave the

equivalences in the rest of the structure to guesswork.

This chapter concerns the development of the CATHEDRAL algorithm, a
novel domain identifier that exploits the fold-recurrence philosophy.
CATHEDRAL is an acronym for CATH’s Existing-Domain Recognition
AlLgorithm. It compares a query multi-domain protein chain against a library
of previously-classified folds in CATH by modifying and combining features
from the GRATH and SSAP algorithms.

SSAP is a residue-based method that uses double dynamic programming to
produce accurate alignments, even for distant structural relatives. However,
it attempts to solve a highly computationally intensive problem and is slow
for large-scale analysis and protein structure database scanning. Conversely,
GRATH is extremely fast and seeks the largest common “clique’ of equivalent
secondary structures between two structures. It is able to identify equivalent
folds with high sensitivity and selectivity, but unlike SSAP does not provide
a detailed or globally optimised alignment.

To improve the speed yet maintain the fidelity of detecting domains with
similar folds, this work explores using GRATH as a filter for pre-selecting
similar structures in the CATH database, which can then be aligned more
accurately with SSAP. Initially, this was optimised by comparing domains
which had already been classified in CATH. By using GRATH to pre-filter
pﬁtative structural relatives before generating more accurate SSAP
alignments, a 100 fold increase in speed is achieved, depending on the size of
the query structure, at no cost to the quality of the domain alignments. This
approach was shown to perform well against several other publicly available

structure comparison methods at the domain level.

Assigning individual domains to multi-domain chains poses a more

challenging problem for structural comparison, not least because in some
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cases the definition of a ‘domain region” can be highly subjective. Scanning
newly solved chains against the CATH library using GRATH often
effectively identifies constituent domain folds; however, it can also
erroneously match highly recurrent structural motifs that are present across
many areas of fold space. Several measures (e.g. SAS score, RMSD, number
of aligned residues, number of matched secondary structures) should be
taken into consideration when gauging whether a valid fold assignment can
be made to the query chain. When developing an algorithm, many workers
choose to experiment manually with different scoring schemes and then
optimise the parameters on their chosen test set. However, machine learning
methodologies, such as Support Vector Machines (SVMs), can also be used in
order to enable this optimisation to be performed automatically, rendering

the process easier and potentially more powerful.

Around 50 structural comparison algorithms have been published in the
literature over the last 30 years, the vast majority of which are not in regular
use by the bioinformatics or structural biology community. Those which
have gained popularity tend to have a web-based interface for users to
submit their own structures or structures from the PDB. CATHEDRAL has
been implemented as a crucial stage in the CATH classification protocol and
another aim of this chapter was to make these tools available to the scientific
community. Hence, a new webserver was created to allow users to make

their own domain assignments.

2.2 Methods
221 Overview of Methods

This section briefly details some of the more technical methods and
optimisations used in the development of the CATHEDRAL algorithm. The
main steps of the algorithm are outline in Section 2.3.2. SVM technology was
used to predict fold assignments and this optimisation is also included.



77
222 Data sets
2.2.2.1 Selecting domain library and CathScop data sets for benchmarking GRATH

and SSAP

Representative domains were taken from 6003 sequence families (SReps) in
CATH v2.6.0 to form a data set where potential evolutionary relationships
could not be identified reliably by sequence methods with all domains
sharing less than 35% sequence identity. These formed the domain library
with representatives from all 907 fold groups.

GRATH and SSAP were benchmarked against four other structural
comparison methods: STRUCTAL, DALI, LSOMAN and CE. An all-against-
all structural comparison was performed between all domains in the domain
library, for each of the different structural comparison methods, giving over
18 million individual comparisons. To minimise any bias towards CATH
classifications, a second data set that was subset of CATH v2.6.0 and SCOP
v1.65 was constructed. Each of 6003 CATH (SRep) domains was checked to
see if it had an equivalent SCOP domain with at least 80% residue overlap
and was in the samé SCOP family sharing 80% of the members. This created
the CathScop data set with 1779 SReps encompassing 406 folds.

2.2.2.2 Selecting a dataset of proteins chains for optimising CATHEDRAL

A set of 1071 non-redundant (at 35% sequence identity) representatives
(SReps) from multi-domain sequence families were selected. From this set,
those chains containing domains from folds with less than 2 SReps were
removed. The remaining set contained 680 chains with 1593 constituent

domains.

223 Benchmarking SSAP against other publicly available

structure comparison methods
There are several publicly available methods that have been endorsed by

widespread community use and/or validation by comparative
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benchmarking against established methods. The programs selected here
were based on those previously benchmarked by Kolodny and co-workers
(2005) for performance in fold recognition and alignment accuracy. These
were: CE, LSQMAN, DALI and STRUCTAL.

Structure alignment methods were compared using Receiver-Operator
Curves (ROC). These plot true positive rate (sensitivity) against the false
positive rate (1 - specificity) for different similarity scores returned by the
individual methods. A binary classifier was defined by the CATH hierarchy
whereby a positive match is one where both domains share the same fold or
superfamily classification whilst negative match does not. The matches for
each method were ordered by the structural similarity score of their
alignment, and the number of true positives and true positives calculated at
varying thresholds.

Kolodny and co-workers tested several measures for assessing the accuracy
of structural alignments. They found the most useful to be the SAS score (see
(Equation 2.1), which normalises Root Mean Squared Deviation (RMSD) by
the number of aligned residues and penalises alignments where less than 100

residues have been aligned.

rmsd

SAS =100x

Al (Equation 2.1 SAS score, nAl = aligned residues)

In addition to this geometric measure, alignment accuracy was also assessed
by comparison against a set of manually curated alignments. BAliBASE
(Thompson et al., 1999) is a database of manually-refined multiple structure
alignments specifically designed for the evaluation and comparison of
multiple sequence alignment programs. The alignments in BALBASE are
selected from the FSSP (Holm and Sander, 1997) or HOMSTRAD (Mizuguchi
et al., 1998) structural databases, or from manually constructed structural
alignments taken from the literature. Functional sites are identified using the



79
PDBsum database (Laskowski et al., 1997) and the alignments are manually
verified and adjusted, in order to ensure that conserved residues and

secondary structure elements are well aligned.

Fourteen BaliBase multiple alignments were selected comprising 108
pairwise structural comparisons. All the alignments represented single
protein domain chains that shared less than 25% sequence identity, making
alignment non-trivial. All protein classes were represented and the quality of
the alignments generated by the different structure comparison methods was
measured by the score, fm, which is the number of amino acids correctly
aligned in the structural alignment divided by the total number of aligned
residues in the BaliBase alignment. CE was not appropriate for this analysis
as the alignments it outputs only show the largest continuous motif.

2.24 Guiding residue alignments using SSAP

Although secondary structure matching using GRATH is both fast and
effective at finding fold similarities, it tends only to identify highly conserved
regions of secondary structure. A large amount of structural variation
around this common core is observed across some superfamilies (Reeves et
al., 2006), even more so within a fold group. Conversely, the SSAP algorithm
has been optimised to find as many equivalent residues and hence the

optimal global alignment between two domains.

The first step in SSAP is to find putative equivalent pairs of residues, by
selécting those that share comparable torsional angles and solvent
accesbility. Each pair is then aligned using dynamic programming to
compare their residue environments. For two large domains, the numbers of
putative residues pairs can run into several hundred, each of which must be
subjected to the same computational expensive algorithm. The paths from
these matrices are added to a summary matrix, provided their total score
exceeds a threshold. The top 20 highest scoring residue pairs are then

compared again using dynamic programming. The summary matrix is then
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reset and these 20 paths are added. From this, the final alignment is
calculated using dynamic programming. Previous versions of SSAP have
sought to increase the speed of the process by performing an initial
secondary structure alignment (Orengo et al., 1992). It was proposed that the
conserved clique identified by GRATH alignment could similarly be used to
reduce the search space in SSAP in this way.

When a clique of secondary structures is matched, it aligns equivalent
secondary structures in a pair of domains. This was used to guide a more
comprehensive residue-level alignment, by modifying SSAP to use the clique
to guide the initial selection of residue pairs. This is achieved by populating
a binary matrix, which dictates which residue pairs are selected, based on the

equivalent secondary structures identified by GRATH.

In the first step, residues in equivalent secondary structures are simply
paired with one another. As equivalent strands and helices can vary in length
(e.g. a helix with 11 residues could be aligned to one with 8), it must be an
All-vs-All pairing (represented by a square of ‘1’ values in the matrix).
Similarly, residues on the end of aligned secondary structures could
potentially be paired with residues in the loop regions, so the boundary is

extended by 10 residues on either side.

Secondly, although the alignment for residues outside the clique is unknown,
it is possible to exclude certain pairings. The clique effectively orientates the
alignment and dictates that if helix 1 in protein A is equivalent to helix 2 in
protein B, it cannot simultaneously be equivalent to helix 3 in protein B.
Moreover, it sets the overall direction of the alignment and allows the

regions between the clique secondary structures to be linked together.

Finally, the alignment of the beginning and end of the domains, outside
embellishments to the core secondary structures in the clique is unspecified.

However, it is known that these cannot be aligned to any of the core residue
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pairs. Hence, the starts and ends of the domains are paired up for SSAP to

decide where the equivalences lie.

As is standard in the SSAP algorithm, the torsional angles and accessibility of
the potentially equivalent residue pairs are still assessed to determine which
to select in the first phase of dynamic programming, which helps to reduce
the search space further.

2.25 Training an SVM to recognise domain folds in multi-
domain chains

Both GRATH and SSAP SAS scores give a good measure of the structural
similarity of two domains (see Section 2.3.1). Nevertheless, their ability to
discriminate between genuine fold similarities and simply matching smaller
structural motifs also relies on accounting for the alignment overlap in
relation to the largest domain. Indeed, recognising domain folds within a
multi-domain context poses a more difficult problem if the domain
boundaries are unknown, as it is not possible to accurately determine the
overlap with the largest domain. In this case, all factors (such as the number
of aligned residues, domain size and structural similarity) should be
considered. In order to develop a robust scoring scheme for CATHEDRAL,
an SVM was used to combine a series of scores from GRATH and SSAP and
other indicators of alignment quality for the data set of protein chains
described in Section 2.2.2.2. The primary aim was to generate a combined
score that could be easily calculated to rank potential folds matches to a
query chain.

The SVMLight package (Joachims 1999) was used in this instance to train a
classifier. It provides a choice of 4 kernels: linear, polynomial, radial-basis
function (RBF) and sigmoid. In addition, the user can define a tailored
knowledge-based kernel. Initial investigations showed that the RBF kernel

did not perform any better than using a linear kernel. Therefore, since the
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SVMLight outputs linear weightings for each of the inputs in the latter case,
and this could be directly implemented in the source code of CATHEDRAL,

the linear kernel was chosen.

2.2.5.1 Creating a dataset as input to the SVM

Machine learning with neural networks or SVMs is usually undertaken using
a training set where there are equal numbers of positive and negative
examples. Unbalanced sets can bias the optimisation function to predict the
majority class exclusively. However, SVMLight allows to user to modify the
relative weighting of positive and negative inputs when training the kernel
(using the —j parameter). This feature lends itself to CATHEDRAL as the
negative examples in a database scan can outweigh the genuine matches by
as much as 4 times. It also allows the SVM to train on all available examples,
which is not the case when artificially balancing the data sets by randomly
sampling negative examples. Therefore, we used this feature to weight
genuine hits according to the ratio by which they were overrepresented by

unrelated domains.

In order to ensure fair testing in machine learning applications, it is vital to
assess the performance of the model on a separate dataset to the one on
which it has been trained. An extension of this is five-fold cross-validation,
which was used here. In this procedure, the dataset is split into 5 sets and
each one is successively taken as the test set, while the model is trained on
the other 4 sets. The performance is then calculated as an average over the 5
test sets. This guarantees that evaluation of the classifier is not biased by the

any random fluctuations in the composition of the training or test sets.

2.2.5.2 Feature selection
As inputs to the SVM, measures of structural similarity and other alignment
features from GRATH and SSAP were calculated. The features used are

listed below:
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GRATH score

GRATH clique size

SSAP score

Residue overlap (as calculated by SSAP)

RMSD

Number of aligned residues (as calculated by SSAP)
SAS score from SSAP alignment

N o O B W b=

To improve the performance and speed of the classifier, all features were

normalised between values 0 and 1.

2.2.5.3 Optimising and assessing the performance of the SVM

The performance of machine learning methods can be measured in several
ways: Error rate, percentage of correct assignments, Matthews Correlation
Coefficient, ROC curve analysis. The latter is simply a plot of the true
positive versus false positive rates over a range of score cut-offs. It is a useful
measure of a score’s ability to discriminate between correct and incorrect
classifications. In this work, it was used to evaluate different scoring

mechanisms for domain assignment.

When using a linear SVM, it is still advantageous to optimise the penalty
variable, C. This determines how much each wrongly classified example is
penalised when evaluating different hyperplanes. Depending on how the
SVM is going to be used and the size of the data set, different values of C can
result in classifiers with better or worse performance. In this instance, C was
optimised by exploring a range of values and assessing performance based
on the average area under a ROC curve. The results in Figure 2.2 show that a
value of C of 10 or above gives the optimum performance. However, the
overall increase is very small (< 0.02) and hence varying the C parameter has

little effect (< 0.12 increase in ROC Area) on the dataset.
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Figure 2.2 Optimisation of SVMLight cost parameter on chain
CATHEDRAL dataset

2.3  Algorithm Development and Results

The ultimate aim of this work was to assign domains to multi-domain chains
using the GRATH and SSAP structural comparison algorithms, using the
CATHEDRAL algorithm. However, to ensure that the resultant method was
going to be accurate, it was desirable to first benchmark the performance of
these two component approaches for recognising structural similarity at the

single domain level.

231 Assessing performance of GRATH and SSAP

GRATH and SSAP were compared to assess their ability to correctly identify
fold and superfamily relatives from a data set of domains from CATH
(CathScop data set, see Section 2.2.2.1). GRATH is several orders of
magnitude faster than SSAP, however, it is limited by solely comparing
secondary structure elements and the scoring scheme is based on the number
of shared equivalent secondary structures. Although this can be effective at
detecting the conserved core, it does not give a measure of the overall

similarity between two domains. Conversely, SSAP calculates a SAS score (
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(Equation 2.1) based on the RMSD of a residue superpostion, which gives a

more accurate quantification of protein fold similarity.

2.3.1.1 Ranking fold matches with GRATH and SSAP database scans

The coverage and accuracy of GRATH and SSAP was assessed by scanning
the dataset against a library of CATH domains and the results ranked by
GRATH E-value, SSAP SAS score. The rank of the first appearance of the
correct fold was noted and a frequency distribution calculated. It can be seen
that SSAP finds the correct fold as the top hit over 94% of the time compared
to nearly 84% for the GRATH E-value. Nevertheless, the correct fold is
within the top 10 hits nearly 94% of the time for GRATH. SSAP appears to be
a superior discriminator of fold similarities, yet the performance of GRATH

is impressive given its superior speed and the simplicity of its approach.

2.3.1.2 Ranking superfamily matches with GRATH and SSAP database scans

For ranking homologous superfamily matches, SSAP maintains the same
high performance with the correct hit at the top of the list 94% of the time
(Table 2.1). However, GRATH drops to 76% as it unable to distinguish
between homology and fold similarity. Interestingly, SSAP is better at
discriminating superfamily matches than fold matches. This could be due to
the fact that the correct hits are closer structural matches to the search
domain. Moreover, fold groups are a more arbitrary grouping within CATH
and different levels of structural variability are tolerated in different areas of

fold space.



86

FOLD SUPERFAMILY
Rank | GRATH | SSAP | GRATH | SSAP
E-value | SAS | E-value | SAS
1 83.8 94.6 76.2 93.7
2 42 15 5.8 19
3 1.6 0.5 29 0.7
4 13 0.3 21 0.4
5 0.6 0.3 1.0 0.3
6 0.3 0.2 0.6 0.1
7 0.5 0.1 1.1 0.1
8 0.5 02 0.6 03
9 0.3 01 0.5 0.1
10 0.3 0.1 04 02
>10 6.6 21 8.9 22

Table 2.1 A dataset of domains was scanned against the CATH library using
GRATH and SSAP and the ranked by GRATH and SSAP scores respectively. The

percentage of domains with the correct fold or superfamily at each ranking is
tabulated.

2.3.1.3 ROC analysis

To further compare the ability of GRATH and SSAP to discriminate between
different folds and superfamilies, Receiver-Operator Curves (ROC) were
plotted for each method, Figure 2.3. These help to assess the ability of a score
to differentiate between two classes, in this case (same fold /superfamily). A
perfect ROC curve would form a mirror image of the x and y axes, with a
true positive rate of 1 with 0 false positives. A random predictor would result
in a linear graph of unit gradient, with true positive and false positives rates
of 0.5. Integrating the area under the curve gives a measure of the overall

performance of the score.

For fold prediction (Figure 2.3a), SSAP and GRATH perform fairly similarly,
with SSAP performing slightly better. The area under the SSAP and GRATH
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E-value curves are 0.91, 0.88 respectively, indicating that both methods
perform well. Again, the main reason for the methods’ lower than optimal
performance is probably the inconsistency of fold clustering. It has been
suggested that fold space is in fact a continuum (Harrison et al., 2002);
however, CATH and SCOP show a generally good correlation which
suggests there is at least a common consensus for many areas of fold space

(Hadley and Jones, 1999).

For predicting homologous relationships (Figure 2.3b), SSAP performs very
well, significantly better than GRATH. The area under the SSAP and GRATH
curves are 0.97, 0.90 respectively. Nevertheless, both methods appear to be
better at identifying genuine homologues than fold matches. This again may
be due to the aforementioned fact that folds are less well defined than
superfamilies. However, it could also be that homologues are generally more
structurally similar and the more distant fold matches are harder to assess by

a simple geometric score.
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Figure 2.3 ROC curve analysis of GRATH and SSAP scores for a) fold

assignment, b) superfamily assignment.

2.3.1.4 Comparing SSAP to other publicly available methods

SSAP was also compared against the performance of several other publicly

available methods (DALI, STRUCTAL, LSQMAN, CE) using the alternate



89
CathScop data set (see Section 2.2.2.1). GRATH was not benchmarked as it
only provides secondary structure equivalences and not an overall
alignment. This part of the analysis was carried out in collaboration with Tim

Dallman.
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Figure 2.4 ROC curve analysis of different structure comparison methods

for domains at the CATH fold level.

It can be seen from Figure 2.4 that SSAP returns the highest proportion (53%)
of true positives for a 1% (0.0l on the graph) error rate, followed by DALI
and STRUCTAL. However, DALI has 4% better coverage at a 5% error rate.
This is not entirely unexpected as DALI is well-established and popular with
experimentalists, presumably because its performance is consistently high.
LSQMAN and CE do not perform as well as the other methods, which may
be because they tend to score only residues that superpose well. This might
suggest that maximising alignment length and calculating global similarity is

most informative for detecting fold/superfamily relationships.

As well as the ability of the SAS score to discriminate between true and false

fold matches, for the purpose of developing a domain boundary recognition
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algorithm it is important to identify the closest relative within a fold group in
order to obtain the best alignment. Therefore, the correct fold should rank
highly in the list of matches. It can be seen from Figure 2.5 that SSAP assigns
the correct fold as its top hit over 96% of the time. When the percentage of
correct fold matches with the top ten matches are considered, it can be seen
that the SSAP performance rises to 98%, with STRUCTAL also performing
well. Again, LSQMAN and CE do not perform as well, which may be
because they are inclined to only calculate similarity between the conserved

protein core.

¢ SSAP * CE x LSQMAN « DALI + STRUCTAL

0.86 S VS O TR PSS TSN P S | JE— 1 JE— 1 - 1 1 [ ES——

1 2 3 4 5 6 7 8 9 1011 1213 1415 16 17 18 19 20
Rank
Figure 2.5 Plot of percentage of correct folds matched against the ranked

native score for the CATH-SCOP data set.

23.1.5 Comparison to manually-curated alignments

The only true way to assess automatic structure alignments is to compare
them to a manually validated dataset. We therefore compared all methods
(excluding CE, see Section 2.2.3) against curated alignments in the BAIIBASE.
Figure 2.6 shows that DALI and SSAP produce alignments closer to the
BaliBase alignments with nearly 60% of DALI and SSAP alignments having
at least 50% residues correctly aligned, compared to 45% for LSQMAN and
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40% for STRUCTAL. For LSQMAN, this is most likely due to the fact that it
restricts its alignments to the 100 most conserved positions. However, it is
interesting to note that although STRUCTAL does not align as many residues
as SSAP and DALL, it still performs well in discriminating similarities at the
fold level.

— SSAP -»-DALI -ALSQMAN -"-STRUCTAL

100

wuas

s A

0 10 20 30 40 50 60 70 80 90 100
% of correctly aligned residues
Figure 2.6 Percentage of alignments with a range of percentage correctly

aligned residues.

2.3.2 Assigning domains to  multi-domain  chains

(CATHEDRAL)
Assigning domain folds to multi-domain chains using structural comparison
methods can initially appear as straightforward as scanning the chain against
a domain library and allocating the highest ranking hit for each region.

However, there are number of important caveats to this solution.

GRATH is very good at identifying common secondary structure motifs in
two domains. These overlaps can often be large and indicative of a particular
fold (Harrison et ah, 2002). However, they may also represent motifs that are
observed in unrelated folds across the whole of the protein universe. A small

domain containing a beta-alpha-beta motif, for example, may match a region
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of the query chain which is in fact part of a much larger domain. This hit
would score highly if only the overlap to the small domain was considered.
Indeed, as well as hitting genuine relatives, folds such as the Rossmann will
match many such motifs in small domains (Figure 2.7). Clearly, when
scanning with a single domain, the largest match will still be at the top of the
list of hits; however, when scanning a multi-domain chain, motif matches can
score highly and outrank genuine fold matches. This is because it is not
possible to calculate the overlap between the clique as a percentage of the
largest domain, as the size of the domain region in the multi-domain chain is

unknown (Figure 2.7). This problem is compounded when dealing with

Query protein chain with 2 domains

I I

Small domain with
Overlapping inccorect fold

common motif

domains which are discontiguous in sequence.
Figure 2.7 The problem of matching common structural motifs in small domains
when scanning protein chains against the domain library, which leads to false

domain boundaries despite a high local structural similarity.

The solution proposed here was to develop an iterative algorithm
(CATHEDRAL), where domains are allocated in a stepwise fashion and the
remainder of the chain re-scanned against the library for each assignment.
This permits larger domains to be assigned first before comparing the
remainder of the chain to smaller domains. The algorithm is summarised in

Figure 2.8.



93

Scan chain against large domain
library using GRATH “

I

Compare N top hits within the top
10 folds using SSAP

I

Use SVM to re-rank hits based on
SSAP/GRATH

I

Excise best hit from chain

ES

If more than 5

secondary structures

remaining in chain

Scan against small domain library
using GRATH/SSAP

I

Finalise fold and domain

boundary assignments

Figure 2.8 Flow chart of CATHEDRAL algorithm for assigning folds and

domain boundaries to protein chains.
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2.3.2.1 Scanning a chain against a library of domains using GRATH
The first step in the algorithm is to compare the query protein chain against
the CATH domain library of folds using GRATH. To lessen the impact of
motif matching to small domains, the library is split into domains with 5 or
more secondary structures (large library) and those domains with less than 5
(small library). All small domain assignments are made at the end of the
protocol. Chains are scanned against the large library and the hits ranked by
the GRATH E-value.

N representatives from each of the top 10 folds identified by GRATH are
taken forward for further analysis using SSAP. In Section 2.3.1.1, it was
shown that this should cover 94% of correct folds. The motivation for this
was to increase the chance of finding the closest structural match, which

should result in the best domain boundaries.

2.3.2.2 Compare top hits using SSAP

Although GRATH is effective at matching common secondary structures,
residue-based methods, such as SSAP, produce alignment scores that better
represent the similarity between the two domain regions. The top 10 fold
representatives from GRATH were therefore subjected to a SSAP alignment,
guided by the secondary structure clique as described in Section 2.2.4. The
scoring scheme used in SSAP for domain-vs-domain alignments involves
normalisation over the size of the largest protein. When aligning a chain
against a domain, the length of the putative domain region in the chain is
unknown. Hence, it was decided to take the length of the region of the chain
that had been assigned to the matched domain as a substitute of the largest

domain size.

2.3.2.3 Excising the top hit and re-scanning
The hits are then re-ranked by an SVM (see Section 2.2.5) score and the top
hit is excised from the chain. The assigned regions are determined by the

SSAP alignment, which provides a list of residues in the chain which are to
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be excluded for future searches of the library. A new secondary structure
graph for the chain is created, where any secondary structures within the
assigned region are excluded. If the chain contains more than 3 secondary

structures it is then re-scanned against the library using GRATH.

Potentially valid fold representatives are selected as before and passed to
SSAP. After the first iteration, SSAP was modified to exclude any residues
assigned to the previous domain. The reasons for this are two-fold. Firstly,
and most importantly, it avoids SSAP attempting to align residues that have
already been assigned. Although the SSAP score penalises gaps as it assesses
potential alignments, it also looks for the best global alignment along the
length of the whole chain. Excluding these residues therefore increases the
chance that SSAP will find the best alignment to the hit domain. This is
especially pertinent when aligning discontiguous domains, as the gaps
between segments are not penalised. Secondly, SSAP can be very slow to
align large chains, so excising previously assigned regions can reduce the
search space and hence enhance the speed. CATHEDRAL continues for up to
10 iterations or until there are less than 5 secondary structures left to be

assigned.

2.3.2.4 Scanning the small library and collating results

After cycling through the iterative scans against the large library of domains,
the remaining stretches of the protein chain are compared against the small
library. The top 10 folds are selected as before for SSAP alignment. The
results of all the GRATH and SSAP comparisons so far are then collated and
written out as a list of hits, ranked by their SVM score.

2.3.2.5 Analysis of SVM score

The CATHEDRAL algorithm was used to generate a list of potential domain
matches to all chains in the dataset. The parameters described in Section 2.2.5
were used to train the SVM and it was optimised using five-fold cross-

validation. A ROC curve analysis was used to assess the performance of
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different scoring schemes (Grath E-value, SAS, RMSD) at low error rates, as
this would be crucial in determining the correct fold match for each domain
in the chain. As can be seen in Figure 2.9, the SVM score outperforms all
other measures of structural similarity, with RMSD performing the worst. At
a false positive rate of 0.02, the SVM has coverage of 0.70 compared to less
than 0.60 for the SAS score. Interestingly, the GRATH E-value curve has a
greater area than the SAS and RMSD, despite only looking at secondary
structure similarities. Overall, these data appear to confirm the hypothesis
that combining alignment scoring features in the SVM is more effective at

separating true and false fold matches.

— GRATH E-value — SVM — SAS — RMSD
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Figure 2.9 Comparison of GRATH, SSAP and RMSD scores with the SVM

score for assigning domains to multi-domain chains.

2.3.2.6 Testing the algorithm

A non-redundant set of multidomain chains (see Section 22.2.2) were
scanned against the domain database using the CATHEDRAL algorithm to
assign domains. Any matches to domains with >35% sequence identity were
discarded as Trivial hits' that could be picked up by sequence methods (such
as BLAST or HMMs), so assignments were only made for distant relatives.

These may be genuine homologues or domains with similar folds.
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2.3.2.7 Assigning folds and domain boundaries

Although folds are assigned to the chain during the iterative scanning
algorithm, the final domain assignment is reserved until all the results have
been collated. This is for two reasons. Firstly, although the top hits for each
cycle were selected previously, they are not necessarily valid matches.
CATHEDRAL does not use any empirical cut-offs in the first structure
comparison stage, so there may simply be no valid fold match in the CATH
library to a domain region. Secondly, the assignment of small domains (less
than 5 secondary structures) is still required, in addition to domains with less
than 3 secondary structures which cannot be identified by GRATH. The SVM

score was used in all subsequent benchmarking studies.

In this post-processing stage, CATHEDRAL ranks all the domain hits that
have been collated over the iterative process described above and assigns
each region of the chain in turn. After the first domain has been annotated,
the algorithm looks for hits to other regions of the chain. The process
continues until no more domains can be assigned, i.e. all subsequent matches

overlapped with assigned parts of the chain.
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Figure 2.10 Percentage of domain assigned (blue) and percentage of
domain boundaries within 10 residues of verified boundaries (pink) at a

range of SVM score cutoffs.

Figure 2.10 shows that CATHEDRAL was able to assign 90% of domains in
the query data set to the correct fold group, with 86% of these within 15
residues of the actual boundary. Although the data set only contained multi-
domain chains where all component domains were represented in the CATH
library, this is not always the case in classifying novel structures. Indeed,
assigning erroneous folds to chains could adversely affect the quality of the
domain boundaries. However, no improvement in domain boundary
assignment performance could be achieved by increasing the SVM score cut-
off above 1.5, suggesting that this is an appropriate threshold to use in

CATHEDRAL.

2.3.2.8 Optimising number offold representatives aligned in each iteration

The major speed increase in CATHEDRAL is due to the fact that GRATH
pre-selects representatives for SSAP to align to the query chain. By default, it
takes all relatives (SReps) in each fold group, even if this produces thousands

of comparisons, as it does with large folds such as the Rossmann. This can
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result in much longer running times for some query chains. Nevertheless, it
was important to find the closest structural relatives for each assignment, to

reduce the number of unassigned regions and therefore increase the accuracy

of the domain boundary.

It was hypothesised that perhaps only a limited number of relatives from
each fold could be taken, without comprising the fidelity of the domains
boundaries. However, given that GRATH does not accurately discriminate
between homologues and domains with the same fold, it was decided to
sample each superfamily in the target fold group and explore the effect of
varying the number of representatives from each superfamily. |

CATHEDRAL was run as described above (by targeting the top 10 fold
groups at each iteration) but the number of representatives (fr) taken from
each superfamily to be aligned by SSAP was varied. Figure 2.11 shows the
number of correctly assigned domain boundaries (within 15 residues of
manually validated boundary) at each of these levels. It appears that taking
any more than 7 reps does not increase the number of good assignments and

hence was an appropriate level to set the fr parameter.
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Figure 2.11 Percentage of domains with correct domain boundaries (within

15 residues) when varying the number of representatives taken from each

superfamily in the targeted fold groups.

2.3.2.9 Correcting domain boundaries

When CATHEDRAL determines which fold to assign to a region of the
protein chain, it is also making judgement of where the domain boundaries
lie. The fidelity of this latter process is arguably dependent on the structural
similarity between the domain region in the chain and the domain it has
matched in the library. A number of methods were employed to increase the

accuracy of the boundaries.

Firstly, domains were allowed to overlap by a maximum of 30% of their
length with other assigned domains. This conflict was resolved by assuming
that the highest scoring domain is most likely to have the correct boundaries.
The boundaries of the other domain were cropped to exclude the shared

region.

Secondly, some chains may contain small regions at the start and end that are

unassigned. This was often less than 20 residues and unlikely to contain
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another domain, or comprise an additional segment of a discontiguous
domain. In these instances, CATHEDRAL assigns the extra residues at the
beginning and end of the chain to the first and last domains respectively.
Similarly, some chains contained small regions between assigned segments
belonging to different domains. In these cases the algorithm, splits the
unassigned residues equally between the two neighbouring segments.

Dealing with discontiguous domains has been found to be problematic with
other domain boundary prediction algorithms (Jones et al., 1998). For
CATHEDRAL, one of the reasons for this is that even domains with the same
fold can vary considerably in size (Reeves et al., 2006). Therefore, it is difficult
to determine whether an insertion in the alignment between a given matched
domain to the query chain is genuine, or indicates that the gap is part of
another fold in the chain. The algorithm deals with this by re-examining the
chain for unassigned regions after all domains have been allocated. For a gap
of less than 40 residues, it looks to see whether other assigned domains have
residues that have aligned to residues in that gap and extends these to create
two discontiguous domains. If not, it assumes there is an insertion and

extends the size of the initial domain accordingly.

2.3.2.10 Domain assignment vs sequence identity

Figure 2.12 shows the relationship between the accuracy of the domain
boundary and the sequence identity between the assigned domain region
and best structural match used to assign the boundary. As sequence identity
inicreases above 10%, there is an increase in the number of correct domain
boundaries. It might be expected that the closer the relative from which the
assignment is made, the greater chance of it being correct. However, it is
encouraging to note that 60% of assignments with sequence identities
between 5% and 10% show very little deviation from the manually verified

boundaries.
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Figure 2.12 A plot of the percentage of correct (within 15 residues) domain
boundaries against the sequence identity between the assigned region and

the matched domain

2.3.3 The CATHEDRAL Server
The structural comparison and domain assignment methods in this chapter

were implemented as a server on the World Wide Web for access to the
bioinformatics and structural biology community. Users can upload their
own structures in PDB file format or use a PDB code to access the structures
files stored at University College London (UCL) on a mirror of the PDB
(Figure 2.13a). Once submitted, the PDB file is analysed and only peptide
chains are selected. The user can then choose which chains they wish to
submit for analysis (Figure 2.13b). Domain hits to each chain are displayed
gfaphically in the context of the query chain (Figure 2.13c).
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Figure 2.13 The CATHEDRAL server, a) Users can upload their own
structures or select those from the PDB. b) Peptide chains are extracted
from the PDB file and can be selected individually for analysis by
CATHEDRAL, c) The results are displayed as graphics.

24 Discussion

A protocol for domain boundary assignment in multi-domain proteins
(CATHEDRAL) was developed, which exploits the recurrence of folds in
different multidomain contexts. This was devised since a high proportion
(currently >90%) (Todd et al, 2005) of domains in newly determined

structures comprise folds which have been previously classified in CATH.
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CATHEDRAL scans a query structure against a library of folds from the
CATH databases. The algorithm first exploits graph theory to perform a
secondary structure-based comparison and identify putative domain fold
matches in the query structure. Representatives from the top 10 folds are
then re-compared against the putative domain region of the query protein to
obtain better alignment and refine the domain boundaries. This latter step
uses a double dynamic programming algorithm (SSAP) that has been guided
by information on equivalent secondary structures, identified by the graph
theory match.

CATHEDRAL combines the power of two established structural comparison
algorithms in order to develop a fast and accurate protocol for homologue
recognition and domain assignment. CATHEDRAL misses ~10% of the
domains in the target data set. Of these ~30% are too small and so are
ignored by the CATHEDRAL protocol, as GRATH cannot match domains
with less than three secondary structures. Manual inspection revealed that a
further ~20% are distorted or irregular structures giving poorly defined
graphs. The remaining ~50% are missed because they do not pass the score
similarity cut-off, as the relatives are too distant and related structural motifs
in neighbouring fold groups are better matched. This percentage should
reduce as new structures are solved and CATH becomes more highly

populated.

The CATH classification of protein folds gives a discrete description of fold
space (Orengo et al., 1997). However, there are difficulties in identifying
distinct folds in some populated regions of fold space where the structural
universe can more reasonably be represented as a continuum (Orengo et al.,
1994). In many cases, as the size of the protein increases, the repertoire of
folds appears to consist of extensions to existing motifs. It has been shown by
Koppensteiner et al. (2000) that it is possible to “walk” from one a/f
sandwich fold to another, through the extension of a/p motifs. Furthermore,

certain motifs, described as “attractors”, occur as the core of a protein’s
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structure more frequently than others (Holm and Sander, 1996). Recent
analyses of the overlaps between fold groups has shown that for some
protein architectures (ap sandwiches and mainly-f sandwiches) extensive
overlaps between fold groups are observed due to large common structural

motifs (Harrison et al., 2002).

For 86% of the multi-chain data set, all domain boundaries within the multi-
domain were correctly assigned within 15 residues of the true boundaries.
This is a considerable improvement over a previous consensus protocol
(DBS, (Jones et al., 1998)), described above, for which on average only 10-20%
of domains could be identified as having reliable boundary assignments
from agreement between 3 independent methods. Especially since domain
folds recognised by CATHEDRAL can be simultaneously classified in the
CATH database, without the need for further structure comparison as in
previous classiﬁcaﬁon protocols (Orengo et al., 1997). Furthermore, the data
set used excluded hits with > 35% sequence identity, which would be non-

trivial for a sequence-comparison method to identify.

Since CATH aims to maintain high quality domain boundary assignments
(Veretnik et al., 2004), results returned by the CATHEDRAL algorithm will be
manually assessed. However, the high accuracy of the approach will
considerably facilitate this process. Since the proportion of domain folds
classified within CATH is likely to increase significantly over the next
decade, due to the progress of the structural genomics initiatives, the
CATHEDRAL algorithm will considerably enhance the speed of
classification of new multi-domain structures and their constituent folds
within CATH.

2.5 Future Work

As discussed above, CATHEDRAL generally fails to assign domains

boundaries correctly when GRATH misses the correct fold in the list of hits
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passed to SSAP. Smaller alpha domains cause the most difficulty and work is
in progress to separate these into a library that can be compared purely using
SSAP. As these contain fewer residues, it should not increase the overall

runtime significantly.

Although a difference of 15 residues between the CATHEDRAL result and
manually validated boundaries for 86% of query chains is fairly small, it
could certainly be improved. The post-processing of CATHEDRAL results to
assign domain boundaries presented here is fairly basic. For example, gaps
between assigned domains are resolved simply by placing the domain
boundary in the centre of the gap. Although this may still be useful if the
data are to be subsequently adjusted manually, it does not lend itself to full
automation. Work is now in progress to implement a more sophisticated
decision algorithm that takes each residue in unassigned regions and
calculates its proximity in three-dimensions to assigned domain regions in
the chain. It also takes into account secondary structure e.g. preferring not to

place domain boundary within a beta sheet or alpha helix.

Another problem that arises is that of unassigned regions or fragments in the
CATH domain definitions file. Removing regions of coil at the termini of
protein structures and domain linker regions is often desirable before
assigning domain boundaries, as it produces neater definitions for sequence
profile comparisons. However, this can be confusing for CATHEDRAL, as it
aims to assign as much of the chain as possible. Currently, post-processing
techniques to detect domain linkers and disordered termini is being explored

by seeking sections of solvent accessible residues.
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Chapter3 FLORA: Using
structural data to build functional

templates

3.1 Background and Aims

One of the major goals of molecular biology is to understand the functions of
all genes in nature, both biochemically and in the context of the cell.
Bioinformatics techniques, such as sequence and structure comparison, can
aid the functional annotation of novel genes by finding homologous
relationships with experimentally characterised proteins. However, no
methods are currently able to achieve 100% accuracy, as the level of global
similarity required to transfer function varies considerably between protein
families. The inherent problem with relying on overall sequence or structural
homology is that even small mutations can inactivate a catalytic site or
change the binding partners of a protein; hence, modifying its function. To
further complicate matters, training a functional prediction algorithm relies
on the assumption that proteins with the “same function” can be grouped
together in the first place. Although this concept may be fairly straight-
forward when looking at related enzymes which perform equivalent
functions in two similar organisms (orthologues), it becomes more complex
when attempting to transfer function between more distant evolutionary
relatives where many aspects of their role in the cell might have been
modified. Therefore, any prediction method must seek to clearly define the
level(s) of functional similarity it is trying to detect (e.g. catalysing the same
chemical reaction). In order to enhance both the scope and fidelity of in silico
predictions, it is vital to develop a better understanding of the sequence-
structure-function paradigm and how it relates to different levels of

functional conservation.
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The success of large-scale genome sequencing projects has provided a flood
of genomic data; however, our knowledge of the three-dimensional structure
of the proteins they encode is far more limited. This is primarily due to the
substantial experimental overheads involved in crystallising proteins
compared to sequencing DNA. Hence, over the last six years the Structural
Genomics Initiatives (SGIs) (Todd et al.,, 2005) have sought to redress the
balance, by targeting protein families where little or no structural data was
present in the Protein Data bank (PDB) (Berman et al., 2000) — more
specifically, those families whose genes are more likely to adopt novel folds.
Advances in high-throughput robotic techniques then allow multiple
experimental parameters to be explored simultaneously, drastically reducing
the time taken to grow viable crystals. This approach is in sharp contrast to
that taken by crystallographers over the last 50 years, where structures were
determined to complement experimental data for well-characterised genes.
As a result, an increasing number of structures being deposited in the PDB
come with little or no functional annotation (frequently denoted as
‘hypothetical proteins’). This compounds the practical problems associated
with assigning new domains to superfamilies in the CATH database (Orengo
et al., 1997).

Pair-wise sequence comparison algorithms, such as BLAST, are still
commonly used to assign function by identifying close relatives which
perform the same biological function. However, several groups (Todd et al.,
2002a; Rost, 2002; Tian and Skolnick, 2003) have highlighted the need to
apply simple pair-wise identity cut-offs with caution. Where a close
homologue cannot not be found for a given query protein, sequence profile
methods (HMMs (Eddy, 1996), PSI-BLAST (Altschul et al., 1997)) can be used
to detect more distant evolutionary relationships and identifying proteins
that may perform the same function. The power behind these methods is due
to the ability of profiles to detect patterns of amino acid conservation that are

specific to a given protein family, rather than applying universal rules across
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the whole of sequence space. This permits the construction of resources, such
as Pfam (Bateman et a4l., 2004), where sequence domains are grouped
according to a common evolutionary source, which often correlates with
function. However, to maintain the accuracy of this approach requires
extensive manual adjustment of multiple alignments and HMM cut-off
values for an individual family, as it remains problematic to construct

universal rules about the sequence-function relationship.

As structure is more conserved across protein families than sequence
(Chothia and Lesk, 1986), structure comparison methods are able to detect far
more distant relationships than the most powerful profile methods.
However, even domains in the same superfamily can exhibit large amounts
of structural variation (Reeves et al., 2006). This may be due to different
protein or domain interactions, or requirements to attach to distinct cellular
environments, or might simply be due to random evolutionary drift.
Consequently, these structural deviations can mean that even an accurate
alignment of two structures can produce a global similarity score that falls
below reliable thresholds for transferring a specific function.

In a similar vein to the way PRINTS (Attwood et al., 2003) and PROSITE
(Hulo et al., 2006) focus on smaller conserved sequence patterns, there are
several approaches to identifying local structure motifs that are associated
with specific functions. For example, the Catalytic Site Atlas (Porter et al.,
2004) concentrates on building 3D motifs of residues that are directly
involved in ligand binding or the catalytic mechanism in an enzyme. As ab
initio prediction of functional residues is a complex problem in itself, the
Thornton group at the European Bioinformatic Institute (EBI) have focussed
on mining the primary literature to obtain the information on which to build
templates. Torrance et al. (2005) analysed the performance of this approach
for enzymes with more than 2 catalytic residues. They were able to
discriminate related proteins from random with 85% accuracy and found

that it was important to focus on C-alpha/C-beta residues as their position is
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better conserved than side chain atoms. However, even by capturing the
correct functionally active residues — for example, the catalytic triad in the
serine proteases — the flexibility of active sites significantly impacts on the
ability of these templates to detect these mobile residues in X-ray crystal
structures with different bound ligands.

In contrast to exploiting information on known functional residues, the
DRESPAT method (Wangikar et al., 2003) uses graph theory to extract
recurring structural patterns across superfamilies in the SCOP database
(Murzin et al., 1995). DRESPAT makes no assumptions about the location or
nature of the motif positions, except by excluding hydrophobic residues. A
statistical model is built to assess the significance of each recurring pattern
and the authors were able to identify different metal binding sites in
distantly related proteins. However, as with many methods which seek small
structural motifs, distinguishing between genuine similarities and
background is hampered by high false positive rates.

The PINTS methods (Stark and Russell, 2003) also shows promise for
automatically detecting structural motifs in protein families, although is not
able to annotate novel proteins with high accuracy. Again recurring side
chain patterns are identified through a pair-wise comparison of diverse
members within a protein family. These motifs can then be used to scan

against a novel structure.

Instead of detecting 3D templates based on their structural conservation
across an enzyme family, Polacco and Babbitt (Polacco and Babbitt, 2006)
used a genetic algorithm (GASP) to generate a functional template from a
given structure based on its ability to identify members of the same enzyme
superfamily against a background of unrelated proteins in the SCOP
database. An initial PSI-BLAST step builds a multiple sequence alignment for
each enzyme structure that is used to create a set of conserved residues, from

which a small number (~10) are selected at random to build a template. The
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performance of each template is then evaluated by using a geometric
matching algorithm, SPASM, to score matches to the functional relatives and
the SCOP library. Interestingly, the best template generally contains known
functional amino acids, although there are also a few additional residues
with no known functional role. This method is a promising development,
although each template takes up to 18 hours to generate and the performance

was only evaluated for five superfamilies.

The central goal of this work was to exploit sequence and structural data to
detect conserved patterns in protein families that recur in enzymes with
similar catalytic mechanisms, as defined by their E.C. number. A novel
algorithm, FLORA, was developed to analyse multiple structural alignments
of domains in these families and discover a conserved motif. Patterns of
sequence conservation and residue accessibility were combined with
structural conservation data to identify these motifs, which were then
encoded into templates and compared against new structures using a graph
matching program, FLORAScan. The primary focus of the method was to
discriminate between domains from different enzyme families, yet having a

common evolutionary origin (i.e. from the same CATH superfamily).

3.2 Methods

3.2.1 Overview of methods

This section will outline the creation of a data set of enzyme families from
diverse superfamilies and the more technical details of the FLORA
algorithm. All the optimisation studies and a full outline of the algorithm are

presented in section 3.3.

3.2.2 Multiple structure alignment using CORA

The CORA multiple alignment program (Orengo, 1999) is an integral part of
the FLORA algorithm. Based on the double-dynamic programming (DDP)
approach used in SSAP (described in Chapter 2), CORA uses an iterative
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alignment approach to build a multiple structure alignment of protein
domains, which can be used to analyse structural conservation within a
superfamily or fold group. For example, Reeves et al. (2006) previously
showed how a CORA alignment can be used to analyse structural changes
across functionally variable superfamilies. The addition of secondary
structure embellishments, for example, can modulate the active site and

facilitate functional divergence.

CORA begins by calculating a SSAP pairwise comparison between all unique
protein domain pairs to be aligned. Starting with the closest pair of structural
relatives, vectors between Cp atoms are compared to score the similarity of
the structural environments of residues pairs. The first stage of dynamic
programming is then used to find putative alignment paths through the
matrix of scores for each residue pair. High-scoring paths above a certain
score threshold are added to a summary matrix. The top 20 highest scorings
residue pairs are then recalculated and used to populate a final summary
matrix, which is then subjected to a second stage of dynamic programming
to discover the optimal global alignment of the two domains. From this
alignment, equivalent residue pairs are selected and used to build a
‘consensus structure’ based on the average vectors between aligned residues.
The next domain in the list is then selected and aligned to the consensus,
using the same double dynamic algorithm. This iterative protocol is applied
until all domains are aligned and a full multiple structure alignment has

been calculated.

3.2.3 Data set: selecting enzyme families from diverse
superfamilies

Domains in v2.6 of CATH were annotated with a 4 digit Enzyme
Classification (E.C.) number using PDBSProtEC (Martin, 2004). Protein
domains frequently do not have a clearly delineated enzymatic function of
their own, hence the E.C. number (Bairoch, 2000) assignment merely
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designates them as a component of the enzymatic function of their protein
chain. Furthermore, the quaternary structure of a protein can result in a
complex that catalyses more than one chemical reaction and may possess
multiple E.C. numbers. For simplicity, domains in this category were

removed from the dataset.

The first 3 E.C. numbers describe the overall catalytic mechanism performed
by the enzyme, whereas the 4th generally denotes the substrate specificity.
Preliminary analysis revealed a number of superfamilies that contained E.C.
annotations which only deviated in their 4th digit. It was hypothesised that
structural templates could capture this conserved catalytic framework. A
group of domains which share their first 3 E.C. numbers will be subsequently
referred to as an enzyme family. A data set of CATH superfamilies predicted
to contain more than one of these enzyme families was compiled for testing

the FLORA algorithm.

386 highly populated superfamilies (> 3 SReps) in CATH were analysed and
reduced initially to 71 superfamilies, containing at least one enzyme family
with three or more SReps (redundant at 35% sequence identity) and
complete functional annotation. Of these, only 12 superfamilies contained
more than one different enzyme family, resulting in a total of 21 enzyme
families. The domains in these 21 families were selected to comprise a dataset
for testing FLORA. For all families in this dataset, a representative was
removed to construct a test data set. The remaining SRep relatives in the
dataset were used to build templates for the corresponding enzyme family.
This was done using a jack-knifing approach whereby all domains were used
as the test domain at some stage — this produced 125 test domains with 125

different templates.

3.24 CoraXPlode

After using CORA to produce multiple structure alignments of each enzyme
family, a modified version of the CoraXPlode protocol (Sillitoe et al., 2005)
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was applied to search for related sequences in the UniProt90 NRDB
(Apweiler et al., 2004) that could be used for sequence conservation analysis

in the FLORA algorithm.

The first step in the original version of CoraXPlode is to take the sequence of
each domain in the enzyme family and build a HMM profile using the SAM-
T99 program. Each profile is then used to search for related sequences in
UniProt90 NRDB (Wu et al., 2006). However, in this case, a more conservative
profile was desired that would be biased towards closer relatives of the
query enzyme sequence where function was conserved, i.e. mainly
orthologous sequences. SAM-T99 was replaced by PSI-BLAST using a 1 x 10-
40 E-value cut-off with 10 iterations, in accordance with the work of Bartlett et
al. (2002) that examined conservation patterns of catalytic residues in known

enzyme structures.

After CoraXPlode has identified close sequence relatives for each structure in
the enzyme family, these sequences need to be integrated into the multiple
structure alignment. Instead of realigning the new relatives with the original
structures, these sequences are simply inserted into the CORA alignment
according to their alignment to the query sequence given by PSI-BLAST (see
Figure 3.1). Any extra residues in the UniProt sequences that are not present

in the query structures are then discarded.
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CORAXplode [ Enzyme family 1]
PSI-BLAST

[ Merged Alignment,
Enzyme family 1]
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representatives

Homologous
superfamily

Figure 3.1 Flowchart showing main steps in the CoraXPlode protocol

3.25 Benchmark of PSI-BLAST

In order to place the performance of FLORA in context, it was compared
against PSI-BLAST. PSI-BLAST (Altschul et al/, 1997) was chosen as an
established standard method for assigning function and the performance was
measured by taking all domains in the enzyme data set as query sequences.
These sequences were also embedded in the Uniref90 database (Apweiler et
al, 2004) to allow for PSI-BLAST to build a sufficient profile. An E-value cut-
off of 3 x 103 was used for acceptance into the profile at each iteration, with
an overall E-value cut-off of 1 x 103 for hits over 5 iterations. These
parameters are identical to those used by George et al. (2006) for searching

for enzyme homologues.

3.2.6 Benchmark of SSAP

PSI-BLAST does not make use of structural data, so it could be argued that it
is at a disadvantage compared to FLORA. Therefore, to assess the
performance of FLORA with respect toglobalstructurecomparison, all

domains in the data set were aligned andscored usingSSAP (Taylorand
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Orengo, 1989). The results were assessed by ranking the hits for each query
by their SSAP score and also by using the SSAP score in a Receiver-Operator
Curve (ROC) analysis (see Section 3.3.6).

3.2.7 Benchmark of SiteSeer

In contrast to FLORA, the SiteSeer reverse template method (Laskowski et al.,
2005) generates a number of small (3 residue) templates for a given query
structure and compares these to a library of representatives from the PDB.
The theory behind this is that one of these templates will correspond to a
local pattern of functional residues and that the local environment (10A) of

the matched region will show high sequence conservation.

The performance of SiteSeer on the diverse data set was applied in the same
way as SSAP, by using each domain succesively as a query and comparing
this to the remainder of the data set. The program was kindly run and results
were provided by Roman Laskowski at the European Bioinformatic Institute
in Cambridge, UK.

3.3  Algorithm Development and Results

This section outlines the main steps of the FLORA algorithm to produce
templates for enzyme families within CATH superfamilies and the
optimisations that were undertaken. A second program, FLORAScan, was
developed to compare these templates against the enzyme test set from
CATH v2.6. In addition, the performance of FLORA templates was
compared to PSI-BLAST, SSAP, CORA and the SiteSeer template method.

3.3.1 FLORA - designing structural templates specific for
catalytic function
The main steps of the FLORA algorithm are outlined in Figure 3.2.
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i |

Use CoraXplode to expand structural

alignment with sequence relatives

|

Score alignment for sequence

conservation and select top-ranking

residues (seeds)

1

Cluster residue seeds in 3D and identify

the most accessible, conserved cluster.

1

Find centre of mass of sequence seeds in
3D and identify residues in the local

environment (within 124)
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Find largest clique of structurally conserved

residues and encode in a 3D template

Figure 3.2 Flow diagram of main steps in FLORA algorithm used to

generate a 3D template for enzyme families.
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3.3.1.1 Generating multiple alignments using CORA
All the SRep domains in the data set (described in Section 3.2.3) for a given
enzyme family were aligned using the multiple structural alignment
algorithm CORA. For those domains with annotations in the Catalytic Site
Atlas (CSA), a sample of the alignments was inspected manually to confirm
that they had been aligned correctly with respect to known catalytic residues.

3.3.1.2 Expanding alignments with sequence relatives

In order for FLORA to predict a putative functional site, it first requires an
analysis of sequence conservation at each position in the alignment. Since
many of the enzyme families contained as few as three structural domains,
extra sequence relatives were required to more accurately calculate the
sequence conservation at each alignment position. The CoraXPlode protocol
(see Section 3.2.4) was utilised to expand the CORA alignment with sequence
homologues for each domain in the alignment by generating a relatively
conservative PSI-BLAST profile (as described in Section 3.2.4).

3.3.1.3 Calculating sequence conservation using ScoreCons

An optimised version of ScoreCons (Valdar and Thornton, 2001) (re-
implemented in the C programming language) was used to calculate
sequence conservation at each position in the multiple alignments of each
enzyme family. A Diversity of Positions (DOPs) score was calculated as
described in Valdar and Thornton (2001) to measure the evolutionary
variation in the multiple alignment. Although ScoreCons accounts for
sequence redundancy across the alignment, conservation scores at each
position are only considered accurate if there is sufficient overall sequence
diversity across the multiple alignment. This is reflected in a DOPs score of
greater than 0.9. All alignments were found to meet these criteria, which may
be expected as the original structural domains shared less than 35% pair-wise

sequence identity.



120

3.3.1.4 Identifying and clustering sequence-conserved alignment positions in 3D to
locate the functional site

Many function prediction methods, such as the evolutionary trace (Yao et al.,
2006; Lichtarge et al., 1996), rely on the premise that residues that are highly
conserved across protein families are important for function and can
therefore be used to locate the functional site. However, work on protein
folding has also shown that hydrophobic residues in the core are often also
well conserved. These are thought to act by promoting stability through the
formation of intermediates in the folding pathway (Mirny and Shakhnovich,
2001). Others (Bartlett et al., 2002; Wangikar et al., 2003) have reported that
catalytic residues are far more likely to be polar residues. Accurately
predicting residues that may be involved in substrate binding or catalysis
based on sequence conservation is a more challenging problem than defining
the general area of the functional site. Consequently, a straight-forward, yet
effective, approach was taken with the FLORA algorithm.

All positions in the multiple alignments were ranked by the sequence
conservation calculated by ScoreCons. This set was reduced to only those
positions where residues were present in all sequences (i.e. non-gapped
positions in the alignment). The top 20 residues conserved by sequence were

then selected (sequence seeds).

Manual inspection of a selection of enzyme families revealed that the
sequence seeds tended to be present both within the active site and in the
hydrophobic core of the protein, as expected. To bias the selection towards
putative functional residues, all seeds where 80% or more of the residues
were hydrophobic were eliminated. To generate a list of putative active sites,
the remaining hydrophilic seed residues were clustered together using a
complete linkage approach and a cut-off of 7A. We initially used a cut-off of
5A, in keeping with the Drespat method (Wangikar et al., 2003) but manual

inspection revealed this produced too many singleton clusters. For each
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enzyme family, the collection of clustered residue positions will be referred

to as the seed clusters.

3.3.1.5 Predicting a putative active site

Although there maybe several functionally-relevant regions of the domain,
the aim of FLORA was to capture one active site associated with the catalytic
action of each enzyme family. Hence, it was necessary to select one seed
cluster from the previous stage that was most likely to co-locate with the
active site. Across all enzyme families in the data set, it was found that
clusters varied considerably in size and average sequence conservation. As
active sites tend to possess conserved residues near the protein surface
(Bartlett et al., 2002), the solvent accessibility of each residue across the
enzyme family was also calculated using the NAccess program (Hubbard
and Thornton, 1993).

A small manual analysis was performed on 16 enzyme families where the
catalytic residues had been annotated from the literature in the CSA. This
revealed that the largest seed cluster with the highest accessibility and
sequence conservation tended to co-locate with the catalytic residues.
Moreover, only one seed cluster containing residues with these properties in
each enzyme family overlapped with the known catalytic residues. It was
observed that choosing the seed cluster (ignoring singletons) with the
greatest sequence conservation and an average surface accessibility greater
than zero produced the correct functional cluster for 80% of enzyme families.
This is referred to as the top seed cluster.

3.3.1.6 Expanding the sequence seeds by selecting residues in the local environment
of the predicted functional site

The goal of FLORA was to build a static template of structurally conserved

residues important for function. However, catalytic residues often move

during enzyme catalysis and hence might change their relative positions

depending on whether a ligand is bound or not in the structure. This does
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not only apply to functional residues and substantial change can be observed
within the same protein, depending on the bound ligand or absence thereof.
This compounds the problem of detecting regions of structural conservation
between relatives that perform similar functions. To address this problem in
FLORA, although the top seed cluster was chosen to predict the functional site
on the domains in each enzyme family, it was hypothesised that other
residues in the vicinity could provide a more static, structurally conserved
framework. To identify these residues, the centre of mass (CoM) of the top
seed cluster was calculated for each domain in the enzyme family. Any
residues that fell within a 12A of the CoM in each domain were used to
generate a set of site positions (the top seed cluster residues being a subset of
the site positions). As with the identification of the sequence seeds,
alignment positions without a residue present in all domains (i.e. gapped
positions) were excluded. Initially, a cut-off of 10A was chosen as this is
consistent with other function prediction methods (e.g. SiteSeer (Laskowski
et al., 2005)), but this did not identify a sufficient number of residues for the
template sizes explored later in the protocol, hence the radius was expanded
to 12A. The process of identifying other residues in the locality of the active
site is shown in the first 2 steps of Figure 3.3.
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1. Conserved sequence seeds 2. Expand to local environment (12A)

3. Identify structural clique

Conserved sequence seeds
locate the putative active site.
The local environment is then
explored to discover
structurally conserved residue
cliques, specific to an enzyme

family.

Figure 3.3 Structural representation of the major steps in the FLORA

algorithm.

3.3.1.7 Calculating the structural conservation of the site positions

At this point in the algorithm, FLORA has predicted a putative functional
site for each enzyme family and selected a set of site positions. The final step is
to reduce this to a collection of structurally conserved positions, which can
then be used to build a structural template associated with each enzyme

function (Figure 3.3).
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Vectors were calculated between all Cp atoms of the site positions in each
structural domain in the multiple alignments (d;xy is the length of the vector
between positions x and y in domain i,

(Definition 3.1). A fully-connected graph was built where each node
represented a site position and the edges were labelled with a structural
conservation measure, SC ( ). This is the minimum difference between the
reciprocal of the length of the vector connecting the two alignment position
nodes, x and y, across all N domains in the family. This essentially quantifies
how variable the distance between two site positions can be, with a high

value of SC being desirable and representing high structural conservation.

7, . == co-ordinates of site position x in domain i.

di,x,y =| ;;,x - ;;,y I (DEﬁIllthl'l 31)

10
SC. =minY
X,y i=1 | d

i+l,x,y

1 (Definition 3.2)

ix,y

where N = number of domains in family

3.3.2 Building templates

3.3.2.1 Calculating structurally conserved cliques of site positions

At this stage in the algorithm, each pair of site positions has been assigned a
structural conservation score, SC, that represents the maximum variation
obéerved across the multiple alignment. A logical approach would then be to
select site positions for the template, which are above a given cut-off value
for SC. However, Figure 3.4 demonstrates that even at relatively high cut-off
values for SC, there is a vast range of template sizes when applied across all
>enzyme families. For example, using a cut-off of 1.9, the largest template
contains 39 residues and the smallest only 3. This disparity causes problems
as these large templates are slow to scan and those with few residues do not

have sufficient power to effectively discriminate from false positives.
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Figure 3.4 Minimum, maximum and mean size of templates generated over

a range of SC cut-offs.

This result is not unexpected, as protein superfamilies exhibit different levels
of structural variation within an enzyme family. The aim of FLORA was to
capture a 3D configuration of residues that appears to be conserved within
the functional site of an enzyme family. Given that the amount of variation is
dependent on the plasticity of the fold, it was decided to optimise FLORA to
obtain a template of a given size and develop specific cut-offs for each
family. Therefore, a range of cut-off values for SC were explored for each
enzyme family until a minimum template size was reached. This permitted

the production of larger template for more flexible families.

To do this, a graph of site positions was constructed and edges were labelled
by the value of SC. The Bron-Kerbosch algorithm (Bron and Kerbosch, 1973)
was then used to find the largest clique of positions in this graph. The value
of SC cut-off was lowered until a template of the specified size was obtained.

This variable was optimised in Section 3.3.4. The final cut-off that was used
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to produce a clique of a given template size will be referred to as SCiemplate as

it also provided a cut-off for the template scanning process (see Section 3.3.3)

3.3.2.2 Generating a template for an enzyme family from the selected structurally
conserved positions
Once FLORA has identified a clique of structurally conserved positions of a
given size associated with a specific enzyme family, the information was
encoded into a template file to be used in a predictive manner. Average
vectors between all Cg atoms in the clique were calculated across the
multiple structure alignment of the enzyme family. In addition, information
was recorded on the order of the residues in the primary sequence and the
torsional angles of their Cqa atoms. Torsional angles were chosen as Taylor
and Orengo (1996) found these to be useful when determining equivalent
residues in structural alignment. Regardless of the algorithm used for
scanning structural templates against novel proteins, it is useful to encode as
much information in the template as possible to reduce the search space and

potentially increase the fidelity of the matching.

3.3.3 FLORAScan - scanning the enzyme family test set

domains against FLORA structural templates

3.3.3.1 Template-matching algorithm

A clique-matching algorithm, FLORAScan, was written to compare each
template against new domains with the aim of identifying functional
relatives. Graph-theoretical alignment methods that operate on the residue
level are often slow as the graph involved is so large and highly connected.
Although the problem is abated with smaller templates, comparisons with
large domains can still be slow. The torsional angle and sequence order data
in each template was used to reduce the search space and increase the speed

of the graph matching algorithm.

For each comparison, vectors in the template were used to build a graph

where the template positions were represented as nodes and the edges were
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labelled with the length of the averaged vector calculated in the final stage of
FLORA (Section 3.3.2.2). A similar graph was built from the Cp co-ordinates
of the query domain, against which the template was being scanned. To
assess the overlap between template residues and those in the query domain,
a correspondence graph was calculated. Each node in this graph represented
a template residue and a domain residue pair. Hence, the maximum size of
the graph is equal to the number of template positions multiplied by the
number of residues in the query domain. Nodes would then be connected by
an edge if the distance between a pair of template residues was similar to a
pair in the domain. As the speed of the clique detection algorithm (Bron and
Kerbosch, 1973) is dependent on the number of edges in the graph, two

initial conditions were added to reduce the size of the graph.

Firstly, edges were only constructed where domain residues shared the same
sequence order as those in the template. For example, a node which
corresponded to domain residue 42 (t1) and template residue 51 (t2) could be
joined to a node representing domain residue 49 (d1) and template residue 65
(d2), as these are both vectors to residues further along the primary sequence.
Secondly, a given template-domain residue pair in the correspondence graph
must share comparable torsional angles (i.e. be within a torsional cut-off,

which is optimised in Section 3.3.4).

The final condition for edge creation was a score based on distance similarity.
The value of SCremplate that was used to produce the template for each
enzyme family was implemented in FLORAScan. Another variable (margin)
was implemented as an error tolerance, to be subtracted from SCiemplate and
allow each template to match positions in the query domain that may be
correct, but where the inter-residue distances were larger than those
observed in the alignment of the enzyme family. Hence, the distance between
two template-domain residue pairs in the correspondence graph needed to

satisfy (Definition 3.3.
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3.3.3.2 Scoring template matches to query domains

FLORA was designed to produce a template of residues conserved within all
relatives of a specific enzyme family. Therefore, it should follow that when
scanning these templates against new domains, template residues would
constitute a complete sub-graph of the new domain in that family. However,
the structural data is often incomplete, so FLORA may have selected residues
in the template that are not always present in an enzyme family and hence
may not be found in new functional relatives. Hence, it was decided to also
explore the value of using a measure of overlap in scoring the match of a

template to a query structure.

Hits were scored by RMSD, normalised by the number of matched residues:

rmsd
n+1

FLORAScore =

where n = number of matched residues

The overlap is defined as:

Overlap = number - of - matched - residues

template - size

3.34 Parameter optimisation

The dataset described in Section 3.2.3 was used to optimise FLORA and
FLORAScan to ensure that the algorithm was able to distinguish between
structurally related domains with different functions, rather than simply
detecting homologous relationships that can already by achieved effectively
by methods such as SSAP. All 125 test domains were scanned against all 125
templates, generated by jack-knifing the dataset. Three parameters: the
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template size, torsional angle cut-off, margin were optimised in turn. A range of

overlap cut-offs was also explored for the template size optimisation.

3.3.4.1 Optimising the template size

Big templates tend to provide more structural information about residues
that may be important for function, but they create larger graphs that are
much slower to process with the clique detection algorithm. Conversely,
small templates are fast to scan but highly likely to hit unrelated proteins. It
was thus desirable to have as small a template as possible for each family,

while retaining specificity.

Initial investigation showed that using a margin of 1.0 and a torsional cut-off of
100 found the correct enzyme family in the top 3 hits for the majority of
enzyme families. Therefore, FLORA was used to build templates of sizes
ranging between 10 and 28 using the latter cut-offs as defaults. An upper
limit of 28 was chosen for practical purpose, as tests showed that templates
above this size are very slow to scan with a negligible increase in
performance. The performance was measured by calculating the number of
domains in the data set that matched the correct template in the top 3 hits,
when ranked by their FLORAScore. As FLORAScore is proportional to the
RMSD of the residues in the matched clique, a small value indicates a better

match.

Figure 3.5 shows a plot of the performance against the overlap cut-off for the
range of template sizes, when taking the template for the enzyme family
(built from the top seed cluster) to each domain in the test set. There is a clear
trend that larger templates perform best, with a template size of 10 only
ranking 38% of hits in the top 3 compared to 67% for a template size of 25.
For most template sizes, the performance appears to drop when the overlap
cut-off is set to 60 or above. However, for a template size of 16 or 19, the
performance does rise by about 1% using an overlap cut-off of 50%. Given

that the margin and torsional angle cut-offs were suboptimal at this stage, it
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was decided to continue to evaluate the effect of using overlap to reduce the
number of hits — this could also be applied in a post-processing stage, rather

than making changes to the FLORA algorithm.

10 13 16-%-19 -#-22 25
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Figure 3.5 Performance (measured as percentage of correct hits in top 3) of
FLORA over a range of overlap cut-offs, when varying the minimum
template size. This was assessed by using the template from each enzyme

family built from the selected seed cluster.

The performance of FLORA appeared to vary considerably with template
size and at 65% was not as high as it was hoped compared to other published
methods (Polacco and Babbitt, 2006; Laskowski et al, 2005), so a different
approach was explored. The program was instead used to build templates
from all the seed clusters generated in Section 3.3.1.4. The jack-knifed data set
was then re-scanned against a// of these templates and the highest scoring
template from each enzyme family was used to assign function to the test set

domains.
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Figure 3.6 shows an equivalent plot to Figure 3.5 but using the highest
scoring cluster template for a given enzyme family to assign function to a test
set domain. The preference for large templates is again evident, although
there is a smaller drop in performance at higher overlap cut-offs, suggesting
more residues are being matched. For larger templates there is a very slight
increase in performance by taking the highest scoring template rather than

the top cluster seed template.
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Figure 3.6 Performance (measured as percentage of correct hits in top 3) of
FLORA over a range of overlap cut-offs, when varying the minimum
template size. This was assessed by taking the best template match from

each enzyme family to the test set domain.

Again, given that the margin and torsional angle cut-offs were still to be
optimised, it was decided that taking the best template match for each
enzyme family rather than the top seed cluster provided more consistent
results and was less dependent on the overlap cut-off. Subsequent
optimisations were undertaken by scanning all cluster templates for each

enzyme family and taking the best match.
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3.3.4.2 Optimising the margin and torsional cut-off

The error margin and torsional cut-offs used by FLORAScan affect the
specificity of the template matching. If these are too liberal, the templates
will match too many false positives. Conversely, if they are too conservative,
genuine matches might not be recognised. A minimum template size of 25
was chosen and the best matched template for each enzyme family was used,
as described above. This time the performance was measured by looking at
the percentage of test set domains, where the correct enzyme family was
identified as the top hit, as this is a more important criterion for classifying
structures into families. The margin cut-off was explored over the range: 0 -
1.6, while keeping the torsional angle cut-off at 100 and using an overlap of
50 (Table 3.1). The torsional angle cut-off was explored over the range: 0 -
140 degrees, while keeping the margin variable at 1.2 and using an overlap
cut-off of 50 (Table 3.2). The most optimal cut-off values (1.2, 120) rank the
correct family as the top hit 72% of the time.



margin | % of correct matches ranked
as the Top hit

0 30
0.2 32
0.4 41
0.6 60
0.8 63
1.0 67
1.2 72
14 70
1.6 69
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Table 3.1 The performance of FLORA for finding the correct top hit over a

range of margin cut-offs, while keeping the torsional angle cut-off at 100

and using an overlap of 50.

Torsional angle cut-off | % of correct matches ranked
as the Top hit

0 52

20 57

40 58

60 64

80 65
100 67
120 72
140 70

Table 3.2 The performance of FLORA for finding the correct top hit over a

range of torsional angle cut-offs, while keeping the margin variable at 1.2

and using an overlap of 50.
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By analysing the results for each query domain, it appeared that a large
proportion of the failed template matches were in the P-loop hydrolase
superfamily (3.40.50.300). This is widely acknowledged to be the most
diverse domain superfamily in the protein universe (Lee et al., 2005). Closer
inspection of the CORA alignments of its constituent enzyme families
revealed that on average only 14% of the alignment of each family was
ungapped positions (i.e. there was an equivalent residue in all domains).
This meant that FLORA was often unable to build templates larger than
around 10 residues, as there were not a sufficient number of fully-aligned
positions in the expanded radius. Furthermore, Table 3.3 shows the values of
SCtempiate for different enzyme families in the data set and the P-loop
superfamily (3.40.50.300) has the lowest conservation and hence the most
permissive cut-off for template matching. Analysis of the P-loop enzyme
families showed more than 3-fold differences in domain size. CORA would
have problems aligning such diverse structures. The solution will be to sub-
cluster the families into coherent structural sub-groups (SSGs) which has
been used in other applications to help with this problem (Reeves et al., 2006).
If the P-loop superfamily is removed from the analysis, the top FLORA
match was the correct enzyme family for 85% of the test set.
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Enzyme family SCtemplate

(C.A.T.H/Enzyme family)
3.40.50.300 Phosphotransferases with an alcohol 0.474
group as acceptor
3.40.50.300 Phosphotransferases with a phosphate 0.492
group as acceptor
3.40.50.720 Oxidoreductases, acting on the CH-OH 0.612
group of donors, with NAD(+) or NADP(+) as acceptor.
3.40.640.10 Aminotransferases 0.668
3.20.20.90 Intramolecular oxidoreductases, 0.563
nterconverting aldoses and ketoses
3.20.20.90 Carboxy-lyases 0.653
3.40.640.10 Carbon-sulfur lyases 0.682
3.40.710.10 Cyclic amide hydrolases 0.864
3.90.550.10 Nucleotidyltransferases 0.877
3.40.50.720 Oxidoreductases, 1.021
with NAD(+) or NADP(+) as acceptor
3.40.630.10 Aminopeptidases 1.089
3.40.630.10 Metallocarboxypeptidases 1.219
3.90.550.10 Hexosyltransferases 1.314
2.160.20.10 Glycosidases 1.349
3.40.710.10 Serine-type carboxypeptidases 1.523
2.160.20.10 Polysaccharide lyases 1.706
3.40.50.720 Carbohydrate isomerases 2.005
3.20.20.90 Oxidoreductases with oxygen as acceptor 2.365
3.40.50.1820 Ether hydrolases 3.107

Table 3.3 Values of SCiemplate for different enzyme families in the data set,

where a high value indicates good structural conservation.

3.3.5 Comparing the performance of FLORA to other
methods for assigning function

3.3.5.1 Using PSI-BLAST to find functional homologues in the diverse data set

To put the performance of FLORA in detecting functional homologues in

context, each domain in the data set was used as a query sequence for a PSI-
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BLAST comparison, as PSI-BLAST is a method frequently used by biologists
to assign function and used by other developers of structure-based function
prediction algorithms to asses the value of their approach. For each query,
the other domains within the same superfamily were embedded in the Uniref
database, as detailed in Section 3.2.5. Only CATH domain-domain pairs
were extracted from the final iteration of PSI-BLAST and ranked by their E-
value. The P-loop hydrolase superfamily was included in this analysis.

Rank FLORA | PSI-BLAST
1 72.0% 72.8%
2 2.1% 0%
3 2% 0%
4 1% 0%
5 1% 0.8%
>5 for FLORA /Not found by PSI-BLAST | 18% 26.4%

Table 3.4 Rank of correct hit (same enzyme family) when scanning diverse
domains using PSI-BLAST

Table 3.4 shows that PSI-BLAST is able to find the correct enzyme family as
the top hit over 72% of the time, which is slightly higher than FLORA.
However, FLORA finds 76.1% of functional relatives in the top 3 hits and
PSI-BLAST does not find any correct hits for 26.4% of the query domains.
The coverage might be improved by using more liberal cut-offs for PSI-
BLAST, however this may also cause the profile to drift and pick up domains
in the same superfamily whose function has diverged.

3.3.5.2 Using SSAP to find functional homologues in the diverse data set

SSAP is highly effective at recognising relatives at the superfamily level by
global structural comparison. However, FLORA templates were designed to
discriminate between enzyme families within diverse superfamilies as well
as identify more distant homologues. The performance of SSAP in

recognising functional homologues was tested by an all-vs-all comparison of
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the 125 domains in the data set. Again, the P-loop hydrolase superfamily was
included in this analysis. The results for each query domain were then
ranked by the native SSAP score to see where a domain within the same

enzyme family lay in the list of hits.

Table 3.5 shows that SSAP is able to find the correct enzyme family as the top
hit nearly 90% of the time — this is markedly higher than the 72% achieved by
FLORA. It appears in this instance that using a consensus local template for
each enzyme family actually performs worse than simply finding the closest
functional relative using global structure comparison. This is most likely due
to the fact that FLORA has not correctly identified a motif that is able to
discriminate between those relatives which have conserved their function
during evolution and those that have diverged. Another reason might be that
the enzyme families from which the templates were built are structurally
diverse. In order to maintain the sensitivity of FLORA, it was often necessary
to set quite liberal values for SCtemplate. Although this ensured that a given
test domain was able to find its correct superfamily, it also decreased the

specificity.

Rank | FLORA | SSAP

1 72.0% | 89.6%
2 21% | 3.2%
3 2% 0%
4 1% 4.8%
5 1% 1.6%

>5 18% 0%

Table 3.5 Rank of correct hit (same enzyme family) when comparing

diverse domains using SSAP
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3.3.5.3 Using SiteSeer to find functional homologues in the diverse data set
In order to compare the performance of FLORA with other local template
methods, the SiteSeer program (Laskowski et al., 2005) was applied to the

diverse data set.

SiteSeer creates a large number of tri-peptide templates from the query
structure and compares the templates to a library of other protein structures.
The query structure is then superposed onto each matched structure based
on the equivalent residues found by the template. The algorithm scores each
match based on the sequence similarity of the local environment around the
template region and converts the score to an E-value. The library structures
are then ranked by the E-value of the most similar random template built
from the query structure.

For this analysis, each domain in the diverse data set was compared using
SiteSeer to produce an E-value score for each pair. Table 3.6 shows that
SiteSeer is able to rank the domain with the correct function as the top hit in
80% of cases. It therefore outperforms FLORA by nearly 8%, although lags
behind SSAP by 10%. This again suggests that it is difficult for a local
template method to outperform global structure comparison, although
SiteSeer comes closer than FLORA. An important area that SiteSeer exploits
when scoring template matches that was not addressed by FLORA is that of
the sequence similarity of the local environment around the template. Bartlett
et al. (2002) showed that sequence similarity is higher in the active site than
when calculated across the whole domain or protein. Future developments of
FLORA to incorporate local sequence similarity are discussed in more detail

in Section 3.4.
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Rank | FLORA | SiteSeer

1 72% 80.0%
2 2% 6.4%
3 2% 3.2%
4 1% 1.6%
5 1% 1.6%

>5 18% 6.8%

Table 3.6 Rank of correct hit (same enzyme family) when comparing

diverse domains using SiteSeer

3.3.6 Generating a local scoring scheme from global SSAP

alignments of domain pairs in the diverse data set

As discussed above, it appears that local templates were unable to assign the
correct enzyme family to the test domains as effectively as global structure
comparison. More specifically, that transferring annotation from the closest
structural relative in a superfamily is able to correctly assign function to a
domain in nearly 90% of cases. However, this does not tell us much about
how function is conserved (i.e. which residues are important for function)
and how to predict when it changes. It also relies on having a protein of
similar function in the library of structures against which you are comparing
the query.

To test whether adapting global structure comparison to focus on local
similarities could discriminate better between domains in different enzyme
families, a local scoring scheme was developed for comparing domain pairs

in the data set, aligned by SSAP.

The CORA alignments from each enzyme family were analysed and all
positions that did not contain gaps were selected (CORA positions). For each

CORA position, the corresponding residues in each domain were noted and
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annotated as conserved residues. SSAP was then used to align each domain
pair in the diverse data set in the same way as in Section 3.3.5.2. The global
SSAP score normalises the similarity of the vectors between aligned residues
by the length of the largest protein, so it does not assign high scores to motif
matches. It was hypothesised that in the case of determining functional

equivalences a local scoring scheme might actually be more appropriate.

To develop a local scoring system, domains were aligned using SSAP but
vector similarities were only summed over the conserved residues identified
by CORA. The score was then normalised over the conserved residues. For
each query domain, the results were ranked by this new score, denoted as
CORASCORE. Table 3.7 shows that this approach (SSAP-CORA) is able to
identify the correct top hit in 7% (79% vs 72%) more cases than FLORA,
although it still falls short of the 89% identified by SSAP. This might suggest
that it is useful to take account of indels, as in the SSAP global similarity

score, when seeking the closest functional relative.

Rank | FLORA | SSAP-CORA
1 72% 79%
2 2% 4%
3 2% 0.7%
4 1% 0.2%
5 1% 5%
>5 18% 10.7%

Table 3.7 Rank of correct hit (same enzyme family) when comparing
diverse domains using FLORA and SSAP-CORA (CORASCORE)

To view the performance of the CORASCORE in a different way, a ROC
curve was calculated to assess how well the CORASCORE was able to
recognise all the functional homologues (i.e. domains in the same enzyme
family) for a given cut-off. This was compared to the global SSAP score at

low false positive rates.
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Figure 3.7 shows that at low error rates the pair-wise score between two
domains in the data set is actually better represented by the local
CORASCORE, which focuses on conserved residues, rather than the global
SSAP score. This might suggest that concentrating on residues that are
conserved across an enzyme family is a better method for recognising some

of the more diverse relatives in an enzyme family.

Most automatic methods for functional annotation rely on taking the highest
scoring match. However, as with sequence profile methods, it is also
important to have reliable score cut-offs that can be used to transfer function
even from distant relatives. These thresholds can be derived from the ROC

analysis. This idea is discussed in more detail in Section 3.4.
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Figure 3.7 A Receiver-Operator Curve (ROC) comparing the ability of the

local CORASCORE to discriminate between domains from the same

enzyme family and false matches in the data set with respect to the global

SSAP score.
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3.4 Discussion

This work describes the development of a novel algorithm (FLORA) for
generating structural templates to characterise enzyme families. Overall this
work has established a protocol for classifying functional relatives into
CATH enzyme families. Global structure comparison by SSAP was shown to
recognise functional homologues in nearly 90% of the cases but provides not
information on the functional sites. The FLORA method for identifying
conserved functional sites was able to locate sites in 80% of the families

tested and is therefore a valuable complement to using SSAP.

In FLORA, a template is built by selecting positions in the local environment
of the predicted functional site, which are structurally conserved across a
multiple alignment of an enzyme family. The optimisation process in Section
3.3.1.7 revealed that using an absolute measure of structural conservation
produced too great a range of template sizes and hence it was decided to
focus on creating templates of a given size for each family. The rationale
behind this was that templates of sufficient size would still capture the 3D

geometry of the area around the functional site.

A comprehensive optimisation process revealed that larger templates of
around 25 residues provided the optimal balance of specificity and coverage.
The correct match was ranked top for 85% of domains in a test set, when
scanned against the library of templates. This performance was achieved
when excluding the P-loop hydrolase enzyme families, where CORA was not
able to find a large number of equivalent residues across all domains. This
could be due to the inherent structural diversity in the family; indeed, some
domain pairs had SSAP scores below 50 (with 100 being identical structures).
However, it is also possible that one or more of the domains in the
superfamily were annotated with an incorrect E.C. number, which would

have caused CORA to produce an incorrect multiple alignment.
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For the remaining 15% of domains where FLORA was unable to match the
correct template as the top hit, the errors were mainly caused by matches to
templates built from other enzyme families within the same superfamily.
This suggests that the current implementation of FLORA was not always
able to capture structural motifs for different functions, or that the FLORA
templates were not focussing on the areas of the structure that are
responsible for modifying the function. A slightly different approach would
be to compare templates generated from different enzyme families within the
same superfamily, to look for commonalities. These common superfamily
motifs could then be removed from the clique-matching process and perhaps
better focus on the family-specific regions of the structure. In addition, given
that the problems with the P-loop hydrolase enzyme families appeared to lie
with the original CORA alignment, it is possible that the domains were too
structurally diverse to be accurately aligned. This problem could be
addressed by clustering together more similar domains within each enzyme
family and building templates from each sub-group. Although this would
produce multiple templates per enzyme family, it might shed more light on
whether the limitations lie with CORA or with the FLORA method presented

here.

Preliminary work suggested that the FLORAScore was the most effective
score for identifying the correct enzyme family for a given query domain.
However, by looking at the data for the 15% that failed, it is clear that other
scoring schemes may be better in some circumstances: for example, by
combining the overlap with the FLORAScore or calculating the average score
over all templates built from different seed clusters for a given enzyme
family, rather than taking the best hit. Furthermore, the superior
performance of SiteSeer over FLORA suggested that taking into account the
sequence conservation to score template matches might also provide a useful

discriminatory signal.
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To put the work in context, a comparison of FLORA against both PSI-BLAST
and SSAP showed that it was able to outperform PSI-BLAST if the top 3 hits
are considered (76.1% for FLORA vs 72.1% for PSI-BLAST). However, PSI-
BLAST was not able to find as great a percentage of functional homologues
at a low error rate as SSAP. This demonstrates that global structure
comparison remains powerful for detecting domains with similar functions.
FLORA was still unable to outperform SSAP, which suggests that focussing
solely on the functional site does not necessarily yield a significant
improvement when seeking functional similarities between more distant
evolutionary relatives. The work of Reeves et al. (2006) has shown that
structural embellishments across a larger region of the structure can impact
on function and global comparisons may capture this information more
effectively. However, for function prediction a combination of using SSAP to
find the closest functional relative and FLORA to predict the active site could

provide useful complementary information.

3.5 Future Work

The relatively poor performance of FLORA compared to global structure
comparison (SSAP) could be due to the current implementation or might be
due to the fact that a more global similarity of domains must be taken into
account to establish the closest functional relative in a superfamily. The
SSAP-CORA (CORASCORE) method in Section 3.3.6 appeared to perform
well and ROC curve analysis suggested that it was able to identify more
funétional relatives at a low error rate than SSAP. However, the
CORASCORE only found the correct enzyme family as the top hit in 79% of
cases, compared with 89% for SSAP. This might suggest that finding the
closest functional relative is achieved more effectively by using a global
method, yet when looking for a motif associated with all domains from a

given enzyme family, it is useful to focus on local conservation patterns.
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To take this work forward, it is planned to look in more detail at the
conserved residues identified by SSAP-CORA and see if they can be further
reduced based on their sequence conservation, local structural conservation
and/or solvent accessibility. For each enzyme family, it should also be
possible to down-weight the effect of residues that are conserved to maintain

the protein fold in the superfamily, rather than being specific for function.

In addition, FLORA did not recognise the correct functional site in ~20% of
the enzyme families in the data set. This leaves scope for using alternative
methods, such as the evolutionary trace, which exploit phylogenic
information (Lichtarge et al., 1996) for identifying functional residues,

followed by building templates based on the local structural environment.
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Chapter4 Improving ab initio
structure predictions by assigning

models to fold groups in CATH

41  Background

The ability to predict the tertiary structure of a protein directly from its
sequence remains a significant goal of structural biology, as there is a large
discrepancy between the number of available sequences and structure.
Furthermore, structural data can be useful for understanding protein
function. X-ray crystallography and NMR spectroscopy are the current
methods of choice for experimental structure prediction. However, both
approaches have limitations and cost implications, and hence cannot be
applied indiscriminately to all genome sequences of interest. High-
throughput methods can reduce the time and effort required, but highly
flexible proteins and those which reside in cell membranes remain
problematic. To facilitate this process, it is often necessary to modify the
structure by mutating the sequence, although this risks moving further away
from the native structure of the protein. Conversely, NMR is able to capture
the intrinsic flexibility in a given protein by producing a series of models that
fit the experimental data. However, current technology means that it is
generally only possible to obtain models for small molecules (< 50 KDa). As a
result, even with modern high-throughput methods, it is currently
impractical to produce experimental structures for all known genes.
Therefore, developing computational approaches to predict structure directly
from a protein’s sequence remains a useful complementary area of research

as they provide a faster and cheaper alternative to experimental methods.
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However, this does require developing a greater understanding of the

complex interactions involved in protein folding.

411 Ab initio prediction of structure from sequence

The two greatest difficulties in predicting how a given sequence folds in
three dimensions are the huge number of possible residue conformations
available and how residues interact with one another to stabilise the protein
structure. Algorithms that aim to predict protein structure ab initio require
vast amounts of computational power and therefore even modelling small
peptides becomes hugely time consuming. To combat this, many methods
attempt to mimic the native folding process so that the search space can be
collapsed at various stages in the algorithm. Each step seeks an energy
minimum where the structure is at its most stable. However, exploring this
energy landscape can still prove challenging as there is often no guarantee
the algorithm will converge on the global energy minimum and may instead
find local energy minima. As an alternative, several groups have chosen to
exploit knowledge of known structures by using known conformations for
small peptide fragments in conjunction with predicting physicochemical

interactions from first principles (Simons et al., 1997).

One way of building heuristics for ab initio methods is to predict structural
features from the sequence, before attempting to model the whole fold. For
example, predicting the secondary structure of each residue or the overall

secondary structure content of the protein (protein class).

4.1.1.1 Predicting protein class

Many groups have endeavoured to predict the overall secondary structure
content or protein class (e.g. mainly alpha, mainly beta, alpha-beta) based
solely on amino acid composition (reviewed in Chou (2005)). The most
accurate methods rely on machine learning algorithms (e.g. SVMs) and
incorporate analysis of dipeptide/tripeptide fragments as well as
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propensities of different residues to adopt certain secondary structures

conformations (Rost and Sander, 1993; Eisenhaber et al., 1996).

4.1.1.2 Predicting secondary structure

Predicting the secondary structure state (helix, strand or random coil) of
individual residues in a sequence is the starting point for many structure
prediction methods. It has long been known that some amino acids are more
likely to be present in certain secondary structure elements than others
(Chou and Fasman, 1974). For example, the pyrrolidine side chain of proline
and the Cp atom of the preceding residue results in steric hindrance, which
limits the use of proline in alpha helices. Chou and Fasman (1974) were the
first to exploit this concept by analysing residue propensities in the small
data set of protein structures that was available at the time. Although this
method showed some predictive power, Garnier et al. (1978) showed that the
performance could be substantially improved by looking at a given amino
acid in context with its neighbouring residues in the sequence. They used
information theory to analyse a ‘window” of 16 residues to calculate a more

accurate probability of the secondary structure state of each amino acid.

This approach can be taken a step further by looking for small patterns of
residues in multiple alignments of related sequences that regularly coincide
with specific secondary structure elements. For example, -certain
arrangements of hydrophilic and hydrophobic residues occur in helices
where some of the side chains face the hydrophobic environment of the
protein core, whereas others interact with the solvent. Furthermore,
insertions in these alignments usually coincide with random coil regions,
rather than conserved helices or strands. Comparing protein sequences
across a family allows a more accurate assessment of residue propensities by

distinguishing between genuine conservation and random mutations .

The most successful methods of secondary structure prediction have sought

to combine conservation patterns and residue properties using machine
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learning methods, such as neural networks. The PHD method (Rost et al.,
1994) was the first to use sequence profiles to train a neural network to
accurately assign a secondary structure state to more than 70% of residues in
a benchmark test set of sequences. Jones (1999) increased this performance to
77% in his PSIPRED method by improving the quality of the sequence
profiles used to train the network.

4.1.1.3 Predicting residue contacts

Although predicting the number and type of secondary structure elements
can give clues as to the overall fold and class of a protein, the tertiary
structure may still adopt many different conformations. One way of
restricting the conformational space is to predict interactions between
residues in the chain. If a sufficient number of these residue contacts can be
identified, then it is possible to generate a reasonable model of the tertiary
structure.

Several groups (Taylor and Hatrick, 1994; Pollastri and Baldi, 2002) have
shown that networks of residues act to stabilise a protein fold. Mutations at
positions in spatial proximity are often subject to correlated mutations. That
is, if one stabilising residue is mutated so that its physicochemical or
stereochemical properties are changed then those amino acids with which it
interacts may also change in order to avoid steric hindrance and the breaking
of hydrogen/ electrostatic bonds. By analysing mutation rates across protein
families, it is possible to identify pairs of residues in sequences that are close

to one another in 3D (Pollastri and Baldi, 2002).

Again, many groups have attempted to recognise these patterns of correlated
mutations by training neural networks on multiple alignments of known
sequence families. However, this has proved far more problematic than
analogous methods of secondary structure prediction due to the vast number
of related sequences required. One reason for this is that it is not just pairs of

residues that interact, but networks of several residues that act to stabilise the
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fold. As they are all dependent on one another, it means that two residues
may have similar mutation rates but are not necessarily in contact in the
structure. Hence, any identifiable sequence pattern may actually be specific
to a given structural family, rather than observable across a wide range of

proteins.

4.1.1.4 Predicting tertiary structure

Most approaches that predict tertiary structure ab initio directly from the
sequence can be broken down into two discrete parts: a procedure for
generating possible chain conformations and a potential energy function that
assesses the likelihood that a given structure is adopted by the sequence on

energetic grounds.

As previously mentioned, one of the biggest problems with structure
prediction is the enormous number of possible conformations that could
feasibly be adopted by a given protein chain. Two popular approaches for
reducing this number are to either restrict the number of positions a given
residue may occupy to discrete points in a 3D lattice (Hinds and Levitt, 1994;
Park and Levitt, 1995) or constrain the range of permitted torsional angles
between residues (Dandekar and Argos, 1994; Srinivasan and Rose, 1995).
True ab initio methods will then assess the viability of each model based on
the physicochemical properties of amino acids and their interactions e.g. size
and charge. However, other prediction algorithms compare the properties of
potential models with known structures (e.g. threading (Jones et al., 1992)).
Whilst this knowledge-based approach can improve the accuracy of the
methods, it has the inherent limitation of only being able to provide models

for sequences that adopt previously observed folds.

4.1.1.5 The Rosetta method of structure prediction
Over the past five years, The Baker group (Simons et al., 1997; Simons et al.,
1999) have developed a structure prediction algorithm (Rosetta) that splits up

the target protein sequence into small peptides, less than 10 residues in
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length. The local interactions of each fragment are then modelled by
observing sequence-similar regions in experimental structures. These
fragments can then be concatenated to produce models that are consistent
with reasonable hydrophobic burial, electrostatic interactions, main-chain
hydrogen bonding and excluded volume. Structures which meet these
requirements are then refined by minimizing the non-local interaction energy
using Monte Carlo simulation. However, although this can help to eliminate
models that do not form “protein-like” molecules, it can be difficult to gauge
those which are most similar to the native structure. Hence, the algorithm
produces a number of models, resulting from different random seed values,
which aims to address the problem of finding non-optimal models from local

energy minima in the optimisation procedure.

4.1.2 Assigning structural predictions to fold groups
Structure comparison methods have proved very successful in detecting
distant structural relationships between experimentally derived structures
(Orengo and Taylor, 1996, Holm and Sander, 1998; Kolodny et al., 2005).
Indeed, Chapter 2 described the ability of the CATHEDRAL algorithm to
assign a putative fold to novel structures in the PDB by scanning against
previously characterised representatives from the CATH database.

A previous collaboration between the CATH group and the De La Cruz et al.
(de la Cruz et al, 2002) explored the use of structure comparison for
assigning a known fold to ab initio models generated by the Rosetta method.
They found that the correct CATH fold could be recognised as the top hit
using models within 6A of the native structure, for half the data set.
Although this result showed that structural comparison methods can still be
applied to theoretical models, it was only tested on 4 proteins. Furthermore,
it relied on a relatively slow structural comparison algorithm (SSAP) and was

not able to determine automatically good models in advance.
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Simons et al. (Simons et al., 2001) took a similar approach by comparing their
Rosetta models against the PDB using DALI (see Section 1). Although the
closest relative in the PDB was only found for around 50% of models, for
matches with a Z-score greater than 4, they showed that structural
comparison methods were applicable for models that deviated from the
native structure by as much as 7A. They suggest that as ab initio methods
improve, it may even be possible to recognise functional families for novel

genes through an intermediate structure prediction stage.

4.1.2.1 Comparing protein structure models using MAMMOTH

In choosing structure comparison algorithms for matching ab initio models to
fold groups in CATH or SCOP, an important consideration is how well the
algorithm can cope with model structures in which the secondary structures
are not well defined. A recent structure comparison method (MAMMOTH,
(Ortiz et al., 2002)) was specifically designed for comparing theoretical
models with experimental structures. The algorithm was designed to focus
purely on Ca co-ordinates, avoiding any dependence on primary sequence,
secondary structure or contact maps. This can be especially important when
using ab initio models where the latter two features may not be fully formed

with respect to the native structure.

MAMMOTH calculates its alignments in four stages. Firstly, each protein
structure is broken into heptapepide fragments. Each heptapeptide is then
described by a set of unit vectors between successive Ca atoms and
translated to the origin. Using standard minimisation technique (McLachlan,
1979), a rotation matrix and unit vector root mean square (URMS) is
calculated between all fragments pairs and converted to a similarity score
based on the expected URMS between two random sets of n unit vectors
(URMSR). Scores between all possible pairs of heptapeptides are then taken
to populate a matrix, from which a global alignment is calculated using
dynamic programming (Needleman and Wunsch, 1970). An overall
structural similarity between two given structure is calculated using a
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variant of the MaxSub algorithm to determine the percentage of
corresponding residues (PSI) less than 4A in 3D. The PSI is then converted
into a P-value using a distribution of random structural alignments from a
data set of unrelated SCOP domains. MAMMOTH is able to detect 50% of
fold matches at the 99% confidence level, compared to 60% for DALI. Given
its superior speed, the authors suggest this makes it a relatively accurate tool
for structure comparison of large databases. It certainly lends itself to
suggesting putative fold matches, which may then be aligned with a more

accurate, computational intensive method.

4.2 Aims

The purpose of the method presented here was to build on the work of de la
Cruz group in Barcelona, Spain (de la Cruz et al., 2002) by developing a fast
and novel protocol (MODMATCH) for determining the correct fold for a
given target structure by comparing ab initio models from the Rosetta
method to the CATH fold library. This work was undertaken in collaboration

with Xavier de la Cruz.

The first objective was to reduce a large set of initial predictions (999 models
per target structure) to a smaller sample, ideally of higher quality. This was
to both increase the speed of the structure comparison and reduce the noise
generated by erroneous hits between CATH library domains and bad
models. The second aim was to optimise the accuracy of fold assignments by
coinbining structural similarity scores from the MAMMOTH (Ortiz et al,,
2002) and SSAP (Taylor and Orengo, 1989) algorithms using a Support
Vector Machine (SVM).

For this work, the MAMMOTH algorithm was utilised to identify putative
folds from a CATH library which could then be more accurately aligned with
SSAP. This is analogous to the approach presented in Chapter 2 in the
implementation of CATHEDRAL, where GRATH was used to pre-select
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similar CATH folds within multi-domain protein chains to be aligned by
SSAP. However, CATHEDRAL was thought to be unsuitable for this work as
it was not designed to handle low resolution models where secondary
structures (which form the basis of the GRATH algorithm) may not be fully
formed. The use of SSAP in this work as an accurate structure comparison
method was thought to be an improvement on DALI (used by Simons et
al.(1999)) because DALI relies on conserved contacts to align residues, which
again may not necessarily be present in theoretical protein structure models.
The overall goal was to improve the assignment of folds to ab initio models
by developing a fast, accurate protocol whereby the ab initio models could be
assigned a fold in the CATH database, in a similar fashion to the way

experimental structures are classified.

4.3 Methods

This section describes the data sets used to benchmark the MODMATCH

protocol and the details of the superposition of structures and models used
in this method.

43.1 Dataset of ab initio structure predictions

A dataset was obtained from the Baker group (Simons et al., 2001) of ab initio
structure predictions for 34 single domain target structures. This spanned all
of the three major CATH protein classes (mainly alpha, mainly beta, alpha-
beta, few secondary structures) (Table 4.1). A total of 999 predictions were
provided by the Rosetta method for each target, resulting in a total of 33966
models (34 x 999) that could potentially be scanned against the CATH

database.
Class Number of target structures
1 (mainly alpha) 14
2 (mainly beta) 7
3 (alpha-beta) 12
4 (few secondary structures) 1

Table 4.1 Class distribution of target structures in the data set
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4.3.2 Comparing ab initio models to native structure

The quality of the models was assessed by superposing them onto their
native structure. However, for a given target structure, the Rosetta models do
not consistently predict conformation for all of the residues. Therefore, these
residues were removed from the co-ordinate (PDB) file for each native

structure before the superposition.

4.3.3 Superposition of models

For each target PDB, all 999 models were superposed (against one another
and against their native structure) using their sequence and a Root Mean
Squared Deviation (RMSD) was calculated on the C-alpha co-ordinates. From
this, a SAS score ( (Equation 4.1) was also determined, as this has been
shown to be a useful discriminator of structural similarity across proteins of
different sizes by accounting for the number of aligned residues (Kolodny et
al., 2005).

100X RMSD
SAS = N (Equation 4.1 SAS score. N = aligned residues)

434 Representatives from CATH v2.6

A library of 6003 structures from CATH v2.6 was obtained by selecting
representatives (SReps) from each cluster of 35% sequence identity relatives
to provide a representative sample of domains for the fold assignment in the
MODMATCH protocol. These will subsequently be referred to as the library
structures. CATH folds are described by a code in the format:
“Class.Architecture.Fold” (e.g. 1.10.10).

44  Protocol development and Results

The speed of the MODMATCH protocol was increased by reducing the
number of Rosetta models that were required to be compared to the CATH
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library. In addition, a scoring scheme was optimised using a Support Vector

Machine to increase the accuracy of fold assignments for each target

structure in the data set. This section is divided into three main parts:

1.

44.1

Assessment of the relative performance of MAMMOTH and SSAP for
identifying the correct fold group in a database search.
Exploring the correlation between the quality of ab intio models and
protein class.
Development and optimisation of the MODMATCH protocol

a. Selecting a reduced sample of models to search against the

CATH library using MAMMOTH.

. Optimising the number of putative fold groups identified by

the MAMMOTH search to scan again using the slower, more
sensitive SSAP algorithm.

. Developing a new scoring scheme to predict the correct CATH

fold for each target structure, by exploiting a Support Vector
Machine (SVM) to combine alignment scores from
MAMMOTH and SSAP.

Assessing the performance of the MAMMOTH
structure comparison method as a fast filter for

MODMATCH

It was hypothesised that the speed of the MODMATCH protocol could be

enhanced by applying a fast initial search of the CATH library using
MAMMOTH. Therefore, both SSAP and MAMMOTH were assessed to

determine their comparative performance in detecting structures with

similar folds.

Structure comparison methods have been shown to vary in performance for

detecting fold similarities (Kolodny et al., 2005). This is especially true for

small domains, such as alpha helical bundles where the addition of one helix

can change the overall fold. In order to investigate the performance that
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could be expected on the Rosetta model data set, the equivalent native
structure in the PDB for each target was scanned against the CATH library
using MAMMOTH and SSAP. Comparisons were scored and ranked using
the MAMMOTH Z-score and SSAP SAS score.

Table 4.2 shows that MAMMOTH and SSAP demonstrate comparable
performance when seeking to match the correct fold in the CATH library.
MAMMOTH finds the correct fold as the top hit for 23 out of 34 of the native
structures, compared to 26 for SSAP. Given that MAMMOTH is around 50
times faster than SSAP, this is an impressive performance. However, the
ROC curve analysis shown in Figure 4.1 suggests that overall SSAP is a better
at recognising fold similarities when all SReps in the fold groups are
considered, with coverage of 75% versus 58% for MAMMOTH at a 5% error
rate. Combined with the ranking results, this supports the assertion that
using SSAP to compare models against the CATH library would add value
for fold prediction, after an initial MAMMOTH filter.

Rank | Mammoth | SSAP

1 23 26

2 3 1

3 0 1

4 0 0

5 1 0

6 1 0

7 0 0

8 1 1

9 0 0

10 1 0
>10 1 2

Table 4.2 The frequency at which the correct fold appears when scanning
the native structure against the CATH library using MAMMOTH/SSAP.
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Figure 4.1 ROC curve analysis of MAMMOTH/SSAP for comparing native
structures to the CATH library.

4.4.2 Exploring the correlation of model quality with
protein class
The work of de la Cruz et al. (2002) suggested that the average quality of ab
initio models varies with protein class. More specifically, that protein
structures containing beta-sheets were harder to predict than those that
contained mainly alpha helices. This is because helices are formed from local
interactions, whereas beta sheets are more dependent on the tertiary
structure of the protein. In order to explore whether the performance of the
Rosetta modelling protocol varied with the class of the target structure and
whether the MODMATCH protocol needed to be tuned for different classes
of protein, all models were superposed onto their native structure as detailed

in Section 4.3.2.

Figure 4.2 shows that ab initio predictions can vary considerably from the
native structure, with only 16% of models possessing a RMSD less than 5A.
Furthermore, there is a substantial number of models with a RMSD greater

than 9A. However, looking at Table 4.3 it can be seen that the average RMSD
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of models against each target structure varies from around 2 to 104, which
suggests that the Rosetta method is better at modelling some targets than

others.

Table 4.4 shows the average RMSD to the native structure for models within
a particular CATH structural class. De la Cruz et al. (de la Cruz et al., 2002)
found that beta sheets tend to be harder to predict, however, the class 2
models in the data set only have a slightly higher RMSD to native than class
1. Looking at the distributions of RMSDs for each protein class in Figure 4.3,
it can be seen that classes 1 (all alpha) and 2 (all beta) look fairly similar (with
a peak around 9A), although class 1 also shows some models below 4A that
are not seen in class 2. The distribution for class 3 (alpha-beta) shows a
similar peak at 9A, although the largest peak is at 6A. It is hard to say
whether this is peculiar to the data set used, or whether folds with a mixture
of alpha and beta regions are easier to predict. The distribution for class 4
(few secondary structures) is narrow and initially appears to be different to
the other classes; however, it is probably due to the fact that there is only one

class 4 protein in the data set — its mean is still around 8A (Table 4.4).
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Target PDB | Average RMSD to Native | CATH Fold | Size (residues)
1res 2.263 1.10.10 35
lerd 5.850 1.10.10 29
2fow 8.030 1.10.10 66
1leb 9.297 1.10.10 63
2ezh 9.814 1.10.10 65

1mzm 9.071 1.10.110 71
lutg 9.605 1.10.210 62
1nkl 7.722 1.10.225 70
5icb 8.945 1.10.238 72
1hsn 8.129 1.10.30 62
2hp8 8.728 1.10.810 56
2erl 7.292 1.20.50 35
1nre 9.722 1.20.81 66
1c5a 8.765 1.20.91 62
1nxb 9.581 2.10.60 53
1tpm 8.110 2.10.70 41
2bds 6.581 2.20.20 21
1pft 5.373 2.20.25 36
1qyp 8.443 2.20.25 42
1sro 9.201 2.40.50 66
lcsp 10.026 2.40.50 64
1pgx 7.116 3.10.20 57
1gbl 7.641 3.10.20 54
2ptl 9.357 3.10.20 60
lorc 7.396 3.30.240 56
laa3 8.569 3.30.250 56
laho 5.547 3.30.30 31
layj 8.405 3.30.30 46
2sn3 8.965 3.30.30 50
lhev 6.049 3.30.60 25
1pce 6.615 3.30.60 30
1tih 7.453 3.30.60 37
lctf 8.362 3.30.70 67
1vix 8.110 4.10.40 36

Table 4.3 Average RMSD of all models against their native structure.
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Class Average RMSD to native
for targets in data set
1 (mainly alpha) 7.77
2 (mainly beta) 8.19
3 (alpha-beta) 7.62
4 (few secondary structures) 8.11

Table 4.4 Average RMSD to native for all models in a particular structural
class in CATH

Overall, comparison of the quality of the models for the different protein
classes did not show a difference in RMSD large enough to merit tuning the

protocol for different protein classes.

4.4.3 Development and optimisation of the MODMATCH
protocol
A new protocol (MODMATCH) was developed for increasing the speed and
accuracy of identifying the correct fold in a search of the CATH library with
a sample of ab initio models for a given target structure. This was achieved by
performing a fast initial scan of the library using the MAMMOTH program
to identify putative fold matches which were then explored further using the
slower, yet more sensitive, SSAP algorithm. A further increase in speed was
gained by reducing the number of models searched against the CATH library
for a given target structure. The steps involved in the MODMATCH protocol
are shown in Figure 4.4. The parameters M and N were optimised to increase
the proportions of correct folds recognised, while maintaining the speed of
the protocol. The optimisation procedure is described in the following

sections.
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Figure 4.4 Outline of the protocol for scanning Rosetta models for a given
target PDB structure, against the CATH fold library

4431 Optimising the selection of representative models from each target structure
Reducing the set of 999 models for each target structure to a smaller set for
structure comparison will increase the speed of the protocol and reduce the
noise from bad models. This section describes the strategy used for selecting
better models for the structure comparison stage. During the ab initio
prediction optimisation, models are generated using a suitable energy
function that seeks protein-like features. It was hypothesised that it would be

possible to identify a subset of such models which would comprise a
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majority of structurally similar predictions with a smaller number of outliers.
More specifically, that the predictions that (on average) superposed best onto

the other models, were most likely to be closer to the native structure.

All models were superposed onto one another (as detailed in Section 4.3.3)
and RMSD and SAS scores were calculated. Both scores were analysed to
assess which would prove most useful for selecting models across all target
structures in the data set. Figure 4.5 shows distributions of these scores for all
models in the data set. It can be seen that the models are quite diverse in
their similarity to one another, with the majority between 7A and 10A. As
both RMSD and SAS distributions are approximately normal, calculating the
average superposition score for a given model over all other models would
give a meaningful measure of its relationship to these models for a particular
target structure. (Equation 4.2 shows the calculation of this score,

Modmean, for both RMSD and SAS scores.

Modmeany,,g, = %Z RMSD(m,,, ,m,) (Equation 4.2 b)
i=1

Modmeang,; = lz SAS(m,, ,m,) (Equation 4.2 b)
Q=]

Calculation of the average RMSD of a model to all other models; b)
Calculation of the average SAS score of a model to all other models; where n

=998 and ms. is the given model .
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Figure 4.5 Distribution of (a) RMSD (b) SAS scores for superpositions

between all models of each target PDB structure.

To explicitly test the hypothesis that better quality models will have lower
values of Modmean, the Modmean scores were plotted against the RMSD and

SAS scores obtained by comparing the models to the native structure (Figure



166
4.6). As can be seen there is a linear correlation, albeit not a strong one, for
both Modmeanrmsp and Modmeansas. Hence, it seems that models which
superpose well onto the native structure are indeed generally similar to the
other predictions of the target. For effective fold assignment through
structure comparison, it could be argued that it is not necessary to use all
good models, simply to reduce the number of bad ones. As the correlation
coefficient (R?) is slightly better for Modmeansas (0.6768 vs 0.6267), it was
decided to use this measure for the selection of models. It will subsequently

be referred to simply as Modmean.
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4.4.3.2 Selecting a smaller sample of good quality models for each target structure
A varying number (M) of models were selected by using their Modmean score
to see to what extent the model set could be reduced in numbers whilst

ensuring that a sufficient number of good models remained.

For each target structure, the models were ranked by Modmean and the top M
models in this list were selected, where M ranged between 1 and 150 (Figure
4.7). An analysis was made of the number of “good” models (i.e. those within
the top 50 models when ranked by their SAS score to the native structure) to
observe how many of these occurred within this set of N models. It can be
seen from Figure 4.7 that the percentage of good models appears to increase

linearly as more models are taken from the Modmean ranked list.

To calculate the number of good models that would be expected by chance,
the list of models for each target structure was also sorted randomly. This
process was repeated 1000 times and the average percentage of good models
in this random set plotted in Figure 4.7, for each sample size as before. It is
clear that ranking by Modmean does indeed enrich the sample set with good
models. For example, a random sample of 50 models would only contain 5%
of the good models on average, as opposed to 17% if a sample is selected

using the Modmean score.

Since this seemed to be a reasonable proportion of ‘good’ models and to
maintain the speed of the protocol, the top 50 Modmean ranked models
(Mod50) for each target structure were selected for scanning against the
CATH library.
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Figure 4.7 Models were ranked by their mean SAS score to other models
(ModmeansAS) and a sample of varying size was taken. The performance
was assessed based on the percentage of "good models" (within the top 50
when ranked by their SAS score to the native structure). This was

compared to selecting random models

4.43.3 Determining a reliable scoring scheme for the fast matching of the Mod50
models to the CATH library using MAMMOTH
Although MAMMOTH might not find the best alignment between two
structures, it is a valuable tool for identifying putative fold matches that may
then be analysed with a more accurate structural comparison method, such
as SSAP, to give improved alignments and structural similarity measures. To
optimise the performance of MAMMOTH as a filter, different scoring
schemes were explored. A multi-processor computer farm was used to scan
the Mod50 models for each target structure against the CATH domain
library, using MAMMOTH. The aim was to discover the best score to
discriminate between genuine fold matches and incorrect hits in the

database.
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MAMMOTH scores its structural comparison using a Z-score. As many of
the models may not be accurate representations of the true fold, a
considerable number of false matches would be expected. Moreover, some
areas of fold space are especially structurally diverse and hence a good
model may not produce high scores to all members of the correct fold in the
same way the native structure might. The efficacy of two scoring schemes
was explored to determine the best measure for detecting fold similarities

between the Mod50 models and domains in the CATH library.

Firstly, the average Z-score obtained for the Mod50 comparisons against all
library structures (SReps, see Section 4.3.4) in each fold was calculated (AvZ).
Secondly, the maximum Z-score (MaxZ) obtained between any model-SRep
pair was determined for each fold. Both scoring schemes were examined
using ROC curve analysis, where positive hits correspond to the CATH fold
group in which the native structure was classified.

Figure 4.8 shows that the MaxZ score to each fold group appears to be a
better discriminator of true matches than AvZ across the whole range of false
positive rates. It shows coverage of 50% at a low error rate (5%) compared to
only 40% for AvZ. This suggests that taking the highest scoring match for
each fold group would provide the best route to determining the correct fold.
This might be due to the inherent diversity of many fold groups and the fact
that even a good model could give a low score to a relative within the correct

fold group if it is very structurally different from the native target structure.
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Figure 4.8 Comparison of MaxZ and AvZ scoring schemes for discovering
fold matches using MAMMOTH. TPR = True positive rate or Coverage;
FPR = False positive rate or coverage of domain pairs which are not in the

same CATH fold

4.43.4 Optimising the number of putative fold groups to re-compare against the
Mod50 models using SSAP
The protocol was designed to identify N putative fold groups, from which a
representative structure (SRep) would be compared with SSAP against all the
Mod50 models for each target. As discussed in Chapter 2, when selecting the
most likely fold group matches to take forward to a SSAP scan, it is necessary
to consider the degree of residue overlap involved in the model/fold match
as well as the score (MaxZ). Matching smaller structural motifs may produce
a reasonable score; however, it is not necessarily indicative of an overall fold
similarity. Nevertheless, setting too stringent an overlap cut-off can cause
genuine hits to be lost. Different overlap cut-offs were explored to see
whether these could be used to reduce the number of fold hits that were
taken forward for the SSAP comparison. For each target structure, the fold
hits were ranked by their score (MaxZ) and a range of overlap cut-offs

explored.
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Figure 4.9 shows a cumulative plot of coverage versus the rank of the true
hit. It is evident that even an overlap value of 40% gives a 20% increase in
coverage when taking the top 100 fold hits. Increasing the overlap cut-off to
70% results in the loss of some true fold matches and hence the curve levels
off at 91% coverage. As MAMMOTH is used here as a pre-filter for SSAP, it
was undesirable to lose many true fold matches where SSAP may have
found a better alignment. Nevertheless, to enhance the speed of the protocol
it was important to reduce the number of SSAP comparisons as much as
possible. It was decided that an overlap cut-off of 55% provided the best
balance between coverage and speed, as this ensured that 97% of true hits
were in the top 100 hits. It was felt that taking the top 100 fold hits forward
for rescanning by SSAP provided a reasonable compromise between

coverage and speed for the MODMATCH protocol.
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Figure 4.9 Cumulative coverage plot showing the MaxZ score performance
at a range of overlap cut-offs (%). Normal denotes that no overlap cut-off

was used.

Table 4.5 shows the rank (by MaxZ) of the correct fold in the MAMMOTH hit
list for each target structure using an overlap cut-off of 55%, along with the
average RMSD of the models to the native structure. It is perhaps surprising
to note that targets where the average quality of models is good, such as laho
and lhev, rank the correct fold fairly low in the list. By contrast, target 2ezh
has a generally poor selection of models, yet MAMMOTH ranks the correct
fold as the top hit. This may be due to the fact that selecting models using the
Modmean score fails for laho and lhev and produces a bad sample, hence
creating noise in the data set. A future improvement to MODMATCH might
require exploring other strategies for reducing the model data set (see
Discussion). Alternatively, it could be because these Rosetta models are built
from a fragment library of known structures and hence highly populated
folds like the arc repressor fold group (1.10.10) to which 2ezh belongs, could
be better modelled.
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Target PDB | Average RMSD to Native | Rank | CATH
Fold
1res 2.263 1 1.10.10
1pft 5.373 8 2.20.25
laho 5.547 24 3.30.30
lerd 5.850 8 1.10.10
lhev 6.049 276 3.30.60
2bds 6.581 172 2.20.20
1pce 6.615 40 3.30.60
lpgx 7.116 1 3.10.20
2erl 7.292 38 1.20.50
lorc 7.396 0 3.30.240
1tih 7.453 45 3.30.60
1gbl 7.641 1 3.10.20
Inkl 7.722 1 1.10.225
2fow 8.030 1 1.10.10
1tpm 8.110 23 2.10.70
lvtx 8.110 220 4.10.40
lhsn 8.129 1 1.10.30
lctf 8.362 1 3.30.70
layj 8.405 3 3.30.30
lqyp 8.443 4 2.20.25
laa3 8.569 1 3.30.250
2hp8 8.728 3 1.10.810
1c5a 8.765 1 1.20.91
5icb 8.945 1 1.10.238
2sn3 8.965 4 3.30.30
1lmzm 9.071 1 1.10.110
1sro 9.201 1 2.40.50
1leb 9.297 1 1.10.10
2ptl 9.357 1 3.10.20
Inxb 9.581 2 2.10.60
lutg 9.605 318 {1.10.210
1nre 9.722 1 1.20.81
2ezh 9.814 1 1.10.10
lcsp 10.026 2 2.40.50

Table 4.5 Table showing rank of correct fold for each target PDB and the
average RMSD to native.
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4.4.3.5 Re-comparing the Mod50 sample of ab initio models to the CATH library
using SSAP

To implement the second structure comparison stage in the protocol, SSAP
was used to realign the Mod50 models against the best matched SRep from
the top 100 fold groups (FoldHits100). This resulted in 5000 (50 x 100)
comparisons per target structure. A SAS score was calculated for the match
of each of the 50 models (Mod50), for a given query target structure, against
each fold group (FoldHits100). Then, for each fold group the maximum SAS
score (MaxSAS) was determined. This was compared with the MaxZ score
(with no overlap cut-off) from the earlier MAMMOTH comparisons. The

performance was again assessed using a ROC curve.

Figure 4.10 shows that both SSAP and MAMMOTH perform well, although
SSAP actually performs better at low error rates (a 15% increase in coverage
at a 5% error rate). This confirms that the superior performance of SSAP
compared to MAMMOTH for identifying fold similarities shown in Section
4.4.1 is not confined to experimental structures.
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Figure 4.10 ROC curve analysis of SSAP and MAMMOTH for Mod50 vs.
FoldHitslIOO comparisons.

4.43.6 Optimising the scoring scheme to predict the correct fold for ah initio
models using an SVM
Although SSAP appears to be superior to MAMMOTH for identifying the
correct fold when scanning the Rosetta models against the CATH library, it is
conceivable that each method performs better with different types of
structures. Furthermore, it has been shown that the performance of both
algorithms can be improved by accounting for the percentage of aligned
residues, as well as using different measures of structural similarity (SSAP
MaxSAS and MAMMOTH MaxZ). To make use of all this information, a
Support Vector Machine (SVM, see Section 1) was optimised to ascertain
whether it could detect fold similarities more accurately by combining scores

from MAMMOTH and SSAP alignments.

For each target structure, scores for each fold were extracted from the

MAMMOTH and SSAP results, giving a set of structural similarity scores for
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each fold in the CATH library. The SVMLight package was trained to
combine these scores (overlap, protein class, structural similarity scores)
using an RBF kernel. The aim was to produce a score that was superior at
scoring folds hits for each target structure than the MAMMOTH or SSAP

scores alone.

For each target PDB structure, a series of scores from the Mod50 versus the
top 100 fold comparisons using MAMMOTH and SSAP were encoded in a
pattern file. Each feature set corresponds to values for each fold for each
target PDB structure — this gave 3400 feature sets (34 target structures
multiplied by 100 fold representatives).

Average MAMMOTH Z-score (AvZ).

Average percentage of aligned residues from MAMMOTH.
Highest Z-score from MAMMOTH (MaxZ).

Highest percentage of aligned residues from MAMMOTH.
Average SSAP SAS score (AVSAS).

Average percentage of aligned residues from SSAP.
Lowest SAS score from SSAP (MaxSAS).

® N o gk W b=

Highest percentage of aligned residues from SSAP.

Each feature in the pattern file was then scaled to values between 0 and 1, to
avoid any bias towards a specific score in the SVM. It is more than possible
that there might be some redundancy in the list of features above (for
example, average and highest MAMMOTH Z-scores), which can affect the
performance of other machine learning methods, such as neural networks.
However, SVMs appear to not be affected by irrelevant or duplicated

features (A. Lobley, personal communication).

Given that the training file only contained 34 true positives out of a total of
3400 patterns, an option in SVMLight that adds more weighting to

misclassification of positive examples was used. This —j parameter was set to
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108, which was the ratio by which the negative examples outweigh the

positive hits.

A Radial Basis Function (RBF) kernel was chosen, which required
optimisation of two parameters, C and y. This optimisation was performed
using a cross-validation approach, whereby the scores for a given target PDB
were successively removed while the SVM was trained on the remaining
targets — i.e. for a given optimisation cycle, data from 33 targets were used
for training and the remaining target was used as the test set. For each pair of
values for C and vy, the performance was measured as the area under a ROC
curve (essentially the same graph as Figure 4.10 but using the SVM score)

and averaged over all training sets.

Table 4.6 shows a selection of the optimisation results, sorted by the ROC
curve area. A value of 0.0625 was taken for both C and y in the final SVM
model as this gave the maximal ROC area from range of optimisation values

explored.

C Y ROC
Area
0.0625 | 0.0625 | 0.8583
0.03125 | 0.125 0.8582
0.125 0.03125 | 0.8573
0.0625 | 0.03125 | 0.8558
0.03125 | 0.0625 | 0.8554

2 0.5 0.7986
8 0.25 0.7959
1 1 0.7902
2 1 0.7893
4 16 0.6517
8 16 0.6513
16 16 0.6510

Table 4.6 Optimisation of SVM parameters, C and y, when training on
MAMMOTH/SSAP alignment scores.
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Results from the optimised SVM described above were compared against the
performance of SSAP and MAMMOTH (Figure 4.11). It can be seen that the
resulting score from the SVM produces a 15% increase in coverage over
SSAP at a low false positive rate (5%). Moreover, that the SVM produces a
superior score at all error rates, suggesting it is better at discriminating

between true and false fold matches.

The overall objective of this protocol was to assign a fold to each of the 34
target structures. With this in mind, each fold was ranked by its SVM score to
determine how often the top hit was the correct fold. This was compared to
ranking folds by their MaxZ and MaxSAS scores for MAMMOTH and SSAP
respectively. Table 4.7 shows that SSAP outperforms MAMMOTH by nearly
10%, when looking at the top hit. However, the SVM finds the correct fold
45.5% of the time as the top hit and coverage of 57.6% in the top 3 folds,
compared with 51.5% and 42.4% for SSAP and MAMMOTH respectively.
This suggests that an SVM is able to score structural similarity more
effectively by combining measures of alignment quality (such as overlap and
superposition scores), than MAMMOTH or SSAP are able to encapsulate in a

single score.
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Figure 4.11 ROC curve comparison of SSAP, MAMMOTH and SVM scores

for assessing the correct fold for model matches.

Rank MAMMOTH SSAP SVM

1 333 42.4 45.5
2 6.1 6.1 6.1
3 3.0 3.0 6.1
4 3.0 3.0 6.1
5 3.0 3.0 0.0
6 6.1 3.0 3.0
7 0.0 3.0 0.0
8 3.0 0.0 0.0
9 0.0 0.0 0.0
10 3.0 0.0 0.0
>10 39.4 36.4 333

Table 4.7 Table showing percentage of correct fo ds when ranking hits by
MAMMOTH, SSAP and SVM score

4.5 Discussion and Future Work

The MODMATCH protocol presented in this work was designed to provide

a rapid and accurate means of assigning ab initio models from the Rosetta
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method (Simons et al., 1997) to fold groups in the CATH database. A novel
approach was developed to provide a subset of models from the large
number of models for each target whereby bad models could be eliminated.
It was shown that ranking each list of models by their respective Modmean
scores enabled a subset to be selected that was approximately three times
more enriched with good models than would be expected by random
selection. This might be specific to the Rosetta algorithm, but it is not
unreasonable to think that other modelling techniques would conform to this
trend. Given that the correlation between the Modmean score and model
quality was not especially strong, the work could perhaps be improved by
creating clusters of similar models based on their RMSD. The average
Modmean score for each cluster could then be calculated and used in the
model selection process. This may produce a better quality set to be scanned
against the CATH library, by eliminating clusters models that have a low
Modmean score. This will reduce the effect of large groupings of relatively

poor models.

There did not appear to be a class-bias between the average qualities of the
Rosetta models compared to their native structures. However, the average
size of the models was not identical between classes and it could be argued
that this should be taken into account, as larger structures can be harder to
predict (Simons et al., 2001). For future studies, it would be interesting to
perform a more thorough analysis to see if, when length is taken into

account, the all-beta structures do in fact produce lower quality models.

MAMMOTH was shown to be fast and reasonably accurate (55% coverage
for a 5% error rate) for identifying folds in the CATH library that were in the
same fold group to models in the data set. It was able to rank the correct fold
in the top 5 matches for over 50% of the data, although the correct fold was
below rank 100 for 4 of the targets. This performance was lower than
obtained when using MAMMOTH with native structures, which suggests
the drop was due to poor model quality. Despite the fact that MAMMOTH
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was specifically designed for comparing theoretical models with
experimental structures, it still does not perform as well as SSAP. The fact
that the SVM score (which combined SSAP and MAMMOTH scores) showed
superior performance to both SSAP and MAMMOTH suggests these
structure comparison methods were complimentary to some extent. It would
be interesting to investigate for which cases each method excels or fails at

identifying the correct fold.

The overall protocol described here is both fast and suitable for large scale
fold assignment for theoretical structures. The SVM score here is able to
assign the correct fold at nearly 60% coverage with a 5% error, versus the
50% annotation achieved by Simons et al. (2001). As techniques improve for
ab initio fold prediction, the strategy presented in this chapter could make the

use of structure comparison a viable addition for genome annotation.
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Chapter 5 Discussion and

Conclusions

The aim of the work presented in this thesis was to develop a range of
computational methods to improve the automated classification of protein
structures into the CATH domain database. Where Chapter 2 dealt with
detecting domain folds within the context of multi-domain proteins, Chapter
3 aimed to distinguish between functional sub-families within diverse
evolutionary superfamilies. Chapter 4 applied structure comparison methods
to theoretical ab initio models to predict the corresponding fold group in the
CATH database.

Chapter 2 described the development of CATHEDRAL for assigning domain
boundaries and folds to multi-domain proteins by exploiting the recurrence
of folds in different multi-domain contexts. CATHEDRAL combines the
power of two established structural comparison algorithms (GRATH and
SSAP) to produce a fast and accurate protocol for fold recognition and
domain assignment. On the data set used, CATHEDRAL found the correct
domain boundaries within 15 residues in 86% of cases. However, it is unable
to assign ~10% of the domains. These domains are often missed by GRATH
due to their small size or because their secondary structures are poorly
déﬁned. Alternatively, although the correct domain is identified, it is
distantly related to the query, so this structural variation results in
incomplete alignments and hence erroneous domain boundaries. For these
more difficult cases, it is essential that domain boundaries are manually

verified so as not to propagate errors in the CATH database.

In order for CATHEDRAL to assign domain boundaries, it must perform a
residue-based structural alignment (in this case using SSAP). Despite the fact
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that automatic protein structure comparison and alignment can be traced
back to the pioneering work of Rossmann and Argos in the 1970s, it is still an
active area of research. It can be argued that one of the reasons for this is that
structure comparison methods are applied to a vast number of different
problems. For example, using algorithms to calculate the structural change
that occurs on ligand binding requires a different emphasis to aligning all
equivalent residues to determine how proteins have changed their 3D
structure within an evolutionary superfamily. The latter problem of
homologue detection can be performed very effectively using secondary
structure methods such as GRATH (Harrison et al., 2003) or SSM (Krissinel
and Henrick, 2004) for more closely related proteins. However, within
diverse superfamilies, creating alignments between proteins and assigning
their significance can be problematic, as paralogous genes where function
has changed substantially can show a large amount of structural variation,

despite sharing a common fold (Reeves et al., 2006).

On a practical level, even the most powerful structural alignment methods
such as DALI, SSAP and STRUCTAL are optimised to achieve a balance
between structural similarity and aligning all equivalent residues. As such,
the resulting alignment might be limited to the conserved core of the fold,
rather than determining all evolutionary equivalent parts of the structures.
This is evinced by the fact that even DALI and SSAP are often unable to find
a full alignment (50% of residues in 50% of protein pairs) when compared to
manually curated data sets such as HOMSTRAD and BaliBase. Kolodny et al.
(2005) suggested that no single structure alignment algorithm will always
find the best alignment between two structures and hence it is better to apply
several methods and choose the one that produces the best RMSD on
superposition. However, their assessment did not take into account the fact
that those alignments with higher RMSD might have actually aligned more
biologically equivalent residues. Again, the choice of structural comparison
algorithm depends on the application. A method that generally aligns fewer

residues but is able to accurately assess the significance of the alignment to
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detect homologues or fold relatives is useful for structural clustering and
even classification. However, if one seeks to analyse how proteins have
evolved within their structural superfamilies, it is vital to have as full an
alignment as possible. Without this, important information on how domains

have evolved new functions could be lost.

CATHEDRAL was benchmarked to detect the component folds within a
multi-domain context. However, some argue (Kolodny et al., 2006) that the
idea of partitioning protein structure space into discrete fold groups is no
longer appropriate. Indeed, there is evidence for a fold continuum, certainly
within some areas of fold space (Harrison et al., 2002). As such,
benchmarking structure comparison methods in a binary fashion using
SCOP or CATH, might unfairly penalise a method for finding genuine
structural similarities that are not represented by the classification system.
However, as was shown in Chapter 2, it is vital to consider the relative length
of the structural overlap discovered by structure alignment, otherwise the
alignment may simply represent the detection of super-secondary structure
motifs that are present in a diverse range of folds and thus are not indicative
of a meaningful homologous relationship or fold similarity. In fact, recent
analysis of the CATH database has shown that the majority of “structural
overlaps” detected by some structural comparison algorithms are actually
the result of these common motifs occurring between small domains with

less than 6 secondary structures (A. Cuff, unpublished data).

Although the CATHEDRAL algorithm was optimised to make CATH fold
assignments to multi-domain chains, it is certainly possible that this might
not always be necessary to correctly assign domain boundaries. In some
cases, finding a similar fold could still alow CATHEDRAL to effectively
detect the hydrophobic core of each domain. Indeed, looking for such
structural cores are the basis of other domain prediction methods (e.g.
(Swindells, 1995)). Nevertheless, as the fidelity of predicted domain
boundaries in the query protein is dependent on the similarity to the
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matched domain in CATH, these boundaries might still be of suspect quality.
However, future work is underway to use a more intelligent system for
refining domain boundaries in these cases. One of the most common sources
of errors for all domain prediction methods is the lack of a concrete definition
for a domain. It would be interesting to examine whether this problem could
be alleviated by first assigning folds using CATHEDRAL and then adapting
other approaches (e.g. (Swindells, 1995; Holm and Sander, 1994; Taylor,
1999)) to refine the boundaries. For the purposes of building sequence
profiles, such as HMMs, for the analysis of genomic data, it is vital that these
boundaries are correct. Furthermore, as the PDB expands, it will become
increasingly difficult to manually classify structures into CATH and if
CATHEDRAL can be relied on to make more accurate assignments, manual
intervention will be restricted to novel folds and superfamilies. Other
additions to CATHEDRAL could be to annotate multi-domain chains at the
superfamily level, with the aim of aiding the assignment of protein function

through domain architecture information.

Chapter 3 dealt with designing a novel algorithm (FLORA) to predict the
functionally related protein domains in enzyme families from their structural
similarities. By combining patterns of sequence conservation and solvent
accessibility, the method was able to correctly predict the active site in ~80%
of cases. However, the templates it selected from structurally conserved
positions around this site did not always discriminate well between
functional homologues within a superfamily, in comparison with finding the

closest relative using global structure comparison (SSAP).

It could be argued that Designing algorithms to detect functional similarities
between proteins one of the most difficult problems in bioinformatics, not
least because a definition of protein function is highly context dependent.
Finding close homologues to the query protein via sequence or structure
similarity is often sufficient to transfer a whole range of functional

similarities such as enzymatic activity, cognate ligands and biological
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pathway information. However, as genes mutate randomly in different
organisms, they often become quite structurally different from their ancestral
protein. To predict at what point a mutation or indel will result in a change
in function is problematic as it is highly dependent on where they occur. As a
consequence, the vast majority of methods to predict function from structure
focus on identifying changes and similarities within known or predicted
functional sites. However, even within evolutionary families where proteins
exhibit similar functional (e.g. enzyme) activities, they might have converged
on a solution through different evolutionary pathways. For example, two
related proteins might have a highly similar enzymatic function but utilise
catalytic residues from slightly different parts of the structure (Todd et al.,
2002b) and therefore encompassing this function in a structural template

might become problematic.

Given the difficulties associated with characterizing protein function when
developing prediction methods, it is vital to clearly define the criteria on
which novel algorithms are benchmarked. Even if one looks to group
proteins by a common catalytic activity (as was done in Chapter 3), it is
important to select a representative data set. Given the very different ways in
which function changes across different superfamilies, it is important to
include as many as possible to show that a novel method is able to work
equally as effectively across the entire protein universe. A consistent
benchmark is currently lacking in the literature; there is not currently a
standard data set against which new methods should be compared. The most
probable reason for this is that assembling such a data set requires time
consuming manual analysis, especially to cover some of the largest protein

families, such as the P-loop hydrolases or the aldolases.

Furthermore, it is also important for the community to arrive at a consensus
as to the most pressing problems that need to be solved. The majority of
structure-based prediction methods are justified on the basis that there are

hundreds of new structures coming out of the structural genomics initiatives
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(SGIs) and it is therefore important to identify their function in order to
assess whether they should be prioritised for further experimental
investigation. The broad aim of the SGIs was to put the vast majority, if not
all, genomic sequences within the reach of homology modelling methods.
The result being that every protein would have a structure, should we need

to better understand its function for biotechnological or medical gain.

A successful protein function prediction algorithm should be able to rank the
closest functional relatives at the top of a database search and also provide a
reliable scoring function that is able to accurately discriminate between true
and false matches. The latter problem is often far more difficult to solve due
to the large structural variation observed in some protein superfamilies.
However, it could be argued that a method which is able to identify the
conserved residues that are particular to a specific biological function can tell
us more about how proteins evolve. The P-loop hydrolase superfamily
performed poorly using FLORA and this was most likely due to the
structural diversity observed across each of its constituent enzyme families.
As a consequence, CORA was unable to align a large number of residues
across the multiple structure alignment. New local scoring schemes could be
developed to increase the power of the CORASCORE for finding the closest
functional relative and providing a normalised score cut-off that can be used
to transfer function between all relatives within an enzyme family. As one of
the problems with the FLORA method was optimising both the template
construction and scanning procedures together, it would be interesting to use
SSAP to align relatives within a superfamily and instead look at which

residue positions are best able to identify domains with the same function.

Chapter 4 described the development of a new protocol (MODMATCH) for
assigning ab initio predictions of structural domains to folds within the
CATH database. The focus of the work was to ensure the method was
accurate in its fold assignments by implementing a two-stage structure

comparison process, following by machine learning using a SVM to combine
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alignment scores. By reducing the ab initio models for each target to a sample
set of models which on average were closer to the native structure (using the
Modmean score), it was possible to drastically reduce the number of
structure comparisons required. Although this latter process appeared to
work effectively for the test data set as a whole, it would be interesting to
look at targets where the Modmean score does not correlate with the quality
of the models. For example, to analyse whether it is more effective for models
that are generally close to the native structure, or whether it is particularly
powerful for models where the mean RMSD to native is low due to a smaller

number of outliers.

Over the past few years, substantial progress has been made in the field of ab
initio structure prediction, especially using the approaches of the Baker
group. Of particular interest is the work of Malmstrom et al. (Malmstrom et
al., 2007), that applied the Rosetta algorithm to small domains in the Yeast
proteome for which a structure prediction could not be made using
homology or fold recognition methods. The MAMMOTH structure
comparison method was used to make putative assignments for these
models to superfamilies in SCOP. A Bayesian approach was then used to
combine these data with functional annotation predictions to confirm
superfamily assignments. The authors’ use of MAMMOTH is
understandable given that it is such a fast algorithm and specifically
designed to compare protein structure models against experimental
structures, such as representatives from the SCOP database. However, as
was demonstrated in Chapter 4, SSAP was shown to significantly outperform
MAMMOTH for finding genuine structural relatives in the CATH database
from Rosetta models. Given that the Baker group had previously used DALI
to make such assignments (Simons, 2001), it is interesting that they chose
MAMMOTH for their automated pipeline due to its superior speed. It could
be argued that using a combination of MAMMOTH and SSAP could have

increased the number of assignments from Rosetta models.
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Overall, this thesis has shown that global structure comparison methods can
be modified and integrated into novel algorithms to assign domain
boundaries, inherit functional annotations and make fold predictions from
theoretical models. Despite this, there is still scope for improvement to the
basics of structure comparison methods. Ye and Godzik (Ye and Godzik,
2003), Shatsky et al. (Shatsky et al., 2004) and Menke et al. (Menke et al., 2008),
have all developed methods based on the idea that structural alignments
should incorporate a degree of flexibility to allow for conformational
changes. As some structures continue to be released from the structural
genomics projects with little functional annotation, as well as the prospect of
homology detection via structure prediction, there is likely to be increasing
focus on predicting function from structure. Although local motif methods
continue to be important, there is certainly scope for further utilising global
structure alignment in novel ways in order to improve methods’ ability to
detect homologous genes and better understand the relationship between

protein structure and function.
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