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Abstract

How do comers of different angles affect visual physiology and brightness 

processing in the brain? Some visual illusions show that corners can be more salient 

perceptually than edges, even when their physical luminance is equivalent. 

Combining several techniques (computational modeling, human psychophysics, and 

human fMRI) we have studied the relationship between corner angle, brightness 

perception, and visual physiology. Our psychophysical results show that corners 

appear quantifiably brighter for sharp than for shallow angles, and that the perceived 

brightness of the comer is linearly correlated to the corner’s angle. Basic linear 

models of center-surround receptive fields predict the main result from the 

psychophysical experiments (that is, that sharp corners are brighter/more salient than 

shallow comers). Thus our data suggest that comers start to be processed from the 

very first stages of the visual system. Our human fMRI experiments furthermore 

show that BOLD signal response to corners increases parametrically with angle 

sharpness in all the retinotopic areas of the visual cortex, suggesting a general 

principle for corner processing throughout the visual hierarchy.
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1. Chapter 1. 
General Introduction

1.1. Visual system  hierarchy

The process of "seeing" is complex and not well understood. What we do 

know is that neurons in the early visual system change their activity in response to 

stimuli with specific attributes (such as color, shape, brightness, etc) within a small 

range of visual space. The receptive field of a visual neuron is the area of the visual 

scene (or its corresponding region on the retina) that when stimulated (by light or 

electrical impulses) can influence the response of the neuron. Illumination outside the 

receptive field produces no effect on firing. Strictly defined "the term receptive field 

refers to the specific receptors that feed into a given cell in the nervous system, with 

one or more synapses intervening" (Hubei, 1995). Sherrington introduced the term 

"receptive field" in relation to reflex actions (Sherrington, 1906) and Hartline first 

applied it to the visual system (Hartline, 1940). Receptive fields at different stages in 

the visual system have different structure and properties. Studying the neuronal 

connectivity that gives rise to these different receptive fields will give us some insight 

into the role of specific circuits in visual processing. For instance, some early 

receptive fields have a spatial substructure while others do not. Stimulating different 

regions of these receptive fields can give rise to increases or decreases in neural 

activity. The interaction between the receptive field substructure and stimuli of
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different types most likely underlies visual perception. Understanding the structure of 

the receptive field of a given neuron is therefore crucial to understanding and 

predicting the responses of a neuron to a given stimulus.

The responses of some cells can be modulated in a selective way by 

contextual stimuli lying far outside the classical receptive field (Blakemore and Tobin, 

1972; Nelson and Frost, 1978; Allman et al., 1985; Gilbert and Wiesel, 1990; Levitt 

and Lund, 1997; Walker et al., 1999; Angelucci et al., 2002). Some of the extra- 

classical receptive field effects are suppressive. Several groups have proposed 

divisive models, in which the classical receptive field feeds into the numerator and 

the denominator is provided by a larger suppressive field. The classical receptive 

field would provide the basic selectivity for stimulus properties, whereas the 

suppressive field would modulate the responsiveness of the neuron (Levick et al., 

1972; Albrecht and Geisler, 1991; Heeger, 1992; Carandini et al., 1997; Cavanaugh 

et al., 2002; Carandini, 2004; Bonin et al., 2005)

1.1.1 Retina

1.1.1.1 Anatomy

Vision starts in the retina: it is here where photons are first converted into 

electrical signals, and then into a series of neural responses interpreted by the brain 

to then construct our perception of the visual world.

The retina has the shape of a bowl (about 0.4mm thick in adult humans). It is 

a very well organized structure that has three main layers (called the nuclear layers) 

of neuronal bodies. These layers are separated by two layers containing synapses 

made by the axons and dendrites of these neurons (called the plexiform layers). The 

basic retinal cell classes and their interconnections were revealed by Rambn y Cajal 

over a century ago (Ram6n y Cajal, 1893) (Figure 1).
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A

Photoreceptor
layer

Outer plexiform 
layer

Inner nuclear 
layer

Inner plexiform 
layer

Ganglion cell 
layer

B

Figure 1. Retinal layers. (A) Light micrograph of a vertical section of the human 
retina from Boycott and Dowling (1969). (B) Cross-sectional microscopic drawing by 
Ramon y Cajal (reproduced from Hubei, 1995)______________________________
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The functional anatomy of the retina is enormously rich and complicated. A 

short overview is provided here, to set a basis to understand the next few stages of 

the visual hierarchy.

The three nuclear layers are the photoreceptor layer (which lies on the back 

on the retina, furthest from the light coming in), the inner nuclear cell layer (in the 

middle) and the ganglion cell layer (nearest to the center of the eye).

Photoreceptor layer: light is transduced into electrical signals by 

photoreceptors: rods and cones. Cones are not sensitive to dim light, but under 

photopic conditions (bright light) they are responsible for fine detail and color vision. 

Rods are responsible for our vision under scotopic conditions (dim light), and 

saturate when the level of light is high. Rods and cones are distributed across the 

retina with very different profiles: in the fovea, where our fine vision is most detailed, 

cones are very densely packed (up to 160,000 cones/mm2) but as we move away 

from the fovea cone density drops rapidly. Rods are absent from the fovea (Schultze, 

1866), but their density rises quickly to reach a peak at an eccentricity between 5 and 

7mm, beyond which they steadily decline in number (Osterberg, 1935; Curcio et al., 

1987; Curcio et al., 1990). Humans have one type of rod and three types of cones. 

The 3 types of cones, responsible for color vision, are called L (or red) cones, M (or 

green) cones, and S (or blue) cones, and they are most sensitive to different 

segments of the spectrum of light: L cones are most sensitive to long wavelengths 

(peak sensitivity at 564nm), M cones are most sensitive to middle wavelengths (peak 

sensitivity at 533nm) and S cones are most sensitive to short wavelengths (peak 

sensitivity at 437nm) (Brown and Wald, 1963, 1964; Marks et al., 1964). L, M, and S 

cones are distributed in the retina in a particular way: only 10% of the cones are S 

cones, and they are absent from the fovea. Although L cones and M cones are 

randomly intermixed, there are ~2 times more L cones than M cones (Ahnelt et al., 

1987; Cicerone and Nerger, 1989; Curcio et al., 1991; Mollon and Bowmaker, 1992; 

Roorda and Williams, 1999).
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Inner nuclear layer: contains three classes of neurons: horizontal cells, 

bipolar cells, and amacrine cells. Horizontal cells have their bodies in the inner 

nuclear layer and connect to photoreceptors (through chemical synapses) and other 

horizontal cells (through gap junctions) in the outer plexiform layer (Wassle and 

Boycott, 1991). Horizontal cells receive input from photoreceptors, but they also give 

output to the same photoreceptors, providing lateral inhibition, which acts to enhance 

spatial differences in photoreceptor activation at the level of the bipolar cells (Dacey, 

1999; Verweij et al., 1999). There are over 13 different types of bipolar cells (Boycott 

and Wassle, 1991; Kolb et al., 1992) and all of them have some dendritic processes 

in the outer plexiform layer, the soma in the inner nuclear layer and some axon 

terminals in the inner plexiform layer (Dowling and Boycott, 1966). The dendritic 

processes of a bipolar cell receive input from one type of photoreceptor (either from 

cones or from rods, but never from both) (Rodieck, 1998). Each bipolar cell then 

conveys its response to the inner plexiform layer, where it contacts both amacrine 

and ganglion cells (Dacey, 1999). Amacrine cells (over 30 different types), receive 

input from bipolar cells and other amacrine cells, and pass their messages onto 

bipolar cells, other amacrine cells, and ganglion cells (MacNeil and Masland, 1998; 

Dacey, 2000). Different types of amacrine cells may have different functions in retinal 

processing, but their specific roles remain unknown for the most part.

Ganglion cell layer: there are more than 20 different ganglion cell types 

(Kolb et al., 1992), and many of them are specialized on coding some particular 

aspect of the visual world such as contrast, color, movement... (Rodieck, 1998). 

Ganglion cells receive their input from amacrine and bipolar cells, and send their 

outputs to the brain (through the optic nerve) in the form of action potentials. These 

are the first cells in the visual pathway that produce action potentials (all-or-none) as 

their output; all the previous cell classes (photoreceptors, horizontal, bipolar and 

amacrine cells) release their neurotransmitters in response to graded potentials. 

Even though there are over 20 different types of ganglion cells, 2 of them account for
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almost 80% of the ganglion cell population (Perry et al., 1984): the midget and the 

parasol ganglion cells, named by Polyak (1941). Near the fovea each midget 

ganglion cell receives direct input from only one midget bipolar cell (Kolb and 

Dekorver, 1991; Kolb and Marshak, 2003) and thus has a very small and compact 

receptive field (it collects input from a small number of cones). Parasol cells receive 

their direct input from diffuse bipolar cells, have larger dendritic fields, and thus 

receive input from many more cones (Watanabe and Rodieck, 1989). The dendritic 

field size increases with eccentricity for both types of cells (Watanabe and Rodieck, 

1989; Dacey and Petersen, 1992; Dacey, 1993). Away from the fovea, the increase 

in dendritic field size with retinal eccentricity is more or less matched by a decrease 

in spatial density, so the amount of retina covered is approximately constant over 

most of the retina (Watanabe and Rodieck, 1989).

1.1.1.2 Physiology & Receptive Fields

The receptive fields of ganglion cells in the retina are approximately circular

and have functionally distinct central and peripheral regions (called center and 

surround); stimulation of these two regions produces opposite and antagonistic 

effects upon the activity of the ganglion cells. Hartline first described retinal ganglion 

cell receptive fields as concentric using frog optic nerve recordings (Hartline, 1940). 

Kuffler recorded from ganglion cells in the cat’s retina and was the first to report and 

fully characterize ganglion cells in mammals (Kuffler, 1952, 1953). Hubei and Wiesel 

found that optic nerve receptive fields in the spider monkey were very similar to the 

receptive fields of cat retinal ganglion cells (Hubei and Wiesel, 1960). Ganglion cells 

respond optimally to differential illumination of the receptive field center and 

surround. Diffuse illumination of the whole receptive field produces only weak 

responses. There are two main types of center-surround receptive fields: on-center 

receptive fields respond best to light falling on the center, and darkness falling on the 

surround; off-center receptive fields respond best to darkness on the center and light
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on the surround (Figure 2). The properties of center-surround receptive fields 

change during scotopic conditions: the size of the receptive field center usually 

increases, the surround strength diminishes and there is a longer latency for the 

response (Barlow et al., 1957; Donner and Reuter, 1965; Masland and Ames, 1976; 

Bowling, 1980; Peichl and Wassle, 1983; Muller and Dacheux, 1997).

On-center neuron

On area 
(center)

Off area 
(surround)

Off-center neuron

Off area 
(center)

On area 
(surround)

Figure 2. Concentric receptive fields of retinal ganglion neurons.

Once the center-surround receptive fields of ganglion cells were discovered 

and characterized, an important line of research was launched to discover the neural 

circuitry giving rise to the center-surround organization of receptive fields. Did bipolar 

cells also have center-surround receptive fields? If so, ganglion cells may just be 

inheriting this property from bipolar cells, and the underlying circuitry should be found 

earlier in the visual pathway.

Werblin and Dowling (Werblin and Dowling, 1969), and Kaneko (Kaneko, 

1970) discovered, using intracellular recordings, that bipolar cells also have center- 

surround receptive fields. Therefore, center-surround receptive fields were presumed 

to be built-up in the previous synapse, where photoreceptors, horizontal cells and 

bipolar cells interact. The fact that there are on-center and off-center bipolar cells 

was also presumed to be explained at the level of this synaptic connection in the 

outer plexiform layer.

In the dark, photoreceptors are depolarized and continuously active (Trifonov, 

1968), releasing glutamate to bipolar and horizontal cells. When light arrives and the 

photopigments bleach within a photoreceptor, that photoreceptor hyperpolarizes, and
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the amount of glutamate released decreases in a graded manner, as a function of the 

amount of photons (Tomita, 1965). All photoreceptors use the same 

neurotransmitter, glutamate, and so on-center and off-center bipolar cells acquire 

their preference by having one of two types of glutamate receptor (Miller and 

Slaughter, 1986):

- On-center bipolar cells have metabotropic receptors that make the cell 

hyperpolarize when they receive glutamate (Slaughter and Miller, 1981; Nawy and 

Copenhagen, 1987). When light hits photoreceptors, they hyperpolarize and release 

less glutamate. This reduces the inhibition in the bipolar cells that therefore increase 

their activity. In the dark, photoreceptors depolarize and release more glutamate. 

Therefore the bipolar cells hyperpolarize.

- Off-center bipolar cells have ionotropic receptors that depolarize the cell 

when receiving glutamate (Nelson and Kolb, 1983; Slaughter and Miller, 1983). In 

this case, when light arrives to the retina, the photoreceptors hyperpolarize and 

release less glutamate. Consequently, the bipolar cells decrease their activity. In the 

dark, the photoreceptors depolarize and release more glutamate. As a consequence, 

the bipolar cells depolarize.

Both on- and off- bipolar cells make the same kind of contacts in the inner 

plexiform layer. All bipolar cells release glutamate as their neurotransmitter and all 

the ganglion cells have ionotropic receptors: therefore, ganglion cells that receive 

input from on-center bipolar cells are also on-center. Ganglion cells that receive input 

from off-center bipolar cells are off-center (Rodieck, 1998). In 1978 Nelson et al. 

discovered that there is a clear anatomical difference between on- and off- bipolar 

cells: they synapse onto ganglion and amacrine cells within different sublayers within 

the inner plexiform layer. The off-center bipolar dendrites make synapses closer to 

the inner nuclear layer whereas the on-center bipolar dendrites terminate closer to 

the ganglion cell layer (Nelson et al., 1978; Dacey et al., 2000).
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The mechanism to construct the surround of the bipolar receptive field is not 

totally understood, but it is thought that horizontal cells are at least partly responsible, 

providing lateral inhibition to a large number of photoreceptors. It seems that the 

receptive field center of bipolar or ganglion cells results from the summed 

contributions of the photoreceptors in the absence of the influence of the horizontal 

cells. The receptive field surround would be the result from the action of horizontal 

cells on the same group of photoreceptors. There may also be an amacrine cell 

contribution to the surround, but not much is known about it (Rodieck, 1998; Dacey, 

1999).

As described in section 1.1.1.1 there are two predominant types of ganglion 

cells: midget and parasol (Polyak, 1941). Both types of ganglion cells have center- 

surround receptive fields with similar spatial organization, but physiological studies 

have described several differences between them: parasol cells respond more 

transiently to light onset or offset than midget cells (Gouras, 1968); parasol cells have 

larger receptive fields centers than midget cells at the same eccentricity (De 

Monasterio and Gouras, 1975); most midget cells have spectral selectivity and 

antagonism while most parasol cells do not (De Valois, 1960; Gouras, 1968; De 

Monasterio and Gouras, 1975); parasol cells respond much more vigorously than 

midget cells to small changes in luminance contrast (Kaplan and Shapley, 1986). The 

anatomical and functional differences between midget and parasol cells lead to two 

different visual pathways that keep segregated throughout the early visual system. 

The parvocellular pathway starts with the midget cells and it is very sensitive to color 

and spatial frequency. The magnocellular pathway starts with the parasol cells and it 

is most sensitive to luminance contrast and temporal frequency.

What information do the retinal ganglion cells send through the optic nerve? 

Due to the center-surround organization of their receptive fields, these neurons are 

quite insensitive to changes in overall levels of luminance. They signal differences 

within their receptive fields by comparing the degree of illumination between the
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center and the surround. Meister and collaborators have shown that retinal ganglion 

neurons tend to fire synchronously and that the firing patterns represent specific 

messages about the visual stimulus that differ significantly from what one would 

derive by single-cell analysis. For example, synchronous spikes from ganglion cells 

may provide higher visual areas with a finer degree of spatial resolution than would 

be provided by spikes from individual neurons (Meister et al., 1995; Meister and 

Berry, 1999; Schnitzer and Meister, 2003).

1.1.2 LGN

All retinal ganglion cells send their axons to the brain via the optic nerve. Half 

of the axons decussate at the optic chiasm, so information from each temporal visual 

hemifield is sent to the contralateral hemisphere only. Retinal ganglion cells project to 

three major subcortical targets: the pretectum, the superior colliculus, and the lateral 

geniculate nucleus (LGN) of the thalamus. The LGN is the principal structure that 

sends visual information to the visual cortex. 90% of retinal ganglion cell axons 

terminate in the LGN. These projections happen in an orderly manner preserving the 

topographic representation of the visual word in the retina. Therefore, neighboring 

neurons in the LGN will be stimulated by adjacent regions in visual space. This 

property is called retinotopic organization.

In primates, the LGN contains 6 layers of cell bodies that can be classified in 

two groups according to their histological characteristics: the two bottom layers 

(ventral) contain large cell bodies and are called magnocellular layers; cells in the 

four upper layers (dorsal) are smaller and are called the parvocellular layers. The 

parvocellular layers receive their main inputs from the midget ganglion cells in the 

retina. The magnocellular layers receive their main inputs from parasol ganglion cells 

(Schiller and Malpeli, 1978; Leventhal et al., 1981; Perry and Cowey, 1981; Shapley 

and Perry, 1986; Conley and Fitzpatrick, 1989). Between each of the magno and 

parvo layers lies a zone of very small cells: the koniocellular layers. Konio cells are
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functionally and neurochemically distinct from magno and parvo cells (Hendry and 

Yoshioka, 1994). The finest caliber retinal axons, presumably originating from retinal 

ganglion cells that are morphologically distinct from those projecting to magno and 

parvo layers (Leventhal et al., 1981), innervate the koniocellular layers (Conley and 

Fitzpatrick, 1989).

Each LGN receives input from the two eyes, but these inputs are segregated 

in different monocular layers: layers 1, 3, and 6 get input from the contralateral eye, 

and layers 2, 4, and 5 get input from the ipsilateral eye (Hubei and Wiesel, 1972).

Hubei and Wiesel discovered that LGN receptive fields have a similar center- 

surround configuration to retinal ganglion cells, although their center-surround is 

stronger (Hubei and Wiesel, 1961).

Virtually all parvocellular cells (99%) present linear spatial summation. That 

is, the response to two elements presented simultaneously to the receptive field 

equals the sum of the response to each of the elements presented separately. About 

75% of magnocellular cells are also linear, the other 25% are not (Kaplan and 

Shapley, 1982).

The LGN is often called a relay nucleus because it is the only structure 

between the retina and the cortex. However, LGN neurons are part of a complex 

circuit that involves ascending, descending and recurrent sets of neuronal 

connections (Steriade et al., 1997; Sherman and Guillery, 2001; Alitto and Usrey, 

2003). The major source of descending input comes from neurons in layer 6 of V1. 

These feedback connections can be excitatory (through direct monosynaptic 

connections) or inhibitory (through inhibitory interneurons in the LGN or the reticular 

nucleus of the thalamus) (Erisir et al., 1997; Guillery and Sherman, 2002). The 

functions the corticothalamic pathway are still under discussion (Alitto and Usrey, 

2003). These connections could help to explain LGN neurons extra-classical 

receptive fields properties, like the effects of the suppressive field (Murphy and Sillito, 

1987; Alitto and Usrey, 2003; Carandini, 2004; Bonin et al., 2005). It is generally
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agreed that these feedback connections act by modulating the responsiveness of the 

LGN neurons, and not by driving the actual responses (Sherman and Guillery, 1998).

1.1.3 V1

1.1.3.1 Anatomy

LGN neurons send their axons through the optic radiations to the back of the 

brain, where the primary visual cortex, area V1, is located. V1 is virtually the only 

target of primate LGN neurons (Benevento and Standage, 1982; Bullier and 

Kennedy, 1983), The magnocellular and parvocellular pathways that started in the 

retina remain largely separated.

V1, like most cortical areas, has 6 main layers (Brodmann, 1909). Most of the 

LGN inputs arrive to layer 4, which is divided in four sublayers: sublayer 4Ca 

receives axons mostly from magnocellular neurons. Sublayer 4Cp (and sublayer 4A 

to a lesser extent) receives axons mostly from parvocellular neurons. Layer 6 

receives weak input from collaterals of the same LGN axons that provide strong input 

to layer 4C (Hubei and Wiesel, 1972; Lund, 1973; Hendrickson et al., 1978; Blasdel 

and Lund, 1983). Neurons from the koniocellular layers in the LGN send their axons 

to layer 1 and layers 2-3 (Livingstone and Hubei, 1982; Hendry and Yoshioka, 1994).

Layer 4Ca sends its output to 4B (Lund et al., 1977; Fitzpatrick et al., 1985; 

Callaway and Wiser, 1996). Axons from neurons in 4Cp terminate in the deepest part 

of layer 3 (Fitzpatrick et al., 1985; Lachica et al., 1992; Callaway and Wiser, 1996). 

Layers 2, 3, and 4B project mainly to other cortical regions (Callaway, 1998) and also 

send axons to layer 5 (Blasdel et al., 1985). Layer 5 projects back to layers 4B, 2, 3 

(Callaway and Wiser, 1996) and to the superior colliculus (Lund et al., 1975). Layer 6 

projects to the LGN (Fitzpatrick et al., 1994; Wiser and Callaway, 1996) and also 

sends axons to several V1 layers (Lund et al., 1977; Wiser and Callaway, 1996). 

Many of the projection pyramidal cells have collaterals that connect locally. Layer 1
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contains few cell bodies, but many axons and dendrites synapse there (Lund and 

Wu, 1997). Figure 3 shows a schematic representation of the main connections.

In addition to the feedforward input coming from the LGN, V1 receives direct 

feedback from M2, M3, V4, V5 or MT, MST, FEF, LIP and inferotemporal cortex 

(Perkel et al., 1986; Ungerleider and Desimone, 1986b, 1986a; Shipp and Zeki, 

1989; Rockland et al., 1994; Barone et al., 2000; Suzuki et al., 2000).

Extrastriate Cortex
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Figure 3. Schematic representation of V1 inputs, outputs and vertical 
interconnections. (A) From (Hubei, 1995). (B) From (Callaway, 1998).

1.1.3.2 Physiology & Receptive Fields

In primates, the receptive fields of most V1 input neurons (layer 4C) have the

same center-surround organization as the LGN neurons they receive direct input 

from (Poggio et al., 1977; Bauer et al., 1980; Bullier and Henry, 1980; Blasdel and 

Fitzpatrick, 1984; Livingstone and Hubei, 1984). Outside of layer 4C, the receptive 

field structure is very different and we can distinguish two main groups of cells 

according to their receptive field type: simple cells and complex cells (Hubei and 

Wiesel, 1962).

Simple cells: Hubei and Wiesel first described the receptive fields of "simple 

cells" in area V1 (Hubei and Wiesel, 1959). The receptive fields of simple cells are 

organized in distinct elongated on and off antagonistic subregions, whose spatial 

arrangement determines the responses of the neuron to different stimuli. Simple cells
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are selective to the orientation and spatial frequency of the stimulus (Figure 4). The 

response of simple neurons is reduced when there is a mismatch between the light 

and dark parts of the stimulus and the on- and off- regions of the receptive field. By 

testing the neuron's responses to different stimuli, it is possible to generate tuning 

curves for orientation and spatial frequency.

A B C

Excitatory
regions

m

Figure 4. (A) Schematic representation of simple cell receptive fields with different 
orientations and number of subregions. (B) Receptive field selective to vertical 
orientations. A vertical light bar over the excitatory region is the optimal stimulus 
(left). A non-vertical light bar (right) that partially falls on the inhibitory regions makes 
the cell fire less. (C) Cell stimulated with a bar of the preferred spatial frequency (left) 
and with a bar that is too wide and thus falls on the opposite contrast subregions.

How are the elongated receptive fields of simple cells created? For many 

years two general models have attempted to explain how orientation selectivity is 

generated in the visual cortex (Alonso, 2002): feedforward excitatory models and 

inhibitory cross orientation models. The main feedforward model was proposed by 

Hubei and Wiesel shortly after discovering simple cells (Hubei and Wiesel, 1962): 

each simple cell gets its input from an array of center-surround receptive fields of the 

same sign that have their centers arranged along a straight line on the retina. The 

synapses from the center-surround receptive fields to the simple cell are excitatory 

and this gives the simple receptive fields its elongated shape and orientation 

selectivity (Figure 5). Inhibitory cross-orientation models propose that the 

feedforward connection from center-surround receptive fields establishes a weak 

orientation preference of simple cells, but that the narrow orientation selectivity 

comes from inhibitory inputs from cortical neurons with different orientations
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preferences, which suppress the nonpreferred responses. There are several different 

models based on this principle: Koch and Poggio, 1985; Wehmeier et al., 1989; 

Worgotter and Koch, 1991; Carandini and Heeger, 1994... Somers et al. proposed a 

third type of model, a recurrent model: recurrent cortical excitation among cells 

preferring similar orientations, combined with iso-orientation inhibition from a broader 

range of orientations, integrates and amplifies a weak thalamic orientation bias, 

which is distributed across the cortical columnar population (Somers et al., 1995). 

Recent studies have provided strong support for the original Hubei and Wiesel model 

(Ferster and Koch, 1987; Reid and Alonso, 1995; Ferster et al., 1996; Ferster and 

Miller, 2000; Usrey et al., 2000; Alonso et al., 2001).

Figure 5. Schematic representation of the feedforward excitatory model proposed by 
Hubei and Wiesel in 1962. From Hubei (1995)._______________________________

Complex cells: complex cells in the primary visual cortex, discovered by 

Hubei and Wiesel, are selective to the orientation and spatial frequency of stimuli 

(like simple cells) but their receptive fields do not have distinctive on and off 

subregions (Hubei and Wiesel, 1962). Consequently, complex cells receptive fields 

are invariant to the spatial phase (position of the stimulus within the receptive field) 

and contrast polarity of the stimulus. When a single bar is presented within the 

receptive field, complex cells respond equally well regardless of the bar’s position
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and contrast, as long as the bar has the preferred orientation and width (Figure 6). 

When pairs of bars are presented simultaneously within the receptive field, complex 

cells exhibit nonlinearity in spatial summation (Hubei and Wiesel, 1962): the 

response to simultaneous presentation of two stimuli cannot be predicted from the 

sum of the responses to the two stimuli presented individually. This is a fundamental 

property of complex cells; simple cells are more or less linear (Hubei and Wiesel, 

1962; Movshon et al., 1978b; Carandini et al., 1997; Ringach, 2002b).

Position invariance

invariance

Figure 6. A complex cell gives the same response to bars anywhere within the 
receptive field, and does not prefer either light or dark bars._____________________

The circuitry that gives rise to complex cells is not fully understood; there are 

several different hypothesis in the literature, some of which are shown in Figure 7. 

The "cascade model" (Hubei and Wiesel, 1962) suggests that simple cells and 

complex cells represent two successive stages in hierarchical processing: in a first 

stage, simple cells are created from the convergence of center-surround inputs that 

have receptive fields aligned in visual space. In the second stage, complex cells are 

then generated by the convergence of simple cells inputs with similar orientation 

preferences (Figure 7, left). "Parallel models" (Stone et al., 1979) propose that 

simple cells and complex cells are both constructed from direct geniculate inputs. 

Simple cells are created from the convergence of linear LGN inputs, and complex 

cells from the convergence of non-linear LGN inputs (Figure 7, middle). "Recurrent
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models" (Chance et al., 1999) use a combination of weak simple cell inputs and 

strong recurrent complex cell inputs to generate complex cell nonlinearities (Figure 

7, right). Martinez and Alonso (Alonso and Martinez, 1998; Martinez and Alonso, 

2001; Martinez et al., 2005) published evidence supporting the Hubei and Wiesel 

cascade model.

CASCADE PARALLEL RECURRENT

V I
Simple cells

V I
Simple cells

V I
Complex cells

Retina

LGN

Simple cells

LGN

Retina Retina

LGN

V I
Complex cells 

Hubei and Wiesel (1962)

Figure 7. Different hypothesis about the connectivity of complex cells (after Martinez 
and Alonso, 2001).______________________________________________________

End-stopped cells: ordinary simple and complex cells show length 

summation: the longer the bar stimulus, the better the response, until the bar is as 

long as the receptive field; making the bar even longer has no further effect. For end- 

stopped cells, lengthening the bar improves the response up to some limit, but 

exceeding that limit in one or both directions results in a weaker response. The same 

stimulus orientation evokes maximal excitation on the activating region and maximal 

inhibition on the outlying areas. Hubei and Wiesel discovered and characterized end- 

stopped cells in cat areas 18 and 19 and initially called them hypercomplex cells

Stone et al. (1979) Chance et al. (1999)



23

(Hubei and Wiesel, 1965). Later Gilbert showed that some simple and complex cells 

in cat V1 are also end-stopped (Gilbert, 1977; Bolz and Gilbert, 1986). Several recent 

studies suggest that most primate V1 cells are somewhat end-stopped (Knierim and 

van Essen, 1992; Kapadia et al., 1999; Jones et al., 2001; Sceniak et al., 2001; Pack 

et al., 2003). The receptive field structure of end-stopped cells makes them 

especially sensitive to corners, curvature and terminators (Hubei and Wiesel, 1965; 

Hubei, 1995) (Figure 8).

Rccepti vc-ficld 
orientation

Contour \

\ \

Figure 8. A curved border would be a good stimulus for the end-stopped cell 
represented in the diagram. From Hubei (1995).______________________________

Columnar organization: A fundamental feature of cortical organization is the 

spatial grouping of neurons with similar properties. V1 is functionally organized in 

layers and cortical columns, which are roughly perpendicular to the layers. The 

concept of cortical columns was introduced by Mountcastle in the somatosensory 

system (Mountcastle et al., 1955; Mountcastle, 1957; Powell and Mountcastle, 1959), 

although Lorente de No had envisaged their existence through his anatomical studies 

(Lorente de No, 1949). Hubei and Wiesel discovered columnar organization in area 

V1, first in the cat (Hubei and Wiesel, 1962) and then in the primate (Hubei and 

Wiesel, 1968, 1974; Wiesel et al., 1974). They showed that V1 cells with similar 

properties are grouped into columns: as they advanced an electrode in an orthogonal 

penetration from the cortex surface, they found that the neurons recorded by the
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electrode had similar receptive field axis orientation, ocular dominance, and position 

in the visual field.

- Ocular dominance columns: the inputs from the two eyes are segregated in 

layer 4, where cortical neurons are driven monocularly. In any given column 

extending above and below layer 4, all the cortical neurons, even if driven by both 

eyes, share the same eye preference. Ocular dominance columns form an 

interdigitating pattern on the cortex (Hubei and Wiesel, 1962, 1968; Wiesel et al., 

1974).

- Orientation columns: Hubei and Wiesel (1962, 1968, 1974) found that, just 

as with eye dominance, orientation preference remains constant in orthogonal 

penetrations through the cortical surface: the cortex is subdivided into narrow regions 

of constant orientation, extending from the surface to the white matter but interrupted 

by layer 4C, where most cells have no orientation preference (Poggio et al., 1977; 

Bauer et al., 1980; Bullier and Henry, 1980; Blasdel and Fitzpatrick, 1984; 

Livingstone and Hubei, 1984) (although some recent studies have found orientation 

selective cells in layer 4C (Ringach, 2002a; Shapley et al., 2003; Gur et al., 2005)). In 

a tangential electrode penetration, the orientation preference usually changes 

gradually.

Optical imaging studies have provided precise details about the columnar 

organization: orientation columns are arranged radially into pinwheel-like structures 

with orientation preference shifting gradually along contours circling the pinwheel 

center (Bonhoeffer and Grinvald, 1991; Blasdel et al., 1995). Each pinwheel center 

tends to occur near the center of an ocular dominance patch (Crair et al., 1997; 

Lowel et al., 1998), and iso-orientation contours tend to cross ocular dominance 

boundaries at right angles (Obermayer and Blasdel, 1993). Cortical columns where 

orientation preference changes smoothly or remains essentially constant are 

interspersed with regions containing orientation singularities where the orientation
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changes abruptly by up to 90° (Blasdel and Salama, 1986; Ts'o et al., 1990; 

Bonhoeffer and Grinvald, 1991; Das and Gilbert, 1999).

Horizontal and feedback connections: many local connections in V1 have 

a wide lateral distribution, including long intralaminar connections spreading several 

millimeters (Callaway, 1998). Prominent horizontal connections are those originating 

from and terminating in layers 2-3 and 4B; these connections arise from neurons 

whose long-distance axon collaterals form periodic clusters (Gilbert and Wiesel, 

1979, 1983; Rockland and Lund, 1983; McGuire et al., 1991; Anderson et al., 1993; 

Callaway and Wiser, 1996). These clusters tend to preferentially link columns of 

neurons with similar response properties: in cats, ferrets, and monkeys they 

preferentially link columns with similar orientation preference (Ts'o et al., 1986; 

Malach et al., 1993). Feedback connections from extrastriate cortex to V1 also show 

an orderly topographic organization and terminate in a patch-like manner within V1 

(Angelucci et al., 2002). These two types of orderly connections (horizontal and 

feedback) may be involved in the generation of suppressive fields in V1 neurons, as 

well as other extra-classical receptive field modulations (Gilbert et al., 1996; 

Carandini et al., 1997; Angelucci et al., 2002; Levitt and Lund, 2002; Carandini,

2004). Intra cortical connections may be important to understand the neural 

computations carried out in V1. Zhaoping has proposed that V1 creates a saliency 

map using intra cortical mechanisms. This saliency map can be used to attract 

attention to a visual location without top-down factors, which may explain certain 

visual search properties (Zhaoping, 2005).

1.1.4 Extrastriate cortex: the dorsal and ventral visual pathways

The primate cortex has at least 32 distinct visual areas (Desimone and 

Ungerleider, 1989; Felleman and Van Essen, 1991). In the first two stages of cortical 

processing (V1 and V2), the magnocellular and the parvocellular pathways keep 

largely segregated: inputs from the LGN arrive to different sublayers in V1 according
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to their magno/parvo origin and projections from V1 layer 4C are also fairly separated 

in V1 and V2 as revealed by cytocrome oxidase stainings (Livingstone and Hubei, 

1984; Livingstone and Hubei, 1988; Van Essen and Gallant, 1994; Olavarria and Van 

Essen, 1997). After V1 there are two main processing streams, associated with 

different visual capabilities (Ungerleider and Mishkin, 1982; Maunsell and Newsome, 

1987; Desimone and Ungerleider, 1989);

-The dorsal or parietal stream emphasizes motion analysis (with similar 

properties to the magnocellular pathway). After M2 the information flows to MT, MST 

and other intermediate areas. MT neurons are selective to the direction of stimulus 

motion, speed and binocular disparity (Zeki, 1974a, 1974b; Baker et al., 1981; 

Albright, 1984). The highest stages of this stream are clustered in the posterior 

parietal cortex. This stream is involved in assessment of spatial relationships and it is 

often called the “Where” pathway.

-The ventral or temporal stream emphasizes form and color analysis (similar 

properties as the magnocellular pathway). After V2 the information flows to V4 and 

other intermediate areas; many V4 neurons are selective to stimulus color (Zeki, 

1978a, 1978b), orientation, width, and length of bars (Desimone and Schein, 1987), 

curvilinear and linear gratings (Gallant et al., 1993; Gallant et al., 1996), and contour 

features like angles and curves (Pasupathy and Connor, 1999). The highest stages 

of this stream are clustered in the inferotemporal cortex. This stream is concerned 

with visual recognition of objects as it is often called the “What” pathway.

The transformations of the visual image that occur along each of these 

pathways do not appear to result in increased selectivity for basic parameters 

(Maunsell and Newsome, 1987) such as direction or speed (Albright, 1984) in the 

dorsal pathway or wavelength (de Monasterio and Schein, 1982) or orientation 

(Desimone et al., 1985) in the ventral pathway. Also, retinotopic specificity decreases 

progressively in successive levels of each of the pathways: the average receptive 

field size in MT is 100 times larger than in V1 (Gattass and Gross, 1981). In MST
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receptive fields can cover a full quadrant of the visual field (Desimone and 

Ungerleider, 1986). V4 receptive fields are about 30 times larger than V1 receptive 

fields (Van Essen and Zeki, 1978; Maguire and Baizer, 1984), and downstream in the 

ventral pathway they become over 100 times larger (Desimone and Gross, 1979). 

Rather than sharpening basic tuning curves, the transformation of information along 

each of the pathways appears to construct new, more complex response properties; 

both pathways may use similar computational strategies for processing information 

(Maunsell and Newsome, 1987).

The hypothesis of two distinct streams of processing was initially formulated 

by Ungerleider and Minsk (Ungerleider and Mishkin, 1982). Many different groups 

have provided anatomical, physiological, and behavioral support to this idea. In 

humans, clinical observations indicate that damage to the parietal cortex can affect 

visual perception of position, leaving object recognition unimpaired (Ratcliff and 

Davies-Jones, 1972; Damasio and Benton, 1979; Zihl et al., 1983). Temporal lobe 

lesions can produce specific deficits related to object recognition (Meadows, 1974b, 

1974a; Pearlman et al., 1979; Damasio et al., 1982). Systematic lesions studies in 

primates have found a functional separation between the temporal and parietal 

cortices (Dean, 1976; Ungerleider and Mishkin, 1982; Mishkin and Ungerleider, 

1983).

While it is widely accepted that information is computed in these two largely 

parallel visual pathways (as shown in schematic on Figure 9 taken from Kandel et 

al., 2000), it is important to note that the separation between the two pathways is far 

from complete. There is anatomical and physiological evidence of substantial cross­

talk between the two streams (Felleman and Van Essen, 1991; Van Essen et al., 

1992; Merigan and Maunsell, 1993).
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Figure 9. Schematic of the two visual pathways in the primate, showing the main 
connections between the different areas (from Kandel et al., 2000)___________

1.2. Center-surround receptive field simulations

1.2.1 Simulation of receptive fields

By understanding thoroughly the organization and properties of receptive 

fields at a given stage in the visual pathway, it becomes theoretically possible to 

predict their responses to any possible visual stimulus. The responses of early 

receptive fields can be predicted to some extent using computational models that 

simulates the receptive fields' output. One fundamental property of the neurons 

implemented in the computational model is that their unit of output is the action 

potential: neurons may integrate the graded excitatory and inhibitory inputs that they 

receive within their dendritic tree, but their output is a certain number of action 

potentials. Moreover, for our simulations we assume that a resting neuron produces 

no action potentials, so neuronal responses are only produced when the sum of 

inhibitory and excitatory inputs exceeds a certain threshold; if the sum is negative 

(the neuron is inhibited), or if the inputs fail to depolarize the neuron above threshold, 

then there is no output. The output of the neuron in the inhibited state is therefore
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indistinguishable from the complete lack of inputs. Any computational simulation of 

the output of a neuron must account for this characteristic, and we therefore may not 

express negative outputs as the response of the neuron, even when the neuron may 

have highly inhibitory inputs.

A meaningful simulation must also account for the specific substructure of 

each receptive field type, and its interaction with the specific position and orientation 

of the stimulus.

These two properties (no negative output and the interaction between 

receptive field substructure and stimulus) can be achieved with a two-stage 

computational simulation: the first stage consists of convolving the stimuli with a 

linear filter that captures the receptive field spatial structure of the neuron being 

modeled. The second stage is a static non-linearity (such as half-wave rectification) 

that prevents the output of the model from being negative. We will explain the two 

stages shortly, but first we will describe two properties of early receptive fields that 

are key for these types of simulation: linearity and retinotopic organization.

Linearity: Most retinal ganglion and LGN center-surround receptive fields in 

the primate exhibit near-linear spatial summation properties (Kaplan and Shapley, 

1982; Croner and Kaplan, 1995; Levitt et al., 2001). Simple cells in V1 also have this 

property (Hubei and Wiesel, 1962; Movshon et al., 1978b; Carandini et al., 1997; 

Ringach, 2002b). Linear spatial summation means that the response to the 

simultaneous presentation of two stimuli equals the sum of the responses to the two 

stimuli presented individually.

Retinotopic organization: As described in the General Introduction, the 

early visual system is retinotopically organized. This means that neighboring neurons 

have receptive fields that correspond to neighboring parts of the retina (and therefore 

to neighboring parts of the visual space). Since LGN neurons are retinotopically 

organized, and nearby neurons share similar receptive field properties and sizes, the 

output of an LGN cell to different parts of an image region is comparable to the global
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output of an ordered array of LGN cells, with the same properties, looking at that 

region. This region should be small enough so that the receptive field properties of all 

neurons involved are similar (for instance, receptive field sizes increase with 

eccentricity, so neurons further apart would have different receptive field sizes).

Linear convolution: The output of linear, retinotopically organized neurons 

to a given image can be simulated by convolving a linear filter with the image (Marr, 

1982; Wandell, 1995). The linear filter needs to capture the spatial structure of the 

receptive field. Therefore, filters representing retinal ganglion cells and LGN neurons 

must have a concentric center-surround organization, while filters representing V1 

simple cells must have several elongated subregions. Basic models of neurons at the 

earliest stages of visual processing (retina, LGN, and V1 simple cells) typically 

include a single linear filter, whereas models of neurons at later stages of processing 

(V1 complex cells and beyond) require multiple filters (Enroth-Cugell and Robson, 

1966; Movshon et al., 1978a; Adelson and Bergen, 1985; Touryan et al., 2002; 

Carandini et al., 2005). Convolving a linear filter with the image involves multiplying 

the intensities at each local region of the image (the value of each pixel) by the 

values of the filter and summing the weighted images intensities (Carandini et al.,

2005). This output can be negative (when there is a mismatch between the sign of 

the filter and the sign of the image), so the model needs a second stage to describe 

how the filter outputs are transformed into a firing rate response (which is never 

negative).

Half-wave rectification: a half-wave rectification takes the negative values 

and makes them zero, without changing the positive values, thus simulating the 

effect of the non-linear threshold found in physiological neurons. This operation is 

called a static nonlinearity, because it depends only on the instantaneous outputs 

and it does not change with time. Other static nonlinearity functions, such as half-way 

squaring, can be used instead.
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The two stages in the computational simulation (linear filtering and static 

nonlinearity) are followed in some models by a Poisson spike generator to transform 

the firing rate into spikes (“Linear -  Nonlinear -  Poisson” models) (Chichilnisky, 2001; 

Carandini et al., 2005). Other more realistic models, like the “Integrate-and-Fire” 

model, have also been proposed (Troyer and Miller, 1997; Reich et al., 1998; 

Shadlen and Newsome, 1998; Keat et al., 2001; Pillow et al., 2005). However, the 

“Linear -  Nonlinear -  Poisson” model is the simplest and most widely used model of 

linear responses.

1.2.2 Center-surround receptive fields as Difference of Gaussians filters

Center-surround receptive fields of retinal ganglion or LGN cells can be 

simulated with a Difference of Gaussians (DOG) filter (Rodieck, 1965; Enroth-Cugell 

and Robson, 1966). This model captures the spatial structure of concentric 

antagonistic receptive fields (Dayan and Abbot, 2001) and it is very widely used. The 

model assumes that Gaussian functions represent both the center and the surround 

of a concentric receptive field: the center is a narrow Gaussian, while the antagonistic 

surround is a much broader Gaussian. The subtraction of these two functions 

characterizes the response of the neuron (Figure 10).

We have developed software to implement the DOG model. The equation we 

used to represent the neuron's receptive field is:

X  '  +  V * l  * +  V *

N(.x, v) = C (x ,  v) -  S(x, v) = k e  a‘ - k se a'

Where:

i "  +  v "

C(jc, v) = k e a —> centre Gaussian

\ " + v"

S(jc, v) =  k se a' —> surround Gaussian

<jc and <7S, or the ‘radius’ of center and surround, represent the distance over

which the sensitivities of center and surround fall to 1/e of the peak value, and k /k s

gives the relative strength of center and surround components.
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Figure 11 shows the 3-dimensional plot of an on-center receptive field 

generated with this model.

center

surround

iC(x)

N(x)
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Figure 10. One-dimensional slice through the center of an on-center receptive field 
modeled as a DOG filter. C(x): excitatory center function; S(x): inhibitory surround 
function; N(x): resulting on-center receptive field.___________________________

A B C

I

Figure 11. Three-dimensional plot of an on-center receptive field generated with the 
DOG model. A) Excitatory center. B) Inhibitory surround. C) On-center receptive field 
obtained as a Difference of Gaussians of the center and the surround.____________

We used the DOG model of center-surround receptive fields just described to 

simulate the output of linear retinal ganglion and LGN cells. When an on-center 

receptive field is stimulated with light on the center and darkness on the surround 

(the receptive field's preferred stimulus), the neuron responds with a certain number 

of action potentials. With opposite stimulation (darkness on the center and light on
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the surround), the neuron is maximally inhibited and there is no output (the neuron is 

silent, as it also would be if not stimulated at all, or if whole receptive field was 

covered by diffuse light). For intermediate situations (some portion of the center 

and/or the surround is not optimally stimulated), the output of the neuron will be a 

fraction of the action potentials obtained for the optimal stimulus

Figure 12 shows the result of convolving a 100% contrast edge with a DOG 

filter representing an on-center receptive field.

A B
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OUTPUT
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response response

Figure 12. A) 100% contrast edge. The concentric red circles (1 and 2) represent the 
size of the DOG filter used with respect to the stimulus. Middle insert: Contour plot of 
an on-center DOG filter. B) Convolution of the DOG filter (Insert) with the edge in (A). 
The neuron is excited (positive values in the convolved image, warm colors in Figure 
12B colorscale) when light falls on the center and darkness falls on part of the 
surround (position 1 in Figure 12A). The neuron is inhibited (negative values, blue in 
figure's Figure 12B colorscale) when there is darkness on the center and light on 
part of the surround (position 2 in Figure 12A). And there is no output from the 
neuron (zero, green in Figure 12B colorscale) when center and surround are 
uniformly covered by either light or darkness.________________________________

Now we can apply the second stage of the model, the half-wave rectification, 

to the result of the convolution (Figure 13).

For this simulation, and for the rest of center-surround simulations in this 

dissertation, the parameters for the DOG filter were chosen so that as (the surround 

radius) was twice oc (the center radius), and both center and surround had the same 

weight (kc/ks = 1) towards the cell's output. These parameters may not match ideally 

the parameters for all neurons they represent, but they capture the fundamental 

essence of average LGN neurons in the primate (Derrington and Lennie, 1984; Irvin
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et al., 1993; Tadmor and Tolhurst, 2000; Levitt et al., 2001). The parameters of the 

filter may be modified, changing the outputs of the simulation, but as long as they are 

kept within physiological limits, the fundamental results will remain qualitatively 

similar to the results presented throughout this thesis.

A B

HALF WAVE RECTIFICATION:

No response High response

Figure 13. A) Mathematical expression of half-wave rectification. B) Result of 
rectifying the convolution from Figure 12B. The final output simulates the activity 
(extracellularly recorded) from an array of on-center receptive fields looking at the 
image in Figure 12A.___________________________________________________

1.3. Corners/angles/junctions/points of maximum curvature

1.3.1 Fundamental visual features

Our perception of the visual world is constructed, step-by-step, by neurons in 

different visual areas of the brain (Hubei and Wiesel, 1962; Desimone et al., 1980; 

Shipp and Zeki, 1985; Felleman and Van Essen, 1991). While feedback certainly 

plays a role in the visual system (Alonso et al., 1993a, 1993b; Hupe et al., 1998; 

Martinez-Conde et al., 1999; Murphy et al., 1999), the visual system’s overall 

tendency is towards a hierarchy, in which neurons in sequential levels extract more 

and more complicated features from the visual scene. These features include (but 

are not limited to) color, brightness, movement, shape, and depth.

In order to determine how visual perception is constructed in our brain, we 

need to establish what the fundamental visual features in a scene are. The current 

literature shows a certain degree of disconnect between physiological and 

psychophysical approaches, specifically concerning the relevance of corners and
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curvature elements and the stage of the visual system where they are processed for 

the first time.

1.3.2 Corner physiology

Since Hubei and Wiesel’s discovery of orientation selectivity in the early 60’s 

(Hubei and Wiesel, 1959, 1962) (see section 1.1.3.2), theories of shape and 

brightness perception have primarily focused on the detection and processing of 

visual edges. Early visual neurons are classically considered "edge detectors", as 

Marr and Hildred proposed in their paper ‘Theory of edge detection” (Marr and 

Hildreth, 1980), and current studies are based on the assumption that edges are the 

most fundamental visual feature. The visual system’s predisposition for edges versus 

diffuse light has been shown in physiological and perceptual studies (Mach, 1865; 

Hubei and Wiesel, 1959; Ratliff and Hartline, 1959; De Weerd et al., 1995; 

Livingstone et al., 1996; Paradiso and Hahn, 1996; Macknik and Haglund, 1999; 

Macknik et al., 2000).

Classical physiological experiments have suggested that shape perception is 

built up through a hierarchy of receptive field stages. The first stage of edge- 

detection is made up of center-surround neurons (Kuffler, 1952), which then 

converge to form the second stage of edge orientation-selective cells (Hubei and 

Wiesel, 1962). Orientation selective cells then converge onto the third stage of "end- 

stopped" (or hypercomplex) cells, which are curve and/or corner selective (Hubei and 

Wiesel, 1965; Dobbins et al., 1987; Versavel et al., 1990).

Various possibilities for subsequent (or alternative) corner-selective response 

properties in V1 have been proposed:

- Shevelev et al. reported that 1/3 of neurons in cat area V1 respond more 

strongly to corners than to edges or bars. 77% of the neurons selective to corners 

were selective to both the angle and the orientation of the corner, each of them 

having a specific preferred angle. Shevelev et al. suggested that corner selective
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neurons play an important role in feature extraction and processing in V1. They 

considered it unlikely that these units get their “corner selectivity” by excitatory 

convergence of two neurons with different preferred orientation, as classical 

hierarchical models propose (Shevelev et al., 1998, 1999).

- Sillito et al. found evidence of cross-orientation facilitation in area V1, and 

suggested that V1 contains the neural machinery to detect local orientation 

discontinuities. V1 may therefore play a role in detecting the location and direction of 

a change in contour orientation, associated for example with junctions or corners 

(Sillito et al., 1995).

- Das and Gilbert combined optical imaging with simultaneous single cell 

recordings to study the role of short-range connections in V1. They reported a new 

set of response properties in V1 generated by local cortical interactions, that is, a set 

of graded specializations for processing locally complex visual features. As a result, 

V1 neurons may be functionally specialized for processing corners and junctions. 

Das and Gilbert further proposed that the corner processing properties of V1 

neurons could form a functional map over the cortical surface, similar to and closely 

linked with orientation and spatial maps (Das and Gilbert, 1999).

Other studies suggest that most V1 cells are somewhat end-stopped and 

therefore sensitive to comers (Knierim and van Essen, 1992; DeAngelis et al., 1994; 

Kapadia et al., 1999; Jones et al., 2001; Sceniak et al., 2001; Pack et al., 2003).

In recent years the study of the physiological responses to corners, curves 

and terminators has generated a great deal of interest, and single-unit responses to 

curves and corners have been reported in striate and extrastriate cortex of cats and 

primates:

- Ito and Komatsu studied the responses of V2 neurons to corner outlines of 

different angles and orientations. They found that a large number of V2 neurons 

selectively responded to corner angles, and one fourth of them showed highly 

selective responses to a particular angle. They reported that for most angle selective
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V2 neurons the response to the optimal angle reflected the specific combination of 

the two line components. Ito and Komatsu concluded that their results support the 

idea that signals encoding the orientation and location of individual line components 

converge on V2 neurons and that the extraction of angle features starts in area V2 

(Ito and Komatsu, 2004).

- Pack et al. studied the responses to terminators (any local region of the 

image that contains orientation discontinuities) and their role in encoding two- 

dimensional motion. They proposed that two-dimensional features, like end-points, 

corners, and intersections (terminators in general) allow accurate velocity 

measurements, even on very small spatial scales. Moreover, they showed that end- 

stopped V1 neurons are capable of encoding two-dimensional motion information 

independently of the orientation of the stimulus. They proposed that end-stopped V1 

neurons measure two-dimensional correspondence in motion by responding 

preferentially to line endings. They also found that the majority of MT neurons are 

highly sensitive to the motion of two-dimensional terminators, and that the 

computation of two-dimensional motion occurs on a spatial scale that is much smaller 

than MT receptive field diameters: when information about two-dimensional motion is 

concentrated on a small region of the visual field, the resulting terminator signals 

exert a powerful effect on the responses of MT neurons (Pack et al., 2003; Pack et 

al., 2004).

- Pasupathy and Connor conducted a series of studies looking at contour 

features and shape representation in area V4 (Pasupathy and Connor, 1999, 2001, 

2002). In their first study they presented single contour features (a corner or a curve) 

to the receptive field of a V4 neuron. They found that a substantial fraction of V4 cells 

exhibit specificity for individual corners or curvature segments, and suggested that 

responses to complex shapes may be understood in terms of their constituent 

contour features. They proposed that the systematic tuning for corners and curves 

(regarding their angle, convexity and orientation) cannot be explained in terms of
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lower level factors such as edge orientation, spatial frequency or contrast direction 

(as almost all cells responded better to contour features than to any individual edge 

or line). They conclude that contour features are extracted as intermediate level 

shape primitives, that is, as an intermediate step toward complex shape recognition 

(Pasupathy and Connor, 1999). To explore the mechanisms of shape representation 

in V4, they then used moderately complex shapes that systematically combined 

convex and concave boundary elements. They found that many neurons in area V4 

were sensitive to boundary information at a specific position relative to the object 

center; the most effective boundary pattern often comprised a sequence of adjacent 

curves and angles, with the tuning functions biased towards sharper convex 

curvature. The results suggested a parts-based representation of complex shape in 

V4, where the parts are contour segments defined by curvature and position relative 

to the rest of the object. Pasupathy and Connor concluded that shape representation 

in V4 is distributed, with individual cells encoding smaller parts of larger objects, and 

that boundary configurations at specific object-relative positions are important 

second-level shape features at intermediate processing stages (Pasupathy and 

Connor, 2001).

The studies mentioned above are based on the standard assumption that 

edges are the most fundamental visual feature, and that corner selective receptive 

fields develop subsequently to edge selective receptive fields. Figure 14 shows a 

textbook example from Nichols et al. (2001).

However, some visual illusions show that corners can be perceptually more 

salient than edges, suggesting that corners may also be a more critical feature for 

shape and brightness perception. Visual illusions are a powerful tool to study the 

neural bases of perception because they allow us to dissociate our perception of a 

stimulus from its physical reality.



39

Type o f cell

Photoreceptor

Ganglion

Geniculate

Simple (layers 4 
and 6 only)

Complex 
(outside layer 4)

End-inhibited 
complex 
(outside layer 4)

Shape o f held

x  x
✓  X  '

a
t

W hat is best 
stimulus?

Light

Small spot 
or narrow bar 
over center

Small spot or 
narrow bar over 
center

Narrow bar 
or edge (some 
end-inhibited)

Bar or edge

Line or edge that 
stops; corner or 
angle

_ +

■I ■
£  ^ / / / I 1 \ W

/ / / / UWN

Ganglion cells 
and lateral 
geniculate cells

Simple
cortical
cells

Complex cells

Figure 14. Corner processing is generally considered to be subsequent to edge 
processing Nichols et al. (2001)._____________________________________

Figure 15 shows Vasarely's “nested squares” illusion ("Arcturus", 1970). The 

image is made out of multiple concentric squares of decreasing luminance. The 

innermost square is white, and the outermost square is black. For each individual 

square, the physical luminance remains constant along the various regions of the
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square. However, the corners of the squares appear perceptually brighter than the 

rest, forming a whitish X-shape that seems to irradiate from the very center of the 

figure. Our perception of corners being brighter than edges must have a neural 

correlate at some level of the visual pathway. Is it possible that corners are in fact a 

basic visual feature, even at the earliest stages of the visual system?

Figure 15. Vasarely’s nested squares illusion. A) Nested square illusion, based in 
Vasarely’s "Arcturus" (Vasarely, 1970). The stimulus is made out of multiple 
concentric squares of increasing luminance (going from black in the center to white in 
the outside). The physical luminance of each individual square remains constant at 
all points, but the corners of the squares appear perceptually darker than the straight 
edges, forming an X-shape that seems to irradiate from the very center of the figure. 
The two red circles indicate two regions that appear to have significantly different 
brightness. The area inside the upper red circle has higher average luminance than 
the region inside the lower circle; however the region inside the upper circle appears 
perceptually darker. B) Nested square stimulus, with a gradient of decreasing 
luminance (from the center to the outside). C) Vasarely’s “Utem” (1981) (Vasarely, 
1982). Note the four sets of nested squares. The two nested squares of decreasing 
luminance (from the center to the outside) have bright illusory diagonals. The two 
nested squares of increasing luminance (from the center to the outside) have dark 
illusory diagonals. From Troncoso et al. (2005)______________________________

1.3.3 Corners and psychophysics

Ibn Al-Haytham (also known as Al-Hazen) pointed out the importance of 

curvature in visual perception almost 1000 years ago when wrote in his treaty Optics: 

“For sight will perceive the figure of the surfaces of objects whose parts have 

different positions by perceiving the convexity, concavity or flatness of those parts, 

and by perceiving their protuberance or depression” (Al-Haytham, 1030/1989).
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Although physiological studies consider that the processing of corners and 

curvature is subsequent to edge processing, psychophysical studies have shown that 

curvature and corner features are involved in numerous visual processes of varied 

complexity such as:

-  Shape analysis. Many authors have discussed the role of corners and 

curvature in shape analysis (Attneave, 1954; Milner, 1974; Biederman, 1987; Ullman, 

1989; Poggio and Edelman, 1990; Dickinson and Pentland, 1992; Loffler et al., 2003; 

Shevelev et al., 2003). Contour angles (discontinuities in orientation) remain 

qualitatively invariant when the point of view of the observer changes (although the 

size of the angle may change) being therefore very useful for the construction of 3D 

object representations (Watt, 1986). Discrete stimulus features (such as contour 

intersections) play an important role in the organization of early spatial vision by 

structuring the representation employed thereafter (Watt, 1985).

-  Texture segmentation. Line terminators are critical for texture discrimination 

(Rubenstein and Sagi, 1996; Barth et al., 1998b).

-  Filling-in and 3D shape perception. Locations that undergo abrupt curvature 

changes along a contour are particularly revealing about the shape of an object (Tse, 

2002).

-  Processing of motion signals. The human visual system relies heavily on 

pointlike object features such as line endings and terminators to compute the veridical 

direction of the motion of an object (Nakayama and Silverman, 1988; Loffler and 

Orbach, 1999).

-  Attentional capture. A stimulus presented in a region of space adjacent to 

the corner of an object receives an enhancement of processing relative to a stimulus 

presented next to one of the object’s straight edges (Cole et al., 2001).
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-  Saccade selection. Non-redundant, two-dimensional image features like 

curved lines and edge occlusions play an important role in the saccadic selection 

process (Krieger et al., 2000).

-  Acuity. Sensitivity to angle acuity is greater than predicted by line 

orientation acuity (Watt, 1984; Chen and Levi, 1996; Heeley and Buchanan-Smith, 

1996; Regan et al., 1996) , and observers are highly sensitive to corners and 

curvature in discrimination tasks (Buhler, 1913; Andrews et al., 1973; Watt and 

Andrews, 1982).

- Visual search, several form-based features will pop-out amongst a set of 

distracters, including:

• certain types of contour junctions: a major determinant of search is the 

presence of line junctions (Enns and Rensink, 1991).

• contour concavities: concavities can serve as basic features in visual 

search (Hulleman et al., 2000).

• contour curvature: curvature is a basic feature for visual search tasks 

(Wolfe et al., 1992).

• curvature discontinuities: the visual system quickly detects and 

analyzes abrupt changes in curvature in order to extract vital 

information about the 3D structure of the visual environment 

(Kristjansson and Tse, 2001).

It is commonly believed that features that exhibit pop-out during visual search 

are processed rapidly and in parallel across the visual field (Treisman and Gelade, 

1980), although not all studies agree with this view (Duncan and Humphreys, 1989; 

Duncan and Humphreys, 1992; Li, 2002).

1.3.4 Corners and information theory

Our visual system is constrained physically by the amount of information it 

can process, such as by the relatively small number of axons available in the optic



43

nerve. It has been hypothesized that our visual system overcomes limitations such as 

this by extracting, emphasizing, and processing highly informative visual features 

(Barlow, 1961, 1989; Barenholtz et al., 2003; Hansen and Neumann, 2004; Feldman 

and Singh, 2005). Even a decade before Shannon founded the field of information 

theory (Shannon, 1948), Werner described angles as “those parts of contour which 

have stored within them the greatest amount of psychophysical energy”, and 

proposed that “angles are especially intense parts of contour, and there is invested in 

them a central significance for the construction of optical figurations" (Werner, 1935). 

According to information theory, regions in the retinal image that include sudden 

changes or discontinuities contain more information about the spatiotemporal 

structure of the environment than uniform regions, simply because adjacent or 

subsequent values are unpredictable in discontinuous domains, whereas continuous 

regions are predictable by definition. Attneave proposed in the 1950’s that “points of 

maximum curvature” (that is, discontinuities in edges, such as curves, angles and 

corners -  any point at which straight-lines are deflected) contain more information 

than non- or low-curvature features and therefore they are more important for object 

recognition (Attneave, 1954) (Figure 16).

The visual system may have evolved to be especially sensitive to highly 

predictive cues, such as the various classes of contour discontinuity, because rapid 

detection and processing of these cues may provide the most efficient route to 

recovering world structure from the image (Gibson, 1950). The edge map is itself 

relatively predictable: from a computational point of view, the most useful information 

lies on the intersections and other discontinuities of the edge map (Watt, 1985).

Subsequent studies expanded on these results (Biederman, 1985; Resnikoff, 

1985; Biederman, 1987; Norman et al., 2001), and Feldman and Singh have formally 

demonstrated that information is quantifiably higher at acute than obtuse corners 

(Feldman and Singh, 2005). Studies of natural scenes statistics have also recently 

begun to address the prevalence of corners and curves in our visual environment
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(Krieger et al., 2000; Sigman et al., 2001; Yang and Purves, 2003; Howe and Purves, 

2005).

Figure 16. Attneave’s studies on curvature. (A) Attneave showed this blob to 
subjects and asked them to choose 10 points to later reconstruct its shape. Radiating 
lines represent the frequency with which each of the points was chosen. The points 
chosen more often are those where the curvature of the contour is maximal. (B) This 
drawing of a sleeping cat was made by connecting the 38 points of maximum 
curvature with straight lines. The cat is perfectly recognizable. From Attneave (1954).

1.3.5 Literature review summary and conclusions

The corner literature offers different theoretical positions regarding corner 

processing:

- Information theory approaches and psychophysical experiments point out 

the relevance of corners in visual processing and their high information content, 

critical for object reconstruction.

- Physiological studies consider that edges are the most fundamental visual 

feature. Corner processing is a subsequent stage to edge processing and it happens 

for the first time in V1 or later. Curves and corners are “intermediate shape 

primitives”.

Given the importance of corners and contour discontinuities for shape 

processing, it seems possible that the visual system may have evolved a specialized 

ability to detect these key features rapidly across the image. This suggests that



45

processing of corners and other informative contour discontinuities begins early in 

the visual hierarchy. One of the goals of this thesis is to investigate the validity of this 

new hypothesis.
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2. Chapter 2. 
Basic simulations 

of center-surround responses 
to corners

The purpose of this thesis is to explore the hypothesis that explicit corner 

processing (receptive field selectivity) begins at the earliest stages of the visual 

hierarchy and to quantify the perceptual and physiological contributions of corners of 

different angles. In this chapter we propose a new early receptive field model for 

corner processing, and we test it with computational simulations of center-surround 

receptive fields.

2.1. A new general early receptive field model for processing 

corners

Vasarely’s nested squares illusion (Figure 15) shows that corners can be 

more salient perceptually than edges. As discussed in the General Introduction 

(section 1.3), physiological studies have proposed that corner processing starts in 

area V1 or later. Thus one might expect that the neural correlates of the nested 

squares illusion would be on area V1 or later.

However, some theoretical approaches have suggested that center-surround 

receptive fields can be responsible for Vasarely’s nested squares illusion (Hurvich,
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1981; Adelson, 1999; McArthur and Moulden, 1999). Nevertheless, this idea has 

never been quantified, with computational, physiological, or psychophysical 

approaches. Hurvich’s basic idea (Hurvich, 1981) was that the contrast between the 

center and the surround regions of the receptive field would be stronger along the 

corner-gradients than along the edge-gradients in a nested-square pattern, resulting 

in increased perceptual salience at the corners (Figure 17A). Adelson (Adelson, 

1999) applied center-surround filters to the nested squares and found that the output 

of the filters qualitatively matched the perception of the diagonals being brighter 

(Figure 17B-C).

A B C

Figure 17. Hurvich’s theoretical model of Vasarely’s nested square illusion (Hurvich, 
1981). A) Center-surround receptive fields are sufficient to explain the increased 
saliency of corners versus edges in Vasarely’s square. The center-surround contrast 
is higher along the corner illusory-fold (upper receptive field) than along the edges of 
the nested squares (lower receptive field). Therefore the neural responses to the 
corner-fold will be higher, giving rise to a more salient percept. B) and C) Adelson’s 
computational simulation of Hurvich’s model (Adelson, 1999). A set of nested 
squares in a luminance gradient (B) is convolved (C) with a center-surround filter, in 
order to simulate the responses of a network of center-surround receptive fields. The 
output of the center-surround filter matches our subjective perception of the illusion.

Here we propose that Hurvich’s and Adelson’s models of Vasarely’s nested 

squares illusion can be extended to a new generalized model of corner processing in 

the early visual system. W e propose that the geometry of subcortical center-surround 

receptive fields makes them, in general, more sensitive to corners than to edges. 

This new hypothesis is not restricted to Vasarely’s corner-gradients such as those 

addressed by Hurvich and Adelson (Figure 17), but applies to all corners.
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Figure 18. Generalized model of corner processing. Three on-center receptive fields 
are placed over one edge and two corners of a white triangle. The center of the 
receptive field over the edge (position A) is well stim ulated by light, but m ost of the 
surround also falls in the light region, so the response of the neuron is partially 
inhibited. The center of the receptive field over the 90° corner (position B) is also 
stimulated by light and most of the surround falls in the dark area. This is a more 
optimal stimulus than in (A) and leads to a stronger neural response. The receptive 
field over the 45° corner (position C) receives even more optimal contrast between 
center and surround, leading to an even stronger response. The spiking responses 
depicted in the cartoon are hypothetical.__________________________________________

As illustrated in Figure 18, an on-center receptive field placed along an edge 

(position A) has light on the center, but most of the surround is also covered by light 

and the cell will not fire much. If we place the on-center receptive field over a 90° 

corner (position B in Figure 18), a higher proportion of surround will be covered by 

darkness, and the cell will fire more. W hen the on-center receptive field is over a 

sharper angle (position C in Figure 18) the proportion of surround covered by 

darkness is even higher and the cell will fire harder. W e therefore propose that local 

contrast increases at corners, and that the sharper the corner angle, the higher the 

contrast. It follows that corners are hot spots for early center-surround receptive 

fields, and this could potentia lly account for the fact that corners are perceived as 

more salient and are more significant to shape perception.

Because subsequent receptive fields in the visual hierarchy (for instance, 

elongated simple-cell and com plex-cell receptive fields in area V1) integrate visual
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information from subcortical levels (Hubei and Wiesel, 1962; Tanaka, 1983; Ferster, 

1986; Reid and Alonso, 1995; Ferster et al., 1996; Alonso and Martinez, 1998; 

Martinez and Alonso, 2001) we predict that cortical receptive fields will also be better 

tuned to corner-detection than to edge-detection.

2.2. Responses to corners versus edges

To study the response properties of center-surround neurons, we convolved 

DOG filters with images containing different stimuli (see section 1.2), and then 

quantified the results. To compare the strength of responses to corners versus edges 

in the early visual system, we applied the DOG receptive field simulations to edges 

and comers of different angles and contrasts.

Figure 19 shows the basic stimulus we used (100% contrast in this example); 

there is a corner at the top (30° in this example) and two vertical edges at the bottom. 

W e measured the response from the computational simulations to this image, for 

different angles and/or contrasts of the stimulus.

[ Figure 19. Stimulus containing a corner (A) and a vertical edge (B).________________

Figure 20 shows the DOG outputs results for 30° angles with 100%, 66% and 

33% contrast. The DOG filter generates higher responses to the corner (white 

arrows, right column, Figure 20) than to the edges for all contrasts. The response of 

the filter decreases linearly with the stimulus contrast for both edges and corners.

Corner
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Figure 20. The stimuli in the left column are convolved with a DOG. Notice that 
responses to 30° corners (white arrows) are stronger than responses to edges.______

Figure 21 shows the peak responses of DOG filters to all corner angles at

100% contrast (we changed the angle of the corner from 1° to 180° in 1° steps).

Sharp corners generate stronger responses than shallow corners.
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Figure 21. Predicted responses to corners of different angles (100% contrast).

If we analyze the results for all the different corner angles at all contrasts 

(Figure 22) we can see that the higher the contrast and the sharper the corner, the 

better the response.
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Figure 22. Predicted responses to corners of different angles and contrasts._________

If we compare the response to corners against the response to edges for 

each contrast (Figure 23), we can see that the response to the corner is always 

higher than the response to the edge (ratio>1).

Comer angle (deg)

Figure 23. (A) Ratio response corner/edge for all contrasts. (B) Section at any value 
of contrast for the graph in (A).__________________________________________________

How do responses to corners compare to responses to edges? To answer 

this question we calculated the level of contrast that an optimally oriented edge would 

need in order to evoke equivalent responses to those found for corners of all angles 

and contrasts (Figure 24). An edge could only evoke a response equivalent to the 

response generated by a 40° corner of 100% contrast, if the edge was about 200% 

contrast (dark red region in Figure 24 colormap). However, because the contrast of a 

given stimulus can never be higher than 100%, equivalent contrast levels over 100%
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(all warm colors in the colormaps of Figure 24) indicate the subspace of corner 

angles and contrasts in which corners are better stimuli than any possible edge.

EQUIVALENT EDGE CONTRAST

Comer contrast (%)

Figure 24. The colors encode the edge contrast that is necessary to evoke 
responses equal to corners of various angles and contrasts. Since one cannot 
physically raise the contrast of the edge above 100%, the warm colors (yellowish- 
reddish) indicate the com er parameters in which corners will generate stronger 
responses than any possible edge.______________________________________________

The specific shape and size of the subspace in which corners are better than 

any possible edge will depend on the particular parameters used for the receptive 

field filters. However, it is generally true that for any given set of filter parameters 

there will be a collection of corners that generate stronger responses than any 

possible edge. This principled approach leads to strong predictions that can be 

tested physiologically, and which can be used to validate different receptive field 

models, as well as the hypothesis that sharp corners are more salient than edges in 

the early visual system.

2.3. Responses to corners versus bars and spots

Kuffler showed that center-surround receptive fields give strong responses to 

spots (Kuffler, 1953); bars (slits of light) have also been suggested to be fundamental 

building blocks of vision (Hubei and Wiesel, 1959). Here we tested the theoretical 

responses of center-surround receptive fields to a bar of optimal width and to a spot
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of optimal diameter against corners of various parameters. The analysis is sim ilar to 

that in Figure 24, but here we calculated the level of contrast that an optimal bar/spot 

would need on order to evoke an equivalent response to corners of all angles and 

contrasts. Figure 25 shows the results of this analysis.

A EQUIVALENT BAR CONTRAST B EQUIVALENT SPOT CONTRAST

Comer contrast (%) Comer contrast (%)

Figure 25. Comparison of responses to corners versus bars and spots. Color code 
as in Figure 24. (A) Sharp corners generate stronger responses than bars of optimal 
width (colorbar indicating equivalent bar contrast goes over 100%). (B) Responses to 
spots of optimal diameter are stronger than responses to corners.__________________

We found that the simulated responses to sharp corners were better than the 

responses to bars of optimal width, but not better than responses to spots of optimal 

diameter. So spots are a better stimulus than corners for center-surround receptive 

fields. However if we consider the predominance of spots versus corners in nature, it 

is easy to see that spots are not very common features outside of the laboratory, 

whereas natural scenes contain plenty of corners (Krieger et al., 2000; Sigman et al., 

2001; Yang and Purves, 2003; Howe and Purves, 2005). The next section proposes 

a general principle of corner perception that suggests that corners are more 

dependable visual stimuli than bars and spots for neurons of the early visual system.

2.4. Receptive field size independence

Receptive field responses to bars and spots are dependent on the interaction 

between the size (width) of the stimulus and the size of the receptive field. However,



54

responses to corners are independent of receptive field size. Figure 26 illustrates 

this point.

Given that receptive field sizes increase gradually from the fovea to the 

periphery (Wilson and Sherman, 1976; Cleland et al., 1979; Peichl and Wassle, 

1979; Kastner et al., 2001), these results suggest that responses to corners are 

independent of stimulus eccentricity. However responses to bars, spots, and gratings 

can be maximal only for receptive fields with sizes that closely match the size of the 

stimulus, that is, for those receptive fields corresponding to a very specific range of 

eccentricities. This suggests that eccentricity-invariant features (such as corners and 

edges) may be more reliable for shape processing than eccentricity-dependent 

features (such as bars and spots). If bars and spots were the fundamental building 

blocks of vision, we would expect objects to change brightness and shape drastically 

in different parts of the retina. Edges and corners are robust to eccentricity and so 

they may be more reliable building blocks of shape and brightness perception.

2.5. Summary and conclusions from basic simulations

In summary, our quantitative simulations suggest that:

1) Sharp corners generate stronger responses than edges for center-surround 

receptive fields (Figure 24).

2) Sharp corners generate stronger responses than bars, but not spots (Figure 

25).

3) Responses to corners do not depend on receptive field size (and therefore 

eccentricity), whereas responses to bars, gratings and spots do (Figure 26). 

Therefore, considering points 1), 2), and 3) above together, corners seem to

be more dependable features than edges, bars or spots across different stimulation 

conditions.
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Figure 26. DOG responses to bars, spots, and corners for different receptive field 
sizes. A) The response to bars depends on the receptive field size. For a bar of a 
certain width (0.5 deg in the example) only a small range of receptive field sizes will 
generate maximum responses. B) The response to spots also depends on receptive 
field size. For a spot of a certain diameter (0.5 deg in the example) only a small 
range of receptive field sizes will generate maximum responses. C) The response to 
corners does not depend on receptive field size. For a corner of any given angle, all 
receptive field sizes will generate equivalent peak responses. Note that, although the 
responses generated by large filter sizes are blurrier than the responses generated 
by small filters, the peak of the responses remains unchanged through the different 
receptive field sizes (that is, the level of the red “hot spot” in each of the four 
convolutions is identical). D) Plot of maximal responses to a 0.5 deg bar for receptive 
fields with a center width from 0.1 to 1.4 deg. E) Plot of maximal responses to a 0.5 
deg spot for receptive fields with a center width from 0.1 to 1.4 deg. F) Maximal 
responses of different receptive field sizes to corners of various angles. Although 
sharp corners generate stronger responses than shallow corners, all different 
receptive field sizes produce equivalent peak responses for any given corner angle.
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3. Chapter 3. 
Corner-based illusions: 

psychophysics and related 
modeling

3.1. Introduction

In chapter 2 we proposed a new general model of corner processing in the 

early visual system. As stated in the General Introduction, points of maximum 

curvature (like corners) contain maximum information (Attneave, 1954; Feldman and 

Singh, 2005). Therefore, points with higher curvature contain more information than 

points with lower curvature. If we generalize this idea to corners we can say that 

sharp corners contain more information than shallow corners or edges. According to 

Barlow’s Redundancy-Reducing Hypothesis (Barlow, 1961, 1989), the visual system 

is optimized to process the features that contain the most information. It is therefore 

possible that center-surround receptive fields may have evolved to make use of the 

reduced redundancy of corners versus edges and sharp corners versus shallow 

corners.

The high informational content of sharp corners, and our results that early 

visual modes respond more strongly to sharp than to shallow corners, led us to the 

prediction that sharp corners should appear more salient perceptually than shallow 

corners or edges. In this chapter we test this hypothesis.
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As discussed in the General Introduction, Vasarely’s “nested squares” illusion 

(Vasarely, 1970) shows that, in a luminance gradient composed of concentric 

squares, 90° corners generate illusory “fo lds” , which appear as more salient (that is, 

either brighter or darker) than the adjacent flat (non-corner) regions of each individual 

square (Figure 15). However, one might argue that the corners of solid objects, like 

the red rectangle on Figure 27, do not appear to be more salient than the object’s 

edges.

Figure 27. Red rectangle on a white background._________________________________

However, it also true that the edges do not appear as more salient than the 

interior of the rectangle, even though it is well established that early visual neurons 

respond to edges much more strongly than to uniform illumination (Mach, 1865; 

Hubei and Wiesel, 1959; Ratliff and Hartline, 1959; De Weerd et al., 1995; 

Livingstone et al., 1996; Paradiso and Hahn, 1996; Macknik and Haglund, 1999; 

Macknik et al., 2000). The reason why the edges of an object and the object’s interior 

appear to have equivalent brightness is that “filling-in” processes in the extrastriate 

cortex use the information from the edges to fill in the inside (De W eerd et al., 1995; 

De Weerd et al., 1998; Pessoa and De Weerd, 2003; Komatsu, 2006). But under 

certain special stimulation conditions, like Mach bands (Mach, 1865; von Bekesy, 

1960; Ratliff, 1965), we can see that the edges of an object are in fact more salient 

than its inside. W e propose that the same filling-in processes also normalize the 

apparent brightness of corners, explaining why corners do not generally appear as 

more salient than edges in most stimulation conditions (despite the fact early visual 

system neurons respond more strongly to corners). The geometry of the nested
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square illusion partially counteracts filling-in processes, allowing us to see that 

corners are more salient than edges, in a similar way as the geometry of Mach bands 

makes it possible to see that the edges are more salient than the inside. We have 

developed several novel illusions that further demonstrate the perceptual saliency of 

corners.

3.2. Corners within luminance gradients: the Alternating 

Brightness Star

Vasarely’s “nested squares” illusion (Vasarely, 1970) (Figure 15) is a classic 

illusion that has been described often (Hurvich, 1981; Kaiser, 1996; Morgan, 1996; 

Adelson, 1999; McArthur and Moulden, 1999). However, the strength of the effect 

has never been quantified or tested systematically with computational, 

psychophysical, or neurophysiological techniques. In this chapter we quantify the 

strength of Vasarely’s nested squares illusion, and other related effects, with a 

psychophysical experiment (in a two-alternative-forced-choice brightness 

discrimination task). We also use the basic DOG models explained in section 1.2 to 

explore whether our new general early receptive field model for processing corners 

(proposed in section 2.1) explains this phenomenon. Our results offer insights into 

the possible neural mechanisms responsible for these effects, and may help to 

explain corner perception in general. These experiments have been published on the 

journal Perception (Troncoso et al., 2005)

In Vasarely’s artworks, each gradient fold is constructed from a series of 

nested squares. That is, the corner angle is exactly 90°. In order to test the strength 

of the illusory folds generated by Vasarely’s corner-gradients, we started by varying 

the angles of the corners. In doing this, we discovered a novel visual illusion, which 

we called the Alternating Brightness Star (Martinez-Conde and Macknik, 2001; 

Troncoso et al., 2005). Figure 28 shows several Alternating Brightness Stars, made



59

of concentric stars arranged in gradients of increasing or decreasing luminance. 

Bright or dark illusory folds can be perceived, depending on the polarity of the corner 

angle (whether the angles of the corners are concave or convex). W e called this 

effect Corner Angle Brightness Reversal. An irregular version of the Alternating 

Brightness Star illusion (Figure 28C) furthermore shows that the strength of the 

illusion depends on how shallow or sharp the corner angle is. W e called this effect 

Corner Angle Salience Variation: for shallow corner angles (Figure 28C, angle “2”) 

the effect is weak, whereas for sharp corner angles (Figure 28C, angle “1”) the 

illusory effect is strong (see http://smc.neuralcorrelate.com/demos/ABS-illusion.htm l 

for an interactive demonstration of these effects).

The Corner Angle Salience Variation and Corner Angle Salience Reversal 

effects may be related to a previous anecdotal observation by von Bekesy, in which 

he briefly and qualitatively described the varying extents of apparent saturation in 

individual yellow gelatin wedges cut at different angles (von Bekesy, 1968).

c

A
Figure 28. The Alternating Brightness Star illusion (Martinez-Conde and Macknik, 
2001). A, B) The stimulus is made of concentric stars of graded luminance. In A), the 
innermost star is white; the outerm ost star is black. In B), the innermost star is black; 
the outermost star is white. The gradient from the center to the outside has 100 
luminance steps. The illusory corner-folds that radiate from the center appear as light 
or dark depending on the polarity of the corner angle (Corner Angle Brightness 
Reversal effect), and on the direction of the luminance gradient. However, all illusory 
folds are physically equal to each other in luminance. The centers of the two red 
circles in A) indicate physically equivalent points in the luminance gradient. C) An 
irregular version of the Alternating Brightness Star illusion illustrates the Corner 
Angle Salience Variation effect. The illusory folds appear more salient with sharp 
corners (as in angle “1”), and less salient with shallow corners (as in angle “2”). Here 
the folds also appear perceptually light or dark depending on the polarity of the 
corner angle (concave or convex). From Troncoso et al. (2005).____________________

#

http://smc.neuralcorrelate.com/demos/ABS-illusion.html
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These two effects are especially striking because they cannot be explained in 

terms of the physical luminance of the stimuli.

B
S3|
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Figure 29. A) 10-luminance-step versions of Alternating Brightness Stars with 3 
different angles: 45° (left column), 105° (middle), and 180° (right column). B) 
Luminance profile along one of the arms of the star for the stimuli in A), showing that 
the illusory have the same physical luminance in the 3 angle conditions (the three 
lines overlap). C) Blurred version of the stars in A) (Gaussian filtering). Note that the 
illusory folds become weaker. D) Luminance profile along one of the arms of the star 
for the stimuli in C), showing that the illusory folds cannot be explained by blurring: 
the luminance of the 45° star is the lowest, even though this is the condition where 
the illusory folds look brighter.__________________________________________________

To illustrate this point, Figure 29A displays 10-luminance-step versions of the 

Alternating Brightness Star (so that individual stars forming the polygonal constructs 

are easy to identify). In the 45° star, the region inside the brown circle looks bright 

and the region inside the pink circle looks dark. However, the average luminance 

inside the brown circle is lower than the average luminance inside the pink circle! If 

we compare the brown circle (45° star) and the yellow circle (105° star), the region 

inside the brown circle looks brighter than the region inside the yellow circle, but 

again, the average luminance inside the brown circle is lower. This becomes evident 

when we blur the stimuli using a Gaussian (Figure 29C). Figure 29B shows the 

luminance profile of the Alternating Brightness Stars in Figure 29A along one of the 

arms of the star. The three angle conditions (45°, 105°, and 180°) have exactly the 

same profile. If we take the luminance profile along one of the arms of the star for the 

blurred stimuli (Figure 29D), we can see that the 45° condition (the one that looks 

brightest) has the lowest luminance! Blurring the stimuli works on the opposite

o
Distance from center
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direction of the illusion, and therefore these effects cannot be explained by optical 

blurring due to the physical limitations of the eye.

3.2.1 Methods

To quantify the Corner Angle Salience Variation effect in the Alternating 

Brightness Star we ran a psychophysical experiment using a 2-alternative-forced- 

choice experimental design.

3.2.1.1 Subjects

12 naive subjects (9 females, 3 males, adult volunteers with normal or 

corrected-to-normal vision) participated in 10 experimental sessions, of ~1 hour 

each, and were paid $15/session. Experiments were carried out under the guidelines 

of the Barrow Neurological Institute’s Institutional Review Board (protocol number 

04BN039).

3.2.1.2 Experimental Design

Subjects rested their head on a chin-rest, 57cm from a linearized video

monitor (Barco Reference Calibrator V). Subjects were asked to fixate a small cross 

(1°x1°) within a 3.5° fixation window while visual stimuli were presented. To ensure 

proper fixation, eye position was measured non-invasively with a video-based eye 

movement monitor (EyeLink II, SR Research).

To test the magnitude of the illusory percept, subjects conducted a two- 

alternative-forced-choice brightness discrimination between the stimulus containing a 

corner gradient (Comparator stimuli) and non-illusory flat gradients (Standard 

stimuli). At the beginning of each trial, a red fixation cross was displayed on the 

monitor. Once the subject fixated the cross, two sets of stimuli appeared 

simultaneously: the Standard and the Comparator (one to the right and one to the left 

of the fixation cross, see Figure 30). The size of the Standard was 18° (h) x 0.5° (w). 

The Comparator stimulus was 18° (h) x 4° (w). Both Comparator and Standard stimuli 

were centered at 3° of eccentricity in both experiments.
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The Comparator was a corner-gradient fold of 100 luminance steps with one 

of 13 possible angles: ±15°, ±30° (Figure 30, Panel B), ±45°, ±75° (Figure 30, Panel

C), ±105°, and ±135° (for both illusory dark and bright folds), and 180°, which is a flat 

gradient (Figure 30, Panel D). Each step in the gradient was 0.04° high. To construct 

the Standard stimulus, we took a flat non-illusory gradient, we divided it into 11 

luminance segments and we pseudorandomly scrambled the segments. To match 

the height of the Comparator we stacked 5 of these pseudorandomly scrambled 

gradients into a long vertical stripe that contained 55 segments total.

Figure 30. Experimental design. A) Monitor display during the time course of a single 
trial. B, C, D) Three different stimuli presentations of the brightness discrim ination 
task (out of 572 possible conditions, see section 3.2.2 for details). From Troncoso et 
al. (2005)____________________________________________________________

Red bars were displayed to the sides of the Standard and Comparator stimuli, 

to indicate precisely the parts of the stimuli to be compared. Red bars were always 

drawn at the same height as the point of 50% luminance of the corner gradient. Thus 

the vertical position of the red bars on the monitor varied as a function of the angle of
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the corner gradient. The fixation point and the red bars on the Standard were drawn 

at the same vertical position as the red bars over the Comparator. The Standard 

stripe was drawn so that there was an equal chance of any one of the 11 possible 

luminance segments to be selected by the horizontal red bars. We made sure that 

the red bars were always in the center of one of the segments.

After 2 seconds, all stimuli disappeared. The subject’s task was to compare 

the brightness of the pixel positioned precisely in the center between the inner ends 

of the red bars on the Standard stimulus, to the brightness of the same point on the 

Comparator stimulus. This way, the point of 50% luminance in the corner gradient of 

the Comparator was compared against all possible luminances of the Standard, for 

all corner angles tested. Since the discrimination point on the Comparator was 

always of 50% luminance, the physical difference between the Comparator and the 

Standard was a function of the luminance of the segment within the Standard 

stimulus indicated by the red bars. Thus if a 50% luminance Standard segment 

appeared perceptually different from the Comparator, and this varied as a function of 

corner angle of the Comparator stimulus, then the difference was not physical and it 

must have been caused by the illusory effects of corner angle.

Approximately half of the subjects (n=7) indicated, by pressing the left/right 

keys on a keyboard, which stimulus appeared brighter at the discrimination point (the 

Comparator or the Standard). To control for potential bias due to the choosing of a 

brighter stimulus, the other half of the subjects (n=5) indicated which stimulus 

appeared darker. These two groups were later averaged to control for criterion 

effects. The design was further controlled for effects of criterion, by giving subject’s a 

bright-appearing Comparator in half the trials, and a dark-appearing Comparator in 

the other half of the trials. The experiment was counterbalanced for potential left/right 

and up/down criterion effects by ensuring that the Comparator was presented half the 

time on the left, and half the time on the right, with the bright half of the gradient on 

the upper half of the Comparator half the time. Subjects did not have to wait until the
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stimuli turned off to indicate their decision, and could answer as soon as they were 

ready, in which case the stimuli were removed from the screen and the trial ended at 

the time of the subject’s key-press. Standard and comparator had the same average 

luminance (50% gray) in all conditions. If the subject broke fixation (as measured by 

EyeLink II), the trial was aborted, and replaced in the pseudorandom trial stream to 

be re-run later.

The summary of all conditions (n = 572) was as follows:

• 2 screen positions: left and right

• 2 gradient directions: bright on top, dark on top

• 13 corner angles: ±15°, ±30°, ±45, ±75°, ±105°, and ±135° plus 180° (flat)

• 11 Standard luminances: 5%, 14%, 23%, 32%, 41%, 50%, 59%, 68%,

77%, 86%, and 95%

For each subject, each combination of gradient direction (bright-on-top versus 

dark-on-top) and corner angle was presented 20 times, over 10 sessions (2 trials per 

session per combination).

Psychometric curves were obtained fitting the data with logistic functions 

using a maximum likelihood procedure (Wichmann and Hill, 2001).

3.2.1.3 Center-surround simulations

As explained in section 1.2.2, we modeled center-surround receptive fields

as Difference-Of-Gaussians (DOG) filters (Rodieck, 1965; Enroth-Cugell and 

Robson, 1966).

3.2.2 Results

3.2.2.1 Qualitative observations on the Corner Angle Brightness Reversal 
Effect

As predicted by the Corner Angle Brightness Reversal effect described earlier 

in the Alternating Brightness Star, the perceived sign of the illusory fold depended on 

the interaction between the polarity of the angle (concave, or upwards versus
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convex, or downwards) and the direction of the gradient (black-to-white versus white- 

to-black). Black-to-white gradients (top-to-bottom) led to bright illusory folds when 

presented with upwards angles (as in Figure 30A), whereas the same gradient 

direction led to dark illusory folds when presented with downwards angles (as in 

Figure 30B). Conversely, white-to-black gradients (top-to-bottom) lead to bright 

illusory folds when presented with downwards angles, and to dark illusory folds when 

presented with upwards angles.

The summary of the qualitative perceptual effects with top-to-bottom 

gradients was as follows:

1) Black-to-white gradient + upwards angle = bright percept

2) White-to-black gradient + downwards angle = bright percept

3) Black-to-white gradient + downwards angle = dark percept

4) White-to-black gradient + upwards angle = dark percept

3.2.2.2 Alternating Brightness Star psychophysical test

We calculated the Point of Subjective Equality (PSE) for each Comparator

(that is, its matching luminance in the non-illusory Standard) by determining the point 

on the psychometric curve (Figure 31 A) in which the Comparator appeared more 

salient than the Standard in 50% of the trials (averaged over all subjects, and 

collapsed across conditions 1), 2), 3), and 4) described above). The illusory 

enhancement for each corner angle was calculated as the difference between the 

point of subjective equality for a 180° non-illusory gradient and the point of subjective 

equality for the angle tested (Figure 31B). We found that the perceived salience of 

the corner varied linearly with the angle of the corner (independently of the 

interactions between angle polarity and gradient direction). Sharp angles generated 

stronger illusory salience than shallow angles (Corner Angle Salience Variation).
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Figure 31. Psychophysical results for the Alternating Brightness Star experiment. A) 
Psychometric functions for the different corner angles are plotted in different colors. 
Gradient and angle polarities are collapsed: that is, we have averaged together the 
conditions where the illusory folds of the Comparator looked bright and the conditions 
where they looked dark (Insert: illustrations of the 4 collapsed conditions, for a 30° 
angle). B) Illusory enhancement of the PSEs with respect to the control condition 
(180° gradient) for the different Comparator corner angles. The illusory enhancement 
decreases linearly as the angle of the Comparator corner gradient becomes 
shallower (Corner Angle Salience Variation effect). C) Same data as in (A), but the 
conditions in which the illusory fold looked bright (triangles), and the conditions in 
which the illusory fold looked dark (squares) are presented separately (see inserts). 
The PSEs for conditions 1 and 2 (see insert) fall above the point of 50% luminance in 
the Standard stimulus. The PSEs for conditions 3 and 4 (insert) fall below the point of 
50% luminance in the Standard stimulus (Corner Angle Brightness Reversal effect).
D) Illusory enhancement of brightness (triangles) and darkness (squares) perception, 
as a function of corner angle. Error bars in A), B), C), D) represent the ± standard 
error of the mean for all subjects in each condition (n=12). From Troncoso et al. 
(2005).______________________________________________________________

Figure 31C shows the same results, but conditions 1) and 2) (triangle 

symbols) are plotted separately from conditions 3) and 4) (square symbols). PSEs for 

conditions 1) and 2) were higher than the PSE for the control, whereas PSEs for 

conditions 3) and 4) were lower than the PSE for the control (Corner Angle 

Brightness Reversal). The relationship between the angle of the corner and its
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perceived brightness/darkness was approximately linear in all conditions (Figure 

31D). The results shown here for the average of all subjects (n=12) were consistent 

with individual averages (Figure 32).
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Figure 32. Individual subjects results. Each panel shows the result for an individual 
subject (axis and signs as in Figure 31D). Every single subject showed a parametric 
relationship between the angle of the corner and the perceived salience._________

3.2.2.3 Center-surround simulations

Hurvich proposed that Vasarely’s nested square illusion could be accounted 

for by center-surround receptive fields (Hurvich, 1981) (Figure 17). Center-surround 

receptive fields and lateral inhibitory processes have also been proposed to explain 

other classical brightness illusions, such as the Hermann grid (Hermann, 1870; 

Baumgartner, 1960, 1961; Spillmann and Levine, 1971), Mach bands (Mach, 1865; 

von Bekesy, 1960; Ratliff, 1965), and Chevreul’s staircase (Chevreul, 1839). We 

wondered whether the psychophysical results described here could be accounted for 

by an extension of Hurvich’s center-surround model of Vasarely’s nested square 

illusion, now applied to corner-gradients of all angles.



Figure 33. Computational simulations with a DOG filter. The filter parameters were 
chosen to match physiological center-surround receptive fields at the eccentricity 
used in the psychophysical experiments (3°). A) Examples of corner-gradient stimuli 
analyzed in the simulations (dark-to-bright gradients, upwards angles). These stimuli 
were equivalent to the Comparators (condition 1) in the psychophysical experiment. 
The green circles mark the point of 50% luminance. B) Convolving the DOG filter 
with the stimuli in (A) simulates the output of an array of center-surround neurons. 
The green circles indicate the responses of the model at the point of 50% luminance 
on the actual gradient. C) Predicted responses, at the point of 50% luminance on the 
corner gradient, for angles between 15° and 180° (in 5° steps). The data points 
indicate the angles used in the psychophysical experiment. From Troncoso et al. 
(2005)._____________________________________________________________

To test this possibility, we modeled center-surround receptive fields as DOG 

filters (Rodieck, 1965; Enroth-Cugell and Robson, 1966); see section 1.2.2 for 

details. We chose the size of the DOG filter to match a range of physiological center- 

surround receptive fields in the primate LGN (Derrington and Lennie, 1984; Irvin et 

al., 1993; Tadmor and Tolhurst, 2000; Levitt et al., 2001) at the eccentricity used
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during the psychophysical experiments (3°). Both center and surround had the same 

weight towards the filter's output. Figure 33 shows the results of convolving a DOG 

filter (oc: 0.18°; os: 0.36°) with the stimuli presented during the psychophysical 

experiments.

We found that the predicted strength of the effect varied with the angle of the 

corner, with sharp angles producing stronger outputs. However, the relationship 

between the angle of the corner and the strength of the response was not linear, 

whereas in the psychophysical results it was linear (Figure 31B and Figure 31D). 

Thus the qualitative aspects of the Corner Angle Salience Variation effect (that is, the 

parametric relationship between the strength of the effect and the angle of the 

corner) are predicted by a simple DOG model, but the linear relationship between the 

corner angle and the strength of the effect that we found psychophysically is not 

accounted for.

Other DOG filter parameters (such as different filter sizes, or different weights 

between the center and surround) predicted the same basic result, with some 

variation in the shape of the curve, but none reproduced the linear relationship 

between corner angle and perceptual salience found psychophysically (Figure 34A 

and Figure 34B). Several other variations of the DOG model included using a half­

wave squaring non linearity (instead of half wave rectification), applying local mean 

luminance normalization (Tadmor and Tolhurst, 2000), using Gabor filters, and using 

a quadrature energy model (Adelson and Bergen, 1985; Morrone and Burr, 1988). As 

shown in Figure 34C and Figure 34D, none of these alternative models predicted 

the linear relationship found in the experiment. Two main possibilities may account 

for this discrepancy: a) the psychophysical effects are not fully accounted for by 

center-surround neurons, or b) the psychophysical effects are fully explained by 

center-surround neurons, but simple DOG and other linear filters are not accurate 

models of center-surround receptive fields. These possibilities are moreover not 

mutually exclusive. Future experiments will obtain physiological recordings from LGN
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neurons in the awake primate while presenting equivalent stimuli, in order to 

distinguish between these two alternatives.
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Figure 34. Predicted responses from several computational models. None of the 
variations plotted predicts the linear relationship between corner angle and corner 
salience found psychophysically. (A) DOG model with different surround sizes 
relative to the size of the center. (B) DOG model with different surround strengths 
relative to the strength of the center. (C) DOG model with local mean luminance 
normalization, as proposed by Tadmor and Tolhurst, (2000). (D) DOG with half-wave 
squaring as the nonlinearity, Gabor model, and energy model. In all plots the black 
line represents the results using the standard DOG model from Figure 33.________

3.3. Solid corners: Flicker Augmented Contrast Corners

To ensure that the relationship between corner angle and corner salience 

(Corner Angle Salience Variation effect) is not limited to corners embedded in 

luminance gradients (as in the Alternating Brightness Star), we developed a new 

variant of the “Flicker Augmented Contrast” illusion (Anstis and Ho, 1998) that 

illustrates the perceptual saliency of solid corners. We then quantified the perceptual 

brightness of corners with different angles, using an experimental design equivalent

Different models
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to the design used for the Alternating Brightness Star study. The results will be 

presented at the Visual Science Society 6th Annual Meeting (Troncoso et al., 2006).

In the classical Simultaneous Contrast illusion, the perceived brightness of a 

gray stimulus depends on the background that surrounds it: a white surround makes 

a gray circle look darker and a black surround makes the same gray circle look 

brighter (Figure 35).

Figure 35. Classical Simultaneous Contrast Illusion. Both circles are physically 
identical (50% gray). However, the one on the left looks lighter than the one on the 
right.________________________________________________________________

Anstis and Ho discovered that Simultaneous Contrast is greatly enhanced if 

the grey circle flickers between white and black. They called this effect “Flicker 

Augmented Contrast”: “a flickering test spot looks almost white on a dark surround 

and almost black on a light surround” (Anstis and Ho, 1998) (see at interactive 

demonstration of their illusion at http://www-psv.ucsd.edu/~sanstis/SAFAC.htmI). We 

created a variant of the Flicker Augmented Contrast illusion by introducing a corner 

as the flickering stimulus. If our general model of corner processing in the early visual 

system is correct, then the strength of the Flicker Augmented Contrast illusion should 

vary parametrically with the angle of the corner (Corner Angle Salience Variation). 

Here we quantify this effect: our results show that the Corner Angle Salience 

Variation effect is not restricted to corners embedded in luminance gradients (as in 

the Alternating Brightness Star), but it is a general and fundamental principle of 

corner perception, with potentially crucial implications for the brain mechanisms 

underlying early visual processing of shape and brightness.

http://www-psv.ucsd.edu/~sanstis/SAFAC.htmI
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3.3.1 Methods

To quantify the Corner Angle Salience Variation effect with the solid flickering 

corners we used the same 2-alternative-forced-choice design as in the Alternating 

Brightness Star experiment (see section 3.2.1 for details)

3.3.1.1 Subjects

4 naive subjects (adult volunteers with normal or corrected-to-normal vision) 

participated in 10 experimental sessions, of ~1 hour each, and were paid 

$15/session. Experiments were carried out under the guidelines of the Barrow 

Neurological Institute’s Institutional Review Board (protocol number 04BN039).

3.3.1.2 Experimental Design

All the experimental set up and design was the same as in the Alternating

Brightness Star experiment (see section 3.2.1)

The Comparator was a flickering corner with one of 13 possible angles: ±15°, 

±30°, ±45°, ±75°, ±105°, and ±135°, and 180° (flat) (Figure 36). The corner flickered 

between 15% gray and 85% gray (50% luminance over time) at 15Hz (Anstis and Ho, 

1998) against a black or a white background. At this flickering rate subjects had no 

difficulty lumping both phases of the flicker together and making judgments of the 

overall brightness of the flickering region (Anstis and Ho, 1998). To construct the 

Standard stimulus, we took a flat non-illusory gradient (100 steps, 0.06°/step), we 

divided it into 11 luminance segments and we pseudorandomly scrambled the 

segments. To match the height of the Comparator we stacked 4 of these 

pseudorandomly scrambled gradients into a long vertical stripe that contained 44 

segments total. The size of the Standard was 24° (h) x 0.5° (w). The Comparator 

stimulus was 24° (h) x 4° (w). Both Comparator and Standard stimuli were centered 

at 3° of eccentricity.
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Figure 36. Experimental design. A) Monitor display during time course of a single 
trial. B, C, D) Three different stimuli presentations of the brightness discrimination 
task (out of 572 possible conditions, see Methods section 3.2.2 for details). The 
patterned parts of the stimuli represent flickered between 15% and 85% gray at 15Hz 
during the experiments (50% luminance over time).___________________________

Red bars were displayed to the sides of the Standard and Comparator stimuli, 

to indicate precisely the parts of the stimuli to be compared. The red bars were 

always drawn at the same height as the tip of the flickering corner in the Comparator. 

Thus the vertical position of the red bars on the monitor varied as a function of the 

angle of the corner gradient.

The tip of the flickering corner was compared against all possible luminances 

of the Standard, for all corner angles tested. Since the discrimination point on the 

Comparator was always of 50% luminance, the physical difference between the 

Comparator and the Standard was a function of the luminance of the segment within 

the Standard stimulus indicated by the red bars. Thus if a 50% luminance Standard 

segment appeared perceptually different from the Comparator, and this varied as a
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function of corner angle of the Comparator stimulus, then the difference was not 

physical and it must have been caused by the illusory effects of corner angle.

The summary of all conditions (n = 572) was as follows:

• 2 screen positions: left and right

• 2 background configurations: white on top, dark on top

• 13 corner angles: ±15°, ±30°, ±45, ±75°, ±105°, and ±135° plus 180° (flat)

• 11 Standard luminances: 5%, 14%, 23%, 32%, 41%, 50%, 59%, 68%,

77%, 86%, and 95%

For each subject, each combination of background configurations (white-on- 

top versus, black-on-top) and corner angle was presented 20 times, over 10 sessions 

(2 trials per session per combination).

Psychometric curves were obtained fitting the data with logistic functions 

using a maximum likelihood procedure (Wichmann and Hill, 2001).

3.3.2 Results

We determined the Point of Subjective Equality for each Comparator as in the 

Alternating Brightness Star experiment (Figure 37A). We calculated the illusory 

enhancement for each corner angle as the difference between the point of subjective 

equality for the 180° non-corner condition and the point of subjective equality for the 

angle tested (Figure 37B). We found that the perceived salience of the corner varied 

parametrically with the angle of the corner. Sharp angles generated stronger illusory 

salience than shallow angles (Corner Angle Salience Variation), as also found in the 

Alternating Brightness Star experiment. The average result (Figure 37A and Figure 

37B) is consistent with the data for each individual subject (Figure 37C). Our results 

show that the Corner Angle Salience Variation effect is not limited to corners 

embedded within luminance gradients. Therefore we propose that the parametric 

relationship between corer angle and corner saliency is a general and fundamental 

principle of corner perception.
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Figure 37. Psychophysical results for the flickering solid corner experiment. A) 
Psychometric functions for the different corner angles are plotted in different colors. 
The conditions where the tips of the corner of the Comparator looked bright and the 
conditions where they looked dark are collapsed. B) Illusory enhancement of the 
PSEs with respect to the control condition (180° corner) for the different Comparator 
corner angles. The illusory enhancement decreases parametrically as the angle of 
the Comparator corner gradient becomes shallower (Corner Angle Salience Variation 
effect). Error bars in A) and B) represent the ± standard error of the mean for all 
subjects in each condition (n=4). C) Results for the individual subjects: psychometric 
curves (top row) and illusory enhancement (bottom row).
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4. Chapter 4.
Corners within luminance 

gradients: human fMRI physiology

4.1. Introduction

In chapter 3 we psychophysicaliy quantified the Alternating Brightness Star 

illusion (Figure 28) and we showed a parametric relationship between corner 

salience and corner angle. According to the model proposed in chapter 2, we 

suggested that the increase in perceived brightness at corners, curves, and other 

discontinuities, is due to the interaction between the shape of corners and the shape 

of early visual receptive fields. Previous models of corner processing suggested a 

primary role of specific extrastriate circuits in corner perception and processing 

(Hubei and Wiesel, 1965; Pasupathy and Connor, 1999; Ito and Komatsu, 2004). We 

conducted an fMRI experiment to test our hypothesis that all retinotopic receptive 

fields, may be equipped to locate corners on surfaces and encode their angle, 

whereas more specialized corner circuits, such as those found in V4 (Pasupathy and 

Connor, 1999), may encode specific features about corners, such as their orientation. 

If our hypothesis is correct, then all retinotopic areas in the occipital lobe should 

respond in a parametric way to corners of varying angles. If our hypothesis is 

incorrect, only those areas that are classically concerned with corner processing will 

preferentially activate in a differential manner to corner angle.
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No previous studies of corner processing have been conducted in humans 

with whole brain fMRI imaging. The goal of our study was to determine the neural 

substrates of the Alternating Brightness Star illusion, particularly the Corner Angle 

Salience Variation effect, in the visual cortex of human subjects. We presented 

normal volunteers with Alternating Brightness Stars having equivalent angles to 

those used previously in the psychophysical experiments (see chapter 3), while 

acquiring fMRI data. We localized the retinotopic brain regions that modulated their 

activity in correlation with the angle of the corner. The BOLD correlates of the 

Alternating Brightness Star illusion matched the psychophysical results: BOLD signal 

responses were stronger for sharp angles than for shallow angles. A parametric 

relationship between corner angle and strength of BOLD signal was moreover 

observed in all individual retinotopic areas, and with similar magnitudes. This 

suggests that corner detection and corner angle salience processing are generalized 

properties of the early visual system, rather than the function of only a small subset 

of occipital circuits. Therefore we propose that specific corner-processing circuits, 

such as end-stopped cells in extrastriate areas (Hubei and Wiesel, 1965) and corner- 

processing neurons in area V4 (Pasupathy and Connor, 1999) serve to determine 

precise characteristics of corners, such as their orientation. These results offer 

insights into the neural mechanisms responsible for corner processing, and the 

stage(s) of the visual hierarchy in which it may first arise. This work has been 

presented at the flowing 2005 meetings: the European Conference on Visual 

Perception, the Society for Neuroscience Annual Meeting, and the Optical Society of 

America Vision Meeting (Troncoso et al., 2005a, 2005c, 2005b).
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4.2. Methods

4.2.1 Subjects

24 healthy volunteers (of both genders between the ages of 18 and 40) 

participated in the study. Subjects were paid twenty dollars per session. All subjects 

were scanned on (at least) two separate days, with 1 session per day (1 session for 

retinotopic mapping and 1 or 2 sessions to measure BOLD responses under the 

different experimental conditions). Experiments were carried out under the guidelines 

of Dartmouth College’s Institutional Review Board (protocol number 15782).

4.2.2 Stimuli

We drew Alternating Brightness Stars to extend across the entire monitor 

screen (Figure 38) and we presented them at 8 Hz counterphase flicker. Flickering 

the stimuli in this way had the dual benefit of counteracting luminance adaptation and 

maximizing the stimulation of the visual system.

Stimuli were projected onto a plexiglass screen outside the bore of the 

magnet, and viewed via a tangent mirror inside the magnet that permitted a 

maximum of 22° X 16° visible area. The projected image was smaller than this area 

and subtended approximately 17° X 12°. The monitor’s luminance was linearized. In 

order to control for the potential effects of global luminance changes, we normalized 

the overall spatial luminance of the Alternating Brightness Star images with respect 

to the 180° condition. After luminance normalization, global luminance contrast 

(image luminance peak to image luminance trough distance) was highest in the 180° 

Alternating Brightness Star, and lowest in the 15° Alternating Brightness Star. This 

was a conservative control, as it was designed to work against our hypothesis that 

BOLD signal should increase with corner angle sharpness.
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Figure 38. Alternating Brightness Star stimuli used during the fMRI experiment. 
Column A) Alternating Brightness Stars of different angle vertices. As the protruding 
vertices decrease in angle (lower rows), the brightness/salience effect grows 
stronger. Thus the peaks and troughs of each arm of the star look more salient with 
sharper angles, despite the fact that they have the same luminances as in lower 
angles. The red rectangle over each Alternating Brightness Star represents the part 
of the stimulus that was cropped and scaled to create the stimuli in columns B, C, 
and D. Column B) Same stimulus as in A, now zoomed in and normalized for overall 
luminance. The illusory effect remains stronger for the lower rows, which have 
sharper angles, even though their maximal overall contrast is lower than in the upper 
rows (due to the luminance normalization). Column C) Same as column B, but now 
sign-reversed. Column D) Same as in columns A-C, but now with a randomized 
color gradient, so that the angle of the contours in each row is more prominent. All 
stimuli presented during the experiment were from columns B and C.____________

4.2.3 Experimental Design

Continuous whole-brain BOLD signal was acquired at the Dartmouth Brain 

Imaging Center on a GE 1.5T signa scanner using a head coil. We collected 

standard T2*-weighted echoplanar functional images using 25 slices (4.5 mm 

thickness and 3.75-by-3.75 mm in-plane voxel resolution, inter-slice distance 1mm, 

TR = 2500 msec, flip angle = 90°, field-of-view = 240 X 240 X 256 mm, interleaved 

slice acquisition, matrix size=64x64) oriented approximately along the anterior- 

commissure posterior-commissure plane. These slices were sufficient to encompass
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the entire brain of each subject. Cushions were used to minimize head motion. A T1- 

weighted anatomical image with the same slice orientation as the EPI was collected 

for each subject, as was a T2-weighted high resolution anatomical scan.

The experiment had a standard fMRI block design, with 11 (5 Alternating 

Brightness Star condition and 6 fixation) 20 sec blocks. Each run began with 10 sec 

of dummy scans (four volumes, which were discarded) to bring spins to baseline. 

Each run thus lasted a total of 230 sec. Condition order was randomized on each 

run. Subjects carried out a minimum of 10 runs each, and a maximum of 24. The first 

and last blocks were always fixation-only, and condition blocks were always 

separated by a fixation-only block. An entire cortical volume was scanned 8 times per 

20-sec block (each block consisted of 40 cycles of the stimulus, duty cycle = 500ms).

We controlled for eye movements, wakefulness, and attention to the fovea by 

requiring subjects to perform a demanding reaction-time task, in which they had to 

respond (via button press) to a randomly-occurring change in fixation point color. The 

fixation point was approximately 0.2° X 0.2° and changed color on average about 

once every 1.5 sec. This color change occurred an equal number of times during 

each block. No motor areas were found to be activated differentially between 

conditions, corroborating that the motor task was equivalent across all conditions. 

This task could only be carried out successfully if the subject was fixating during both 

condition and fixation-only blocks, and attending to the fixation point carefully.

4.2.4 Data preprocessing

Data was analyzed offline using BRAIN VOYAGER (BV) 4.9.6 and custom 

MATLAB software. Effects of small head movements were removed using BV’s 

motion correction algorithm. Slice scan time correction was carried out to correct for 

the fact that slices were not collected at the same time. Slices were corrected to have 

the same mean intensity. Functional data was not smoothed in the space domain, 

but any low-frequency temporal fluctuations whose wavelength was greater than 29
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hemisphere

TRs were removed. This did not introduce correlations between a voxel and its 

neighbors.

hemisphere

Figure 39. Retinotopic areas. Example of a single subject’s right and left 
hemispheres with retinotopic areas marked._______________________

4.2.5 Retinotopy

Retinotopy (Figure 39) was carried out using standard phase-encoding 

techniques (Sereno et al., 1995) (4.5 mm thickness and 3.75-by-3.75 mm in-plane 

voxel resolution, inter-slice distance 1mm, TR = 1600 msec, flip angle = 90°, field-of- 

view = 240 X 240 X 256 mm, interleaved slice acquisition, matrix size=64x64; 16 

slices oriented along the calcarine sulcus) with the modification that two wedges of 

an 8Hz flicker black and white checkerboard grating were bilaterally opposite, to 

enhance signal to noise. Wedges occupied a given location for 2 TRs (3.2 secs) 

before moving to the adjacent location in a clockwise fashion. Each wedge 

subtended 18 degrees of 360 degrees. 9.6 secs (6 TRs of dummy scans) were 

discarded before each run to bring spins to baseline. 168 volumes were collected on 

each run. A minimum of 7 wedge runs were collected for each subject and then 

averaged to minimize noise before retinotopic data analysis in BV 4.9.6. A minimum 

of 3 runs were collected per subject using expanding 8Hz flickering concentric rings
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that each spanned approximately one degree of visual angle in ring width. Each ring 

was updated after one TR (1.6s) after which it was replaced by its outward neighbor, 

except that the outermost ring was replaced by the innermost ring, whereupon the 

cycle was repeated.

4.3. Results

We found angle-correlated BOLD activity in all the retinotopic visual areas of 

the cortex (Figure 40 and Figure 41). BOLD signal varied gradually with the angle of 

the corner, being strongest for sharp corner angles and weakest for shallow corner 

angles. Figure 40 shows the average time-courses (n = 24 subjects) of the %BOLD 

signal for the 5 different angle conditions tested, using the union of all the retinotopic 

areas of each subject as the Region of Interest.
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Figure 40. %BOLD responses to the Alternating Brightness Star stimulus, from all 
retinotopic areas in 24 subjects. Response time-course plots from all 5 angle 
conditions, color-coded for different corner angles. We used the union of all the 
retinotopic areas in each subject as that subject’s ROI. Dotted vertical lines indicate 
Alternating Brightness Star stimulus onset and termination. Error bars represent 
standard error of the mean between subjects._______________________________

Time courses for the individual retinotopic areas were also obtained. For each

retinotopic area, we calculated each subject’s average response to each angle
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condition (during times 5-20 secs after stimulus onset) and calculated the %BOLD 

signal z-score across the 5 conditions for that subject. Using z-scores allowed us to 

reduce a large fraction of variation in BOLD signal levels across subjects. When we 

plotted the %BOLD signal z-score (24 subjects average) against the angle of the 

corner, we found a parametric relationship, both for the union of all retinotopic areas 

and for each of the individual retinotopic areas (Figure 41). For each retinotopic area 

we performed a repeated measures ANOVA with a linear contrast based on the 

condition angle: the amount of variance in the z-scores that is accounted for by the 

linear contrast (partial eta squared: r|p2) reached significance at a level of p<0.01 in 

all individual areas, as well as in the union of all retinotopic areas.

These results offer the first physiological correlates of the Alternating 

Brightness Star illusion. They moreover agree with our psychophysical 

measurements of this illusion (chapter 3), and suggest that sharp corners are more 

salient stimuli than shallow corners throughout the human occipital cortex.
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Figure 41. %BOLD signal (z-score) as function of corner angle in individual 
retinotopic areas and in the union of all retinotopic areas. Each data point was 
obtained by first averaging the responses between 5 and 20 secs after stimulus 
onset, for each subject’s hemisphere, and then computing the z-score across the 5 
angle conditions. Error bars represent standard error of the mean between subject 
hemispheres. The union of all retinotopic areas was calculated from the data in 
Figure 40.__________________________________________________________
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5. Chapter 5.
Summary, discussion, and future 

directions

5.1. Summary and conclusions

The purpose of this dissertation project was to explore the hypothesis that 

corner processing begins at the earliest stages of the visual hierarchy and to quantify 

the contribution of corners of different angles to visual physiology and perception. 

Using human psychophysics, human fMRI, and computational simulations of center- 

surround receptive fields we have obtained the following results and conclusions:

• From center-surround computational simulations (chapter 2):

-  Computational simulations of center-surround receptive fields predict 

that responses to corners vary parametrically with the angle of the 

corner: the sharper the angle the higher the predicted response.

-  There is a subspace of angles and contrasts in which early neurons 

respond better to corners than to any possible edge.

-  Predicted responses to sharp corners are stronger than predicted 

responses to bars of optimal width.

-  Responses to corners do not depend on receptive field size, whereas 

responses to bars, gratings and spots do.

-  Corners are more dependable visual features than edges, bars or 

spots across different stimulation conditions.
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• From human psychophysics of corner-based illusions (chapter 3):

-  We obtained the first psychophysical quantification of Vasarely’s 

nested squares illusion and the Alternating Brightness Star illusion.

-  Perception of corners varies linearly with the angle of the corner.

-  The sharper the angle, the more salient the corner: Corner Angle 

Salience Variation effect.

-  When embedded in a luminance gradient, corners appear bright or 

dark depending on the interaction between the sign of the angle and 

the direction of the luminance gradient: Corner Angle Brightness 

Reversal effect.

-  Center-surround receptive field linear models qualitatively predict the 

perceptual result, but fail to predict the shape of the curve.

-  The results obtained with corners embedded in luminance gradients 

are applicable to solid corners as well.

• From human fMRI of corner-gradient illusions (chapter 4):

-  We obtained the first physiological correlates of the Alternating 

Brightness Star illusion.

-  BOLD signal strength is positively correlated with the sharpness of 

corner angle: the sharper the angle the stronger the BOLD response 

(physiological substrate of the Corner Angle Salience Variation effect).

-  Sharp corners are more salient than shallow corners in all retinotopic 

cortical areas.

-  This suggests a general principle for corner processing throughout the 

visual cortex.
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5.2. Discussion

5.2.1 Corners and information

In 1961, Barlow proposed that the brain recodes visual data “so that their 

redundancy is reduced but comparatively little information is lost”. This idea is known 

as the “Redundancy-Reducing Hypothesis” (Barlow, 1961, 1989). The redundancy- 

reducing hypothesis has been invoked as an explanation for why neurons at the early 

levels of the visual system are suited to perform “edge-detection”, or “contour- 

extraction”. However, redundancy reduction is not necessarily constrained to edges, 

but rather should theoretically apply to any feature in the visual scene (Rao et al., 

2002). Just as edges are a less redundant feature than diffuse light, Attneave 

proposed in the 1950’s that “points of maximum curvature” (i.e. discontinuities in 

edges, such as curves, angles and corners -  any point at which straight-lines are 

deflected) are even less redundant than edges themselves, and thus contain more 

information (Attneave, 1954) (Figure 16). If points of high curvature are less 

redundant than points of low curvature, then sharp corners should also be less 

redundant than shallow corners. This led to our prediction that, following the 

redundancy-reducing hypothesis, sharp corners should appear to be perceptually 

more salient than shallow corners, which we demonstrated psychophysically in 

chapter 3.

5.2.2 Corner processing by center surround receptive fields

Theoretical and physiological models of vision have assigned the function of 

"edge detector" to early visual neurons (Marr and Hildreth, 1980), whereas corner 

detection has been considered a cortical process subsequent to edge detection 

(Hubei and Wiesel, 1965; Dobbins et al., 1987; Versavel et al., 1990; Knierim and 

van Essen, 1992; DeAngelis et al., 1994; Sillito et al., 1995; Shevelev et al., 1998; 

Das and Gilbert, 1999; Kapadia et al., 1999; Shevelev et al., 1999; Jones et al., 

2001; Sceniak et al., 2001; Pack et al., 2003; Pack et al., 2004). In agreement with
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this idea, several studies of shape processing have invoked curves and corners as 

intermediate shape primitives (Milner, 1974; Biederman, 1987; Ullman, 1989; Poggio 

and Edelman, 1990; Dickinson and Pentland, 1992; Pasupathy and Connor, 1999).

Vasarely’s nested squares illusion and the related effects described in 

chapter 3 show that corners are perceptually more salient than straight edges, and 

moreover that sharp corners are more salient than shallow corners. Hurvich’s center- 

surround model of Vasarely’s nested squares predicts that the 90° corner-gradient 

effects in Vasarely’s artwork arise from subcortical center-surround receptive fields 

(Hurvich, 1981; see section 2.1 for details). Moreover Marr’s primal sketch has also 

been shown to highlight corners (Watt, 1988).

We proposed a new general model of corner processing in the early visual 

system, based on the fact that, due to the geometry of their center-surround 

receptive fields, retinogeniculate neurons should respond better to corners than to 

edges (Figure 18). It is possible that center-surround receptive fields may have 

evolved to make use of the reduced redundancy of sharp corners versus shallow 

corners and edges. Thus, while it seems likely that curves and corners play an 

important role during high-level object recognition and shape processing, corner and 

curve detection may first take place within the lowest levels of the visual system, 

rather than within mid-level circuits.

In his theoretical work Watt states that “stra ight lines and cun/ed lines are  

processed in parallel. There is a high curvature system (very little can be sa id  about 

it) that could have great value as a feature detectoT (Watt and Andrews, 1982) and 

that “It is possible to detect corners and intersections directly in the image, rather 

than calculating where lines in tersect’ (Watt, 1988). Watt’s theory remarks the 

importance of corners and proposes that corners can be detected directly on the 

image by Lapalcian operators. However, Watt did not make any suggestions as to 

where in the visual system these computations might take place, and did not relate
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them to center-surround receptive fields in any way; he solely reflected that “very little 

can be said” about the “high curvature system” he proposed.

Our computational results (chapter 3, Figure 33) using center-surround 

receptive field simulations, predict the general trend of the perceptual observations 

(that the strength of the percept varies inversely with the angle of the corner). 

However, they fail to predict the exact shape of the quantitative psychophysical 

results.

Previous computational studies have proposed that linear receptive fields 

cannot process curvature features, since linear filtering, even if modified by common 

nonlinearities like thresholding or rectification, will generally confound straight lines 

with signals that show essentially two-dimensional variations (Zetzsche and Barth, 

1990; Barth et al., 1998a; Mota and Barth, 2000). It has also been suggested that 

linear receptive fields cannot explain some simultaneous contrast illusions (Morrone 

et al., 1986; Ross et al., 1989). Thus it is possible that center-surround receptive 

fields do not fully account for the illusions studied, and that further cortical processing 

takes places after the retina/LGN levels. However, it is also possible that the basic 

DOG filters used here (despite the fact that we varied many of their parameters) are 

too rudimentary to completely simulate subcortical function. Linear DOG models 

account for the main properties of center-surround neurons, but they ignore many of 

the more complicated aspects, such as the influence of the suppressive field (see 

General Introduction), which could play a role on the illusions studied here through 

contrast gain control mechanisms (Shapley and Victor, 1978, 1981; Carandini, 2004; 

Bonin et al., 2005; Mante et al., 2005).

Future electrophysiological recordings from LGN neurons using stimuli 

equivalent to the ones presented here, will distinguish between these two 

possibilities.
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5.2.3 Cortical neural correlates of corner perception

The study of the physiological responses to corners, curves and terminators 

has generated a great deal of interest in recent years (Shevelev et al., 1998; 

Pasupathy and Connor, 1999; Pack and Born, 2001; Pasupathy and Connor, 2001, 

2002; Pack et al., 2003; Ito and Komatsu, 2004; Pack et al., 2004). Several 

electrophysiological studies have reported single-unit responses to curves and 

corners in striate and extrastriate cortex of cats and primates (Hubei and Wiesel, 

1965; Shevelev et al., 1998; Pasupathy and Connor, 1999; Ito and Komatsu, 2004). 

However, many important questions remain. For instance, the neural correlates of 

corner perception in the human brain are unknown. Specifically, the BOLD correlates 

of corner perception have not been studied in any species to date. Finally, imaging 

and electrophysiological studies have yet to determine the contribution of angle 

sharpness to corner processing in any species.

In chapter 4 we used the Alternating Brightness Star illusion as a tool to 

systematically investigate the physiological correlates of corner and angle processing 

in humans, through functional imaging. We found BOLD signal strength to be 

positively correlated with both the acuteness of corner angle and the strength of the 

Alternating Brightness Star illusion, since the strength of the Alternating Brightness 

Star illusion itself increases with angle acuteness. These results match the 

psychophysical data we collected while presenting equivalent stimuli (chapter 3). 

Just as Mach Bands, Chevreul’s effect, and other edge-based illusions are significant 

to understanding the perception of all edges, the Vasarely and the Alternating 

Brightness Star effects studied here are significant to understanding corner 

perception in general.

Hurvich suggested that Vasarely’s nested squares illusion (Figure 15) could 

be explained by contrast differences at the level of center-surround receptive fields 

(Hurvich, 1981). Following from this idea, we proposed more generally that any  

surface corner in the world will increase local contrast, and so sharp corners will be
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perceptually more salient than shallow corners in general (chapter 2). Thus center- 

surround receptive fields may function as the first curvature detectors in the visual 

processing hierarchy, as the antagonism between center and surround should result 

in sharp corners generating stronger responses than shallow corners or flat edges. 

We also propose that the changes in BOLD signal observed in chapter 3 are driven 

primarily by changes in local contrast at the corners (as local contrast, from the point 

of view of a single receptive field in the early visual areas, is higher at sharp versus 

shallow corners). Future single-unit studies will address the specific hypothesis that 

the physiological effects seen here are due to the interaction of corners and receptive 

field shape.

Our results agree with previous electrophysiological studies showing 

responses to corners in striate and extrastriate neurons (Hubei and Wiesel, 1965; 

Pasupathy and Connor, 1999). However, our findings were common to all retinotopic 

areas. The parametric relationship (described in chapter 3) between the amount of 

BOLD signal and the sharpness of the corner angle was not constrained to any given 

retinotopic brain region, as would be predicted by some models of corner processing, 

but it occurred in all retinotopic areas (as one would expect if the initial stages of 

corner processing take place subcortically). Some of the previous studies that found 

neuronal responses to corners in V1 (Shevelev et al., 1998) and in V2 (Ito and 

Komatsu, 2004) reported that the corner selective neurons have a preference for a 

particular angle (with all angles being represented in the population). Here we found 

that all cortical areas respond maximally to sharp corner angles. This result agrees 

with the study by Pasupathy and Connor which showed that over 70% of the V4 

neurons that are tuned to corner angle respond more vigorously to sharp angles 

(Pasupathy and Connor, 1999).

Our fMRI results provide the first physiological evidence that corner angle 

plays an important role in stimulus salience throughout the visual system, including 

stages at least as early as area V1.
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5.3. Future directions

Our results suggest that corners start being processed at the first stages of 

the early visual system (at the level of subcortical center-surround receptive fields), 

and not at the level of V1 or later, as currently suggested in the literature. We 

propose that corners are a fundamental visual feature for early visual neurons and 

that corners responses do not necessarily derive from the converging inputs from two 

neurons that are selective to two different edge orientations.

We have developed and quantified several visual illusions that show that 

corners are more salient than edges perceptually, and that corner salience depends 

parametrically on corner angle (Corner Angle Salience Variation effect). We have 

implemented computational simulations of center-surround receptive fields and found 

that the simulations predict the Corner Angle Salience Variation effect, with sharp 

corner angles eliciting the strongest responses. This suggests that center-surround 

neurons are in fact tuned to corners. However, even though the computational 

simulations predict the trend of the Corner Angle Salience Variation effect, they fail to 

capture the specific linear relationship between corner saliency and corner angle 

found psychophysically.

Future studies recording from center-surround neurons are needed to 

determine how these neurons actually respond to the illusion studied here. It is 

possible that center-surround responses do change linearly with the angle of the 

corner, which would show that the basic computational models used are not accurate 

enough to predict this property. The other possibility is that the responses match the 

computational predictions which would mean that the linear relationship arises after 

further processing by higher cortical areas.

We moreover found that BOLD signal strength is positively correlated with the 

acuteness of corner angle: sharp corners are more salient than shallow corners in all 

retinotopic areas, suggesting a general principle for corner processing throughout the
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visual cortex. Even though we established that BOLD signal varies parametrically 

with corner angle in all cortical retinotopic areas, the fMRI experiment did not have 

enough power to ascertain whether the relationship was linear, or whether BOLD 

signal also varied parametrically with corner angle in the LGN. Further experiments 

recording from single cells in different areas will determine at what level of the visual 

hierarchy the relationship between corner salience and corner angle becomes linear 

and where the slope of the response matches the slope found psychophysically.
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