
REFERENCE ONLY

UNIVERSITY OF LONDON THESIS

Degree Year / I p o T Name of Author 0X A

COPYRIGHT
This is e thesis accepted for a Higher Degree of the University of London. It is an
unpublished typescript and the copyright is held by the author. Ail persons consulting
die thesis must read and abide by the Copyright Declaration below.

COPYRIGHT DECLARATION
I recognise that the copyright of the above-described thesis rests with the author and
tfiai no quotation from it or information derived from it may be published without the
prior written consent of the author.

Theses may not be lent to Individuals, but the University Library may lend a copy to
approved libraries within the United Kingdom, for consultation solely on the premises
of diose libraries. Application should be made to: The Theses Section, University of
London Library, Senate House, Malet Street, London WC1E 7HU.

REPRODUCTION
University of London theses may not be reproduced without explicit written
permission from the University of Londqn Library. Enquiries should be addressed to
the Theses Section of the Library. Regulations concerning reproduction vary
according to the date of acceptance of the thesis and are listed below as guidelines.

A. Before 1962. Permission granted only upon the prior written consent of the
author. (The University Library will provide addresses where possible).

B. 1962 -1974. In many cases the author has agreed to permit copying upon
completion of a Copyright Declaration.

C. 1975 -1988. Most dieses may be copied upon completion of a Copyright
Declaration.

D. 1989 onwards. Most theses may be copied.

Tills diesis comes witfyin category D.

L j This copy has been deposited in the Library of L y _____________ ___

□ This copy has been deposited in the University of London Library, Senate
House, Malet Street, London WC1E7HU.

LOAN

C:\Documents and SettingsMproctor. ULLALocal Settings\Temporary internet FBes\OLK36VC6pyright • theetedoc

Automated design of separation processes using implicit
enumeration and interval analysis

Andrew Robert Francis O’Grady

UCL

A thesis submitted for degree of
Doctor of Philosophy

in Chemical Engineering

June 2004

Department of Chemical Engineering
University College London

UMI Number: U593076

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U593076
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Acknowledgements

I would like to thank Dr. Eric Fraga for pointing me in the right direction when lost and

encouraging me when everything seemed hopeless. Thanks also go to Professor David

Bogle for his useful comments and suggestions.

I am grateful to all the staff and students of the Computer Aided Process Engineering

group for their great company and sound advice. The financial support provided by the

U.K. Engineering and Physical Sciences Research Council and the Department of Chem­

ical Engineering, UCL is also gratefully acknowledged.

Above all, thanks to Claire for staying awake while proof reading this and being so un­

derstanding over the years.

Abstract

This thesis concerns the automated synthesis of separation processes. A single multi-

component stream is to processed to give one or more pure component product streams. A

list of units are available for the task and the aim is to find the optimal flowsheet structure

in terms of cost. Implicit enumeration (IE) has been used to tackle the synthesis problem.

The main advantage of this approach is that IE does not require the development of a

superstructure.

A disadvantage of using IE is that it is necessary to discretise the values of unit operating

conditions in order for there to be a finite search space (Fraga et al., 2000). The user

may not have any idea of the effect of the discretisations on the quality of the solution.

In addition, the optimal solution may be missed between the discrete values chosen. The

purpose of this work is to address these issues.

Interval analysis is used to bound the effects of this discretisation. This allows the cost

of each particular flowsheet to be bounded based on the level of discretisation used. The

technique is demonstrated by bounding the effect of discretisation on the synthesis of

distillation flowsheets. The use of runs with progressively finer uniform discretisation

lead to the isolation of the optimal structure.

This result leads to the development of an adaptive algorithm that changes the discreti­

sation profile in response to bounding information ffom downstream in the search. The

algorithm operates recursively and isolates the optimal process structure for each stream

encountered. This builds up to the isolation of the overall optimal process structure for the

2

feed process stream. The effectiveness and performance of the new algorithm are evalu­

ated using two very different separation problems. The first is a distillation sequence and

the second a separation of a protein from a biological stream.

Contents

1 Introduction 13

1.1 Motivation... 14

1.2 Interval analysis ... 16

1.3 An adaptive a lgorithm .. 16

2 Separation synthesis methods 18

2.1 Introduction.. 18

2.2 Terminology.. 19

2.3 Heuristic and artificial intelligence (AI) approaches.................................. 20

2.4 Algorithmic m ethods... 21

2.4.1 Optimisation by mathematical programming 22

2.4.2 Automatic generation of the superstructure.................................. 25

2.4.3 Multi-component, multi product problems (MCP problems) . . . 26

3

CONTENTS 4

2.4.4 Hybrid methods.. 28

2.4.5 Stochastic m ethods.. 29

2.4.6 Implicit enumeration... 32

2.5 The automated synthesis package Jacaranda.. 34

2.5.1 The search algorithm ... 34

2.5.2 Re-use of solutions.. 37

2.5.3 The consequences of discretisation.. 37

2.6 Sum m ary .. 38

3 Interval analysis 40

3.1 Introduction.. 40

3.2 Interval arithmetic... 41

3.3 Interval functions... 43

3.4 Dependency... 45

3.5 Thick and thin functions ... 46

3.6 The nominal value .. 47

3.7 The root of a thick function... 48

3.8 Sum m ary .. 54

CONTENTS 5

4 Application of interval analysis 56

4.1 Introduction... 56

4.2 Implementation... 57

4.2.1 Intervals, units and streams... 57

4.2.2 The distillation unit m o d e l.. 58

4.2.3 Process streams.. 61

4.3 A hydrocarbon separation case study... 62

4.3.1 Case study definition.. 62

4.3.2 Results and d iscussion.. 63

4.4 S um m ary .. 71

5 Bounding the effects of flow discretisation 74

5.1 Introduction... 74

5.2 Discretisation and the re-use of solutions... 75

5.2.1 Re-use .. 75

5.2.2 Trace component flow s.. 76

5.2.3 Unit variable discretisation.. 81

5.3 Benzene recycle separation case s tu d y .. 82

CONTENTS 6

5.3.1 R e su lts .. 83

5.3.2 Discussion of re su lts ... 86

5.4 S um m ary... 90

6 An adaptive algorithm 91

6.1 Introduction.. 91

6.2 B o x e s ... 92

6.2.1 Splitting... 93

6.2.2 Other information associated with a b o x ... 94

6.3 Changes required to standard box splitting algorithms............................... 97

6.3.1 Bounding the global minimum.. 98

6.3.2 Updating the upper bound on the m inim um100

6.3.3 Stopping c r ite r ia ...101

6.3.4 Design F a ilu re ... 102

6.4 An adaptive algorithm ... 103

6.4.1 Initial enumeration s ta g e .. 103

6.4.2 Splitting stage ..105

6.4.3 Product requirements ... 108

6.4.4 Limiting the number of splits.. 109

6.5 Sum m ary ... I l l

CONTENTS 7

7 Case studies using the adaptive algorithm 113

7.1 Introduction... 113

7.2 Return to the benzene recycle case study...114

7.2.1 Results and discussion...114

7.2.2 Sum m ary.. 126

7.3 Application to Bioprocess syn thesis ..126

7.3.1 Bio-process s tre a m s ..127

7.3.2 Bio-processing u n i t s ..129

7.3.3 Results and discussion...132

7.3.4 Sum m ary.. 139

8 Conclusion 141

8.1 Intervals for cost bounding... 141

8.2 The adaptive algorithm ... 143

8.3 Future w o rk ..144

A Biological data 146

A.l Physical p roperties ..146

A.2 Unit data..147

CONTENTS 8

A.3 Unit design procedures..149

A.3.1 Ultrafilter and microfilter..149

A.3.2 Diafilter..152

A.3.3 Rotary drum filter.. 154

A.3.4 gel filtration..156

A.3.5 Solubilisation and renaturing ta n k ... 157

A.4 Biological nom enclature...159

List of Figures

2.1 A simulated annealing algorithm ..

2.2 The Jacaranda search algorithm...

3.1 Illustration of the solution,X for the criterion that f(x*) fl [—e, e] ± <j> . .

3.2 Illustration of the solution,X for the criterion that f{x*) C [—e, c]

3.3 Illustration of the solution, X for the criterion that 0 6 f (x *)

4.1 Solutions ranked according to the lower bound for capital c o s t

4.2 Solutions ranked according to the lower bound of the annual operating cost

4.3 Solutions ranked according to the lower bound of the capital cost, using

the nominal value as an upper bound..

4.4 Solutions ranked according to the lower bound of the operating cost using

the nominal value as an upper bound..

4.5 The optimal structure when considering annual operating c o s t

9

30

36

49

52

53

64

66

67

68

69

LIST OF FIGURES 10

4.6 The optimal structure when considering capital c o s t.................................. 69

4.7 Solutions ranked according to the lower bound of the annualised cost,

using the nominal value as an upper bound.. 70

5.1 Part of a solution structure that requires passage through three columns to

produce a stream containing mainly B and C .. 77

5.2 Part of a solution structure that requires passage through two columns in

order to produce a stream containing mainly B and C 78

5.3 Illustration of the interval distillation column design procedure................. 82

5.4 Cost bounds and process structures for initial and final runs of the benzene

recycle case s tudy .. 84

5.5 Highlighting the discrepancy in the results from two runs on the benzene

recycle case s tudy .. 88

6.1 An example of two boxes... 93

6.2 Box splitting procedure on the x variable.. 94

6.3 Box splitting procedure on the y variable.. 94

6.4 Building box costs and structure by unit design followed by solution of

sub-problems.. 96

6.5 A generalised box splitting algorithm for global optimisation (Csendes,

2 0 0 1) ... 97

LIST OF FIGURES 11

6.6 Constructing an inclusion function by successive optimisation of sub­

streams .. 100

6.7 The main adaptive separations synthesis algorithm 104

6.8 Box processing algorithm..106

6.9 Stopping criteria c h e c k ... 107

6.10 The effects of splitting on output streams..110

7.1 The optimal structure isolated by the algorithm for the benzene case study 115

7.2 The maximum split depth in the figure is 4, the original box has been split

8 tim es... 120

7.3 The maximum split depth in the figure is 4, the original box has been split

4 tim es... 121

7.4 Comparing the distribution of split depth and number of splits for two

splitting sch em es ... 122

7.5 The number of splits carried out against the number of components present

in the stream.. 123

7.6 The number of splits carried out on streams against the width of interval

flows.. 124

7.7 The number of splits carried out on streams against the nominal stream

flow ra te .. 125

7.8 The optimal bio-separation structure as identified by the adaptive proce­

dure with a cost of $1,3 3 3,231 ..136

LIST OF FIGURES 12

7.9 The top ranked bio-separation structure using the discrete method with a

cost of $ 1,592,405 .. 136

List of Tables

4.1 Feed stream composition.. 63

5.1 The discretisation of two similar streams using standard p rac tice 79

5.2 The discretisation of two similar streams using the trace co n cep t 80

5.3 Feed for the benzene recycle case s tu d y ... 83

5.4 Computational and search statistics... 86

7.1 The effect of maximum split value on the search.. 117

7.2 The number of occurrences of each split for various r u n s118

7.3 Feed for the case s tu d y ...128

7.4 Search statistics... 134

7.5 Split statistics for the bio case-study...139

A. 1 Physical properties for the case study... 147

13

LIST OF TABLES 12

A.2 Inclusion body properties..147

A.3 Bio-process unit design constraints...148

A.4 Capital and operating c o s ts ...148

A.5 Unit design param eters... 149

Chapter 1

Introduction

Process synthesis can be defined as the systematic generation of flowsheets for a chemical

process. The aim is to optimise the logical structure of processing units. The objective

function is usually financial but may include a measure of the environmental impact of

the process. The synthesis procedure takes place at the very early stages of plant design

but can have large cost implications. If poor decisions are made at this stage, then later

cost analysis of the resulting detailed flowsheet may mean that the process is deemed

economically infeasible.

The synthesis problem can take one of several forms which include:

• Determination of the optimal heat exchanger network configuration for a given

flowsheet structure. This may be based on pinch technology (Linnhoff and Hind-

marsh, 1983), mathematical programming or a combination of the two.

• Optimisation of the structure of a reactor network including identification of suit­

able recycle streams.

13

CHAPTER1. INTRODUCTION 14

• Separation network synthesis (SNS)

• Mass exchange network optimisation.

• Utility system optimisation.

These issues may be addressed together where whole plant-wide optimisation is attempted.

It is possible to tackle the synthesis problem in several different ways. Traditionally syn­

thesis has been carried out by the use of heuristics (Douglas, 1988). Another approach is

the evolution of an existing flowsheet via small modifications (Stephanopoulos and West-

erberg, 1976). Increasingly mathematical algorithms have been developed (Grossmann,

1996). Some methods combine both heuristic and mathematical approaches (Daichendt

and Grossmann, 1998).

In terms of mathematical programming, the detail of the mathematical models used can

be increased as the subsystem being synthesised becomes more specific. This is due to

the decrease in problem size if subsystems are considered individually. For example,

it is generally possible to use much more detailed models in the optimisation of heat

integration on an existing flowsheet than if the flowsheet were to be synthesised and heat

integration considered simultaneously. Therefore, there is often a trade off between the

need to consider as wide a level of plant synthesis as possible and the detail of the models

used to simulate this.

1.1 Motivation

This thesis is concerned with the development of methods that can be used to find the

optimal flowsheet structure for a process given a feedstock, a set of units and product

CHAPTER 1. INTRODUCTION 15

specifications. The techniques used are based upon an implicit enumeration (IE) proce­

dure where a search graph is simultaneously created and traversed. In the graph, units

are represented by nodes and streams by edges. An existing method is embodied by

the Jacaranda automated process synthesis package (Fraga et al., 2000). In this pack­

age streams, units and the search algorithm itself, are implemented in an object oriented

framework. The merits of this and various other approaches to the synthesis problem are

discussed in detail in Chapter 2.

An advantage of the IE approach is that the search graph is generated automatically. This

prevents an engineer from imparting any preconceptions to the design potentially yielding

a novel process structure. As a result, the possibility of yielding a novel process structure

is increased. A drawback of this approach is that in order for enumeration to take place,

continuous unit variables are discretised. The size of the search space is further reduced

by the discretisation of continuous stream variables such as pressure and flowrate. This

is combined with dynamic programming to allow the re-use of solutions. The user has

no idea of the effect of these discretisations on the quality of the solutions obtained. In

addition, the ranked list of solutions returned is not guaranteed to contain the optimal

process structure.

The object of the work described in this thesis is to develop techniques that retain the ad­

vantages of the implicit enumeration search, while allowing the optimal process structure

to be isolated automatically. The different stages of development of such an algorithm are

described.

CHAPTER 1. INTRODUCTION 16

1.2 Interval analysis

Since the discretisation of unit variables means that the structures returned by the exist­

ing method may not be optimal, it is necessary to quantify the effects of discretisation.

Interval analysis can be used for this purpose. Carrying out unit designs using interval

arithmetic produces bounds on the cost of each design. The bounds are based on the

interval values of the unit variables and feed stream properties. Chapter 3 explains the

concept of interval analysis and how it can be applied to the design of processing units.

Chapter 4 describes how intervals may be used to represent the unit variable pressure in

a distillation column. This results in distillation column designs with bounds on capital

and operating costs. This is applied to a hydrocarbon separation problem and results in

bounds on the cost of the structures returned. Runs are carried out at various levels of

discretisation. At a sufficiently fine level of discretisation, it is demonstrated that the best

structure can be isolated on the basis of cost bounds.

Chapter 5 develops the application of interval analysis further by describing component

flow rates using intervals. This is an important step, as whether or not a component is

present within a stream determines how the stream is processed and affects the overall

process structure.

1.3 An adaptive algorithm

The results of implementation of the ideas in chapters 4 and 5 give assurances on the

quality of the solutions obtained. By carrying out successive runs it is also possible to

isolate a structure based on cost bounds. Such a structure must be optimal as long as

CHAPTER I. INTRODUCTION 17

interval parameters do not cross feasibility boundaries during the search. However, during

a particular run, there is no guarantee that this is true. In addition, successive runs using

uniform discretisation is a time consuming and inefficient process

Chapter 6 describes an algorithm that combines an interval box splitting algorithm with

the implicit enumeration search. The discretisation profiles of unit variables are changed

for each stream encountered, by successive splitting of the unit variable intervals. This

is carried out until the optimal structure for processing the stream has been found. If

an interval parameter, resulting from a unit design, crosses a feasibility boundary then

a unit variable interval is split until crossing does not occur. The search space is thor­

oughly investigated and nothing is discounted until it is shown to be either sub-optimal or

infeasible.

Chapter 7 applies the new algorithm to the benzene separation synthesis problem at­

tempted in chapter 5. The adaptive algorithm is able to isolate the optimal structure using

around 40 times less processor time than if uniform discretisation that reached the same

resolution were used. The algorithm is also applied to the synthesis of a biological sepa­

ration process in order to demonstrate its applicability to various types of problems. The

algorithm yields a different structure from the previous non-interval discrete approach.

This shows that the optimal solution may be missed due to discretisation and supports the

application of the new algorithm to such problems.

Chapter 2

Separation synthesis methods

2.1 Introduction

This chapter gives an overview of work in the field of process synthesis with the specific

discussion of previous applications to separation network synthesis problems. Process

synthesis techniques can be broadly classified as one of two approaches: (1) Heuristic

methods and (2) Algorithmic methods. The former rely on previous experience of sim­

ilar problems. The latter employ some kind of logical search procedure in order to find

the optimal structure. The two approaches can be combined in order to discount some

structures from the search. The merits of the different approaches are discussed and this

discussion gives rise to the motivation for the work described by this thesis.

18

CHAPTER 2. SEPARATION SYNTHESIS METHODS 19

2.2 Terminology

Distillation is the one of the most studied technologies in terms of separation synthesis and

part of this thesis is concerned with the synthesis of distillation sequences. The following

is a list of terminology that can be used to describe distillation synthesis.

Light key: In a distillation unit this is defined as the lightest component which may be

present in the bottom product in significant amounts.

Heavy key: This is the heaviest component that may be present in the top product in

significant amounts. Light and heavy refer to the relative volatilities of the feed

components.

Semi-sharp separation: This gives 100% recovery of components lighter than the light

key to the top product and 100% recovery of components heavier than the heavy key

to the bottom product. The key components are distributed between the two product

streams depending on the percentage key recovery.

Sharp separation: Sharp separation is an idealised situation where 100% key separation

is assumed. This leads to negligible amounts of the light key in the bottom product

and neglible amounts of the heavy key in the top product.

Non-sharp separation: All components may distribute between the two product streams.

Divider: This splits a process stream into two or more streams each with the same frac­

tional composition and is analogous to a fork in the pipework.

Blender: This mixes two streams to yield one product stream.

CHAPTER 2. SEPARATION SYNTHESIS METHODS 20

2.3 Heuristic and artificial intelligence (AI) approaches

An example of a heuristic approach is hierarchical decomposition (Douglas, 1988). It

breaks the problem down into five basic levels:

1. Batch versus continuous operation

2. Input-Output structure of the flowsheet

3. Recycle structure and reactor design

4. Separation systems

5. Heat exchanger networks

From the second decision on-wards, the economic potential is examined. It may be de­

cided that further work is not justified on this basis. This screening hierarchy is based

upon heuristics and engineering insight to converge on a design. This approach cannot

rigorously ensure an optimal design and the reliance on heuristics may mean that novel

structures are not considered at all. Interactions of variables at different decision levels

are not taken into account which may cause optimal designs to be missed. However, it

is the most widely used design methodology. This may be due to the intuitive nature of

the procedure and the lack of a general purpose process synthesis package. PIP (Pro­

cess Invention Procedure), a computer implementation of hierarchical decomposition is

described by Kirkwood et al. (1988). Another attempt at implementing artificial intelli­

gence is as part of the PROSYN package as described by Schembecker et al. (1994).

Evolutionary techniques use the previous experience of the designer to make small changes

to an existing flowsheet. Stephanopoulos and Westerberg (1976) propose a set of rules,

CHAPTER 2. SEPARATION SYNTHESIS METHODS 21

by which to make modifications to create a neighbouring flowsheet. In addition, means

by which to compare the flowsheets are suggested. These ideas are applied to multi-

component separation problems. This strategy has been combined with distillation syn­

thesis heuristics (Seader and Westerberg, 1977). The heuristics help with the determina­

tion of the starting flowsheet and the strategy of applying the evolutionary rules.

A problem with using heuristics is that the rules sometimes conflict with each other. In

addition, terms such as large or high are often used in the heuristics that are ambiguous.

Djouad et al. (1997) use fuzzy set theory to aid the decision procedure. Four heuristic

rules for separation by distillation are made quantifiable and each is given a weighting.

For each possible split, the values for each rule are calculated. The degree of compatibility

between each rule is considered before a decision is made.

An investigation compared Al to mathematical optimization (Best et al., 1987) in the

solution of multicomponent separation by distillation. Distillation synthesis has well es­

tablished heuristics, so it is well suited to the application of Al. The study showed that

the Al generated flowsheets were significantly more expensive than those obtained by

mathematical optimization when applied to a range of test problems. Other processes

do not have such established heuristics so may perform worse in a similar comparison.

The lack of optimality in the use of heuristics motivates the application of mathematical

optimization to process synthesis problems.

2.4 Algorithmic methods

In contrast to the use of heuristics, algorithmic approaches are designed to search the

possible structures in order to obtain the optimal solution. Consequently, these approaches

tend to be much more time consuming and are only practical by the use of computers.

CHAPTER 2. SEPARATION SYNTHESIS METHODS 22

2.4.1 Optimisation by mathematical programming

One method of mathematical programming uses optimisation techniques to select the con­

figuration and operating conditions of processing units based on what is called a super­

structure. The optimisation is formulated as a mixed-integer problem (Grossmann, 1985).

The superstructure is intended to represent all combinations of available unit operations

and possible interconnections. In the problem formulation, the existence or absence of

a particular unit is represented by 1 or 0 respectively. This approach results in a mixed

integer nonlinear programming (MINLP) problem. Given a superstructure, there are a

number of algorithms available to solve the MINLP. These include

• Branch and bound (Gupta and Ravindran, 1985). In this method the continuous

nonlinear program (NLP) relaxation is solved. If the relaxed discrete variables hap­

pen to take integer values then the search is stopped. Otherwise, a tree search of the

integer variables is carried out. Lower bounds produced from relaxed NLP prob­

lems are compared with the current upper bound. A particular path is discounted if

the lower bound at any point is greater than the upper bound. A new upper bound

will result if all discrete variables take integer values.

• Outer Approximation (Duran and Grossmann, 1986) where mixed integer linear

programs(MILP) and NLP subproblems are solved successively. This type of NLP

problem corresponds to a particular discrete combination of the integer variables,

that arises from the solution of the MILP master problem. The NLPs yield upper

bounds and the MILPs lower bounds on the solution.

• Generalised Benders decomposition (Geoffrion, 1972) uses a similar strategy to the

outer approximation method. The methods differ in the way that the MILP problem

is constructed.

CHAPTER 2. SEPARATION SYNTHESIS METHODS 23

• Extended cutting plane method (Westerlund and Pettersson, 1995). This is a ge­

ometrical method which can guarantee optimality when applied to pseudo-convex

functions.

The superstructure can be represented by the state task network (STN) (Kondili et al.,

1993). It is an example of a finite automaton (Kohavi, 1978). It recognises that feed

streams undergo a set of transformations within a process. These transformations yield

various intermediate states. A unit operation then carries out the task of converting a

material from one set of states to another. One or more pieces of equipment may be

assigned to each task or one piece of equipment may be used to carry out multiple tasks.

A variation on this system is the state equipment network representation (SEN) (Smith,

1996) where the superstructure is represented by the possible states of the process and

the equipment that can be used to convert between the states. In this representation, the

number and type of pieces of equipment may be specified but it is necessary to state all

the possible states that may result from a piece of equipment. An example is the synthesis

of a sharp distillation sequence in order to separate a four component mixture. In the STN

representation, each possible split (task) for every possible stream (state) is represented in

the superstructure. This is accomplished by the use of mixers and dividers. State ABCD

is first divided into three intermediate states. The first is processed by the task A/BCD,

the second by AB/CD and the third by ABC/D. Hence the first produces the states A

and BCD. A is a pure product state and BCD is split into two for further processing. In

the SEN representation, it is identified that three columns are required to sharply split a

four component mixture into pure components. The superstructure consists of these three

columns with each having options of the tasks that it may perform. The output streams

are represented by the states that correspond to the possible separation tasks. The column

accepting ABCD may perform the tasks A/BCD, AB/CD or ABC/D. Consequently the

state of the top stream is A,AB,ABC and the state of the bottom stream is BCD,CD,D.

CHAPTER 2. SEPARATION SYNTHESIS METHODS 24

These multiple states are then split into single states for further processing.

These two approaches were applied to the formation of heat-integrated shortcut distilla­

tion sequence superstructures (Yeomans and Grossmann, 1999). These were then formu­

lated and solved as MILPs. It was shown that these two approaches are complementary to

one another. SEN generated superstructures were later solved using rigorous tray-by-tray

calculations (Yeomans and Grossmann, 2000).

It was proposed by Sargent (1998) that the STN representation can be combined with

hierarchical decomposition for the synthesis of distillation systems. It is suggested that

resulting design possibilities are examined for feasibility before moving to improved mod­

els. This approach is applicable to both ideal and azeotropic systems.

Linke and Kokossis (2003a) present a framework for generating superstructures for the

combination of reaction and separation processes. The superstructure is generated from

the combination of generic synthesis units. The reactor/mass exchange unit is compart­

mentalised into each phase present in the system. Each compartment can then exchange

mass across a phase boundary or diffusion barrier. Recycle can occur between compart­

ments if technically possible. The separation task unit performs a set of feasible separation

tasks according to an order of separation based on a physical property. All combinations

of separators that correspond to this operation are incorporated in the superstructure. This

generic approach allows a wide range of processing technologies to be investigated in­

cluding reactive distillation.

An advantage of the superstructure approach is that it is able to tackle many different types

of synthesis problem. However, the optimization of a superstructure by the solution of a

MINLP does not generally ensure a globally optimal solution for process synthesis prob­

lems. This is because most methods assume convexity to ensure global optimality. The

functions involved are often non-convex leading to the presence of multiple local optima.

CHAPTER 2 SEPARATION SYNTHESIS METHODS 25

Zhu and Kuno (2003) recently presented a method to deal with these non-convexities in a

MINLP and ensure global optimality. They propose a combination of generalised Benders

decomposition and branch and bound, using convex quadratic under-estimators.

If a given superstructure is solved using a global optimization algorithm,this does not

ensure that the global optimum for the synthesis problem has been found. In order for

the global optimum to be ensured, it must be guaranteed that the superstructure contains

all possible unit configurations and connections. Without a systematic approach to su­

perstructure formation, the design is constrained by the imagination and insight of the

engineer formulating the problem.

2.4.2 Automatic generation of the superstructure

A method of systematically generating the superstructure is presented by Friedler et al.

(1993). The bi-partite graph (P-graph) is introduced because a conventional graph repre­

sentation of a process structure is shown not to uniquely describe one particular alterna­

tive. Bi-partite means that the vertices of the graph are partitioned into two sets with no

two vertices of the same set being adjacent (Friedler et al., 1993). The two sets, in the

case of process synthesis, are unit operations and materials.

The synthesis problem is posed mathematically using set theory and an algorithm is de­

scribed that rigorously forms what is termed the maximal structure. This is defined as the

union of all possible solution structures.

It is necessary to define the raw materials available, the required products and the set of

operations that can be used. An operation is defined by a set containing two subsets. One

subset contains the set of inputs and the other the set of outputs. Therefore, it is necessary

to list all the possible intermediate materials in order to define the unit operations. For

CHAPTER 2. SEPARATION SYNTHESIS METHODS 26

example, to define a reactor converting the materials A and B to C, the notation (A, B, C)

would be used to define the unit operation. The product stream could be of variable com­

position depending upon the amounts of unreacted A and B. If this difference were to be

represented, another unit would have to be defined (A, B ,D). Where material D would

be used to represent a material containing C with significant amounts of A and B. Simi­

larly, only sharp separators can be used, as in order to define the outputs, it is necessary

to assume that there are no residual amounts of bottom product in the top stream or top

products in the bottom stream. Otherwise, it would be necessary to define a different unit

operation for each possible top and bottom product composition.

The approach is rigorous in the sense that it yields a maximal structure that accounts for

all feasible connections between units and materials. However, it is still limited by the

necessity to define all possible outputs from the operating units that may be used. This

task remains the responsibility of the person formulating the problem. Recently, the P-

graph approach has been applied to the synthesis of azeotropic distillation systems (Feng

et al., 2003).

2.4.3 Multi-component, multi product problems (MCP problems)

The P-graph technique has been applied to a class of separation network synthesis (SNS)

problems, for which there was previously no method to create a rigorous superstructure.

The goal was to synthesise a process where multiple multi-component feed streams yield

multiple multi-component product streams (MCP problem) (Kovacs et al., 1999).

The P-graph approach was applied to the global optimization of some SNS problems that

had been attempted previously (Kovacs et al., 2000). The objective was to minimise the

sum of mass load multiplied by degree of difficulty of each separation. This allowed the

CHAPTER 2. SEPARATION SYNTHESIS METHODS 21

problem to be formulated as a linear program assuring the global optimum. In many cases

a better solution was found than had previously been published. For the multi-component

product problem, it is necessary to include dividers, blenders and recycle loops in the

superstructure in order to prevent excluding some of the solution space (Kovacs et al.,

1993). The use of mixers and dividers is often essential for this type of problem as the

product specifications are not attainable without dividing and blending.

An algorithm that ensures the globally optimal separation sequence for the MCP problem,

also assuming sharp splits, is presented by Wehe and Westerberg (1987). This approach

is based on a superstructure and linear programming and gives the global solution for

a given superstructure. The non-linearities introduced by splitters in a three component

separation are reduced, by analysis, to two linear programs. For more components, the

resulting non-linear programs are relaxed providing a linear lower bound.

The multi-component product problem has been considered, allowing non-sharp separa­

tion by Aggarwal and Floudas (1990). A superstructure is devised allowing for distri­

bution of components between the top and bottom streams. There is one column in the

superstructure for each of the adjacent separation key combinations. Initial shortcut sim­

ulations are used to determine the lower bound on key recoveries. The purpose of this is

to ensure that there is no significant distribution of non-key components between product

streams. Further simulations are used to develop a cost model for each of the columns.

These span the range of feed flowrates, compositions and key recoveries. The problem is

formulated as an MINLP and solved using a procedure that can search for and identify

the global optimum, but does not assure that it will be found (Floudas et al., 1989). In the

test problems, four out of the five solutions were assured to be global.

A solution method for the multicomponent product problem that does not require the gen­

eration of a superstructure is presented by McCarthy et al. (1998) and McCarthy (2000).

CHAPTER 2. SEPARATION SYNTHESIS METHODS 28

This method searches an implicitly created solution graph. It allows non-sharp separa­

tions, splitting and blending of process streams. Discretisation of stream and unit proper­

ties are necessary in order to keep the search space finite.

2.4.4 Hybrid methods

Hybrid methods combine two or more synthesis techniques in order to search for solu­

tions.

Wahnschafft et al. (1991) describe a software system called SPLIT that aids the design

of processes for the separation of non-ideal mixtures. In this case the major hurdle is the

generation of feasible solutions rather than the pruning of weak alternatives. It uses a

blackboard system to access various knowledge sources. Potential separation strategies

are tested across the operating range by simulation. Alternative flowsheets are compared

by combining inputs from the available knowledge sources. The user is able to influence

the direction of the search by discounting some alternatives. Potential alternatives can

then be incorporated into a superstructure for MINLP optimization.

Another issue in separation synthesis is technology that should be considered when a

flowsheet is designed. A strategy to address this problem is presented by Jaksland et al.

(1995). Physico-chemical properties of components in the feed stream are compared in

order to identify the most appropriate separation technologies. A set of separation tasks

are then identified. Finally, estimates of appropriate operating conditions are generated.

Bek-Pedersen and Gani (2004) present a set of algorithms for distillation design based

on the driving force of the separation. The algorithms deal with situations ranging from

design of a single column to the design of a distillation sequence. The idea is that per­

forming the separation with the largest driving force first leads to the minimum energy

CHAPTER 2. SEPARATION SYNTHESIS METHODS 29

requirement for the separation. This approach only accounts for the operating costs of

separation and capital costs are not considered.

2.4.5 Stochastic methods

Stochastic methods use random changes in flowsheet structure in order to search for the

optimal solution. In general, these methods will provide a global optimum in infinite time.

Simulated annealing

Simulated annealing (Kirkpatrick et al., 1983) has been applied to separation synthesis

(Floquet et al., 1994). Simulated annealing (SA) is based on an analogy with the cooling

of a molten material. If the cooling is carried out quickly, there will be irregularities in

the structure of the crystals that are formed. The slower the material is cooled the less

irregularities there will be in the structure. The more orderly the structure, the lower

the energy level of the crystal. A perfectly formed crystal represents the lowest possible

energy. In process synthesis, the configuration of the crystal corresponds to a feasible

solution structure and the energy to the cost. The general algorithm works by gradually

reducing the start temperature with time. The structure of the initial feasible structure

is encoded. The encoding is then altered randomly subject to certain rules that ensure a

feasible solution. The cost of this structure is evaluated. If it is smaller than the original,

the solution is accepted. If not, it is accepted with a probability of e . Thus, changes

that result in cost increases are more likely to be accepted early on when the temperature

is greater. These moves prevent the algorithm from becoming stuck in the area of a local

optimum. A basic SA algorithm is shown in figure 2.1.

CHAPTER 2. SEPARATION SYNTHESIS METHODS 30

input Tstop
input TstaTt
input A, the number of moves per annealing
input S, the starting structure
Calc.E, the objective function value of structure S
Temp. T = Tstart
while T < Tstop and success = true do

success = false
for i - 1 to A do

Select a new random structure, S*
Calc, objective function value of S*, E*
A E = E* — E
if A E < 0 then

S = S *
success = true

else
ifrandom()< e~r~' then

S = S*
success =■• true

end if
end if

end for
T = T f

end while
print results

The function random() yields a random number between 0 and 1 and / is a factor between
0 and 1.

Figure 2.1: A simulated annealing algorithm

The procedure for separations synthesis outlined by Floquet et al. (1994) is applied to sep­

arations using distillation. Both simple, two product, and more complex, side stream dis-

CHAPTER 2. SEPARATION Sm T H E SIS METHODS 31

dilation columns are allowed for in the encoding. However, only sharp splits are allowed.

The algorithm is used to solve a large 16 component hydrocarbon separation problem, in

which the feed is to be separated into pure components. There are 5.9 x 1011 possible

structural combinations for this problem if two and three product distillation columns are

allowed. A saving of around 50% over the inital flowsheet cost is reported.

A SA method that allows rigorous distillation models to be used is presented by Mar-

coulaki et al. (2001). The separators used are simple one feed two product columns. In

addition, non-sharp separations are allowed by discretizing the recovery fractions in steps

of 1% between 70% and 90%. This leads to about 1.2 x 1014 possible flowsheet structures

for the 15 component hydrocarbon separation synthesis problem attempted. This size of

problem would be prohibitively expensive, in terms of computer time, if each possible

flowsheet were to be evaluated.

Linke and Kokossis (2003b) compare the synthesis of reaction/separation processes us­

ing SA and a tabu search. The Tabu search is another stochastic technique where new

structures are selected that are in the neighbourhood of the current structure. In simu­

lated annealing this is a random move and the search direction is guided by the success

of the new structure and the stage of the search. The Tabu search determines the direction

by remembering recently tried modifications and not allowing such changes for a certain

number of iterations. It was found that Tabu searches tended to take significantly shorter

paths than SA to arrive at solutions of similar quality.

Genetic algorithms

Another approach to the separation synthesis problem is the application of genetic al­

gorithms (GA) (Wang et al., 1998). Genetic algorithms are based on an analogy with

CHAPTER 2. SEPARATION SYNTHESIS METHODS 32

Darwinian evolution in nature. A population is composed of a number of individuals.

The most successful individuals are those lowest in cost. The more successful individuals

are allowed to breed and transfer their characteristics to offspring. In addition random

mutations of the population can occur which may or may not be beneficial. This has been

applied to sharp distillation separation sequencing by encoding the possible structures.

The flowsheets are optimised for annual operating cost with heat integration included.

Neither genetic algorithms nor simulated annealing can guarantee the globally optimal

solution in a finite time. This is because the solution space is not systematically explored.

Even though a superstructure is not required explicitly, certain assumptions must be made

about the solution structures when the encoding procedure is devised. However, these

techniques can be applied to large combinatorial problems and reduce the possibility of

becoming stuck in local optima.

2.4.6 Implicit enumeration

The implicit enumeration approach to process synthesis dispenses with the need for the

prior development of a superstructure. Consequently the user does not need to impart

as many preconceived ideas on the development of the process as may happen when

developing a superstructure or the encoding system for a stochastic algorithm. Implicit

enumeration may be more likely to yield a radically different, and therefore patentable,

structure (Johns, 2001). However, in terms of separation synthesis, the approach is mainly

applicable to single feed problems where the desired products are pure components. This

is due to the difficulty of introducing recycles and handling multiple feed streams. The

automated generation of recycle streams has been demonstrated by Fraga (1998). The

technique is based on identifying structures that partially meet the product requirements.

CHAPTER 2. SEPARATION SYNTHESIS METHODS 33

These structures have a recycle stream incorporated if any units are involved in conversion

rather than just separation.

Potential for novel solutions

The following describes the potential of implicit enumeration to the separation synthe­

sis problem. Methods that require the definition of a superstructure usually only allow

one distillation column per possible split point between light and heavy keys. For a five

component mixture to be separated into pure components, a minimum of four distillation

columns are required. The rigorous superstructure generation approach (Kovacs et al.,

2000) allows more columns than this but these are present in order to solve the multi-

component product problem that involves dividers and blenders.

It may be the case that the optimal solution to a problem requiring pure component prod­

ucts involves two different columns that carry out the same light/heavy key separation

task. The two columns would share the burden of the separation task but each would

require a less fine separation. This division of separation duty could prove to be a more

cost effective solution. This could not be incorporated into the P-graph maximal structure

generation methodology (Friedler et al., 1993) as only sharp separations are allowed.

The Jacaranda process synthesis system uses implicit enumeration to solve the synthe­

sis problem. Previous approaches to implicit enumeration are described by Johns and

Romero (1979) and Fraga and McKinnon (1994). Using this approach, solutions are cre­

ated and evaluated simultaneously. It does not have the problem of settling in local optima

due to non-convexities as the discretised space is searched systematically. This allows the

whole search space to be traversed. The following section describes the Jacaranda imple­

mentation of implicit enumeration in more detail.

CHAPTER 2. SEPARATION SYNTHESIS METHODS 34

2.5 The automated synthesis package Jacaranda

Jacaranda (Fraga et al., 2000) is implemented in the object oriented programming lan­

guage, Java. Objects are used to represent streams and unit models. Both stream variables

and unit model operating variables are mapped to discrete space. This is carried out in or­

der to make the search space, that is to be enumerated, finite. A technique called dynamic

programming is used to reuse solutions to problems that have already been encountered.

This can dramatically increase the efficiency of the procedure.

2.5.1 The search algorithm

The algorithm is based on a depth first traversal of the superstructure graph. This graph

is itself generated as it is searched. The problem can be described by equation 2.1 (Fraga

and McKinnon, 1994).

u is the possible range of units that may be used to process a stream, s and c(u, s) is

the cost of processing s to yield np product streams. The function, /() is the cost of

the solution to a subproblem. Equation 2.1 is evaluated recursively until a stream meets

a product specification. At this point the problem associated with the stream has been

solved. The user may specify if it may be desirable to process the stream further or to

stop if a stream meets any one of the product specifications. The costs of the alternatives

for a particular stream are compared and a list of the best solutions is created.

mm cl (2 . 1)

CHAPTER 2. SEPARATION SYNTHESIS METHODS 35

The feed stream

In practice, in order to optimise the synthesis of a particular process, Jacaranda requires

a feed stream, a list of unit operations available and a list of product specifications. The

component flows of the feed are discretised to be a number of basic units of flow. The

value of the base level for each component is user specified. The user also specifies a

stream pressure range and a number of discrete levels available. The feed stream pressure

is mapped to the nearest discrete value. The program then attempts to process the feed

stream with one of the available unit operations. This list includes product tanks that each

represent a product specification.

Unit designs

The particular unit model may define one or more discrete design alternatives. The range

and number of possible values of unit variables are also user specified. For example, the

operating pressure of a distillation column may be allowed within a certain range. The

user specifies a number of discrete values that the operating pressure may take. Each of

these pressure levels represents an alternative design for the unit. Each of these designs

are carried out for the feed stream yielding values for operating cost, capital cost and

any other value that is incorporated into the unit model. Each design produces output

streams which are recursively treated in the same way as the feed. Thus the search graph

is simultaneously created and searched. When a stream meets a product specification the

solution is passed up a level of recursion where a list of the best solutions is compiled. The

user may specify n the number of ranked solutions to be stored (the nbest list solutions.

The solutions may be ranked on the basis of one or more criteria. In this way solutions are

passed back to the base of the tree until all the alternatives for the processing of the feed

CHAPTER 2. SEPARATION SYNTHESIS METHODS 36

stream have been attempted and a list of the best flowsheet structures can be identified.

The algorithm is shown in figure 2.2.

function solve(problem p)
boolean solved = false
initialise nbest, an empty solutions list
stream F = p.feed
if F processed already then

solved = true
retrieve nbest solutions

end if
if solved = false then

for each unit type do
for each design alternative d do

create node N(F,u,d)
for Each d.product o do

create problem p(o)
solve(p)

end for
attempt to insert N.solution into nbest

end for
end for

end if
end function solve

Figure 2.2: The Jacaranda search algorithm

CHAPTER 2. SEPARATION SYNTHESIS METHODS 37

Solution processing

The solution to a node is inserted into the nbest list if the value of the objective function

for this node is lower than for one or more current members of the list. It can be specified

that only one similar solution may be present in the list. The level of detail at which

the solutions are compared can also be specified (Fraga, 1996). This choice changes the

level of detail of the solution encoding. Unit type and alternative can be included in this

encoding or the comparison may be solely based on solution structure.

2.5.2 Re-use of solutions

Jacaranda allows solutions to streams to be re-used using dynamic programming. For

a detailed explanation of this procedure see Fraga (1996). When a particular stream is

solved at any point in the search graph, the solution is stored. This storage method relies

on a string encoding that is unique to that stream. The string is made up of the number

of basic flow units of each component and the discrete pressure level. If this stream is

encountered at another point in the search, the solution is then recalled saving computer

time. Thus, the stream discretisation aids in the re-use of solutions. Generally the more

coarse the level of stream discretisation, the more likely a particular encoding will appear

elsewhere in the search.

2.5.3 The consequences of discretisation

The discretisations used in the procedure described above have several implications. The

level of these discretisations is set by the user. In some cases, user intervention may

be appropriate. For example, some components may be more important than others for

CHAPTER 2. SEPARATION SYNTHESIS METHODS 38

environmental or economic reasons. The base flow rate of these components would be

set to lower values than the others. In addition, the engineer may know the pressure range

of operation for distillation columns and base the range and level of discretisation on

this knowledge. See Laing and Fraga (1997) for a discussion on the iterative use of an

automated procedure with particular emphasis on user interaction. Typically, however, the

engineer may have no insight on the level of discretisation required for a given synthesis

problem. Furthermore, the solutions generated give no indication of the effect of the

discretisation on the effectiveness of the search procedure.

The solutions produced will consist of units and stream products. Each unit variable value

will be at one of the discrete levels set when the synthesis problem was formulated. The

best solution for a given level of discretisation may not represent the optimal flowsheet

structure in continuous space as potentially good values for the discretised variables may

be missed between the discrete levels chosen.

2.6 Summary

This chapter has described various methods that may be applied to the separation synthesis

problem. Heuristic methods such as hierarchical decomposition are still the most widely

applied, but are likely to yield sub-optimal flowsheets. This has led to the development of

various algorithmic techniques.

Mathematical programming strategies are able to tackle a wide range of types of synthesis

problems but generally do not ensure global optimality. In addition, such approaches

require a superstructure to be constructed beforehand. This process in itself could result

in novel solutions being missed. The P-graph approach can be used to rigorously generate

CHAPTER 2. SEPARATION SYNTHESIS METHODS 39

a superstructure but the designer still has to define all possible outputs from operating

units, again leading to the possibility of missing optimal structures.

Another major strategy is the use of stochastic optimisation methods such as simulated

annealing and genetic algorithms. An advantage of these approaches is their ability to

tackle combinatorially large synthesis problems and their ability to escape from local

optima. These methods do not require the prior generation of a superstructure but it is

necessary to make assumptions about the nature of the solution when devising an encod­

ing method. Another drawback is that the globally optimal solution cannot be guaranteed

in finite time.

Implicit enumeration has the advantage that no prior assumptions about the structure are

necessary. All that is required by the Jacaranda package is a feed stream, a list of units

and set of product specifications. This increases the likelihood of the generation of novel

solutions. A disadvantage of using implicit enumeration is the need to discretise contin­

uous unit variables to yield a finite search space. Jacaranda also discretises stream flows

and pressures which increases the efficiency of the dynamic programming. The user does

not gain any information on the effect of chosen level of discretisation. It also means that

the top-ranked solution is not necessarily optimal. This project is motivated by the goal

of developing a procedure that has the benefits of implicit enumeration described above

along with the assurance of the optimality of the solution. This leads to the idea that in­

terval analysis can be applied in order to realise this goal. The costs of solutions yielded

by the search procedure can be bounded by the application of interval analysis to unit and

stream calculations. This information can then be used to discriminate between solutions

based on their objective function bounds. The use of the properties of interval arithmetic

can ultimately be used to isolate the globally optimal solution. The concept of intervals,

interval arithmetic, and how it can be applied to the pure component separation synthesis

problem, are discussed in the next chapter.

Chapter 3

Interval analysis

3.1 Introduction

This chapter explains the concepts of interval analysis in the context of the separation syn­

thesis problem. Interval methods have been used previously within process engineering.

For example, they have been applied to find all roots to an equation with mathematical

certainty (Schnepper and Stadtherr, 1996). This interval approach was tested on several

chemical engineering simulation problems. Interval analysis has also been applied to the

global optimisation of selected flowsheets (Byrne and Bogle, 2000).

Interval mathematics was first introduced by Moore (1966). An interval is a closed

bounded set of real numbers, X = [a, b], where a < x < b. An interval of zero width (i.e.

with the same values for both lower and upper bounds) is called a degenerate interval. In

the discussion that follows, interval variables will be denoted by uppercase letters and real

variables by lower case letters. The bounds of the interval are shown by square brackets

enclosing the real lower bound followed by a comma and then the real upper bound e.g

[a, b\.

40

CHAPTER 3. INTERVAL ANALYSIS 41

When using the implicit enumeration search embodied by Jacaranda, unit and stream

variables are discretised primarily to give a finite search space. As discussed previously,

it would be useful to bound the effects of these discretisations using interval arithmetic.

For example, the problem may involve separation by distillation. A solution describes a

flowsheet structure containing a series of distillation columns each at a discrete operating

pressure. The columns operate over a range of pressures between 1 and 10 bar. It is

decided that 10 discrete pressure alternatives are to be used over this range. The discrete

values are uniformly spaced. Hence, the discrete values would be accurate to the nearest

bar. An alternative at 2 bar would actually represent a range of values with a lower bound

of 1.5 bar and an upper bound of 2.5 bar. This range of values can be represented by the

interval [1.5,2.5]. The same applies to all discretised variables, both in streams and units.

If all these discretised variables are bounded in the same manner then interval arithmetic

can be used to bound the effects on the objective function.

3.2 Interval arithmetic

A set of arithmetic operations can be defined for intervals that correspond to the operations

on real numbers. If X and Y are both intervals, X opY will yield an interval containing

every possible number that can be calculated resulting from the operation of each x E X

on each y e Y . The following rules (Hansen, 1992) can be produced from this definition,

given X = [a, b] and Y = [c, d]:

CHAPTER 3. INTERVAL ANALYSIS 42

* + y = [a + c,b + d\

X - Y = [a — d,b — c]

X x Y = [min (ac, be, ad, bd), max (ac, be, ad, bd)]

(3.1)

(3.2)

(3.3)

In order to divide the inverse of the denominator is calculated:

1
Y
X
Y

1 1
cf c

* x (-

(3.4)

(3.5)

so long as 0 ^ Y . If 0 G Y then extended interval arithmetic can be used (Hansen, 1992).

Rules for this situation are as follows.

y = <

[b/c, (X)]

[—oo, b/d] U [b/c, oo]

[—00, b/d]

[—oo, oo]

[—oo, a/c]

[—oo, a/c] U [a/d, oo]

[a/d, oo]

if b < 0 and d = 0

if b < 0 and c < 0 < d

if b < 0 and c = 0

if a < 0 < b

if a > 0 and d = 0

if a > 0 and c < 0 < d

if a > 0 and c = 0

(3.6)

CHAPTER 3. INTERVAL ANALYSIS 43

Exponents can also be defined:

[i.i] if n = 0

if a > 0 or if a < 0 and n is odd
(3.7)

[6n, an]

[0, max(an, bn)]

if b < 0 and n is even

if a < 0 < b and n is even for n = 0,1,2,...\

3.3 Interval functions

An interval function will yield an interval when applied to one or more interval arguments.

An interval function, F, is said to be an interval extension of a real function, / , if

F is defined as an interval extension of / , if the results of evaluating them both over the

same vector of degenerate intervals are equal.

The natural interval extension of a function / is to replace the variables of the real func­

tion with interval variables. There are, in fact, an infinite number of interval extensions of

a function. An interval function is said to be inclusion monotonic if C Yi, i — 1,..., n

implies that

F(x) = f i x) \fx € R (3.8)

F (x 1 , . . . , x n) c F (y 1J . . . , y n) (3.9)

Interval functions, containing a sequence of interval addition, subtraction, multiplication

and division operators, are inclusion monotonic (Hansen, 1992) if the interval extension

retains the same form when evaluating X and Y. The following example illustrates this

CHAPTER 3. INTERVAL ANALYSIS 44

point (Caprani and Madsen, 1980). The function

f (x) - x(l - x) (3-10)

could be rewritten as

f (x) = c(l — c) + (1 — 2 c)(x — c) — (x — c)2 (3.11)

where c is a constant real number. If the real x is replaced by the interval X then equation

3.11 represents a set of interval extensions that differ by the value chosen for c. The

natural interval extension of equation 3.10 can also be written. Evaluating the two forms

for real values of x and any value of c always yields the same result. This does not hold

for interval extensions of these functions. Let X = [0,1] and c is the midpoint of X ,

c = m(X) = 0.5. Evaluating f (X) in the revised form represented by equation (3.11)

yields [0,0.25]. If X is replaced with X ' = [0,0.9] and c with c' = m(X') = 0.45,

f (X') = [0,0.2925]. Inclusion monotonicity has not held: X ' C X but f (X') (£_ f (X) .

The reason that inclusion monotonicity fails is that the form of the function was different

for each evaluation. Both the functions that were evaluated are interval extensions of

equation (3.10) but they differ in form due to the different values of c.

If an interval function, F (X i , ..., X n), is an inclusion monotonic interval extension of a

real function/(^i, ...,xn),thenF(X i, ...Xn) contains all the possible values of f (x i , ...,xn)

for all Xi e Xi(i = 1,..., n) (Hansen, 1992). This result will prove useful in bounding the

value of the global optimum in an optimisation procedure.

CHAPTER 3. INTERVAL ANALYSIS 45

3.4 Dependency

The interval returned by an interval function depends on the form that the function takes.

For example,

Fi(X) = X 2 - X - 3

F2(X) =

are both interval extensions of

f i x) = x 2 — x — 3

yet they do not yield the same result when evaluated:

^([1 ,2]) = [-4,0]

F2([l,2]) = [-3 ,-1]

F2 produces sharper bounds for the range of / over the interval [1,2] than F\. This is due

to the dependency phenomenon associated with interval arithmetic. Generally, the more

often a given variable occurs within a function, the wider the bounds become. In fact, F2

yields the exact range of / for X = [1,2] as X only occurs once in the function. When

evaluating interval functions, dependency should be kept to a minimum so as to keep the

bounds as sharp as possible.

CHAPTER 3. INTERVAL ANALYSIS 46

3.5 Thick and thin functions

The term, parameter, will be used to refer to the constant values, either real or interval,

within a function. The argument is the value of the function variable at which the function

is evaluated. A thick function has interval valued parameters whereas a thin function

has only real valued (or degenerate interval valued) parameters. A thin interval function

evaluated on a degenerate interval argument will return a degenerate interval; a thick

function would return an interval value.

The interval methods implemented will all involve thick functions. This is because a

discretised variable can be represented as an interval spanning the possible range of real

values that could have been mapped to that discrete value. Thick functions result when

these intervals are used in design equations.

For example, the stream pressure discretisation regime may be the same as that described

at the start of this chapter. 10 pressure levels, distributed uniformly between 1 and 10, are

allowed. During discretisation a stream at 5.3 bar would be mapped to a discrete value

of 5 bar. The set of real values that would be mapped to this discrete value is represented

by the interval [4.5,5.5]. In order to calculate the bubble point of the stream over this

possible range of pressure, equation 3.12 must be solved for temperature:

where k is the equilibrium constant and Xi is the liquid fraction of component z.

Pressure is an interval value due to discretisation. Since the function is to be solved for

temperature over this range of pressure, the value of pressure in the function is a constant

(3.12)

CHAPTER 3. INTERVAL ANALYSIS 47

interval. Even if the function is evaluated for a real value of temperature, the result would

be an interval. Hence, the function is thick.

3.6 The nominal value

Earlier sections in this chapter have explained that intervals are usually defined by a lower

and upper bound. In this work intervals are also defined in this way but with an additional

real value which will be termed the nominal value. For an interval X , its associated

nominal value, xn must be between the lower and upper bounds of X .

Xn e x (3.13)

If the nominal value is included an interval may be written as [a, n, b] where a < n < b.

A nominal value is associated with each interval because intervals are to be used to cover

the continuous space around discretised real values. The nominal value represents the

discretised point around which its associated interval is constructed. In an arithmetic op­

eration between two intervals the corresponding real operator is applied to their nominal

values. A numerical example of division would be:

[2,3,41 1 3
[4,5,6] l3 ’ 5 ’ 1

The nominal values of the intervals are 3 and 5 and the nominal value of the resulting

interval is | , the result of applying real division. The bounds are calculated using the

interval arithmetic rules described by equations 3.3 to 3.5.

CHAPTER 3. INTERVAL ANALYSIS 48

The nominal value allows real calculations to take place along with the interval calcu­

lations. This facility proves useful when analysing results and ultimately, is used in the

development of the adaptive algorithm.

3.7 The root of a thick function

The root of thick functions must be located in order to implement Interval analysis within

Jacaranda. If a thick function / is evaluated on a degenerate interval or real number x*,

the result will be an interval f 1 (x*). Below are three ways to define whether or not x* is

a root of the function. Each has a different meaning as a root of a thick function.

1. f (x *) fl [—e, e] ^ 0

2. f(x*) C [—e,e]

3 . 0 6 /(**)

where e is a tolerance used to define an interval, [—e, ej. A function evaluation within the

bounds of [—e, e] is approximated to be zero.

The first of these definitions is shown graphically in figure 3.1. This figure shows the

upper and lower bounds for a hypothetical thick function with one variable plotted against

x, along with a nominal value of the function. The function illustrates the case when

there is only one root. An interval evaluation for a point x*, that is within the solution

interval, is indicated by f(x*). The interval root X is shown. All values of x within this

interval, when evaluated by / , will yield an interval that has a non-zero intersection with

the interval [—e, e].

CHAPTER 3. INTERVAL ANALYSIS

Lower

f(x) f(x*)

+£

- £

Figure 3.1: Illustration of the solution, X for the criterion that f{x*) Pi [—e, e] ^ (f>

CHAPTER 3. INTERVAL ANALYSIS 50

The worth of any of these definitions of a solution depends on what is required of the

solution. For example, it may be required to solve a design equation where one or more

physical properties are known to lie within one or more intervals. This causes some of

the parameters of the design equation to be intervals and hence the equation is a thick

function. If the root is found for a variable x, the solution will be an interval, X.

If the root is defined by the first criterion then every value of x within the solution interval

will certainly lead to a design that satisfies the real design equation. However this will not

be the case for all values of the interval parameters in the equation. Some combinations

of parameter values will lead to designs and some will not. A given value of x may not

yield a design as the whole of the interval f J(x) is not necessarily within the interval

[—e, e] under this criterion. Since one or more design parameters are intervals, there will

be a viable design for one or more real values within the interval parameters, but not

necessarily for all values. This definition of a root will be useful when investigating the

range of possible designs, but one cannot be sure that the designs will be viable for all

values of the interval parameters. However, costs resulting from unit designs are strictly

bounded. This property is useful if certain designs and structures are to be discounted, on

the basis of cost intervals, in an optimisation algorithm. In such a case it does not matter

that some of the cost intervals may not lead to a design, as it is more important that no

valid designs are missed. The contribution of such designs to the cost interval leads to a

widening of the cost bounds and a potentially less efficient search but the bounds are still

valid.

A graphical representation of the second definition is shown by figure 3.2. This is shown

for the same hypothetical function as figure 3.1.This definition is much more restrictive

than the previous and will lead to sharper bounds on X. It specifies that every x € X,

should yield an interval within the interval, [—e, e], when the function / is evaluated on

x. This means f (X) has bounds with absolute values that are smaller than e. From

CHAPTER 3. INTERVAL ANALYSIS 51

the perspective of solving a design equation, this criterion gives more certainty in the

solution. It yields the values of x within X for which a design will be viable for all real

values within the interval design parameters.

This second definition may be useful in assessing the effect of the coarseness of discreti­

sations. The width of interval parameters in a design equation result from the level of

discretisation used. If a given discretisation does not yield a solution under this criterion

then the discretisation could be made progressively finer until a solution is found. The

confidence in the viability of the unit design would then only be dependent on the accu­

racy of the equations used. One drawback of this definition is the fact that the width of

the interval parameters in the function may need to be narrow before there are any values

of x for which f \ x) is within [—e, e]. In fact, there may not be any solutions using this

criteria as the upper and lower bounds of the function may be too wide near the root. This

definition could not be used when the costs of all possible structures are to be bounded,

as feasible designs could be missed.

The third definition dispenses with the need for the concept of tolerance, e. It is repre­

sented graphically for the same hypothetical function in figure 3.3. This criterion stipu­

lates that for x to be within the solution interval, X , the evaluation of the function on x

must yield an interval that contains zero within its bounds. An example of a value that

meets this criteria is indicated in figure 3.3 by f (x) . This shows that the bounds do not

need to be within [—e, e]. The width of a solution determined by this definition depends

upon the gradient of the upper and lower bounds of the function as it crosses the x axis.

This definition may yield wider or narrower solutions than the second. This depends

upon the value of e used in the second definition and the gradient of the function around

f (x) = 0. Under definition 2, values of f (x) for x within the solution interval, X, do not

necessarily have to contain zero. Under those circumstances, the width of solutions may

be wider than for definition 3. There will always be values of x that satisfy definitions

CHAPTER 3. INTERVAL ANALYSIS

Lower Upper

f(x)

f(x*)
+£

— £

Figure 3.2: Illustration of the solution, X for the criterion that f{x*) C [—e, e]

CHAPTER 3. INTERVAL ANALYSIS

Lower Upper
f(x)

f(x*)
+£

— £

Figure 3.3: Illustration of the solution, X for the criterion that 0 G f{x*)

CHAPTER 3. INTERVAL ANALYSIS 54

1 and 3 as long a root of the function exists. A problem may occur using definition 3

if there are two roots close together and the lower bound of the function becomes only

slightly negative. In this case, computer rounding error could cause the solution to be

missed. As mentioned earlier, this discussion is concerned with equations that have sin­

gle roots within the range of x being investigated. If this is the case then this problem will

not arise. Nevertheless, this definition may cause some of the possible values of x to be

missed. Machine rounding error may cause some solutions at the edge of X to be omitted

as the interval value of the function at these points may have been rounded up or down so

that it no longer contains a zero. In order to obtain the entire possible range of solutions

it is necessary to introduce some value of tolerance to account for rounding error. This

leads to definition 1.

Definition 1 will always give the widest solutions as the conditions for a value of x being

accepted as a root are the most relaxed. For very small values of e that would be used as

an approximation to zero, definition 2 will give the narrowest solutions.

The first definition should be used to locate the root of a thick function in the optimisation

algorithm being developed. This ensures that no design possibilities are dismissed. For

the functions that are to be considered, it is reasonable to assume that there is only one root

in the range that is being considered. Therefore, a bisection method is used to calculate

the lower and upper bounds separately. If it is necessary to find multiple roots then the

Interval Newton method (Moore, 1966) could be used.

3.8 Summary

This chapter has introduced how interval analysis can be applied to an implicit enumer­

ation search for the optimal process structure. The basic concepts of interval arithmetic

CHAPTER 3. INTERVAL ANALYSIS 55

and interval functions have been outlined. Using an interval extension of a real function

gives bounds on the function value when interval variable values are applied. The func­

tions that appear in the design of units during the search procedure may be thick functions,

that is that they contain interval parameters. A method has been developed that will al­

low the root of such functions to be found. The selected solution criterion ensures that

all possible solutions are bounded. The following chapter describes the application of

these techniques to unit designs. This leads to the bounding of the effects of pressure

discretisation in distillation designs.

Chapter 4

Application of interval analysis

4.1 Introduction

This chapter introduces how interval arithmetic can be applied to an implicit enumeration

search for optimal process structures. The use of intervals allows the effects of discretisa­

tion on the objective function to be bounded. The first attempt at attaining this information

is bounding the effects of pressure discretisation when designing a distillation separation

sequence using distillation columns.

The process synthesis package Jacaranda, described in section 2.5, has been adapted in or­

der to work with streams and units that use intervals to represent pressure rather than real

numbers. The following sections describe the initial application of interval analysis to the

separation synthesis problem. The core implicit enumeration procedure within Jacaranda

can then be used to create and search the possible flowsheet structures. This technique is

applied to a case study involving the separation of a five component hydrocarbon mixture

and the results are presented.

56

CHAPTER 4. APPLICATION OF INTERVAL ANALYSIS 57

4.2 Implementation

Within the Jacaranda framework, the discretisation of pressure, and indeed any other con­

tinuous variable, takes place in two distinct areas:

1. The distillation unit model.

2. The process streams.

The way that intervals method are applied to these two areas is described below.

4.2.1 Intervals, units and streams

Java is an object oriented programming language. This has allowed an Interval class to

be constructed. The class has methods that correspond to each of the real arithmetic op­

erations that might be used when designing a unit or during stream property calculations.

This approach dispenses with the need to hard-code the rules of interval arithmetic into

each of the calculations performed in units and streams.

Inclusion functions can be constructed from the natural extension of the corresponding

real functions. The equations and variables that occurs in a unit model or stream based

on real arithmetic are examined. If a real variable is to be represented by an interval, each

time it occurs it is substituted by an instance of the Interval class. For example, in this

chapter intervals are used to represent pressure ranges of distillation column operation.

This means that the pressure of the column is represented by an instance of the Interval

class. Calculations involving pressure now use the rules of interval arithmetic and result

CHAPTER 4. APPLICATION OF INTERVAL ANALYSIS 58

in intervals. Ultimately an instance of Interval is produced that represents the range of

possible costs of the column.

In practice, the direct substitution described above does not always occur. This is due to

the dependency phenomenon where the same interval variable occurs more than once in

an expression. In some cases it is possible to deal with this situation by rearranging the

equation in order to reduce the occurrences to one. However, this is not always possible

and some dependency may be unavoidable. This effect may be compounded when the

results of two or more function evaluations are used in a third function. This situation is

described by the expression:

Y = F(G(X) , H(X))

If the functions G and H contain the interval, X then this leads to dependency when

evaluating the value of Y . Where possible, G and H should be substituted into F and

rearranged in order to minimise the occurrences of X.

4.2.2 The distillation unit model

The distillation model is based upon the Fenske (1932),

loqVl*xM
m . = xikVik (4 n

logSUL ^ A)3 &hk

CHAPTER 4. APPLICATION OF INTERVAL ANALYSIS 59

Underwood (1948) equations

(4.2)
i = l

/Ci„ + 1 = V —^2 (4.3)
U a i ~ 9

and the Gilliland (1940) correlation.

N = N™n + S (4.4)
1 o

where

S = 0.5309 - 0.5968 I R n ^ in>) - 0.908 log10
R + 1 J olu V R + 1

if

R — Rmin < 0.125
R + 1

and

S = 0.6257-0.9868 I — +0.516 (^ 7 0.1738 (R ~ ^

otherwise. The values for this correlation are from Rathore et al. (1974).

The Fenske correlation is used to calculate the minimum number of stages, when the

column is operating under total reflux. The Underwood correlation is used to calculate

CHAPTER 4. APPLICATION OF INTERVAL ANALYSIS 60

the minimum reflux ratio and from this the actual reflux ratio is determined using a reflux

rate factor. The Gilliland correlation is used to calculate the actual number of stages based

on the results of the first two equations. Capital and operating cost models are provided

by Rathore et al. (1974)

The column model assumes semi-sharp separation. Non-key components pass completely

into the top and bottom products. The key components are split according to the fractional

recovery specified. This was set to be 98% in all cases. Heat exchangers are costed

based upon the heat transfer area required. Continuous utilities are available (Rathore

et al., 1974). A constant temperature difference of 8.5 K between utilities and the process

streams is assumed in order to calculate heat exchanger areas.

The unit model is presented with a feed at a pressure within a certain interval. The column

is allowed to operate within a range of 1 to 32 atm. Depending upon the level of discreti­

sation selected this leads to a corresponding number of intervals spanning the pressure

range. Coupled with a component selected as the light key, one of these pressure intervals

defines a particular unit alternative. The design calculations are performed using interval

analysis. The design generated yields interval values for the height, diameter and heat ex­

changer areas for all possible stream and distillation pressures. These values subsequently

lead to capital and operating cost intervals for a particular column design. For each in­

terval value determined, a nominal value is calculated. This is a result of the calculation

carried out at the midpoint around which the interval is constructed and corresponds to

the value of the discretised real value of the variable. If a unit design is successful, the

nominal values of the design parameters and costs are feasible.

It is necessary to solve equation 4.2 to determine 6, a value between the relative volatilities

of the keys. If interval analysis is used, this value is itself an interval,©. This is not only

because the relative volatility of each component, a , varies with pressure but also because

CHAPTER 4. APPLICATION OF INTERVAL ANALYSIS 61

the pressure of the feed to the column is an interval. The parameter, q, is a measure of

the fraction of the feed that is vapour. This is calculated by comparing the enthalpy of the

feed at its current pressure to its enthalpy at the column pressure. Since both the feed and

the column are within certain pressure intervals, the enthalpy will also be an interval. Q

will contain the range of possible real values of q.

Note, the range of a is not as sharp as theoretically possible because of dependency due

to the interaction of pressure intervals. This will be discussed further in the next section.

The fact that vapour fraction and relative volatilities are intervals mean that equation 4.2

is a thick function. The solution is obtained by a bisection method. This is the most

convenient option as it is known that © must be between the relative volatilities of the

keys and there is only one root between these bounds. Real values of 9 within the root

interval, © must meet the criterion that f{9) fl [—e, e] ± 0. This means that for any value

of 9, there is at least one possible design for some combination of real values within the

Q and a intervals. As explained in the previous chapter this definition ensures that no

feasible designs are excluded by the root finding procedure. Hence, the resulting cost

interval bounds all possible real values for the cost of the column. In order to yield a

feasible nominal design, the nominal value of the root is calculated from nominal values

of q and a. This value will always lie within the interval solution due to the inclusion

properties of interval arithmetic.

4.2.3 Process streams

Process streams are discretised in terms of component flow rates and pressure. The base

component flow rate is set to 10% of the component flowrates in the feed stream. As

a result, the semi-sharp column acts as a sharp separator as the small amounts of key

CHAPTER 4. APPLICATION OF INTERVAL ANALYSIS 62

components disappear when stream discretisation is applied. Product tanks accept streams

that are over 90% pure in any of the components.

The stream pressure is allowed to take one of the user specified number of discrete in­

tervals. In the case study, presented in the next section, the level of stream pressure

discretisation was set to be the same as the distillation pressure discretisation. This means

that the pressure level of streams leaving the column is not re-discretised before further

processing. This is useful for two reasons:

1. Further discretisation would lead to a widening of bounds, hence a finer discretisa­

tion scheme would be needed for the same confidence in the solutions.

2. If the pressure interval of the stream is not altered upon exiting a unit before feeding

to the next unit, that means the nominal value around which the pressure interval is

constructed corresponds to an attainable value. This means that for a given process

flowsheet structure the nominal cost can be used as upper bound on the minimum

cost of that particular structure.

4.3 A hydrocarbon separation case study

4.3.1 Case study definition

The separation of a 5 component hydrocarbon mixture into pure components has been

attempted. It is a synthesis problem posed by Rathore et al. (1974). Table 4.1 shows the

composition of the feed stream. The aim is to find the optimal process structure for this

task. This problem has previously been attempted using Jacaranda (Fraga, 1998). The

CHAPTER 4. APPLICATION OF INTERVAL ANALYSIS

Table 4.1: Feed stream composition

63

Component Flow rate
(kmol/hr)

propane
l-butane
n-butane
i-pentane
n-pentane

45.36
136.08
226.8

181.44
317.52

results obtained gave no indication of the effect of the discretisation on answer quality.

In addition there is no guarantee that a superior structure has not been missed. This is

because the appropriate set of pressure conditions for the optimal structure in continuous

space may not have been tested by the discrete search procedure. The smaller the number

of discrete pressure levels used the more likely it is that the true optimal structure will be

missed.

Runs were attempted varying the level of unit and stream pressure discretisation. Three

optimisation criteria were specified, each based on the lower bound:

1. capital cost

2. operating cost

3. operating cost + (capital cost/2) (Capital cost amortised over two years)

4.3.2 Results and discussion

Figure 4.1 shows the capital cost of the three best solutions ranked according to the lower

bound on the capital cost. The position of bars on each line correspond to lower, nominal

and upper values of cost. The costs of the solutions are shown for various degrees of

CHAPTER 4. APPLICATION OF INTERVAL ANALYSIS 64

discretisation. As the number of discrete points increases the bounds on the solution

become tighter.

1st

3rd -

£

16 64 25632 128
number of discrete pressure levels

Figure 4.1: Solutions ranked according to the lower bound for capital cost

These bounds are not as tight as possible due to dependency. Nevertheless, the bounds

strictly contain all the possible values of the objective function for a particular solution.

A particular solution represents two separate concepts related to the flowsheet being de­

scribed.

• Structure A structure is defined by its constituent units and the way that the units

are connected. Two structures can be said to be identical if they contain the same

number of each type of unit and the units are linked to each other in the same

configuration.

• Operating conditions In this case study the operating condition being considered

is the pressure of the distillation columns. A particular solution not only describes a

CHAPTER 4. APPLICATION OF INTERVAL ANALYSIS 65

flowsheet structure but the pressure interval within which each column is operated.

This means that the cost interval of the solution does not bound all possible costs for

the structure, but bounds the cost of operating at a certain set of pressure intervals.

As explained in section 2.5, the search constructs a list of best solutions to each problem

stream encountered. Two solutions with the same structure are not allowed in the list

together. In this situation the solutions are compared based on the objective function

value and the one with the lower value is retained and the other solution discarded. For

this reason, the criterion used for comparison was the lower cost bound of each solution.

This ensures that no other solution with the same structure could possibly cost less. The

lower bound of the best structure ranked in this way bounds the optimal cost for the case

study. Comparing bounds of different structures can allow this optimal structure to be

isolated. Note, this is only true if we make the following assumptions:

1. Other discretisations performed by Jacaranda have a negligible effect on the objec­

tive function value. The other source of discretisation in this case study is compo­

nent flow rate. Interval analysis is applied to this aspect of the synthesis problem in

chapter 5.

2. Potentially optimal solutions are not rejected due to part of an interval unit variable

value being infeasible. For example, a certain distillation operating pressure range

may yield a minimum reflux ratio interval that contains negative values. In this

situation it is not clear whether or not this is caused by part of the pressure interval

being infeasible or whether it is due to the bound widening of dependency. An

appropriate discretisation profile can resolve this situation and the issue is addressed

in chapter 6. In this case study, above 32 discrete pressure intervals, no designs were

rejected for this reason. This suggests that many of the failures at coarser levels of

discretisation were due to dependency.

CHAPTER 4. APPLICATION OF INTERVAL ANALYSIS 66

1st i—— i
2nd
3rd - •:

C/3

» 0.8 Co
0.6B

oO
00_c
td

0.4

0.2<L>0«
O

25616 32 64 128
number of discrete pressure levels

Figure 4.2: Solutions ranked according to the lower bound of the annual operating cost

Figure 4.2 shows the bounds on the annual operating cost for solutions ranked according

to the lower bound on the operating cost. As with capital cost, increasing the level of

discretisation sharpens the bounds. As a percentage of the nominal value, the bounds

on operating cost are much wider than those of capital cost. In particular, the difference

between the upper and nominal values is large compared to the difference between the

lower and nominal values. This is due to the nature of equations used to determine heating

and cooling requirements. Specifically, the large bounds are due to dependencies in the

calculation of the heat balance around the column. The enthalpies of the streams are

intervals as they are functions of the operating pressure. Furthermore, the feed enthalpy

is a function of the stream pressure. The combination of these factors leads to bounds that

are far from as tight as theoretically possible.

The original version of Jacaranda determines a solution in terms of discrete values. This

gives no assurance that optimal solutions are not missed by overly coarse discretisation.

Bounded results can provide this assurance: if the upper bound of the cost of the best

CHAPTER 4. APPLICATION OF INTERVAL ANALYSIS 67

solution value is smaller than the lower bound of the second ranked solution, then the op­

timal structure is represented by the best solution. This is a useful result as it allows us to

identify the discretisation level to use to be sure that the optimal solution has been gener­

ated. However, even more information can be gleaned from the nominal value (calculated

from the stream and unit pressure mapped to real values).

As previously mentioned in section 4.2.3, the discrete pressures allowed in streams and

columns were kept consistent. The pressure of a stream leaving a column would not

change due to the mapping to discrete space as it would already be at one of the stream

pressure levels allowed. The nominal value of the unit’s operating pressure is never

mapped to another value so the nominal value of an optimisation criterion is a feasible

value. This is, of course, only true if there were no other discretisations, but as mentioned

above, we have assumed that these other discretisations are negligible in comparison with

the pressure discretisations.

2 1st I------1
2nd 1----- J
3rd — ■:

1.95

9

1.85

8
64 128 256
number of discrete pressure levels

Figure 4.3: Solutions ranked according to the lower bound of the capital cost, using the
nominal value as an upper bound.

CHAPTER 4. APPLICATION OF INTERVAL ANALYSIS 68

S? 0.24

1 0.22

1st I------1
2nd 1----- J
3rd

6
0.2CAO<J

DO_C
COUi0>
(X
O

0.18

0.16

64 128 256
number of discrete pressure levels

Figure 4.4: Solutions ranked according to the lower bound of the operating cost using the
nominal value as an upper bound.

The argument used above when comparing the upper bound of the best solution with the

lower bound of the second best solution can also be applied using the nominal value of

the best solution. As this nominal value corresponds to an attainable set of real values,

it is an upper bound on the global optimum. Therefore, if the nominal value of the best

solution is smaller than the lower bound of the second ranked solution, the optimal value

must be between the lower and nominal values of the best solution. We can ignore the

range of values above the nominal value for all solutions. Figures 4.3 and 4.4 present the

results for the three finest levels of discretisation as a result of this analysis.

Figure 4.5 shows the structure of the top ranked solution for annual operating cost. It

cannot be claimed that this structure is optimal as its bounds coincide with those of the

second best structure but it is certainly cheaper than the third best structure.

Figure 4.3 shows that, using 64 discrete pressure levels, the global minimum can be iden­

tified. With 256 discrete pressure levels, we can also distinguish between the 2nd and 3rd

CHAPTER 4. APPLICATION OF INTERVAL ANALYSIS 69

ABC

BC
ABCDE

DE

Figure 4.5: The optimal structure when considering annual operating cost

best solutions. Figure 4.6 shows the optimal structure in terms of capital cost.

AB

ABCD

ABCDE CD

Figure 4.6: The optimal structure when considering capital cost

Figure 4.7 shows the results using an annualised cost criterion, the sum of the operating

CHAPTER 4. APPLICATION OF INTERVAL ANALYSIS 70

cost with the capital cost amortised over two years. With 128 discrete pressure levels, the

upper bound for the top ranked structure is smaller than the lower bound on the minimum

of the second ranked structure. The top ranked structure in the list is therefore optimal.

This structure is the same as for when considering capital cost only, that is shown in figure

4.6. Using 256 discrete levels, the second and third best solutions can be identified with

certainty.

oo
tsDC
2
<u C/5

O Z
+ c , ° <N ’j z^ a
o EO
Is
‘5L03
u

1.35
1st I------1

2nd 1----- J

1.25

1.15
64 128 256
number of discrete pressure levels

Figure 4.7: Solutions ranked according to the lower bound of the annualised cost, using
the nominal value as an upper bound.

Runs were carried out without using the interval bounding method for 4, 8, 16 and 32

pressure levels. For capital cost the top three structures were the same for all these levels

of discretisation. For operating cost, the top ranked structures for the runs with 4 and 8

discrete pressure levels were different from those yielded by 16 pressure levels and above.

The list of top ranked structures for operating cost based on 16 discrete values was the

same as that from the interval bounding procedure. This shows that the runs at 4 and 8

were missing better solutions between the discretised values. For example, the structure

CHAPTER 4. APPLICATION OF INTERVAL ANALYSIS 71

shown in figure 4.5 has been shown to be in the top two structures based on operating

cost. From the results of the runs at 4 and 8 pressure levels based on discrete values, this

structure does not appear in the top three.

4.4 Summary

Interval arithmetic has been applied to the calculations, involving pressure for the design

of a distillation unit. When combined with an implicit enumeration search for optimal

separation sequences, the cost of each structure is bounded.

If a clear gap exists between the nominal value of one solution and the lower bound of a

subsequent solution, then the former is sure to be a superior solution to the latter. This is,

of course, only true with respect to the discretised variable that has been represented by

intervals.

The bounds generated for the optimisation criteria are not tight in some cases. Neverthe­

less, they are valid bounds: the criteria values cannot be outside this range for a given

structure and discretisation parameter values within the interval chosen. Furthermore, as

the number of discrete levels increases, the bounds on the criteria values become sharper.

If the assumptions that the component discretisation has negligible effect on the solution

and that no solutions are missed due to design failure are valid, then the results of the

case study identify the optimal structure. This is the case when the objective function is

minimised for the lower bound. In the case study, stream and unit discretisation were kept

consistent. This means that the optimal structure can be isolated if the lower bound of

the second best solution is greater than the nominal value calculated for the best solution.

In effect, the nominal value is an upper bound on the minimum for that solution. Any

CHAPTER 4. APPLICATION OF INTERVAL ANALYSIS 72

uncertainty, that discretisation of the variable analysed may have caused another optimal

solution structure to be missed, is removed. If minimisation is carried out on the nominal

value, the presence of a solution for this value of the objective function is assured. A lower

bound, however, is not necessarily attainable due to dependency in the interval analysis.

When developing unit models it is important to keep dependency to a minimum.

Examination of the runs using coarser pressure discretisation shows that the top ranked

structures are not optimal. Only from successive runs using finer levels of discretisation

can this be demonstrated. Without bounding information from the procedure described in

this chapter, a user would have no idea of the quality of the solutions returned. An overly

coarse level of discretisation may be used that yields poor sub-optimal solutions.

These results show that the use of Interval analysis has potential in the identification of

optimal structures. There are fourteen possible structures that solve this synthesis problem

and this method has identified the best structure with respect to capital cost and annualised

capital cost. However, the approach described has some areas that can be significantly

improved.

Using the current method it is necessary to carry out successive runs, each with a different

level of discretisation before the optimal solution can be isolated. A superior approach

would be able to change the level of discretisation during the search. The search could be

made more efficient if variables were no longer discretised uniformly. The search could

adapt to discretise more finely in certain areas when necessary. This issue is examined

in chapter 6. However, before an adaptive approach is examined, the method must be

enhanced to allow ail variables to be used in interval arithmetic.

In this case study, only one variable, pressure, was included in the interval analysis pro­

cedures. The other discretised variables in this example were the component flow rates.

All the other distillation model variables, such as reflux rate factor, were set as exact real

CHAPTER 4. APPLICATION OF INTERVAL ANALYSIS 73

values. It was assumed that the effect of component discretisation would be negligible

compared to that of pressure. This will certainly not always be the case. In order to pro­

ceed, it is necessary to address the effect of component flow rates on the solution. This

effect is taken into account in the following chapter.

Chapter 5

Bounding the effects of flow

discretisation

5.1 Introduction

This chapter describes the application of interval analysis in order to bound the effects

of discretisation of component flow. Discretisation of the stream variables, pressure and

component flow rate, allows efficient re-use of solutions. As discussed previously, good

solutions may be missed between these discrete values. In terms of component discreti­

sation, the basic Jacaranda system maps the continuous variables of component flow to

the nearest multiple of the user defined base flow rate. If the flow rate of a component, on

exit from a unit, is nearer to zero than one multiple of this base value then the component

is removed.

The effect of component discretisation is different from that of pressure. The specifica­

tion for product streams is often based on the mole or (mass) fraction of one or more

74

CHAPTER 5. BOUNDING THE EFFECTS OF FLOW DISCRETISATION 75

components. Thus, the discretisation that takes place can affect whether or not a stream

is accepted as a product, and hence has an influence on the overall process structure. In

addition, if a component flow is mapped to zero due to discretisation, it will no longer

be considered in the alternatives for unit operations. For example, in distillation design it

would not be considered as a key for separation. In order to bound the possible values, the

components that disappear due to discretisation must be taken into account. A method of

accounting for this and the results of a case study are presented in this chapter.

5.2 Discretisation and the re-use of solutions

5.2.1 Re-use

As explained in section 2.5, Jacaranda increases the efficiency of the search by allowing

the re-use of solutions. The flowrate of each component in the stream is mapped to multi­

ples of that component’s base flowrate. The stream is then encoded based on the multiples

of each component present. This yields a string that describes the flows of the discretised

stream. When a stream is solved, the solution and stream information is stored in a hash

table and referenced by this string encoding. Every new stream that is encountered is

discretised and encoded. The hash table is then checked to see if this stream has been

encountered previously. If so, the solution is retrieved and no further work is required for

this stream. The coarser the discretisation of component flows, the greater the re-use of

solutions. Without it, tiny differences in component flows would mean that a two streams

were considered different. However, the primary aim of this work is to isolate the optimal

structure and re-use is not as important an issue. In implementing the interval bounding

method, discretisation of streams could be dispensed with entirely. It is not necessary to

CHAPTER 5. BOUNDING THE EFFECTS OF FLOW DISCRETISATION 77

Feed
10A 10B IOC 10D 10E

10A 10B
[9.6,9.7]C [0.288,0.388]D

A/B

10A 10B IOC
[9.6,9.7]D [0.3,0 4] E Stream X

-mainly B and CC/D

[0.3,0.4]A [9.6,9.7]B
[9.6,9.7]C [0.288,0.388]D

D/E

Figure 5.1: Part of a solution structure that requires passage through three columns to
produce a stream containing mainly B and C

CHAPTER 5. BOUNDING THE EFFECTS OF FLOW DISCRETISATION 78

the feed flowrate of E is 10 kmol/h. Therefore, the flowrate of E in the top stream is

(1 — [0.96,0.97]) x 10 = [0.3,0.4] kmol/h. Components A, B and C pass into the top

stream in their feed amounts as the column is performing semi-sharp splits. The next

column is performing a split with the light/heavy key split between components C and D,

and the next column a split between A and B. In both cases a key recovery of between

96 and 97% is used. This results in a bottom stream, A from the final column containing

mainly B and C in the amounts shown in the figure. A very similar stream, /i containing

mainly B and C can be generated from the two column structure shown in figure 5.2. It

can be seen that the two streams only differ very slightly by the range of D present.

Stream |i -mainly B and CFeed
A/B

[0.3,0.4]A [9.6,9.7]B
[9.6,9.7]C [0.3,0.4]E

10A 10B 10C 10D 10E

C/D
[0.3,0.4]A [9.6,9.7]B

10C 10D 10E

Figure 5.2: Part of a solution structure that requires passage through two columns in order
to produce a stream containing mainly B and C

If these streams were to be discretised then a scheme similar to that used for pressure

discretisation in chapter 4 could be applied. If the base flowrate for each component was

1 kmol/h, then interval ranges could be constructed around the discrete values of 1,2,3

CHAPTER 5. BOUNDING THE EFFECTS OF FLOW DISCRETISATION 79

etc. The resulting intervals would be [0,0.5], [0.5,1.5], [1.5,2.5] etc. The flows of each

component would be mapped to the interval within which they fell. The result of this

mapping on streams A and /i is shown in table 5.1. The mapped versions of the streams

would be seen by the search procedure as identical. If stream A had occurred first in the

search then when stream /i arose the solution to A could be retrieved and no further work

on stream [i would be required.

Table 5.1: The discretisation of two similar streams using standard practice

Component A
(kmol/h) (kmol/h)

A mapped
(kmol/h)

li mapped
(kmol/h)

A [0.3,0.4] [0.3,0.4] [0,0.5] [0,0.5]
B [9.6,9.7] [9.6,9.7] [9.5,10.5] [9.5,10.5]
C [9.6,9.7] [9.6,9.7] [9.5,10.5] [9.5,10.5]
D [0.288,0.388] [0.3,0.4] [0,0.5] [0,0.5]

However, as mentioned earlier this discretisation has caused widening of the bounds on

component flowrates. This ultimately leads to wider bounds on the cost of solutions and

makes the isolation of the optimal structure less likely for a given level of discretisation.

Another issue is what should happen when an interval flowrate to be mapped is present in

two different discretised intervals. For example component B could have been present in

the interval [9.3,9.7] kmol/h which would leave the decision of whether to map the flow

to [8.5,9.5] or [9.5,10.5] kmol/h. These factors provide a persuasive argument for not

discretising component flows. Removing this discretisation entirely would lead to longer

search times as problem stream re-use would fall.

It can be noted that many of the differences between streams occur in the flowrates of

components present in small amounts. This is the the case in the above example where

the two streams only differ in the flowrate of component D, yet they arise from different

routes through a flowsheet. This is one of the consequences of using semi-sharp separa-

CHAPTER 5. BOUNDING THE EFFECTS OF FLOW DISCRETISATION 80

tors based on heavy and light keys. Taking this, and the desire to reduce the amount of

component discretisation, leads to the idea that discretisation should only be carried out

for small flowrates. Using this approach, many of the difficulties described previously can

be avoided. For these reasons the concept of the trace level is introduced.

If a component is present in amounts below this threshold then the flow of the component

is mapped to a trace interval value. The trace interval has a lower bound of zero and an

upper bound at the value of the trace flowrate for the particular component. The result

of applying this scheme is that all possible values of component flow are bounded. This

ensures that resulting flowsheet cost intervals strictly bound the cost of processing the

feed stream. Table 5.2 shows what happens if this scheme is applied to the streams A and

H from the above example. The streams A* and n* are the results of this operation. With

the particular trace threshold values chosen, the resulting streams are identical. When one

of these has been solved, no further work would be required if the other arose later in the

search.

Table 5.2: The discretisation of two similar streams using the trace concept

Component A
(kmol/h) (kmol/h)

trace
threshold
(kmol/h)

A*
(kmol/h) (kmol/h)

A [0.3,0.4] [0.3,0.4] 0.2 [0.3,0.4] [0.3,0.4]
B [9.6,9.7] [9.6,9.7] 0.5 [9.6,9.7] [9.6,9.7]
C [9.6,9.7] [9.6,9.7] 0.5 [9.6,9.7] [9.6,9.7]
D [0.288,0.388] [0.3,0.4] 0.5 [0,0.5](trace) [0,0.5](trace)

The value of the trace threshold must be chosen carefully and on a component by com­

ponent basis. If it is too large then cost bounds will be wide and the optimal solution may

not be isolated. If it is too small then the amount of solution re-use will be affected.

There will be some loss of re-use as a result of using the trace method rather than standard

CHAPTER 5. BOUNDING THE EFFECTS OF FLOW DISCRETISATION 81

discretisation. Some streams may be almost identical apart from a difference between the

flowrates of a component present in large amounts. This loss of efficiency is necessary in

order to keep the bounds on the solutions as tight as possible.

5.2.3 Unit variable discretisation

In terms of the distillation unit model, the key recovery fraction is defined within a range

of values. A finite number of real values in this range must be selected as the basis for

the unit alternatives. In order to incorporate bounding information, each discrete value is

enclosed by upper and lower bounds. These intervals span the whole range of possible

values of key recovery. The discrete values themselves correspond to a nominal value.

When the keys are divided between top and bottom streams, the interval split fractions

cause component flow rates in the output streams to be intervals. This mechanism is

demonstrated by figure 5.3. The figure represents an overview of the design of a par­

ticular alternative for the separation of a four component stream. The design procedure

yields bounds on the height and diameter of the column and the size of the condenser and

reboiler. These lead to upper and lower bounds on the operating and capital costs of the

particular alternative.

Chapter 4 explained how the nominal values returned in that case study are attainable,

as no discretisation takes place between units. In this chapter, the idea of mapping mass

flows, below a certain threshold, to a trace interval value has been introduced. When

trace mapping occurs, the nominal flow of a component is mapped to the upper bound

of the trace interval. This is carried out so that a trace interval flows of a component

are identical in all cases. Increasing the nominal flow of a component will only lead to

increased nominal costs of any units that it passes through. This is acceptable as the

CHAPTER 5. BOUNDING THE EFFECTS OF FLOW DISCRETISATION 82

Components and
Flowrates in

Volatility Order

^ [10,20] A
[0.9,0.91]x[30,40] = [27,36.4] B

[0.09,0.l]x[20,25] = [1.8,2.5] C

[10,20] A
[30,40] B Light Key Upper cost bound

recovery Unit Design

[0.9,0.91]
[20,25] C

[5,10] D
Lower cost bound

[0.09,0.l]x[30,40] = [2.7,4] B
[0.9,0.91]x[20,25] = [18,22.75] C

► [5,10] D

Figure 5.3: Illustration of the interval distillation column design procedure

nominal value still bounds the minimum cost of the structure. The nominal value is used

as an upper bound in this way when describing the results of the following case study.

5.3 Benzene recycle separation case study

The procedure was tested on a case study involving the separation of benzene. A stream,

defined in Table 5.3, must be purified to achieve 98% purity for benzene. This stream is

the feed for the separation section of a chlorobenzene process and the benzene is to be

recycled back to the reactor. The other components are to be removed as waste, with the

requirement that any waste stream contains less than 10 mol% benzene and less than 10

mol% chlorobenzene. Any output stream which consists of > 90% chlorobenzene will

also be accepted as a valid product stream. The flowsheet structure with the lowest capital

CHAPTER 5. BOUNDING THE EFFECTS OF FLOW DISCRETISATION 83

cost for this separation is required. The components are listed in order of volatility and a

key letter is assigned to each component for the purposes of stream encoding.

Table 5.3: Feed for the benzene recycle case study
Component Flowrate

(kmol/s)
Component key

Benzene 0:97"" A
Chlorobenzene 0.01 B
Di-Chlorobenzene 0.01 C
Tri-Chlorobenzene 0.01 D
Pressure
Temperature

1 atm
313 K

The optimisation criterion is the lower bound of capital cost. This means that the best

flowsheet ranked on this basis, bounds the cost of the optimal flowsheet. This is true,

provided that better flowsheets are not rejected due to partial infeasibility of an interval,

as discussed previously in chapter 4.

5.3.1 Results

Distillation units were used with two key recovery intervals together spanning the range

97% to 99.9%. The trace level for benzene was set as 0.1% of its flow in the feed stream;

all other components had trace values of 10% of initial flow rates. The discrepancy is

due to the large difference in feed flowrate of benzene compared to the other components.

The values of the trace threshold levels must be chosen to be consistent with the goals

of the synthesis problem. If excessively large values are chosen, the required purity may

not be attained, as components that fall below this level are mapped to their trace interval

values. If the values are too small, the efficiency of the procedure suffers as solutions are

not re-used due to small differences in flow rates.

S i
A

A

B

S i C + D

C + D

1st
2nd
3rd

Number o f intervals 16

A

S i

— B > in the key recovery range V

V

A

S :

B

C + D

C + D C + D

Figure 5.4: Cost bounds and process structures for initial and final runs of the benzene recycle case study oo

CHAPTER
5.

BO
U

ND
ING

THE

EFFECTS
OF

FLOW
D

ISC
RETISATIO

N

CHAPTER 5. BOUNDING THE EFFECTS OF FLOW DISCRETISATION 85

The results of the initial run of the procedure is a list of solution structures ranked accord­

ing to the lower bound of capital cost. The ranking procedure ensures that only one design

with a given structure is included in the list of best solutions. This is achieved by using

a text string is used to describe structural information. When a solution is to be added to

the list, it is compared to the solutions already present on the basis of this string of text.

If the structure of a solution to be added, matches one that is currently present, the two

solutions are compared on the basis of objective function value. The solution with the

lowest objective function value is retained and the other discarded. The procedure acts in

this way since the goal is to differentiate between possible structures, rather than decide

upon operating conditions.

Increasing the number of key recovery intervals reduces the size of each interval, but has

the effect of increasing the size of the search graph and, hence, the computational effort

required to solve the synthesis problem. After an initial run split key recovery into two

intervals, several further runs were performed. Each time, the number of key recovery

intervals per column was doubled . Figure 5.4 presents the cost bounds and structures of

the tops three solutions identified during two different runs of the procedure. The main

components in the stream are represented in the figure by the key (A,B,C or D) from table

5.3. The right of figure 5.4 shows the capital cost bounds and the structures identified for

the best 3 solutions using 16 intervals over the same range. For both the coarse and fine

discretisation runs, the same three unit solution can be identified as the best structure. The

isolation of this structure supports the application of an implicit enumeration approach to

the problem. This is because in the best structure, the same light/heavy key split takes

place in two separate columns. If a superstructure approach had been used, it is likely

that this split would only be allowed once in the superstructure. If this was the case the

solution would not have been considered.

Statistics for the computational runs discussed are presented in Table 5.4. Solution re­

CHAPTER 5. BOUNDING THE EFFECTS OF FLOW DISCRETISATION 86

use is defined as the number of times a previously solved problem stream is encountered

divided by the total number of streams encountered. The statistics show that extensive re­

use of solutions is maintained under the new scheme. Runs were carried out on a Compaq

850 MHz Pentium III PC, running Linux using Sun Microsystems Java 1.3.

Table 5.4: Computational and search statistics

Number of intervals
Statistics 2 16
Problem streams 210 218838
Re-use(%) 60 92
Elapsed time(s) 6 3151

5.3.2 Discussion of results

As mentioned in chapter 4, before the component intervals were introduced, it had to be

assumed that flow rate discretisation had no effect on the structures obtained. This work

removes the need for this assumption as all types of discretisation that occur can now be

bounded using intervals. However, some issues remain outstanding.

Rejection of designs

Figure 5.5 highlights a difficulty with the current method that prevents the optimal struc­

ture from being assured. For the sake of discussion, the second best solution from the

fine run using 16 key recovery intervals, is labelled as structure Z. The 2nd and 3rd best

solutions from the coarse run, using 2 key recovery intervals, are labelled as structures X

and Y respectively. From figure 5.5, it can be noted that structure Z does not appear in the

CHAPTER 5. BOUNDING THE EFFECTS OF FLOW DISCRETISATION 87

top 3 for the run using two key recovery intervals. Furthermore, the whole cost interval

for structure Z is lower than the cost intervals of the 2nd and 3rd best structures from the

coarse run. The bounding information is correct, as it results from interval arithmetic.

This means that the run using 2 key recovery intervals per column is missing solutions.

If solution Z had not been missed in the coarse run, then it should definitely have been

ranked higher than solutions X and Y. At that level of discretisation, the cost bounds of Z

would inevitably be wider, but the lower bound would be smaller than those of structures

X and Y. In fact, structure X would never actually be considered by a designer, as the final

column separates di-chloro from tri-chloro benzene, both of which are waste products.

Structures were missed due to the failure of an assumption mentioned in 4. If part of

an interval, generated in a design calculation, corresponds to infeasible or impossible

values then this alternative is rejected. This may occur due to the bound widening effect

of dependency, or it could occur due to part of the unit variable interval being infeasible.

During the coarse run, part or parts of structure Z must have been rejected during a column

design. As the number of intervals in the key recovery range is increased, the likelihood

increases that a set of key recovery intervals will lead to a valid structure. As a result of

this, it cannot be stated that the structure identified by the fine run, with 16 key recovery

intervals, is optimal. To make this statement, it would have to be assumed that the uniform

discretisation is fine enough to prevent any feasible areas of the search space from being

rejected.

C
ap

ita
l

C
os

t

(M
ill

io
ns

U

SS
)

Structure X Structure Y

V
+ D

C + D

2 n d
3 r d2.7

2.6

2.4

Structure Z
2.3

2.2

2.0

Num ber o f intervals
in the key recovery range

C + D

Figure 5.5: Highlighting the discrepancy in the results from two runs on the benzene recycle case study

CHAPTER
5.

BOUNDING
THE

EFFECTS
OF

FLOW
D

ISC
RETISATIO

N

CHAPTER 5 BOUNDING THE EFFECTS OF FLOW DISCRETISATION 89

For a given run of the procedure, each solution obtained is strictly bounded. The user

may have confidence in the range of costs returned for a structure, but cannot be positive

that a superior structure has not been missed. Designs may be rejected even though part

of a design variable interval could produce a valid design. The finer the discretisation

used, the more confident the user can be that a better solution has not been missed. At

the finest level of discretisation used in this case study, one may be confident that a better

solution has not been missed, but one cannot be sure of this. A strategy to handle design

failures must be developed, in order to assure a globally optimal solution. In chapter

6, a procedure that takes into account the reason for design failure is introduced. The

discretisation profile is selectively made finer in certain areas of the search until it can be

proved that no feasible areas have been omitted from the search.

Crossing the trace threshold

Another possible difficulty with the approach described in this chapter is that the interval

flow of a component exiting a unit may cross the trace flow threshold. This occurs when

the lower bound of the flowrate is lower than the trace flow for the component, and the

upper bound is greater than the trace flow. Whether the flowrate of a component is above

or below the trace threshold is important in terms of how it is handled by the distillation

unit model. If the whole flowrate interval is above the trace flow of the component,

then it is considered as a key component. If it is below the threshold, it is considered

not to be present in significant enough amounts to be a key component. If it crosses

the threshold, the user is informed and the program fails to produce any solutions. With

the development of the algorithm discussed in the next chapter, such occurrences can be

avoided. An interval design variable can be split repeatedly until crossing of the threshold

does not occur.

CHAPTER 5. BOUNDING THE EFFECTS OF FLOW DISCRETISATION 90

5.4 Summary

This chapter has shown that component flow discretisation during an implicit enumeration

search can be bounded using interval techniques. Introduction of the trace interval to

describe small flowrates has led to tighter bounds on solutions as discretisation in streams

need only occur at the lower flows. At the same time, this allows many sub-problem

solutions to be re-used via dynamic programming.

The quality of the solution obtained from the procedure still depends on how finely unit

variables are discretised. In addition, the number of intervals used to span the possible

range of unit variable values is the same for all designs in each run. Runs with succes­

sively finer levels of discretisation are necessary in order to increase the likelihood of

yielding the optimal solution. The optimal structure is only isolated if feasible areas are

not rejected, either due to dependency or because infeasible and feasible values are part

of the same interval.

The following chapter describes the development of an algorithm that can change the

level of discretisation at each node of the search graph based on results from downstream.

It addresses some limitations of the current method, allowing the optimal solution to be

assured.

Chapter 6

An adaptive algorithm

6.1 Introduction

Work described in previous chapters has used intervals to bound the effects of uniform

discretisation of continuous unit variables. This allowed the cost of the most promising

process structures to be bounded. These bounds have been tight enough to discount certain

structure, showing the potential of applying interval analysis to an implicit enumeration

search. The intention was to ensure that the optimal solution had been isolated. This did

not prove possible using the earlier methods for one main reason. While the previous work

bounded the cost of the structures produced, it could not assure that a superior feasible

structure had not been missed. A list of the n-best structures and their cost bounds is

returned. This is based on the uniform discretisation profile specified. In addition, there

is no flexibility to deal with cases where a particular alternative fails due to part of a unit

variable being classed as infeasible. This could mean that not all areas of the search space

are exhaustively examined causing the optimal solution structure to be missed.

91

CHAPTER 6. A N ADAPTIVE ALGORITHM 92

The aim of the work presented in this chapter, is to isolate the globally optimal structure

by changing the discretisation profile during the search. This would mean that the optimal

structure could be found by applying the procedure once rather than making a series of

runs with increasingly fine discretisation. This can be accomplished by no longer using

uniformly sized intervals. Ideally the search should be concentrated in areas where it is

necessary to use finer discretisation in order to find a solution. In addition, the method

should ensure that all feasible variable values are searched exhaustively. If a design fails

due to dependency or an interval being partially infeasible, the interval variable should be

split until the problem is resolved.

The development of such an algorithm leads to using the concept of boxes (Moore, 1966)

to describe variable values. An algorithm can then be developed based on a box split­

ting global optimisation algorithm. The generalised box splitting algorithm is adapted to

work within the framework of the intervalised implicit enumeration approach described

previously.

6.2 Boxes

A box used in interval techniques is defined by one or more variables each with a lower

and upper bound value. The analogy with a real box allows splitting to be visualised

more easily. When this idea is applied to a unit design in the synthesis problem, not all

the dimensions of the box are continuous variables. For example, a distillation column

may have three degrees of freedom. Two sides of a box describing a column design could

represent the continuous variables of pressure and key recovery fraction. The third could

be the discrete choice of light key component. Figure 6.1 illustrates two possible boxes

for such a distillation design. The first box represents a unit design where component A

CHAPTER 6. A N ADAPTIVE ALGORITHM 93

is the light key, the design pressure is an interval between 1 and 2 bar and the recovery

fraction of A is an interval between 0.95 and 0.96. Box 2 represents a unit design under

the same conditions apart from component B now being the light key component.

Pressure (bar)
BOX 2

Light Key

0.95 0.96

0.960.95 BOX 1

Recovery fraction

Figure 6.1: An example of two boxes

6.2.1 Splitting

A box may undergo a splitting operation on one of its continuous variables. In this work,

the split occurs at the midpoint of the interval value of the variable, but in principal could

be applied anywhere. Figures 6.2 and 6.3 show the two different splits that could be

applied to a box representing interval values of two continuous variables. The original

box represents variable Y with a lower bound a and an upper bound of b and variable

x with a lower bound of c and and upper bound of d. In figure 6.2, the box is split on

CHAPTER 6. A N ADAPTIVE ALGORITHM 94

variable x resulting in two new boxes with the bounds on x as shown. In figure 6.3 the

box is split on variable y.

c d c c+d c+d d

X

Figure 6.2: Box splitting procedure on the x variable

b --

a+b

Figure 6.3: Box splitting procedure on the y variable

6.2.2 Other information associated with a box

As well as the information on the unit design variables, it is necessary to store information

that allows boxes to be compared after the unit design has taken place. The following is a

description of the additional data that is stored with each box.

CHAPTER 6. A N ADAPTIVE ALGORITHM 95

Output streams

Each box that is produced by the splitting procedure holds bounds on the design variables

for a particular unit. When the unit is designed based on these values, it may produce

one or more output streams. Only a box that describes a product tank will not produce

an output stream. The composition and state of these streams is stored along with the

information that describes the box.

Output stream solutions

Once the output streams from a particular design have been identified, each is treated as

a new problem stream and is solved. When the solution to a particular stream is isolated,

information on the downstream structure and conditions is stored with the other box in­

formation. Once the solutions to all output streams from a box have been found then the

structure that results from the box is knowii. This information can be used to compare

two boxes during the search procedure.

Costs

If optimisation is to be carried out, it is necessary to attain the objective function value

of each flowsheet. The objective function could contain capital cost, operating cost or

another factor such as environmental cost. A box groups these interval costs into two

types. The design costs are the costs of the particular unit design associated with a box.

The solution costs are the costs of the unit design for this box plus the costs of solving the

output streams from this unit design. An interval representing the objective function for a

box and its downstream structure can then be calculated from these costs. Boxes can be

pruned from the search based on the relative values of their objective function bounds.

CHAPTER 6. AN ADAPTIVE ALGORITHM 96

Figure 6.4 illustrates the cycle of this information generation and storage. The design is

based on the data stored by box 1, shown in figure 6.1, for a given feed stream. Firstly, the

design of a distillation column is carried out based on the feed stream and design variables

values of the box. This procedure gives the design costs of the box; in this case capital

and operating costs. The unit design produces two output streams that are solved. This

example shows that output 1 is solved by using another distillation column that yields

two product streams. Output 2 is a product and requires no further processing. The costs

and downstream structure associated with sub-problems 1 and 2 are retrieved and stored

along with the data describing the box. To give the solution costs for this box, each of the

design costs are added to the corresponding costs for sub-problem 1 and 2. From these

total values, the objective function value range for this box is calculated. This may be

simply the capital cost, the operating cost or some combination of the two.

XDesign
Light Key

B

0.95 0.96

Output 1

Output 2

Design costs

\
Solve output
streams

Objective
function
value

cap
cost

op
cost

Sol costs =
Design costs
+ Costs spl
+ Cost sp2

Costs sp 1 ̂
4 ' ' '

j r

u
T ss

Costs sp2

Solution 1

Solution 2

Figure 6.4: Building box costs and structure by unit design followed by solution of sub­
problems

f

CHAPTER 6. A N ADAPTIVE ALGORITHM 97

6.3 Changes required to standard box splitting algorithms

Various algorithms based on splitting boxes and generating bounds based on inclusion

function have been suggested by Skelboe (1974), Ratschek and Rokne (1988), Hansen

(1992), Kearfott (1996). These have many features in common and can be generalised

by the algorithm shown in figure 6.5 (Csendes, 2001). It is based on finding the global

minimum value, /*, of a function, f (x) , on a search region covered by the box, X. If an

inclusion function F(X) can be found for f (x) over the search range then the following

general algorithm is valid.

1. Let L be an empty list of pairs of values. A is an initial box that covers the search
region, X. Iteration counter k — 1. Set the upper bound on the global minimum, /
as the upper bound of the inclusion function over the initial search region, F(X).

2. Divide A into s subsets A i,(i = 1, ...s). Evaluate the inclusion function, F(X) for
each of the new subintervals. Update / based on these function evaluations.

3. LetL = L u { (A i, F(Ai))}

4. Remove members of L that cannot contain the global minimum point.

5. Choose a new A € L and remove it and its related function evaluation, F(A), from
L.

6. While termination criteria do not hold, k = k + 1. Go to step 2.

Figure 6.5: A generalised box splitting algorithm for global optimisation (Csendes, 2001)

The stopping criteria are likely to be based on a minimum width of the dimensions of

A and F(A). There are several schemes for the choice of the next box in step 5. The

CHAPTER 6. A N ADAPTIVE ALGORITHM 98

most common method is to select the box that has the lowest value of lower bound for

F(X). The aim of this step being to select the box that is most likely to contain the global

minimum point. Step 4 is where acceleration techniques are applied that help to speed up

the convergence of the algorithm. For example, in an unconstrained problem where a box

X is feasible throughout and the gradient, g (X) is calculated. If 0 ^ g(X) then the box

cannot contain a minima and it may be removed from consideration.

For this type of algorithm to be applicable for integration with the interval techniques

described previously, alterations must be made to take into account the special properties

of the synthesis problem. For example, the above algorithm assumes that the objective

function is explicitly available for evaluation so that an inclusion function may then be

obtained. This is not the case, as in implicit enumeration a graph is generated and searched

at the same time, so that when a particular box is applied to a stream the downstream

structure is unknown.

6.3.1 Bounding the global minimum

Box splitting algorithms require there to be an inclusion on the objective function. An

inclusion function F on a real function, / is such that the application of F(X) yields an

interval that contains all possible values of f i x) for a; € X. For this type of recursive

search, the inclusion function would incorporate the cost of designing the unit described

by the box plus the cost bounds of processing the resulting sub-streams for all possible

unit variable values. The cost would include all possible downstream process structures.

This would be inefficient as splitting would only occur on boxes associated with the initial

feed stream. After every application of a box to this feed stream, the full range of variables

for each unit would need to be applied to each of the subsequent streams in the process

structure.

CHAPTER 6. A N ADAPTIVE ALGORITHM 99

This work is intended for application to the early stages of process design. At this early

stage, the main goal is to isolate the most suitable process structure from what is often a

large number of possibilities. As a result, the aim of the algorithm is to isolate the optimal

process structure. Unit design parameters are variables in the search, but a stream is said

to be solved when the search has been narrowed down to one structural alternative for

its processing. The values of the unit variables will have an effect on the downstream

structure, but the goal is not to find their optimal values for each unit. Under these cir­

cumstances, the user can be sure that there is no set of variable values for another process

structure that lead to a lower objective function value.

Given that the procedure is a search for structure then it would be preferable to bound

the global minimum value rather than all possible values. A strategy that would allow

splitting to occur at all levels of the search would be to recursively apply a box splitting

algorithm for all streams encountered. For each stream encountered the procedure would

isolate the optimal processing structure before passing control to the previous level of

recursion. The optimal structure is assured at each level as the flowsheet is built from the

downstream prodcuts upwards. The bounds that are calculated for a given box are made

up of the cost of the associated unit design plus the cost of processing the output streams.

The bounds on a box bound the minimum cost of processing the current stream given the

operating unit and variable values represented by the box. For a given stream, the lowest

value of the objective function and the lowest feasible set of variable values would be

lower and upper bounds respectively on the global minimum for processing this stream.

Figure 6.6 shows a representation of this procedure. Starting in the top left hand comer,

box X is to be applied to a process stream. This yields a unit design with cost D and two

output streams, A and B. These and any subsequent streams are solved with a global opti­

misation algorithm. In the figure there are four possible downstream structures for stream

A. Application of the box splitting algorithm results in structure A3 being accepted. The

CHAPTER 6. A N ADAPTIVE ALGORITHM 100

same procedure selects downstream structure B2 for the processing of output B. The costs

of optimal downstream processing are added to the cost of the unit design to give the total

cost for this box. The bounds of this cost are bounds on the globally optimal value for this

particular box. If the processing costs returned were instead the union of the cost of all the

downstream processing possibilities then the bounds on the box would be an inclusion of

all possible values. But, since the search is for the optimal processing structure then this

is not necessary. As long as the optimal structure is isolated for each stream encountered

the optimal overall flowsheet can be isolated.

„ Structures
Box X

A1
A2

'a 3k
A4

Output A

Optimal
downstream
structure
detemined

Box Cost

= A3 + B2 + D

Unit Design

Cost D

B1

Output B B3

Cost A3, Cost B2

Figure 6.6: Constructing an inclusion function by successive optimisation of sub-streams

6.3.2 Updating the upper bound on the minimum

Many commonly used acceleration methods of step 4 cannot be applied to the synthesis

algorithm as they require explicit knowledge of a term for the objective function. Other

CHAPTER 6. A N ADAPTIVE ALGORITHM 101

methods require that the whole box will lead to feasible solutions which is not necessarily

the case. One common acceleration method is the midpoint test where the real version of

the function, f (x) is evaluated at the centre of a box. If this point is found to be feasible

then the value of f (x) can be used to update the upper bound on the global minimum, / .

In the synthesis procedure this is the equivalent to evaluation at the nominal value of the

box, a concept that has has been explained previously. After a box is applied to a stream,

the algorithm is applied to the output streams of the resulting unit design. In addition

to the bounds on the cost of processing the stream with this box, a cost of design and

processing at the nominal value is also returned. If the box and downstream boxes have

led to successful unit designs and products then this nominal value corresponds to a real

and attainable cost for the flowsheet from this stream on-wards. As a result, a nominal

cost of a box can be used to update / if it is less than the current value of / . If for a box,

Ai, F(Ai) > f then this box can be eliminated.

6.3.3 Stopping criteria

For the generalised algorithm, the aim is to isolate the set of real variable values that result

in the smallest possible value of the objective function. In practice this means that the box

representing the variables should have dimensions smaller than a certain tolerance. At

this level the user would essentially think of this box as a real point. For a box, A, the

stopping criteria would therefore be w(A) < e\. The other requirement is that the box

represents points that are sufficiently close to the global minimum. For the box with the

smallest value of F(X) , if F(X) - F (X) < e2 then all the points represented by the box

are within e2 of the global minimum.

However, the search in the synthesis problem is not for a tight optimal box which closely

approximates a point, but for a box with the dimensions necessary to ensure that the

CHAPTER 6. A N ADAPTIVE ALGORITHM 102

optimal structure has been identified. This means that the stopping criteria do not need to

be as tight. Therefore, it is possible to stop searching on a stream when all the remaining

boxes represent the same process structure.

Another stopping criterion may be used if the boxes are stored in order of lower bound

of the objective function and the box with the lowest lower bound is ranked first. If the

lower bound of the second ranked box is greater than the upper bound of the top ranked

box then the structure represented by the top ranked box is assured to be the optimal

method of processing this stream. In practice it would be unexpected for this criterion to

be used as it is likely that boxes that represent the same downstream structure will have

more similar cost bounds than those with different structures.

6.3.4 Design Failure

In the methods described in chapters 4 and 5 the failure of a unit design resulted in that

particular alternative or box being discounted in the search procedure. If the design is def­

initely infeasible then this action is appropriate. For example, a distillation column design

that specified the heaviest component in the feed as the light key should be rejected. If

the whole of the calculated reflux ratio is less than zero then the box should be discounted

from the search procedure. However, this would not be desirable if only part of the reflux

ratio is lower than zero. This result may suggest that part of the intervals that led to the

design represent feasible designs and part do not. Alternatively it may be that the effect

of dependency has caused bounds to widen and a design parameter interval to contain

unrealistic values. In fact it is likely that both effects will occur and design failures of this

type are a combination of the two factors. Whatever the reason, a mechanism is required

that does not remove boxes that lead to design failures of this type. This is dealt with

by assigning such a box with a cost interval with bounds ranging between — oo and +oo.

CHAPTER 6. A N ADAPTIVE ALGORITHM 103

These boxes will be ranked at the top of the storage list and will be selected for division

first. In this way the area of the search space will be divided until a clear distinction

between infeasible and feasible boxes is established.

6.4 An adaptive algorithm

The aim of the algorithm described in the following sections is to isolate the optimal

process structure during the course of one run by changing the variable discretisation

profile for each box that arises in the search. Previous work requires multiple runs to

isolate a structure on the basis of cost bounds and these methods cannot ensure that a

superior feasible structure has not been omitted. The box splitting algorithm described

achieves this by searching in a depth first manner. Each problem stream encountered is

solved to optimality before returning to the previous level of recursion in the search. This

ensures that no areas of the search are omitted and that if a structure is returned, it is

optimal.

6.4.1 Initial enumeration stage

Figure 6.7 shows the implicit enumeration algorithm of Jacaranda adapted to include an

interval box splitting algorithm. For each new stream encountered in the search, boxes

are stored in a newly initialised binary tree. It is necessary to store boxes in order of

lowest lower bound and cycle through these in order and a binary tree carries out these

operations efficiently. The algorithm is presented with a problem, p, that is a process

stream with associated interval properties such as pressure or component flows. The

binary tree is initialised and a boolean value, done, is set to false. As in the original

CHAPTER 6. A N ADAPTIVE ALGORITHM 104

Jacaranda procedure, the algorithm checks whether or not this problem stream has been

encountered previously. If so, no further action is required on this problem.

GIVEN: a list of available units, a list of product specifications, a range of values for each
unit variable, maxSplits = the maximum number of splits per box.
function solve(problem p)

boolean done = false
initialise empty binary tree, t, to store boxes
upper bound on minimum = infinity
if p already processed then

done = true
else

for each available unit do
for each discrete alternative do

Create a new box, b
process box(b,t)

end for
end for
splitCount = 0
while done = false and splitCount < maxSplits do

if canStop(binary tree t) then
store solution globally
done = true

else
retrieve box with the lowest lower bound from t
split along the longest side
process resulting boxes
splitCount-H-

end if
end while

end if
end function solve

Figure 6.7: The main adaptive separations synthesis algorithm

CHAPTER 6. AN ADAPTIVE ALGORITHM 105

If this is a new sub-problem, then the algorithm cycles through an initial set of alternative

boxes. This is the same procedure employed in chapters 4 and 5. Each of the boxes

produced by this initial enumeration is then processed in the procedure outlined in figure

6.8. A unit design is carried out based on the variable values of the box and the feed

stream. If this design is successful then the cost of the unit design alone is compared

with the current upper bound for each of the boxes stored. The cost of the stored boxes

includes the cost of any downstream units. If the lower bound of the unit design is greater

than any of these upper bounds, the box can be discarded. If the box is not discarded by

this test, the output streams created are processed recursively by the solve procedure. The

bounds on the box are then checked against the current upper bound before storage.

If the design fails, what happens depends on the type of design failure. If the design is

definitely infeasible based on the criteria discussed in section 6.3.4, this box is removed

from the search. If part of the box could lead to feasible solutions, this box is stored with

cost bounds of ±oo. This will cause this box to be ranked top, or near there if other boxes

have the same bounds, leading to it being selected preferentially for splitting. Hence in

the splitting stage of the procedure, boxes like this will be split repeatedly until different

areas are found to be infeasible or to lead to unit designs.

6.4.2 Splitting stage

After the initial enumeration of alternatives, there is a list of boxes each with bounds on

the value of the objective function. Some of these bounds may be infinite due to design

failure at the current level or further downstream. Now the box splitting stage of the solve

CHAPTER 6. A N ADAPTIVE ALGORITHM 106

function process box(box b, binary tree t)
design unit based on b
if design successful and goodEnough then

for each product do
create a new problem p
sol ve(p)
retrieve solution
update b with cost and structure

end for
if b is good enough then

update upper bound on minimum
store b in t

end if
else if dependency or partially infeasible failure then

set infinite costs for b
store bint

end if
end function process box(box b, binary tree t)

goodEnough compares the lower bound of the current unit design with the upper
bound boxes stored in the binary tree, t. If the lower bound is greater than any of these
upper bounds then the box can be discarded.

Figure 6.8: Box processing algorithm

procedure begins. Firstly, the criteria for stopping the solve procedure for this stream

are tested. The stopping criteria checking procedure is shown in figure 6.9. If the box

leads to a valid product tank design, then true is returned as a leaf node has been reached.

Otherwise, the upper cost bound of the top ranked box is compared with the lower bound

of the second ranked box. If the former is smaller than the latter then the procedure can

stop as the best box has been found and hence the optimal downstream structure has been

isolated.

CHAPTER 6. A N ADAPTIVE ALGORITHM 107

function canStop(binary tree t)
if any box stored within t yields a product tank then

return true
else

u = upper cost bound of best box in t
I = lower cost bound of 2nd best box in t
if u<l then

return true
else

while t has next box, b do
if lower cost bound of b > lowest upper bound of all boxes in t then

remove b from t
else if structure of b is different from best box then

return false
end if

end while
end if

end if
return true

end function canStop(binary tree t)

Figure 6.9: Stopping criteria check

If it is not possible to stop based on the bounds of the top two boxes then the list of boxes

is enumerated. If possible, a box is pruned based on its lower cost bound. If the box

cannot be removed then its associated downstream structure is compared with that of the

best box. The canS top function returns false if there is any diversity in the downstream

structures of the boxes in the list and true if no diversity is found.

If it is not possible to stop then the box is divided along its longest side and the two

CHAPTER 6. A N ADAPTIVE ALGORITHM 108

resulting boxes are processed as described earlier. Calculation of the longest side is based

on comparing the current width of the interval that describes the side, divided by the

inital value for this variable. This box splitting and processing continues until a stopping

criterion is met or the maximum number of splits is reached. At this point, control returns

to the level of recursion above.

6.4.3 Product requirements

A separations synthesis problem has product quality constraints. When dealing with real

number flows of components, it is relatively easy to check if the product constraints have

been met. With interval flows, the product purity requirement may be fulfilled by part of

the flow.

In this situation, the combination of upstream structure and some parts of the variable

value intervals that created this stream yield a product stream. However, some values

within the intervals used upstream may not yield a product at this point without further

processing. This issue is dealt with by realising that the search is for the optimal structure

and not for the accompanying operating conditions. The structure to be isolated should

give a lower value of the objective function than any other possible structure. That is,

all other possible structures cannot attain such a low objective function value whatever

combination of unit variable values is used.

As explained earlier, the nominal values of component flows within the stream are real

values that represent feasible flows since they have not been mapped at any point. If the

set of nominal flows within the stream meet a product constraint then the interval stream

can be accepted as a product. This is because it is assured that part of the component flow

intervals of the stream represent a product, therefore the upstream structure is capable of

CHAPTER 6. A N ADAPTIVE ALGORITHM 109

generating a product w ithout further processing. This means that the bounds on the cost

of the upstream structure can be used to compare with other structures. It is possible that

for some combinations of real unit variable values used within this structure, there will be

a need for further processing in order to yield a product. Nevertheless, it is assured that at

least one combination of real variable values in the upstream structure lead to a product

without the need for further processing. This can be achieved within the cost bounds of

the structure up to this point. For these reasons it is unnecessary to continue searching on

this stream. A superior solution cannot be found by further processing as this will simply

add to the cost of structure,

If the nominal value does not meet a product specifi cation while part of the stream compo­

nent flow intervals do meet this specification, the stream cannot be accepted as a product.

However, this stream should not be processed further as it is possible that the upstream

structure could produce a product at this point and the optimal structure could be missed.

In this situation, control is returned to the previous level of recursion where the box that

led to this stream is split along a variable that determines the stream composition. The

boxes that result from this split are less likely to yield streams that cause the same prob­

lem.

6.4.4 Limiting the number of splits

It is necessary to limit the number of splits that are made in the attempt to solve a given

process stream. The reason for this is that the width of variable values upstream in the

process structure affect the width of the intervals, such as component flowrates, that de­

scribe subsequent streams. If the variable intervals are too wide upstream, the result may

be that it is not possible to solve the downstream sub-problems even if degenerate inter­

vals are used. This makes it necessary to have a mechanism in place that allows upstream

CHAPTERS. A N ADAPTIVE ALGORITHM 110

splitting to prevent the procedure becoming stuck in areas where a solution cannot be

found. When the maximum number of splits is reached, control passes to the problem at

the previous level. The box that resulted in the stream that was not solved has its bounds

set to ±00 which causes it to be selected for further splitting as boxes are selected for this

on the basis of the lowest lower bound. This could also occur as a result that a product

requirement is partially met by a stream as explained in section 6.4.3. In either case the

stream contains intervals that are too wide to allow a downstream solution to be isolated.

M-
[10,15] A

A/B
[20,25] B X

0.97

I

0.98

SPLIT

[10,15] A
A/B

[20,25] B ______

0.97 0.975
|i2

[10,15] A

[20,25] B
A/B X 2

[9.7,14.7] A
[0.4,0.75] B
[0.2,0.45] A
[19.4,24.5] B

[9.7,14.625] A
[0.5,0.75] B
[0.25,0.45] A
[19.4,24.375]B

[9.75,14.7] A
[0.4,0.625] B

[0.2,0.375] A
[19.5,24.5] B0.975 0.98

Figure 6.10: The effects of splitting on output streams

Figure 6.10 shows the effect on the flows as a result of splitting the key recovery variable

in a box that represents a distillation column. This split would be necessary if either

stream /1 or A was not solved within the maximum box splits or if one of them partially

CHAPTER 6. A N ADAPTIVE ALGORITHM 111

met a product requirement. The split results in two boxes and the designs based on these

boxes produce the streams //l, Al, fi2 and A2. It can seen that the union of fil and /i2 is

equal to the stream fi. In the same way Al U A2 = A. These new streams are more likely

to be solved within the maximum iterations and are less likely to cross a product quality

requirement. No stream possibilities are discounted from the search until it can be shown

on the basis of bounding information that they lead to a non optimal structure.

6.5 Summary

An algorithm has been developed that is able to isolate the optimal process structure for

a separation sequence. It is based on a generalised box splitting algorithm that has been

adapted to fit into an implicit enumeration algorithm for process synthesis. The box con­

cept used in these algorithms normally simply represents a set of lower and upper bounds

on variable values. This has been enhanced to allow a box to describe the unit design for

a process stream and store the resulting cost and downstream structural information.

The procedure applies the box splitting algorithm recursively on each stream encountered.

In this way, the optimal structure is built from the leaf nodes upwards ensuring that the

global minimum is bounded by the resulting structure. The effective inclusion function is

around the minimum value of the objective function for the optimal downstream structure

rather than including all possible downstream structures.

Boxes are pruned by continually checking the lower bound of each box against the upper

bound of the global minimum. This upper bound is determined from the real nominal val­

ues of unit variables and stream flows. The nominal cost for a unit design and downstream

structure corresponds to an attainable value as real values have passed continuously from

CHAPTER 6. A N ADAPTIVE ALGORITHM 112

unit to unit. Consequently, it can be used to update the upper bound on the minimum cost

for a particular stream.

The stopping criteria are determined by the fact that it is the optimal process structure that

is required. For each stream encountered the procedure stops when the boxes in the list

all represent the same downstream process structure.

The algorithm exhaustively searches the design space so that boxes with interval unit

design parameters, which partially fail feasibility constraints, are not rejected. The box in

question is instead stored for further splitting until the areas of feasibility can be isolated.

No part of the search space is discounted except for on the basis of bounds or infeasibility.

The algorithm is not designed for a specific type of separation equipment. The next

chapter demonstrates its performance and flexibility by the application of two different

types of separation synthesis case studies.

Chapter 7

Case studies using the adaptive

algorithm

7.1 Introduction

This chapter shows the applicability of the adaptive algorithm, described in the previous

chapter, to two different types of separation synthesis case studies. The first is the appli­

cation of the algorithm to a case study that was previously attempted using uniform dis­

cretisation in chapter 5. The second applies the algorithm to a bio-processing case study

that has been previously attempted using the implicit enumeration approach of Jacaranda

(Steffens et al., 2000).

113

CHAPTER 7. CASE STUDIES USING THE ADAPTIVE ALGORITHM 114

7.2 Return to the benzene recycle case study

The benzene recycle case study described by table 5.3 and section 5.3, page 82, was

tackled using the adaptive algorithm. The same distillation column design procedures are

used as in the earlier case study. The following sections describe the results obtained and

the manner in which the search was conducted.

7.2.1 Results and discussion

Figure 7.1 shows the optimal structure returned by the adaptive algorithm. The letters

A, B, C and D refer to the components benzene, chloro-benzene, di-chloro-benzene and

tri-chloro-benzene respectively. Below each column the light and heavy key components

are shown.

The algorithm has demonstrated, through comparing cost bounds of solutions, that using

the three column structure will incur the least capital cost. Distillation, with benzene

and chloro-benzene as the keys, is carried out in two columns. These two separations

are coarser than the very fine split required from one column. This structure matches

that identified by the uniform discretisation procedure in chapter 5. The separation of

benzene in two stages may not have been immediately obvious to a designer and shows

the potential of the procedure for generating novel process structure.

In an enumerative search of this type, the order in which the search is conducted depends

on the order in which the different chemical components are added to the feed in the

original feed stream definition. This is because the first component added to the feed is

the first component that is tried as the light key in a distillation column design. The search

then solves all the sub-streams of this design before trying the next component as a light

CHAPTER 7. CASE STUDIES USING THE ADAPTIVE ALGORITHM 115

A

A/B

A/B

C+D
B/C

Figure 7.1: The optimal structure isolated by the algorithm for the benzene case study

key. Normally, the components are added in order of volatility for easier interpretation of

the results by the user. Different orders of components were tried for this case study to

change the path taken by the algorithm in the exploration of the search space. As expected,

the structure returned is the same regardless of the way that the search is conducted.

The algorithm guarantees that structures are not eliminated unless they are shown not to

be optimal. It thoroughly investigates the entire search space, therefore if a structure is

returned, it will be the same optimal structure whatever the search path taken. The path

taken by the search can also be influenced by the way that the number of splits are limited

for each sub-problem.

The following sections describe the manner in which the algorithm searches for the so-

CHAPTER 7. CASE STUDIES USING THE ADAPTIVE ALGORITHM 116

lution to this case study. All processing times quoted were obtained using a Pentium III

850MHz computer running Java version 1.4.

Number of splits

As explained previously, it is necessary to limit the number of splits for each problem

stream encountered. This prevents the algorithm becoming stuck on a stream that can­

not be solved however many splits are carried out. The most straightforward way to do

this is to have a fixed limit for every stream sub-problem encountered. Under these cir­

cumstances, control returns to the previous level of recursion where further splitting takes

place. Naturally, the best value for the maximum allowed splits per stream will depend

on the problem that is being tackled. For the benzene separation problem it was found

that the lowest value that this limit could take was 4 splits. Below this number the algo­

rithm is unable to return a solution because the low number of iterations does not allow

sufficient resolution. The solution was obtained in 78 seconds with 2140 unique streams

attempted and 25% re-use of solutions. If the order the components are listed in the input

file is altered then the search proceeds in a different way. This is because the order of

component chosen to be the light key changes. By reversing the order of components and

using a maximum of four split per stream, the same solution was isolated. However, due

to the different route taken, only 2018 streams were encountered and the procedure took

65 seconds.

Table 7.1 shows how changing the number of maximum splits allowed affects the way the

search is performed. The larger the value for the maximum number of splits, the more

problems are encountered and the longer the search takes. However, the rate of increase

in time taken slows as the maximum number of splits allowed increases. This can be

explained by examining the profile of where the splitting procedures take place.

CHAPTER 7. CASE STUDIES USING THE ADAPTIVE ALGORITHM 117

Table 7.1: The effect of maximum split value on the search

Max no.
of splits

No. of unique
problems

Time
(seconds)

%Reuse

4 2140 78 25
5 2240 82 26
6 2841 95 24
7 3194 100 24
8 3827 118 24
9 4531 139 24
10 5142 167 26
15 8088 288 39
20 9425 365 45
30 9498 378 48
40 9509 394 58
50 9572 438 63

During each run, the maximum number of splits was always reached for certain problems.

When the maximum is reached, on some occasions a solution is found and on others it

is not. Occasions where the maximum number of splits is reached without finding a

solution support the idea that some streams cannot be solved however narrow the unit

variable intervals become through splitting. In such cases, control returns to the previous

level of the search and further splitting occurs at that level. Every time the solution of a

stream is attempted, the number of splits required to accomplish this is recorded. Each

time the maximum number of splits is reached without the stream being solved is also

recorded.

Table 7.2 shows the distribution of numbers of splits required to solve the case study

for various runs with different maximum split settings. For example, for a run where

a maximum of 5 splits per sub-problem is allowed, 18 problems were solved requiring

2 box splits. 22 sub-problems were solved by making the maximum of 5 splits and 48

sub-problems were encountered where 5 splits took place but did not yield a solution.

CHAPTER 7. CASE STUDIES USING THE ADAPTIVE ALGORITHM 118

In any run attempted, the largest number of splits where a solution was obtained was

7 splits per sub-problem encountered. For example, from the data shown in table 7.2,

one column shows the maximum number of splits is set at 50. From this column it can

be noted that 2 problems require 7 splits to find a solution. However, 72 problems are

encountered where after 7 splits a solution is not found. Under these circumstances, it

seems that solution cannot be found for these problems however many splits are made.

The algorithm continues to split boxes until the maximum number is reached, in this case

50 splits, but doesn’t find a solution.

Table 7.2: The number of occurrences of each split for various runs

No. of splits
required

Maximum split setting
50 20 10 9 8 7 6 5 4

1 3002 2919 1286 1116 956 812 726 588 534
2 9 9 9 9 9 9 9 18 31
3 1 1 3 17 1 1 2 1 1
4 17 17 17 17 17 17 21 57 49
5 39 39 27 25 23 21 40 22 -

6 35 35 23 21 19 34 33 - -

7 2 2 2 2 4 2 - - -

max(not solved) 72 72 48 44 40 36 40 48 77
Time(seconds) 438 365 167 139 118 100 95 82 78

For the runs where the maximum split were above 20 the splitting profiles are very similar.

Maximum splits of 50 and 20 only differ in the number of streams where one split was

made. It appears that the search in each case followed a similar path becoming stuck

on streams and reaching the maximum 72 times. This would explain the slowing in the

rate of increase of solution time as the maximum number of splits is increased, shown by

table 7.1. The majority of the extra work required is for the 72 occasions when the box

is split the maximum number of times. The total number of problems increases steadily

CHAPTER 7. CASE STUDIES USING THE ADAPTIVE ALGORITHM 119

with increasing maximum splits but the proportion that have been encountered before also

increases. This is useful because for other problems the best value to set for the maximum

number of splits would be unknown. The results show that this parameter may be assigned

a wide range of values while still yielding a solution.

Naturally, some streams require no box splitting in order to be solved. These are streams

that meet one of the product specifications and are not shown in table 7.2. The table also

shows that the majority of the time only one split occurred. It is the default that every box

that is encountered undergoes one split in each unit variable. This may account for the

large numbers of streams where only one box split occurs and removal of this mandatory

single split could improve efficiency. In any case, since a single split always occurs the

statistics presented over the following sections do not include such occasions and instead

focus on when 2 or more splits occur.

Split depth

The number of splits that occur each time a problem is encountered yields some informa­

tion on the way that the search progressed. However, alone it does not yield information

regarding how each box was split. For further insight, information is required on the dis­

cretisation profile that results from the box splitting algorithm. A uniform profile would

indicate that the algorithm was no more effective than the previously attempted uniform

discretisation. The more uneven the distribution of splits, the more useful the algorithm

is for increasing solution efficiency. For each stream encountered, a number of boxes re­

sult from the splitting procedure. Each of these boxes is descended from an original box

that represents the full range of allowed variable values for a particular unit. The search

may be very specific where splitting repeatedly occurs in the same area or uniform where

splitting occurs evenly over the whole space. Figures 7.2 and 7.3 illustrate two different

CHAPTER 7. CASE STUDIES USING THE ADAPTIVE ALGORITHM 120

ways that the same original box may be split to reach the same highlighted sub-box. In

figure 7.2 the box is reached after 8 splits and in figure 7.3 the same box is reached after

4 splits. The former represents a uniform search and the latter as each in a specific area.

Split 2

Split 5 Split 7
I
I

w Split 3
-► v*...................... I - - - - -

Split 4 ' Split 1
I
I
I

▼

Split 6

Figure 7.2: The maximum split depth in the figure is 4, the original box has been split 8
times

The term split depth will be used to describe how specific the search is for a particular

problem stream. It is defined as the longest line of parent to child relationships in a given

splitting scheme. For example in figure 7.3 the split depth is 4. This is because the shaded

box results from a series of four splits where each split is carried out on a box resulting

from the previous split. The split depth of the scheme shown in figure 7.2 is also 4. Even

CHAPTER 7. CASE STUDIES USING THE ADAPTIVE ALGORITHM 121

though eight splits have taken place, the longest line of parent to child relationships occurs

from split number 1, 2, 4 and 8. This is a total of 4 splits and hence the split depth is 4.

For each stream encountered, a maximum split depth can be recorded. The larger the

maximum split depth compared to the total number of splits the more concentrated the

search to a particular area.

Figure 7.4 was generated from two runs, one with a maximum number of splits per stream

of 4 and the other 20. Only data from problem streams that were solved are shown in the

figure. The results show that the maximum split depth is often the same as the number

▼
Figure 7.3: The maximum split depth in the figure is 4, the original box has been split 4
times

CHAPTER 7. CASE STUDIES USING THE ADAPTIVE ALGORITHM 122

of splits or at most one less than it for both runs. This shows that specific areas of the

search space are being concentrated upon. The algorithm adapts to search in the area

where the solution is most likely to be found based on the bounding information from

previous boxes. This leads to a more efficient search than a uniform discretisation. For

the run where the maximum number of splits per stream was 4, the depth of the splitting

is equivalent to 16 uniform splits. When the problem was attempted uniformly with 16

splits using the procedure described in chapter 5 it took 3151 seconds compared to 78

seconds when using the adaptive scheme.

max splits = 20 v
max splits = 4 ♦

Number of
occurrences ♦

50

40

30

20

10

number
of splits

max split depth

Figure 7.4: Comparing the distribution of split depth and number of splits for two splitting
schemes

CHAPTER 7. CASE STUDIES USING THE ADAPTIVE ALGORITHM 123

Stream characteristics and splitting

A number of characteristics of the streams encountered during the search were recorded.

The following section discusses the effect, if any, of these characteristics on the number

of splits required to solve the stream.

Number of
occurrences

Number
of splitsNumber of

components

Figure 7.5: The number of splits carried out against the number of components present in
the stream

Figure 7.5 shows the number of occurrences of each number of splits as a function of

the number of components in the stream. The results shown are for a maximum of seven

CHAPTER 7. CASE STUDIES USING THE ADAPTIVE ALGORITHM 124

Number
of splits

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016

Total width of intervals

Figure 7.6: The number of splits carried out on streams against the width of interval flows

splits per stream. This is because for this case study, occasions where splitting occurs

more than seven times never lead to a solution. The figure shows that streams containing

four components are more likely to require larger numbers of splits than those containing

three components.

Figure 7.6 shows the number of splits required plotted against the total width of the stream

flow intervals in each problem stream. The data do not seem to show any trends based

on this indicator. The final measure of stream properties was the total nominal flow of

the stream. The number of splits is plotted against nominal flow in figure 7.7. For the

purposes of resolution, five data points relating to streams with nominal flows between

0.98 and 1 kmol/s, were not included in the figure. Most of the streams that occur during

CHAPTER 7. CASE STUDIES USING THE ADAPTIVE ALGORITHM 125

the search have much smaller nominal flow rates. Again, no trends in the data are evident.

These results suggest that there is no inherent predictability of how the search will pro­

ceed. No pattern is visible that would allow one to predict the discretisation profile re­

quired to solve a particular stream. This confirms the applicability of such an adaptive

algorithm to the problem. The distributed nature of the data points in the previous figures

shows that the procedure changes the splitting profile as required. This can be based both

on bounding information and on the failure of previous attempts at solving the stream

using wider intervals.

7

6

Number
of 5

splits

4

3

2

1

0 0.01 0.02 0.03 0.04 0.05 0.06

Nominal flow (kmol/s)

Figure 7.7: The number of splits carried out on streams against the nominal stream flow
rate

X X

>K X

X X X

X X X X

X

X X X

X M J K X) W « « < a t X< X X X X XX X X X

CHAPTER 7. CASE STUDIES USING THE ADAPTIVE ALGORITHM 126

7.2.2 Summary

This case study has demonstrated that the algorithm is able to isolate the optimal sepa­

ration structure. As would be expected, the same structure is isolated whatever the route

taken by the search procedure.

Investigation of the way that the box splitting occurs has shown that successive splits tend

to occur in the same area of space. In effect, the intervals that span the search space are

non-uniform and a fine level of uniform discretisation would be necessary for the same

resolution. This demonstrates the effectiveness of applying an adaptive scheme to the

problem. Plots of the number of splits against different stream characteristics show no

pattern in the way that different types of stream are handled. This lack of predictability

further supports the suitability of the algorithm to such problems.

7.3 Application to Bioprocess synthesis

Thus far, all the results of the application of interval analysis have been concerned with

the synthesis of distillation sequences. The following sections describe the application of

the new algorithm to bio-process separation synthesis. This is intended to demonstrate

that the procedure is applicable to all types of separation synthesis problem.

The case study presented is based on previous work on bio-process synthesis described in

Steffens et al. (2000). That work used Jacaranda with modified stream types and suitable

biological separation units to synthesise a process for the purification of bovine soma­

totropin (BST). This is a hormone that increases milk production in cows. It is produced

by the fermentation of a recombinant E.coli. The previous work discretised component

flow rates and as expected the coarser this discretisation, the greater the reuse of solutions

CHAPTER 7. CASE STUDIES USING THE ADAPTIVE ALGORITHM 127

and therefore the less time taken for the search. Using the adaptive algorithm it was not

possible to attempt the full problem described in the paper as far less reuse of solutions

occurs. This is partly due to the fact that discretisation was not used at all for the bio­

process problem because of the necessity to account for very small flow rates of product

and contaminants. In addition the problem is more combinatorial than those solved pre­

viously due to the many available units. This leads to a larger range of possible stream

flowrate combinations than if just one type of processing unit is used. In order to com­

pare the two approaches, a stream that occurs three unit operations downstream from the

original fermenter product, in the optimal structure from the discretised run, is used as a

feed stream for the adaptive procedure.

7.3.1 Bio-process streams

The constituents of streams encountered in biological processes tend to be very different

from those found in chemical process streams. Due to the heat sensitive nature of proteins

and other biological molecules, distillation is not considered as a separation technology.

Instead the variation in physical properties, other than vapour pressure, is exploited in bio­

separations. The data associated with bio-streams reflects this. The molecular weight, hy-

drophobicity, molecular size and density of each component is stored and the information

may be recalled by the relevant units.

The BST from the fermentation is produced within inclusion bodies which themselves are

present within the E.coli cells after the fermentation. At the stage of the flowsheet where

synthesis is to be carried out in this case study, the cells have already been homogenised

and the cell debris removed. The feed stream is shown in table 7.3. The physical proper­

ties of the components can be found in appendix table A. 1. An inclusion body is a mass

CHAPTER 7. CASE STUDIES USING THE ADAPTIVE ALGORITHM 128

of mis-folded proteins. Those present in the case study are made up of BST and a con­

taminating protein. The composition of the inclusion bodies is shown in appendix table

A.2.

Table 7.3: Feed for the case study

Component Flow rate
(kg/hr)

Glucose 0.6
NH+ 0.2
504- 0.2
anti-foam 2
protein 1 5
protein 2 3.15
protein 3 2.05
protein 4 2.45
protein 5 2.15
protein 6 1.15
protein 7 3.4
protein 8 3
protein 9 3.3
protein 10 2.65
protein 11 1.75
protein 12 0.65
protein 13 0.35
inclusion body 12
water 400

The streams developed in the previous work have been adapted to integrate with the in­

terval based procedure. Previously a real concentration for each component described the

composition of the stream along with an overall volumetric flow rate. In the current work,

each component has an interval mass flow. Due to the high level of purity required for the

case study the trace interval has not been introduced to bio-streams. Instead an absolute

component mass flow is used below which the component is assumed to no longer be

CHAPTER 7. CASE STUDIES USING THE ADAPTIVE ALGORITHM 129

present. The value of 1 x 10~~8kg /s was used as an effective zero flow as this was used

as zero in previous case studies. The non-sharp nature of some of the bio-separation units

means that unless such a limit is introduced components never disappear from streams

and are seen to be present in ludicrously small amounts. Since such a limit is necessary,

the value at which it is set would seem conservative.

7.3.2 Bio-processing units

Screening

The processing units use the same techniques for screening and unit design as in Steffens

et al. (2000). Two types of initial screening are used in order to test whether or not a

stream can be processed by a certain unit.

• Design constraints depend on the ability of a unit to process a stream. These may

be heunstics, for example based on particle size, or the physical impossibility of

a chromatography column processing solids. The constraints used are shown in

appendix table A.3.

• The binary ratio (Jaksland et al., 1995) may be evaluated in order to assess the

feasibility of using the unit for the required separation. Each unit takes advantage

of a difference in a particular physical property between components in order to

induce separation. The binary ratio for two components is the ratio of this physical

property from one component to another. This is compared to the feasibility index,

n, for the unit in question.

CHAPTER 7. CASE STUDIES USING THE ADAPTIVE ALGORITHM 130

If the constraints and the binary ratio tests are passed then the unit design calculations

are allowed to proceed. The unit models that are used in the case study can be broadly

classified into two types.

Stream splitting units

These unit designs are based on the concept of key components similar to the distilla­

tion unit model described earlier. In the distillation model the feed is sorted in terms of

volatility. In other stream splitting models the feed is sorted on the basis of whatever the

difference in physical property that is being exploited for separation. Two adjacent com­

ponents are then selected as keys and the design proceeds. Thus, for a particular stream

and splitting unit a design occurs at most ncomps — 1 times where ncomps is the num­

ber of components in the feed stream. The description of the procedure for the available

stream splitting units is described below. In order to keep dependency to a minimum, the

design calculations have been rearranged to their most simple form. This is compared to

the models used in Steffens et al. (2000). If intervals had been substituted directly into

the design, it would often lead to the same variable interacting with itself excessively.

The following description of the stream splitting unit models reflects this. The parameters

used in unit designs are shown in appendix table A.5 and the capital and operating cost

data are shown in appendix table A.4.

Ultrafilter The components are ordered based on molecular size and large components

are assumed to be completely impermeable and all pass into the reject stream. The con­

centration of all components in the reject stream, Cr is specified as a design parameter.

The concentration of small components in the reject stream is the same as that in the feed

so the concentration of large components in the reject stream can be calculated. Since the

CHAPTER 7. CASE STUDIES USING THE ADAPTIVE ALGORITHM 131

mass of the large components is known the volumetric flow rate of the reject stream can

be calculated. The known concentrations of the small components in the reject stream are

then used to calculate the mass of each small component. The balance in the volumetric

flow rate is made up of solvent, which is in this case water. A mass balance is then used to

calculate the permeate composition. Membrane area is calculated by finding the limiting

flux from a concentration-polarisation model (Ho and Sirkar, 1992). Gel concentration,

cg, and mass transfer coefficient, k, are assumed. Annual operating costs are composed

of the energy cost and the cost of changing the membrane once each each year.

Microfilter Key components are selected in the same way as the ultrafilter. The design

is similar to that of an ultrafilter, but with different ranges of values for screening and

concentration of components in the reject stream. In order to calculate membrane area,

cake resistance is assumed to be dominant and a concentration-polarisation model (Ho

and Sirkar, 1992) is used to estimate the flux. Like the ultrafilter, operating cost consists

of energy and membrane replacement.

Diafilter This is designed in the same way as the ultrafilter except that the dilution

factor, Dp, is used as a design variable. This is the amount of solvent added in terms of

number of multiples of the volume of the feed.

Rotary drum filter Again keys are selected on the basis of size. All the flow of large

components passes into the reject stream. The mass fraction of the small components

that pass through the filter cake is calculated from the wash rate, w . The wash rate is

the volume of wash water per volume of slurry and is a design parameter (Kennedy and

Cabral, 1993). The other design parameter is the concentration of solids in the filter cake.

CHAPTER 7. CASE STUDIES USING THE ADAPTIVE ALGORITHM 132

The area is calculated using a constant cake resistance (Belter et al., 1988). Operating

costs are composed of energy costs and the cost of the filter aid additive.

Other units

Chromatography units cannot be designed using key components. The columns use batch

operations and take two separate fractions of the product of the column. A particular

product is targeted, in this case it is the protein BST. The unit models for chromatogra­

phy columns calculate the composition of each of the fractions based on an estimation

of peak width and the difference in a particular physical property of the feed component

(Leser et al., 1996). As with stream splitting units, design equations have been rearranged

to minimise dependency. Gel-filtration chromatography exploits differences in Logio of

molecular weight and hydrophobic interaction chromatography differences in hydropho-

bicity as defined by Leser et al. (1996).

The Renaturing tank is used to first solubilise the inclusion body before refolding the

product protein. It produces a single product stream. The residence time,Tji, and yield,

y, are specified and the feed stream is diluted with water to reach a user defined protein

concentration, cp. Capital cost is based on those for a CSTR and the only operating cost

is the cost of the chemical additive.

7.3.3 Results and discussion

As explained earlier the feed stream shown in table 7.3 has already been purified to some

degree and is a stream generated by the discretised synthesis procedure described in Stef­

fens et al. (2000). In the original work, most of the unit variables were set to one value,

CHAPTER 7. CASE STUDIES USING THE ADAPTIVE ALGORITHM 133

except for the reject stream concentration in the microfilter unit model. The strength of

the algorithm, described in this thesis, is the increased efficiency of a search that allows

ranges of unit variable values. For this reason, three unit variable values are allowed a

range of values in the case study.

• Reject concentration, cr, in the ultrafilter: 50-400 g/1

• Reject concentration, cr , in the microfilter: 400-1100 g/1

• Dilution factor, Dp, in the diafilter: 2-5 m3/m3

The results of runs using the adaptive algorithm can then be compared with the results of

the discrete procedure that allows a number of discrete points within the range of each

variable.

Two types of unit that terminate the search are used.

• A product tank accepts streams containing BST in a concentration of greater than

300 g/1. Impurities, apart from water, must be less than 0.1 % by mass.

• A waste tank accepts streams containing less than 0.1 kg/hr of BST. In the original

work this parameter was set at 0.001 kg/hr, but the problem could not be solved

using the new procedure using this value. The reason for this is that since com­

ponent flows are no longer discretised, the flow of BST to a waste tank does not

disappear. For the waste streams from certain unit operations, vital to the process,

this constraint can never be met so no solution is found. Waste tanks have a set

capital cost of $ 100000. A product value of 100 $/g is used in order to calculate a

product penalty. This is the annual value of the product that goes to waste.

CHAPTER 7. CASE STUDIES USING THE ADAPTIVE ALGORITHM 134

An objective function of annual operating cost plus capital cost amortised over 2.5 years

plus product penalty is used in all runs. As discussed earlier, the adaptive method uses

a minimum flow of 1 x 10~8kg/s, below which a component is no longer considered to

be present. If a similar level of discretisation is used for all components with a run of the

discrete method, it is unable to reach a solution without running out of memory. For this

reason, the finest level of discretisation used in the previous work of Steffens et al. (2000)

will be used as a basis for comparison. The aim is to show the benefits of addressing the

problem more realistically in terms of the resulting flowsheet structures.

Figure 7.8 shows the optimal structure that results from applying the adaptive algorithm

and figure 7.9 shows the top ranked structure from the application of the discrete proce­

dure. The number of discrete points for each variable in the discrete search was deter­

mined by the finest level reached during the adaptive search. The waste products from

the units all contain some water, it is only specifically indicated when it is the only waste

product. Search statistics are shown in table 7.4. The cost of the structure identified by

the adaptive procedure is the nominal cost and therefore an upper bound on the cost of

the structure. It does not include product penalty.

Table 7.4: Search statistics
Discrete Adaptive

Cost(US$) 1,592,405 1,333,231
Time(s) 82 5,770
Unique Problems 2,198 90,261
% reuse 48 14

The computation times quoted are from a 850MHz pentium III processor running Java

1.4. The statistics show that the adaptive algorithm encountered far more streams than the

discrete method, which led to a solution time at the scale of hours as opposed to the scale

of minutes. However, the extra rigour has reaped benefits in isolating a superior flowsheet

CHAPTER 7. CASE STUDIES USING THE ADAPTIVE ALGORITHM 135

compared to the discrete method.

There is much less re-use of solutions by the adaptive compared to the discrete method.

This is because without discretisation even a tiny difference between two streams will

be enough for them to be treated as separate problems. In fact, the small proportion

of occasions where problems occur more than once, might mean that it is better not to

use dynamic programming for certain problems. The adaptive method was not able to

deal with the size of the full problem because the dynamic programming table stores the

solution of all problems encountered. When many problems are involved, the computer

eventually runs out of memory. If the storage no longer occurred then the algorithm would

be able to deal with far more problem streams.

CHAPTER 7. CASE STUDIES USING THE ADAPTIVE ALGORITHM 136

Ultrafilter Diafilter Diafilter

F e e d ~ W \ v~v vv x \ \ \ \ \ w x x x x x s . W x x \ \

W a t e r + M e d i u m
+ P r o t e i n s

W a t e r + M e d i u m
+ P r o t e i n s

W a t e r + M e d i u m
+ P r o t e i n s

Ultrafilter
Hydrophobic Hydrophobic

int. chrom. int. chrom.

Denaturing
and refolding

Diafilter

W a t e r

Product

P r o t e i n s 7
a n d 9 +G u a H C L +

P r o t e i n 1
G u a H C L +

G u a H C 1P r o t e i n 1G u a H C l

Figure 7.8: The optimal bio-separation structure as identified by the adaptive procedure
with a cost of $1,333,231

Microfilter Denaturing
and refolding

Diafilter Hydrophobic
int. chrom.

G u a H C lM e d i u m +
P r o t e i n s P r o t e i n s

a n d G u a H C l

Hydrophobic Gel filter
int. chrom. chrom UltrafilterUltrafilter

Product

W a t e r
P r o t e i n s 5

a n d 11 P r o t e i n s W a t e r

Figure 7.9: The top ranked bio-separation structure using the discrete method with a cost
of $1,592,405

CHAPTER 7. CASE STUDIES USING THE ADAPTIVE ALGORITHM 137

Product flow

The top ranked flowsheet from the discretised procedure does not invoke any product

penalty meaning that there is no product whatsoever in any waste streams. This is due

to the discretisation of the flow of BST. Analysis of the flows of BST through the two

flowsheets reveals what is happening. Both have feed streams containing 6.14 kg/hr of

BST. However, the flowsheet from the adaptive procedure has a flow of 4.72 kg/hr of BST

into the product tank whereas the discretised flowsheet has a product flow of 4 kg/hr. The

yield from the denaturing and refolding tank is 80% which accounts for 1.228 kg/hr of

unrecovered product. This means that 0.91 kg/hr of BST are lost due to the discretisation

procedure which is why no product penalties are incurred. The adaptive generated flow­

sheet seems to represent a more a realistic situation. To allow a fair comparision between

the two methods, table 7.4 does not include the product penalty in the cost of the flowsheet

generated by the adaptive algorithm.

Cost

Since component flows are not discretised away by the adaptive procedure, it might be

expected that the streams would cost more to process. However, the adaptive procedure

has isolated the structure shown in figure 7.8 as optimal. The upper bound on the cost

of this structure is $1,333,231 which is approximately 15% cheaper than the top ranked

structure from the discrete procedure. In this case discretisation has led to a superior

structure being missed. This may be partly due to less BST being lost due to discretisation

which leads to less processing required for the necessary product concentration.

The minimum cost of the optimal structure may be considerably less than the figure

quoted above as this is merely the cheapest feasible set of units and variable values en­

countered during the search. The search algorithm has assured that this is the optimal

structure but it is likely a different set of unit variable values will cost even less.

CHAPTER 7. CASE STUDIES USING THE ADAPTIVE ALGORITHM 138

Box splitting

In terms of box splitting, the bio-processing case study does not require the same level

of box splitting as the distillation case study. Table 7.5 shows the number of times each

number of splits was necessary to solve a problem stream. Only occasions where the

stream was not a product or waste stream are counted.

The vast majority of problems required only three splits for solution. This is because three

units are available with a range of possible values for a unit variable. Each of these unit

variables is always split at least once which means that the minimum number of splits

for a non-terminating stream is three. Only just over 1% of streams require any further

splitting compared with over 18% in the most efficient run of the distillation case study.

The finest fraction of the total range of a unit variable split by the search is 0.25 which

is only a split depth (defined in section 7.2.1) of 2. In comparison, the largest split depth

in the distillation case study was 7 which corresponds to a fraction of the total range of

7.8 x 10-3. The reason for this difference is that are many more discrete choices in the

bio-problem due to the additional choice various unit operations. The only discrete de­

cisions in the distillation case study were the choices of key component in each column.

Since there are so many available unit types in the bio-problem, there are far more pos­

sibilities for each stream encountered. The nature of these discrete decisions seems to

have a greater effect on the objective function than the values of unit variables. Thus,

the algorithm is able to reject many sub-optimal structures, as the structure has more of a

significant effect than the unit variable values used.

Although the adaptive box splitting is not used as much in the bio-problem, it is still used

to a certain extent. The advantage of employing the procedure can still be appreciated

by considering the extra processing required to carry out the maximum number of splits

shown in table 7.5. The maximum is required 13 times in the adaptive search. A relatively

CHAPTER 7. CASE STUDIES USING THE ADAPTIVE ALGORITHM 139

Table 7.5: Split statistics for the bio case-study

Number of splits Occurrences
3 40,306
4 401
5 84
6 62
7 13

huge amount more processor time would be required if the same number of splits were

to be carried out on almost 41,000 streams. This would be necessary if the uniformly

discretised interval procedure was used as in chapter 5.

7.3.4 Summary

This section has demonstrated that the new algorithm can be applied to a completely dif­

ferent type of process engineering problem showing its generality. The run for using the

previous procedure presented in this chapter uses the same level of unit variable discreti­

sation but the coarseness of the component discretisation makes it far less realistic. The

results show that the increased rigour of bounding the solutions and removal of compo­

nent flow discretisation is worthwhile as it leads to a significantly better solution.

The adaptive algorithm takes much longer to find a solution to the bio-problem than the

discretised method but this is not surprising due to the differences in the two runs. Com­

ponent discretisation is used to a large degree in the discrete run. Since many of the

splitters in this problem are non-sharp, components do not disappear as readily when us­

ing the adaptive method compared to the discrete method. This causes there to be more

unique streams in the adaptive procedure and leads to far less solution re-use. The statis­

tics on splitting show that on relatively few occasions is there more than one split per unit

variable. However, this is an indication of the efficiency of the algorithm. Specific areas

CHAPTER 7. CASE STUDIES USING THE ADAPTIVE ALGORITHM 140

are targeted for finer discretisation while the vast majority of streams do not require this

treatment.

The top-ranked solution from the discrete method does not show any BST in the waste

tanks so incurs no product penalty. Analysis of the flowsheet shows that nearly 1 kg/hr

out of 6kg/hr is lost during discretisation. This does not occur using the adaptive method,

which confirms a more realistic model of a real process. The flowsheet generated by

the adaptive procedure yields a greater flow of BST as a product because of the lack of

discretisation. This may be the reason for the lower objective function value.

Chapter 8

Conclusion

This thesis has addressed the problem of finding the optimal flowsheet structure for a

separation process given a feedstock, product specifications and a set of units. The basis

of the technique used is implicit enumeration with streams and units represented within

an object oriented framework.

A drawback of the existing procedure was the need to discretise unit variables and stream

characteristics such as component flows. The user had no idea of the effect of these

discretisations on the quality of the solutions obtained. Indeed there was no guarantee

that the top-ranked solution was in fact optimal. Interval analysis has been applied to

stream and unit models in order to address these issues.

8.1 Intervals for cost bounding

Chapter 4 showed how interval techniques can be applied to the unit variable pressure in

a distillation column. Intervals were used to span the spaces between discrete pressure

levels. The resulting design of a column gave bounds on the capital and operating costs.

141

CHAPTER 8. CONCLUSION 142

Ultimately this allowed the cost of an entire flowsheet to be bounded during the implicit

enumeration search. This technique was applied to a hydrocarbon separation problem

where a range of pressure was allowed in each column. The goal was to isolate the

optimal distillation column sequence.

Several runs were carried out at varying levels of discretisation. The solutions were ranked

on the basis of the lowest lower bound on the objective function. This ensured that there

was no cheaper available solution to the separation problem. In the course of this in­

vestigation, it was realised that if the column pressure intervals were consistent with the

stream pressure intervals, the nominal cost would represent a real solution. This allowed

the nominal cost to be used as an upper bound on the global minimum cost for the prob­

lem. This result proved very useful when trying to resolve the superiority of one process

structure over another. A structure is deemed as sub-optimal if its lower bound is greater

than the best nominal value in the list of solutions. This allowed resolution between struc­

tures with a coarser level of discretisation than would have otherwise been possible.

Chapter 5 developed the application of interval analysis further by using intervals to de­

scribe component flows. This is a more challenging issue than that tackled in the previous

chapter as the presence (or absence) of a component within a stream depends on its flow

rate. Whether or not a component is present can in turn affect the units necessary for

processing and therefore the resulting structure. The method proposed to deal with these

issues, no longer discretises the majority of component flows as this leads to unnecessary

widening of bounds. Discretisation only occurs for very small flows where the flow is

mapped to the trace interval. This allows much solution re-use to be retained, as com­

pared to no discretisation whatsoever, while providing a threshold where a component is

no longer considered as a key for distillation.

CHAPTER 8. CONCLUSION 143

8.2 The adaptive algorithm

Chapters 4 and 5 described a framework for bounding the cost effects of discretisation,

giving some assurance on the quality of the solutions obtained. Successive runs provided

progressively tighter bounds on these solutions. However, there were outstanding prob­

lems associated with using intervals such as when an interval parameter was part feasible

and part infeasible. A scheme that could deal with these situations and change the level

of unit variable discretisation depending upon necessity was described in chapter 6.

This algorithm signalled a departure from the straightforward implicit enumeration search.

The new algorithm is based on previous box splitting algorithms but is novel in the com­

bination with an implicit enumeration search. Each discrete alternative generated by the

enumeration generates a box. Each stream encountered is then solved recursively, not to

find the best box but to find the optimal structure for processing the stream. No area of the

search space is discounted before it has been demonstrated that it is either sub-optimal or

infeasible. This gives the assurance that the structure isolated is optimal.

The application of the new algorithm to the benzene case study in chapter 7 demonstrated

its performance. The same case study was attempted in chapter 5 with uniformly dis­

tributed unit variable intervals. To reach the same resolution as the adaptive method the

previous method required 40 times the processor time.

The number of splits required for different streams encountered was analysed. No obvious

relationship was evident between the number of splits required to solve the problem and

any of the stream characteristics. This unpredictability shows the need to use such an

algorithm, as rules cannot be applied as to how a stream should be handled simply based

on its constituents.

The ability of the algorithm to handle a different type of problem was demonstrated by

its application to a case study involving the purification of a protein from a biological

CHAPTER 8. CONCLUSION 144

process stream. In solving the problem the algorithm does not require the quantity or

fineness of box splitting that was required by the distillation problem. However, this still

indicates the efficiency of the procedure. It is better that further splitting only occurs on a

small minority of occasions when necessary rather than to this fine level for every stream

encountered.

The value of the interval bounding was demonstrated in the fact that the structure that was

identified as optimal was different from the top ranked structure yielded by the previous

discrete approach. The discretisations in unit variables and component flows had led to a

superior solution being missed.

Overall, the methods developed have been successful in addressing the issues that moti­

vated this project. Interval cost bounds give the user a feeling for range of likely costs

for the process. The adaptive algorithm allows the optimal structure to be identified. This

is achieved in a more efficient manner than if the whole search space were spanned by

uniformly sized intervals at the necessary level of detail as used by the adaptive algorithm.

8.3 Future work

It has been demonstrated that interval analysis and box splitting can be applied to an

implicit enumeration based search for optimal separation process structures. However ef­

ficient the algorithm, there are always a finite number of alternatives that must be explored

in the search. The algorithm works most efficiently when there are fewer discrete options,

such as choice of different units, and more unit variables with ranges of possible values.

For a given unit design, the use of interval calculations takes longer and more memory is

required to store solutions. For this reason, the new algorithm is more likely to fail for

highly combinatorial problems than the previous discrete approach.

CHAPTER 8. CONCLUSION 145

The issue of memory use could be addressed by removing the dynamic programming

facility for certain problems. To tackle the bio case-study, discretisation, even at small

flow rates, was not used. As a result there was little re-use of solutions. The savings in

processor time are outweighed by the huge amount of memory required to save all the

solutions. Without dynamic programming the search could continue for more than the

timescale of hours and therefore would be capable of tackling larger problems.

In terms of processing time, it may be possible to increase efficiency by investigating

alternative criteria for choosing the box and variable for the next split. For a given problem

stream, this would only be useful when all the boxes in the list had been assigned a

downstream structure and the aim was to eliminate sub-optimal structures.

It has been demonstrated that the interval based algorithm is applicable to different types

of synthesis problem. Currently, using the algorithm for a new type of problem requires

a lot of development time. This is particularly true for the conversion of unit models for

interval calculations. In the future, it would be useful to develop a thorough strategy for

minimising dependency in the perturbed interval equations encountered in unit models.

This could be extended to the calculation of stream characteristics. Such a strategy would

allow more rapid application to new problems and eventually to an interface for writing

interval models.

Appendix A

Biological data

A.l Physical properties

Tables A. 1 shows the physical properties of the components of the feed stream to the case

study presented in section 7.3.

146

APPENDIX A. BIOLOGICAL DATA

Table A. 1: Physical properties for the case study

147

Component Density
(g/1)

Size
fim

Molecular
Weight (g/mol)

$

glucose 1250 1.0 x 10"3 180 0.1
N H t 1050 5.0 x 10"4 18 0.01
^04- 1050 1.0 x 10"3 96 0.01
antifoam 985 1 x 10"2 500 1.0
BST (product) 1000 0.02 248200 0.9
protein 1 1000 0.01 18370 0.71
protein 2 1000 0.015 85570 0.48
protein 3 1000 0.013 53660 0.76
protein 4 1000 0.013 120000 1.5
protein 5 1000 0.013 203000 0.36
protein 6 1000 0.013 69380 0.36
protein 7 1000 0.013 48320 0.48
protein 8 1000 0.013 93380 0.93
protein 9 1000 0.013 69380 0.01
protein 10 1000 0.013 114450 0.63
protein 11 1000 0.013 198000 0.06
protein 12 1000 0.013 30400 1.0
protein 13 1000 0.018 94670 0.01
water 1000 4.0 x 10"4 18 N/A

Table A. 2: Inclusion body properties

Component concentration (g/1)
BST 650
protein 1 620
Density 1270 g/1
Size 0.4 fim

A.2 Unit data

The following tables show the design constraints, parameters and costing information

that were used by Steffens et al. (2000) and for the bio-synthesis case study presented in

section 7.3.

APPENDIX A. BIOLOGICAL DATA

Table A.3: Bio-process unit design constraints

148

Unit Constraints
Ultrafilter 1/im > x > 0.001 fim

cf < 200 g/1
cr < 500 g/1

Microfilter 10 fim > x > 0.1 fim
crs < 500 g/1

Diafilter 1 > x > 0.001 fim
Cf < 400 g/1

Rotary drum filter 200 /im > x > 1 fim
Csolidf < 70% w/w

Chromatography c/ < 70 g/1
column no solids in feed

Table A.4: Capital and operating costs

Unit Capital cost Operating cost
Ultrafilter 1000 $/m2 Membrane = 250 $/m2

Energy = 5 kWh/m3 permeate
Energy costs = 0.04 $/kWh

Microfilter 5000 $/m2 Membrane = 700 $/m2
Energy = 0.13 $/m3 feed

Diafilter 1000 $/m2 Membrane = 250 $/m2
Energy = 5 kWh/m3 permeate
Energy costs = 0.04 $/kWh

Rotary-drum filter 9528 $/m2 Filter aid = 5kg/m3 filtrate
+ 22787 $ Filter aid cost = 0.33 $/kg

Energy = 0.12 $/m3 feed
Gel filtration 273613 $/m

+ 82894 $
Gel cost = 300 S/1

Hydrophobic-interaction 247490 $/m diameter Gel cost = 400 $/l
chromatography + 88765 $
Solubilisation and 1000V°-53402e5-348 $ 2.15 $/kg guanidine
renaturing tank

The <= symbol in table A. 5 denotes variables that have been given a range of values for

the purposes of the case study.

APPENDIX A. BIOLOGICAL DATA

Table A.5: Unit design parameters

149

Unit Parameter values
Ultrafilter cs = 250 g/1

k = 1.0 x 10~6 m3/m2/s
cr = 50-400 g/1 <*=

Microfilter Cfc = 400 g/1
k = 1.5 x 10-5 m3/m2/s
cr = 400 - 1100 g/1 « =

Diafilter cff = 250 g/1
k = 1.0 x 10-6 m3/m2/s
Df = 2.0 — 5.0 m3/m3 4 =

Rotary-drum filter Cfc = 350 g/1
w = 1.0 m3 water/m3 feed
Cake resistance = 5.0 x 1011 m/kg
Pressure drop = 68 Pa
Filtrate viscosity = 0.0011 kg/m/s
Cycle time = 180 s

Gel-filtration Maximum diameter = 1.0 m
Hsam ~ 5 %
Column length, I = 0.25 m
cr = 0.46
8 = 0.02
tr = 1 h

Hydrophobic interaction chromotography Maximum diameter = 1.0 m
Bc = 20 mg/ml
Column length = 0.25 m
a = 0.22
8 = 0.02
tr = 1 h

Solubilisation and renaturing tank tr = 44 h
y = 80 %
Cprot 50 g/1
Solution of 3M guanidine HC1 used

A.3 Unit design procedures

A.3.1 Ultrafilter and microfilter

Stream composition

The following equaitions relate to the calculation of the composition of permeate and

reject stream based on the design variable cr (the total concentration of the reject stream).

APPENDIX A. BIOLOGICAL DATA 150

The subscripts r,p and / relate to reject, permeate and feed streams respectively. The

subscripts I and s refer to large and small components respectively.

CLr ^Sf

The concentration factor is the ratio of the concentration of large components in the reject

to the feed.

r CLr
V C J = —

CL f

Small components have equal concentration in the product streams, this is the same con­

centration as in the feed. For small component i :

(k f — f y r — C-ip

The total concentration of large components in the reject stream is then calculated.

C~ifCLr
Cir

CLf

The flowrate of the reject stream is then calculated from the concentration factor.

Q = —V r rVCJ

Volume factors for the small components in the feed and the large components in the

reject are then calculated, s relates to the integer index of the components in the feed

when ordered by particle size starting with the largest component having an index of 0. n

is the number of components in the feed stream.

APPENDIX A. BIOLOGICAL DATA 151

5 — 1 CiTEW'

pi

The concentration of the solvent (water) in the reject and permeate streams can then be

calculated from these volume factors.

C\V r P w i , 1 ^ f r a c L r V f r a c S f)

Cwp P W (1 V fra c S f')

Finally the volumetric flowrate fo the permeate is calculated.

^ QfPf QrPr
Pp

Costing of ultraiilter

The area, A, of the filter is calculated from the permeate flowrate, mass transfer coeffi­

cient, feed concetration and gel concentration.

A = Qp
cf

/3 8 8 \
capcost = 1000 f J A (Ho and Sirkar, 1992)

Energy costs, in USD/year, are then calculated from permeate volumetric flowrate and

hours of operation per year.

E = 5Qp x 0.04 x 3600hpy

Total operating cost is then calculated from the membrane cost, Costmem (USD/m2yr).

This was 250 $/m2yr in the case study, opercost = CostmemA + E

APPENDIX A. BIOLOGICAL DATA 152

Costing of microfilter

The area, A, of the filter is calculated from the permeate flowrate, mass transfer coeffi­

cient, feed concetration and cake concentration.

capcost = 500(L4

opercost = CostmemA + 0.13Q/ x 3600 x hpy

A.3.2 Diafilter

Stream composition

The same naming conventions are used for the dialfilter as the other two filters. It produces

a reject stream and a permeate stream and the split is based on component size when those

in the feed are sorted in order of size. For this unit, the volumetric flowrate of the reject

stream is the same as that of the feed stream and the large compoent pass completely into

the reject stream so Q f = Qr and for a large component i,Cif = cir.

The design variable Dp is the ratio of volumetric flowrate of the permeate stream to the

feed stream so Qp = D f Qf . The concentration of a small component, i, in the reject is

given by the equation cir = Cife~°F.

The volume factors of large components in the feed and small components in the reject

are then calculated.

APPENDIX A. BIOLOGICAL DATA 153

S — 1

E C if

i=0 Pi

The concentration of water in the reject stream can then be calculated.

C w r P w i X V f r a c S r ^ f r a c L f)

The concentration of a small component, i, in the permeate stream is given by:

C i f Q f C i r Q r

Cir = Q ,-------

Finally the concentration of water in the permeate is calculated.

C\Vp = P w (1 V f r a c S p)

Costing

The area of the diafilter is calculated using the same equation as the ultrafilter. The capital

cost is also calculated in the same way. Operating is then calculated as follows:

opercost = CostmemA + 0.4capcost

APPENDIX A. BIOLOGICAL DATA 154

A.3.3 Rotary drum filter

Stream composition

The density of small components in the feed are calculated from their concentration and

volume fraction.

° S f
P s f = ----------------

V f r a c S f

The volume fraction of large components in the feed includes the contribution of the filter

aid that is added.

The fraction of the small components that are left in the filter cake, xsk, is a function of

the design parameter wash rate.

The concentration of water and small components in the reject is then calculated.

C f i l t e r A idF eed

P f i l t e r A id

The concentration of filter aid in the reject stream is then calculated.

C -filterAidF eed
C f U terA idR ej ect

xs k = 1.092e 1 1945*s‘

1 / pw + (! r w \ C W f P S f)

XSkCSf

APPENDIX A. BIOLOGICAL DATA 155

Large components pass entirely into the reject stream in the same proportions as they are

present in the feed. For a large component, i:

CLf

The properties of the permeate stream can then be calculated using a another mass bal­

ance. Small components pass into the reject stream in the same proportions as they appear

in the feed.

Costing

Filter area is calculated from permeate volumetric flowrate, Qp, filtrate viscosity, fi, cake

resistance a, pressure drop A P , feed solids concentration, csoiidf, cycle time tc and stream

volumetric flowrates.

A = Qp
0 .4 A P

HGCsolidf

388
capcost = (9528^4+22787)^^

The operating cost includes the cost of filter aid, cost/ a.

opercost = (3600 x costfa x hpy) + (0.12Q/ x 3600 x hpy)

APPENDIX A. BIOLOGICAL DATA 156

A.3.4 gel filtration

Stream composition

In the following equations the subscript, P, refers to the product component and p refers

to the product stream. The volumetric flowrates of the reject and product streams are

equal.

CPp = Cp f * (1 — 5)

The concentration of component i in the output streams is calculated as follows. All logs

are to base 10.

kP = log MwP

ki = log Mwi

A = k p — ki

If A > | and A < a then x = (1 + d)

If A > 0 and A < | then x = (1 + 5) ~2A ^

Cjp — XC~ij

Costing

The volume and diameter are then calculated.

V - 100Q ftrB sam

APPENDIX A. BIOLOGICAL DATA 157

d —

capcost = 273613. Od + 82894

opercost = 3600hpyQ j

Water is added to the output streams in quantities that make the stream densities that of

water.

Hydrophobic interaction columns are deigned in the same way as gel filtration columns

except that A is calculated from the difference in hydrophobicity of the product compo­

nent and component i. The volume of the column is given by

V = 1 0 0 % ^
Bc

A.3.5 Solubilisation and renaturing tank

This unit is used to dissolve inclusion bodies and access the protein that is contained

within.

Stream composition

The volumetric flowrate of the output stream,Qp, is calculated from the design variable

Cprotp, the concentration of protein in the product stream, the concentration of protein in

the feed stream, Cprotf, the concentration of inclusion bodies in the feed, C^/ and the

volumetric flowrate of the feed, Qf.

Q p — (C protf + C i b f) - ~ t —
Cprotp

APPENDIX A. BIOLOGICAL DATA 158

Components that are not within the inclusion bodies in the feed are then added to the prod­

uct stream in their entirety. Proteins within the inclusion body are added to the product

stream. The mass added is the mass in the feed multiplied by the yield variable, y.

The refolding chemical is then added to the product in the concentrations specified. In

the case of the case study this was guadinine in a concentration of 300 g/1. Water is then

added to make the volumetric flowrate of the stream up to the value of Q f calculated

earlier.

Costing

The volume of the tank is calculated from the volumetric flowrate of the feed multiplied

by the residence time. The minimum volume is 0.4 m3.

V = Qf t r

capcost= i0001/°‘53402e5'348

Operating cost is calculated from the cost of guadinine, costguad,the mass added and the

number of operating days per year.

opercost = 3600hpy Q fCgUadCostguad

APPENDIX A. BIOLOGICAL DATA

A.4 Biological nomenclature

Bc binding capacity (mg/ml)

Bsam sample volume (% column vol)

C/ total feed cone (g/1)

ŝolidf feed solids cone (g/1)

C9 gel cone (g/1)

Cfc cake solids cone (g/1)

c p total permeate stream cone (g/1)

C prof protein concentration (g/1)

Cr total reject stream cone (g/1)

C rs reject solids cone (g/1)

D F dilution factor (m3 water/m3 feed)

hpy hours operation per year (500 for the case study)

k mass transfer coefficient (m3/m2/s)

Molecular weight of component i

tc cycle time

t r residence time (h)

W wash ratio (m3 water/m3 feed)

y yield (g protein renatured/g total protein)

a cake resistance (m/kg)

P filtrate viscosity (kg/m/s)

$ hydrophobicity defined by Leser et al. (1996)

Bibliography

A. Aggarwal and C. A. Floudas. Synthesis of general distillation sequences - nonsharp

separations. Computers chem. engng., 14:631-653,1990.

E. Bek-Pedersen and R. Gani. Design and synthesis of distillation systems using driving

force based approach. Chem. Eng. Process., 43:251-262,2004.

P. A. Belter, E. L. Cussler, and W.-S. Hu. Bioseparations: Downstream processing for

biotechnology. John Wiley & Sons, New York, 1988.

R. J. Best, N. S. Dhalu, and W. R. Johns. Enumerative and AI methods for process design.

Chem. and Ind., 15:510—515, 1987.

R. P. Byrne and I. D. L. Bogle. Global optimization of modular flowsheets. Ind. Eng.

Chem. Res., 39:4296-4301,2000.

O. Caprani and K. Madsen. Mean value forms in interval analysis. Computing, 25:147-

154, 1980.

T. Csendes. New subinterval selection criteria for interval global optimization. Journal

o f Global Optimization, 19:307-327, 2001.

M. M. Daichendt and I. E. Grossmann. Integration of hierarchical decomposition and

mathematical programming for the synthesis of process flowsheets. Computers chem.

engng., 22:147-175,1998.

160

BIBLIOGRAPHY 161

S. Djouad, P. Floquet, S. Domenech, and L. Pibouleau. Fuzzy information engineering,

chapter 37, pages 619-631. John Wiley and sons, 1997.

J. M. Douglas. Conceptual design o f chemical processes. McGraw-Hill Book Company,

New York, 1988.

M. A. Duran and I. E. Grossmann. An outer approximation algorithm for a class of mixed

integer nonlinear programs. Math. Program., 36:307-339, 1986.

G. Y. Feng, L. T. Fan, P. A. Seib, B. Bertok, L. Kalotai, and F. Friedler. Graph-theoretic

method for the algorithmic synthesis of azeotropic-distillation systems. Ind. Eng.

Chem. Res., 42:3602-3611,2003.

M. R. Fenske. Fractionation of straight run Pennsylvania gasoline. Ind. Eng. Chem., 24:

482-485, 1932.

P. Floquet, L. Pibouleau, and S. Domenech. Separation sequence synthesis: how to use

the simulated annealing procedure. Computers chem. engng., 18:1141-1148, 1994.

C. A. Floudas, A. Aggarwal, and A. R. Ciric. Global optimum search for nonconvex NLP

and MINLP problems. Computers chem. engng., 13:1117-1132, 1989.

E. S. Fraga. The automated synthesis of complex reaction/separation processes using

dynamic programming. Trans IChemE, 74a:249-259, March 1996.

E. S. Fraga. The generation and use of partial solutions in process synthesis. Trans

IChemE, 76:45-53, January 1998.

E. S. Fraga and K. I. M. McKinnon. CHiPS: A process synthesis package. Trans IChemE,

72a:3 89-393, May 1994.

E. S. Fraga, M. A. Steffens, I. D. L. Bogle, and A. K. Hind. Foundations o f Computer-

Aided Process Design, volume 323, pages 446-449. AIChE Symposium Series, 2000.

BIBLIOGRAPHY 162

F. Friedler, K. Taijan, Y. W. Huang, and L. T. Fan. Graph-theoretic approach to process

synthesis: polynomial algorithm for maximal structure generation. Computers chem.

engng., 9:929-942, 1993.

A. M. Geofffion. Generalized benders decomposition. J. Optim. Theory Appl., 10:237-

260, 1972.

E. R. Gilliland. Multi-component rectification, estimation of the number of theoretical

platesas a function of reflux ratio. Ind. Eng. Chem., 32:1220-1223, 1940.

I. E. Grossmann. Mixed-integer programming approach for the synthesis of integrated

process flowsheets. Computers chem. engng., 9:463-482,1985.

I. E. Grossmann. Mixed-integer optimization techniques for algorithmic process synthe­

sis. Advances in Chemical Engineering, 23:171-246, 1996.

O. K. Gupta and V. Ravindran. Branch and bound experiments in convex nonlinear integer

programming. Manage. Sci, 31:1533-1546, 1985.

E. Hansen. Global optimization using interval analysis. Marcel Dekker, New York, 1992.

W. Ho and K. Sirkar, editors. The membrane handbook. Van Nostrand Reinhold, New

York, 1992.

C. A. Jaksland, R. Gani, and K. Lien. Separation process design and synthesis based on

thermodynamic insights. Chem. Eng. Sci., 50:511-530,1995.

W. R. Johns. Process synthesis: Poised for a wider role. Chem. Eng. Prog., 4:59-65,

2001 .

W. R. Johns and D. Romero. The automated generation and evaluation of process flow­

sheets. Computers chem. engng., 3:251—260, 1979.

BIBLIOGRAPHY 163

R. B. Kearfott. Rigorous global search: continuous problems. Kluwer academic publish­

ers, Dordrecht, 1996.

J. F. Kennedy and J. M. S. Cabral, editors. Recovery processes for biological materials,

page 90. John Wiley & Sons, Chichester, 1993.

S. Kirkpatrick, C. D. G. Jr, and M. R Vecchi. Optimization by simulated annealing.

Science, 220:671-680, 1983.

R. L. Kirkwood, M. H. Locke, and J. M. Douglas. A prototype expert system for synthe­

sizing chemical process flowsheets. Computers chem. engng., 12:329-343, 1988.

Z. Kohavi. Switching and finite automata theory. McGraw-Hill book company, 2nd

edition, 1978.

E. Kondili, C. C. Pantelides, and R. W. H. Sargent. A general algorithm for short term

scheduling of batch operations. 1 .MILP formulation. Computers chem. engng., 17:211—

227, 1993.

Z. Kovacs, Z. Ercsey, F. Friedler, and L. T. Fan. Exact super-structure for the synthesis of

separation-networks with multiple feed streams and sharp separators. Computers chem.

engng., 23:S 1007-1010,1999.

Z. Kovacs, Z. Ercsey, F. Friedler, and L. T. Fan. Separation-network synthesis: global

optimum through rigorous super-structure. Computers chem. engng., 24:1881-1900,

2000.

Z. Kovacs, F. Friedler, and L. T. Fan. Recycling in a separation process structure. AIChE

Journal, 39:1087-1089, 1993.

D. M. Laing and E. S. Fraga. A case study of synthesis in preliminary design. Computers

chem. engng., 21:S53-S58, 1997.

BIBLIOGRAPHY 164

E. W. Leser, M. E. Lienqueo, and J. A. Asenjo. An expert system for the selection and

synthesis of multistep protein separation processes. Ann NY Acad Sci, 782:441-455,

1996.

P. Linke and A. Kokossis. Attainable reaction and separation processes from a

superstructure-base method. AIChE, 49:1451-1469,2003a.

P. Linke and A. Kokossis. On the robust application of stochastic optimisation technology

for the synthesis of reaction/separation systems. Computers chem. engng., 27:733-758,

2003b.

B. Linnhoff and E. Hindmarsh. The pinch design method of heat exchanger networks.

Chem. Eng. Sci., 38, 1983.

E. Marcoulaki, P. Linke, and A. Kokossis. Design of reaction-separation networks using

stochastic optimization methods. TransIChemE, 79:25-32,2001.

E. McCarthy. Synthesis o f separation systems for multicomponent product problems. PhD

thesis, University of Edinburgh, 2000.

E. McCarthy, E. S. Fraga, and J. W. Ponton. An automated procedure for multicomponent

product separation synthesis. Computers chem. engng., 22:S77-S84, 1998.

R. E. Moore. Interval Analysis. Prentice Hall, Englewood Cliffs, New Jersey, 1966.

R. N. S. Rathore, K. A. van Wormer, and G. J. Powers. Synthesis strategies for multicom­

ponent separation systems with energy integration. AIChE J., 20:491-502,1974.

H. Ratschek and J. Rokne. New computer methods for global optimization. Ellis Hor-

wood, Chichester, 1988.

R. W. H. Sargent. A functional approach to process synthesis and its application to distil­

lation systems. Computers chem. engng., 22:31-45, 1998.

BIBLIOGRAPHY 165

G. Schembecker, K. H. Simmrock, and A. Wolff. Sysnthesis of chemical process flow­

sheets by means of cooperating knowledge integrating systems. In Institution o f Chem­

ical Engineers symposium series, 133, 1994.

C. A. Schnepper and M. A. Stadtherr. Robust process simulation using interval methods.

Chem. Eng. Prog., 44:603—614, 1996.

J. D. Seader and A. W. Westerberg. A combined heuristic and evolutionary strategy for

synthesis of simple separations sequences. AIChE J., 23:951-954, 1977.

S. Skelboe. Computation of rational interval functions. BIT, 14:87-95, 1974.

E. M. Smith. On the optimal design o f continuous processes. PhD thesis, Imperial College

of Science Technology and Medicine, 1996.

M. A. Steffens, E. S. Fraga, and I. D. L. Bogle. Synthesis of bioprocess using physical

properties data. Biotechnol Bioeng, 68:218-230, 2000.

G. Stephanopoulos and A. W. Westerberg. Studies in process synthesis ii. evoutionary

synthesis of optimal process flowsheets. Chem. Eng. Sci., 31:195-204,1976.

A. J. V. Underwood. Fractional distillation of a multicomponent mixture. Chem. Eng.

Prog., 44:603-614, 1948.

O. M. Wahnschafft, T. P. Jurain, and A. W. Westerberg. Split: A separation process

designer. Computers chem. engng., 15:565-581, 1991.

K. Wang, Y. Qian, Y. Yuan, and P. Yao. Synthesis and optimization of heat integrated

distillation systems using an improved genetic algorithm. Computers chem. engng.,

23:125-136,1998.

R. R. Wehe and A. W. Westerberg. An algorithmic procedure for the synthesis of distilla­

tion sequnces with bypass. Computers chem. engng., 6:619—627, 1987.

BIBLIOGRAPHY 166

T. Westerlund and F. Pettersson. An extended cutting plane method for solving convex

MINLP problems. Computers chem. engng., 19:S 131—S136, 1995.

H. Yeomans and I. E. Grossmann. A systematic framework of superstructure optimization

in process synthesis. Computers chem. engng., 23:709-731, 1999.

H. Yeomans and I. E. Grossmann. Disjunctive programming models for the optimal de­

sign of distillation columns and separation sequences. Ind. Eng. Chem. Res., 39:1637-

1648, 2000.

Y. Zhu and T. Kuno. Global optimization of nonconvex MINLP by a hybrid branch and

bound and revised general benders decomposition approach. Ind. Eng. Chem. Res., 42:

528-539, 2003.

