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Abstract

This thesis concerns the automated synthesis of separation processes. A single multi- 

component stream is to processed to give one or more pure component product streams. A 

list of units are available for the task and the aim is to find the optimal flowsheet structure 

in terms of cost. Implicit enumeration (IE) has been used to tackle the synthesis problem. 

The main advantage of this approach is that IE does not require the development of a 

superstructure.

A disadvantage of using IE is that it is necessary to discretise the values of unit operating 

conditions in order for there to be a finite search space (Fraga et al., 2000). The user 

may not have any idea of the effect of the discretisations on the quality of the solution. 

In addition, the optimal solution may be missed between the discrete values chosen. The 

purpose of this work is to address these issues.

Interval analysis is used to bound the effects of this discretisation. This allows the cost 

of each particular flowsheet to be bounded based on the level of discretisation used. The 

technique is demonstrated by bounding the effect of discretisation on the synthesis of 

distillation flowsheets. The use of runs with progressively finer uniform discretisation 

lead to the isolation of the optimal structure.

This result leads to the development of an adaptive algorithm that changes the discreti­

sation profile in response to bounding information ffom downstream in the search. The 

algorithm operates recursively and isolates the optimal process structure for each stream 

encountered. This builds up to the isolation of the overall optimal process structure for the
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feed process stream. The effectiveness and performance of the new algorithm are evalu­

ated using two very different separation problems. The first is a distillation sequence and 

the second a separation of a protein from a biological stream.
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Chapter 1

Introduction

Process synthesis can be defined as the systematic generation of flowsheets for a chemical 

process. The aim is to optimise the logical structure of processing units. The objective 

function is usually financial but may include a measure of the environmental impact of 

the process. The synthesis procedure takes place at the very early stages of plant design 

but can have large cost implications. If poor decisions are made at this stage, then later 

cost analysis of the resulting detailed flowsheet may mean that the process is deemed 

economically infeasible.

The synthesis problem can take one of several forms which include:

•  Determination of the optimal heat exchanger network configuration for a given 

flowsheet structure. This may be based on pinch technology (Linnhoff and Hind- 

marsh, 1983), mathematical programming or a combination of the two.

• Optimisation of the structure of a reactor network including identification of suit­

able recycle streams.

13
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• Separation network synthesis (SNS)

• Mass exchange network optimisation.

• Utility system optimisation.

These issues may be addressed together where whole plant-wide optimisation is attempted. 

It is possible to tackle the synthesis problem in several different ways. Traditionally syn­

thesis has been carried out by the use of heuristics (Douglas, 1988). Another approach is 

the evolution of an existing flowsheet via small modifications (Stephanopoulos and West- 

erberg, 1976). Increasingly mathematical algorithms have been developed (Grossmann, 

1996). Some methods combine both heuristic and mathematical approaches (Daichendt 

and Grossmann, 1998).

In terms of mathematical programming, the detail of the mathematical models used can 

be increased as the subsystem being synthesised becomes more specific. This is due to 

the decrease in problem size if subsystems are considered individually. For example, 

it is generally possible to use much more detailed models in the optimisation of heat 

integration on an existing flowsheet than if the flowsheet were to be synthesised and heat 

integration considered simultaneously. Therefore, there is often a trade off between the 

need to consider as wide a level of plant synthesis as possible and the detail of the models 

used to simulate this.

1.1 Motivation

This thesis is concerned with the development of methods that can be used to find the 

optimal flowsheet structure for a process given a feedstock, a set of units and product
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specifications. The techniques used are based upon an implicit enumeration (IE) proce­

dure where a search graph is simultaneously created and traversed. In the graph, units 

are represented by nodes and streams by edges. An existing method is embodied by 

the Jacaranda automated process synthesis package (Fraga et al., 2000). In this pack­

age streams, units and the search algorithm itself, are implemented in an object oriented 

framework. The merits of this and various other approaches to the synthesis problem are 

discussed in detail in Chapter 2.

An advantage of the IE approach is that the search graph is generated automatically. This 

prevents an engineer from imparting any preconceptions to the design potentially yielding 

a novel process structure. As a result, the possibility of yielding a novel process structure 

is increased. A drawback of this approach is that in order for enumeration to take place, 

continuous unit variables are discretised. The size of the search space is further reduced 

by the discretisation of continuous stream variables such as pressure and flowrate. This 

is combined with dynamic programming to allow the re-use of solutions. The user has 

no idea of the effect of these discretisations on the quality of the solutions obtained. In 

addition, the ranked list of solutions returned is not guaranteed to contain the optimal 

process structure.

The object of the work described in this thesis is to develop techniques that retain the ad­

vantages of the implicit enumeration search, while allowing the optimal process structure 

to be isolated automatically. The different stages of development of such an algorithm are 

described.
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1.2 Interval analysis

Since the discretisation of unit variables means that the structures returned by the exist­

ing method may not be optimal, it is necessary to quantify the effects of discretisation. 

Interval analysis can be used for this purpose. Carrying out unit designs using interval 

arithmetic produces bounds on the cost of each design. The bounds are based on the 

interval values of the unit variables and feed stream properties. Chapter 3 explains the 

concept of interval analysis and how it can be applied to the design of processing units.

Chapter 4 describes how intervals may be used to represent the unit variable pressure in 

a distillation column. This results in distillation column designs with bounds on capital 

and operating costs. This is applied to a hydrocarbon separation problem and results in 

bounds on the cost of the structures returned. Runs are carried out at various levels of 

discretisation. At a sufficiently fine level of discretisation, it is demonstrated that the best 

structure can be isolated on the basis of cost bounds.

Chapter 5 develops the application of interval analysis further by describing component 

flow rates using intervals. This is an important step, as whether or not a component is 

present within a stream determines how the stream is processed and affects the overall 

process structure.

1.3 An adaptive algorithm

The results of implementation of the ideas in chapters 4 and 5 give assurances on the 

quality of the solutions obtained. By carrying out successive runs it is also possible to 

isolate a structure based on cost bounds. Such a structure must be optimal as long as
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interval parameters do not cross feasibility boundaries during the search. However, during 

a particular run, there is no guarantee that this is true. In addition, successive runs using 

uniform discretisation is a time consuming and inefficient process

Chapter 6 describes an algorithm that combines an interval box splitting algorithm with 

the implicit enumeration search. The discretisation profiles of unit variables are changed 

for each stream encountered, by successive splitting of the unit variable intervals. This 

is carried out until the optimal structure for processing the stream has been found. If 

an interval parameter, resulting from a unit design, crosses a feasibility boundary then 

a unit variable interval is split until crossing does not occur. The search space is thor­

oughly investigated and nothing is discounted until it is shown to be either sub-optimal or 

infeasible.

Chapter 7 applies the new algorithm to the benzene separation synthesis problem at­

tempted in chapter 5. The adaptive algorithm is able to isolate the optimal structure using 

around 40 times less processor time than if uniform discretisation that reached the same 

resolution were used. The algorithm is also applied to the synthesis of a biological sepa­

ration process in order to demonstrate its applicability to various types of problems. The 

algorithm yields a different structure from the previous non-interval discrete approach. 

This shows that the optimal solution may be missed due to discretisation and supports the 

application of the new algorithm to such problems.



Chapter 2

Separation synthesis methods

2.1 Introduction

This chapter gives an overview of work in the field of process synthesis with the specific 

discussion of previous applications to separation network synthesis problems. Process 

synthesis techniques can be broadly classified as one of two approaches: (1) Heuristic 

methods and (2) Algorithmic methods. The former rely on previous experience of sim­

ilar problems. The latter employ some kind of logical search procedure in order to find 

the optimal structure. The two approaches can be combined in order to discount some 

structures from the search. The merits of the different approaches are discussed and this 

discussion gives rise to the motivation for the work described by this thesis.

18



CHAPTER 2. SEPARATION SYNTHESIS METHODS 19

2.2 Terminology

Distillation is the one of the most studied technologies in terms of separation synthesis and 

part of this thesis is concerned with the synthesis of distillation sequences. The following 

is a list of terminology that can be used to describe distillation synthesis.

Light key: In a distillation unit this is defined as the lightest component which may be 

present in the bottom product in significant amounts.

Heavy key: This is the heaviest component that may be present in the top product in 

significant amounts. Light and heavy refer to the relative volatilities of the feed 

components.

Semi-sharp separation: This gives 100% recovery of components lighter than the light 

key to the top product and 100% recovery of components heavier than the heavy key 

to the bottom product. The key components are distributed between the two product 

streams depending on the percentage key recovery.

Sharp separation: Sharp separation is an idealised situation where 100% key separation 

is assumed. This leads to negligible amounts of the light key in the bottom product 

and neglible amounts of the heavy key in the top product.

Non-sharp separation: All components may distribute between the two product streams.

Divider: This splits a process stream into two or more streams each with the same frac­

tional composition and is analogous to a fork in the pipework.

Blender: This mixes two streams to yield one product stream.
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2.3 Heuristic and artificial intelligence (AI) approaches

An example of a heuristic approach is hierarchical decomposition (Douglas, 1988). It 

breaks the problem down into five basic levels:

1. Batch versus continuous operation

2. Input-Output structure of the flowsheet

3. Recycle structure and reactor design

4. Separation systems

5. Heat exchanger networks

From the second decision on-wards, the economic potential is examined. It may be de­

cided that further work is not justified on this basis. This screening hierarchy is based 

upon heuristics and engineering insight to converge on a design. This approach cannot 

rigorously ensure an optimal design and the reliance on heuristics may mean that novel 

structures are not considered at all. Interactions of variables at different decision levels 

are not taken into account which may cause optimal designs to be missed. However, it 

is the most widely used design methodology. This may be due to the intuitive nature of 

the procedure and the lack of a general purpose process synthesis package. PIP (Pro­

cess Invention Procedure), a computer implementation of hierarchical decomposition is 

described by Kirkwood et al. (1988). Another attempt at implementing artificial intelli­

gence is as part of the PROSYN package as described by Schembecker et al. (1994).

Evolutionary techniques use the previous experience of the designer to make small changes 

to an existing flowsheet. Stephanopoulos and Westerberg (1976) propose a set of rules,



CHAPTER 2. SEPARATION SYNTHESIS METHODS 21

by which to make modifications to create a neighbouring flowsheet. In addition, means 

by which to compare the flowsheets are suggested. These ideas are applied to multi- 

component separation problems. This strategy has been combined with distillation syn­

thesis heuristics (Seader and Westerberg, 1977). The heuristics help with the determina­

tion of the starting flowsheet and the strategy of applying the evolutionary rules.

A problem with using heuristics is that the rules sometimes conflict with each other. In 

addition, terms such as large or high are often used in the heuristics that are ambiguous. 

Djouad et al. (1997) use fuzzy set theory to aid the decision procedure. Four heuristic 

rules for separation by distillation are made quantifiable and each is given a weighting. 

For each possible split, the values for each rule are calculated. The degree of compatibility 

between each rule is considered before a decision is made.

An investigation compared Al to mathematical optimization (Best et al., 1987) in the 

solution of multicomponent separation by distillation. Distillation synthesis has well es­

tablished heuristics, so it is well suited to the application of Al. The study showed that 

the Al generated flowsheets were significantly more expensive than those obtained by 

mathematical optimization when applied to a range of test problems. Other processes 

do not have such established heuristics so may perform worse in a similar comparison. 

The lack of optimality in the use of heuristics motivates the application of mathematical 

optimization to process synthesis problems.

2.4 Algorithmic methods

In contrast to the use of heuristics, algorithmic approaches are designed to search the 

possible structures in order to obtain the optimal solution. Consequently, these approaches 

tend to be much more time consuming and are only practical by the use of computers.
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2.4.1 Optimisation by mathematical programming

One method of mathematical programming uses optimisation techniques to select the con­

figuration and operating conditions of processing units based on what is called a super­

structure. The optimisation is formulated as a mixed-integer problem (Grossmann, 1985). 

The superstructure is intended to represent all combinations of available unit operations 

and possible interconnections. In the problem formulation, the existence or absence of 

a particular unit is represented by 1 or 0 respectively. This approach results in a mixed 

integer nonlinear programming (MINLP) problem. Given a superstructure, there are a 

number of algorithms available to solve the MINLP. These include

• Branch and bound (Gupta and Ravindran, 1985). In this method the continuous 

nonlinear program (NLP) relaxation is solved. If the relaxed discrete variables hap­

pen to take integer values then the search is stopped. Otherwise, a tree search of the 

integer variables is carried out. Lower bounds produced from relaxed NLP prob­

lems are compared with the current upper bound. A particular path is discounted if 

the lower bound at any point is greater than the upper bound. A new upper bound 

will result if all discrete variables take integer values.

• Outer Approximation (Duran and Grossmann, 1986) where mixed integer linear 

programs(MILP) and NLP subproblems are solved successively. This type of NLP 

problem corresponds to a particular discrete combination of the integer variables, 

that arises from the solution of the MILP master problem. The NLPs yield upper 

bounds and the MILPs lower bounds on the solution.

• Generalised Benders decomposition (Geoffrion, 1972) uses a similar strategy to the 

outer approximation method. The methods differ in the way that the MILP problem 

is constructed.
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• Extended cutting plane method (Westerlund and Pettersson, 1995). This is a ge­

ometrical method which can guarantee optimality when applied to pseudo-convex 

functions.

The superstructure can be represented by the state task network (STN) (Kondili et al., 

1993). It is an example of a finite automaton (Kohavi, 1978). It recognises that feed 

streams undergo a set of transformations within a process. These transformations yield 

various intermediate states. A unit operation then carries out the task of converting a 

material from one set of states to another. One or more pieces of equipment may be 

assigned to each task or one piece of equipment may be used to carry out multiple tasks. 

A variation on this system is the state equipment network representation (SEN) (Smith, 

1996) where the superstructure is represented by the possible states of the process and 

the equipment that can be used to convert between the states. In this representation, the 

number and type of pieces of equipment may be specified but it is necessary to state all 

the possible states that may result from a piece of equipment. An example is the synthesis 

of a sharp distillation sequence in order to separate a four component mixture. In the STN 

representation, each possible split (task) for every possible stream (state) is represented in 

the superstructure. This is accomplished by the use of mixers and dividers. State ABCD 

is first divided into three intermediate states. The first is processed by the task A/BCD, 

the second by AB/CD and the third by ABC/D. Hence the first produces the states A 

and BCD. A is a pure product state and BCD is split into two for further processing. In 

the SEN representation, it is identified that three columns are required to sharply split a 

four component mixture into pure components. The superstructure consists of these three 

columns with each having options of the tasks that it may perform. The output streams 

are represented by the states that correspond to the possible separation tasks. The column 

accepting ABCD may perform the tasks A/BCD, AB/CD or ABC/D. Consequently the 

state of the top stream is A,AB,ABC and the state of the bottom stream is BCD,CD,D.
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These multiple states are then split into single states for further processing.

These two approaches were applied to the formation of heat-integrated shortcut distilla­

tion sequence superstructures (Yeomans and Grossmann, 1999). These were then formu­

lated and solved as MILPs. It was shown that these two approaches are complementary to 

one another. SEN generated superstructures were later solved using rigorous tray-by-tray 

calculations (Yeomans and Grossmann, 2000).

It was proposed by Sargent (1998) that the STN representation can be combined with 

hierarchical decomposition for the synthesis of distillation systems. It is suggested that 

resulting design possibilities are examined for feasibility before moving to improved mod­

els. This approach is applicable to both ideal and azeotropic systems.

Linke and Kokossis (2003a) present a framework for generating superstructures for the 

combination of reaction and separation processes. The superstructure is generated from 

the combination of generic synthesis units. The reactor/mass exchange unit is compart­

mentalised into each phase present in the system. Each compartment can then exchange 

mass across a phase boundary or diffusion barrier. Recycle can occur between compart­

ments if technically possible. The separation task unit performs a set of feasible separation 

tasks according to an order of separation based on a physical property. All combinations 

of separators that correspond to this operation are incorporated in the superstructure. This 

generic approach allows a wide range of processing technologies to be investigated in­

cluding reactive distillation.

An advantage of the superstructure approach is that it is able to tackle many different types 

of synthesis problem. However, the optimization of a superstructure by the solution of a 

MINLP does not generally ensure a globally optimal solution for process synthesis prob­

lems. This is because most methods assume convexity to ensure global optimality. The 

functions involved are often non-convex leading to the presence of multiple local optima.
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Zhu and Kuno (2003) recently presented a method to deal with these non-convexities in a 

MINLP and ensure global optimality. They propose a combination of generalised Benders 

decomposition and branch and bound, using convex quadratic under-estimators.

If a given superstructure is solved using a global optimization algorithm,this does not 

ensure that the global optimum for the synthesis problem has been found. In order for 

the global optimum to be ensured, it must be guaranteed that the superstructure contains 

all possible unit configurations and connections. Without a systematic approach to su­

perstructure formation, the design is constrained by the imagination and insight of the 

engineer formulating the problem.

2.4.2 Automatic generation of the superstructure

A method of systematically generating the superstructure is presented by Friedler et al. 

(1993). The bi-partite graph (P-graph) is introduced because a conventional graph repre­

sentation of a process structure is shown not to uniquely describe one particular alterna­

tive. Bi-partite means that the vertices of the graph are partitioned into two sets with no 

two vertices of the same set being adjacent (Friedler et al., 1993). The two sets, in the 

case of process synthesis, are unit operations and materials.

The synthesis problem is posed mathematically using set theory and an algorithm is de­

scribed that rigorously forms what is termed the maximal structure. This is defined as the 

union of all possible solution structures.

It is necessary to define the raw materials available, the required products and the set of 

operations that can be used. An operation is defined by a set containing two subsets. One 

subset contains the set of inputs and the other the set of outputs. Therefore, it is necessary 

to list all the possible intermediate materials in order to define the unit operations. For
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example, to define a reactor converting the materials A and B to C, the notation (A, B, C) 

would be used to define the unit operation. The product stream could be of variable com­

position depending upon the amounts of unreacted A and B. If this difference were to be 

represented, another unit would have to be defined (A, B ,D ). Where material D would 

be used to represent a material containing C with significant amounts of A and B. Simi­

larly, only sharp separators can be used, as in order to define the outputs, it is necessary 

to assume that there are no residual amounts of bottom product in the top stream or top 

products in the bottom stream. Otherwise, it would be necessary to define a different unit 

operation for each possible top and bottom product composition.

The approach is rigorous in the sense that it yields a maximal structure that accounts for 

all feasible connections between units and materials. However, it is still limited by the 

necessity to define all possible outputs from the operating units that may be used. This 

task remains the responsibility of the person formulating the problem. Recently, the P- 

graph approach has been applied to the synthesis of azeotropic distillation systems (Feng 

et al., 2003).

2.4.3 Multi-component, multi product problems (MCP problems)

The P-graph technique has been applied to a class of separation network synthesis (SNS) 

problems, for which there was previously no method to create a rigorous superstructure. 

The goal was to synthesise a process where multiple multi-component feed streams yield 

multiple multi-component product streams (MCP problem) (Kovacs et al., 1999).

The P-graph approach was applied to the global optimization of some SNS problems that 

had been attempted previously (Kovacs et al., 2000). The objective was to minimise the 

sum of mass load multiplied by degree of difficulty of each separation. This allowed the
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problem to be formulated as a linear program assuring the global optimum. In many cases 

a better solution was found than had previously been published. For the multi-component 

product problem, it is necessary to include dividers, blenders and recycle loops in the 

superstructure in order to prevent excluding some of the solution space (Kovacs et al., 

1993). The use of mixers and dividers is often essential for this type of problem as the 

product specifications are not attainable without dividing and blending.

An algorithm that ensures the globally optimal separation sequence for the MCP problem, 

also assuming sharp splits, is presented by Wehe and Westerberg (1987). This approach 

is based on a superstructure and linear programming and gives the global solution for 

a given superstructure. The non-linearities introduced by splitters in a three component 

separation are reduced, by analysis, to two linear programs. For more components, the 

resulting non-linear programs are relaxed providing a linear lower bound.

The multi-component product problem has been considered, allowing non-sharp separa­

tion by Aggarwal and Floudas (1990). A superstructure is devised allowing for distri­

bution of components between the top and bottom streams. There is one column in the 

superstructure for each of the adjacent separation key combinations. Initial shortcut sim­

ulations are used to determine the lower bound on key recoveries. The purpose of this is 

to ensure that there is no significant distribution of non-key components between product 

streams. Further simulations are used to develop a cost model for each of the columns. 

These span the range of feed flowrates, compositions and key recoveries. The problem is 

formulated as an MINLP and solved using a procedure that can search for and identify 

the global optimum, but does not assure that it will be found (Floudas et al., 1989). In the 

test problems, four out of the five solutions were assured to be global.

A solution method for the multicomponent product problem that does not require the gen­

eration of a superstructure is presented by McCarthy et al. (1998) and McCarthy (2000).
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This method searches an implicitly created solution graph. It allows non-sharp separa­

tions, splitting and blending of process streams. Discretisation of stream and unit proper­

ties are necessary in order to keep the search space finite.

2.4.4 Hybrid methods

Hybrid methods combine two or more synthesis techniques in order to search for solu­

tions.

Wahnschafft et al. (1991) describe a software system called SPLIT that aids the design 

of processes for the separation of non-ideal mixtures. In this case the major hurdle is the 

generation of feasible solutions rather than the pruning of weak alternatives. It uses a 

blackboard system to access various knowledge sources. Potential separation strategies 

are tested across the operating range by simulation. Alternative flowsheets are compared 

by combining inputs from the available knowledge sources. The user is able to influence 

the direction of the search by discounting some alternatives. Potential alternatives can 

then be incorporated into a superstructure for MINLP optimization.

Another issue in separation synthesis is technology that should be considered when a 

flowsheet is designed. A strategy to address this problem is presented by Jaksland et al. 

(1995). Physico-chemical properties of components in the feed stream are compared in 

order to identify the most appropriate separation technologies. A set of separation tasks 

are then identified. Finally, estimates of appropriate operating conditions are generated.

Bek-Pedersen and Gani (2004) present a set of algorithms for distillation design based 

on the driving force of the separation. The algorithms deal with situations ranging from 

design of a single column to the design of a distillation sequence. The idea is that per­

forming the separation with the largest driving force first leads to the minimum energy
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requirement for the separation. This approach only accounts for the operating costs of 

separation and capital costs are not considered.

2.4.5 Stochastic methods

Stochastic methods use random changes in flowsheet structure in order to search for the 

optimal solution. In general, these methods will provide a global optimum in infinite time.

Simulated annealing

Simulated annealing (Kirkpatrick et al., 1983) has been applied to separation synthesis 

(Floquet et al., 1994). Simulated annealing (SA) is based on an analogy with the cooling 

of a molten material. If the cooling is carried out quickly, there will be irregularities in 

the structure of the crystals that are formed. The slower the material is cooled the less 

irregularities there will be in the structure. The more orderly the structure, the lower 

the energy level of the crystal. A perfectly formed crystal represents the lowest possible 

energy. In process synthesis, the configuration of the crystal corresponds to a feasible 

solution structure and the energy to the cost. The general algorithm works by gradually 

reducing the start temperature with time. The structure of the initial feasible structure 

is encoded. The encoding is then altered randomly subject to certain rules that ensure a 

feasible solution. The cost of this structure is evaluated. If it is smaller than the original, 

the solution is accepted. If not, it is accepted with a probability of e . Thus, changes 

that result in cost increases are more likely to be accepted early on when the temperature 

is greater. These moves prevent the algorithm from becoming stuck in the area of a local 

optimum. A basic SA algorithm is shown in figure 2.1.
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input Tstop 
input TstaTt
input A, the number of moves per annealing 
input S, the starting structure 
Calc.E, the objective function value of structure S  
Temp. T  = Tstart
while T  < Tstop and success = true do 

success = false 
for i -  1 to A do

Select a new random structure, S*
Calc, objective function value of S*, E*
A E  = E* — E  
if A E  < 0 then 

S  = S * 
success = true 

else
ifrandom()< e~r~' then 

S = S* 
success =■• true 

end if 
end if 

end for 
T  = T f  

end while 
print results

The function random() yields a random number between 0 and 1 and /  is a factor between 
0 and 1.

Figure 2.1: A simulated annealing algorithm

The procedure for separations synthesis outlined by Floquet et al. (1994) is applied to sep­

arations using distillation. Both simple, two product, and more complex, side stream dis-
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dilation columns are allowed for in the encoding. However, only sharp splits are allowed. 

The algorithm is used to solve a large 16 component hydrocarbon separation problem, in 

which the feed is to be separated into pure components. There are 5.9 x 1011 possible 

structural combinations for this problem if two and three product distillation columns are 

allowed. A saving of around 50% over the inital flowsheet cost is reported.

A SA method that allows rigorous distillation models to be used is presented by Mar- 

coulaki et al. (2001). The separators used are simple one feed two product columns. In 

addition, non-sharp separations are allowed by discretizing the recovery fractions in steps 

of 1% between 70% and 90%. This leads to about 1.2 x 1014 possible flowsheet structures 

for the 15 component hydrocarbon separation synthesis problem attempted. This size of 

problem would be prohibitively expensive, in terms of computer time, if each possible 

flowsheet were to be evaluated.

Linke and Kokossis (2003b) compare the synthesis of reaction/separation processes us­

ing SA and a tabu search. The Tabu search is another stochastic technique where new 

structures are selected that are in the neighbourhood of the current structure. In simu­

lated annealing this is a random move and the search direction is guided by the success 

of the new structure and the stage of the search. The Tabu search determines the direction 

by remembering recently tried modifications and not allowing such changes for a certain 

number of iterations. It was found that Tabu searches tended to take significantly shorter 

paths than SA to arrive at solutions of similar quality.

Genetic algorithms

Another approach to the separation synthesis problem is the application of genetic al­

gorithms (GA) (Wang et al., 1998). Genetic algorithms are based on an analogy with
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Darwinian evolution in nature. A population is composed of a number of individuals. 

The most successful individuals are those lowest in cost. The more successful individuals 

are allowed to breed and transfer their characteristics to offspring. In addition random 

mutations of the population can occur which may or may not be beneficial. This has been 

applied to sharp distillation separation sequencing by encoding the possible structures. 

The flowsheets are optimised for annual operating cost with heat integration included.

Neither genetic algorithms nor simulated annealing can guarantee the globally optimal 

solution in a finite time. This is because the solution space is not systematically explored. 

Even though a superstructure is not required explicitly, certain assumptions must be made 

about the solution structures when the encoding procedure is devised. However, these 

techniques can be applied to large combinatorial problems and reduce the possibility of 

becoming stuck in local optima.

2.4.6 Implicit enumeration

The implicit enumeration approach to process synthesis dispenses with the need for the 

prior development of a superstructure. Consequently the user does not need to impart 

as many preconceived ideas on the development of the process as may happen when 

developing a superstructure or the encoding system for a stochastic algorithm. Implicit 

enumeration may be more likely to yield a radically different, and therefore patentable, 

structure (Johns, 2001). However, in terms of separation synthesis, the approach is mainly 

applicable to single feed problems where the desired products are pure components. This 

is due to the difficulty of introducing recycles and handling multiple feed streams. The 

automated generation of recycle streams has been demonstrated by Fraga (1998). The 

technique is based on identifying structures that partially meet the product requirements.
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These structures have a recycle stream incorporated if any units are involved in conversion 

rather than just separation.

Potential for novel solutions

The following describes the potential of implicit enumeration to the separation synthe­

sis problem. Methods that require the definition of a superstructure usually only allow 

one distillation column per possible split point between light and heavy keys. For a five 

component mixture to be separated into pure components, a minimum of four distillation 

columns are required. The rigorous superstructure generation approach (Kovacs et al., 

2000) allows more columns than this but these are present in order to solve the multi- 

component product problem that involves dividers and blenders.

It may be the case that the optimal solution to a problem requiring pure component prod­

ucts involves two different columns that carry out the same light/heavy key separation 

task. The two columns would share the burden of the separation task but each would 

require a less fine separation. This division of separation duty could prove to be a more 

cost effective solution. This could not be incorporated into the P-graph maximal structure 

generation methodology (Friedler et al., 1993) as only sharp separations are allowed.

The Jacaranda process synthesis system uses implicit enumeration to solve the synthe­

sis problem. Previous approaches to implicit enumeration are described by Johns and 

Romero (1979) and Fraga and McKinnon (1994). Using this approach, solutions are cre­

ated and evaluated simultaneously. It does not have the problem of settling in local optima 

due to non-convexities as the discretised space is searched systematically. This allows the 

whole search space to be traversed. The following section describes the Jacaranda imple­

mentation of implicit enumeration in more detail.
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2.5 The automated synthesis package Jacaranda

Jacaranda (Fraga et al., 2000) is implemented in the object oriented programming lan­

guage, Java. Objects are used to represent streams and unit models. Both stream variables 

and unit model operating variables are mapped to discrete space. This is carried out in or­

der to make the search space, that is to be enumerated, finite. A technique called dynamic 

programming is used to reuse solutions to problems that have already been encountered. 

This can dramatically increase the efficiency of the procedure.

2.5.1 The search algorithm

The algorithm is based on a depth first traversal of the superstructure graph. This graph 

is itself generated as it is searched. The problem can be described by equation 2.1 (Fraga 

and McKinnon, 1994).

u is the possible range of units that may be used to process a stream, s and c(u, s) is 

the cost of processing s to yield np product streams. The function, /( )  is the cost of 

the solution to a subproblem. Equation 2.1 is evaluated recursively until a stream meets 

a product specification. At this point the problem associated with the stream has been 

solved. The user may specify if it may be desirable to process the stream further or to 

stop if a stream meets any one of the product specifications. The costs of the alternatives 

for a particular stream are compared and a list of the best solutions is created.

mm cl (2 . 1)
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The feed stream

In practice, in order to optimise the synthesis of a particular process, Jacaranda requires 

a feed stream, a list of unit operations available and a list of product specifications. The 

component flows of the feed are discretised to be a number of basic units of flow. The 

value of the base level for each component is user specified. The user also specifies a 

stream pressure range and a number of discrete levels available. The feed stream pressure 

is mapped to the nearest discrete value. The program then attempts to process the feed 

stream with one of the available unit operations. This list includes product tanks that each 

represent a product specification.

Unit designs

The particular unit model may define one or more discrete design alternatives. The range 

and number of possible values of unit variables are also user specified. For example, the 

operating pressure of a distillation column may be allowed within a certain range. The 

user specifies a number of discrete values that the operating pressure may take. Each of 

these pressure levels represents an alternative design for the unit. Each of these designs 

are carried out for the feed stream yielding values for operating cost, capital cost and 

any other value that is incorporated into the unit model. Each design produces output 

streams which are recursively treated in the same way as the feed. Thus the search graph 

is simultaneously created and searched. When a stream meets a product specification the 

solution is passed up a level of recursion where a list of the best solutions is compiled. The 

user may specify n the number of ranked solutions to be stored (the nbest list solutions. 

The solutions may be ranked on the basis of one or more criteria. In this way solutions are 

passed back to the base of the tree until all the alternatives for the processing of the feed
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stream have been attempted and a list of the best flowsheet structures can be identified. 

The algorithm is shown in figure 2.2.

function solve(problem p) 
boolean solved = false 
initialise nbest, an empty solutions list 
stream F = p.feed 
if F processed already then 

solved = true 
retrieve nbest solutions 

end if
if solved = false then 

for each unit type do
for each design alternative d do 

create node N(F,u,d) 
for Each d.product o do 

create problem p(o) 
solve(p) 

end for
attempt to insert N.solution into nbest 

end for 
end for 

end if 
end function solve

Figure 2.2: The Jacaranda search algorithm
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Solution processing

The solution to a node is inserted into the nbest list if the value of the objective function 

for this node is lower than for one or more current members of the list. It can be specified 

that only one similar solution may be present in the list. The level of detail at which 

the solutions are compared can also be specified (Fraga, 1996). This choice changes the 

level of detail of the solution encoding. Unit type and alternative can be included in this 

encoding or the comparison may be solely based on solution structure.

2.5.2 Re-use of solutions

Jacaranda allows solutions to streams to be re-used using dynamic programming. For 

a detailed explanation of this procedure see Fraga (1996). When a particular stream is 

solved at any point in the search graph, the solution is stored. This storage method relies 

on a string encoding that is unique to that stream. The string is made up of the number 

of basic flow units of each component and the discrete pressure level. If this stream is 

encountered at another point in the search, the solution is then recalled saving computer 

time. Thus, the stream discretisation aids in the re-use of solutions. Generally the more 

coarse the level of stream discretisation, the more likely a particular encoding will appear 

elsewhere in the search.

2.5.3 The consequences of discretisation

The discretisations used in the procedure described above have several implications. The 

level of these discretisations is set by the user. In some cases, user intervention may 

be appropriate. For example, some components may be more important than others for
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environmental or economic reasons. The base flow rate of these components would be 

set to lower values than the others. In addition, the engineer may know the pressure range 

of operation for distillation columns and base the range and level of discretisation on 

this knowledge. See Laing and Fraga (1997) for a discussion on the iterative use of an 

automated procedure with particular emphasis on user interaction. Typically, however, the 

engineer may have no insight on the level of discretisation required for a given synthesis 

problem. Furthermore, the solutions generated give no indication of the effect of the 

discretisation on the effectiveness of the search procedure.

The solutions produced will consist of units and stream products. Each unit variable value 

will be at one of the discrete levels set when the synthesis problem was formulated. The 

best solution for a given level of discretisation may not represent the optimal flowsheet 

structure in continuous space as potentially good values for the discretised variables may 

be missed between the discrete levels chosen.

2.6 Summary

This chapter has described various methods that may be applied to the separation synthesis 

problem. Heuristic methods such as hierarchical decomposition are still the most widely 

applied, but are likely to yield sub-optimal flowsheets. This has led to the development of 

various algorithmic techniques.

Mathematical programming strategies are able to tackle a wide range of types of synthesis 

problems but generally do not ensure global optimality. In addition, such approaches 

require a superstructure to be constructed beforehand. This process in itself could result 

in novel solutions being missed. The P-graph approach can be used to rigorously generate
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a superstructure but the designer still has to define all possible outputs from operating 

units, again leading to the possibility of missing optimal structures.

Another major strategy is the use of stochastic optimisation methods such as simulated 

annealing and genetic algorithms. An advantage of these approaches is their ability to 

tackle combinatorially large synthesis problems and their ability to escape from local 

optima. These methods do not require the prior generation of a superstructure but it is 

necessary to make assumptions about the nature of the solution when devising an encod­

ing method. Another drawback is that the globally optimal solution cannot be guaranteed 

in finite time.

Implicit enumeration has the advantage that no prior assumptions about the structure are 

necessary. All that is required by the Jacaranda package is a feed stream, a list of units 

and set of product specifications. This increases the likelihood of the generation of novel 

solutions. A disadvantage of using implicit enumeration is the need to discretise contin­

uous unit variables to yield a finite search space. Jacaranda also discretises stream flows 

and pressures which increases the efficiency of the dynamic programming. The user does 

not gain any information on the effect of chosen level of discretisation. It also means that 

the top-ranked solution is not necessarily optimal. This project is motivated by the goal 

of developing a procedure that has the benefits of implicit enumeration described above 

along with the assurance of the optimality of the solution. This leads to the idea that in­

terval analysis can be applied in order to realise this goal. The costs of solutions yielded 

by the search procedure can be bounded by the application of interval analysis to unit and 

stream calculations. This information can then be used to discriminate between solutions 

based on their objective function bounds. The use of the properties of interval arithmetic 

can ultimately be used to isolate the globally optimal solution. The concept of intervals, 

interval arithmetic, and how it can be applied to the pure component separation synthesis 

problem, are discussed in the next chapter.
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Interval analysis

3.1 Introduction

This chapter explains the concepts of interval analysis in the context of the separation syn­

thesis problem. Interval methods have been used previously within process engineering. 

For example, they have been applied to find all roots to an equation with mathematical 

certainty (Schnepper and Stadtherr, 1996). This interval approach was tested on several 

chemical engineering simulation problems. Interval analysis has also been applied to the 

global optimisation of selected flowsheets (Byrne and Bogle, 2000).

Interval mathematics was first introduced by Moore (1966). An interval is a closed 

bounded set of real numbers, X  =  [a, b], where a < x < b. An interval of zero width (i.e. 

with the same values for both lower and upper bounds) is called a degenerate interval. In 

the discussion that follows, interval variables will be denoted by uppercase letters and real 

variables by lower case letters. The bounds of the interval are shown by square brackets 

enclosing the real lower bound followed by a comma and then the real upper bound e.g 

[a, b\.

40
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When using the implicit enumeration search embodied by Jacaranda, unit and stream 

variables are discretised primarily to give a finite search space. As discussed previously, 

it would be useful to bound the effects of these discretisations using interval arithmetic. 

For example, the problem may involve separation by distillation. A solution describes a 

flowsheet structure containing a series of distillation columns each at a discrete operating 

pressure. The columns operate over a range of pressures between 1 and 10 bar. It is 

decided that 10 discrete pressure alternatives are to be used over this range. The discrete 

values are uniformly spaced. Hence, the discrete values would be accurate to the nearest 

bar. An alternative at 2 bar would actually represent a range of values with a lower bound 

of 1.5 bar and an upper bound of 2.5 bar. This range of values can be represented by the 

interval [1.5,2.5]. The same applies to all discretised variables, both in streams and units. 

If all these discretised variables are bounded in the same manner then interval arithmetic 

can be used to bound the effects on the objective function.

3.2 Interval arithmetic

A set of arithmetic operations can be defined for intervals that correspond to the operations 

on real numbers. If X  and Y  are both intervals, X opY  will yield an interval containing 

every possible number that can be calculated resulting from the operation of each x  E X  

on each y e Y .  The following rules (Hansen, 1992) can be produced from this definition, 

given X  = [a, b] and Y  = [c, d]:
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*  + y  =  [a + c,b + d\

X - Y  = [a — d,b — c]

X  x Y  = [min (ac, be, ad, bd), max (ac, be, ad, bd)]

(3.1)

(3.2)

(3.3)

In order to divide the inverse of the denominator is calculated:

1
Y  
X
Y

1 1
cf c

* x (  -

(3.4)

(3.5)

so long as 0 ^ Y . If 0 G Y  then extended interval arithmetic can be used (Hansen, 1992). 

Rules for this situation are as follows.

y  =  <

[b/c, (X)]

[—oo, b/d] U [b/c, oo] 

[—00, b/d]

[—oo, oo]

[—oo, a/c]

[—oo, a/c] U [a/d, oo] 

[a/d, oo]

if b < 0 and d = 0 

if b < 0 and c < 0 < d 

if b < 0 and c = 0 

if a < 0 < b 

if a > 0 and d =  0 

if a > 0 and c < 0 < d 

if a > 0 and c =  0

(3.6)
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Exponents can also be defined:

[i.i] if n = 0

if a > 0 or if a < 0 and n is odd
(3.7)

[6n, an]

[0, max(an, bn)]

if b < 0 and n is even

if a < 0 < b and n is even for n =  0,1,2,...\

3.3 Interval functions

An interval function will yield an interval when applied to one or more interval arguments. 

An interval function, F, is said to be an interval extension of a real function, / ,  if

F  is defined as an interval extension of / ,  if the results of evaluating them both over the 

same vector of degenerate intervals are equal.

The natural interval extension of a function /  is to replace the variables of the real func­

tion with interval variables. There are, in fact, an infinite number of interval extensions of 

a function. An interval function is said to be inclusion monotonic if C Yi, i — 1,..., n 

implies that

F(x) = f i x ) \fx € R (3.8)

F ( x 1 , . . . , x n ) c F ( y 1J . . . , y n ) (3.9)

Interval functions, containing a sequence of interval addition, subtraction, multiplication 

and division operators, are inclusion monotonic (Hansen, 1992) if the interval extension 

retains the same form when evaluating X  and Y.  The following example illustrates this
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point (Caprani and Madsen, 1980). The function

f (x)  -  x(l -  x ) (3-10)

could be rewritten as

f (x)  = c(l — c) +  (1 — 2 c)(x — c) — (x — c)2 (3.11)

where c is a constant real number. If the real x is replaced by the interval X  then equation 

3.11 represents a set of interval extensions that differ by the value chosen for c. The 

natural interval extension of equation 3.10 can also be written. Evaluating the two forms 

for real values of x  and any value of c always yields the same result. This does not hold 

for interval extensions of these functions. Let X  = [0,1] and c is the midpoint of X , 

c = m( X)  = 0.5. Evaluating f ( X ) in the revised form represented by equation (3.11) 

yields [0,0.25]. If X  is replaced with X '  = [0,0.9] and c with c' =  m(X' )  = 0.45, 

f (X' )  =  [0,0.2925]. Inclusion monotonicity has not held: X '  C X  but f (X' )  (£_ f ( X) .  

The reason that inclusion monotonicity fails is that the form of the function was different 

for each evaluation. Both the functions that were evaluated are interval extensions of 

equation (3.10) but they differ in form due to the different values of c.

If an interval function, F ( X i , ..., X n), is an inclusion monotonic interval extension of a 

real function/(^i, ...,xn),thenF(X i, ...Xn) contains all the possible values of f ( x i ,  ...,xn) 

for all Xi e  Xi(i = 1,..., n) (Hansen, 1992). This result will prove useful in bounding the 

value of the global optimum in an optimisation procedure.
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3.4 Dependency

The interval returned by an interval function depends on the form that the function takes. 

For example,

Fi(X) = X 2 - X - 3  

F2(X ) =

are both interval extensions of 

f i x)  =  x 2 — x — 3 

yet they do not yield the same result when evaluated:

^([1 ,2]) =  [-4,0]

F2([l,2]) =  [-3 ,-1 ]

F2 produces sharper bounds for the range of /  over the interval [1,2] than F\. This is due 

to the dependency phenomenon associated with interval arithmetic. Generally, the more 

often a given variable occurs within a function, the wider the bounds become. In fact, F2 

yields the exact range of /  for X  = [1,2] as X  only occurs once in the function. When 

evaluating interval functions, dependency should be kept to a minimum so as to keep the 

bounds as sharp as possible.
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3.5 Thick and thin functions

The term, parameter, will be used to refer to the constant values, either real or interval, 

within a function. The argument is the value of the function variable at which the function 

is evaluated. A thick function has interval valued parameters whereas a thin function 

has only real valued (or degenerate interval valued) parameters. A thin interval function 

evaluated on a degenerate interval argument will return a degenerate interval; a thick 

function would return an interval value.

The interval methods implemented will all involve thick functions. This is because a 

discretised variable can be represented as an interval spanning the possible range of real 

values that could have been mapped to that discrete value. Thick functions result when 

these intervals are used in design equations.

For example, the stream pressure discretisation regime may be the same as that described 

at the start of this chapter. 10 pressure levels, distributed uniformly between 1 and 10, are 

allowed. During discretisation a stream at 5.3 bar would be mapped to a discrete value 

of 5 bar. The set of real values that would be mapped to this discrete value is represented 

by the interval [4.5,5.5]. In order to calculate the bubble point of the stream over this 

possible range of pressure, equation 3.12 must be solved for temperature:

where k is the equilibrium constant and Xi is the liquid fraction of component z.

Pressure is an interval value due to discretisation. Since the function is to be solved for 

temperature over this range of pressure, the value of pressure in the function is a constant

(3.12)
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interval. Even if the function is evaluated for a real value of temperature, the result would 

be an interval. Hence, the function is thick.

3.6 The nominal value

Earlier sections in this chapter have explained that intervals are usually defined by a lower 

and upper bound. In this work intervals are also defined in this way but with an additional 

real value which will be termed the nominal value. For an interval X ,  its associated 

nominal value, xn must be between the lower and upper bounds of X .

Xn e x  (3.13)

If the nominal value is included an interval may be written as [a, n, b] where a < n < b. 

A nominal value is associated with each interval because intervals are to be used to cover 

the continuous space around discretised real values. The nominal value represents the 

discretised point around which its associated interval is constructed. In an arithmetic op­

eration between two intervals the corresponding real operator is applied to their nominal 

values. A numerical example of division would be:

[2,3,41 1 3
[4,5,6] l3 ’ 5 ’ 1

The nominal values of the intervals are 3 and 5 and the nominal value of the resulting

interval is | ,  the result of applying real division. The bounds are calculated using the

interval arithmetic rules described by equations 3.3 to 3.5.
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The nominal value allows real calculations to take place along with the interval calcu­

lations. This facility proves useful when analysing results and ultimately, is used in the 

development of the adaptive algorithm.

3.7 The root of a thick function

The root of thick functions must be located in order to implement Interval analysis within 

Jacaranda. If a thick function /  is evaluated on a degenerate interval or real number x*, 

the result will be an interval f 1 (x*). Below are three ways to define whether or not x* is 

a root of the function. Each has a different meaning as a root of a thick function.

1. f ( x *) fl [—e, e] ^  0

2. f(x*)  C [—e,e]

3 . 0 6  /(**)

where e is a tolerance used to define an interval, [—e, ej. A  function evaluation within the 

bounds of [—e, e] is approximated to be zero.

The first of these definitions is shown graphically in figure 3.1. This figure shows the 

upper and lower bounds for a hypothetical thick function with one variable plotted against 

x, along with a nominal value of the function. The function illustrates the case when 

there is only one root. An interval evaluation for a point x*, that is within the solution 

interval, is indicated by f(x*).  The interval root X  is shown. All values of x  within this 

interval, when evaluated by / ,  will yield an interval that has a non-zero intersection with 

the interval [—e, e].
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f(x) f(x*)
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Figure 3.1: Illustration of the solution, X  for the criterion that f{x*)  Pi [—e, e] ^  (f>
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The worth of any of these definitions of a solution depends on what is required of the 

solution. For example, it may be required to solve a design equation where one or more 

physical properties are known to lie within one or more intervals. This causes some of 

the parameters of the design equation to be intervals and hence the equation is a thick 

function. If the root is found for a variable x, the solution will be an interval, X.

If the root is defined by the first criterion then every value of x within the solution interval 

will certainly lead to a design that satisfies the real design equation. However this will not 

be the case for all values of the interval parameters in the equation. Some combinations 

of parameter values will lead to designs and some will not. A given value of x may not 

yield a design as the whole of the interval f J(x) is not necessarily within the interval 

[—e, e] under this criterion. Since one or more design parameters are intervals, there will 

be a viable design for one or more real values within the interval parameters, but not 

necessarily for all values. This definition of a root will be useful when investigating the 

range of possible designs, but one cannot be sure that the designs will be viable for all 

values of the interval parameters. However, costs resulting from unit designs are strictly 

bounded. This property is useful if certain designs and structures are to be discounted, on 

the basis of cost intervals, in an optimisation algorithm. In such a case it does not matter 

that some of the cost intervals may not lead to a design, as it is more important that no 

valid designs are missed. The contribution of such designs to the cost interval leads to a 

widening of the cost bounds and a potentially less efficient search but the bounds are still 

valid.

A graphical representation of the second definition is shown by figure 3.2. This is shown 

for the same hypothetical function as figure 3.1.This definition is much more restrictive 

than the previous and will lead to sharper bounds on X.  It specifies that every x € X,  

should yield an interval within the interval, [—e, e], when the function /  is evaluated on 

x. This means f ( X ) has bounds with absolute values that are smaller than e. From
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the perspective of solving a design equation, this criterion gives more certainty in the 

solution. It yields the values of x  within X  for which a design will be viable for all real 

values within the interval design parameters.

This second definition may be useful in assessing the effect of the coarseness of discreti­

sations. The width of interval parameters in a design equation result from the level of 

discretisation used. If a given discretisation does not yield a solution under this criterion 

then the discretisation could be made progressively finer until a solution is found. The 

confidence in the viability of the unit design would then only be dependent on the accu­

racy of the equations used. One drawback of this definition is the fact that the width of 

the interval parameters in the function may need to be narrow before there are any values 

of x for which f \ x )  is within [—e, e]. In fact, there may not be any solutions using this 

criteria as the upper and lower bounds of the function may be too wide near the root. This 

definition could not be used when the costs of all possible structures are to be bounded, 

as feasible designs could be missed.

The third definition dispenses with the need for the concept of tolerance, e. It is repre­

sented graphically for the same hypothetical function in figure 3.3. This criterion stipu­

lates that for x  to be within the solution interval, X , the evaluation of the function on x 

must yield an interval that contains zero within its bounds. An example of a value that 

meets this criteria is indicated in figure 3.3 by f (x) .  This shows that the bounds do not 

need to be within [—e, e]. The width of a solution determined by this definition depends 

upon the gradient of the upper and lower bounds of the function as it crosses the x axis. 

This definition may yield wider or narrower solutions than the second. This depends 

upon the value of e used in the second definition and the gradient of the function around 

f (x)  = 0. Under definition 2, values of f (x)  for x  within the solution interval, X,  do not 

necessarily have to contain zero. Under those circumstances, the width of solutions may 

be wider than for definition 3. There will always be values of x that satisfy definitions
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Figure 3.2: Illustration of the solution, X  for the criterion that f{x*)  C [—e, e]
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Figure 3.3: Illustration of the solution, X  for the criterion that 0 G f{x*)
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1 and 3 as long a root of the function exists. A problem may occur using definition 3 

if there are two roots close together and the lower bound of the function becomes only 

slightly negative. In this case, computer rounding error could cause the solution to be 

missed. As mentioned earlier, this discussion is concerned with equations that have sin­

gle roots within the range of x  being investigated. If this is the case then this problem will 

not arise. Nevertheless, this definition may cause some of the possible values of x to be 

missed. Machine rounding error may cause some solutions at the edge of X  to be omitted 

as the interval value of the function at these points may have been rounded up or down so 

that it no longer contains a zero. In order to obtain the entire possible range of solutions 

it is necessary to introduce some value of tolerance to account for rounding error. This 

leads to definition 1.

Definition 1 will always give the widest solutions as the conditions for a value of x being 

accepted as a root are the most relaxed. For very small values of e that would be used as 

an approximation to zero, definition 2 will give the narrowest solutions.

The first definition should be used to locate the root of a thick function in the optimisation 

algorithm being developed. This ensures that no design possibilities are dismissed. For 

the functions that are to be considered, it is reasonable to assume that there is only one root 

in the range that is being considered. Therefore, a bisection method is used to calculate 

the lower and upper bounds separately. If it is necessary to find multiple roots then the 

Interval Newton method (Moore, 1966) could be used.

3.8 Summary

This chapter has introduced how interval analysis can be applied to an implicit enumer­

ation search for the optimal process structure. The basic concepts of interval arithmetic
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and interval functions have been outlined. Using an interval extension of a real function 

gives bounds on the function value when interval variable values are applied. The func­

tions that appear in the design of units during the search procedure may be thick functions, 

that is that they contain interval parameters. A method has been developed that will al­

low the root of such functions to be found. The selected solution criterion ensures that 

all possible solutions are bounded. The following chapter describes the application of 

these techniques to unit designs. This leads to the bounding of the effects of pressure 

discretisation in distillation designs.



Chapter 4

Application of interval analysis

4.1 Introduction

This chapter introduces how interval arithmetic can be applied to an implicit enumeration 

search for optimal process structures. The use of intervals allows the effects of discretisa­

tion on the objective function to be bounded. The first attempt at attaining this information 

is bounding the effects of pressure discretisation when designing a distillation separation 

sequence using distillation columns.

The process synthesis package Jacaranda, described in section 2.5, has been adapted in or­

der to work with streams and units that use intervals to represent pressure rather than real 

numbers. The following sections describe the initial application of interval analysis to the 

separation synthesis problem. The core implicit enumeration procedure within Jacaranda 

can then be used to create and search the possible flowsheet structures. This technique is 

applied to a case study involving the separation of a five component hydrocarbon mixture 

and the results are presented.

56
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4.2 Implementation

Within the Jacaranda framework, the discretisation of pressure, and indeed any other con­

tinuous variable, takes place in two distinct areas:

1. The distillation unit model.

2. The process streams.

The way that intervals method are applied to these two areas is described below.

4.2.1 Intervals, units and streams

Java is an object oriented programming language. This has allowed an Interval class to 

be constructed. The class has methods that correspond to each of the real arithmetic op­

erations that might be used when designing a unit or during stream property calculations. 

This approach dispenses with the need to hard-code the rules of interval arithmetic into 

each of the calculations performed in units and streams.

Inclusion functions can be constructed from the natural extension of the corresponding 

real functions. The equations and variables that occurs in a unit model or stream based 

on real arithmetic are examined. If a real variable is to be represented by an interval, each 

time it occurs it is substituted by an instance of the Interval class. For example, in this 

chapter intervals are used to represent pressure ranges of distillation column operation. 

This means that the pressure of the column is represented by an instance of the Interval 

class. Calculations involving pressure now use the rules of interval arithmetic and result
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in intervals. Ultimately an instance of Interval is produced that represents the range of 

possible costs of the column.

In practice, the direct substitution described above does not always occur. This is due to 

the dependency phenomenon where the same interval variable occurs more than once in 

an expression. In some cases it is possible to deal with this situation by rearranging the 

equation in order to reduce the occurrences to one. However, this is not always possible 

and some dependency may be unavoidable. This effect may be compounded when the 

results of two or more function evaluations are used in a third function. This situation is 

described by the expression:

Y  = F( G( X) , H( X) )

If the functions G and H  contain the interval, X  then this leads to dependency when 

evaluating the value of Y . Where possible, G and H  should be substituted into F  and 

rearranged in order to minimise the occurrences of X.

4.2.2 The distillation unit model

The distillation model is based upon the Fenske (1932),

loqVl*xM
m . = xikVik (4 n

logSUL ^ A)3 &hk
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Underwood (1948) equations

(4.2)
i = l

/Ci„ + 1 = V  —^2 (4.3)
U a i ~ 9

and the Gilliland (1940) correlation.

N  =  N™n + S  (4.4)
1 o

where

S = 0.5309 -  0.5968 I R n ^ in>) -  0.908 log10
R + 1 J olu V R  +  1

if

R — Rmin < 0.125
R  +  1 

and

S  = 0.6257-0.9868 I — +0.516 ( ^ 7  0.1738 ( R  ~  ^

otherwise. The values for this correlation are from Rathore et al. (1974).

The Fenske correlation is used to calculate the minimum number of stages, when the 

column is operating under total reflux. The Underwood correlation is used to calculate
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the minimum reflux ratio and from this the actual reflux ratio is determined using a reflux 

rate factor. The Gilliland correlation is used to calculate the actual number of stages based 

on the results of the first two equations. Capital and operating cost models are provided 

by Rathore et al. (1974)

The column model assumes semi-sharp separation. Non-key components pass completely 

into the top and bottom products. The key components are split according to the fractional 

recovery specified. This was set to be 98% in all cases. Heat exchangers are costed 

based upon the heat transfer area required. Continuous utilities are available (Rathore 

et al., 1974). A constant temperature difference of 8.5 K  between utilities and the process 

streams is assumed in order to calculate heat exchanger areas.

The unit model is presented with a feed at a pressure within a certain interval. The column 

is allowed to operate within a range of 1 to 32 atm. Depending upon the level of discreti­

sation selected this leads to a corresponding number of intervals spanning the pressure 

range. Coupled with a component selected as the light key, one of these pressure intervals 

defines a particular unit alternative. The design calculations are performed using interval 

analysis. The design generated yields interval values for the height, diameter and heat ex­

changer areas for all possible stream and distillation pressures. These values subsequently 

lead to capital and operating cost intervals for a particular column design. For each in­

terval value determined, a nominal value is calculated. This is a result of the calculation 

carried out at the midpoint around which the interval is constructed and corresponds to 

the value of the discretised real value of the variable. If a unit design is successful, the 

nominal values of the design parameters and costs are feasible.

It is necessary to solve equation 4.2 to determine 6, a value between the relative volatilities 

of the keys. If interval analysis is used, this value is itself an interval,©. This is not only 

because the relative volatility of each component, a , varies with pressure but also because
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the pressure of the feed to the column is an interval. The parameter, q, is a measure of 

the fraction of the feed that is vapour. This is calculated by comparing the enthalpy of the 

feed at its current pressure to its enthalpy at the column pressure. Since both the feed and 

the column are within certain pressure intervals, the enthalpy will also be an interval. Q 

will contain the range of possible real values of q.

Note, the range of a is not as sharp as theoretically possible because of dependency due 

to the interaction of pressure intervals. This will be discussed further in the next section.

The fact that vapour fraction and relative volatilities are intervals mean that equation 4.2 

is a thick function. The solution is obtained by a bisection method. This is the most 

convenient option as it is known that © must be between the relative volatilities of the 

keys and there is only one root between these bounds. Real values of 9 within the root 

interval, © must meet the criterion that f{9) fl [—e, e] ±  0. This means that for any value 

of 9, there is at least one possible design for some combination of real values within the 

Q and a  intervals. As explained in the previous chapter this definition ensures that no 

feasible designs are excluded by the root finding procedure. Hence, the resulting cost 

interval bounds all possible real values for the cost of the column. In order to yield a 

feasible nominal design, the nominal value of the root is calculated from nominal values 

of q and a. This value will always lie within the interval solution due to the inclusion 

properties of interval arithmetic.

4.2.3 Process streams

Process streams are discretised in terms of component flow rates and pressure. The base 

component flow rate is set to 10% of the component flowrates in the feed stream. As 

a result, the semi-sharp column acts as a sharp separator as the small amounts of key
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components disappear when stream discretisation is applied. Product tanks accept streams 

that are over 90% pure in any of the components.

The stream pressure is allowed to take one of the user specified number of discrete in­

tervals. In the case study, presented in the next section, the level of stream pressure 

discretisation was set to be the same as the distillation pressure discretisation. This means 

that the pressure level of streams leaving the column is not re-discretised before further 

processing. This is useful for two reasons:

1. Further discretisation would lead to a widening of bounds, hence a finer discretisa­

tion scheme would be needed for the same confidence in the solutions.

2. If the pressure interval of the stream is not altered upon exiting a unit before feeding 

to the next unit, that means the nominal value around which the pressure interval is 

constructed corresponds to an attainable value. This means that for a given process 

flowsheet structure the nominal cost can be used as upper bound on the minimum 

cost of that particular structure.

4.3 A hydrocarbon separation case study

4.3.1 Case study definition

The separation of a 5 component hydrocarbon mixture into pure components has been 

attempted. It is a synthesis problem posed by Rathore et al. (1974). Table 4.1 shows the 

composition of the feed stream. The aim is to find the optimal process structure for this 

task. This problem has previously been attempted using Jacaranda (Fraga, 1998). The
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Table 4.1: Feed stream composition

63

Component Flow rate 
(kmol/hr)

propane
l-butane
n-butane
i-pentane
n-pentane

45.36
136.08
226.8

181.44
317.52

results obtained gave no indication of the effect of the discretisation on answer quality. 

In addition there is no guarantee that a superior structure has not been missed. This is 

because the appropriate set of pressure conditions for the optimal structure in continuous 

space may not have been tested by the discrete search procedure. The smaller the number 

of discrete pressure levels used the more likely it is that the true optimal structure will be 

missed.

Runs were attempted varying the level of unit and stream pressure discretisation. Three 

optimisation criteria were specified, each based on the lower bound:

1. capital cost

2. operating cost

3. operating cost + (capital cost/2) (Capital cost amortised over two years)

4.3.2 Results and discussion

Figure 4.1 shows the capital cost of the three best solutions ranked according to the lower 

bound on the capital cost. The position of bars on each line correspond to lower, nominal 

and upper values of cost. The costs of the solutions are shown for various degrees of
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discretisation. As the number of discrete points increases the bounds on the solution 

become tighter.

1st

3rd -

£

16 64 25632 128
number of discrete pressure levels

Figure 4.1: Solutions ranked according to the lower bound for capital cost

These bounds are not as tight as possible due to dependency. Nevertheless, the bounds 

strictly contain all the possible values of the objective function for a particular solution.

A particular solution represents two separate concepts related to the flowsheet being de­

scribed.

• Structure A structure is defined by its constituent units and the way that the units 

are connected. Two structures can be said to be identical if they contain the same 

number of each type of unit and the units are linked to each other in the same 

configuration.

• Operating conditions In this case study the operating condition being considered 

is the pressure of the distillation columns. A particular solution not only describes a
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flowsheet structure but the pressure interval within which each column is operated. 

This means that the cost interval of the solution does not bound all possible costs for 

the structure, but bounds the cost of operating at a certain set of pressure intervals.

As explained in section 2.5, the search constructs a list of best solutions to each problem 

stream encountered. Two solutions with the same structure are not allowed in the list 

together. In this situation the solutions are compared based on the objective function 

value and the one with the lower value is retained and the other solution discarded. For 

this reason, the criterion used for comparison was the lower cost bound of each solution. 

This ensures that no other solution with the same structure could possibly cost less. The 

lower bound of the best structure ranked in this way bounds the optimal cost for the case 

study. Comparing bounds of different structures can allow this optimal structure to be 

isolated. Note, this is only true if we make the following assumptions:

1. Other discretisations performed by Jacaranda have a negligible effect on the objec­

tive function value. The other source of discretisation in this case study is compo­

nent flow rate. Interval analysis is applied to this aspect of the synthesis problem in 

chapter 5.

2. Potentially optimal solutions are not rejected due to part of an interval unit variable 

value being infeasible. For example, a certain distillation operating pressure range 

may yield a minimum reflux ratio interval that contains negative values. In this 

situation it is not clear whether or not this is caused by part of the pressure interval 

being infeasible or whether it is due to the bound widening of dependency. An 

appropriate discretisation profile can resolve this situation and the issue is addressed 

in chapter 6. In this case study, above 32 discrete pressure intervals, no designs were 

rejected for this reason. This suggests that many of the failures at coarser levels of 

discretisation were due to dependency.
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Figure 4.2: Solutions ranked according to the lower bound of the annual operating cost

Figure 4.2 shows the bounds on the annual operating cost for solutions ranked according 

to the lower bound on the operating cost. As with capital cost, increasing the level of 

discretisation sharpens the bounds. As a percentage of the nominal value, the bounds 

on operating cost are much wider than those of capital cost. In particular, the difference 

between the upper and nominal values is large compared to the difference between the 

lower and nominal values. This is due to the nature of equations used to determine heating 

and cooling requirements. Specifically, the large bounds are due to dependencies in the 

calculation of the heat balance around the column. The enthalpies of the streams are 

intervals as they are functions of the operating pressure. Furthermore, the feed enthalpy 

is a function of the stream pressure. The combination of these factors leads to bounds that 

are far from as tight as theoretically possible.

The original version of Jacaranda determines a solution in terms of discrete values. This 

gives no assurance that optimal solutions are not missed by overly coarse discretisation. 

Bounded results can provide this assurance: if the upper bound of the cost of the best
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solution value is smaller than the lower bound of the second ranked solution, then the op­

timal structure is represented by the best solution. This is a useful result as it allows us to 

identify the discretisation level to use to be sure that the optimal solution has been gener­

ated. However, even more information can be gleaned from the nominal value (calculated 

from the stream and unit pressure mapped to real values).

As previously mentioned in section 4.2.3, the discrete pressures allowed in streams and 

columns were kept consistent. The pressure of a stream leaving a column would not 

change due to the mapping to discrete space as it would already be at one of the stream 

pressure levels allowed. The nominal value of the unit’s operating pressure is never 

mapped to another value so the nominal value of an optimisation criterion is a feasible 

value. This is, of course, only true if there were no other discretisations, but as mentioned 

above, we have assumed that these other discretisations are negligible in comparison with 

the pressure discretisations.

2 1st I------1
2nd 1----- J
3rd —  ■:
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8
64 128 256
number of discrete pressure levels

Figure 4.3: Solutions ranked according to the lower bound of the capital cost, using the 
nominal value as an upper bound.
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Figure 4.4: Solutions ranked according to the lower bound of the operating cost using the 
nominal value as an upper bound.

The argument used above when comparing the upper bound of the best solution with the 

lower bound of the second best solution can also be applied using the nominal value of 

the best solution. As this nominal value corresponds to an attainable set of real values, 

it is an upper bound on the global optimum. Therefore, if the nominal value of the best 

solution is smaller than the lower bound of the second ranked solution, the optimal value 

must be between the lower and nominal values of the best solution. We can ignore the 

range of values above the nominal value for all solutions. Figures 4.3 and 4.4 present the 

results for the three finest levels of discretisation as a result of this analysis.

Figure 4.5 shows the structure of the top ranked solution for annual operating cost. It 

cannot be claimed that this structure is optimal as its bounds coincide with those of the 

second best structure but it is certainly cheaper than the third best structure.

Figure 4.3 shows that, using 64 discrete pressure levels, the global minimum can be iden­

tified. With 256 discrete pressure levels, we can also distinguish between the 2nd and 3rd



CHAPTER 4. APPLICATION OF INTERVAL ANALYSIS 69

ABC

BC
ABCDE

DE

Figure 4.5: The optimal structure when considering annual operating cost

best solutions. Figure 4.6 shows the optimal structure in terms of capital cost.

AB

ABCD

ABCDE CD

Figure 4.6: The optimal structure when considering capital cost

Figure 4.7 shows the results using an annualised cost criterion, the sum of the operating
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cost with the capital cost amortised over two years. With 128 discrete pressure levels, the 

upper bound for the top ranked structure is smaller than the lower bound on the minimum 

of the second ranked structure. The top ranked structure in the list is therefore optimal. 

This structure is the same as for when considering capital cost only, that is shown in figure 

4.6. Using 256 discrete levels, the second and third best solutions can be identified with 

certainty.
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Figure 4.7: Solutions ranked according to the lower bound of the annualised cost, using 
the nominal value as an upper bound.

Runs were carried out without using the interval bounding method for 4, 8, 16 and 32 

pressure levels. For capital cost the top three structures were the same for all these levels 

of discretisation. For operating cost, the top ranked structures for the runs with 4 and 8 

discrete pressure levels were different from those yielded by 16 pressure levels and above. 

The list of top ranked structures for operating cost based on 16 discrete values was the 

same as that from the interval bounding procedure. This shows that the runs at 4 and 8 

were missing better solutions between the discretised values. For example, the structure
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shown in figure 4.5 has been shown to be in the top two structures based on operating 

cost. From the results of the runs at 4 and 8 pressure levels based on discrete values, this 

structure does not appear in the top three.

4.4 Summary

Interval arithmetic has been applied to the calculations, involving pressure for the design 

of a distillation unit. When combined with an implicit enumeration search for optimal 

separation sequences, the cost of each structure is bounded.

If a clear gap exists between the nominal value of one solution and the lower bound of a 

subsequent solution, then the former is sure to be a superior solution to the latter. This is, 

of course, only true with respect to the discretised variable that has been represented by 

intervals.

The bounds generated for the optimisation criteria are not tight in some cases. Neverthe­

less, they are valid bounds: the criteria values cannot be outside this range for a given 

structure and discretisation parameter values within the interval chosen. Furthermore, as 

the number of discrete levels increases, the bounds on the criteria values become sharper.

If the assumptions that the component discretisation has negligible effect on the solution 

and that no solutions are missed due to design failure are valid, then the results of the 

case study identify the optimal structure. This is the case when the objective function is 

minimised for the lower bound. In the case study, stream and unit discretisation were kept 

consistent. This means that the optimal structure can be isolated if the lower bound of 

the second best solution is greater than the nominal value calculated for the best solution. 

In effect, the nominal value is an upper bound on the minimum for that solution. Any
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uncertainty, that discretisation of the variable analysed may have caused another optimal 

solution structure to be missed, is removed. If minimisation is carried out on the nominal 

value, the presence of a solution for this value of the objective function is assured. A lower 

bound, however, is not necessarily attainable due to dependency in the interval analysis. 

When developing unit models it is important to keep dependency to a minimum.

Examination of the runs using coarser pressure discretisation shows that the top ranked 

structures are not optimal. Only from successive runs using finer levels of discretisation 

can this be demonstrated. Without bounding information from the procedure described in 

this chapter, a user would have no idea of the quality of the solutions returned. An overly 

coarse level of discretisation may be used that yields poor sub-optimal solutions.

These results show that the use of Interval analysis has potential in the identification of 

optimal structures. There are fourteen possible structures that solve this synthesis problem 

and this method has identified the best structure with respect to capital cost and annualised 

capital cost. However, the approach described has some areas that can be significantly 

improved.

Using the current method it is necessary to carry out successive runs, each with a different 

level of discretisation before the optimal solution can be isolated. A superior approach 

would be able to change the level of discretisation during the search. The search could be 

made more efficient if variables were no longer discretised uniformly. The search could 

adapt to discretise more finely in certain areas when necessary. This issue is examined 

in chapter 6. However, before an adaptive approach is examined, the method must be 

enhanced to allow ail variables to be used in interval arithmetic.

In this case study, only one variable, pressure, was included in the interval analysis pro­

cedures. The other discretised variables in this example were the component flow rates. 

All the other distillation model variables, such as reflux rate factor, were set as exact real
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values. It was assumed that the effect of component discretisation would be negligible 

compared to that of pressure. This will certainly not always be the case. In order to pro­

ceed, it is necessary to address the effect of component flow rates on the solution. This 

effect is taken into account in the following chapter.



Chapter 5

Bounding the effects of flow 

discretisation

5.1 Introduction

This chapter describes the application of interval analysis in order to bound the effects 

of discretisation of component flow. Discretisation of the stream variables, pressure and 

component flow rate, allows efficient re-use of solutions. As discussed previously, good 

solutions may be missed between these discrete values. In terms of component discreti­

sation, the basic Jacaranda system maps the continuous variables of component flow to 

the nearest multiple of the user defined base flow rate. If the flow rate of a component, on 

exit from a unit, is nearer to zero than one multiple of this base value then the component 

is removed.

The effect of component discretisation is different from that of pressure. The specifica­

tion for product streams is often based on the mole or (mass) fraction of one or more
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components. Thus, the discretisation that takes place can affect whether or not a stream 

is accepted as a product, and hence has an influence on the overall process structure. In 

addition, if a component flow is mapped to zero due to discretisation, it will no longer 

be considered in the alternatives for unit operations. For example, in distillation design it 

would not be considered as a key for separation. In order to bound the possible values, the 

components that disappear due to discretisation must be taken into account. A method of 

accounting for this and the results of a case study are presented in this chapter.

5.2 Discretisation and the re-use of solutions

5.2.1 Re-use

As explained in section 2.5, Jacaranda increases the efficiency of the search by allowing 

the re-use of solutions. The flowrate of each component in the stream is mapped to multi­

ples of that component’s base flowrate. The stream is then encoded based on the multiples 

of each component present. This yields a string that describes the flows of the discretised 

stream. When a stream is solved, the solution and stream information is stored in a hash 

table and referenced by this string encoding. Every new stream that is encountered is 

discretised and encoded. The hash table is then checked to see if this stream has been 

encountered previously. If so, the solution is retrieved and no further work is required for 

this stream. The coarser the discretisation of component flows, the greater the re-use of 

solutions. Without it, tiny differences in component flows would mean that a two streams 

were considered different. However, the primary aim of this work is to isolate the optimal 

structure and re-use is not as important an issue. In implementing the interval bounding 

method, discretisation of streams could be dispensed with entirely. It is not necessary to
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Feed
10A 10B IOC 10D 10E

10A 10B 
[9.6,9.7]C [0.288,0.388]D

A/B

10A 10B IOC 
[9.6,9.7]D [0.3,0 4] E Stream X 

-mainly B and CC/D

[0.3,0.4]A [9.6,9.7]B 
[9.6,9.7]C [0.288,0.388]D

D/E

Figure 5.1: Part of a solution structure that requires passage through three columns to 
produce a stream containing mainly B and C
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the feed flowrate of E is 10 kmol/h. Therefore, the flowrate of E in the top stream is 

(1 — [0.96,0.97]) x 10 =  [0.3,0.4] kmol/h. Components A, B and C pass into the top 

stream in their feed amounts as the column is performing semi-sharp splits. The next 

column is performing a split with the light/heavy key split between components C and D, 

and the next column a split between A and B. In both cases a key recovery of between 

96 and 97% is used. This results in a bottom stream, A from the final column containing 

mainly B and C in the amounts shown in the figure. A very similar stream, /i containing 

mainly B and C can be generated from the two column structure shown in figure 5.2. It 

can be seen that the two streams only differ very slightly by the range of D present.

Stream |i -mainly B and CFeed
A/B

[0.3,0.4]A [9.6,9.7]B 
[9.6,9.7]C [0.3,0.4]E

10A 10B 10C 10D 10E

C/D
[0.3,0.4]A [9.6,9.7]B 

10C 10D 10E

Figure 5.2: Part of a solution structure that requires passage through two columns in order 
to produce a stream containing mainly B and C

If these streams were to be discretised then a scheme similar to that used for pressure 

discretisation in chapter 4 could be applied. If the base flowrate for each component was 

1 kmol/h, then interval ranges could be constructed around the discrete values of 1,2,3
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etc. The resulting intervals would be [0,0.5], [0.5,1.5], [1.5,2.5] etc. The flows of each 

component would be mapped to the interval within which they fell. The result of this 

mapping on streams A and /i is shown in table 5.1. The mapped versions of the streams 

would be seen by the search procedure as identical. If stream A had occurred first in the 

search then when stream /i arose the solution to A could be retrieved and no further work 

on stream [i would be required.

Table 5.1: The discretisation of two similar streams using standard practice

Component A
(kmol/h) (kmol/h)

A mapped 
(kmol/h)

li mapped 
(kmol/h)

A [0.3,0.4] [0.3,0.4] [0,0.5] [0,0.5]
B [9.6,9.7] [9.6,9.7] [9.5,10.5] [9.5,10.5]
C [9.6,9.7] [9.6,9.7] [9.5,10.5] [9.5,10.5]
D [0.288,0.388] [0.3,0.4] [0,0.5] [0,0.5]

However, as mentioned earlier this discretisation has caused widening of the bounds on 

component flowrates. This ultimately leads to wider bounds on the cost of solutions and 

makes the isolation of the optimal structure less likely for a given level of discretisation. 

Another issue is what should happen when an interval flowrate to be mapped is present in 

two different discretised intervals. For example component B could have been present in 

the interval [9.3,9.7] kmol/h which would leave the decision of whether to map the flow 

to [8.5,9.5] or [9.5,10.5] kmol/h. These factors provide a persuasive argument for not 

discretising component flows. Removing this discretisation entirely would lead to longer 

search times as problem stream re-use would fall.

It can be noted that many of the differences between streams occur in the flowrates of 

components present in small amounts. This is the the case in the above example where 

the two streams only differ in the flowrate of component D, yet they arise from different 

routes through a flowsheet. This is one of the consequences of using semi-sharp separa-
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tors based on heavy and light keys. Taking this, and the desire to reduce the amount of 

component discretisation, leads to the idea that discretisation should only be carried out 

for small flowrates. Using this approach, many of the difficulties described previously can 

be avoided. For these reasons the concept of the trace level is introduced.

If a component is present in amounts below this threshold then the flow of the component 

is mapped to a trace interval value. The trace interval has a lower bound of zero and an 

upper bound at the value of the trace flowrate for the particular component. The result 

of applying this scheme is that all possible values of component flow are bounded. This 

ensures that resulting flowsheet cost intervals strictly bound the cost of processing the 

feed stream. Table 5.2 shows what happens if this scheme is applied to the streams A and 

H from the above example. The streams A* and n* are the results of this operation. With 

the particular trace threshold values chosen, the resulting streams are identical. When one 

of these has been solved, no further work would be required if the other arose later in the 

search.

Table 5.2: The discretisation of two similar streams using the trace concept

Component A
(kmol/h) (kmol/h)

trace
threshold
(kmol/h)

A*
(kmol/h) (kmol/h)

A [0.3,0.4] [0.3,0.4] 0.2 [0.3,0.4] [0.3,0.4]
B [9.6,9.7] [9.6,9.7] 0.5 [9.6,9.7] [9.6,9.7]
C [9.6,9.7] [9.6,9.7] 0.5 [9.6,9.7] [9.6,9.7]
D [0.288,0.388] [0.3,0.4] 0.5 [0,0.5](trace) [0,0.5](trace)

The value of the trace threshold must be chosen carefully and on a component by com­

ponent basis. If it is too large then cost bounds will be wide and the optimal solution may 

not be isolated. If it is too small then the amount of solution re-use will be affected.

There will be some loss of re-use as a result of using the trace method rather than standard
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discretisation. Some streams may be almost identical apart from a difference between the 

flowrates of a component present in large amounts. This loss of efficiency is necessary in 

order to keep the bounds on the solutions as tight as possible.

5.2.3 Unit variable discretisation

In terms of the distillation unit model, the key recovery fraction is defined within a range 

of values. A finite number of real values in this range must be selected as the basis for 

the unit alternatives. In order to incorporate bounding information, each discrete value is 

enclosed by upper and lower bounds. These intervals span the whole range of possible 

values of key recovery. The discrete values themselves correspond to a nominal value. 

When the keys are divided between top and bottom streams, the interval split fractions 

cause component flow rates in the output streams to be intervals. This mechanism is 

demonstrated by figure 5.3. The figure represents an overview of the design of a par­

ticular alternative for the separation of a four component stream. The design procedure 

yields bounds on the height and diameter of the column and the size of the condenser and 

reboiler. These lead to upper and lower bounds on the operating and capital costs of the 

particular alternative.

Chapter 4 explained how the nominal values returned in that case study are attainable, 

as no discretisation takes place between units. In this chapter, the idea of mapping mass 

flows, below a certain threshold, to a trace interval value has been introduced. When 

trace mapping occurs, the nominal flow of a component is mapped to the upper bound 

of the trace interval. This is carried out so that a trace interval flows of a component 

are identical in all cases. Increasing the nominal flow of a component will only lead to 

increased nominal costs of any units that it passes through. This is acceptable as the
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Components and 
Flowrates in 

Volatility Order

^  [10,20] A
[0.9,0.91]x[30,40] = [27,36.4] B 

[0.09,0.l]x[20,25] = [1.8,2.5] C

[10,20] A 
[30,40] B Light Key Upper cost bound

recovery Unit Design

[0.9,0.91]
[20,25] C 

[5,10] D
Lower cost bound

[0.09,0.l]x[30,40] = [2.7,4] B 
[0.9,0.91]x[20,25] = [18,22.75] C

►  [5,10] D

Figure 5.3: Illustration of the interval distillation column design procedure

nominal value still bounds the minimum cost of the structure. The nominal value is used 

as an upper bound in this way when describing the results of the following case study.

5.3 Benzene recycle separation case study

The procedure was tested on a case study involving the separation of benzene. A stream, 

defined in Table 5.3, must be purified to achieve 98% purity for benzene. This stream is 

the feed for the separation section of a chlorobenzene process and the benzene is to be 

recycled back to the reactor. The other components are to be removed as waste, with the 

requirement that any waste stream contains less than 10 mol% benzene and less than 10 

mol% chlorobenzene. Any output stream which consists of > 90% chlorobenzene will 

also be accepted as a valid product stream. The flowsheet structure with the lowest capital
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cost for this separation is required. The components are listed in order of volatility and a 

key letter is assigned to each component for the purposes of stream encoding.

Table 5.3: Feed for the benzene recycle case study
Component Flowrate

(kmol/s)
Component key

Benzene 0:97"" A
Chlorobenzene 0.01 B
Di-Chlorobenzene 0.01 C
Tri-Chlorobenzene 0.01 D
Pressure
Temperature

1 atm 
313 K

The optimisation criterion is the lower bound of capital cost. This means that the best 

flowsheet ranked on this basis, bounds the cost of the optimal flowsheet. This is true, 

provided that better flowsheets are not rejected due to partial infeasibility of an interval, 

as discussed previously in chapter 4.

5.3.1 Results

Distillation units were used with two key recovery intervals together spanning the range 

97% to 99.9%. The trace level for benzene was set as 0.1% of its flow in the feed stream; 

all other components had trace values of 10% of initial flow rates. The discrepancy is 

due to the large difference in feed flowrate of benzene compared to the other components. 

The values of the trace threshold levels must be chosen to be consistent with the goals 

of the synthesis problem. If excessively large values are chosen, the required purity may 

not be attained, as components that fall below this level are mapped to their trace interval 

values. If the values are too small, the efficiency of the procedure suffers as solutions are 

not re-used due to small differences in flow rates.
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The results of the initial run of the procedure is a list of solution structures ranked accord­

ing to the lower bound of capital cost. The ranking procedure ensures that only one design 

with a given structure is included in the list of best solutions. This is achieved by using 

a text string is used to describe structural information. When a solution is to be added to 

the list, it is compared to the solutions already present on the basis of this string of text. 

If the structure of a solution to be added, matches one that is currently present, the two 

solutions are compared on the basis of objective function value. The solution with the 

lowest objective function value is retained and the other discarded. The procedure acts in 

this way since the goal is to differentiate between possible structures, rather than decide 

upon operating conditions.

Increasing the number of key recovery intervals reduces the size of each interval, but has 

the effect of increasing the size of the search graph and, hence, the computational effort 

required to solve the synthesis problem. After an initial run split key recovery into two 

intervals, several further runs were performed. Each time, the number of key recovery 

intervals per column was doubled . Figure 5.4 presents the cost bounds and structures of 

the tops three solutions identified during two different runs of the procedure. The main 

components in the stream are represented in the figure by the key (A,B,C or D) from table 

5.3. The right of figure 5.4 shows the capital cost bounds and the structures identified for 

the best 3 solutions using 16 intervals over the same range. For both the coarse and fine 

discretisation runs, the same three unit solution can be identified as the best structure. The 

isolation of this structure supports the application of an implicit enumeration approach to 

the problem. This is because in the best structure, the same light/heavy key split takes 

place in two separate columns. If a superstructure approach had been used, it is likely 

that this split would only be allowed once in the superstructure. If this was the case the 

solution would not have been considered.

Statistics for the computational runs discussed are presented in Table 5.4. Solution re­
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use is defined as the number of times a previously solved problem stream is encountered 

divided by the total number of streams encountered. The statistics show that extensive re­

use of solutions is maintained under the new scheme. Runs were carried out on a Compaq 

850 MHz Pentium III PC, running Linux using Sun Microsystems Java 1.3.

Table 5.4: Computational and search statistics

Number of intervals
Statistics 2 16
Problem streams 210 218838
Re-use(%) 60 92
Elapsed time(s) 6 3151

5.3.2 Discussion of results

As mentioned in chapter 4, before the component intervals were introduced, it had to be 

assumed that flow rate discretisation had no effect on the structures obtained. This work 

removes the need for this assumption as all types of discretisation that occur can now be 

bounded using intervals. However, some issues remain outstanding.

Rejection of designs

Figure 5.5 highlights a difficulty with the current method that prevents the optimal struc­

ture from being assured. For the sake of discussion, the second best solution from the 

fine run using 16 key recovery intervals, is labelled as structure Z. The 2nd and 3rd best 

solutions from the coarse run, using 2 key recovery intervals, are labelled as structures X 

and Y respectively. From figure 5.5, it can be noted that structure Z does not appear in the
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top 3 for the run using two key recovery intervals. Furthermore, the whole cost interval 

for structure Z is lower than the cost intervals of the 2nd and 3rd best structures from the 

coarse run. The bounding information is correct, as it results from interval arithmetic. 

This means that the run using 2 key recovery intervals per column is missing solutions. 

If solution Z had not been missed in the coarse run, then it should definitely have been 

ranked higher than solutions X and Y. At that level of discretisation, the cost bounds of Z 

would inevitably be wider, but the lower bound would be smaller than those of structures 

X and Y. In fact, structure X would never actually be considered by a designer, as the final 

column separates di-chloro from tri-chloro benzene, both of which are waste products.

Structures were missed due to the failure of an assumption mentioned in 4. If part of 

an interval, generated in a design calculation, corresponds to infeasible or impossible 

values then this alternative is rejected. This may occur due to the bound widening effect 

of dependency, or it could occur due to part of the unit variable interval being infeasible. 

During the coarse run, part or parts of structure Z must have been rejected during a column 

design. As the number of intervals in the key recovery range is increased, the likelihood 

increases that a set of key recovery intervals will lead to a valid structure. As a result of 

this, it cannot be stated that the structure identified by the fine run, with 16 key recovery 

intervals, is optimal. To make this statement, it would have to be assumed that the uniform 

discretisation is fine enough to prevent any feasible areas of the search space from being 

rejected.
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For a given run of the procedure, each solution obtained is strictly bounded. The user 

may have confidence in the range of costs returned for a structure, but cannot be positive 

that a superior structure has not been missed. Designs may be rejected even though part 

of a design variable interval could produce a valid design. The finer the discretisation 

used, the more confident the user can be that a better solution has not been missed. At 

the finest level of discretisation used in this case study, one may be confident that a better 

solution has not been missed, but one cannot be sure of this. A strategy to handle design 

failures must be developed, in order to assure a globally optimal solution. In chapter 

6, a procedure that takes into account the reason for design failure is introduced. The 

discretisation profile is selectively made finer in certain areas of the search until it can be 

proved that no feasible areas have been omitted from the search.

Crossing the trace threshold

Another possible difficulty with the approach described in this chapter is that the interval 

flow of a component exiting a unit may cross the trace flow threshold. This occurs when 

the lower bound of the flowrate is lower than the trace flow for the component, and the 

upper bound is greater than the trace flow. Whether the flowrate of a component is above 

or below the trace threshold is important in terms of how it is handled by the distillation 

unit model. If the whole flowrate interval is above the trace flow of the component, 

then it is considered as a key component. If it is below the threshold, it is considered 

not to be present in significant enough amounts to be a key component. If it crosses 

the threshold, the user is informed and the program fails to produce any solutions. With 

the development of the algorithm discussed in the next chapter, such occurrences can be 

avoided. An interval design variable can be split repeatedly until crossing of the threshold 

does not occur.



CHAPTER 5. BOUNDING THE EFFECTS OF FLOW DISCRETISATION 90

5.4 Summary

This chapter has shown that component flow discretisation during an implicit enumeration 

search can be bounded using interval techniques. Introduction of the trace interval to 

describe small flowrates has led to tighter bounds on solutions as discretisation in streams 

need only occur at the lower flows. At the same time, this allows many sub-problem 

solutions to be re-used via dynamic programming.

The quality of the solution obtained from the procedure still depends on how finely unit 

variables are discretised. In addition, the number of intervals used to span the possible 

range of unit variable values is the same for all designs in each run. Runs with succes­

sively finer levels of discretisation are necessary in order to increase the likelihood of 

yielding the optimal solution. The optimal structure is only isolated if feasible areas are 

not rejected, either due to dependency or because infeasible and feasible values are part 

of the same interval.

The following chapter describes the development of an algorithm that can change the 

level of discretisation at each node of the search graph based on results from downstream. 

It addresses some limitations of the current method, allowing the optimal solution to be 

assured.



Chapter 6

An adaptive algorithm

6.1 Introduction

Work described in previous chapters has used intervals to bound the effects of uniform 

discretisation of continuous unit variables. This allowed the cost of the most promising 

process structures to be bounded. These bounds have been tight enough to discount certain 

structure, showing the potential of applying interval analysis to an implicit enumeration 

search. The intention was to ensure that the optimal solution had been isolated. This did 

not prove possible using the earlier methods for one main reason. While the previous work 

bounded the cost of the structures produced, it could not assure that a superior feasible 

structure had not been missed. A list of the n-best structures and their cost bounds is 

returned. This is based on the uniform discretisation profile specified. In addition, there 

is no flexibility to deal with cases where a particular alternative fails due to part of a unit 

variable being classed as infeasible. This could mean that not all areas of the search space 

are exhaustively examined causing the optimal solution structure to be missed.

91
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The aim of the work presented in this chapter, is to isolate the globally optimal structure 

by changing the discretisation profile during the search. This would mean that the optimal 

structure could be found by applying the procedure once rather than making a series of 

runs with increasingly fine discretisation. This can be accomplished by no longer using 

uniformly sized intervals. Ideally the search should be concentrated in areas where it is 

necessary to use finer discretisation in order to find a solution. In addition, the method 

should ensure that all feasible variable values are searched exhaustively. If a design fails 

due to dependency or an interval being partially infeasible, the interval variable should be 

split until the problem is resolved.

The development of such an algorithm leads to using the concept of boxes (Moore, 1966) 

to describe variable values. An algorithm can then be developed based on a box split­

ting global optimisation algorithm. The generalised box splitting algorithm is adapted to 

work within the framework of the intervalised implicit enumeration approach described 

previously.

6.2 Boxes

A box used in interval techniques is defined by one or more variables each with a lower 

and upper bound value. The analogy with a real box allows splitting to be visualised 

more easily. When this idea is applied to a unit design in the synthesis problem, not all 

the dimensions of the box are continuous variables. For example, a distillation column 

may have three degrees of freedom. Two sides of a box describing a column design could 

represent the continuous variables of pressure and key recovery fraction. The third could 

be the discrete choice of light key component. Figure 6.1 illustrates two possible boxes 

for such a distillation design. The first box represents a unit design where component A
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is the light key, the design pressure is an interval between 1 and 2 bar and the recovery 

fraction of A is an interval between 0.95 and 0.96. Box 2 represents a unit design under 

the same conditions apart from component B now being the light key component.

Pressure (bar)
BOX 2

Light Key

0.95 0.96

0.960.95 BOX 1

Recovery fraction

Figure 6.1: An example of two boxes

6.2.1 Splitting

A box may undergo a splitting operation on one of its continuous variables. In this work, 

the split occurs at the midpoint of the interval value of the variable, but in principal could 

be applied anywhere. Figures 6.2 and 6.3 show the two different splits that could be 

applied to a box representing interval values of two continuous variables. The original 

box represents variable Y  with a lower bound a and an upper bound of b and variable 

x with a lower bound of c and and upper bound of d. In figure 6.2, the box is split on
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variable x resulting in two new boxes with the bounds on x as shown. In figure 6.3 the 

box is split on variable y.

c d c c+d c+d d

X

Figure 6.2: Box splitting procedure on the x variable

b --

a+b

Figure 6.3: Box splitting procedure on the y variable

6.2.2 Other information associated with a box

As well as the information on the unit design variables, it is necessary to store information 

that allows boxes to be compared after the unit design has taken place. The following is a 

description of the additional data that is stored with each box.
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Output streams

Each box that is produced by the splitting procedure holds bounds on the design variables 

for a particular unit. When the unit is designed based on these values, it may produce 

one or more output streams. Only a box that describes a product tank will not produce 

an output stream. The composition and state of these streams is stored along with the 

information that describes the box.

Output stream solutions

Once the output streams from a particular design have been identified, each is treated as 

a new problem stream and is solved. When the solution to a particular stream is isolated, 

information on the downstream structure and conditions is stored with the other box in­

formation. Once the solutions to all output streams from a box have been found then the 

structure that results from the box is knowii. This information can be used to compare 

two boxes during the search procedure.

Costs

If optimisation is to be carried out, it is necessary to attain the objective function value 

of each flowsheet. The objective function could contain capital cost, operating cost or 

another factor such as environmental cost. A box groups these interval costs into two 

types. The design costs are the costs of the particular unit design associated with a box. 

The solution costs are the costs of the unit design for this box plus the costs of solving the 

output streams from this unit design. An interval representing the objective function for a 

box and its downstream structure can then be calculated from these costs. Boxes can be 

pruned from the search based on the relative values of their objective function bounds.
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Figure 6.4 illustrates the cycle of this information generation and storage. The design is 

based on the data stored by box 1, shown in figure 6.1, for a given feed stream. Firstly, the 

design of a distillation column is carried out based on the feed stream and design variables 

values of the box. This procedure gives the design costs of the box; in this case capital 

and operating costs. The unit design produces two output streams that are solved. This 

example shows that output 1 is solved by using another distillation column that yields 

two product streams. Output 2 is a product and requires no further processing. The costs 

and downstream structure associated with sub-problems 1 and 2 are retrieved and stored 

along with the data describing the box. To give the solution costs for this box, each of the 

design costs are added to the corresponding costs for sub-problem 1 and 2. From these 

total values, the objective function value range for this box is calculated. This may be 

simply the capital cost, the operating cost or some combination of the two.

XDesign
Light Key

B

0.95 0.96

Output 1

Output 2 

Design costs

\
Solve output 
streams

Objective
function
value

cap
cost

op
cost

Sol costs = 
Design costs 
+ Costs spl 
+ Cost sp2

Costs sp 1  ̂
4 ' ' '

j r

u
T ss

Costs sp2

Solution 1

Solution 2

Figure 6.4: Building box costs and structure by unit design followed by solution of sub­
problems

f
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6.3 Changes required to standard box splitting algorithms

Various algorithms based on splitting boxes and generating bounds based on inclusion 

function have been suggested by Skelboe (1974), Ratschek and Rokne (1988), Hansen 

(1992), Kearfott (1996). These have many features in common and can be generalised 

by the algorithm shown in figure 6.5 (Csendes, 2001). It is based on finding the global 

minimum value, /*, of a function, f (x) ,  on a search region covered by the box, X.  If an 

inclusion function F( X)  can be found for f (x)  over the search range then the following 

general algorithm is valid.

1. Let L be an empty list of pairs of values. A  is an initial box that covers the search 
region, X.  Iteration counter k — 1. Set the upper bound on the global minimum, /  
as the upper bound of the inclusion function over the initial search region, F(X).

2. Divide A  into s subsets A i,(i =  1, ...s). Evaluate the inclusion function, F( X)  for 
each of the new subintervals. Update /  based on these function evaluations.

3. LetL  = L u { ( A i, F( Ai))}

4. Remove members of L that cannot contain the global minimum point.

5. Choose a new A € L and remove it and its related function evaluation, F(A),  from 
L.

6. While termination criteria do not hold, k =  k +  1. Go to step 2.

Figure 6.5: A generalised box splitting algorithm for global optimisation (Csendes, 2001)

The stopping criteria are likely to be based on a minimum width of the dimensions of 

A  and F(A).  There are several schemes for the choice of the next box in step 5. The
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most common method is to select the box that has the lowest value of lower bound for 

F(X).  The aim of this step being to select the box that is most likely to contain the global 

minimum point. Step 4 is where acceleration techniques are applied that help to speed up 

the convergence of the algorithm. For example, in an unconstrained problem where a box 

X  is feasible throughout and the gradient, g ( X ) is calculated. If 0 ^ g(X)  then the box 

cannot contain a minima and it may be removed from consideration.

For this type of algorithm to be applicable for integration with the interval techniques 

described previously, alterations must be made to take into account the special properties 

of the synthesis problem. For example, the above algorithm assumes that the objective 

function is explicitly available for evaluation so that an inclusion function may then be 

obtained. This is not the case, as in implicit enumeration a graph is generated and searched 

at the same time, so that when a particular box is applied to a stream the downstream 

structure is unknown.

6.3.1 Bounding the global minimum

Box splitting algorithms require there to be an inclusion on the objective function. An 

inclusion function F  on a real function, /  is such that the application of F( X)  yields an 

interval that contains all possible values of f i x )  for a; € X.  For this type of recursive 

search, the inclusion function would incorporate the cost of designing the unit described 

by the box plus the cost bounds of processing the resulting sub-streams for all possible 

unit variable values. The cost would include all possible downstream process structures. 

This would be inefficient as splitting would only occur on boxes associated with the initial 

feed stream. After every application of a box to this feed stream, the full range of variables 

for each unit would need to be applied to each of the subsequent streams in the process 

structure.
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This work is intended for application to the early stages of process design. At this early 

stage, the main goal is to isolate the most suitable process structure from what is often a 

large number of possibilities. As a result, the aim of the algorithm is to isolate the optimal 

process structure. Unit design parameters are variables in the search, but a stream is said 

to be solved when the search has been narrowed down to one structural alternative for 

its processing. The values of the unit variables will have an effect on the downstream 

structure, but the goal is not to find their optimal values for each unit. Under these cir­

cumstances, the user can be sure that there is no set of variable values for another process 

structure that lead to a lower objective function value.

Given that the procedure is a search for structure then it would be preferable to bound 

the global minimum value rather than all possible values. A strategy that would allow 

splitting to occur at all levels of the search would be to recursively apply a box splitting 

algorithm for all streams encountered. For each stream encountered the procedure would 

isolate the optimal processing structure before passing control to the previous level of 

recursion. The optimal structure is assured at each level as the flowsheet is built from the 

downstream prodcuts upwards. The bounds that are calculated for a given box are made 

up of the cost of the associated unit design plus the cost of processing the output streams. 

The bounds on a box bound the minimum cost of processing the current stream given the 

operating unit and variable values represented by the box. For a given stream, the lowest 

value of the objective function and the lowest feasible set of variable values would be 

lower and upper bounds respectively on the global minimum for processing this stream.

Figure 6.6 shows a representation of this procedure. Starting in the top left hand comer, 

box X is to be applied to a process stream. This yields a unit design with cost D and two 

output streams, A and B. These and any subsequent streams are solved with a global opti­

misation algorithm. In the figure there are four possible downstream structures for stream 

A. Application of the box splitting algorithm results in structure A3 being accepted. The
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same procedure selects downstream structure B2 for the processing of output B. The costs 

of optimal downstream processing are added to the cost of the unit design to give the total 

cost for this box. The bounds of this cost are bounds on the globally optimal value for this 

particular box. If the processing costs returned were instead the union of the cost of all the 

downstream processing possibilities then the bounds on the box would be an inclusion of 

all possible values. But, since the search is for the optimal processing structure then this 

is not necessary. As long as the optimal structure is isolated for each stream encountered 

the optimal overall flowsheet can be isolated.

„  Structures
Box X

A1
A2

'a 3k
A4

Output A

Optimal
downstream
structure
detemined

Box Cost 

= A3 + B2 + D

Unit Design 

Cost D

B1

Output B B3

Cost A3, Cost B2

Figure 6.6: Constructing an inclusion function by successive optimisation of sub-streams

6.3.2 Updating the upper bound on the minimum

Many commonly used acceleration methods of step 4 cannot be applied to the synthesis 

algorithm as they require explicit knowledge of a term for the objective function. Other
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methods require that the whole box will lead to feasible solutions which is not necessarily 

the case. One common acceleration method is the midpoint test where the real version of 

the function, f (x)  is evaluated at the centre of a box. If this point is found to be feasible 

then the value of f ( x)  can be used to update the upper bound on the global minimum, / .  

In the synthesis procedure this is the equivalent to evaluation at the nominal value of the 

box, a concept that has has been explained previously. After a box is applied to a stream, 

the algorithm is applied to the output streams of the resulting unit design. In addition 

to the bounds on the cost of processing the stream with this box, a cost of design and 

processing at the nominal value is also returned. If the box and downstream boxes have 

led to successful unit designs and products then this nominal value corresponds to a real 

and attainable cost for the flowsheet from this stream on-wards. As a result, a nominal 

cost of a box can be used to update /  if it is less than the current value of / .  If for a box, 

Ai, F(Ai) > f  then this box can be eliminated.

6.3.3 Stopping criteria

For the generalised algorithm, the aim is to isolate the set of real variable values that result 

in the smallest possible value of the objective function. In practice this means that the box 

representing the variables should have dimensions smaller than a certain tolerance. At 

this level the user would essentially think of this box as a real point. For a box, A, the 

stopping criteria would therefore be w(A) < e\. The other requirement is that the box 

represents points that are sufficiently close to the global minimum. For the box with the 

smallest value of F( X) ,  if F( X)  -  F ( X)  < e2 then all the points represented by the box 

are within e2 of the global minimum.

However, the search in the synthesis problem is not for a tight optimal box which closely 

approximates a point, but for a box with the dimensions necessary to ensure that the
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optimal structure has been identified. This means that the stopping criteria do not need to 

be as tight. Therefore, it is possible to stop searching on a stream when all the remaining 

boxes represent the same process structure.

Another stopping criterion may be used if the boxes are stored in order of lower bound 

of the objective function and the box with the lowest lower bound is ranked first. If the 

lower bound of the second ranked box is greater than the upper bound of the top ranked 

box then the structure represented by the top ranked box is assured to be the optimal 

method of processing this stream. In practice it would be unexpected for this criterion to 

be used as it is likely that boxes that represent the same downstream structure will have 

more similar cost bounds than those with different structures.

6.3.4 Design Failure

In the methods described in chapters 4 and 5 the failure of a unit design resulted in that 

particular alternative or box being discounted in the search procedure. If the design is def­

initely infeasible then this action is appropriate. For example, a distillation column design 

that specified the heaviest component in the feed as the light key should be rejected. If 

the whole of the calculated reflux ratio is less than zero then the box should be discounted 

from the search procedure. However, this would not be desirable if only part of the reflux 

ratio is lower than zero. This result may suggest that part of the intervals that led to the 

design represent feasible designs and part do not. Alternatively it may be that the effect 

of dependency has caused bounds to widen and a design parameter interval to contain 

unrealistic values. In fact it is likely that both effects will occur and design failures of this 

type are a combination of the two factors. Whatever the reason, a mechanism is required 

that does not remove boxes that lead to design failures of this type. This is dealt with 

by assigning such a box with a cost interval with bounds ranging between — oo and +oo.
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These boxes will be ranked at the top of the storage list and will be selected for division 

first. In this way the area of the search space will be divided until a clear distinction 

between infeasible and feasible boxes is established.

6.4 An adaptive algorithm

The aim of the algorithm described in the following sections is to isolate the optimal 

process structure during the course of one run by changing the variable discretisation 

profile for each box that arises in the search. Previous work requires multiple runs to 

isolate a structure on the basis of cost bounds and these methods cannot ensure that a 

superior feasible structure has not been omitted. The box splitting algorithm described 

achieves this by searching in a depth first manner. Each problem stream encountered is 

solved to optimality before returning to the previous level of recursion in the search. This 

ensures that no areas of the search are omitted and that if a structure is returned, it is 

optimal.

6.4.1 Initial enumeration stage

Figure 6.7 shows the implicit enumeration algorithm of Jacaranda adapted to include an 

interval box splitting algorithm. For each new stream encountered in the search, boxes 

are stored in a newly initialised binary tree. It is necessary to store boxes in order of 

lowest lower bound and cycle through these in order and a binary tree carries out these 

operations efficiently. The algorithm is presented with a problem, p, that is a process 

stream with associated interval properties such as pressure or component flows. The 

binary tree is initialised and a boolean value, done, is set to false. As in the original
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Jacaranda procedure, the algorithm checks whether or not this problem stream has been 

encountered previously. If so, no further action is required on this problem.

GIVEN: a list of available units, a list of product specifications, a range of values for each 
unit variable, maxSplits = the maximum number of splits per box. 
function solve(problem p) 

boolean done = false
initialise empty binary tree, t, to store boxes 
upper bound on minimum = infinity 
if p already processed then 

done = true 
else

for each available unit do 
for each discrete alternative do 

Create a new box, b 
process box(b,t) 

end for 
end for 
splitCount = 0
while done = false and splitCount < maxSplits do 

if canStop(binary tree t) then 
store solution globally 
done = true 

else
retrieve box with the lowest lower bound from t 
split along the longest side 
process resulting boxes 
splitCount-H- 

end if 
end while 

end if 
end function solve

Figure 6.7: The main adaptive separations synthesis algorithm
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If this is a new sub-problem, then the algorithm cycles through an initial set of alternative 

boxes. This is the same procedure employed in chapters 4 and 5. Each of the boxes 

produced by this initial enumeration is then processed in the procedure outlined in figure 

6.8. A unit design is carried out based on the variable values of the box and the feed 

stream. If this design is successful then the cost of the unit design alone is compared 

with the current upper bound for each of the boxes stored. The cost of the stored boxes 

includes the cost of any downstream units. If the lower bound of the unit design is greater 

than any of these upper bounds, the box can be discarded. If the box is not discarded by 

this test, the output streams created are processed recursively by the solve procedure. The 

bounds on the box are then checked against the current upper bound before storage.

If the design fails, what happens depends on the type of design failure. If the design is 

definitely infeasible based on the criteria discussed in section 6.3.4, this box is removed 

from the search. If part of the box could lead to feasible solutions, this box is stored with 

cost bounds of ±oo. This will cause this box to be ranked top, or near there if other boxes 

have the same bounds, leading to it being selected preferentially for splitting. Hence in 

the splitting stage of the procedure, boxes like this will be split repeatedly until different 

areas are found to be infeasible or to lead to unit designs.

6.4.2 Splitting stage

After the initial enumeration of alternatives, there is a list of boxes each with bounds on 

the value of the objective function. Some of these bounds may be infinite due to design 

failure at the current level or further downstream. Now the box splitting stage of the solve
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function process box(box b, binary tree t) 
design unit based on b 
if design successful and goodEnough then 

for each product do 
create a new problem p 
sol ve(p)
retrieve solution 
update b with cost and structure 

end for
if b is good enough then 

update upper bound on minimum 
store b in t 

end if
else if dependency or partially infeasible failure then 

set infinite costs for b 
store bint  

end if
end function process box(box b, binary tree t)

goodEnough compares the lower bound of the current unit design with the upper 
bound boxes stored in the binary tree, t. If the lower bound is greater than any of these 
upper bounds then the box can be discarded.

Figure 6.8: Box processing algorithm

procedure begins. Firstly, the criteria for stopping the solve procedure for this stream 

are tested. The stopping criteria checking procedure is shown in figure 6.9. If the box 

leads to a valid product tank design, then true is returned as a leaf node has been reached. 

Otherwise, the upper cost bound of the top ranked box is compared with the lower bound 

of the second ranked box. If the former is smaller than the latter then the procedure can 

stop as the best box has been found and hence the optimal downstream structure has been 

isolated.
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function canStop(binary tree t)
if any box stored within t yields a product tank then 

return true 
else

u = upper cost bound of best box in t 
I = lower cost bound of 2nd best box in t 
if u<l then 

return true 
else

while t has next box, b do
if lower cost bound of b > lowest upper bound of all boxes in t then 

remove b from t 
else if structure of b is different from best box then 

return false 
end if 

end while 
end if 

end if 
return true 

end function canStop(binary tree t)

Figure 6.9: Stopping criteria check

If it is not possible to stop based on the bounds of the top two boxes then the list of boxes 

is enumerated. If possible, a box is pruned based on its lower cost bound. If the box 

cannot be removed then its associated downstream structure is compared with that of the 

best box. The canS top function returns false if there is any diversity in the downstream 

structures of the boxes in the list and true if no diversity is found.

If it is not possible to stop then the box is divided along its longest side and the two
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resulting boxes are processed as described earlier. Calculation of the longest side is based 

on comparing the current width of the interval that describes the side, divided by the 

inital value for this variable. This box splitting and processing continues until a stopping 

criterion is met or the maximum number of splits is reached. At this point, control returns 

to the level of recursion above.

6.4.3 Product requirements

A separations synthesis problem has product quality constraints. When dealing with real 

number flows of components, it is relatively easy to check if the product constraints have 

been met. With interval flows, the product purity requirement may be fulfilled by part of 

the flow.

In this situation, the combination of upstream structure and some parts of the variable 

value intervals that created this stream yield a product stream. However, some values 

within the intervals used upstream may not yield a product at this point without further 

processing. This issue is dealt with by realising that the search is for the optimal structure 

and not for the accompanying operating conditions. The structure to be isolated should 

give a lower value of the objective function than any other possible structure. That is, 

all other possible structures cannot attain such a low objective function value whatever 

combination of unit variable values is used.

As explained earlier, the nominal values of component flows within the stream are real 

values that represent feasible flows since they have not been mapped at any point. If the 

set of nominal flows within the stream meet a product constraint then the interval stream 

can be accepted as a product. This is because it is assured that part of the component flow 

intervals of the stream represent a product, therefore the upstream structure is capable of
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generating a product w ithout further processing. This means that the bounds on the cost 

of the upstream structure can be used to compare with other structures. It is possible that 

for some combinations of real unit variable values used within this structure, there will be 

a need for further processing in order to yield a product. Nevertheless, it is assured that at 

least one combination of real variable values in the upstream structure lead to a product 

without the need for further processing. This can be achieved within the cost bounds of 

the structure up to this point. For these reasons it is unnecessary to continue searching on 

this stream. A superior solution cannot be found by further processing as this will simply 

add to the cost of structure,

If the nominal value does not meet a product specifi cation while part of the stream compo­

nent flow intervals do meet this specification, the stream cannot be accepted as a product. 

However, this stream should not be processed further as it is possible that the upstream 

structure could produce a product at this point and the optimal structure could be missed. 

In this situation, control is returned to the previous level of recursion where the box that 

led to this stream is split along a variable that determines the stream composition. The 

boxes that result from this split are less likely to yield streams that cause the same prob­

lem.

6.4.4 Limiting the number of splits

It is necessary to limit the number of splits that are made in the attempt to solve a given 

process stream. The reason for this is that the width of variable values upstream in the 

process structure affect the width of the intervals, such as component flowrates, that de­

scribe subsequent streams. If the variable intervals are too wide upstream, the result may 

be that it is not possible to solve the downstream sub-problems even if degenerate inter­

vals are used. This makes it necessary to have a mechanism in place that allows upstream
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splitting to prevent the procedure becoming stuck in areas where a solution cannot be 

found. When the maximum number of splits is reached, control passes to the problem at 

the previous level. The box that resulted in the stream that was not solved has its bounds 

set to ±00 which causes it to be selected for further splitting as boxes are selected for this 

on the basis of the lowest lower bound. This could also occur as a result that a product 

requirement is partially met by a stream as explained in section 6.4.3. In either case the 

stream contains intervals that are too wide to allow a downstream solution to be isolated.
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Figure 6.10: The effects of splitting on output streams

Figure 6.10 shows the effect on the flows as a result of splitting the key recovery variable 

in a box that represents a distillation column. This split would be necessary if either 

stream /1 or A was not solved within the maximum box splits or if one of them partially
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met a product requirement. The split results in two boxes and the designs based on these 

boxes produce the streams //l, Al, fi2 and A2. It can seen that the union of fil and /i2 is 

equal to the stream fi. In the same way Al U A2 =  A. These new streams are more likely 

to be solved within the maximum iterations and are less likely to cross a product quality 

requirement. No stream possibilities are discounted from the search until it can be shown 

on the basis of bounding information that they lead to a non optimal structure.

6.5 Summary

An algorithm has been developed that is able to isolate the optimal process structure for 

a separation sequence. It is based on a generalised box splitting algorithm that has been 

adapted to fit into an implicit enumeration algorithm for process synthesis. The box con­

cept used in these algorithms normally simply represents a set of lower and upper bounds 

on variable values. This has been enhanced to allow a box to describe the unit design for 

a process stream and store the resulting cost and downstream structural information.

The procedure applies the box splitting algorithm recursively on each stream encountered. 

In this way, the optimal structure is built from the leaf nodes upwards ensuring that the 

global minimum is bounded by the resulting structure. The effective inclusion function is 

around the minimum value of the objective function for the optimal downstream structure 

rather than including all possible downstream structures.

Boxes are pruned by continually checking the lower bound of each box against the upper 

bound of the global minimum. This upper bound is determined from the real nominal val­

ues of unit variables and stream flows. The nominal cost for a unit design and downstream 

structure corresponds to an attainable value as real values have passed continuously from
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unit to unit. Consequently, it can be used to update the upper bound on the minimum cost 

for a particular stream.

The stopping criteria are determined by the fact that it is the optimal process structure that 

is required. For each stream encountered the procedure stops when the boxes in the list 

all represent the same downstream process structure.

The algorithm exhaustively searches the design space so that boxes with interval unit 

design parameters, which partially fail feasibility constraints, are not rejected. The box in 

question is instead stored for further splitting until the areas of feasibility can be isolated. 

No part of the search space is discounted except for on the basis of bounds or infeasibility.

The algorithm is not designed for a specific type of separation equipment. The next 

chapter demonstrates its performance and flexibility by the application of two different 

types of separation synthesis case studies.



Chapter 7

Case studies using the adaptive 

algorithm

7.1 Introduction

This chapter shows the applicability of the adaptive algorithm, described in the previous 

chapter, to two different types of separation synthesis case studies. The first is the appli­

cation of the algorithm to a case study that was previously attempted using uniform dis­

cretisation in chapter 5. The second applies the algorithm to a bio-processing case study 

that has been previously attempted using the implicit enumeration approach of Jacaranda 

(Steffens et al., 2000).

113
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7.2 Return to the benzene recycle case study

The benzene recycle case study described by table 5.3 and section 5.3, page 82, was 

tackled using the adaptive algorithm. The same distillation column design procedures are 

used as in the earlier case study. The following sections describe the results obtained and 

the manner in which the search was conducted.

7.2.1 Results and discussion

Figure 7.1 shows the optimal structure returned by the adaptive algorithm. The letters 

A, B, C and D refer to the components benzene, chloro-benzene, di-chloro-benzene and 

tri-chloro-benzene respectively. Below each column the light and heavy key components 

are shown.

The algorithm has demonstrated, through comparing cost bounds of solutions, that using 

the three column structure will incur the least capital cost. Distillation, with benzene 

and chloro-benzene as the keys, is carried out in two columns. These two separations 

are coarser than the very fine split required from one column. This structure matches 

that identified by the uniform discretisation procedure in chapter 5. The separation of 

benzene in two stages may not have been immediately obvious to a designer and shows 

the potential of the procedure for generating novel process structure.

In an enumerative search of this type, the order in which the search is conducted depends 

on the order in which the different chemical components are added to the feed in the 

original feed stream definition. This is because the first component added to the feed is 

the first component that is tried as the light key in a distillation column design. The search 

then solves all the sub-streams of this design before trying the next component as a light
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Figure 7.1: The optimal structure isolated by the algorithm for the benzene case study

key. Normally, the components are added in order of volatility for easier interpretation of 

the results by the user. Different orders of components were tried for this case study to 

change the path taken by the algorithm in the exploration of the search space. As expected, 

the structure returned is the same regardless of the way that the search is conducted. 

The algorithm guarantees that structures are not eliminated unless they are shown not to 

be optimal. It thoroughly investigates the entire search space, therefore if a structure is 

returned, it will be the same optimal structure whatever the search path taken. The path 

taken by the search can also be influenced by the way that the number of splits are limited 

for each sub-problem.

The following sections describe the manner in which the algorithm searches for the so-
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lution to this case study. All processing times quoted were obtained using a Pentium III 

850MHz computer running Java version 1.4.

Number of splits

As explained previously, it is necessary to limit the number of splits for each problem 

stream encountered. This prevents the algorithm becoming stuck on a stream that can­

not be solved however many splits are carried out. The most straightforward way to do 

this is to have a fixed limit for every stream sub-problem encountered. Under these cir­

cumstances, control returns to the previous level of recursion where further splitting takes 

place. Naturally, the best value for the maximum allowed splits per stream will depend 

on the problem that is being tackled. For the benzene separation problem it was found 

that the lowest value that this limit could take was 4 splits. Below this number the algo­

rithm is unable to return a solution because the low number of iterations does not allow 

sufficient resolution. The solution was obtained in 78 seconds with 2140 unique streams 

attempted and 25% re-use of solutions. If the order the components are listed in the input 

file is altered then the search proceeds in a different way. This is because the order of 

component chosen to be the light key changes. By reversing the order of components and 

using a maximum of four split per stream, the same solution was isolated. However, due 

to the different route taken, only 2018 streams were encountered and the procedure took 

65 seconds.

Table 7.1 shows how changing the number of maximum splits allowed affects the way the 

search is performed. The larger the value for the maximum number of splits, the more 

problems are encountered and the longer the search takes. However, the rate of increase 

in time taken slows as the maximum number of splits allowed increases. This can be 

explained by examining the profile of where the splitting procedures take place.
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Table 7.1: The effect of maximum split value on the search

Max no. 
of splits

No. of unique 
problems

Time
(seconds)

%Reuse

4 2140 78 25
5 2240 82 26
6 2841 95 24
7 3194 100 24
8 3827 118 24
9 4531 139 24
10 5142 167 26
15 8088 288 39
20 9425 365 45
30 9498 378 48
40 9509 394 58
50 9572 438 63

During each run, the maximum number of splits was always reached for certain problems. 

When the maximum is reached, on some occasions a solution is found and on others it 

is not. Occasions where the maximum number of splits is reached without finding a 

solution support the idea that some streams cannot be solved however narrow the unit 

variable intervals become through splitting. In such cases, control returns to the previous 

level of the search and further splitting occurs at that level. Every time the solution of a 

stream is attempted, the number of splits required to accomplish this is recorded. Each 

time the maximum number of splits is reached without the stream being solved is also 

recorded.

Table 7.2 shows the distribution of numbers of splits required to solve the case study 

for various runs with different maximum split settings. For example, for a run where 

a maximum of 5 splits per sub-problem is allowed, 18 problems were solved requiring 

2 box splits. 22 sub-problems were solved by making the maximum of 5 splits and 48 

sub-problems were encountered where 5 splits took place but did not yield a solution.
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In any run attempted, the largest number of splits where a solution was obtained was 

7 splits per sub-problem encountered. For example, from the data shown in table 7.2, 

one column shows the maximum number of splits is set at 50. From this column it can 

be noted that 2 problems require 7 splits to find a solution. However, 72 problems are 

encountered where after 7 splits a solution is not found. Under these circumstances, it 

seems that solution cannot be found for these problems however many splits are made. 

The algorithm continues to split boxes until the maximum number is reached, in this case 

50 splits, but doesn’t find a solution.

Table 7.2: The number of occurrences of each split for various runs

No. of splits 
required

Maximum split setting
50 20 10 9 8 7 6 5 4

1 3002 2919 1286 1116 956 812 726 588 534
2 9 9 9 9 9 9 9 18 31
3 1 1 3 17 1 1 2 1 1
4 17 17 17 17 17 17 21 57 49
5 39 39 27 25 23 21 40 22 -

6 35 35 23 21 19 34 33 - -

7 2 2 2 2 4 2 - - -

max(not solved) 72 72 48 44 40 36 40 48 77
Time(seconds) 438 365 167 139 118 100 95 82 78

For the runs where the maximum split were above 20 the splitting profiles are very similar. 

Maximum splits of 50 and 20 only differ in the number of streams where one split was 

made. It appears that the search in each case followed a similar path becoming stuck 

on streams and reaching the maximum 72 times. This would explain the slowing in the 

rate of increase of solution time as the maximum number of splits is increased, shown by 

table 7.1. The majority of the extra work required is for the 72 occasions when the box 

is split the maximum number of times. The total number of problems increases steadily
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with increasing maximum splits but the proportion that have been encountered before also 

increases. This is useful because for other problems the best value to set for the maximum 

number of splits would be unknown. The results show that this parameter may be assigned 

a wide range of values while still yielding a solution.

Naturally, some streams require no box splitting in order to be solved. These are streams 

that meet one of the product specifications and are not shown in table 7.2. The table also 

shows that the majority of the time only one split occurred. It is the default that every box 

that is encountered undergoes one split in each unit variable. This may account for the 

large numbers of streams where only one box split occurs and removal of this mandatory 

single split could improve efficiency. In any case, since a single split always occurs the 

statistics presented over the following sections do not include such occasions and instead 

focus on when 2 or more splits occur.

Split depth

The number of splits that occur each time a problem is encountered yields some informa­

tion on the way that the search progressed. However, alone it does not yield information 

regarding how each box was split. For further insight, information is required on the dis­

cretisation profile that results from the box splitting algorithm. A uniform profile would 

indicate that the algorithm was no more effective than the previously attempted uniform 

discretisation. The more uneven the distribution of splits, the more useful the algorithm 

is for increasing solution efficiency. For each stream encountered, a number of boxes re­

sult from the splitting procedure. Each of these boxes is descended from an original box 

that represents the full range of allowed variable values for a particular unit. The search 

may be very specific where splitting repeatedly occurs in the same area or uniform where 

splitting occurs evenly over the whole space. Figures 7.2 and 7.3 illustrate two different
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ways that the same original box may be split to reach the same highlighted sub-box. In 

figure 7.2 the box is reached after 8 splits and in figure 7.3 the same box is reached after 

4 splits. The former represents a uniform search and the latter as each in a specific area.

Split 2

Split 5 Split 7
I 
I

w Split 3 
-► v*...................... I - - - - -

Split 4 ' Split 1
I
I
I

▼

Split 6

Figure 7.2: The maximum split depth in the figure is 4, the original box has been split 8 
times

The term split depth will be used to describe how specific the search is for a particular 

problem stream. It is defined as the longest line of parent to child relationships in a given 

splitting scheme. For example in figure 7.3 the split depth is 4. This is because the shaded 

box results from a series of four splits where each split is carried out on a box resulting 

from the previous split. The split depth of the scheme shown in figure 7.2 is also 4. Even
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though eight splits have taken place, the longest line of parent to child relationships occurs 

from split number 1, 2, 4 and 8. This is a total of 4 splits and hence the split depth is 4. 

For each stream encountered, a maximum split depth can be recorded. The larger the 

maximum split depth compared to the total number of splits the more concentrated the 

search to a particular area.

Figure 7.4 was generated from two runs, one with a maximum number of splits per stream 

of 4 and the other 20. Only data from problem streams that were solved are shown in the 

figure. The results show that the maximum split depth is often the same as the number

▼
Figure 7.3: The maximum split depth in the figure is 4, the original box has been split 4 
times
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of splits or at most one less than it for both runs. This shows that specific areas of the 

search space are being concentrated upon. The algorithm adapts to search in the area 

where the solution is most likely to be found based on the bounding information from 

previous boxes. This leads to a more efficient search than a uniform discretisation. For 

the run where the maximum number of splits per stream was 4, the depth of the splitting 

is equivalent to 16 uniform splits. When the problem was attempted uniformly with 16 

splits using the procedure described in chapter 5 it took 3151 seconds compared to 78 

seconds when using the adaptive scheme.

max splits = 20 v
max splits = 4 ♦

Number of
occurrences ♦

50

40

30

20

10

number 
of splits

max split depth

Figure 7.4: Comparing the distribution of split depth and number of splits for two splitting 
schemes
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Stream characteristics and splitting

A number of characteristics of the streams encountered during the search were recorded. 

The following section discusses the effect, if any, of these characteristics on the number 

of splits required to solve the stream.

Number of
occurrences

Number 
of splitsNumber of 

components

Figure 7.5: The number of splits carried out against the number of components present in 
the stream

Figure 7.5 shows the number of occurrences of each number of splits as a function of 

the number of components in the stream. The results shown are for a maximum of seven
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Figure 7.6: The number of splits carried out on streams against the width of interval flows

splits per stream. This is because for this case study, occasions where splitting occurs 

more than seven times never lead to a solution. The figure shows that streams containing 

four components are more likely to require larger numbers of splits than those containing 

three components.

Figure 7.6 shows the number of splits required plotted against the total width of the stream 

flow intervals in each problem stream. The data do not seem to show any trends based 

on this indicator. The final measure of stream properties was the total nominal flow of 

the stream. The number of splits is plotted against nominal flow in figure 7.7. For the 

purposes of resolution, five data points relating to streams with nominal flows between 

0.98 and 1 kmol/s, were not included in the figure. Most of the streams that occur during
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the search have much smaller nominal flow rates. Again, no trends in the data are evident.

These results suggest that there is no inherent predictability of how the search will pro­

ceed. No pattern is visible that would allow one to predict the discretisation profile re­

quired to solve a particular stream. This confirms the applicability of such an adaptive 

algorithm to the problem. The distributed nature of the data points in the previous figures 

shows that the procedure changes the splitting profile as required. This can be based both 

on bounding information and on the failure of previous attempts at solving the stream 

using wider intervals.
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Figure 7.7: The number of splits carried out on streams against the nominal stream flow 
rate
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7.2.2 Summary

This case study has demonstrated that the algorithm is able to isolate the optimal sepa­

ration structure. As would be expected, the same structure is isolated whatever the route 

taken by the search procedure.

Investigation of the way that the box splitting occurs has shown that successive splits tend 

to occur in the same area of space. In effect, the intervals that span the search space are 

non-uniform and a fine level of uniform discretisation would be necessary for the same 

resolution. This demonstrates the effectiveness of applying an adaptive scheme to the 

problem. Plots of the number of splits against different stream characteristics show no 

pattern in the way that different types of stream are handled. This lack of predictability 

further supports the suitability of the algorithm to such problems.

7.3 Application to Bioprocess synthesis

Thus far, all the results of the application of interval analysis have been concerned with 

the synthesis of distillation sequences. The following sections describe the application of 

the new algorithm to bio-process separation synthesis. This is intended to demonstrate 

that the procedure is applicable to all types of separation synthesis problem.

The case study presented is based on previous work on bio-process synthesis described in 

Steffens et al. (2000). That work used Jacaranda with modified stream types and suitable 

biological separation units to synthesise a process for the purification of bovine soma­

totropin (BST). This is a hormone that increases milk production in cows. It is produced 

by the fermentation of a recombinant E.coli. The previous work discretised component 

flow rates and as expected the coarser this discretisation, the greater the reuse of solutions
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and therefore the less time taken for the search. Using the adaptive algorithm it was not 

possible to attempt the full problem described in the paper as far less reuse of solutions 

occurs. This is partly due to the fact that discretisation was not used at all for the bio­

process problem because of the necessity to account for very small flow rates of product 

and contaminants. In addition the problem is more combinatorial than those solved pre­

viously due to the many available units. This leads to a larger range of possible stream 

flowrate combinations than if just one type of processing unit is used. In order to com­

pare the two approaches, a stream that occurs three unit operations downstream from the 

original fermenter product, in the optimal structure from the discretised run, is used as a 

feed stream for the adaptive procedure.

7.3.1 Bio-process streams

The constituents of streams encountered in biological processes tend to be very different 

from those found in chemical process streams. Due to the heat sensitive nature of proteins 

and other biological molecules, distillation is not considered as a separation technology. 

Instead the variation in physical properties, other than vapour pressure, is exploited in bio­

separations. The data associated with bio-streams reflects this. The molecular weight, hy- 

drophobicity, molecular size and density of each component is stored and the information 

may be recalled by the relevant units.

The BST from the fermentation is produced within inclusion bodies which themselves are 

present within the E.coli cells after the fermentation. At the stage of the flowsheet where 

synthesis is to be carried out in this case study, the cells have already been homogenised 

and the cell debris removed. The feed stream is shown in table 7.3. The physical proper­

ties of the components can be found in appendix table A. 1. An inclusion body is a mass
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of mis-folded proteins. Those present in the case study are made up of BST and a con­

taminating protein. The composition of the inclusion bodies is shown in appendix table 

A.2.

Table 7.3: Feed for the case study

Component Flow rate 
(kg/hr)

Glucose 0.6
NH+ 0.2
504- 0.2
anti-foam 2
protein 1 5
protein 2 3.15
protein 3 2.05
protein 4 2.45
protein 5 2.15
protein 6 1.15
protein 7 3.4
protein 8 3
protein 9 3.3
protein 10 2.65
protein 11 1.75
protein 12 0.65
protein 13 0.35
inclusion body 12
water 400

The streams developed in the previous work have been adapted to integrate with the in­

terval based procedure. Previously a real concentration for each component described the 

composition of the stream along with an overall volumetric flow rate. In the current work, 

each component has an interval mass flow. Due to the high level of purity required for the 

case study the trace interval has not been introduced to bio-streams. Instead an absolute 

component mass flow is used below which the component is assumed to no longer be
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present. The value of 1 x 10~~8kg /s  was used as an effective zero flow as this was used 

as zero in previous case studies. The non-sharp nature of some of the bio-separation units 

means that unless such a limit is introduced components never disappear from streams 

and are seen to be present in ludicrously small amounts. Since such a limit is necessary, 

the value at which it is set would seem conservative.

7.3.2 Bio-processing units 

Screening

The processing units use the same techniques for screening and unit design as in Steffens 

et al. (2000). Two types of initial screening are used in order to test whether or not a 

stream can be processed by a certain unit.

• Design constraints depend on the ability of a unit to process a stream. These may 

be heunstics, for example based on particle size, or the physical impossibility of 

a chromatography column processing solids. The constraints used are shown in 

appendix table A.3.

• The binary ratio (Jaksland et al., 1995) may be evaluated in order to assess the 

feasibility of using the unit for the required separation. Each unit takes advantage 

of a difference in a particular physical property between components in order to 

induce separation. The binary ratio for two components is the ratio of this physical 

property from one component to another. This is compared to the feasibility index, 

n, for the unit in question.
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If the constraints and the binary ratio tests are passed then the unit design calculations 

are allowed to proceed. The unit models that are used in the case study can be broadly 

classified into two types.

Stream splitting units

These unit designs are based on the concept of key components similar to the distilla­

tion unit model described earlier. In the distillation model the feed is sorted in terms of 

volatility. In other stream splitting models the feed is sorted on the basis of whatever the 

difference in physical property that is being exploited for separation. Two adjacent com­

ponents are then selected as keys and the design proceeds. Thus, for a particular stream 

and splitting unit a design occurs at most ncomps — 1 times where ncomps is the num­

ber of components in the feed stream. The description of the procedure for the available 

stream splitting units is described below. In order to keep dependency to a minimum, the 

design calculations have been rearranged to their most simple form. This is compared to 

the models used in Steffens et al. (2000). If intervals had been substituted directly into 

the design, it would often lead to the same variable interacting with itself excessively. 

The following description of the stream splitting unit models reflects this. The parameters 

used in unit designs are shown in appendix table A.5 and the capital and operating cost 

data are shown in appendix table A.4.

Ultrafilter The components are ordered based on molecular size and large components 

are assumed to be completely impermeable and all pass into the reject stream. The con­

centration of all components in the reject stream, Cr is specified as a design parameter. 

The concentration of small components in the reject stream is the same as that in the feed 

so the concentration of large components in the reject stream can be calculated. Since the
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mass of the large components is known the volumetric flow rate of the reject stream can 

be calculated. The known concentrations of the small components in the reject stream are 

then used to calculate the mass of each small component. The balance in the volumetric 

flow rate is made up of solvent, which is in this case water. A mass balance is then used to 

calculate the permeate composition. Membrane area is calculated by finding the limiting 

flux from a concentration-polarisation model (Ho and Sirkar, 1992). Gel concentration, 

cg, and mass transfer coefficient, k, are assumed. Annual operating costs are composed 

of the energy cost and the cost of changing the membrane once each each year.

Microfilter Key components are selected in the same way as the ultrafilter. The design 

is similar to that of an ultrafilter, but with different ranges of values for screening and 

concentration of components in the reject stream. In order to calculate membrane area, 

cake resistance is assumed to be dominant and a concentration-polarisation model (Ho 

and Sirkar, 1992) is used to estimate the flux. Like the ultrafilter, operating cost consists 

of energy and membrane replacement.

Diafilter This is designed in the same way as the ultrafilter except that the dilution 

factor, Dp, is used as a design variable. This is the amount of solvent added in terms of 

number of multiples of the volume of the feed.

Rotary drum filter Again keys are selected on the basis of size. All the flow of large 

components passes into the reject stream. The mass fraction of the small components 

that pass through the filter cake is calculated from the wash rate, w . The wash rate is 

the volume of wash water per volume of slurry and is a design parameter (Kennedy and 

Cabral, 1993). The other design parameter is the concentration of solids in the filter cake.
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The area is calculated using a constant cake resistance (Belter et al., 1988). Operating 

costs are composed of energy costs and the cost of the filter aid additive.

Other units

Chromatography units cannot be designed using key components. The columns use batch 

operations and take two separate fractions of the product of the column. A particular 

product is targeted, in this case it is the protein BST. The unit models for chromatogra­

phy columns calculate the composition of each of the fractions based on an estimation 

of peak width and the difference in a particular physical property of the feed component 

(Leser et al., 1996). As with stream splitting units, design equations have been rearranged 

to minimise dependency. Gel-filtration chromatography exploits differences in Logio of 

molecular weight and hydrophobic interaction chromatography differences in hydropho- 

bicity as defined by Leser et al. (1996).

The Renaturing tank is used to first solubilise the inclusion body before refolding the 

product protein. It produces a single product stream. The residence time,Tji, and yield, 

y, are specified and the feed stream is diluted with water to reach a user defined protein 

concentration, cp. Capital cost is based on those for a CSTR and the only operating cost 

is the cost of the chemical additive.

7.3.3 Results and discussion

As explained earlier the feed stream shown in table 7.3 has already been purified to some 

degree and is a stream generated by the discretised synthesis procedure described in Stef­

fens et al. (2000). In the original work, most of the unit variables were set to one value,
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except for the reject stream concentration in the microfilter unit model. The strength of 

the algorithm, described in this thesis, is the increased efficiency of a search that allows 

ranges of unit variable values. For this reason, three unit variable values are allowed a 

range of values in the case study.

• Reject concentration, cr, in the ultrafilter: 50-400 g/1

• Reject concentration, cr , in the microfilter: 400-1100 g/1

• Dilution factor, Dp, in the diafilter: 2-5 m3/m3

The results of runs using the adaptive algorithm can then be compared with the results of 

the discrete procedure that allows a number of discrete points within the range of each 

variable.

Two types of unit that terminate the search are used.

• A product tank accepts streams containing BST in a concentration of greater than 

300 g/1. Impurities, apart from water, must be less than 0.1 % by mass.

• A waste tank accepts streams containing less than 0.1 kg/hr of BST. In the original 

work this parameter was set at 0.001 kg/hr, but the problem could not be solved 

using the new procedure using this value. The reason for this is that since com­

ponent flows are no longer discretised, the flow of BST to a waste tank does not 

disappear. For the waste streams from certain unit operations, vital to the process, 

this constraint can never be met so no solution is found. Waste tanks have a set 

capital cost of $ 100000. A product value of 100 $/g is used in order to calculate a 

product penalty. This is the annual value of the product that goes to waste.
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An objective function of annual operating cost plus capital cost amortised over 2.5 years 

plus product penalty is used in all runs. As discussed earlier, the adaptive method uses 

a minimum flow of 1 x 10~8kg/s, below which a component is no longer considered to 

be present. If a similar level of discretisation is used for all components with a run of the 

discrete method, it is unable to reach a solution without running out of memory. For this 

reason, the finest level of discretisation used in the previous work of Steffens et al. (2000) 

will be used as a basis for comparison. The aim is to show the benefits of addressing the 

problem more realistically in terms of the resulting flowsheet structures.

Figure 7.8 shows the optimal structure that results from applying the adaptive algorithm 

and figure 7.9 shows the top ranked structure from the application of the discrete proce­

dure. The number of discrete points for each variable in the discrete search was deter­

mined by the finest level reached during the adaptive search. The waste products from 

the units all contain some water, it is only specifically indicated when it is the only waste 

product. Search statistics are shown in table 7.4. The cost of the structure identified by 

the adaptive procedure is the nominal cost and therefore an upper bound on the cost of 

the structure. It does not include product penalty.

Table 7.4: Search statistics
Discrete Adaptive

Cost(US$) 1,592,405 1,333,231
Time(s) 82 5,770
Unique Problems 2,198 90,261
% reuse 48 14

The computation times quoted are from a 850MHz pentium III processor running Java 

1.4. The statistics show that the adaptive algorithm encountered far more streams than the 

discrete method, which led to a solution time at the scale of hours as opposed to the scale 

of minutes. However, the extra rigour has reaped benefits in isolating a superior flowsheet
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compared to the discrete method.

There is much less re-use of solutions by the adaptive compared to the discrete method. 

This is because without discretisation even a tiny difference between two streams will 

be enough for them to be treated as separate problems. In fact, the small proportion 

of occasions where problems occur more than once, might mean that it is better not to 

use dynamic programming for certain problems. The adaptive method was not able to 

deal with the size of the full problem because the dynamic programming table stores the 

solution of all problems encountered. When many problems are involved, the computer 

eventually runs out of memory. If the storage no longer occurred then the algorithm would 

be able to deal with far more problem streams.
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Figure 7.8: The optimal bio-separation structure as identified by the adaptive procedure 
with a cost of $1,333,231
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Figure 7.9: The top ranked bio-separation structure using the discrete method with a cost 
of $1,592,405
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Product flow

The top ranked flowsheet from the discretised procedure does not invoke any product 

penalty meaning that there is no product whatsoever in any waste streams. This is due 

to the discretisation of the flow of BST. Analysis of the flows of BST through the two 

flowsheets reveals what is happening. Both have feed streams containing 6.14 kg/hr of 

BST. However, the flowsheet from the adaptive procedure has a flow of 4.72 kg/hr of BST 

into the product tank whereas the discretised flowsheet has a product flow of 4 kg/hr. The 

yield from the denaturing and refolding tank is 80% which accounts for 1.228 kg/hr of 

unrecovered product. This means that 0.91 kg/hr of BST are lost due to the discretisation 

procedure which is why no product penalties are incurred. The adaptive generated flow­

sheet seems to represent a more a realistic situation. To allow a fair comparision between 

the two methods, table 7.4 does not include the product penalty in the cost of the flowsheet 

generated by the adaptive algorithm.

Cost

Since component flows are not discretised away by the adaptive procedure, it might be 

expected that the streams would cost more to process. However, the adaptive procedure 

has isolated the structure shown in figure 7.8 as optimal. The upper bound on the cost 

of this structure is $1,333,231 which is approximately 15% cheaper than the top ranked 

structure from the discrete procedure. In this case discretisation has led to a superior 

structure being missed. This may be partly due to less BST being lost due to discretisation 

which leads to less processing required for the necessary product concentration.

The minimum cost of the optimal structure may be considerably less than the figure 

quoted above as this is merely the cheapest feasible set of units and variable values en­

countered during the search. The search algorithm has assured that this is the optimal 

structure but it is likely a different set of unit variable values will cost even less.
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Box splitting

In terms of box splitting, the bio-processing case study does not require the same level 

of box splitting as the distillation case study. Table 7.5 shows the number of times each 

number of splits was necessary to solve a problem stream. Only occasions where the 

stream was not a product or waste stream are counted.

The vast majority of problems required only three splits for solution. This is because three 

units are available with a range of possible values for a unit variable. Each of these unit 

variables is always split at least once which means that the minimum number of splits 

for a non-terminating stream is three. Only just over 1% of streams require any further 

splitting compared with over 18% in the most efficient run of the distillation case study.

The finest fraction of the total range of a unit variable split by the search is 0.25 which 

is only a split depth (defined in section 7.2.1) of 2. In comparison, the largest split depth 

in the distillation case study was 7 which corresponds to a fraction of the total range of 

7.8 x 10-3. The reason for this difference is that are many more discrete choices in the 

bio-problem due to the additional choice various unit operations. The only discrete de­

cisions in the distillation case study were the choices of key component in each column. 

Since there are so many available unit types in the bio-problem, there are far more pos­

sibilities for each stream encountered. The nature of these discrete decisions seems to 

have a greater effect on the objective function than the values of unit variables. Thus, 

the algorithm is able to reject many sub-optimal structures, as the structure has more of a 

significant effect than the unit variable values used.

Although the adaptive box splitting is not used as much in the bio-problem, it is still used 

to a certain extent. The advantage of employing the procedure can still be appreciated 

by considering the extra processing required to carry out the maximum number of splits 

shown in table 7.5. The maximum is required 13 times in the adaptive search. A relatively
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Table 7.5: Split statistics for the bio case-study

Number of splits Occurrences
3 40,306
4 401
5 84
6 62
7 13

huge amount more processor time would be required if the same number of splits were 

to be carried out on almost 41,000 streams. This would be necessary if the uniformly 

discretised interval procedure was used as in chapter 5.

7.3.4 Summary

This section has demonstrated that the new algorithm can be applied to a completely dif­

ferent type of process engineering problem showing its generality. The run for using the 

previous procedure presented in this chapter uses the same level of unit variable discreti­

sation but the coarseness of the component discretisation makes it far less realistic. The 

results show that the increased rigour of bounding the solutions and removal of compo­

nent flow discretisation is worthwhile as it leads to a significantly better solution.

The adaptive algorithm takes much longer to find a solution to the bio-problem than the 

discretised method but this is not surprising due to the differences in the two runs. Com­

ponent discretisation is used to a large degree in the discrete run. Since many of the 

splitters in this problem are non-sharp, components do not disappear as readily when us­

ing the adaptive method compared to the discrete method. This causes there to be more 

unique streams in the adaptive procedure and leads to far less solution re-use. The statis­

tics on splitting show that on relatively few occasions is there more than one split per unit 

variable. However, this is an indication of the efficiency of the algorithm. Specific areas
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are targeted for finer discretisation while the vast majority of streams do not require this 

treatment.

The top-ranked solution from the discrete method does not show any BST in the waste 

tanks so incurs no product penalty. Analysis of the flowsheet shows that nearly 1 kg/hr 

out of 6kg/hr is lost during discretisation. This does not occur using the adaptive method, 

which confirms a more realistic model of a real process. The flowsheet generated by 

the adaptive procedure yields a greater flow of BST as a product because of the lack of 

discretisation. This may be the reason for the lower objective function value.



Chapter 8

Conclusion

This thesis has addressed the problem of finding the optimal flowsheet structure for a 

separation process given a feedstock, product specifications and a set of units. The basis 

of the technique used is implicit enumeration with streams and units represented within 

an object oriented framework.

A drawback of the existing procedure was the need to discretise unit variables and stream 

characteristics such as component flows. The user had no idea of the effect of these 

discretisations on the quality of the solutions obtained. Indeed there was no guarantee 

that the top-ranked solution was in fact optimal. Interval analysis has been applied to 

stream and unit models in order to address these issues.

8.1 Intervals for cost bounding

Chapter 4 showed how interval techniques can be applied to the unit variable pressure in 

a distillation column. Intervals were used to span the spaces between discrete pressure 

levels. The resulting design of a column gave bounds on the capital and operating costs.
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Ultimately this allowed the cost of an entire flowsheet to be bounded during the implicit 

enumeration search. This technique was applied to a hydrocarbon separation problem 

where a range of pressure was allowed in each column. The goal was to isolate the 

optimal distillation column sequence.

Several runs were carried out at varying levels of discretisation. The solutions were ranked 

on the basis of the lowest lower bound on the objective function. This ensured that there 

was no cheaper available solution to the separation problem. In the course of this in­

vestigation, it was realised that if the column pressure intervals were consistent with the 

stream pressure intervals, the nominal cost would represent a real solution. This allowed 

the nominal cost to be used as an upper bound on the global minimum cost for the prob­

lem. This result proved very useful when trying to resolve the superiority of one process 

structure over another. A structure is deemed as sub-optimal if its lower bound is greater 

than the best nominal value in the list of solutions. This allowed resolution between struc­

tures with a coarser level of discretisation than would have otherwise been possible.

Chapter 5 developed the application of interval analysis further by using intervals to de­

scribe component flows. This is a more challenging issue than that tackled in the previous 

chapter as the presence (or absence) of a component within a stream depends on its flow 

rate. Whether or not a component is present can in turn affect the units necessary for 

processing and therefore the resulting structure. The method proposed to deal with these 

issues, no longer discretises the majority of component flows as this leads to unnecessary 

widening of bounds. Discretisation only occurs for very small flows where the flow is 

mapped to the trace interval. This allows much solution re-use to be retained, as com­

pared to no discretisation whatsoever, while providing a threshold where a component is 

no longer considered as a key for distillation.
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8.2 The adaptive algorithm

Chapters 4 and 5 described a framework for bounding the cost effects of discretisation, 

giving some assurance on the quality of the solutions obtained. Successive runs provided 

progressively tighter bounds on these solutions. However, there were outstanding prob­

lems associated with using intervals such as when an interval parameter was part feasible 

and part infeasible. A scheme that could deal with these situations and change the level 

of unit variable discretisation depending upon necessity was described in chapter 6.

This algorithm signalled a departure from the straightforward implicit enumeration search. 

The new algorithm is based on previous box splitting algorithms but is novel in the com­

bination with an implicit enumeration search. Each discrete alternative generated by the 

enumeration generates a box. Each stream encountered is then solved recursively, not to 

find the best box but to find the optimal structure for processing the stream. No area of the 

search space is discounted before it has been demonstrated that it is either sub-optimal or 

infeasible. This gives the assurance that the structure isolated is optimal.

The application of the new algorithm to the benzene case study in chapter 7 demonstrated 

its performance. The same case study was attempted in chapter 5 with uniformly dis­

tributed unit variable intervals. To reach the same resolution as the adaptive method the 

previous method required 40 times the processor time.

The number of splits required for different streams encountered was analysed. No obvious 

relationship was evident between the number of splits required to solve the problem and 

any of the stream characteristics. This unpredictability shows the need to use such an 

algorithm, as rules cannot be applied as to how a stream should be handled simply based 

on its constituents.

The ability of the algorithm to handle a different type of problem was demonstrated by 

its application to a case study involving the purification of a protein from a biological
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process stream. In solving the problem the algorithm does not require the quantity or 

fineness of box splitting that was required by the distillation problem. However, this still 

indicates the efficiency of the procedure. It is better that further splitting only occurs on a 

small minority of occasions when necessary rather than to this fine level for every stream 

encountered.

The value of the interval bounding was demonstrated in the fact that the structure that was 

identified as optimal was different from the top ranked structure yielded by the previous 

discrete approach. The discretisations in unit variables and component flows had led to a 

superior solution being missed.

Overall, the methods developed have been successful in addressing the issues that moti­

vated this project. Interval cost bounds give the user a feeling for range of likely costs 

for the process. The adaptive algorithm allows the optimal structure to be identified. This 

is achieved in a more efficient manner than if the whole search space were spanned by 

uniformly sized intervals at the necessary level of detail as used by the adaptive algorithm.

8.3 Future work

It has been demonstrated that interval analysis and box splitting can be applied to an 

implicit enumeration based search for optimal separation process structures. However ef­

ficient the algorithm, there are always a finite number of alternatives that must be explored 

in the search. The algorithm works most efficiently when there are fewer discrete options, 

such as choice of different units, and more unit variables with ranges of possible values. 

For a given unit design, the use of interval calculations takes longer and more memory is 

required to store solutions. For this reason, the new algorithm is more likely to fail for 

highly combinatorial problems than the previous discrete approach.



CHAPTER 8. CONCLUSION 145

The issue of memory use could be addressed by removing the dynamic programming 

facility for certain problems. To tackle the bio case-study, discretisation, even at small 

flow rates, was not used. As a result there was little re-use of solutions. The savings in 

processor time are outweighed by the huge amount of memory required to save all the 

solutions. Without dynamic programming the search could continue for more than the 

timescale of hours and therefore would be capable of tackling larger problems.

In terms of processing time, it may be possible to increase efficiency by investigating 

alternative criteria for choosing the box and variable for the next split. For a given problem 

stream, this would only be useful when all the boxes in the list had been assigned a 

downstream structure and the aim was to eliminate sub-optimal structures.

It has been demonstrated that the interval based algorithm is applicable to different types 

of synthesis problem. Currently, using the algorithm for a new type of problem requires 

a lot of development time. This is particularly true for the conversion of unit models for 

interval calculations. In the future, it would be useful to develop a thorough strategy for 

minimising dependency in the perturbed interval equations encountered in unit models. 

This could be extended to the calculation of stream characteristics. Such a strategy would 

allow more rapid application to new problems and eventually to an interface for writing 

interval models.



Appendix A

Biological data

A.l Physical properties

Tables A. 1 shows the physical properties of the components of the feed stream to the case 

study presented in section 7.3.
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Table A. 1: Physical properties for the case study
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Component Density
(g/1)

Size
fim

Molecular 
Weight (g/mol)

$

glucose 1250 1.0 x 10"3 180 0.1
N H t 1050 5.0 x 10"4 18 0.01
^04- 1050 1.0 x 10"3 96 0.01
antifoam 985 1 x 10"2 500 1.0
BST (product) 1000 0.02 248200 0.9
protein 1 1000 0.01 18370 0.71
protein 2 1000 0.015 85570 0.48
protein 3 1000 0.013 53660 0.76
protein 4 1000 0.013 120000 1.5
protein 5 1000 0.013 203000 0.36
protein 6 1000 0.013 69380 0.36
protein 7 1000 0.013 48320 0.48
protein 8 1000 0.013 93380 0.93
protein 9 1000 0.013 69380 0.01
protein 10 1000 0.013 114450 0.63
protein 11 1000 0.013 198000 0.06
protein 12 1000 0.013 30400 1.0
protein 13 1000 0.018 94670 0.01
water 1000 4.0 x 10"4 18 N/A

Table A. 2: Inclusion body properties

Component concentration (g/1)
BST 650
protein 1 620
Density 1270 g/1
Size 0.4 fim

A.2 Unit data

The following tables show the design constraints, parameters and costing information 

that were used by Steffens et al. (2000) and for the bio-synthesis case study presented in 

section 7.3.
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Table A.3: Bio-process unit design constraints
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Unit Constraints
Ultrafilter 1/im > x > 0.001 fim

cf  < 200 g/1
cr < 500 g/1

Microfilter 10 fim > x > 0.1 fim
crs < 500 g/1

Diafilter 1 > x > 0.001 fim
Cf < 400 g/1

Rotary drum filter 200 /im > x > 1 fim
Csolidf < 70% w/w

Chromatography c/ < 70 g/1
column no solids in feed

Table A.4: Capital and operating costs

Unit Capital cost Operating cost
Ultrafilter 1000 $/m2 Membrane = 250 $/m2

Energy = 5 kWh/m3 permeate 
Energy costs = 0.04 $/kWh

Microfilter 5000 $/m2 Membrane = 700 $/m2 
Energy = 0.13 $/m3 feed

Diafilter 1000 $/m2 Membrane = 250 $/m2 
Energy = 5 kWh/m3 permeate 
Energy costs = 0.04 $/kWh

Rotary-drum filter 9528 $/m2 Filter aid = 5kg/m3 filtrate
+ 22787 $ Filter aid cost = 0.33 $/kg 

Energy = 0.12 $/m3 feed
Gel filtration 273613 $/m 

+ 82894 $
Gel cost = 300 S/1

Hydrophobic-interaction 247490 $/m diameter Gel cost = 400 $/l
chromatography + 88765 $
Solubilisation and 1000V°-53402e5-348 $ 2.15 $/kg guanidine
renaturing tank

The <=  symbol in table A. 5 denotes variables that have been given a range of values for 

the purposes of the case study.



APPENDIX A. BIOLOGICAL DATA

Table A.5: Unit design parameters
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Unit Parameter values
Ultrafilter cs =  250 g/1

k =  1.0 x 10~6 m3/m2/s
cr = 50-400 g/1 <*=

Microfilter Cfc =  400 g/1
k =  1.5 x 10-5 m3/m2/s
cr =  400 -  1100 g/1 « =

Diafilter cff =  250 g/1
k =  1.0 x 10-6 m3/m2/s
Df = 2.0 — 5.0 m3/m3 4 =

Rotary-drum filter Cfc =  350 g/1
w =  1.0 m3 water/m3 feed 
Cake resistance =  5.0 x 1011 m/kg 
Pressure drop =  68 Pa 
Filtrate viscosity =  0.0011 kg/m/s 
Cycle time =  180 s

Gel-filtration Maximum diameter = 1.0 m
Hsam ~  5 %
Column length, I = 0.25 m 
cr = 0.46 
8 = 0.02
tr = 1 h

Hydrophobic interaction chromotography Maximum diameter =  1.0 m 
Bc =  20 mg/ml 
Column length = 0.25 m 
a  = 0.22 
8 = 0.02 
tr = 1 h

Solubilisation and renaturing tank tr =  44 h 
y = 80 %
Cprot 50 g/1
Solution of 3M guanidine HC1 used

A.3 Unit design procedures

A.3.1 Ultrafilter and microfilter 

Stream composition

The following equaitions relate to the calculation of the composition of permeate and 

reject stream based on the design variable cr (the total concentration of the reject stream).
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The subscripts r,p and /  relate to reject, permeate and feed streams respectively. The 

subscripts I and s refer to large and small components respectively.

CLr ^Sf

The concentration factor is the ratio of the concentration of large components in the reject 

to the feed.

r CLr
V C J =  —

CL f

Small components have equal concentration in the product streams, this is the same con­

centration as in the feed. For small component i :

( k f  —  f y r  —  C-ip

The total concentration of large components in the reject stream is then calculated.

C~ifCLr
Cir

CLf

The flowrate of the reject stream is then calculated from the concentration factor.

Q = —V r  rVCJ

Volume factors for the small components in the feed and the large components in the 

reject are then calculated, s relates to the integer index of the components in the feed 

when ordered by particle size starting with the largest component having an index of 0. n 

is the number of components in the feed stream.
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5 — 1 CiTEW'

pi

The concentration of the solvent (water) in the reject and permeate streams can then be 

calculated from these volume factors.

C\V r  P w i ,  1  ^ f r a c L r  V f r a c S f )

Cwp P W  (1 V fra c S  f')

Finally the volumetric flowrate fo the permeate is calculated.

^    QfPf  QrPr
Pp

Costing of ultraiilter

The area, A,  of the filter is calculated from the permeate flowrate, mass transfer coeffi­

cient, feed concetration and gel concentration.

A =  Qp
cf

/3 8 8 \
capcost =  1000 f J A  (Ho and Sirkar, 1992)

Energy costs, in USD/year, are then calculated from permeate volumetric flowrate and 

hours of operation per year.

E  = 5Qp x 0.04 x 3600hpy

Total operating cost is then calculated from the membrane cost, Costmem (USD/m2yr). 

This was 250 $/m2yr in the case study, opercost = CostmemA + E



APPENDIX A. BIOLOGICAL DATA 152

Costing of microfilter

The area, A, of the filter is calculated from the permeate flowrate, mass transfer coeffi­

cient, feed concetration and cake concentration.

capcost =  500(L4

opercost = CostmemA +  0.13Q/ x 3600 x hpy

A.3.2 Diafilter 

Stream composition

The same naming conventions are used for the dialfilter as the other two filters. It produces 

a reject stream and a permeate stream and the split is based on component size when those 

in the feed are sorted in order of size. For this unit, the volumetric flowrate of the reject 

stream is the same as that of the feed stream and the large compoent pass completely into 

the reject stream so Q f = Qr and for a large component i,Cif = cir.

The design variable Dp is the ratio of volumetric flowrate of the permeate stream to the 

feed stream so Qp =  D f Qf . The concentration of a small component, i, in the reject is 

given by the equation cir = Cife~°F.

The volume factors of large components in the feed and small components in the reject 

are then calculated.
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S — 1

E C if

i=0 Pi

The concentration of water in the reject stream can then be calculated.

C w r  P w i X  V f r a c S r  ^  f r a c L f )

The concentration of a small component, i, in the permeate stream is given by:

C i f Q  f  C i r Q r

Cir =  Q ,-------

Finally the concentration of water in the permeate is calculated.

C\Vp =  P w  ( 1  V f r a c S p )

Costing

The area of the diafilter is calculated using the same equation as the ultrafilter. The capital 

cost is also calculated in the same way. Operating is then calculated as follows:

opercost = CostmemA +  0.4capcost
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A.3.3 Rotary drum filter 

Stream composition

The density of small components in the feed are calculated from their concentration and 

volume fraction.

° S f
P s f  = ----------------

V f r a c S f

The volume fraction of large components in the feed includes the contribution of the filter 

aid that is added.

The fraction of the small components that are left in the filter cake, xsk, is a function of 

the design parameter wash rate.

The concentration of water and small components in the reject is then calculated.

C f i l t e r  A idF eed

P  f i l t e r  A id

The concentration of filter aid in the reject stream is then calculated.

C -filterAidF eed
C f  U terA idR ej  ect

xs k = 1.092e 1 1945*s‘

1 /  pw +  (! r w  \ C W f P S f  )

XSkCSf
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Large components pass entirely into the reject stream in the same proportions as they are 

present in the feed. For a large component, i:

CLf

The properties of the permeate stream can then be calculated using a another mass bal­

ance. Small components pass into the reject stream in the same proportions as they appear 

in the feed.

Costing

Filter area is calculated from permeate volumetric flowrate, Qp, filtrate viscosity, fi, cake 

resistance a, pressure drop A P , feed solids concentration, csoiidf, cycle time tc and stream 

volumetric flowrates.

A =  Qp
0 .4 A  P

HGCsolidf

388
capcost = (9528^4+22787)^^

The operating cost includes the cost of filter aid, cost/ a.

opercost = (3600 x costfa x hpy) +  (0.12Q/ x 3600 x hpy)
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A.3.4 gel filtration 

Stream composition

In the following equations the subscript, P, refers to the product component and p refers 

to the product stream. The volumetric flowrates of the reject and product streams are 

equal.

CPp =  Cp f  * (1 — 5)

The concentration of component i in the output streams is calculated as follows. All logs 

are to base 10.

kP = log MwP 

ki =  log Mwi 

A =  k p  — ki

If A > |  and A < a then x  =  (1 +  d)

If A > 0 and A < |  then x  =  (1 +  5) ~2A ^

Cjp — XC~ij

Costing

The volume and diameter are then calculated.

V -  100Q ftrB sam
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d —

capcost = 273613. Od +  82894

opercost = 3600hpyQ j

Water is added to the output streams in quantities that make the stream densities that of 

water.

Hydrophobic interaction columns are deigned in the same way as gel filtration columns 

except that A is calculated from the difference in hydrophobicity of the product compo­

nent and component i. The volume of the column is given by

V = 1 0 0 % ^
Bc

A.3.5 Solubilisation and renaturing tank

This unit is used to dissolve inclusion bodies and access the protein that is contained 

within.

Stream composition

The volumetric flowrate of the output stream,Qp, is calculated from the design variable 

Cprotp, the concentration of protein in the product stream, the concentration of protein in 

the feed stream, Cprotf,  the concentration of inclusion bodies in the feed, C^/ and the 

volumetric flowrate of the feed, Qf.

Q p — ( C protf  +  C i b f ) - ~ t —
Cprotp
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Components that are not within the inclusion bodies in the feed are then added to the prod­

uct stream in their entirety. Proteins within the inclusion body are added to the product 

stream. The mass added is the mass in the feed multiplied by the yield variable, y.

The refolding chemical is then added to the product in the concentrations specified. In 

the case of the case study this was guadinine in a concentration of 300 g/1. Water is then 

added to make the volumetric flowrate of the stream up to the value of Q f calculated 

earlier.

Costing

The volume of the tank is calculated from the volumetric flowrate of the feed multiplied 

by the residence time. The minimum volume is 0.4 m3.

V = Qf t r

capcost= i0001/°‘53402e5'348

Operating cost is calculated from the cost of guadinine, costguad,the mass added and the 

number of operating days per year.

opercost = 3600hpy Q fCgUadCostguad
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A.4 Biological nomenclature

Bc binding capacity (mg/ml)

Bsam sample volume (% column vol)

C/ total feed cone (g/1)

ŝolidf feed solids cone (g/1)

C9 gel cone (g/1)

Cfc cake solids cone (g/1)

c p total permeate stream cone (g/1)

C prof protein concentration (g/1)

Cr total reject stream cone (g/1)

C rs reject solids cone (g/1)

D F dilution factor (m3 water/m3 feed)

hpy hours operation per year (500 for the case study)

k mass transfer coefficient (m3/m2/s)

Molecular weight of component i

tc cycle time

t r residence time (h)

W wash ratio (m3 water/m3 feed)

y yield (g protein renatured/g total protein)

a cake resistance (m/kg)

P filtrate viscosity (kg/m/s)

$ hydrophobicity defined by Leser et al. (1996)
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