Hutchins, P.T.;
(2007)
In situ synthesis studies of silicon clathrates.
Doctoral thesis , University of London.
Text
U593108 Redacted.pdf Download (32MB) |
Abstract
Solid state clathrates have shown considerable potential as a new class of materials over the past 30 years. Experimental and theoretical studies have shown that precise tuning and synthetic control of these materials, may lead to desirable properties. Very little is known about the mechanism of formation of the clathrates and so the desire to have accurate synthetic control was, until now, unrealistic. This thesis address the problem using in situ synchrotron x-ray techniques. In this study, experiments were designed to utilise time-resolved in situ diffraction techniques and high temperature 23Na NMR, in efforts to understand the mechanism of formation for this class of expanded framework materials. A complex high vacuum capillary synthesis cell was designed for loading under inert conditions and operation under high vacuum at station 6.2 of the SRS Daresbury. The cell was designed to operate in conjunction with a custom made furnace capable of temperatures in excess of 1000 C, as well as a vacuum system capable of 10"5 bar. The clathrate system was studied in situ, using rapid data collection to elucidate the mechanism of formation. The data were analysed using Rietveld methods and showed a structural link between the monoclinic, C2/c, Zintl precursors and the cubic, Pm3n, clathrate I phase. The phases were found to be linked by relation of the sodium planes in the silicide and the sodium atoms resident at cages centres in the clathrate system. This evidence suggests the guest species is instrumental in formation of the clathrate structure by templating the formation of the cages in the structure. Solid state 23Na NMR was utilised to complete specially design experiments, similar to those complete in situ using synchrotron x-ray techniques. The experiments showed increased spherical symmetry of the alkali metal sites and suggested increased mobility of the guest atoms during heating. In addition, cyclic heating experiments using in situ diffraction showed reversible reintroduction of the guest species on heating and cooling, during formation and subsequent dissipation of the clathrate structure. The realisation of the synthesis of a guest free type II clathrate and the theoretical prediction of negative thermal expansion behaviour at low temperature prompted the use of laboratory x-ray diffraction and a liquid helium cryostat to test the prediction. Careful study of the region from 20 to 200 K showed a region of zero or negative thermal expansion in the predicted region the effect observed showed good agreement with theory.
Type: | Thesis (Doctoral) |
---|---|
Title: | In situ synthesis studies of silicon clathrates. |
Identifier: | PQ ETD:593108 |
Open access status: | An open access version is available from UCL Discovery |
Language: | English |
Additional information: | Thesis digitised by Proquest |
UCL classification: | UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Chemistry |
URI: | https://discovery.ucl.ac.uk/id/eprint/1445784 |
Archive Staff Only
View Item |