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ABSTRACT

Tetrahydrobiopterin (BH4) is an essential cofactor for dopamine (DA), noradrenaline 

(NA), serotonin and nitric oxide (NO) synthesis in the brain. Inborn errors of BH4 

metabolism including GTP cyclohydrolase 1 (GTP-CH) deficiency are debilitating 

diseases in which BH4, DA, 5-HT and NO metabolism are impaired. Current 

treatment for these disorders is typically monoamine replacement +/- BH4. Whilst 

correction of the primary defect is the ideal, BH4 treatment is problematic as it is 

expensive and inefficacious. One approach to treat BH4 disorders is to use gene 

therapy as a more permanent, effective alternative. In this thesis the potential of gene 

therapy in an animal model of partial BH4 deficiency, the hph-1 mouse, was 

examined. These mice show many neurochemical similarities associated with BH4 

deficient states, including impaired BH4 (-69%), DA (-14%), NA (-23%), serotonin 

turnover (-55%) and NO metabolites in the brain. In cultured astrocytes from hph-1 

mice BH4 was significantly lower than wild type (-53%), and produced less BH4 (- 

89%) and NO metabolites (-64%) when stimulated with lipopolysaccharide (LPS) 

plus interferon-y (IFN-y), stimuli that increase GTP-CH and iNOS expression. When 

hph-1 astrocytes were infected with a recombinant adenovirus encoding human GTP 

cyclohydrolase (AdGCH), concentration-dependent increases in BH4 levels were 

observed, with just 1 virus particle per 10 cells resulting in 50-fold increases in BH4. 

AdGCH can upregulate the impaired NO production observed in hph-1 astrocytes 

following stimulation with LPS + IFN-y, although only if BH4 was increased prior to 

stimulation. Examination o f the molecular mechanisms behind the impaired NO 

production in LPS + IFN-y stimulated cells revealed that iNOS dimerisation is 

attenuated in hph-1 astrocytes when compared wild type (-84%), and could be 

increased to wild type levels when cells were pre-treated with AdGCH. Analysis of 

total iNOS protein expression revealed no difference between wild type and hph-1. 

These results raise the possibility that gene therapy could be used as a corrective 

solution for tetrahydrobiopterin deficient states.
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MOI Multiplicity of infection
MPP+ 1 -methyl-4-phenylpyridinium
MRP1 Multi-drug resistance protein type 1
MTHFR Methylenetetrahydrofolate reductase
mtNOS Mitochondrial NOS
NA Noradrenaline
NADH (3-nicotinamide adenine dinucleotide
NADPH (3-nicotinamide adenine dinucleotide phosphate
NHA N-g Hydroxy-L-arginine
nNOS Neuronal NOS
NO Nitric oxide
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N 0 2' Nitrite
n o 3- Nitrate
NOS Nitric oxide synthase
NOx Nitrite and nitrate
NSB Non-specific binding
ONOO' Peroxynitrite
OTC Ornithine transcarbamylase
PAGE Polyacrylamide gel electrophoresis
PAH Phenylalanine hydroxylase
PBS-T 10% phosphate-buffered saline with 0.1% Tween
PC12 Pheochromocytoma cells
PCA Perchloric acid
PCD Pterin 4a-carbinolamine dehydratase
PCR Polymerase chain reaction
PD Parkinson’s disease
pfu Plaque forming units
PI3K Phosphoinositide 3-kinase
PKU Phenylketonuria
PMSF Phenylmethylsulforyl fluoride
PTPS 6 -pyruvoyl-tetrahydropterin synthase
PTS Gene for PTPS
Pts(-/-) 6 -pyruvoyltetrahydropterin deficient mice
q-BH2 Quinonoid-dihydrobiopterin
q-DMPH2 Quinonoid-dimethyldihydropterin
RNA Ribonucleic acid
ROS Reactive oxygen species
SCID Severe combined immunodeficiency
SDS Sodium dodecyl sulphate
SEM Standard error of the mean
Sep L-sepiapterin
SNAP S-Nitroso-N-acetyl-d/-penicillamine
SNc Substantia nigra pars compacta
SPR Gene for SR
SR Sepiapterin reductase
SR(-/-) Sepiapterin reductase deficient mice
TA Total Activity
TEMED N ,N ,N \N  ’ -T etramethylethylenediamine
TH Tyrosine hydroxylase
TRH Tryptophan hydroxylase
VMAT2 Vesicular monoamine transporter type 2
WT Wild type
pA pamps



ACKNOWLEDGEMENTS

This thesis would have not been completed without the knowledge, help, expertise, 

and not to mention the enthusiasm of Dr. Simon Heales. Thank you for all your 

encouragement and kind words throughout the three years, and easing the tension 

when I had to give talks at international meetings. I was very lucky to have someone 

like you as a supervisor, who realises that important science can also be done over a 

beer or two.

I would also like to thank my secondary supervisor Dr. Laura Canevari for her 

insight and comments on this project.

I am very grateful for the help of Dr. Shijie Cai in Oxford for all his help and 

patience with the virus work in this thesis, including supplying AdGCH and 

AdeGFP, as well Western blotting advice and encouragement during the long months 

of travelling to Oxford. I must also thank Professor Keith Channon for allowing me 

to use the equipment in his lab in Oxford, plus advising the direction of the 

experiments. I would like to thank the members of Keith’s lab for their help and 

guidance.

I would also like to thank Mr. Geoff Lynes for his assistance with measuring 

phenylalanine and tyrosine in hph-1 blood spots and mass spectrometry guidance.

I am indebted to the other members of the Division of Neurochemistry for their 

support over the three years of this PhD.

This thesis is dedicated to my parents, brothers and sisters, and of course Emma.

This PhD is generously funded by the Brain Research Trust to whom I am indebted.

17



Chapter 1

Introchiction

18



1. INTRODUCTION

1.1 Pterins and pteridines

Tetrahydrobiopterin (BH4) belongs to a large class of compounds known as 

pteridines, and within a subdivision of this group named pterins. Pteridines are 

natural structurally diverse compounds that are involved in the biosynthesis of 

vitamins and cofactors. The structures of pteridines are based around a bicyclic 

nitrogen ring system, of which pterins are 2-amino-4-oxo derivatives (figure 1.1). 

Pterins can be further divided into two groups. Conjugated pterins, also known as 

folates, and unconjugated pterins that have a substitution that occurs mainly at the 6  

position of the ring nucleus, which includes BH4 (Pfleiderer, 1984). The name pterin 

was first applied by F. Gowland Hopkins in 1889 (Hopkins, 1889), when isolating a 

yellow pigment from the wing o f the common English brimstone butterfly. The name 

pterin arises from the Greek word pteron, meaning wing.

1.2 Tetrahydrobiopterin

Biopterin, the fully oxidised form of BH4 , was discovered independently and almost 

simultaneously by two groups of investigators. It was identified both as a growth 

factor for the protozoon Crithidia fasciculata (Patterson et al, 1956) and as an eye 

pigment in the mutant phenotype of Drosophila melanogaster (Forrest and Mitchell, 

1954). The structure of biopterin is a dihydroxypropyl side chain attached to the 

pterin ring at position 6 , and is fully oxidised in this form. Biopterin is partially 

reduced at positions 7 and 8  in the dihydrobiopterin (BH2) form, and fully reduced as 

BH4 (figure 1.2). However, only the 5,6,7,8-tetrahydro form is biologically active 

(Blau et al, 2001).

1.3 De novo biosynthesis of tetrahydrobiopterin

BH4 is synthesized from the purine guanosine 5’-triphosphate (GTP)(figure 1.3). The 

first step in the pathway involves the opening o f the ribose ring, and then purine 

moieties of GTP, followed by the incorporation o f a carbon from the ribose into the 

purine ring (Fukushima and Shiota, 1974, Bracher et al, 1998), which results in 

formation of the pterin ring structure. This reaction, known as an Amadori 

rearrangement, is the initial rate-limiting step in the pathway, which is catalysed by 

GTP cyclohydrolase 1 (GTP-CH)(EC 3.5.4.16) and produces 7,8-dihydroneopterin
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triphosphate (DHNTP). The second stage of biosynthesis is the removal of the 

triphosphate group and internal redox transfer by 6 -pyruvoyl-tetrahydropterin 

synthase (PTPS)(EC 4.6.1.10), generating a tetrahydro intermediate 6 -pyruvoyl- 

tetrahydropterin (6 PTP), a step dependent on magnesium.

The final step in the biosynthetic pathway is the reduction of the two keto groups on 

the side chain of 6 PTP, which requires two molecules of NADPH. Sepiapterin 

reductase (SR)(EC 1.1.1.153) can catalyse the production of BH4 from 6 PTP, firstly 

by converting 6 PTP to 6-(r-hydroxy-2-oxopropyl)-tetrahydropterin (Milstien and 

Kaufman, 1983; Smith, 1987), and then reducing this further to BH4 (Milstien and 

Kaufman, 1989). However, two other enzymes, carbonyl reductase (CR)(EC 

1.1.1.184) or 6 -pyruvoyl-tetrahydropterin reductase (also known as aldose reductase; 

AR)(EC 4.2.3.12) may participate in the diketo reduction of 6 PTP (Milstien and 

Kaufman, 1989; Park, 1991). CR can reduce 6 PTP to 6 -( l’-hydroxy-2-oxopropyl)- 

tetrahydropterin, and then AR can carry out further reduction to BH4 . Alternatively 

both AR and CR can convert 6 PTP to another intermediate, 6 -Lactoyl- 

tetrahydropterin, which is then reduced to BH4 by SR. Furthermore both 6 -Lactoyl- 

tetrahydropterin and 6 -(l ’-hydroxy-2 -oxopropyl)-tetrahydropterin may be isomerised 

by SR, and then reduced to yield L-erythro-BH4 (Auerbach et al 1997).

1.4 Tetrahydrobiopterin recycling and salvage pathways

Once it has been used in its cofactor role BH4 is oxidised to 4a-carbinolamine- 

tetrahydropterin, and may be recycled in a reaction requiring NADH (figure 1.4). In 

the first step of recycling 4a-carbinolamine-tetrahydropterin is converted to 

quinonoid-dihydrobiopterin (q-BH2) by pterin-4a-carbinolamine dehydratase 

(PCD)(EC 4.2.1.96) in a reaction that eliminates water. This step may also occur 

non-enzymically, however not at a rate sufficient to keep BH4 in a reduced state 

(Bailey et al, 1993). Dihydropteridine reductase (DHPR)(EC 1.6.99.7;) then converts 

q-BH2 back to BH4 in an NADH dependent step (Kaufman, 1964). This process is 

known as the recycling pathway. Linked to this is another set of reactions known as 

the salvage pathway, which can also regenerate BH4. Because q-BH2 is unstable, it 

can undergo non-enzymic conversion to the more stable 7,8-dihydrobiopterin (BH2). 

BH2 is then converted back to BH4 by dihydrofolate reductase (DHFR)(EC 1.5.1.3)
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in an NADPH-dependent step (Kaufman, 1964). These pathways are shown in figure

1.4.

1.5 Structure of the tetrahydrobiopterin biosynthetic enzymes

1.5.1 GTP cyclohydrolase (GTP-CH)

GTP-CH is a homodecameric protein made up of two identical pentamer subunits, 

with a calculated molecular weight of approximately 279kDa (Togari et al, 1992). 

The gene for human GTP-CH, GCH, is found on chromosome 14 at position 

14q22.1-q22.2 (Thony et al, 1995), and gives a gene product of 221 amino acids 

(Nar et al, 1995). Studies on the crystal structure of GTP-CH show it to have a 

toroidal shape (Nar et al, 1995), with the two pentamers on top of each other. Active 

sites are formed at the interface of three subunits; two from one pentamer and one 

from the other, which gives the enzyme ten active sites per functional unit (Nar et al, 

1995).

1.5.2 6-pyruvoyl-tetrahydropterin synthase

PTS, the human gene for PTPS, has been mapped to the chromosomal region 

1 Iq22.3-q23.3 (Thony et al, 1994). The product of this gene is a 145 amino acid 

monomer (Thony et al, 1992). PTPS is a Zn2+-containing homohexamer, comprised 

of two trimers, with a molecular mass of 97.5 kDa (Nar et al, 1994; Burgisser et al, 

1995). The homohexamer forms a barrel like structure, with face-to-face association 

between two trimers (Burgisser et al, 1995). Six active sites are formed in the 

homohexamer, at the interface of two monomers from one trimer, and one monomer 

from the other, and each has a binding site for Zn2+ (Burgisser et al, 1995). The Zn2+ 

binding domains are well defined, and role of Zn2+ in the reaction is to activate the 

protons of the substrate, stabilize intermediates and prevent breakage of the C1’C2’ 

pyruvoyl side chain bond (Ploom et al, 1999). In addition to Zn2+, PTPS has a strict 

requirement for Mg2+, however the Mg2+ binding site has yet to be resolved in the 

crystal structure of PTPS (Burgisser et al, 1995).

1.5.3 Sepiapterin reductase

In humans, the gene for SR known as SPR, has been mapped to chromosomal region 

2pl4-2pl2, which produces a protein of 261 amino acids (Thony et al, 1995). SR is a 

homodimeric enzyme, with a predicted molecular mass of 56 kDa (Auerbach et al,
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1997). The crystal structure of this enzyme shows that the two monomers are anti­

parallel to one another at a 90° angle, when in their active conformation, and the 

substrate 6 PTP and cofactor NADPH bind from separate sides of the enzyme 

(Auerbach et al, 1997).

1.6 Regulation of tetrahydrobiopterin homeostasis

The regulation of BH4 concentration in cells appears to occur mainly through 

modulation of biosynthesis. Many different agents are able to alter BH4 levels in 

mammals. Pro-inflammatory stimuli like the bacterial endotoxin lipopolysaccharide 

(LPS), cytokines such as interferon y (IFN-y), hormones including insulin, and other 

stimuli such as cyclic adenosine monophosphate (cAMP) and the neuroleptic 

reserpine (Werner et al, 1998) can all increase BH4. The anti-inflammatory cytokine 

interleukin-4, drugs like dexamethasone, glucocorticoids and the neurohormone 

melatonin all decrease BH4 levels in a number of cell types (Werner et al, 1998). 

These stimuli appear to have their effect mainly by influencing GTP-CH activity and 

expression, although modulation o f PTPS and SR, the other enzymes in the pathway, 

occurs to some extent (Kerler et al, 1989; Mori et al, 1997; Franscini, 2003).

One mechanism by which GTP-CH activity can be modulated, is through GTP 

cyclohydrolase feedback regulatory protein (GFRP). Initially named “p35” (Harada 

et al, 1993), this 52 kDa homopentameric protein, with momomers consisting of 83 

amino acids, was later renamed GFRP (Milstien et al, 1996; Yoneyama et al, 1998). 

At elevated levels of BH4, GFRP mediates inhibitory feedback regulatory effects on 

GTP-CH, while at high levels of phenyalanine it stimulates GTP-CH activity 

(Harada et al, 1993). Two GFRP homopentamers sandwich the homodecameric 

enzyme to exert the inhibitory and stimulatory actions (Maita et al, 2002). BH4 and 

phenylalanine bind between the interface of the enzyme and GFRP, with the BH4 

binding pocket formed mainly by GTP-CH, and the phenylalanine binding site by 

GFRP. It is thought that conformational changes mediated by GFRP on GTP-CH are 

responsible for changes in activity during feedback regulation (Maita et al, 2004).

In addition to BH4 and phenylalanine, a number o f other stimuli can influence GFRP, 

leading to altered BH4 biosynthesis. Hydrogen peroxide and LPS down-regulate 

GFRP and increase GTP-CH mRNA, leading to an increase in BH4 (Werner et al,
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2002; Gesierich et al, 2003; Ishii et al, 2005; Kalivendi et al, 2005). Furthermore, 

2,4-diaminohydroxypyrimidine (DAHP), an inhibitor of GTP-CH, exerts its effect 

through engaging GFRP (Xie et al, 1998; Kolinsky and Gross, 2004). GFRP mRNA 

has been detected throughout human tissues, and in high quantities in human liver, 

kidney, heart, lung, skin and brain (Kapatos et al, 1999; Gesierich et al, 2003; 

Chavan et al, 2006). It is expressed in serotonergic neurones, where it modulates the 

levels of BH4, but is undetectable in dopaminergic cells (Kapatos et al, 1999). 

Therefore GFRP would appear to have a widespread functional role throughout the 

periphery and CNS, although its precise physiological role in the brain remains 

unclear.

GTP-CH function can also be regulated by phosphorylation. GTP-CH has several 

putative phosphorylation sites for protein kinase C (EC 2.7.1.37), which may 

increase activity of the enzyme (Hatekeyama et al, 1991; Imazumi et al, 1994; 

Hesslinger et al, 1998). Regulation of GTP-CH may also occur at the level of mRNA 

synthesis, as cAMP has been demonstrated to prolong the half-life of GTP-CH 

mRNA, leading to increased BH4 (Pliiss et al, 1999). Activity of GTP-CH is also 

modulated by the concentration of substrate GTP, which binds cooperatively to GTP- 

CH, thus altering the enzyme kinetics (Thony et al, 2000). In addition, GCH splice 

variants may have a role in modulating GTP-CH expression, by reducing the amount 

of wild type enzyme present (Pandya et al, 2006).

PTPS may also play a regulatoiy role in BH4 biosynthesis. In murine neuroblastoma 

cell lines, both GTP-CH and PTPS expression increase in response to LPS (Mori et 

al, 1997). In human endothelial cells PTPS expression is induced 4-fold by 

Interleukin-P (IL-p), however this accompanies a 300-fold increase in GTP-CH 

expression, which suggests that in human cells under immune stimulation, PTPS may 

become the rate limiting step (Franscini et al, 2003). When PTPS is limiting in 

humans, a build up of dihydroneopterin and neopterin, the stable breakdown products 

of DHNTP occurs, due to the high amount of substrate relative to PTPS. Indeed, the 

build up of neopterin is often used as a marker of immune system activation in 

humans (Werner et al, 1991). PTPS may also be phosphorylated in humans, at 

serine-19 by cGMP-dependent protein kinases, which leads to 3-fold greater activity 

(Scherer-Oppliger et al, 1999). Furthermore, a patient with a mutation in the
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phosphorylation domain of PTPS was shown to be BH4-deficient, suggesting that 

phosphorylation of PTPS is important for normal BH4 metabolism (Oppliger et al,

1995).

SR may also play an important role in regulating BH4 biosynthesis. Like GTP-CH 

and PTPS, expression and activity of SR is increased following cytokine and 

bacterial endotoxin stimulation (Ziegler et al, 1990; Mori et al, 1997), but not to the 

same extent as GTP-CH. Phosphorylation of SR also occurs via protein kinase C (EC 

2.7.1.37) or calcium/calmodulin protein kinase II (EC 2.7.1.123)(Katoh et al, 1994; 

Fujimoto et al, 2002), and appears to increase activity of the enzyme. However, work 

so far has only been done in recombinant purified enzyme, so it remains to be 

demonstrated whether phosphorylation of SR effects activity in intact cells. There is 

also some evidence of feedback inhibition on SR activity, by catecholamines 

noradrenaline (NA) and serotonin (5-HT), and by the indolamines melatonin and N- 

acetyl-serotonin in rat brain homogenates (Katoh et al, 1982). N-acetyl-serotonin is a 

potent specific inhibitor of SR activity (Smith et al, 1992)

It has also been proposed that alterations in DHPR activity may also impact on BH4 

homeostasis. Metals such as aluminium, cadmium, mercury, lead and manganese 

may inhibit DHPR in vitro (Altindag et al, 2003). In addition, there are correlations 

between serum concentrations of lead and BH4 , and intelligence quotients in humans 

(Blair et al, 1982). Furthermore, patients on haemodialysis were found to have 

increased serum levels o f aluminium, that are associated with decreased DHPR 

activity and BH4 levels (Altmann et al, 1987). However, these findings are 

controversial, as contrasting data that did not find any association between 

aluminium, DHPR activity and cognitive function have been reported (Bolla et al, 

1991).

1.7 Functions of Tetrahydrobiopterin

BH4 is an essential cofactor for a number of enzymes including the aromatic amino 

acid mono-oxygenases, glyceryl ether mono-oxygenase, as well as all forms of nitric 

oxide synthase. BH4 also appears to have additional roles not related to its cofactor 

function, all of which are discussed below.

28



1.7.1 Aromatic amino acid mono-oxygenases

BH4 has a well-characterised role as a cofactor for the aromatic amino acid mono­

oxygenases. Enzymes that use BH4 as a cofactor in this group are phenylalanine 

hydroxylase (PAH)(EC 1.14.16.1), tyrosine hydroxylase (TH)(EC2.7.1.124) and 

tryptophan hydroxylase (TRH)(EC 1.14.16.4). PAH converts phenylalanine to 

tyrosine mainly in the liver, whilst TH then converts tyrosine to L-3,4- 

dihydroxyphenylalanine (L-dopa) in the central and peripheral nervous system. TRH 

converts tryptophan to 5-hydroxytryptophan, which is expressed widely in 

mammalian tissues (figure 1.5). Hepatic PAH is essential in maintaining peripheral 

phenylalanine homeostasis, as well as providing TH with substrate to generate L- 

dopa, which is essential in dopamine (DA), and subsequently adrenaline and NA 

biosynthesis. TRH provides 5-hydroxytryptophan, the precursor for 5-HT and 

melatonin.

Little is known about the precise reaction mechanisms of the aromatic amino acid 

mono-oxygenases, however they are thought to be very similar (Fitzpatrick, 1999). 

All require Fe3+, O2, and BH4 , and have a catalytic core that is highly conserved 

(Hufton et al, 1995; Grenett et al, 1987). BH4  is thought to play a role as an electron 

donor in these enzymes, providing one electron to Fe3+ in the active site, and another 

to reduce molecular oxygen (Hufton et al, 1995). The activation of oxygen by BH4 is 

thought to involve the formation of a 4a-peroxy-tetrahydrobiopterin intermediate 

(Fitzpatrick, 1999). Then following catalysis, a 4a-carbinolamine-tetrahydrobiopterin 

intermediate is generated (Wei et al, 2003)(figure 1.4). The 4a-peroxo-pterin 

intermediate is thought to be the hydroxylating species in the reaction, however this 

is still a matter of debate (Wei et al, 2003).

Once hydroxylation is complete, 4a-carbinolamine-tetrahydrobiopterin is then 

converted back to BH4 . This occurs firstly via pterin 4a-carbinolamine dehydratase 

(PCD)(EC 4.2.1.96), which produces q-BH2 . q-BH2 is then reduced to BH4 by DHPR 

in a step requiring NADH, ready for another round of catalysis (figure 1.4). PAH 

may form a complex with both PCD and DHPR to enable more efficient catalysis 

(Citron et al, 1992).
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1.7.2 Further cofactor roles o f  tetrahydrobiopterin

As well as the aromatic amino acid mono-oxygenases, BH4 is also required as a 

cofactor for glyceryl ether mono-oxygenase (EC 1.14.16.5)(Tietz et al, 1964). This 

enzyme hydroxylates the a-carbon of the lipid chain in glyceryl ether, producing a- 

hydroxyalkyl glycerol. Glyceryl ether mono-oxygenase is a membrane-bound 

microsomal enzyme, and although little is known about its biology, the products are 

believed to play a crucial role as membrane components and mediators of cell 

responses (Taguchi and Armarego, 1998). BH4 is also proposed to be a cofactor for 

the enzyme cyanide oxygenase (no EC number assigned; Kunz et al, 2001), which is 

found in the bacterium Pseudomonas fluorescens. This enzyme has properties similar 

to the pterin-dependent hydroxylases, and catalyses the production of CO2 and 

ammonia, to detoxify cyanide and to use ammonia as a growth source for the 

organism (Fernandez et al, 2004, 2006).

BH4 has an important cofactor role for all forms o f nitric oxide synthases (NOS)(EC 

1.14.13.39), which are well documented and described in section 1.8.

1.7.3 Further biological roles o f  tetrahydrobiopterin

BH4 has a wealth of physiological functions beyond its cofactor role. Several lines of 

evidence suggest it may function as an anti-oxidant, by scavenging free radicals. 

BH4, dihydrobiopterin, as well as dihydroneopterin, are all readily oxidised by 

reactive oxygen species (ROS) in vitro (Heales et al, 1988; Milstien and Katusic, 

1999), and BH4 can protect cultured rat hepatocytes against superoxide-induced cell 

toxicity (Kojima et al, 1995). Other instances of BH4 having a protective role in cells 

and ex vivo tissue include in dopaminergic neurones, where BH4 may substitute for 

the antioxidant glutathione (GSH)(Nakamura et al, 2000), and in organotypic nigral 

slices where it may protect against 1-methyl-4-phenylpyridinium (MPP+) induced 

oxidative stress (Madsen et al, 2003). BH4 may protect against NO-toxicity, both 

through scavenging NO as well as being a cofactor for NOS. Therefore it is 

implicated in diseases where NO toxicity may be part of the pathogenesis, for 

instance in cardiovascular disease (Werner et al, 2003; Alp and Channon, 2003). 

However, other literature suggests that BH4 can be damaging to cells under certain 

conditions. For instance, BH4 increases in ischaemia (Cho et al, 1999; Kidd et al,
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2005), and mediates dopaminergic cell death in rats treated with MPP+ (Choi et al, 

2003). The protective/toxic effects of BH4 are further discussed in section 1.11.7.

BH4 may also function in cells via a signalling and proliferative capacity independent 

of its cofactor role. Brain microdialysis studies in the rat brain show that BH4 can 

stimulate release of DA, 5-HT and glutamate (Mataga et al, 1991) by activating 

neuronal Ca2+ channels (Koshimura et al, 2000). BH4 can also stimulate release of L- 

Dopa ffom striatal tissue by a mechanism involving NO or free radicals derived from 

NO (Abreu-Gonzalez et al, 2006). Furthermore, BH4 increases the survival of the 

dopaminergic PC 12 cell line following serum and growth factor removal (Koshimura 

et al, 2000), and has a proliferative action on haemopoietic cells (Tanaka et al, 

1989), as well as on human and mouse erythroleukaemia cell lines (Kerler et al, 

1990; Zhuo et al, 1996).

1.8 Nitric oxide synthase

BH4 is a cofactor for NOS (EC 1.14.13.39). Three isoforms of NOS are well 

documented to date; neuronal NOS (nNOS), endothelial NOS (eNOS) and inducible 

NOS (iNOS). These enzymes convert L-arginine to L-citrulline, a reaction that 

requires O2 and generates the free radical nitric oxide (NO)(figure 1.6).

1.8.1 General structure and function o f  nitric oxide synthases

Although the isoforms of NOS derive ffom separate genes, they all have essentially 

the same basic structure and carry out the same reaction, suggesting a common 

ancestral gene (Alderton et al, 2001). They are homodimers with calcium/calmodulin 

linker sequences, which contain the tightly bound cofactors BH4, NADPH, flavin 

adenine dinucleotide (FAD), flavin mononucleotide (FMN) and iron protoporphryrin 

IX (haem)(Griffith and Stuehr, 1995). Each subunit contains N-terminal oxygenase, 

and C-terminal reductase domains, and catalyses the reaction of L-arginine, NADPH 

and O2 to citrulline, NADP+ and NO (figure 1.6). The reductase domain of NOS 

contains the flavins NADPH, FAD and FMN, and is involved in the transfer of 

electrons ffom NADPH, to reduce the iron in the haem group, which is part of the 

oxygenase domain. The oxygenase domain contains the substrate-binding pocket, 

BH4 binding domain, as well as the aforementioned haem group, and performs the

32



NH
/  NADPH

NH
/  0.5 NADPH

b h 4 o 2 b h 4 O,

A
h 3n  c o o

.NH

+ NO

h 3n  c o o  h 3n  c o o

L-Arginine N-° Hydroxy-L-arginine L-Citrulline

Figure 1.6. Reaction scheme for the conversion of L-Arginine to L-Citrulline, 

generating Nitric oxide (NO). N-° Hydroxy-L-arginine is an intermediate in this 

reaction.

(Adapted from Stuehr etal, 1991)



two-step oxidation of arginine to citrulline. This domain structure is similar to the 

cytochrome P450 mono-oxygenases (EC 1.6.2.4)(Narhi and Fulco, 1987; Stuehr and 

Ikeda-Saito, 1992), which also transfer electrons from NADPH via FAD and FMN to 

haem, however NOS is unique in the requirement for the BH4 cofactor and

calmodulin regulation. Once the iron in the haem group is reduced, it is suggested

that this species activates molecular oxygen for substrate activation, and generates 

water (Adak et al, 2000).

NOS is only active in producing NO in its dimer form. Dimerisation is thought to

occur between oxygenase domains on the monomers, at the BH4 binding sites, and

involves BH4, haem and substrate (Crane et al, 1998). Dimerisation may assist the

transfer of electrons from the oxygenase to reductase domains (Siddhanta et al,

1996), which suggests one reason why NOS monomers are not active. In addition L-

arginine fails to bind in the absence of a dimer (Crane et al, 1997), suggesting that

dimer formation plays a role in regulating enzyme activity (Li and Poulos, 2005).
• 2+  •NOS also contains Zn , which is also thought to play an important role for 

dimerisation, but is not essential for catalysis (Miller et al, 1999).

1.8.2 Biosynthesis o f  nitric oxide

The synthesis of NO is a two-step process that is coupled to the five-electron 

oxidation of L-arginine to citrulline (figure 1.7). The products citrulline and NO are 

formed at a 1:1 stoichiometry, along with two molecules of water (Stuehr et al, 

1991a). The first step in the reaction is the generation of an intermediate N-G 

Hydroxy-L-arginine (Stuehr et al, 1991b). This occurs when two electrons from 

NADPH are transferred via FAD then FMN in the reductase domain, to the Fe3+ in 

the haem complex of the oxygenase domain, which enables the activation of 

molecular oxygen, and leads to the monooxygenation of the guanidine nitrogen in L- 

arginine (Hurshman et al, 1999, 2003; Li and Poulos, 2005). N-G Hydroxy-L- 

arginine is the product of this pathway, which consumes 1 mole of NADPH and 1 

mole of O2 (Stuehr et al, 1991b). The second step of catalysis is less clear, but 

requires a three-electron monooxygenation of N-G Hydroxy-L-arginine. This reaction 

uses 0.5 moles of NADPH, and 1 mole of O2, and a vital role for BH4 is suggested 

which is discussed below (Adak et al, 2000).
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1.8.3 Role o f  tetrahydrobiopterin in nitric oxide synthesis

The role of BH4 in NO synthesis is controversial, and so far a number o f different 

theories exist as to its function (Alderton et al, 2001). It was initially suggested that 

BH4 functions as it does in the aromatic amino acid mono-oxygenases (Tayeh and 

Marietta, 1989), however it was subsequently discovered that BH4 remains tightly 

bound to the enzyme during and after catalysis, and is not recycled by the salvage or 

recycling pathways (Giovanelli et al, 1991). Furthermore there are discrepancies 

with the amount of product formed per mole o f BH4. In the aromatic amino acid 

mono-oxygenases stoichiometric amounts of product are formed with 1 mole of BH4, 

whereas 15 moles of citrulline are generated for every mole of BH4 (Giovanelli et al, 

1991). In addition the Km of BH4 for NOS is typically 0.02pM (Giovanelli et al, 

1991), in contrast to 2pM for PAH (Abita et al, 1984). It now appears that BH4 may 

be a one electron donor during catalysis, reducing the oxyferrous haem, which results 

in the generation of a BH3* radical (Hurshman et al, 1999). The scheme for these 

sets of reactions is illustrated in figure 1.7 (Wemer et al, 2003).

BH4 appears to be necessary for both stages of NOS catalysis to occur, suggesting 

that BH4 has a redox role in this reaction (Klatt et al, 1993; Gorren et al, 2005). In 

the first stage of catalysis BH4 is proposed to donate an electron to Fe2 + 0 2  arginine
• * • • Gcomplex, which leads to oxygen activation and hydroxylation of arginine to N- 

Hydroxy-L-arginine (Wemer et al, 2003). This step creates the BH3* radical, and 

induces a shift in the NOS haem ffom low- to high-spin, which aids enzyme 

activation (Gorren and Mayer, 2002). It is proposed that the BH3* radical then 

remains bound to NOS and is reduced back to BH4 by an electron ffom the reductase 

domain (Wei et al, 2003). This would allow it to participate in a further round of NO 

synthesis and may explain why a recycling and salvage pathway is not found for this 

enzyme (Giovanelli et al, 1991).

In addition to catalysis, BH4 plays a well-documented role as an allosteric regulator 

of NOS, in the dimerisation o f the enzyme and substrate binding. BH4 may also 

control the steady state level of NOS. The importance of dimerisation for full 

catalytic activity, along with the role of BFL*, was first shown in 1997 (Baek et al, 

1993). The NOS homodimer is formed at the interface of the BFL* binding site (Crane 

et al, 1998). BFL*, arginine and haem incorporation are all important for NO
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generation, however they are not essential for dimerisation in every isoform of NOS 

(Venema et al, 1997). But for dimers to become stable and active enzyme structures, 

BH4 and arginine binding are necessary (Baek et al, 1993; Ghosh et al, 1997). BH4 is 

known to increase the affinity of the enzyme for arginine, and vice versa, which is 

also crucial for NOS activity (Klatt et al, 1994). Increasing the concentration of BH4 

in nNOS enzyme assays lowers the Km for arginine (Gorren et al 1996), whereas 

decreasing BH4 concentrations by approximately 50% increases the Km from 9.5pM 

to 53.3pM (Brand et al, 1995). Loss o f BH4 may be an endogenous signal for 

ubiquitylation and degradation of nNOS (Kamada et al, 2005). This can lead to a 

rapid decrease in the steady state concentrations of nNOS that is not readily reversed.

In the presence of low concentrations of BH4 and arginine, NOS catalyses the

formation of superoxide ( O2 ) (Heinzel et al, 1992; Pou et al, 1992). This is thought
2+to occur because BH4 is no longer present to transfer an electron to the Fe O2, thus 

hydroxylation o f arginine does not occur, and the reaction becomes uncoupled 

generating -0 2 " (Rusche et al, 1998). This effect is observed in vitro in purified 

enzyme extracts (Xia et al, 1998; Rosen et al, 2002) and in endothelial cells, where 

greater amounts of -0 2 ’ were observed with declining BH4 levels (Kuzkaya et al, 

2003). This uncoupled reaction is proposed to be part of the pathophysiology of 

various disorders related to oxidative stress, which are discussed in section 1 .1 1 .6 .

1.9 Nitric oxide synthase isoforms

1.9.1 Neuronal nitric oxide synthase

Neuronal NOS (nNOS), also known as NOS 1 or type 1 NOS, is found on

chromosome 12 at position 12q24.2 in humans (Kishimoto et al, 1992). It is a
2+ .

Ca /calmodulin-dependent constitutively expressed isoform, which was initially 

found in neurones but has subsequently been localised in the periphery, such as in 

skeletal muscle (Nakane et al, 1993), kidney (Jarry et al, 2003) and has a well 

publicised role in the penis (Magee et al, 1996). nNOS is a protein of approximately 

161 kDa, and is made up of 1434 amino acids (Hall et al, 1994). It is expressed in the 

cytosol, and is active only as a homodimer, producing picomolar quantities of NO 

(Geller and Billiar, 1998). In addition this enzyme contains an N-terminal 220 amino 

acid region that is specific to nNOS and may be a site for membrane attachment 

(Brenman et al, 1996). In the brain nNOS is widely expressed, prominently in
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neurones in the cerebellum and hippocampus, as well as in the cortex and striatum 

(Wolf, 1997).

1.9.2 Inducible nitric oxide synthase

Inducible NOS (iNOS), is also referred to as NOS II and type II NOS. The human 

gene for iNOS is located on chromosome 17 at 17ql l-q l2  (Marsden et al, 1994), and 

encodes a protein of 1153 amino acids with a molecular mass of 131 kDa (Geller et 

al, 1993). Typically it is not constitutively expressed in most cell types, although 

“constitutive” expression has been demonstrated in certain tissues, such as the mouse 

ileal mucosa (Hoffman et al, 1997). It is independent of calcium for activity, which 

may be because it is very tightly bound to calmodulin, due to the presence of a 

binding sequence on this isoform (Cho et al, 1992). Inducible NOS is widely 

expressed throughout mammalian tissues, including in the brain (Geller and Billiar, 

1998), and is expressed in response to the presence of cytokines such as IFN-y, as 

well as components of bacterial membrane, such as LPS, and even viruses (Gross 

and Wolin, 1995). This, coupled with the high concentration (micromolar) of NO 

that iNOS generates (Geller and Billiar, 1998), has lead to suggestions that iNOS 

may have a role in immune response.

1.9.3 Endothelial nitric oxide synthase

Endothelial NOS (eNOS) is also known as NOS III or type III NOS. It is a protein of 

1203 amino acids with a predicted molecular mass of 133 kDa (Janssens et al, 1992) 

and in humans is localised to chromosome 7, position 7q35-q36 (Marsden et al, 

1993). Endothelial NOS is a constitutive calcium/calmodulin-dependent isoform, 

which produces picomolar quantities of NO (Geller and Billiar, 1998). It is found in 

endothelial cells where it was first identified (Pollock et al, 1991), however it has 

subsequently been located in a wide variety of other cell types, and is expressed in 

the brain (Li et al, 2002). In the endothelium eNOS is localised to the caveolae, the 

microdomains of the plasma membrane involved in signal transduction (Shaul et al, 

1996). Endothelial NOS can be activated by shear stress caused by blood flow 

through the endothelium (Shaul et al, 2002), and plays a role in maintaining vascular 

tone (Vallance et al, 1989), thus it is regarded as having an important function 

throughout the cardiovascular system.
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1.9.4 Mitochondrial nitric oxide synthase

There are suggestions there is an isoform of NOS associated with mitochondria 

(mtNOS), a finding that is still controversial. This discovery was based on 

immunocytochemical evidence, showing NOS antibody binding to mitochondrial 

membranes in rat brain, liver, heart, skeletal muscle and kidney, and it was proposed 

that this form of NOS represents a novel regulatory pathway of energy metabolism 

(Bates et al, 1995, 1996; Elfering et al, 2002). The molecular mass o f mtNOS is 

proposed to be approximately 130 kDa (Tatoyen and Giulivi, 1998) and appears to 

have some functional similarities with nNOS. It is also absent in nNOS knockout 

mice (Kanai et al, 2001), which lead to suggestions that it is a splice variant of 

nNOS. However, studies looking at the cross reactivity of antibodies for the different 

isoforms of NOS demonstrated that mtNOS reacted with iNOS, but not nNOS or 

eNOS antibodies (Tatoyen and Giulivi, 1998). It is still unproven whether mtNOS is 

specifically associated with mitochondria and not associated with other organelles 

that are isolated with the mitochondrial fraction, such as lysosomes. This has lead to 

suggestions that mtNOS is a membrane-associated form of iNOS (Alderton et al, 

2001), which is consistent with earlier reports of iNOS in macrophages (Hiki et al, 

1991). Whether mtNOS exists or not, it has been proposed to play a role in 

cardiovascular physiology (Fellet et al, 2006) and learning and memory (Lores- 

Amaiz et al, 2006).

1.10 Biological role of nitric oxide

Nitric oxide was first discovered as a biological mediator in 1980, via experiments 

investigating how acetylcholine mediated its vasodilatory effects on smooth muscle 

cells (Furchgott and Zawadzki, 1980). Initially it was thought acetylcholine acted 

directly on these cells causing dilatation, however it was observed that a small 

molecule mediated these effects by acting via specific receptors on endothelial cells. 

This molecule was initially termed endothelial derived relaxing factor (EDRF). 

Separate studies examining how nitro-glycerine mediates its vasodilatory effects in 

treating angina, demonstrated that NO was the active molecule, and that NO causes 

dilatation by activating guanylate cyclase leading to cyclic guanosine 3 ’, 5 ’- 

monophosphate (cGMP) formation (Arnold et al, 1977; Ignarro et al, 1981). These 

observations lead to the suggestion that EDRF and NO are the same molecule, which 

was confirmed in 1987 (Palmer et al, 1987).
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Since the elucidation of a role for NO in maintaining vascular tone, a great wealth of 

literature has emerged on the diverse biological functions of NO, some of which are 

discussed below. NO exerts many of these actions via activation of guanylate cyclase 

and formation of cGMP. NO interacts with haem-iron prosthetic groups on guanylate 

cyclase (Ignarro et al, 1982), causing activation of the enzyme, converting GTP to 

cGMP, which then engages various downstream targets such as phosphodiesterases 

and ion channels (Blaise et al, 2005). In addition to its role in smooth muscle tone 

discussed above, NO mediates other biological responses via cGMP, such as 

inhibiting platelet aggregation and blood clotting (Radomski et al, 1990), as well as a 

role in penile erection (Pickard et al, 1995; Magee et al, 1996; Sommer et al, 2006).

Another important function of NO is in the immune response to invading pathogens. 

Inducible NOS expression, and NO generation are activated several fold by 

cytokines and by LPS, both in vitro and in vivo (Wemer et al, 1993; Bolanos et al, 

1994; Bune et al, 1996). Inducible NOS is capable of generating micromolar levels 

o f NO, and can sustain this production for many hours (Geller and Billiar, 1998), 

which gives this enzyme antimicrobial properties and is even known to inhibit the 

growth of viruses (Karupiah et al, 1993; Sakai et al, 2006). The induction of iNOS is 

also accompanied by a parallel induction of GTP-CH expression (Hattori and Gross, 

1993), presumably to provide sufficient BH4 to act as cofactor for iNOS. Due to the 

highly diffusible nature of NO, it can freely move ffom the cell where it is produced, 

to the target cell to cause intracellular damage. This damage may occur though direct 

chemical reaction with intracellular proteins. S-Nitrosylation is the attachment of NO 

to the thiol group of a cysteine residue, and can inhibit many enzymes such as 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH)(EC 1.2.1.13)(Padgett and 

Whorton, 1995), protein kinase C (EC 2.7.1.37)(Gopalakrishna et al, 1993), 

glutathione reductase (EC 1.8.1.7)(Becker et al, 1995), aconitase in the citric acid 

cycle (EC 4.2.1.3)(Hibbs et al, 1988), cytochrome c oxidase (complex IV; EC 

1.9.3.1) and succinate cytochrome c reductase (complex II-III; EC 1.8.3.1) of the 

mitochondrial electron transport chain (Bolanos et al, 1994). Inhibition of these 

enzymes can result in toxic effects. In addition to its effects on enzyme activity, NO 

can mediate DNA strand breaks (Nguyen et al, 1992) and give rise to DNA 

mutations (Wink et al, 1991).
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In the CNS all cells have the ability to synthesize NO (Wemer et al, 2003). Initially, 

development of the CNS is dependent on NOS activity (Nachmany et al, 2006). 

Furthermore, extensive expression of the different NOS isoforms, coupled with the 

fact the brain has the highest expression of NOS of any organ so far examined (Salter 

et al, 1991), means that NO may have a very widespread role in CNS function. 

Because NO can diffuse so easily, it may modulate pre- as well as post-synaptic 

transmission, and the short half-life of NO means the signal is terminated rapidly 

(Garthwaite, 1991). In neurones, nNOS-derived NO may serve as a signalling 

molecule by activating glutamate receptors, in particular N-methyl-D-aspartate 

(NMDA) receptors (Garthwaite et al, 1988) to modulate neurotransmission. 

Neuronal NOS activity is stimulated by an influx o f Ca2+ through NMDA receptors, 

which leads to a rise in NO. This in turn can modulate the NMDA receptor, and 

attenuate or potentiate the glutamatergic signal (Kiss and Vizi, 2001). This 

modulation o f pre- and post-synaptic NMDA receptors has an effect on synaptic 

plasticity, and may be involved in long-term potentiation (LTP) and depression 

(LTD), which are proposed mechanisms for learning and memory (Garthwaite and 

Boulton, 1995).

In addition, NO may have a damaging role in various disorders of the periphery and 

CNS, some of which are discussed in section 1.11.6.

1.11 Disorders of tetrahydrobiopterin metabolism

BH4 deficiencies are a heterogeneous group o f disorders, with wide-ranging clinical 

as well as biochemical characteristics. Deficiencies of GTP-CH, PTPS, SR, PCD, 

and DHPR have all been reported and characterised, and now thanks to progress in 

diagnosis and treatment, most are no longer lethal. Understanding o f this group o f 

diseases began in 1969, through the description of two siblings with a “genetic 

variant of phenylketonuria” (Tada et al, 1970). These patients were later diagnosed 

as being DHPR deficient (Tada et al, 1980). Then in 1974, three patients were 

described as having phenylketonuria (PKU), who although diagnosed early and given 

a low phenylalanine diet, did not respond to treatment and died at an early age 

(Smith, 1974). In a similar case with a patient unresponsive to dietary treatment, a 

liver biopsy revealed normal PAH activity, which lead to the speculation that this 

syndrome was due to a defect in BH4 metabolism (Bartholome, 1974).
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In classical PKU, mutations in PAH lead to impairment of phenylalanine catabolism, 

which elevates phenylalanine throughout the periphery and CNS, and may cause 

mental retardation and other neurological symptoms in patients. Phenylalanine can 

compete with other large neutral amino acids, such as tyrosine and tryptophan, for 

transporters in the blood brain barrier, leading to deficiencies of DA and 5-HT in the 

brain (Tourian and Sidbury, 1983; Hommes and Lee, 1990). Therefore, maintaining 

PKU patients on a low phenylalanine diet leads to normal neurological development 

(Guttler, 1984). However, in BH4 deficiencies, although a low phenylalanine diet 

may correct the hyperphenylalaninaemia (HPA), neurotransmitter deficiencies still 

persist and neurological development is impaired. In 1974, Smith reasoned that a 

defect in BH4 metabolism could lead to deficiencies of DA, 5-HT, adrenaline and 

NA in the brain, which could account for the persistent neurological abnormalities in 

these patients (Smith, 1974).

In the years immediately following this, a number of cases of HPA associated with 

BH4 deficiency were described (Danks et al, 1975; Kaufman et al, 1975, 1978). This 

lead to the suggestion that pterins may be used in treating patients with BH4 

deficiencies, and Danks et al in 1975 demonstrated that it was possible to reduce 

blood phenylalanine levels in a patient with BH4 deficiency, by administering 

synthetic BH4 (Danks et al, 1975). Furthermore, it was also shown that therapy with 

L-dopa, carbidopa and 5-hydroxytryptophan, alone or combined with BH4, can 

improve treatment for these patients (Bartholome et al, 1975; Endres et al, 1982; 

Mclnnes et al, 1984).

Since these pioneering discoveries, a host of BH4 deficiencies have been uncovered, 

which are discussed below. Inborn errors of BH4 metabolism are largely autosomal 

recessive mutations in the enzymes that are involved in the biosynthesis or recycling 

of the cofactor. They make up approximately 1 to 2% of cases of HPA (Blau et al, 

2001), and at the time of writing 534 cases of BH4 deficiencies have been described 

in the International Database of Tetrahydrobiopterin Deficiencies (BIODEF) (Blau 

and Dhondt, 1998; http://www.bh4.org/BH4DatabasesBiodef.aspl. with 193 different 

mutations described in these individuals (Thony and Blau, 2006)(BIOMDB; 

International Database of Mutations Causing Tetrahydrobiopterin Deficiencies 

http://www.bh4.org/BH4 databases biomdb.asp. Blau and Thony, 1998). The
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severity o f these disorders varies depending on the enzyme mutation, however 

symptomatically they have much in common. Mental retardation, hypersalivation, 

convulsions, disturbances o f posture and tone, lethargy, irritability, and temperature 

instability are some o f the symptoms (Blau et al, 2001).

Screening tests for these individuals have been set up, which are carried out in 

infancy after detection o f a prolonged HPA. It is suggested that screening for BH4 

deficiencies should be carried out in any newborns with plasma levels o f  120pM 

phenylalanine or above, and in older children with neurological symptoms (Blau et 

al, 2001). The tests that are recommended for suspected BH4 deficiencies are; 1) 

analysis o f pterins in urine; 2) measurement o f  DHPR activity in blood ffom a 

Guthrie card (Guthrie and Susi, 1963); 3) BH4 loading test; 4) analysis o f  pterins, 

folate and neurotransmitters plus metabolites in cerebrospinal fluid (CSF) (Hyland et 

al, 1993); and 5) enzyme activity measurements (Blau et al, 2001). The first two tests 

are essential for discerning which disorder a patient is likely to have. The BH 4 

loading test allows differentiation between classical PKU and BH4 variants, although 

false positives are possible in a subset o f BH^-responsive PAH deficient patients 

(Kure et al, 1999). Analysis o f pterins, folate and neurotransmitters plus metabolites 

in CSF can then distinguish between mild and severe forms o f the BH4 deficiencies 

(Hyland et al, 1993), whilst individual enzyme assays will confirm these findings 

(Blau et al, 2001). Treatment is via BH4 , as well as L-dopa, carbidopa and 5- 

hydroxytryptophan, to treat neurotransmitter deficiencies in severe cases (Blau et al, 

2001; Zurfluh et al, 2005).

1.11.1 Autosom al Recessive GTP cyclohydrolase 1 deficiency 

Autosomal recessive GTP-CH deficiency is a rare and severe form o f BH 4 

deficiency, making up 21 o f  the 534 cases in the BIODEF database 

(http://www.bh4.org/BH4DatabasesBiodef.aspT Because GTP-CH 1 is the first 

enzyme involved in synthesizing BH 4 , virtually no pterins are synthesized in patients 

with this deficiency (Niederweiser et al, 1984a). Neopterin, biopterin, and 5-HT and 

DA metabolites 5-hydroxyindoleacetic acid (5HIAA) and homovanillic acid (HVA) 

are all reduced in urine and CSF (Niederweiser et al, 1984b; Blau and Dhondt, 

1998), although the relative proportions are in the normal range. Cultured fibroblasts 

from these patients when stimulated with cytokines are unable to respond with an
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increase in BH4 (Bonafe et al, 2001a). GTP-CH patients require high doses o f BH 4 

each day (1-2 doses o f 5-20mg/kg per day), as well as full neurotransmitter precursor 

supplementation (Blau et al, 2001).

1.11.2 6-Pyruvoyl tetrahydropterin synthase deficiency

PTPS deficiency is the most common o f all the BH4 deficiencies, making up 56% 

(300 o f 534 cases) o f the reported cases in the BIODEF database 

fhttp://www.bh4.org/BH4DatabasesBiodef.aspT M utations in PTPS mean that 

DHNTP cannot be converted to 6 -pyruvoyl tetrahydropterin (figure 1.3), and thus 

DHNTP accumulates in the tissues o f  patients with this defect. DHNTP is easily 

dephosphorylated by pyrophosphatases, then oxidised to neopterin, and excreted 

(Blau et al, 2001). This oxidation product can be detected in urine and CSF using 

high performance liquid chromatography (Howells and Hyland, 1987), In PTPS 

deficiency neopterin levels are very high, and the neopterin to biopterin ratio is the 

greatest o f the BH4 deficiencies (Blau et al, 2001). Treatment for this enzymopathy is 

similar to GTP-CH deficiency (Blau et al, 2001; W ang et al, 2006).

1.11.3 Sepiapterin reductase deficiency

SR deficiency is the most recently described o f the BH4 metabolism disorders 

(Bonafe et al, 2001b), and so far only 17 cases have been reported 

fhttp://www.bh4.org/BH4DatabasesBiodef.aspf. Patients present with psychomotor 

retardation, dystonia, and also extremely low concentrations o f  DA and 5-HT 

metabolites, but no HPA occurs with SR deficiency, and normal pterin levels are 

found in urine (Bonafe et al, 2001b). However, high levels o f biopterin and 

dihydrobiopterin are reported in CSF, and investigation o f cultured skin fibroblasts 

reveals a lack o f  SR activity (Bonafe et al, 2001b). Also, an accumulation o f  

sepiapterin is noted in CSF (Zorzi et al, 2002a). It is proposed that because o f the 

lack o f  SR in this disorder, 6 PTP generated by PTPS can be reduced by AR or CR to 

dihydrobiopterin, and then reduced further to BH4 by DHFR. However, DHFR 

expression is high in the liver and low in the brain (Kaufman, 1991), so therefore the 

BH4 deficiency may only occur in the brain, and is why normal phenylalanine 

metabolism is observed (Bonafe et al, 2001b). Treatment for SR deficiency is via 

BH4 and neurotransmitter precursors L-Dopa (plus carbidopa) and 5- 

hydroxytryptophan (Zorzi et al, 2002a; Neville et al, 2005).
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1.11.4 Dihydropteridine reductase deficiency

As mentioned earlier in section 1.11, a DHPR deficiency was the first reported case 

o f  an HPA resulting from BH4 deficiency (Kaufman et al, 1975). A total o f  164 

DHPR patients currently make up 31% o f the 534 BH4 deficiencies listed in the 

BIODEF database, making it the second most prevalent o f these disorders 

(http://www.bh4.org/BH4DatabasesBiodef.asp). Quinonoid dihydrobiopterin is an 

extremely unstable intermediate and rapidly oxidises to the more stable 

dihydrobiopterin under physiological conditions (Davis et al, 1988). Therefore, in the 

absence o f DHPR a build up o f  dihydrobiopterin is observed, and patients excrete 

high levels o f this pterin, typically 80% above the normal range (Dhondt et al, 1981).

However, BH4 levels in urine and CSF appear to be within the normal range in these 

individuals (Hyland and Heales, 1993; Ponzone et al, 2004). This is in contrast to the 

neurotransmitter profiles, which show DA and 5-HT to be impaired (Butler et al, 

1978). A possible reason for this could be that dihydrobiopterin, which is also 

elevated in CSF (Ponzone et al, 2004) may inhibit the aromatic amino acid mono­

oxygenases (Nagatsu et al, 1972, Heales and Hyland, 1990), which could lead to 

decreased concentrations o f DA and 5-HT, as well as the observed HPA.

The clinical course o f  DHPR deficiency resembles GTP-CH and PTPS, in terms o f 

symptoms as well as severity. Patients require L-Dopa, carbidopa and 5- 

hydroxytryptophan, although BH 4 supplementation is not necessary (Blau et al, 

2001). Furthermore, they require folinic acid therapy (Irons et al, 1987; Woody et al,

1989) due to a build up o f  q-BH 2 . Methylenetetrahydrofolate reductase (MTHFR; EC 

1.5.1.20), an enzyme involved in folate biosynthesis, can convert q-BH 2 to BH 4 

(Kaufman, 1991). However, in DHPR deficiency excess q-BH 2 then competes for 

MTHFR, such that folate biosynthesis is impaired (Kaufman, 1991). Folinic acid 

supplementation can reverse some o f  the effects o f impaired folate metabolism in 

DHPR deficiency (Irons et al, 1987; W oody et a l, 1989).

1.11.5 Dopa responsive dystonia

Dopa responsive dystonia (DRD), also known as Segawa’s disease or Hereditary 

Progressive dystonia, is an autosomal dominant GTP-CH deficiency. It was first
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the disorder wasn’t properly elucidated until 1994 (Ichinose et al, 1994). It is most 

often caused by a heterozygous mutation of the GCH gene that leads to a partial BH4 

deficiency, but is not accompanied by HPA (Ichinose et al, 1994). Usually the 

symptoms of this disorder are not as severe as the recessively inherited form, with 

patients presenting at around 6  years of age, starting with a postural dystonia that 

fluctuates diumally. This progresses to all limbs in the following years, and is 

accompanied by tremor and rigidity amongst other clinical signs (Segawa et al, 

2003). Mental retardation is not seen in DRD, unlike in the autosomal recessive form 

of GTP-CH deficiency, and patients respond well to L-Dopa treatment, usually 

without side effects (Segawa et al, 2003).

So far there are 98 cases of DRD in the International database of mutations causing 

tetrahydrobiopterin deficiencies (BIOMDB)(Blau and Thony, 1998). Most of the 

investigations into DRD have so far suggested that the reason why autosomal 

dominant mutations give rise to BH4 deficiency is because the mutant has a dominant 

negative effect on the wild type enzyme. Hwu et al show that when mutant DRD 

GTP-CH and wild type enzymes are expressed in eukaryotes, the presence of the 

mutant decreases the wild type protein and activity levels (Hwu et al, 2000). The net 

result o f this is a partial deficiency in BH4 . TH activity and levels o f the DA 

metabolite HVA are decreased in DRD, however TRH activity appears normal, and 

reports of 5-HT concentrations in DRD are inconsistent (Nygaard 1993; Takahashi et 

al, 1994). TH activity is thought to be attenuated because under normal conditions 

intracellular concentrations of BH4 are close to the Km of the enzyme (approximately 

500pM)(Levine et al, 1981). TH could therefore be sensitive to changes in BH4 that 

occur in DRD, leading to decreased enzyme activity (Blau et al, 2001). In addition, 

microdialysis studies show that BH4 can stimulate DA release (Koshimura et al,

1990), suggesting that in conditions where BH4 is limiting such as DRD, normal 

release of DA into the synapse may be prevented.

Although HPA is not characteristically observed in DRD under normal conditions, 

stressing of the phenylalanine hydroxylating system with an oral dose of 

phenyalanine does cause HPA (Hyland et al, 1997). Phenylalanine levels are 

increased for prolonged periods, and can be normalised with BH4 pre-treatment. This
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is a useful non-invasive method of diagnosing DRD, and is preferable to measuring 

CSF pterin profiles via lumbar puncture (Hyland et al, 1997).

1.11.6 Impaired nitric oxide metabolism in tetrahydrobiopterin deficiencies 

Analysis of nitrite and nitrate levels as an index of NO production (Clelland et al,

1996) show that in patients with inborn errors of BH4 metabolism, NO generation 

may be impaired (Heales et al, 1999a; Zorzi et al, 2002b). Furthermore, in an animal 

model of partial BH4 deficiency, the hph-1 mouse (see section 1.12), NO metabolism 

is attenuated (Brand et al, 1996; Canevari et al, 1999), suggesting that even a partial 

deficiency can result in impaired NO production. These observations appear to 

contrast with the finding that NOS has a low Km for BH4 of typically 0 . 0 2 jliM  

(Giovanelli et al, 1991), which implies that BH4 should not limit NO production 

ffom NOS. However, it has been demonstrated that some BH4 metabolites, including 

dihydrobiopterin can competitively inhibit NOS (Jones et al, 2001), which are 

present in high quantities in CSF in some of the BH4 deficiencies, such as DHPR 

deficiency (Hyland and Heales, 1993) and PTPS deficiency (Blau et al, 2001). BH4 

deficiencies may also impact on the availability, and the affinity of the substrate 

arginine for NOS. In the absence of exogenous BH4 , the Km of nNOS for arginine is 

elevated in the hph-1 mouse (Brand et al, 1995). In addition, arginine uptake is 

dependent on the amount of BH4 present in the cell (Schwartz et al, 2001). These 

findings suggest that arginine may become limiting for the NOS reaction in BH4 

deficient states. Furthermore, under low BH4 concentrations the NOS reaction can 

become uncoupled (Cosentino et al, 1998), and BH4 is important for dimerisation of 

NOS (Crane et al, 1998). Under these conditions the highly reactive peroxynitrite 

(ONOO ) is formed ffom superoxide ( O2 ) and NO-, which may contribute to the 

neurological damage seen in some of the BH4 deficiencies (Tiefenbacher, 2001).

Although some patients respond well to BH4 supplementation and monoamine 

neurotransmitter replacement therapy, there are a number that show severe mental 

retardation despite these treatment regimes and a low phenylalanine diet (Endres, 

1985; Dudesek et al, 2001). Given the widespread distribution and role of NO in the 

brain (section 1.10), the consequences of a deficiency in BH4 may have extensive 

implications.
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1.11.7 Acquired tetrahydrobiopterin disorders

There are a number of conditions, both of the periphery and CNS, which are 

associated with changes in BH4 metabolism. Due to its role in maintaining vascular 

tone via eNOS, BH4 deficiencies are implicated with a number of diseases that have 

a pathogenesis in the cardiovascular system (reviewed in Alp and Channon, 2003; 

Channon, 2004). Disease states including diabetes, hypertension, and atherosclerosis 

have all been linked to an associated BH4 deficiency, which may give rise to 

endothelial dysfunction via eNOS uncoupling, and oxidative stress (Heitzer et al, 

2001; Bonetti et al, 2003; Boulden et al, 2006).

In the CNS, BH4 deficiency may contribute to the etiology of some disorders, 

however an excess of BH4 is implicated in others. Decreased levels of BH4 or 

metabolites have been observed in Parkinson’s disease (PD)(Lovenberg et al, 1979; 

Williams et al, 1980), Alzheimer’s disease (AD)(Barford et al, 1984; Casal et al, 

2003), Huntington’s disease (Williams et al, 1980), schizophrenia (Richardson et al, 

2005), bipolar affective disorder (Hoekstra et al, 2006) and depression (Bottiglieri et 

al, 1992; Newman and Holden, 1993). Furthermore, in AD, PD and multiple 

sclerosis (MS) there is evidence that increased oxidative stress may be involved 

(Heales et al, 1999b). Increased NO generation has been implicated in these 

disorders via nitrite and nitrate measurement (Johnson et al, 1995; Qureshi et al, 

1995; Tohgi et al, 1998). Decreased expression of guanylate cyclase, which mediates 

some of the effects of NO, is also reported in MS, AD and Creutzfeldt-Jacob post­

mortem brains (Baltrons et al, 2004).

Other literature points to the possible cytotoxic effects of BH4. It is reported that BH4 

may selectively mediate dopaminergic cell death in animal models of PD (Kim et al, 

2003; Choi et al, 2003, 2004), possibly by causing mitochondrial dysfunction (Choi 

et al, 2006; Lee et al, 2006). In addition, blockade of BH4 synthesis may be 

protective in animal models o f ischaemic brain injury (Cho et al, 1999; Kidd et al, 

2005). However, experiments in rat nigral slice cultures show that sepiapterin, a 

precursor of BH4, can protect against MPP+ mediated cell death (Madsen et al, 

2003). Therefore, the role of BH4 in neurodegeneration needs further evaluation.
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1.12 The hph-1 mouse

The hph-1 mouse is a model system for the study of BH4 deficient states (Hyland et 

al, 2003). It is partially deficient in BH4 due to a mutation that affects GTP-CH 

expression (Gtitlich et al, 1994). It was originally developed via ethylnitrosourea 

mutagenesis as a model for HPA (Bode et al, 1988), however it was discovered that 

levels of phenylalanine normalise after 3 weeks of age (McDonald et al, 1988). The 

history and the biochemistry of the hph-1 mouse will be discussed in greater depth in 

chapter 3.

1.13 Gene therapy

Gene therapy is the insertion of genetic material, most often using a viral vector, into 

an organism for the treatment of disease. It was initially conceived as a remedy for 

single-gene inherited defects (Kay et al, 1994) such as Duchenne muscular dystrophy 

(Thioudellet et al, 2002), however the scope has now broadened to treatment for a 

number of other disorders including cancer (Lowenstein, 1997), cardiovascular 

disease (Isner, 2002), infectious disease (Bunnell and Morgan, 1998) and 

neurodegenerative disease (Baekelandt et al, 2000). Viral vectors are currently the 

most commonly used way of introducing therapeutically beneficial genetic material 

into the patient, however other strategies are being developed. The background to 

gene therapy, along with the types of gene therapy and the vectors used are discussed 

in greater depth in chapter 5.

1.14. AIMS

The aims of this thesis are:

• To further characterise the biochemistry of the hph-1 mouse, in both the brain 

and cultured cortical astrocytes.

• To use gene transfer to correct BH4 and NO metabolism in hph-1 astrocytes.

• To evaluate the mechanisms behind any improvement in BH4 or NO 

metabolism in hph-1 astrocytes following gene transfer.

• To carry out preliminary experiments for future in vivo gene transfer work in 

the hph-1 mouse.
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2. MATERIALS AND METHODS

All chemicals and reagents were purchased from Sigma-Aldrich Company Ltd., 

Poole, UK unless stated otherwise.

2.1. High Performance Liquid Chromatography (HPLC)

2.1.1 Quantification of tetrahydrobiopterin by reverse-phase HPLC coupled 

with electrochemical detection

The general principle o f reverse-phase High-Performance (or High-pressure) Liquid 

Chromatography (HPLC) is the separation and elution o f a sample between an 

aqueous mobile phase and organic solid phase (HPLC column). Once the sample has 

passed through the HPLC column and been separated, coulometric electrochemical 

detection (ECD) can be used to quantify the desired chemical species, such as BH4 , 

which is done by oxidation and reduction o f  the sample at a dual electrode analytical 

cell. Electroactive compounds such as BH4 are oxidised at electrode 1, and then the 

oxidation products o f BH4 and compounds with similar properties are reduced at 

electrode 2. The potential generated to reduce BH 4 is monitored using a detector, 

which can then be quantified by comparing the signal intensity with a standard o f 

known concentration. The potentials applied at electrodes 1 and 2 can be varied so 

that the applied voltages and resulting background currents give rise to the optimal 

signal: noise ratio, so that the detection o f BH4 with lowest background noise is 

optimal. To determine the optimal voltages at electrodes 1 and 2, voltammograms 

were performed which are shown in figure 2.1. To do this electrode 2 was 

maintained at -  0.05 pamps, whilst 50nM BH4 standards were run and the potential at 

electrode 1 changed by increments o f  50mV until the optimal standard peak height, 

with lowest background noise was obtained. The optimal potential at electrode 1 was 

determined to be + 0.5 pamps, which then served as a constant value to perform a 

voltammogram at electrode 2 (reduction electrode). Electrode 2 potentials were 

decreased by 50mV until maximal BH4 levels were detected at -0 .05  pamps.

The oxidation and reduction o f electroactive species, such as BH 4 at electrodes 1 and 

2 allows for selective analysis o f these compounds. Not all compounds can be 

oxidised by electrode 1 , which means that these pass through electrode 2  undetected.

51



A)

s
e,

■*—J3
O f
'3
J S
pt05V
Pm

100 1 

80 

60 

40 

20 

0

- 0.1 0.1 0.2 0.3 0.4

El background Current (pA)

0.5 0.6

0.1 0.05 0 -0.05
E2 backgound Current (pA)

r 120 

100 

80 

60 

40 

20 

4  0
- 0.1

.Sf*3
JS
JS

c-

Figure 2.1. BH4 voltammograms.

50pmol/ml BH4 standards were measured using reverse phase HPLC coupled with 

ECD.

A) Determination o f the optimum potential and resulting background current o f  the 

oxidising electrode 1 (E l). The reduction electrode 2 (E2) was maintained at a 

constant potential o f -0 .05 pamps (pA) whilst potentials at electrode 1 were varied 

until the optimal peak height, with lowest background noise was obtained. This was 

determined to be +0.5 pA for electrode 1. B) The process was repeated for electrode 

2, with electrode 1 kept at a constant o f  +0.5 pA. The optimum potential at electrode 

2 was -0.05 pA.
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In addition, once oxidised not all compounds can be reduced back by electrode 2, 

which provides further specificity. This specificity coupled with the renowned 

sensitivity of ECD allows for detection limits in this assay of around lpmol of BH4.

2.1.2 Method of separation of tetrahydrobiopterin

BH4 was measured based on the method of Howells and Hyland (1987) by reverse 

phase HPLC coupled with ECD. Figure 2.2 shows a schematic representation of the 

chromatographic system, which is composed of a Jasco PU-1580 pump (Jasco, Great 

Dunmow, Essex, UK), a Rheodyne Inc. (Rohnert Park, Ca, USA) model 7010 

injection valve with a 50pl injection loop, guard column GTS-E03501 (HPLC 

technology, Welwyn Garden City, Herts, UK), an HPLC technology Technisphere 

octadecasilyl reverse phase column with particle size 5pm, 4.6mm x 260mm (HPLC 

technology), heated to 37°C by a Jetstream 2 plus column heater (Jasco). BH4 was 

detected by an ESA 5100A detector (ESA Analytical, Aylesbury, UK) using an ESA 

5011 dual electrode analytical cell. Mobile phase consisted of 50mM sodium acetate, 

5mM citric acid (both from BDH Laboratory supplies Ltd., Poole, UK), 48pM 

ethylenediaminetetraacetic acid (EDTA) and 160pM dithioerythritol (DTE), 

prepared in 18.2 MQ Millipore Q H2O. All reagents used were HPLC grade quality. 

Mobile phase was run to waste through the HPLC system overnight at 0.3ml/minute 

to equilibrate and allow the electrochemical detector to stabilise, before being run at 

1.3ml/minute for BH4 measurements. Stock 500pM tetrahydrobiopterin 

hydrochloride standards (Schircks Laboratories, Jona, Switzerland) were made up in 

ice cold 18.2 MQ Millipore Q H2O containing 6.5mM DTE and 2.5mM 

diethylenetriaminepentaacetic acid (DETAPAC), and aliquots stored at -70°C. 

Aliquots were diluted to 50nM in 6.5mM DTE and 0.25mM DETAPAC to make a 

working standard. Peaks were recorded using a ThermoFinnigan Chromjet integrator 

(Anachem, Luton, UK) and peak heights determined by hand. To validate detection 

of BH4 using this method, a standard curve was produced showing linearity to 50nM 

of a synthetic BH4 standard (R2 0.9967)(figure 2.3). A schematic chromatogram 

showing a BH4 peak is shown in figure 2.4.
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Figure 2.4. Chromatogram of a 50nM BH4 standard.

BH4 was measured using reverse phase HPLC coupled with ECD. BH4 has a 

retention time of 5.5 minutes at a temperature of 35°C.
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2.1.3 Quantification of monoamines by reverse-phase HPLC coupled with 

electrochemical detection

The monoamines noradrenaline (NA), dopamine (DA), 3,4-dihydroxy-phenylacetic 

acid (Dopac), homovanillic acid (HVA), 3-methoxy-4-hydroxyphenylglycol 

(MHPG), and 5-hydroxyindoleacetic acid (5-HIAA) were measured using reverse- 

phase HPLC coupled with ECD. The general principles o f reverse-phase HPLC with 

ECD used to detect BH4, also apply for detection o f monoamines. However, instead 

o f  the oxidation and reduction o f BH4 that occurred at electrodes 1 and 2, in this 

method both electrodes function in an oxidising capacity. Electrode 1 was set at + 

50mV to oxidise and eliminate molecules with lower oxidation potentials than the 

monoamines being quantified. Voltammograms were carried out for electrode 2 to 

determine the optimal oxidising potential and resulting background current for each 

o f the monoamines. Individual 500nM standards o f NA, DA, Dopac, HVA, M HPG 

and 5HIAA were run with background currents set between + lOOmV and + 500mV. 

Peak heights were measured and plotted to see which voltage gave the optimal peak 

height, with the lowest background noise. Detection o f the monoamines was optimal 

at a voltage o f  + 400mV (figure 2.5). A 500nM standard containing NA, DA, Dopac, 

HVA, MHPG and 5HIAA was also measured at varying electrode 2 voltages 

between + lOOmV and + 500mV. Peak heights o f all the standards were measured 

and combined to give total peak height, then plotted against voltage. This also gave 

an optimal peak height o f + 400mV (figure 2.6). In order to establish which o f the 

peaks in the mixed standard corresponded to each monoamine, individual 500nM 

and lOOOnM standards were run o f each neurotransmitter or metabolite, and were 

compared to the retention time o f  the mixed standard to discern elution time.

2.1.4 Method of separation of the monoamines

The monoamines NA, DA, Dopac, HVA, M HPG and 5HIAA were measured based 

on the method o f Niederwieser et al (1984a). Figure 2.7 shows a schematic 

representation o f the chromatographic system, which is comprised o f  a Jasco PU- 

1580 pump (Jasco, Great Dunmow, Essex, UK), a Rheodyne Inc. model 7010 

injection valve with a 50pl injection loop (Rohnert Park, Ca, USA), an HPLC 

technology Technisphere octadecasilyl reverse phase column with particle size 5 pm, 

4.6mm x 260mm (HPLC technology, Welwyn Garden City, Herts, UK), heated to 

35°C by a Jetstream 2 plus column heater (Jasco, Great Dunmow, Essex, UK). An
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Figure 2.5. Individual monoamine voltammograms at electrode 2.

500pmol/ml standards of dopamine, homovanillic acid (HVA), 5- 

hydroxyindoleacetic acid (5HIAA), noradrenaline (NA), 3,4-dihydroxyphenylacetic 

acid (Dopac) and 3-methoxy-4-hydroxyphenolglycol (MHPG) were measured using 

reverse phase HPLC coupled with coulometric detection.

Optimal peak height was determined using a voltammogram by changing the 

potential at electrode 2 (E2). Peak heights of all monoamines detected were 

measured, and then plotted against voltage at E2. The optimal voltage at E2 that 

produced the greatest total peak height with lowest background noise was + 400mV.
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Figure 2.6. Combined monoamine voltammogram at electrode 2.

500pmol/ml monoamine standards were measured using reverse phase HPLC 

coupled with coulometric detection.

Optimal peak height was determined using a voltammogram by changing the 

potential at electrode 2 (E2). Peak heights of all monoamines detected were 

measured and added to give a sum of the total peak heights, and plotted against 

voltage at E2. The optimal voltage at E2 that produced the greatest total peak height 

with lowest background noise was + 400mV.
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electrochemical ESA 5100A detector (ESA Analytical) in combination with an ESA 

5010 dual electrode analytical cell was used to detect the monoamines. Mobile phase 

consisted of 20mM sodium acetate, 12.5mM citric acid, 16% volume:volume 

methanol (all from BDH Laboratory supplies Ltd.), 2mM octanesulfonic acid, and 

0.1 mM EDTA, prepared in 18.2 MQ Millipore Q H2O. Mobile phase was circulated 

and recycled through the HPLC system overnight at 0.3ml/minute to equilibrate and 

allow the electrochemical detector to stabilise, before being run at 1.3ml/minute for 

biogenic amine measurements. Stock 500pM NA, DA, Dopac, HVA, MHPG and 

5HIAA standards were made up in ice cold 18.2 MQ Millipore Q H2O and aliquots 

stored at -70°C. Aliquots were diluted to 500nM in 18.2 MQ Millipore Q H2O 

acidified with 3 drops of concentrated HC1 per 100ml, to make a working standard. 

Peaks were recorded using a ThermoFinnigan Chromjet integrator (Anachem, Luton, 

UK) and peak heights determined by hand. To validate detection of monoamines 

using this method, standard curves of each biogenic amine were produced showing 

linearity to 500nM (R2 > 0.99)(figure 2.8).

2.2. Tissue Culture

2.2.1 Animals

hph-1 and wild type mice were used from established on-site breeding colonies. All 

animals were maintained on a 1 2  hour light/ 1 2  hour dark cycle, and fed with stock 

laboratory diet and water ad libitum. Mice pups aged 1-2 days old were used for all 

primaiy astrocyte cultures. All animals were killed by cervical dislocation.

2.2.2 Preparation of primary astrocyte cultures

Primary astrocytes were obtained from neonatal mice aged up to 1-2 days, and 

isolated following the procedure described by Tabemero et al. (1993) with some 

modifications. Briefly, animals were killed by cervical dislocation, decapitated and 

their cortices immediately excised. Meninges and associated blood vessels were then 

removed by rolling the tissue along Whatman filter paper 1 (Whatman PLC, 

Brentford, UK). The cortices were then placed in Earles’ Balanced Salt Solution 

(EBSS) containing 1% volume/volume antibiotic antimycotic (lOunits/ml penicillin, 

lpg/ml streptomycin, 2.5ng/ml amphotericin), 3mg/ml bovine serum albumin (BSA)
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Figure 2.8. Standard curves of dopamine (DA), homovanillic acid (HVA), 5- 

hydroxyindoleacetic acid (5HIAA), noradrenaline (NA), 3,4-dihydroxyphenylacetic 

acid (Dopac) and 3-methoxy-4-hydroxyphenolglycol (MHPG). Regression analysis 

calculates that all standard cures show linearity (R2 > 0.99).
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and 75Units/ml deoxyribonuclease 1 (DNase) (EC 3.1.21.3) (solution A). The 

cortices were roughly chopped using curved scissors and then gently triturated using 

a 1ml pipette (Gilson Inc., WI, USA) to further break up the tissue. This was then 

transferred to a tube and centrifuged at 500 x g for 5 minutes at 4°C. The pellet was 

retained and resuspended in a solution made of solution A, additionally containing 

27.5 Units/ml trypsin (Roche Diagnostics Ltd., Lewes, UK)(EC 3.4.21.4) and 567 

Units/ml DNase (solution B), and incubated for 5 minutes at 37°C. The trypsinisation 

reaction was then stopped by the addition of 1ml foetal bovine serum (FBS) (Gibco 

BRL, Renfrewshire, UK), and the solution triturated again using a 1ml pipette 

(Gilson Inc.) to break down any larger clumps of tissue. The cell suspension was 

then centrifuged at 500 x g for 5 minutes at 37°C, and resulting pellet resuspended in 

solution A and allowed to settle to remove any larger tissue debris. The lighter 

material was then removed to a separate tube and the procedure repeated again 

before being centrifuged at 500 x g for 5 minutes at 37°C. The pellet was then 

resuspended in minimum essential medium (MEM) (Gibco BRL) supplemented with 

1% volume/volume antibiotic antimycotic, along with 10% FBS (vol/vol) and 2mM 

L-Glutamine. This was then passed through nylon gauze with a pore size of 40pm to 

remove any remaining debris, and aliquoted into 80cm flasks (Nagle Nunc 

International, Naperville, II, USA). Typically 2-3 brains were allocated per flask and 

in a volume of lOml/flask. Cells were placed in an incubator at 37°C, with 5% CO2, 

95% air and 95% humidity. The medium was changed the next day, and then twice a 

week thereafter.

2.2.3. Shaking and plating of cells

Once cells had reached 90-100% confluence in the flasks (usually around day 8-10), 

they were shaken in an attempt to remove microglia or fibroblast cells left from the 

culture. They were placed in a Heidolph 1010 shaker (LabPlant, Huddersfield 

England) within an incubator (for conditions see above) and shaken at 200 rpm 

overnight. The medium was removed and then replaced with fresh medium.

After 13 days in culture the cells were ready for treatment. Each flask of astrocytes 

was trypsinised with 10 ml trypsin/EDTA solution (0.05% weight:volume trypsin 

and 0.02% weight:volume EDTA) for 5 minutes at 37°C. The trypsinisation reaction 

was stopped by the addition of 1ml cold FBS per flask. Cells were collected and
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flasks washed with a further 10ml of warm Hanks’ Balanced Salt Solution (HBSS), 

before being centrifuged at 2000 x g at 4°C for 5 minutes. The resulting pellet was 

resuspended in MEM supplemented with 1% volume/volume antibiotic antimycotic, 

along with 10% volume/volume FBS and 2mM L-Glutamine, and then cells counted 

using a haemocytometer. They were seeded at a density of 1 x 106 cells per well on 

poly-D-omithine coated 6  well plates (Nagle Nunc International) for BH4 , and NO2" 

and NO3’ measurements, or 5 x 105 cells per well on poly-D-omithine coated 12 well 

plates (Nagle Nunc International) for Western blotting. During counting astrocytes 

were tested for exclusion of trypan blue to show that cell viability was higher than 

90%. Cells were given 24 hours to settle before any treatment took place.

2.2.4. Treating cells

After 24 hours settling on 6  well plates, the medium was removed from each well 

and replaced with phenol red-free MEM supplemented with 2mM L-Glutamine, 

along with any individual treatments. The cells were then replaced back into the 

incubator and left for defined periods o f time depending on the treatment. The 

methods section 4.3.5 describes the various treatment periods for astrocytes.

2.3. Sample Preparation

2.3.1. Preparation of brain cytosol fraction

Wild type and hph-1 brain tissue was homogenised to 35% weightivolume in 0.1M 

Tris HC1 pH 7.6 buffer, using a 2ml Kontes tissue grinding pestle and mortar (Kontes 

Glass Company, NJ, USA). The homogenate was centrifuged at 48,000rpm (100,000 

x g) for 1 hour at 4°C. The supernatant cytosolic fraction was snap frozen in a sealed 

eppendorf tube and stored at -80°C until it was used in experiments.

2.3.2. Preparation of tissue for tetrahydrobiopterin and monoamine 

measurement

For BH4 measurement wild type and hph-1 brain tissue was homogenised to 25% 

weightrvolume in ice cold 0.1M perchloric acid (PCA) (BDH Laboratory supplies 

Ltd.) buffer, containing 6.5mM DTE and 2.5mM DETAPAC, using a 2ml Kontes 

tissue grinding pestle and mortar (Kontes Glass Company). Homogenates were 

centrifuged at 15,000 x g for 5 minutes, and the supernatant was used for measuring
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BH4 content, by reverse-phase HPLC as described in section 2.1. Results were 

expressed as pmol/mg protein.

For monoamine neurotransmitter measurements, brain tissue was treated in the same 

way as for BH4 measurement, but homogenisation buffer also contained 0.1 mM 

EDTA. Results were expressed as pmol/mg protein.

2.3.3. Harvesting and preparation of astrocytes for tetrahydrobiopterin 

measurement

Following treatment, cells were harvested by one of two different methods for 

tetrahydrobiopterin measurement. In initial experiments cells were trypsinised in 

trypsin/EDTA solution (0.05% weight:volume trypsin and 0.02% weight:volume 

EDTA) for 5 minutes at 37°C, and the reaction stopped using 75pi FBS. The plate 

was washed using 750pl HBSS and added to collected cells, and then centrifuged at 

2000 x g for 5 minutes. The supernatant was discarded and the pellet resuspended in 

50pl of HBSS, from which lOpl was taken for protein analysis (section 2.9.), and the 

rest diluted 1:2 by PCA buffer (0.1M PCA, 6.5mM DTE and 2.5mM DETAPAC). 

This was triturated using a 1ml pipette (Gilson Inc.) and then centrifuged at 15,000 x 

g for 5 minutes, and the supernatant injected onto the HPLC system for detection. 

However, due to the instability of BH4 (Howells et al, 1986) it was proposed that the 

trypsinisation procedure could degrade much of the BH4 present in the cells. 

Therefore an alternative harvesting method was investigated, which involved putting 

the PCA buffer directly onto the cells after the medium had been aspirated. Cells 

were treated with 150pl of PCA buffer then scraped to remove the monolayer using a 

cell scraper (Coming, New York, USA). Each well was washed with 150pl HBSS 

and added to the collected cells, then centrifuged at 15,000 x g for 5 minutes. The 

supernatant was used for HPLC analysis (section 2.1), and the pellet for protein 

concentration (section 2.9.). Figure 2.9 shows the effect of these scraping techniques 

on overall BH4 concentration, in both stimulated and control wild type astrocytes. It 

was shown using a Students t-test that direct PCA scraping significantly increases 

BFL yield when compared to trypsinised cells, by 5 times in control (p = 0.001, n = 

4), and by 7 times in treated wild type astrocytes (p = 0.009, n = 4). Therefore this 

method was used for all BH4 measurements in astrocytes. Results were expressed as 

pmol/mg protein.
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Figure 2.9. Comparison of different scraping methods on BFI4 levels in control and 

LPS + IFN-y (100 U/ml LPS + lpg/ml IFN) stimulated wild-type astrocytes (see 

section 2.3.4.). Cells were harvested either by trypsinisation (trypsin scrape), or by 

adding perchloric acid buffer (PCA) straight onto the cells (PCA scrape).

BH4 was measured by reverse-phase HPLC coupled with ECD. Data is expressed as 

mean ± SEM of independent cell culture preparations (n = 4). * = p < 0.01 vs. trypsin 

scrape, as judged using Students t-test.
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2.3.4. Harvesting and preparation of astrocytes for Western blotting

Astrocytes were grown as described in (section 2.2) and seeded at a density of 5 x 

105 in 0.5 ml media on 12 well plates (Coming). Cells were harvested in 0.5ml ice 

cold HBSS using a cell scraper (Coming), and each well was washed with a further 

0.5 ml HBSS. The cells were transferred to a centrifuge tube and centrifuged at 2000 

x g for 3 minutes and 4°C. The cell pellet was retained. The volume o f this pellet was 

estimated, before being lysed and resuspended in 3 x pellet volume o f 50mM Tris- 

HC1, pH 8 , containing 0.2% Nonidet P-40 (Fluka Biochemicals, Buchs, Switzerland), 

180mM NaCl (BDH Laboratory supplies Ltd.), 0.5mM EDTA, lOOmM 

phenylmethylsulforyl fluoride (PMSF), 1M dithiothreitol (DTT), 0.2M NasVCU, 1M 

NaF and protease inhibitors (Complete, Boehringer Mannheim, Grenzach-Eyhlen, 

Germany) and placed on ice until the pellet was in solution. This was then 

centrifuged at 14,000 x g for 10 minutes. The supernatant was removed to another 

centrifuge tube for Western blotting and the protein concentration of the supematent 

measured using the method of Bradford (1976) (section 2.9). Sample buffer 

containing 125mM Tris pH 6 .8 , 150mM sodium dodecyl sulphate (SDS; Fisher 

Biochemicals, Pittsburgh, USA), 20% glycerol (BDH Laboratory supplies Ltd.), 

15pM bromophenol blue, and 4% p-mercaptoethanol, was added to double the 

volume of the supernatant. This was then centrifuged at 14,000 x g for 10 minutes 

and stored at -20°C until Western blotting was carried out.

2.4. Measurement of Tetrahydrobiopterin biosynthetic capacity

BH4 biosynthetic capacity was measured following the method of Barford et al. 

(1984). Brain cytosolic fractions (section 2.3.1.) were incubated with M gCf (final 

concentration 6 mM), 0.1M Tris/0.04M KC1 (pH 8.0), along with 6 mM guanosine 5’- 

triphosphate (GTP) and 3mM NADPH to stimulate and support synthesis of BH4 . 

Blank (or basal) samples were incubated in the absence of GTP and NADPH. All 

samples (final volume 500pl) were then incubated for 3 hours at 37°C, at which time 

reactions were stopped by the addition of 0.1 M PCA (BDH Laboratory supplies Ltd.) 

solution containing 6.5mM DTE and 2.5mM DETAPAC. Samples were then 

centrifuged at 15,000 x g for 5 minutes at 4°C, and the supernatant analysed for BH4 

content using HPLC coupled with ECD. Total BH4 biosynthetic capacity was then 

determined as stimulated BH4 minus basal BH4 , then expressed as pmol/hour, and 

finally related back to the amount of protein in the original homogenate or cytosolic
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fraction and expressed as pmol/hour/mg protein. To validate the use o f  this method a 

standard curve was produced showing linearity o f  biosynthetic capacity with 

increasing amounts o f cytosol (figure 2 .1 0 ).

2.5. Measurement of dihydropteridine reductase activity

Dihydropteridine reductase (DHPR) activity was assayed based on the method o f 

M ilstien et al (1976). This method monitors the oxidation o f  the cofactor NADH, in 

the reduction o f quinonoid-dimethyldihydropterin (q-DM PH 2) to 

dimethyltetrahydropterin (DMPH4), a reaction catalysed by DHPR. The synthetic 

analogue DMPH4, is used in place o f BH4 due to the instability o f BH 4 at room 

temperature (Howells et al, 1986). The reaction scheme for these experiments is 

shown in figure 2.11. DMPH 4 is oxidised by peroxidase, in the presence o f H2O2 to 

q-DMPH2 , which is then recycled back to DMPH4 by DHPR, a reaction that utilises 

NADH. The loss o f NADH can be monitored spectrophotometrically at 340nm, and 

the rate o f loss gives an indication o f DHPR activity.

Wild type and hph-1 brain cytosol fractions (section 2.3.1.) were added (20pl 

volume) to a reaction mixture in a cuvette containing Tris buffer (0.5M  Tris HC1 pH 

6 .8 ), H 2O2 (8 .8 mM), peroxidase (25kU/l), NADH (Im M ) and 2.5mM  sodium azide 

(to prevent breakdown o f H2O2 by catalase in cytosol). This cuvette was mixed by 

inversion, and baseline absorbance o f NADH at 340nm was monitored in an Uvikon 

XL spectrophotometer (Bio-Tek instruments, Vermont, USA), at 37°C for 1.5 

minutes. Im M  DMPH4 substrate was then added to make the final reaction mixture 

volume 1ml, and the change in absorbance was monitored for a further 7 minutes. A 

graph was plotted o f absorbance over time following substrate addition, and the rate 

o f loss o f absorbance calculated using the spectrophotometer software. Also included 

in the experiment was a blank cuvette that did not contain any cytosol, which was 

subtracted from the rate o f change o f  absorbance in cuvettes with cytosol. Using the 

Beer-Lambert law with a path length o f 1, and molar extinction coefficient for 

NADH o f 6220, the change in concentration o f NADH, and thus DHPR activity was

68



s.3o.3
7s
*3■+*oua-
ex
S
"osa
X
X

1

6 R = 0.9961

5

4

3

2
1

0

0 50 100 150 200 250
Cytosol (pi)

Figure 2.10. BH4 biosynthetic capacity standard curve with increasing wild type 

brain cytosol.

69



A)

GTP
I  
I  
4

DHPR

NAD+ NADH (340nm)

B)

h 2o 2

Peroxidase
DMPFLf

DHPR

NAD+ NADH (340nm)

Figure 2.11. Reaction scheme for dihydropteridine reductase assay. A) shows 

reaction scheme that occurs in the cell, where quinonoid dihydrobiopterin (qBH2) is 

converted back to BH4 by dihydropteridine reductase (DHPR), a reaction that utilises 

the oxidation of p-nicotinamide adenine dinucleotide (NADH). B) shows the reaction 

scheme used in the DHPR assay, where dimethyltetrahydropterin (DMPH4) is 

converted to quinonoid dimethyldihydropterin (qDMPH2) by peroxidase in the 

presence of hydrogen peroxide (H2O2). qDMPH2 is converted back to DMPH4 by 

DHPR, which causes the loss of NADH, a reaction that can monitored 

spectrophotometrically at 340nm. DMPH4 is preferred to BH4 in this assay due to the 

greater stability of the molecule.
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determined. Finally, the values obtained were divided by the protein concentration in 

cytosol (section 2.9.), and DHPR activity was expressed as nmol/minute/mg protein. 

To validate this assay a standard curve was produced showing linearity o f  change in 

absorbance with increasing cytosol (R2 0.9859)(Figure 2.12).

2.6. Measurement of nitrite and nitrate

Nitrite and nitrate (NO3" and NO 2 ' respectively) measurements were made as an 

index o f  NO formation (Clelland et al, 1996). Quantification o f  N O 3’ and NO 2’ in 

cultured cell media was determined spectrophotometrically using the Griess reaction 

(Green et a l  1982) on a 96-well plate (Thermo Labsystems, Vantaa, Finland). Prior 

to measurement N O 3’ was reduced to N 0 2 * by incubation with nitrate reductase (0.1 

U/ml)(EC 1.6.6.2)(Roche Diagnostics, Lewes, UK), FAD (5pM ) and NADPH 

(100pM ) for 15 minutes at 37°C. Once the N O 3' reduction is complete, it is necessary 

to remove any excess NADPH as this can interfere with the spectrophotometric 

determination o f NO 2". NADPH is removed in an oxidation reaction with lactate 

dehydrogenase (100U/ml)(EC 1.1.1.27) and sodium pyruvate (lOOmM) for 5 minutes 

at 37°C. Total NO 2’ (representing NO 2’ and reduced NO 3’) was then measured using 

the Griess reaction upon the addition o f 0.1% napthalethylenediamine 

dihydrochloride and 1% sulfanilamide/5 % H 3PO4 (Merck Biosciences, Nottingham, 

UK). This produces a pink diazo product, and the absorbance o f this can be read at 

540nm using a SPECTRAmax Plus microplate reader (M olecular Devices, 

Wokingham UK). This method was validated by titrating standard curves o f  NaNCV 

and NaN 0 2 _, which both displayed linearity and >95% conversion o f  N O 3' to N O 2 ' 

up to concentrations o f lOOpM.

2.7. Western blotting

Western blotting is a technique for quantifying specific protein levels in a given 

sample. This technique entails running a sample through a gel under high electrical 

current to separate protein by molecular weight -  smaller proteins w ill travel further 

than large proteins in a given time. These are then transferred to a membrane and 

probed with antibodies raised against the protein o f interest. Bands on an 

autoradiograph can then be quantified using computer-imaging techniques.
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antibodies diluted in 6 % Marvel in PBS-T. Details of secondary antibodies used are 

found in methods section 5.2.5. for each individual protein of interest. Excess 

washing buffer was removed from the membrane using tissue paper, and membranes 

were then exposed to Supersignal horseradish peroxidase (HRP) substrate (Pierce, 

Rockford IL, USA) for 5 minutes. Excess substrate was removed from the membrane 

using tissue paper, and then exposed to X-ray film (Biomax MR, Eastman Kodak, 

Rochester, NY) for 1,10, 20, 60, 120 seconds or 10 minutes, until there was a good 

contrast between the bands and the background. Films were developed using an 

Optimax automatic developing machine (IGP, Chelmsford, UK). Bands were 

quantified using GelPro analysis system and software (Media Cybernetics, Silver 

Springs, MD) and the density measured in arbitrary units.

2.8. Confocal microscopy of cells infected with AdeGFP

Cells that had taken up the control virus AdeGFP and were expressing eGFP could 

be visualised using confocal microscopy. Cells were grown to confluence as 

described in section 2.2.2., and then treated with AdeGFP as described in section

2.2.4. Cells were imaged using a confocal microscope (Bio-Rad MRC1024, Biorad, 

Hercules, Ca, USA) at an excitation wavelength of 485nm and emission of 550nm.

2.9. Protein analysis

Two different assays were employed to measure protein concentration. In the first 

protein concentration was determined by the method of Lowry et al. (1951) using 

BSA as a standard. Samples were diluted so the concentration was within the range 

of the standard curve, in a final volume of 2 0 0 pl. 1 0 0 pl of alkaline copper tartrate 

solution was added to standards and samples, along with 800pl of Folin-Ciocalteau 

reagent (Bio-Rad). The tubes were vortexed and then incubated in the dark for 20 

minutes, before absorbance was measured using an Uvikon XL spectrophotometer 

(Bio-Tek instruments, Vermont, USA) at 750nm. Sample protein was calculated 

from the standard calibration curve using regression analysis (R2 > 0.95), with 

standard protein concentration range varying upon the solution the assay was 

conducted in. Typical standard concentration ranges for various solutions; H2O 0 -  

0.2mg/ml, 0.5M NaOH 0 - 0.6mg/ml.

74



A second protein assay was used to calculate protein concentration only for samples 

used in Western blotting. Protein concentration was determined by the method of 

Bradford (1976) using BSA as a standard. The Bradford assay reagent (Biorad) was 

diluted 1:5 in 18.2 Mfl Millipore Q H2O, and 1ml of this mixture was added to a 

cuvette. 2 pl of cell lysate was then added to the reaction mixture, and then mixed by 

trituration with a 1ml pipette. The absorbance was measured using an Uvikon XL 

spectrophotometer (Bio-Tek instruments, Vermont, USA) at 595nm. Sample protein 

was calculated from the standard calibration curve using regression analysis (R > 

0.95).

2.10. Statistical analysis

In all cases n represents independent experiments or individual cell culture and tissue 

preparations. All results are expressed as mean ± standard error of the mean (SEM). 

Statistical analysis for single comparisons was made using an unpaired Student’s t- 

test, using Statview statistics package (Statview, Cary, NC, USA). Statistical analysis 

for multiple comparisons was made by one-way ANOVA, followed by Fischer’s 

least significant difference post-hoc tests also using Statview statistics package. In all 

cases p < 0.05 was considered significant. Ratios of iNOS dimer:monomer formation 

were transformed through the calculation:

Arcsin V (dimer expression:monomer expression)

This transformation is reported to yield data with a normal distribution to enable 

statistical comparisons to be made (Gegg et al, 2003).
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Chapter 3

Further biochem ical 
characterisation of the 

hph-1 mouse
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3.1 INTRODUCTION

3.1.1 The hph-1 mouse -  historical perspective

The hph-1 mouse emerged from the effort to develop an animal model of 

hyperphenylalaninaemia (HPA). One of the first attempts to create such a model was 

by Cotton in 1986, who wanted to decrease phenylalanine hydroxylase (PAH) 

activity, and thus induce HPA, by decreasing the availability of the cofactor BH4 

(Cotton, 1986). This was achieved by including the GTP-CH inhibitor diamino- 

hydroxypyrimidine (DAHP) in the mouse diet, which resulted in undetectable BH4 

levels and increased phenylalanine in serum and liver. However, brain levels of BH4 

did not decrease in adult mice suggesting poor penetration of DAHP across the blood 

brain barrier, and the study was marked by side effects of the inhibitor such as 

weight and hair loss, and a death rate of approximately 25% of animals (Cotton, 

1986). Therefore this is a relatively poor model of BH4 deficiency.

An improved animal model for HPA came through the development of a genetic 

mutant, created using the sperm mutagen N-ethylnitrosourea (ENU). Bode et al 

(1988) used a three-generation breeding scheme in C57B1/6 x CBA/ca mice to test 

for recessive mutations that caused HPA in neonates and weanlings (Bode et al, 

1988). Male mice were administered intraperitoneal injections of ENU, an efficient 

mutagen of mouse spermatogonial cells (Russell et al, 1979), which can produce 

mutations in specific areas of the mouse genome (Bode et al, 1984). These males 

were then bred with wild type females to produce first generation progeny (Gl), 

heterozygous for mutations at different loci (mp, m^, mr etc.). The G l male mice 

were then mated with female wild type mice to produce second-generation progeny 

(G2). G2 females (mq/+) were then backcrossed with their Gl mq/+ fathers, to 

produce homozygous mutant (mq/mq) progeny (G3), which were identified by 

screening for elevated phenylalanine. The diagram in figure 3.1 illustrates this 

process. These mice were named hph due to the HPA and given the suffix 1, as they 

were the first of several HPA lines produced.

3.1.2 hph-1 phenotype

In general hph-1 mice are smaller in size and weight than their wild type 

counterparts, have lower brain weight and produce litters that are smaller in size
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ENU-treated (C57B1/6 x CBA/ca) FI male (m/+)

x (C57B1/6 x CBA/ca) FI female (+/+)

T

G l  (mp/+) + (mq/+) + (mr/+) * mate males only

x (C57B1/6 x CBA/ca) FI female (+/+)

V

G 2  ( m q/+ )  + (+/+) ► mate 2-4 females

x G 1 father (mq/+)

▼

G 3 (mq/mq) + (mq/+) + (+/+)

Figure 3.1. An outline of the three-generation ENU-mutagenesis scheme used to 

produce homozygous mutant hph-1 mice.

G l, G2 and G3 are first, second and third generations, respectively. (+/+) are wild 

type mice, (mp/+), (mq/+), (mr/+) are carriers o f mutations at gene p, q and r, 

respectively. (mq/mq) are homozygous for mutation in gene q. See text for further 

details. Adapted from Bode et al, 1988.
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(Brand, 1997). However, so far researchers have not conducted a full investigation of 

the phenotype of the hph-1 mouse, particularly with regard to any possible 

movement disorder the mouse might exhibit.

3.1.3 hph-1 biochemical phenotype

3.1.3.1. Phenylalanine metabolism

The hph-1 mouse displays HPA at birth, which is eventually normalised after the 

first 3 weeks of its life (Bode et al, 1988; McDonald and Bode, 1988). This reduction 

in plasma phenylalanine correlates with the slow accumulation of BH4 and increase 

of GTP-CH activity in the liver of these mice over time, up to approximately 50% of 

wild type (Gtitlich et al, 1994; Hyland et al, 1996). However, if  the mice are 

challenged with a bolus of phenylalanine, the metabolism of phenylalanine to 

tyrosine remains compromised, as levels in plasma of phenylalanine increase 

dramatically for a prolonged period. After phenylalanine challenge tyrosine is not 

raised in hph-1 mice as it is in wild type, which reflects their impaired ability to 

convert phenylalanine to tyrosine (McDonald and Bode, 1988).

3.1.3.2 Tetrahydrobiopterin metabolism

GTP-CH activity is impaired in the brain and liver of the hph-1 mouse (McDonald et 

al, 1988), which results in lower BH4 levels in these tissues (Hyland et al, 1996). In 

the liver the mutant enzyme shows only 8 % of normal activity compared to wild type 

(Cha et al, 1991). The specific mutation that causes the hph-1 phenotype is currently 

unknown. Initial work confirmed that the mutation is close to the GCH gene 

encoding GTP-CH (Montanez and McDonald, 1999), and more recent evidence 

localises the hph-1 mutation to a congenic interval of 1.6-2.8  Megabases, a region 

that contains GCH (Khoo et al, 2004). Sequencing of the coding and 5’ flanking 

promoter of the GCH gene shows that the mutation is not found in either of these 

regions (Gtitlich et al, 1994; Shimoji et al, 1999; Maeda et al, 2000), and thus the 

mutation is unlikely to affect the enzyme directly. These data are confirmed by 

experiments expressing hph-1 GTP-CH enzyme in E-Coli that reported normal 

enzyme activity (Gtitlich et al, 1994). Northern blotting shows that the steady state 

level of GTP-CH mRNA are decreased in the hph-1, so Gtitlich et al suggest the 

mutation may affect the binding of transcription factors to the promoter leading to 

decreases in mRNA (Gtitlich et al, 1994).
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3.1.3.3. Monoamine metabolism

Decreased BH4 levels result in lower TH and TRH activities, and reduced TH 

expression in the brain of the hph-1 mouse. This gives rise to lower levels of 5-HT, 

DA and NA, plus their metabolites 5-HIAA, HVA and MHPG (Hyland et al, 1996). 

Unlike the HPA these animals experience, decreased monoamines persist into 

adulthood (Hyland et al, 1996). Administration of acute non-toxic doses of BH4 

resulted in an increase in brain BH4 that subsided after 24 hours, however this was 

not accompanied by increases in TH or TRH activity or monoamine concentrations 

(Brand et al, 1996). Only toxic doses (1 mmol/kg) of BH4 could elevate DA or 5-HT 

turnover, which lasted 24 hours. It is suggested that BH4 may control the de novo 

synthesis of the aromatic amino acid monooxygenases, or may be required for their 

stability, as decreased expression of PAH and TH are found in the hph-1 mouse 

(Hyland et al, 1996). This may be why the non-toxic acute doses o f BH4 

administered were not sufficient to increase activity (Brand et al, 1996). 

Consequently, a more chronic dosing regimen may be necessary to correct brain 

monoamine neurotransmitter levels in the hph-1.

3.1.3.4. Nitric oxide metabolism

In contrast with the aromatic amino acid mono-oxygenases, NOS activity is 

comparable to wild type in the hph-1 brain (Brand et al, 1995). However, when 

exogenous BH4 is left out of the NOS assay, a 20% loss of activity was observed in 

hph-1 brain cytosol only (Brand et al, 1995). In addition, the Km of NOS for the 

substrate arginine is significantly higher in hph-1 brain preparations in the absence of 

exogenous BH4 , suggesting that less substrate will bind to hph-1 NOS in the brain 

and generate less NO (Brand et al, 1995). These decreases in NOS activity and 

arginine binding result in decreased amounts of cGMP, the downstream messenger 

of NO signalling, in hph-1 cerebellar slices and homogenates (Brand et al, 1996; 

Canevari et al, 1999). This can be corrected by the addition of an NO donor (Brand 

et al, 1996) or by intraperitoneal injections of BH4 (Canevari et al, 1999). In 

astrocytes cultured from hph-1 mouse brain, stimulation of iNOS by LPS plus IFN-y 

induces increases in BH4 and NO, in both wild type and hph-1 cells (Barker et al, 

1998). However the increases were significantly attenuated in hph-1 astrocytes, even 

though iNOS specific activity and expression were found to be elevated under these 

conditions (Barker et al, 1998). This is suggested to occur because BH4 does not
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regulate the intracellular concentration of NOS protein (Brand et al, 1995), and NO 

may act via negative feedback mechanisms to control iNOS expression (Barker et al, 

1998). Thus, decreased production of NO results in less inhibition of iNOS and 

therefore greater activity and expression in hph-1 astrocytes.

As well as having a deficiency in the brain, hph-1 mice also display impaired NO 

metabolism in the periphery. Most of the effects seen outside the CNS are related to 

the role of BH4 as a cofactor for NOS. For example, in aortas taken from hph-1 and 

wild type mice, eNOS activity in the absence of exogenous BH4 is decreased in the 

hph-1 mouse (Cosentino et al 2001). Furthermore, lower tissue levels of BH4 are 

associated with decreased nitrite and nitrate levels, and increased -0 2 ’ production in 

the periphery (Cosentino et al, 2001; Nandi et al, 2005). In addition, increased H2O2 

production is reported in hph-1 aortic segments, which can mediate endothelium- 

dependent relaxations to acetylcholine, suggesting that at sub-optimal BH4 

conditions reactive oxygen species (ROS) are produced by NOS (Cosentino et al, 

2001). Uncoupling of the NOS reaction and (ROS) generation may explain the 

increased systolic blood pressure (Cosentino et al, 2001) and pulmonary but not 

systemic hypertension (Nandi et al, 2005; Khoo et al, 2005), as well as exacerbated 

neointimal formation after vascular injury (Wang et al, 2005), that are features of the 

hph-1 pathophysiology. Furthermore, crossing the hph-1 mouse with a mouse that 

over-expresses GTP-CH can rescue the pulmonary hypertensive state (Khoo et al, 

2005), which further suggests that the impaired NO metabolism in the periphery is 

related to GTP-CH deficiency in the hph-1 mouse.

3.1.4 hph-1 and dopa responsive dystonia

Biochemically, dopa responsive dystonia (DRD) (section 1.11.5) and the hph-1 

mouse appear to have much in common. The similarities include first and foremost a 

partial BH4 deficiency resulting from a mutation relating to the GTP-CH enzyme; as 

well as decreases in DA metabolism, and impaired phenylalanine clearance when 

responding to a phenylalanine load (Hyland et al, 2003). Because of the biochemical 

similarities between DRD and the hph-1 mouse, it has been considered that the latter 

may be a good model for the former (Hyland et al, 2003).
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This chapter will further characterise the BH4 and monoamine deficiencies in the 

hph-1 mouse and investigate the effect o f the mutation on the activity of the 

biosynthetic and recycling pathways.

3.2. AIMS

• Further establish the deficiency of BH4 in the brain of the hph-1 mouse.

• Determine the ability of the hph-1 mouse to generate BH4 from the initial 

substrate GTP, by measuring the biosynthetic capacity of the de novo 

synthesis pathway.

• Investigate whether the recycling pathway is intact in the hph-1 mouse by 

measuring dihydropteridine reductase activity, i.e. to show BH4 can be 

recycled if gene transfer is used to increase levels of the cofactor.

• Bypass the hph-1 metabolic block in hph-1 brain and measure the ability of 

the enzymes downstream of GTP-CH to produce BH4, i.e. to illustrate that if 

gene transfer is used to increase GTP-CH expression, the rest of the pathway 

is intact to synthesize normal levels of BH4.

• Further establish the monoamine deficiency in the brain of the hph-1 mouse 

to show that impaired BH4 leads to decreased levels of monoamine 

neurotransmitters, with an ultimate view to correcting this using gene 

transfer.
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3.3. METHODS

3.3.1. Tetrahydrobiopterin measurement

Brain samples were prepared as described in section 2.3.1. BH4 was measured by 

reverse-phase HPLC, as described in section 2.1.

3.3.2 Measurement of monoamine neurotransmitters and metabolites

Brain samples were prepared as described in section 2.3.1. The monoamine 

neurotransmitters and their metabolites were measured by reverse-phase HPLC, as 

described in section 2 .1 .

3.3.3. Tetrahydrobiopterin biosynthetic capacity measurements

A description of the BH4 biosynthetic capacity assay is found in section 2.4.

3.3.4. Dihydropteridine reductase assay

DHPR activity was measured spectrophotometrically as described in section 2.5.

3.3.5. Biosynthetic capacity bypass block experiments

As dihydroneopterin triphosphate (DHNTP), the product of GTP-CH and substrate 

for the next enzyme in the pathway PTPS, is not commercially available it was not 

possible to purchase this to bypass the block. Therefore it was necessary to 

synthesize DHNTP via recombinant human GTP-CH (kindly provided by Gabrielle 

Wemer-Felmayer, Innsbruck Medical University, Innsbruck, Austria). DHNTP was 

synthesized according to the method of Werner et al, 1997. Recombinant human 

GTP-CH purified from Escherichia coli (4 x 10‘3 Units/ml final concentration) was 

incubated with lOOmM Tris HC1 pH 7.6, lOOmM KC1, lOmM EDTA, and lOOpM or 

40pM GTP (final reaction volume 250pl). This solution was incubated at 37°C in the 

dark for 1 hour, before the reaction was terminated by centrifuging the solution at 

15,000 x g for 15 minutes at 4°C, through Ultrafree-MC filters with a molecular 

weight cut off of lOkDa (Millipore, Bedford, MA, USA). This was to remove any 

recombinant human GTP-CH that may produce DHNTP in the next reaction 

solution, as the approximate molecular weight of the individual GTP-CH subunits is 

30kDa (Togari et al, 1992). This solution was then added in place of GTP to the 

biosynthetic capacity assay, which was carried out as previously described (section
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2.4). The final concentrations of DHNTP in the biosynthetic capacity assay were 

8 pM and 20jaM (assuming all GTP was converted in the DHNTP preparation). The 

reaction was terminated after 3 hours according to the method of Barford et al, 1984, 

using lOOmM PCA buffer containing 6.5mM DTE and 2.5mM DETAP AC, and BH4 

was measured as described in section 2.1. As controls an inhibitor of GTP-CH 

diamino-6 -hydroxypyrimidine (DAHP; 5.0mM), and the equivalent concentrations of 

8 pM and 20pM GTP were included in these experiments, in case any GTP was not 

converted to DHNTP in the initial preparation. Inclusion of GTP also allows the 

comparison of biosynthetic capacity pre- and post-GTP-CH.

The final concentrations of DHNTP and GTP added to cytosolic fractions in this 

assay are lower than the concentrations of GTP used in the initial biosynthetic 

capacity assay described above in section 2.4. In the initial assay the final 

concentration of GTP used is 6 mM, whereas only 8 pM and 20pM DHNTP and GTP 

are incubated with brain cytosol fractions in bypass block experiments. This is 

because the assay described by Werner et al, 1997 to make DHNTP, uses lower 

concentrations of GTP in the initial incubation, which is diluted further when added 

to brain cytosol. This may explain discrepancies between values o f biosynthetic 

capacity between the two experiments.

3.3.6. Protein concentration

The protein concentration of the cytosol used in biosynthetic capacity and 

dihydropteridine reductase assays was measured by the Lowry method (1951) as 

described in section 2.9. Protein concentrations for cytosol were calculated based on 

a standard curve of bovine serum albumin dissolved in 0.1 M Tris HC1 pH 7.6, with 

concentrations of 0.005 mg/ml to 0.2 mg/ml.

3.3.7. Statistical analysis

Statistical tests were conducted as described in section 2.10.
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3.4. RESULTS

3.4.1. Tetrahydrobiopterin levels in whole brain of wild type and hph-1 mice

BH4 levels were significantly lower (p < 0.001, n = 3) in the whole brain of hph-1 

mice when compared to the wild type mice (figure 3.2). BH4 levels in the hph-1 

mouse brain (104.43 ± 3.64 pmol/ g wet weight tissue) were 31% of wild type 

(332.63 ± 11.97 pmol/ g wet weight tissue).

3.4.2. Tetrahydrobiopterin biosynthetic capacity in whole brain tissue of wild 

type and hph-1 mice

BH4 biosynthetic capacity was used to give a comparison of the activity of the BH4 

de novo biosynthesis pathway in hph-1 and wild type mice, to investigate whether 

the proposed defect in the hph-1 mouse affects its ability to synthesize BH4 from the 

initial substrate GTP. BH4 biosynthetic capacity in the hph-1 mouse brain was 

significantly lower (p < 0.05, n = 3) than its wild type counterpart. Mean values for 

the hph-1 biosynthetic capacity were 1 .0 1  ± 0 . 0 2  pmol/mg protein/hour, against wild 

type values of 2.49 ± 0.34 pmol/mg protein/hour, a decrease of 59% (figure 3.3).

3.4.3. Dihydropteridine reductase activity in whole brain tissue of wild type and 

hph-1 mice

Dihydropteridine reductase (DHPR) activity gives a measure of the activity of the 

recycling pathway, which regenerates BH4 once it has been used in its cofactor role 

(see section 1.4). DHPR activity was comparable in wild type and hph-1 whole brain 

cytosol fractions (p = 0.435, n = 6 ). Mean ± SEM values for wild type DHPR activity 

were 219.33 ± 14.74nmol/minute/mg protein, versus 201.67 ± 15.97nmol/minute/mg 

protein (figure 3.4.) for hph-1.

3.4.4. Comparison of the biosynthetic capacity of the enzymes downstream of 

GTP cyclohydrolase 1 in wild type and hph-1 brain

These experiments were designed to introduce dihydroneopterin triphosphate 

(DHNTP) downstream of GTP-CH in the BH4 biosynthetic pathway, and then 

compare the abilities of wild type and hph-1 brain cytosolic fractions to produce 

BH4. However, before this comparison was carried out some experiments were
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Figure 3.2. BH4 levels in whole brain homogenates of hph-1 and wild type mice.

BH4 was measured by reverse-phase HPLC coupled with ECD. Data is expressed as 

mean ± SEM (n = 3). * = p < 0.0001 vs. wild-type, as judged using Student’s t-test.
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Figure 3.3. Comparison of BH4 biosynthetic capacity levels using whole brain 

cytosol fractions of hph-1 and wild type mice. See section 2.4. for assay details.

Data is expressed as mean ± SEM (n = 3). * = p < 0.05 vs. wild-type, as judged using 

Student’s t-test.
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Figure 3.4. Comparison of dihydropteridine reductase (DHPR) activity levels in 

cytosol of hph-1 and wild type mice. See section 2.5. for assay details.

BH4 was measured by reverse-phase HPLC coupled with ECD. Data is expressed as 

mean ± SEM (n = 6 ).
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conducted to validate this approach. Diamino-6 -hydroxypyrimidine (DAHP), an 

inhibitor of GTP-CH is included in some of the incubations, as a control measure to 

show that BH4 produced from DHNTP is not from uncatalysed GTP left in the 

preparation. To begin with, it was necessary to find the appropriate concentration of 

DAHP to use, so the biosynthetic capacity assay (section 2.4.) was carried out in wild 

type brain cytosol, in the presence of increasing concentrations of DAHP (figure

3.5). DAHP significantly inhibits biosynthetic capacity at l.OmM, 2.0mM and 

5.0mM concentrations (p < 0.01, n = 3), and at 5.0mM inhibits 100% of biosynthetic 

capacity activity in wild type brain. Therefore the 5.0mM concentration of DAHP 

was used throughout the bypass block experiments.

Next, DHNTP was synthesised according to the method of Werner et al, 1997, and 

incubated with wild type cytosol to confirm whether BH4 could be produced in the 

biosynthetic capacity assay using this method. No BH4 was detected in DHNTP 

preparations before they were included in the assay (data not shown). DHNTP lead 

to significant increases in biosynthetic capacity in wild type brain cytosol, at both 

8 pM and 20jiM concentrations (figure 3.6.). Furthermore, as the theoretical 

concentration of DHNTP is augmented from 8 pM to 20jj.M, biosynthetic capacity 

significantly increases (p < 0.05, n = 3). However, when DAHP is included in the 

incubation, it significantly decreases BH4 formation by 76% at 8 pM (p < 0.01, n = 3) 

and 78% with 20pM DHNTP (p < 0.01, n = 3)(figure 3.6). This suggests that 

uncatalysed GTP may be responsible for a large part of the biosynthetic capacity 

from the DHNTP preparation.

However, when the theoretically comparable concentrations of GTP ( 8 jiM  and 

20pM) were substituted in place of DHNTP in this assay, biosynthetic capacity was 

significantly decreased using GTP when compared to the DHNTP incubations, even 

in the presence of DAHP (Table 3.1). Furthermore, biosynthetic capacity using 8 pM 

and 20gM GTP did not increase biosynthetic capacity above blank levels (table 3.1). 

This suggests that DHNTP hypothetically produced using this assay, may be the 

source of the increased biosynthetic capacity in figure 3.6 and can be used to bypass 

the metabolic block in hph-1 brain cytosol fractions. In addition, the rate of BH4 

biosynthetic capacity is much greater post-GTP-CH, implying that GTP-CH is the 

rate-limiting step in the pathway.
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Figure 3.5. BH4 biosynthetic capacity assay in the presence and absence o f increasing 

concentrations of 2,4-diamino-6-hydroxypyrimidine (DAHP), in whole brain 

homogenates of wild type mice. Biosynthetic capacity was measured using 6 mM 

guanosine 5’- triphosphate (GTP) incubated with cytosol from whole brain, and then 

inhibited with concentrations of DAHP ranging from 0.5mM to 5.0mM.

Data is expressed as mean ± SEM of separate mouse brain cytosol fractions (n = 3). 

*, p < 0.01 vs. stimulated alone, as judged using Student’s t-test.
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Figure 3.6. Biosynthetic capacity in wild type brain cytosol fractions, incubated with 

dihydroneopterin triphosphate (DHNTP) in the presence and absence of 5.0mM 

diamino-6 -hydroxypyrimidine (DAHP). Data expressed as mean ± SEM of 3 

independent brain cytosol biosynthetic capacity experiments. *, p < 0.01 vs. 5.0mM 

DAHP treated biosynthetic capacity. $, p < 0.05 vs. 8 pM DHNTP. Statistics 

calculated using one way ANOVA followed by least significant difference test See 

section 3.2.5. for details of assay and DHNTP preparation.
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Treatment BH4 pmol/mg protein/hour

Blank (no substrate added) 1.03 ±0.16

8 pM DHNTP 394.99 ± 37.92 *+

8 pM DHNTP + 5.0mM DAHP 15.82 ± 1.55 +

20pM DHNTP 623.34 ±69.63 *+$

20pM DHNTP + 5.0mM DAHP 27.79 ± 4.67 +

8 pM GTP 1.34 ±0.12

8 pM GTP ± 5.0mM DAHP 0.89 ± 0.26

20pM GTP 1.12 ±0.34

20pM GTP ± 5.0mM DAHP 1 .1 2  ±0.62

Table 3.1. Effect of different concentrations of guanosine 5’-triphosphate (GTP) and 

dihydroneopterin triphosphate preparation (DHNTP), on biosynthetic capacity in 

wild type brain cytosolic fractions, in the presence and absence of 5.0mM diamino-6 - 

hydroxypyrimidine (DAHP). Amounts of GTP and DHNTP given as final 

concentrations in the biosynthetic capacity assay. Data expressed as mean ± SEM of 

3 independent brain cytosol biosynthetic capacity experiments. *, p < 0.01 vs. GTP 

biosynthetic capacity, t ,  p < 0.01 vs. 5.0mM DAHP treated biosynthetic capacity. $, 

p < 0.05 vs. 8 pM DHNTP. Statistics calculated using one way ANOVA followed by 

least significant difference test. See section 3.2.5. for details of assay and DHNTP 

preparation.
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Finally, biosynthetic capacity was then compared between wild type and hph-1 

cytosol incubated with the 8 jaM DHNTP preparation, in the presence of DAHP 

(figure 3.7). The biosynthetic capacity in wild type cytosol (12.48 ± 2.31 pmol/mg 

protein/hour; n = 6 ) was not significantly different from hph-1 cytosol (11.62 ± 1.44 

pmol/mg protein/hour; n = 6 ) incubated with DHNTP, suggesting that the enzymes 

downstream of the GTP-CH metabolic block function normally in the hph-1 mouse.

3.4.5. Monoamine levels in whole brain of wild type and hph-1 mice

Concentrations of NA, dopamine DA, the 5-HT metabolite 5-hydroxyindoleacetic 

acid (5-HIAA) and a metabolite of DA, homovanillic acid (HVA), were measured in 

the brains of 30-day-old wild type and hph-1 mice. Although it was possible to 

measure standards of Dopac and MHPG, metabolites of DA and NA respectively, in 

brain tissue these peaks were obscured by the solvent front under the 

chromatographic conditions employed here. Levels of NA were found to be 

significantly lower in hph-1 brains in comparison to wild type (1454 ± 99 vs. 1882 ± 

226 pmol/ g wet weight tissue; p < 0.05, n = 6 ), a decrease of approximately 23% 

(figure 3.8). Furthermore, in hph-1 brain tissue concentrations of DA (3091 ± 235 vs. 

3612 ± 261 pmol/ g wet weight tissue; p < 0.05, n = 6 ) and HVA (409 ± 52 vs. 679 ± 

74 pmol/ g wet weight tissue; p < 0.05, n = 5) were decreased by 14% and 40%, 

respectively. In addition, 5-HIAA levels were diminished by approximately 55% in 

hph-1 mouse brains (331 ± 58 vs. 736 ± 8 6  pmol/ g wet weight tissue; p < 0.05, n = 

6).
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Figure 3.7. Comparison of BH4 biosynthetic capacity levels using 8  pM 

dihydroneopterin triphosphate preparations in the presence of 5.0mM diamino-6 - 

hydroxypyrimidine (DAHP), in whole brain cytosol fractions of hph-1 and wild type 

mice.

BH4 was measured by reverse-phase HPLC coupled with ECD. Data expressed as 

mean ± SEM of 6  independent brain cytosol biosynthetic capacity experiments. See 

section 3.2.5. for details of assay and DHNTP preparation.
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Figure 3.8. Comparison of monoamine neurotransmitters plus their metabolite levels, 

in whole brain homogenates of hph-1 versus wild type 30-day-old mice. 

Noradrenaline (NA), dopamine (DA), homovanillic acid (HVA) and 5- 

hydroxyindoleacetic acid (5-HIAA) were measured by reverse-phase HPLC coupled 

with coulometric detection. Data is expressed as mean ± SEM (n = 6-7). * = p < 0.05 

vs. wild-type, ** = p < 0.01 vs. wild-type, as judged using Student’s t-test.
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3.5. DISCUSSION

3.5.1. Tetrahydrobiopterin deficiency in the hph-1 mouse brain

BH4 levels were significantly lower in hph-1 brain when compared with wild type, 

corresponding with earlier reports where a deficiency was found in the brain of these 

mice (McDonald et al, 1988; Hyland et al, 1996). Furthermore, hph-1 biosynthetic 

capacity is significantly decreased in brain cytosol, reflecting an impaired ability of 

the biosynthetic pathway to generate BH4 from the initial substrate GTP. In the hph-1 

brain biosynthetic capacity was approximately 41% of wild type values. This 

observation is supported by reports of hph-1 GTP-CH activity in the liver, which was 

approximately 10% of wild type (Cha et al, 1991), suggesting GTP is still converted 

to DHNTP but at slower rate. Furthermore, the levels of BH4 found in the brain (31% 

of wild type) correlate well with the impaired biosynthetic capacity, and indicate that 

hph-1 mice have a partial BH4 deficiency. In addition to decreased levels of BH4 

found in the hph-1 brain, other literature describes lower BH4 systemically, in both 

liver and kidney (McDonald et al, 1988; Hyland et al, 1996; Lam, 2004; Nandi et al, 

2005). This suggests a generalised deficiency of BH4 in all the tissues of the hph-1 

mouse.

3.5.2. Recycling pathway in the hph-1 mouse brain

The BH4 recycling pathway regenerates BH4 once it has been used in its cofactor role 

(Kaufman, 1964)(section 1.4.), and the integrity of this pathway can be measured by 

assaying the activity of DHPR. It was found that the recycling pathway was not 

significantly impaired in hph-1 brain cytosol fractions, indicating that it does not 

contribute to the BH4 deficiency observed in the hph-1 mouse brain. BH4 levels in 

CSF and urine from patients with DHPR deficiency appear to be within the normal 

range in these individuals, suggesting that a mutation giving rise to impaired DHPR 

may not actually lead to brain BH4 deficiency in any case (Hyland and Heales, 1993; 

Ponzone et al, 2004). These data in the hph-1 brain indicate that if gene therapy is 

used to correct the GTP-CH deficiency, an intact recycling pathway exists to 

maintain normal BH4 levels in these mice.
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3.5.3. Comparison of the biosynthetic capacity of the enzymes downstream of 

GTP cyclohydrolase 1, in wild type and hph-1 brain

Incubation of “DHNTP” preparations with brain cytosol produced large 

concentration-dependent increases in the biosynthetic capacity that were several 

hundred-fold greater than capacities measured using the same theoretical 

corresponding concentrations of GTP. This suggests that GTP-CH is indeed the rate- 

limiting step in the pathway in this tissue. A study measuring the activities of the 

BH4 biosynthetic enzymes in human macrophages, fibroblasts, THP-1 and T24 cells 

shows that under basal conditions PTPS and SR activities are a minimum of 10-fold 

higher than GTP-CH (Werner et al, 1990). Furthermore, PTPS and SR do not appear 

to be under the control of negative feedback, unlike GTP-CH with GFRP. Therefore 

a substrate introduced downstream of GTP-CH could be converted to BH4 more 

rapidly and in greater amounts, which appears to be the case in these experiments.

DAHP, an inhibitor of GTP-CH, was included as a control in these experiments, 

along with the equivalent theoretical concentrations of GTP, to show that any BH4 

produced from DHNTP was not from uncatalysed GTP in the initial preparation. 

Biosynthetic capacity using GTP was negligible compared to the rate using DHNTP, 

suggesting DHNTP is indeed the source of biosynthetic capacity. However, DAHP 

was shown to inhibit DHNTP-stimulated biosynthetic capacity by approximately 

75%. DAHP is reported to be a selective and direct acting inhibitor o f GTP-CH (Xie 

et al, 1998), although recent evidence now suggests that DAHP is only a weak 

competitive inhibitor of GTP-CH, and mainly exerts its action through GTP-CH 

feedback regulatory protein (GFRP)(Kolinsky and Gross, 2004). DAHP is only 

effective at inhibiting GTP-CH at millimolar concentrations (Xie et al, 1998; 

Kolinsky and Gross, 2004), which suggests that non-specific inhibitory actions could 

be responsible for the decrease in DHNTP-stimulated biosynthetic capacity seen 

here. However, no data is currently published concerning the effects o f DAHP on the 

activities of the other enzymes in the biosynthetic pathway, which could be potential 

future work.

Despite the reservations over DAHP as a specific inhibitor of GTP-CH, the 

subtracted DAHP rate was used to compare biosynthetic capacity between wild type 

and hph-1 cytosolic fractions. A comparison of the capacities of the enzymes
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downstream of GTP-CH, revealed no difference between wild type and hph-1 mice. 

This would suggest that PTPS and SR may be unaffected by the metabolic block in 

the hph-1 mice. Therefore, if  gene transfer were used to attempt to alleviate the hph- 

1 defect by transfecting these animals with GTP-CH, the rest of the biosynthetic 

pathway may be integral to produce BH4.

There is some evidence of the enzymes downstream of GTP-CH being modulated as 

the levels or activity of GTP-CH changes. Studies in human neuroblastoma cells 

treated with a-synuclein show that down-regulation o f GTP-CH expression leads to a 

decrease in SR, but not PTPS expression (Baptista et al, 2003). a-synuclein is linked 

to dopaminergic cell death in Parkinson’s disease, and cells treated with this had 

lower levels of both GTP-CH and SR mRNA and protein. Moreover, GTP-CH, PTPS 

and SR activities have all been shown to increase in parallel in human neuroblastoma 

cells, in response to LPS stimulation (Mori et al, 1997).

Studies in macrophages, THP-1, fibroblasts and T24 cells report PTPS and SR 

activities to vary from approximately 10 -  25,000 fold higher than GTP-CH (Werner 

et al, 1990). Stimulation of these cells with the cytokine IFN-y, results in large 

changes in GTP-CH activity, however PTPS or SR activities are not altered (Werner 

et al, 1990). So therefore unless the expression of these two enzymes is dramatically 

altered by the amount of GTP-CH present, there are unlikely to be large changes in 

the biosynthetic capacity of the BH4 biosynthesis pathway. In patients with the 

autosomal dominant form of GTP-CH deficiency (DRD), levels of GTP-CH activity 

and expression are decreased, however SR activity appears to be within the normal 

range (Blau et al, 2001b). These data in DRD patients appear to be in consensus with 

the results reported here, suggesting no change in the activity of the enzymes 

downstream of GTP-CH in the hph-1 mouse.

3.5.4. Monoamine deficiency in the hph-1 mouse

Analysis of levels of DA, NA, HVA and 5-HIAA revealed significant deficiencies of 

all the neurotransmitters and their metabolites in the hph-1 brain in comparison to 

their wild type counterparts. These data are supported by earlier reports of Hyland et 

al, (1996), who examined monoamine concentrations in hph-1 and wild type mice, 

and found deficiencies in all of the above, plus 5-HT, Dopac and MHPG, metabolites
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of DA and NA, respectively. Unfortunately, it was not possible to optimise 

conditions to allow us to measure all these seven neurotransmitters and their 

metabolites, but the four analysed give us a good index of NA, DA and 5-HT status 

and turnover in the hph-1 brain. The concentrations and percentage changes of 

neurotransmitters and their metabolites reported here are similar to published values, 

(Hyland et al, 1996), although the absolute values are in the range of 30-50% lower. 

This may be explained by differences in diet or breeding conditions, between this 

study and Hyland et al (1996), or differences in the sensitivity between the two 

assays, but not age as in both experiments mice were approximately 30 days old.

Many factors may be behind the difference in DA, NA and 5-HT levels found in 

hph-1 mice. Shimoji et al, 1999 found that GTP-CH mRNA levels were significantly 

lower than wild type in hph-1 in the CNS, and lowest in serotonergic, followed by 

dopaminergic then noradrenergic neurones. This may account for why 5-HIAA 

production appears to be most strongly affected by the hph-1 genotype, although it is 

difficult to say given this evidence alone. Hyland et al (1996) showed lower 

activities of TH and TRH enzymes in the hph-1 mouse. Western blots revealed 

decreased amounts of TH protein in the hph-1 brain, although levels o f TRH were 

not documented (Hyland et al, 1996). In contrast, TH mRNA is reported to be 

elevated in substantia nigra pars compacta (SNc) tissue in the hph-1 mouse (Zeng et 

al, 2004). However, this is may be explained as a feedback response to decreased TH 

protein.

Data showing attenuated TH protein in the hph-1 mouse are supported by studies 

using 6 -pyruvoyltetrahydropterin deficient (Pts(-/-)) (Sumi-Ichinose et al, 2001, 

2005) and sepiapterin reductase deficient mice (SR(-/-)) (Yang et al, 2006). Both of 

these mutant mice are deficient in BH4, and have lower levels of DA, NA and 5-HT 

than their wild type counterparts. TH and TRH activities were attenuated in these 

animals, and in Pts(-/-) mice levels of TH protein were significantly lower, although 

TRH concentrations were described as normal (Sumi-Ichinose et al, 2001). In DRD 

patients, decreased TH protein is also observed (Rajput et al, 1994; Furukawa et al, 

1999), suggesting that diminished availability of BH4 leads to lower amounts of TH 

protein, and results in decreased DA synthesis.
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Sumi-Ichinose et al (2001) suggest that attenuated TH protein levels may arise from 

the action o f BH4 stabilising TH protein. They demonstrate decreased TH protein in 

nerve terminals o f  Pts(-/-) mice, but report normal levels o f  the protein in the cell 

bodies. They propose that TH forms a stable complex with BH4 and catecholamines, 

and that only this stable complex is transported to the nerve terminal through axonal 

flow. Therefore, lower concentrations o f  BH4 would mean that TH is not transported 

efficiently to the nerve terminal, and remains in the cell bodies o f Pts(-/-) neurones.

It is unlikely that the decreased turnover o f DA observed in BH4 deficiencies results 

from a loss o f dopaminergic terminals through degeneration. Studies o f  the density o f 

striatal DA terminal sites, judged by [ H jmazindol binding, showed that these sites 

are not altered in hph-1 mice (Zeng et al, 2004). In addition, striatal aromatic L- 

amino acid decarboxylase (AADC) activity (Hyland et al, 1996) is also normal in the 

hph-1 brain. Furthermore, dopamine transporter (DAT) and vesicular monoamine 

transporter (VMAT2) binding is not affected in DRD (Furukawa et al, 1999; Huang 

et al, 2002). However, as one might expect if  DA levels fall, there was a significant 

increase in DA D2 receptor binding in the striatum o f  hph-1 mice (Zeng et al, 2004), 

which is also observed in patients with DRD (Kishore et al, 1998; Rinne et al, 2004). 

This suggests that feedback mechanisms exist to optimise dopaminergic 

neurotransmission when DA levels are attenuated in BH4 deficiencies.

In addition to the low levels o f enzyme protein accounting for differences in DA, NA 

and 5-HT between wild type and hph-1 mice, some other factors may impact on the 

metabolism o f these neurotransmitters. It has been shown that high plasm a 

concentrations o f  phenylalanine can inhibit tyrosine and tryptophan crossing the 

blood-brain barrier (Tourian and Sidbury, 1983; Hommes and Lee, 1990), and can 

also competitively inhibit TH and TRH (Femstrom and W urtman, 1972; Medical 

Research Council Working Party, 1993). However, although hph-1 mice start life 

with a hyperphenylalaninaemic state, their plasma levels are normalised after the first 

3 weeks o f its life (Bode et al, 1988; M cDonald and Bode, 1988). Furthermore, once 

the phenylalanine is removed, its effects upon DA and 5-HT metabolism are unlikely 

to persist (Lykkelund et al, 1988) Therefore it is doubtful whether phenylalanine may 

influence hph-1 brain monoamine levels.
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In an attempt to increase monoamine production in the brains o f mice and humans 

with BH4  deficiencies, some studies have administrated BH4  to patients and animals, 

which have met with limited success so far. Dosing hph-1 mice subcutaneously (s.c.) 

every 4 hours for 24 hours with 50mg/kg BH4  (equivalent to approximately 

150|imol/kg) leads to augmentation o f  BH4  in the brain, but has no effect on 

monoamine neurotransmitters (Hyland et al, 1996). In a separate study, despite 

elevation of BH4  for 24 hours to values comparable to wild type with 300pmol/kg 

s.c. (approximately lOOmg/kg), BH4  was unable to increase monoamine turnover 

(Brand et al, 1996). It was only when the dose o f BH4  was raised to lOOOpmol/kg 

(approximately 330mg/kg) that a stimulation o f monoamine turnover was observed, 

when an increase in L-Dopa and 5-HTP content was detected (Brand et al, 1996). 

However, this dose proved to be fatal for a proportion (17%) o f the mice, so it is 

unlikely that this dose would ever be used for BH4  deficiencies in humans. Ex vivo 

analysis o f TH and TRH activities revealed a modest elevation in activity for 

approximately 1 hour for both o f these enzymes, although levels o f DA and 5-HT 

metabolites remained raised (Brand et al, 1996). This suggests that a brief elevation 

o f BH4  can result in prolonged increases in monoamine metabolism. BH4  has been 

shown to directly stimulate release o f  monoamine neurotransmitters from nerve 

terminals (Koshimura et al, 1994), so it is possible this could account for some of the 

effects seen, and Brand et al (1996) proffer that the prolonged increase may also 

result from efficient packaging o f vesicles.

When Pts(-/-) mice were treated with an acute dose o f intraperitoneal 50mg/kg (150 

pmol/kg) BH4 , levels o f 5-HT increased but DA content remained low (Sumi- 

Ichinose et al, 2001). It is suggested that this is due to differential regulation o f the 

metabolism of DA and 5-HT. These data along with decreased TH, but not TRH 

protein in Pts(-/-)(Sumi-Ichinose et al, 2001), hph-1 mice (Hyland et al, 1996), and 

also DRD patients (Rajput et al, 1994; Furukawa et al, 1999), provides evidence that 

deficient levels o f BH4 affect DA metabolism via reduced TH protein and activity, 

whilst BH4 appears to directly affect 5-HT production via TRH kinetics rather than 

increasing expression. When Pts(-/-) mice were continuously injected with 50mg/kg 

BH4 for 7 days, a significant increase in TH protein was observed, even after just 1 

hour after treatment, demonstrating that the attenuation o f TH protein is reversible 

with BH4 , but that long-term dosing may be necessary to influence DA generation.
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Treatment of patients with BH4 deficiencies with cofactor alone has only been 

successful in a few patients so far (Endres,1985; Blau and Thony 1998, BH4 

deficiencies database http://www.bh4.org/BH4DatabasesBiodef.asp). Large doses are 

necessary (5-20mg/kg/day) because BH4 does not readily cross the blood-brain 

barrier (Hoshiga et al, 1993). BH4 is also relatively expensive at approximately £115 

per gramme (Shircks laboratories, Jona, Switzerland). Thus, treating a 20kg child 

with lOmg/kg costs in the region o f £8,500 per year, and will become more 

expensive each year. Therefore, attempting to cure the primary defect in BH4 

deficiencies by gene therapy could be very advantageous not only in terms of costs, 

but also if the vector was introduced into the brain, would ensure more BH4 was 

present to increase the activity and expression of the NOS, TH and TRH enzymes.

3.6. CONCLUSIONS

This chapter has further demonstrated impaired BH4 metabolism in the brain of the 

hph-1 mouse. Concentrations of BH4 in the brain are approximately 30% of wild 

type, and the ability of the hph-1 biosynthetic pathway to produce BH4 from the 

initial substrate GTP, is also impaired. However, biosynthetic capacity activity 

remains at 40% of wild type, suggesting that hph-1 mice only have a partial 

deficiency of BH4 in the brain. Activity of the BH4 recycling pathway remains 

unaffected in the hph-1 brain. This suggests that if gene transfer were used to 

increase GTP-CH expression and activity in hph-1 mice, an intact recycling system 

exists to maintain BH4 levels. In addition, when “DHNTP” was proposed to be 

introduced downstream of the hph-1 metabolic block into the pathway, there were no 

differences in biosynthetic capacity between the mice, suggesting that the enzymes 

post-GTP-CH in the BH4 biosynthesis pathway function normally. The lack of BH4 

also appears to impact on the concentrations of monoamine neurotransmitters. Levels 

o f NA, DA and its metabolite HVA, as well as 5-HIAA, the metabolite o f 5-HT, 

were all found to be lower in the hph-1 brain. Gene transfer targeted to the hph-1 

mouse may help to increase BH4 chronically in these animals. This may lead to 

increases in the level of monoamine neurotransmitters, as well as potentially correct 

the documented impairment of NO metabolism in the hph-1 mouse brain. This in 

turn may be useful for sufferers of BH4 deficiencies.
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4.1. INTRODUCTION

Astrocytes are among the most common cells in the central nervous system (CNS), 

outnumbering neurones ten to one in most brain regions (Tsacopoulos and 

Magistretti, 1996), yet for decades their precise role has remained enigmatic. They 

were initially considered to be “brain glue”, functioning as the inert cellular structure 

that held neurones in place and assisted their interactions (Volterra and Meldolesi, 

2005). As the decades passed it was discovered they play roles in providing 

metabolic support for neurones (Aschner, 2000), bringing nutrients from blood 

vessels to cells, as well as an immune function in the CNS (Fields, 2004). More 

recently it was demonstrated that astrocytes synchronise neuronal firing by acting on 

post-synaptic receptors (Fellin et al, 2004), as well as dynamically controlling brain 

microcirculation (Zonta et al, 2003) and modulating synaptic transmission (Haydon, 

2001).

NO derived from astrocytes may have a role in many of the functions that astrocytes 

and neurones perform. Astrocytes are thought to be the main source of NO in the 

brain, as they contain the highest concentration of L-arginine, the substrate for NOS 

(Aoki et al, 1991). Astrocytic NO can modulate synaptic plasticity via glutamatergic 

receptors (Kiss and Vizi, 2001; Ikeda and Murase, 2004), and may be involved in 

long-term potentiation (LTP) and depression (LTD), which are proposed 

mechanisms for learning and memory (Garthwaite and Boulton, 1995). Inducible 

nitric oxide synthase (iNOS) expression and NO generation in astrocytes are 

activated several fold by cytokines and LPS, both in vitro and in vivo (Werner et al, 

1993; Bolanos et al, 1994; Bune et al, 1996). However, induction o f iNOS and NO 

generation by LPS and the cytokine IFN-y may also be toxic to astrocytes, as NO is 

produced in high concentrations that can inhibit the mitochondrial electron transport 

chain (Bolanos et al, 1994). Furthermore, NO produced from iNOS can diffuse to 

neighbouring neurones, where it can also exert toxic effects (Chao et al, 1996; 

Stewart et al, 2000).

NO reacts very favourably with superoxide (-0 2 ’), which leads to peroxynitrite 

(ONOO') formation (Beckman et al, 1990; Lipton et al, 1993). Neurones appear to 

be particularly susceptible to NO/ONOO' exposure (Bolanos et al, 1995, 1996). One
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potential factor in this vulnerability may be the antioxidant capacity o f these cell 

types. The intracellular concentration of reduced glutathione (GSH) appears to be an 

important aspect in dictating the susceptibility o f cells to NO/ONOO' exposure 

(Bolanos et al, 1996). GSH can potentially nullify the deleterious effects of 

NO/ONOO' (Quijano et al, 1997; Hughes, 1999). Astrocytes have approximately 

double the intracellular concentration of GSH found in neurones (Bolanos et al, 

1995), which may be accounted for by the 9-fold greater specific activity of 

glutamate cysteine ligase, the rate limiting step in GSH production, in astrocytes 

compared to neurones (Gegg et al, 2003). It is thought that astrocytes may protect 

neurones by indirectly trafficking GSH to neurones via the multi-drug resistance 

protein (MRPl)(Hirrlinger et al, 2002). When neurones are cultured alone, 

intracellular GSH concentration is significantly lower than when co-cultured with 

astrocytes (Bolanos et al, 1996; Dringen et al, 1999), and when astrocytes are 

exposed to NO, the intracellular GSH concentration and release increases (Gegg et 

al, 2003). Thus, astrocytes would appear to have an important role in protecting 

neurones from oxidative stress, but large quantities of NO produced from these cells 

may also be deleterious.

In order to increase NO production in astrocytes following induction of iNOS 

expression, adequate amounts o f the cofactor BH4 are required (Sakai et al, 1995). 

LPS + IFN-y stimulation o f iNOS expression is accompanied by a parallel induction 

o f GTP-CH expression in cultured cells (Hattori and Gross, 1993; Bune et al, 1996), 

and inhibition of BFL* synthesis is reported to decrease NO (Gross and Levi, 1992; 

Schoedon et al, 1994). In hph-1 astrocytes, impaired BH4 metabolism results in 

decreased NO generation when these cells are stimulated with LPS + IFN-y (Barker 

et al, 1998), even though protein levels o f iNOS are reported to be significantly 

higher than wild type (Barker et al, 1998). At low concentrations of BH4 , purified 

NOS protein has been reported to produce O2’ and hydrogen peroxide 

(H2 0 2 )(Heinzel et al, 1992, Rosen et al, 2002), therefore it is possible that in hph-1 

astrocytes NO and O2 ' are generated, which can combine together to form the toxic 

species ONOO" (Beckman et al, 1990). Indeed, hph-1 mice have decreased 

concentrations of GSH in the brain and kidney, which may be attributed to a greater 

consumption o f GSH in hph-1 compared to WT by reactive oxygen and nitrogen 

species (Lam, 2004).
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In patients with inborn errors of BH4 metabolism, decreased concentrations NO2" and 

NO3' have been reported in cerebrospinal fluid (CSF)(Heales et al, 1999; Zorzi et al, 

2002a), which suggests an impaired formation of NO in these patients. The hph-1 

mouse is reported to be a good model for inborn errors o f BH4 metabolism, in 

particular dominantly inherited GTP-CH deficiency dopa responsive dystonia 

(Hyland et al, 2003). Therefore studying hph-1 mouse astrocytes further may yield 

vital information about the effect of impaired BH4 and NO metabolism in the 

pathogenesis o f these diseases, and be useful as a cellular model for gene transfer in 

BIH-deficient states.

4.2. AIMS

In view of the fact that hph-1 astrocytes have previously been demonstrated to have 

impaired BH4 metabolism, and show an attenuated response to stimuli that increase 

GTP-CH and iNOS expression, the aims o f this chapter are as follows:

• Further characterise impaired BH4 and NO metabolism in hph-1 astrocytes, 

by measuring BH4 content and NO production (as judged by NO2" and NO3" 

release into the extracellular media) under basal, and LPS + IFN-y stimulated 

conditions.

• Investigate the ability of hph-1 astrocytes to produce BH4 from L-sepiapterin 

that can be converted to BH4 by the salvage pathway.

• Investigate whether increasing BH4 in hph-1 astrocytes can augment their 

response to LPS + IFN-y stimulated NO production.
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4.3. METHODS

4.3.1. Cell culture

Primary astrocytes were cultured from wild type and hph-1 mouse neonates as 

described in section 2.2.2. They were treated in vitro on day 13 as described in 

section 2.2.4.

4.3.2. Tetrahydrobiopterin measurement

Cells were prepared for analysis of BH4 and measured as described in section 2.3.4 

and section 2 .1  respectively.

4.3.3. Nitrite and nitrate measurement

NO2’ and NO3' were measured in the cell culture media o f wild type and hph-1 

astrocytes as an index of NO production, which is described in section 2.6.

4.3.4. Protein concentration

Protein concentration in cells used for BH4 and NO2" and NO3' measurements was 

calculated based on the method of Lowry et al (1951) described in section 2.9, using 

a standard curve o f BSA dissolved in 0.5 M NaOH, with concentrations of 0.05 

mg/ml to 0 . 6  mg/ml..

4.3.5. Experimental protocol

For experiments involving LPS and/or IFN-y stimulation, cells were either stimulated 

with IFN-y (100 U/ml) or LPS (lpg/ml), or a combination o f the two, with vehicle 

media as a control. In addition to LPS + IFN-y alone, this treatment was combined 

with L-NIL (N6 -iminoethyl-L-Lysine) (lOOpM) a specific iNOS inhibitor (W olff et 

al, 1998), or L-sepiapterin (1 pM), a substrate for the BH4 salvage pathway enzymes. 

In other studies, astrocytes received increasing concentrations of L-sepiapterin 

(0.2pM -  2pM), or vehicle media as a control. Cells were harvested 24 hours after 

treatment.

4.3.6. Statistical analysis

Statistical tests were conducted as described in section 2.10.
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4.4. RESULTS

4.4.1. Comparison of wild type and hph-1 mice astrocytes under basal 

conditions

Table 4.1 shows that BH* in untreated hph-1 astrocytes is significantly lower than in 

wild type astrocytes (p < 0.01, n = 9). BH4 levels in the hph-1 cells (3.61 ± 0.45pmol/ 

mg protein) were 47% of wild type (7.57 ± 1.08pmol/mg protein).

By contrast table 4.1 shows that NO2’ and NO3’ in untreated hph-1 astrocyte cell 

culture media was not significantly lower than wild type (p = 0.34, n = 8 ).

4.4.2. Effect of Lipopolysaccharide and Interferon-y on tetrahydrobiopterin, 

and nitrite and nitrate levels in wild type and hph-1 astrocytes

Wild type and hph-1 astrocytes were treated with combinations of the bacterial 

endotoxin LPS and cytokine IFN-y, to compare the effects of stimuli that increase 

GTP-CH and iNOS expression, on BH4 and NO2' and NO3' levels. IFN-y had no 

effect on basal BH4 levels in either wild type or hph-1 astrocytes (figure 4.1). LPS 

induced an approximately 19-fold increase in wild type BH4 (146.92 ± 

16.34pmol/mg protein) and a 3-fold increase in hph-1 cells (10.72 ± 1.15pmol/mg 

protein). These increases were statistically significant (p < 0.001, n = 7-9 for wild 

type and p < 0.001, n = 9-12 for hph-1). The combination of LPS + IFN-y also 

significantly increased BH4 in wild type (156.88 ± 24.63pmol/mg protein, p < 0.001, 

n = 9-12) and hph-1 astrocytes (11.41 ± 0.96pmol/mg protein, p < 0.001, n = 9-12), 

however this combination did not significantly raise BH4 above LPS stimulated 

levels for either wild type or hph-1 astrocytes.

These data were compared to see if hph-1 LPS + IFN-y-stimulated BH4 levels were 

different to wild type, hph-1 astrocytes treated with LPS and LPS + IFN-y produced 

significantly lower levels of BH4 than wild type (p < 0.001, n = 7-12). The increase 

in hph-1 astrocyte BH4 was approximately 7% of the total BH4 produced by wild 

type cells for both treatments.

LPS + IFN-y also stimulates the expression o f iNOS, which generates NO that can be 

indirectly measured by assaying the levels of NO2' and NO3", metabolites o f NO, in
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wild type hph-1

BH4 
pmol/mg protein 7.57 ± 1.08 3.61 ±0.45*

NOx 
nmol/mg protein 2.43 ± 0.66 1.99 ±0.75

Table 4.1. Basal levels o f BH4 and NO2" + NO3 in wild type and hph-1 cortical 

astrocytes.

BH4 was measured using reverse-phase HPLC coupled with ECD. NO2" + NO3" 

concentrations were measured using the Griess reaction. Data are expressed as mean 

± SEM of 8-9 independent cell culture preparations. * = p < 0.01 vs. wild type, 

calculated using Student’s t-test.
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Figure 4.1. Effect of combinations of LPS (100 U/ml), IFN-y (IFN, lpg/ml), and 

LPS + IFN-y (LPS + IFN) on BH4 levels in wild type (WT) and hph-1 cortical 

astrocytes.

Cells were treated for 24 hours. BH4 was measured using reverse-phase HPLC 

coupled with ECD. Data are expressed as mean ± SEM of 7-12 independent cell 

culture preparations. * = p < 0 . 0 0 1  vs. untreated control calculated using one way 

ANOVA followed by least significant difference test, f  = p < 0.001 vs. wild -type 

calculated using Student's t-test.



cell culture media. When cells were treated with IFN-y, an approximate 2-fold 

increase in NO2’ and NO3’ was seen in wild type cell culture media (p < 0.05, n = 8 ), 

with a 3-fold rise observed in hph-1 (p < 0.01, n = 4-8). LPS induced significant 

increases in NO2’ and NO3’ in both wild type (p < 0.01, n = 8 ) and hph-1 astrocytes 

(p < 0.01, n = 4-8), to approximately 5-fold and 3-fold of basal levels, respectively. 

This increase was significantly greater than the IFN-y generated NO2' and NO3" in 

wild type (p < 0.01, n = 8 ), but not hph-1. The combination of LPS + IFN-y raised 

NO2’ and NO3" in cell culture media even further, elevating wild type levels 1 0 -fold 

from basal (p < 0.01, n = 8 ), and hph-1 4.5-fold (p < 0.01, n = 8 ). This treatment 

augmented NO2' and NO3' significantly beyond IFN-y (p < 0.01, n = 8 ) and LPS (p < 

0.01, n = 8 ) stimulated levels, but once again only in wild type cells. When these 

treatments were compared between wild type and hph-1 cells, it was found that only 

with the combination of LPS + IFN-y was NO2" and NO3' in hph-1 astrocytes 

significantly different from wild type (p < 0.05, n = 8 ), at around 36% lower (figure 

4.2).

4.4.3. Effect of N6-iminoethyl-L-Lysine on Lipopolysaccharide and Interferon-y 

induced increases in hph-1 and wild type astrocyte tetrahydrobiopterin and 

nitrite and nitrate levels

The iNOS inhibitor L-NIL was added to wild type and hph-1 astrocytes, to observe 

whether the increases in BH4 or NO2’ and NO3' following LPS plus IFN-y 

stimulation were dependent on iNOS activity (Wolff et al, 1998). L-NIL did not 

significantly affect LPS + IFN-y stimulated BH4 increases in wild type (83.64 ± 

31.61 pmol/mg protein vs. 90.72 ± 32.59 pmol/mg protein for L-NIL treated, n = 7) 

(figure 4.3) or hph-1 astrocytes (4.25 ± 1.61 pmol/mg protein vs. 4.12 ± 1.56 

pmol/mg protein for L-NIL treated, n = 7). However, the increases in NO2’ and NCb' 

following LPS + IFN-y treatment were significantly attenuated by L-NIL in wild 

type (p < 0.01, n = 8 ) and hph-1 astrocytes (p < 0.01, n = 7-8), so that they no longer 

differed from basal levels (figure 4.4).

4.4.4. Effect of L-sepiapterin on tetrahydrobiopterin and nitrite and nitrate 

levels in wild type and hph-1 astrocytes

Wild type and hph-1 astrocytes were treated with increasing concentrations of L- 

sepiapterin, from 0.2-2.OpM, to investigate the ability o f the hph-1 cells to produce
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Figure 4.2. Effect of combinations of LPS (100 U/ml) + IFN-y (IFN, lpg/ml) on NO:* 

+ NO3' (NOx) production in cell culture media of wild type (WT) and hph-1 cortical 

astrocytes. Cells were treated for 24 hours and NOx production was measured using 

the Griess assay (see section 2.6).

Data are expressed as mean ±  SEM o f 4-8 independent cell culture preparations. * = p 

< 0.05 vs. untreated control, ** = p < 0.01 vs. untreated control calculated using one 

way ANOVA followed by least significant difference test. $ = p < 0.01 vs. LPS 

stimulated calculated using one way ANOVA followed by least significant difference 

test. * = p < 0.01 vs. LPS + IFN-y stimulated calculated using one way ANOVA 

followed by least significant difference test, f  = p < 0.05 vs. wild type calculated 

using Student’s t-test.
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Figure 4.3. Effect o f LPS (100 U/ml) + IFN-y (IFN, lpg/ml), and LPS + IFN-y + N 6 - 

iminoethyl-L-lysine (L-NIL, lOOpM) on BH4  levels in wild type (WT) and hph-1 

cortical astrocytes.

Cells were treated for 24 hours. BH4  was measured using reverse-phase HPLC 

coupled with ECD. Data are expressed as mean ± SEM o f 6-10 independent cell 

culture preparations, f  = p < 0.05 vs. wild-type, t  t  = p < 0.01 vs. wild-type 

calculated using Student's t-test. * = p < 0.01 vs. untreated control calculated using 

one way ANOVA followed by least significant difference test, t  = p < 0.05 vs. wild- 

type, 1 1  = p < 0.01 vs. wild-type calculated using Student's t-test.
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Figure 4.4. Effect o f LPS (100 U/ml) + IFN-y (IFN, lpg/ml) stimulation, and 

inhibition o f LPS + IFN stimulation with N 6 -iminoethyl-L-lysine (L-NIL, lOOpM), 

on N 0 2' + NO3 ' (NOx) production in cell culture media o f wild type (WT) and hph-1 

cortical astrocytes. Cells were treated for 24 hours. LNIL was administered at a 

concentration o f  1 OOpM.

NO2’ + NO3* concentrations were measured using the Griess reaction. Data are 

expressed as mean ±  SEM o f  5-8 independent cell culture preparations. * = p < 0.01 

vs. untreated control calculated using one way ANOVA followed by least significant 

difference test, t  = p < 0.05 vs. wild-type calculated using Student's t-test.
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BH4 via other pathways than the de novo biosynthesis (i.e. the salvage 

pathway)(figure 4.5). In wild type astrocytes all doses of L-sepiapterin increased BH4 

(p < 0.01 for 0.2, 0.5 and 2.0pM, p < 0.001 for l.OpM, n = 7-12) in a dose-related 

manner, from approximately a 2-fold increase at 0.2pM to 20-fold for 2.0pM. BH4 

rose from 7.57 ± 1.08pmol/mg protein, to 16.23 ± 1.69pmol/mg protein with 0.2pM 

L-sepiapterin, 33.31 ± 3.22pmol/mg protein with 0.5jaM L-sepiapterin, 59.42 ± 8.35 

pmol/mg protein with l.OpM L-sepiapterin, and 152.80 ± 24.16pmol/mg protein with 

2.0|iM L-sepiapterin. Sepiapterin also increased BH4 in hph-1 astrocytes at all doses 

(p < 0.001 from 0.2 -  2.0pM, n = 7-12), from 3.63 ± 0.45pmol/mg protein, to 9.14 ± 

0.91pmol/mg protein with 0.2pM L-sepiapterin, 22.39 ± 1.89pmol/mg protein with 

0.5pM L-sepiapterin, 38.08 ± 6.56pmol/mg protein with 1.0|iiM L-sepiapterin, and 

117.68 ± 8.43pmol/mg protein with 2.0pM L-sepiapterin. This was also in a dose- 

dependent manner, ranging from 3-fold at 0.2pM, to 33-fold at 2.0pM.

These data were also studied for any differences between wild type and hph-1 

astrocytes in their response to L-sepiapterin, and at all doses tested except the highest 

(2.0pM), the increase in BFL* shown by hph-1 astrocytes was significantly lower than 

the wild type (p < 0.05, n = 7-12).

Levels of NO2" and NO3" were also monitored following a dose of 1 pM sepiapterin. 

No significant effects were seen in wild type or hph-1 astrocytes with this treatment 

(figure 4.7).

4.4.5. Effect of the combination of Lipopolysaccharide and Interferon-y with L- 

sepiapterin on hph-1 and wild type astrocyte tetrahydrobiopterin and nitrite 

and nitrate levels

L-sepiapterin was given in combination with LPS and IFN-y to investigate whether 

stimuli that increase BH4 via different pathways could summate to give larger 

increases in BFL, and to investigate whether this would lead to increased NO2’ and 

NO3' in hph-1 cells. Figure 4.6 shows the BFLt response of hph-1 and wild type 

astrocytes to these stimuli. In wild type and hph-1 astrocytes both L-sepiapterin and 

LPS + IFN-y increase BH4 to varying extents, as described above in section 4.3.2. 

The combination of LPS + IFN-y + Sepiapterin in wild type cells increased BH4 

above control (p < 0.05, n = 8-10) and sepiapterin (p < 0.05, n = 7-8) stimulated
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Figure 4.5. Effect of increasing concentration of L-Sepiapterin (Sep) on BH4 levels 

in wild type (WT) and hph-1 cortical astrocytes.

Cells were treated for 24 hours. BEL* was measured using reverse-phase HPLC 

coupled with ECD. Data are expressed as mean ± SEM of 7-12 independent cell 

culture preparations. * = p < 0 .0 1  vs. untreated control, ** = p < 0 .0 0 1  vs. untreated 

control calculated using one way ANOVA followed by least significant difference 

test.+ = p < 0.05 vs. wild-type calculated using Student's t-test.
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Figure 4.6. Effect of LPS (100 U/ml) + IFN-y (IFN, lpg/ml), and L-sepiapterin (Sep, 

1 pM) on BH4 levels in wild type (WT) and hph-1 cortical astrocytes.

Cells were treated for 24 hours. BH4 was measured using reverse-phase HPLC 

coupled with ECD. Data are expressed as mean ± SEM of 6-10 independent cell 

culture preparations. * = p < 0 .0 1  vs. untreated control, ** = p < 0 .0 0 1  vs. untreated 

control calculated using one way ANOVA followed by least significant difference 

test, t  = p < 0.05 vs. wild-type, t  t  = p < 0.01 vs. wild-type calculated using 

Student’s t-test.
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levels, but did not exceed LPS + IFN-y values. In contrast, in hph-1 astrocytes the 

combination of LPS + IFN-y + Sepiapterin significantly increased BH4 above control 

(p < 0.01, n = 6-9) and LPS + IFN-y stimulated (p < 0.01, n = 9-10), but did not 

increase BH4 above sepiapterin stimulated levels. When LPS + IFN-y + Sepiapterin 

responses were compared in wild type and hph-1 astrocytes, BH4 was significantly 

lower in hph-1 cells (p < 0.05, n = 8-9).

When sepiapterin was given in combination with LPS + IFN-y it did not appear to 

augment NO2" and NO3’ in wild type astrocytes already treated with LPS + IFN-y 

(figure 4.7). In hph-1 cells NO2’ and NO3’ values rose from 8.84nmol/mg protein in 

LPS + IFN-y treated cells, to 15.68nmol/mg protein in LPS + IFN-y + Sepiapterin 

astrocytes, although this effect was not significant (p = 0.068, n = 6 -8 ). However, 

when NO2' and NO3’ levels in cell culture media from hph-1 LPS + IFN-y + 

Sepiapterin treated cells were compared to wild type LPS + IFN-y and LPS + IFN-y 

+ Sepiapterin it was found that there were no statistical differences between wild 

type and hph-1 groups (figure 4.7).
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Figure 4.7. Effect of combinations of LPS (100 U/ml) + IFN-y (IFN, lpg/ml) and 

sepiapterin (lpM ) on NCL’ + NO3' (NOx) production in cell culture media of wild 

type (WT) and hph-1 cortical astrocytes. Cells were treated for 24 hours. NO2'  + NO3' 

concentrations were measured using the Griess reaction.

Data are expressed as mean ± SEM of 5-8 independent cell culture preparations. * = p 

< 0.05 vs. untreated control calculated using one way ANOVA followed by least 

significant difference test. ** = p < 0 .0 1  vs. untreated control calculated using one 

way ANOVA followed by least significant difference test, f  = p < 0.05 vs. wild-type 

calculated using Student’s t-test.
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4.5. DISCUSSION

4.5.1. Comparison of wild type and hph-1 mice astrocytes under basal 

conditions

In agreement with existing literature, hph-1 astrocytes were found to have 

significantly lower levels o f BH4 (Barker et al, 1998). This indicates hph-1 astrocytes 

can be used as a cellular model of BH4 deficiency. Values of basal BH4 between 

these sets o f experiments were found to be different however, with Barker et al 1998 

detailing lower levels. These discrepancies may be explained by the different 

scraping methods employed, as Barker uses a trypsinisation procedure rather than 

adding buffer directly to cells (see section 2.3.4).

Basal extracellular levels of NO2' and NO3' were not significantly different between 

wild type and hph-1 astrocytes. Previous studies investigating NO2" and NO3' (Lam,

2004) and also direct measurements o f NO under basal conditions (Barker et al,

1998) were unable to detect NO2" and NO3' or NO in wild type or hph-1 astrocytes. 

Basal NO2" and NO3' levels in this study were at the limit of detection of the assay, 

and given that the Griess assay does not discriminate over the source of NO2’ or NO3" 

(Green et al, 1982), it is possible that combinations of these factors is why equal 

NO2’ and N 0 3‘ are detected in wild type and hph-1 cell culture media. Therefore, 

further work using a highly sensitive direct assay of NO may show discrepancies in 

NO metabolism between hph-1 and wild type under basal conditions. Additionally, 

measurement o f the formation of cGMP, a downstream target of NO (Ignarro et al, 

1981), could reveal differences in NO metabolism, as cGMP levels are influenced by 

the concentration o f BH4 in the cell (Muhl et al, 1994; Delgado-Esteban et al, 2002), 

and have been measured under basal conditions in mouse astrocytes (Yeung et al, 

1992, 1996).

Alternatively, it may be that BH4 is not limiting for NOS in hph-1 astrocytes under 

basal conditions. The Km of BH4 for NOS is relatively low at typically 0.02pM 

(Giovanelli et al, 1991), in contrast to 2pM for PAH for example (Abita et al, 1984). 

Therefore there may be sufficient BH4 to allow NOS isoforms to function normally 

in these cells. However, it is not possible to ascertain this from the BH4 concentration 

measured, and a study of the Km of BH4 for nNOS in hph-1 cells would need to be
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done to investigate this. Astrocytes are thought to be the main source of NO in the 

brain, as they contain the highest concentration of L-arginine, the substrate for NOS 

(Aoki et al, 1991). Previous studies show that nNOS specific activity is decreased in 

hph-1 brains in the absence of exogenous cofactor (Brand et al, 1995), and in 

patients with inborn errors of BH4 metabolism, decreased concentrations o f NO2' and 

NO3’ are reported in CSF (Heales et al, 1999; Zorzi et al, 2002a). Therefore, 

although there were no differences detected between basal levels of NO2* and NO3" in 

hph-1 and wild type astrocytes, attenuated production of NO in hph-1 brains must 

arise from somewhere, and astrocytes are potential sources of this.

4.5.2. Effect of Lipopolysaccharide and Interferon-y on tetrahydrobiopterin, 

and nitrite and nitrate levels in wild type and hph-1 astrocytes

Various effects were observed following exposure of wild type and hph-1 astrocytes 

to combinations o f LPS and the cytokine IFN-y. IFN-y alone had no effect on basal 

BH4 in wild type or hph-1 astrocytes, whilst LPS induced a 19-fold increase in wild 

type and a 3-fold increase in hph-1 BH4. The combination of the inflammatory 

mediators also increased BH4 in both types of astrocytes, but not above LPS 

stimulated levels. This suggests increases in BH4 derive from LPS stimulation, not 

IFN-y. These results agree with studies in rat astrocytes, where IFN-y has no effect 

on BH4 concentrations, and the combination of LPS + IFN-y does not significantly 

increase BH4 values above LPS-stimulated (Sakai et al, 1995). The inability of IFN-y 

to increase BH4 may be because it does not down-regulate GTP-CH feedback 

regulatory protein (GFRP) levels (Werner et al, 2002). In human THP-1 cells and in 

rats in vivo, LPS attenuates the expression o f GFRP, an inhibitory complex that binds 

and regulates GTP-CH. IFN-y had no effect on GFRP in these cells (Werner et al, 

2002).

BH4 levels between wild type and hph-1 astrocytes treated with LPS and LPS + IFN- 

y were markedly different. In hph-1 stimulated cells BH4 was significantly lower 

than the wild type, an effect consistent with Barker et al, 1998 who describe 

doubling of BH4 in wild type and hph-1 astrocytes following LPS + IFN-y, but hph-1 

levels remained 25% of wild type. The magnitude of response is different between 

the data presented here and by Barker et al, 1998, again possibly due to different 

methods used to harvest the cells (see section 2.3.4). LPS + IFN-y stimulation
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increases GTP-CH activity in human endothelial cells, but not the other enzymes in 

the biosynthetic pathway (Wemer-Felmayer et al, 1993). Therefore, these results 

demonstrate further that hph-1 mice have an impaired ability to generate BH4  by de 

novo synthesis due to their deficiency in GTP-CH.

When NO2 ’ and NO 3 " were measured in hph-1 and wild type astrocyte cell culture 

media following stimulation with combinations o f LPS and IFN-y, the reported 

effects were comparable with published results (Bolanos et al, 1994). In wild type 

cells, IFN-y increased NO 2 ’ and NO 3 ’ above basal levels, and LPS amplified this 

further, significantly exceeding IFN-y stimulation. LPS + IFN-y together increased 

NO 2 ’ and NO 3 ' in wild type beyond LPS or IFN-y levels, such that LPS + IFN-y 

stimulation produced more NO 2 ’ and NO 3 ' than the sum o f  its separate parts. This 

effect is consistent with data reported in rat astrocytes, where the LPS + IFN-y had a 

greater effect than LPS and IFN-y combined (Bolanos et al, 1994). In hph-1 culture 

media, all three treatments elevated NO 2 " and NO 3 ' above basal, however none o f  

these changes were significantly different ffom each other. When wild type and hph- 

1 were compared it was discovered that only with LPS + IFN-y together were there 

any differences between the two types o f  astrocyte, where NO 2 ’ and NO 3 ' production 

was significantly impaired in hph-1 cells. These data agree with the results o f  Barker 

et al, 1998 who reported lower amounts o f NO produced ffom hph-1 astrocytes, 

confirming hph-1 cells have an impaired ability to generate NO when stimulated 

with LPS + IFN-y. From these data it was decided to use both LPS + IFN-y in any 

further experiments involving iNOS stimulation.

The stimulation o f  iNOS expression by cytokines and bacterial agents such as LPS is 

well documented. A number o f  different cells respond to LPS + IFN-y with increases 

in BH4 , NO, and cGMP (Hattori and Gross, 1993; Sakai et al, 1995; Ding et al, 1997 

Pedraza et al, 2001, 2003), including rat (Simmons and Murphy, 1992; Bolanos et al, 

1994; Choi et al, 2002) and mouse astrocytes (Barker et al, 1998). LPS also induces 

BH4  and NO production in rats in vivo (Bune et al, 1996). Studies examining the 

time course o f LPS + IFN-y stimulation demonstrated that BH4  and NO generation, 

as well as GTP-CH and NOS expression, are induced in parallel (Hattori and Gross, 

1993). It is thought production o f NO is dependent on BH4 , as DAHP prevents NO 

generation in cells treated with LPS + IFN-y (Hattori and Gross, 1993), whereas the
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iNOS inhibitor L-NIL has no effect on BH4 (section 4.4.3). However, while 

induction of GTP-CH by LPS + IFN-y is necessary for an increase in iNOS activity 

and NO generation, iNOS mRNA is still induced in the presence o f DAHP, 

suggesting that LPS + IFN-y induces iNOS expression independently o f BH4 

production (Togari et al, 1998).

These data raise questions about why limiting BH4 production in hph-1 astrocytes 

leads to impaired NO2" and NO3' following LPS + IFN-y stimulation. Work in the 

whole brain o f hph-1 mice shows that in the absence o f exogenous BH4, the Km for 

arginine is significantly increased in hph-1 brain, and NOS specific activity is 

attenuated by 20% (Brand et al, 1995). However this work examines nNOS the 

constitutive isoform of NOS in the brain, and it is not clear whether this extends to 

iNOS. Another explanation for lower LPS + IFN-y stimulated NO2' and NO3" in hph- 

1 cells may be due to the role of BH4 in iNOS dimerisation. iNOS is only active as a 

homodimer (Ghosh et al, 1995), and BH4 is required for dimerisation (Baek et al, 

1993). BH4 promotes the stabilisation of iNOS into the active dimer form, leading to 

increased NO (Tzeng et al, 1995). L-arginine also promotes dimerisation of iNOS 

(Baek et al, 1993), so perhaps the combination of low BH4 leading to increased Km 

o f arginine for iNOS, and decreased dimerisation o f iNOS due to low BH4 and 

arginine binding, means that hph-1 astrocytes produce less NO following 

stimulation.

Barker et al 1998 demonstrate that iNOS protein and activity is increased following 

LPS + IFN-y stimulation in hph-1 astrocytes. They suggest this higher activity arises 

from the effect NO has on limiting NFicB-dependent iNOS expression (Park et al, 

1997). Therefore lower production o f NO in hph-1 cells leads to increased iNOS 

activity. However, rat hepatocytes pre-treated with an NO-donor prior to cytokine 

stimulation, had increased iNOS activity and NO2' and NO3" but no change in iNOS 

protein (Park et al, 2002). This effect may be cell specific, as macrophages and 

smooth muscle cells did not respond to the NO-donor. In the same study, pre­

treatment with the NO-donor suppressed GFRP expression, giving augmented GTP- 

CH activity and BH4 production, in parallel with increased NO2" and NO3’ and iNOS 

dimerisation. So perhaps there is less suppression of GRFP in hph-1 cells, indirectly 

resulting in attenuated NO production following stimulation.
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A further factor to consider could be arginine uptake into cells. Expression o f  type 2 

cationic amino acid transport proteins (CAT-2), which support cellular arginine 

uptake, increase with rising concentrations o f BH4 in rat cardiomyocytes (Schwartz 

et al, 2001). Treating these cells with LPS increased arginine uptake and NO 2 " and 

NO 3 ' generation, but only in the presence o f BH4. Stevens et al, 1996 describe the 

expression o f CAT-2 in rat astrocytes, and show that iNOS and CAT-2 expression, 

arginine uptake and nitrate production all increase concomitantly following LPS + 

IFN-y stimulation. However these results do not document BH4 levels or GTP-CH 

expression or activity, so one can only tentatively suggest lower BH4 levels leads to 

impaired arginine transport, and thus lower iNOS activity and NO generation in hph- 

1 astrocytes.

A number o f  factors, including the effect o f BH4 concentration on iNOS 

dimerisation, arginine binding and uptake, NO suppression o f  GFRP, and expression 

and activity o f iNOS are likely to be involved in the results reported here. However, 

further work is necessary to elucidate factors governing impaired NO 2 " and NO 3 ’ 

generation following LPS + IFN-y stimulation in hph-1 astrocytes.

4.5.3. Effect of N6-iminoethyl-L-Lysine on Lipopolysaccharide and Interferon-y 

induced increases in hph-1 and wild type astrocyte BH4 levels

The iNOS inhibitor L-NIL did not inhibit increases in BH4 by LPS + IFN-y 

stimulation. L-NIL is a relatively selective inhibitor o f iNOS (Moore et al, 1994; 

W olff et al, 1998; Alderton et al, 2001), suggesting that BH4 synthesis is not 

modulated by NO produced by iNOS. However, the increase in NO 2 " and NO 3 ’ 

following LPS + IFN-y stimulation was iNOS dependent, as L-NIL prevented the 

effect in both cell types. This suggests that the product o f LPS + IFN-y stimulation is 

mostly NO in this experiment, as L-NIL abolished any increases in NO2 " and NO 3 ".

4.5.4. Effect of L-sepiapterin on tetrahydrobiopterin and nitrite and nitrate 

levels in wild type and hph-1 astrocytes

L-sepiapterin increases BH4 in wild type and hph-1 astrocytes dose-dependently 

from 0.2-2pM. In addition, pilot studies using lOOpM sepiapterin produced 

approximately 6 nmol/mg protein BH4 in wild type astrocytes (data not shown), 

suggesting the relationship is dose dependent even at higher concentrations.
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Sepiapterin is converted to BH4 via two enzymic steps; firstly by SR to 7,8- 

dihydrobiopterin, and then to BH4 by DHFR (Nichol et al, 1983)(figure 1.4). Unlike 

GTP-CH (Harada et al, 1993; Milstien et al 1996) it has not been recorded that SR or 

DHFR are under the control of any regulatory protein or feedback inhibition. Thus, at 

the concentrations of sepiapterin used a plateau of BH4 production is not reached.

It was observed that at concentrations up to 2pM hph-1 cells generated significantly 

lower levels of BH4 than wild type. This effect is not documented so far, and a 

number of explanations for this may exist. One possibility is that expression or 

activity of SR or DHFR are down-regulated in hph-1 cells in response to reduced 

GTP-CH. Evidence for this is observed in human neuroblastoma cell lines treated 

with a-synuclein (Baptista et al, 2003). a-synuclein is linked to dopaminergic cell 

death in Parkinson’s disease, and cells treated with this were found to have lower 

levels of both GTP-CH and SR mRNA and protein. In addition to decreased GTP- 

CH and SR activity, diminished expression of the orphan nuclear receptor Nurrl was 

observed (Baptista et al, 2003). Nurrl is a transcription factor involved in the co­

ordinate regulation of DA biosynthesis, and regulates genes involved in DA 

synthesis including those for GTP-CH and SR. This could be a mechanism for a 

reduction in SR that accompanies decreased GTP-CH expression.

Evidence of modulation o f SR with GTP-CH expression is also seen in murine 

neuroblastoma cells (Mori et al, 1997), and rat thymocytes (Schott et al, 1992) 

following LPS stimulation, where parallel increases in GTP-CH and SR expression 

occur. Lectin, IFN-y and Interleukin-2 also stimulate the activity of both GTP-CH 

and SR (Kerler et al, 1989; Ziegler et al, 1990). However some sources report 

changes in GTP-CH but not SR activity. Rat phaeochromocytoma PC 12 cells 

stimulated with epidermal growth factor (EGF), nerve growth factor (NGF) and IFN- 

y, have increased GTP-CH but not SR activity (Anastasiadis et al, 1996). Also, 

patients with the autosomal dominant form o f GTP-CH deficiency (DRD) have 

decreased activity and levels of GTP-CH, but SR activity within the normal range 

(Blau et al, 2001b). No data is available for expression levels of SR in DRD, or in 

the autosomal recessive form o f GTP-CH deficiency to give insight into how SR may 

be affected by GTP-CH down-regulation. Maier et al (1993) suggest steady state
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levels of mRNA regulate SR activity, so perhaps this is one mechanism for the 

observed effects.

Another explanation for the reduction in BH4 in hph-1 astrocytes following L- 

sepiapterin treatment, is that DHFR, the other enzyme involved in conversion o f L- 

sepiapterin to BH4, may have attenuated expression or activity. Unfortunately 

evidence for altered DHFR with GTP-CH activity and expression is scant. 

Experiments using methotrexate (MTX), an inhibitor o f DHFR, did not inhibit BH4 

production in rat pineal glands, except by 30% at the highest concentration (lOpM). 

In contrast, another study (Chalupsky et al, 2005) demonstrated that by inhibiting 

DHFR activity and expression using small interfering RNA (siRNA), BH4 and 

subsequently NO decline. Furthermore, DHFR expression (Kaufman, 1991) and 

activity (Ludwig et al, 1987) are low in the brain compared to other organs, so it is 

possible DHFR limits BH4 production from L-sepiapterin.

Data presented in the previous chapter (section 3.3.4), in the biosynthetic capacity 

bypass block experiments, would perhaps suggest that DHFR is the source o f the 

impaired BH4 production following L-sepiapterin treatment. These data show that 

when a substrate was introduced downstream of the GTP-CH metabolic block in the 

hph-1 brain, the biosynthetic capacity was the same as wild type. If SR was down- 

regulated, then biosynthetic capacity would also be impaired. Further work for this 

section could be to use MTX to inhibit DHFR and compare 7,8-dihydrobiopterin 

production in hph-1 and wild type cells. Impaired levels o f 7,8-dihydrobiopterin 

would imply SR activity is attenuated, and normal levels would point toward DHFR.

4.5.5. Effect of the combination of Lipopolysaccharide and Interferon-y with 1- 

sepiapterin on hph-1 and wild type astrocyte tetrahydrobiopterin and nitrite 

and nitrate levels

Although L-sepiapterin combined with LPS + IFN-y did not significantly increase 

hph-1 astrocyte NO2' and NO3' above hph-1 LPS + IFN-y stimulated levels, 

differences between hph-1 and wild type stimulation were no longer apparent. 

Furthermore, L-sepiapterin alone had no effect on NO2' and NO3' production in 

either cell type, and adding L-sepiapterin to wild type cells stimulated with LPS + 

IFN-y did not increase NO2 and NO3' further. This suggests wild type cells have
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sufficient BH4 to support LPS + IFN-y stimulated NO generation, whereas 

supplementing hph-1 astrocytes with L-sepiapterin is required to produce levels of 

NO2' and NO3’ approaching wild type. One possible reason that the difference 

between wild type LPS + IFN-y and hph-1 LPS + IFN-y + L-sepiapterin treatments 

did not reach significance is that BH4 was still below wild type stimulated levels. 

Therefore higher concentrations o f L-sepiapterin may give rise to increased NO2' and 

NO3'. These results provide further evidence that iNOS stimulation and subsequent 

NO2’ and N 0 3' production is dependent on BH4 levels.

L-sepiapterin is reported to enhance cytokine stimulated NO2' and NO3" in a variety 

o f cells, including vascular smooth muscle (Gross and Levi, 1992, Nakayama et al, 

1994, Walter et al, 1996), cancer lines (Kwon et al, 2004) and astrocytes (Miljkovic 

et al, 2002). Moreover, L-sepiapterin can support nitrite generation in LPS + IFN-y 

stimulated cells, when BH4 production is inhibited by DAHP (Hattori and Gross, 

1993). L-sepiapterin supplementation in hph-1 astrocytes may assist dimerisation of 

iNOS and arginine binding, or even arginine uptake into the cell. All these potential 

factors are discussed in section 4.5.2.

Addition of L-sepiapterin to wild type and hph-1 astrocytes treated with LPS + IFN-y 

did not appear to increase BH4 in cells treated with L-sepiapterin or LPS + IFN-y 

alone. In hph-1 cells BH4 concentrations remained at L-sepiapterin treated levels, 

whereas wild type BH4 did not differ from LPS + IFN-y stimulated. L-sepiapterin 

may not increase BH4 in LPS + IFN-y stimulated astrocytes because L-sepiapterin 

and LPS + IFN-y produce BH4 through a common source, i.e. SR. Substrates from 

the two different sources (6 -pyruvoyl-tetrahydropterin and L-sepiapterin) have to 

compete for binding at SR, thus this may not result in greater BH4 production. In 

addition BH4 produced via LPS + IFN-y in hph-1 astrocytes only doubles basal 

levels and is not likely to add significantly to that produced from L-sepiapterin.

These results may also provide useful insight for future experiments, where 

adenoviral transfections will be used to correct the impaired NO status o f hph-1 

astrocytes. By showing it is possible to augment stimulated NO 2 ’ and NO 3 ' levels by 

increasing BH4 via L-sepiapterin, it may be feasible that enhanced GTP-CH 

expression may also lead to higher NO 2 ' and NO 3 ' production.
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4.6. CONCLUSIONS

The results of these experiments provide additional evidence of impaired BH4 and 

NO status in hph-1 astrocytes. Basal levels of BH4 are attenuated in hph-1 cells, 

although under basal conditions NO2" and NO3' are not. Stimulation of the astrocytes 

by LPS + IFN-y, which causes parallel induction of GTP-CH and iNOS expression, 

lead to increases in BH4 and NO2’ and NO3' in wild type and hph-1, however in both 

cases this is impaired in hph-1 cells, hph-1 astrocytes also produce less BH4 when 

responding to L-sepiapterin, which is a substrate for the pterin salvage pathway. This 

may suggest that the impairment of GTP-CH in these cells may lead to secondary 

effects on other enzymes in the salvage pathway, i.e. SR or DHFR. L-sepiapterin in 

combination with LPS + IFN-y stimulation lead to an upregulation of NO2" and NO3" 

levels in hph-1 cells, to values approaching wild type. These data suggest that 

transfecting hph-1 astrocytes with an adenoviral vector containing the gene for GTP- 

CH may be a viable approach for correcting both the BH4 and NO status of these 

cells.
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G ene transfer in the
hpA -/m ouse

astrocytes
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5.1 INTRODUCTION

5.1.1. Principles and history of gene therapy

The principle of gene therapy is to use DNA as a drug to ameliorate human disease. 

Gene therapy aims to insert therapeutic genes into an individuals cells or tissues to 

treat these disorders. Typically this involves supplementing pathological mutant 

alleles with functional ones, but can also involve other methods such as silencing 

genes that are being over-expressed, and introducing cytotoxic genes to kill cancer 

cells (Brooks, 2002). Viruses are the most common vectors used to deliver genes to 

their target site, however other approaches exist that are discussed in section 5.1.4.

The benefits that gene therapy may present are significant. It offers potential to cure 

the patient instead of treating symptoms. A number of diseases result directly from 

genetic origins, such as Duchenne muscular dystrophy (DMD) and Huntingdon’s 

chorea, whilst a vast number of others involve some genetic component, usually via 

up- or down-regulation of genes with pathological consequences (SoRelle, 2000).

^Therefore the scope o f disorders that gene therapy has the potential to treat is very 

broad. Gene therapy has been suggested as an approach to treat diseases such as 

cancer (Zhang, 1999), vascular disease (Jones and Koch, 2005), cystic fibrosis 

(Parsons, 2005), PD (During et al, 2001), AIDS and other infectious diseases 

(Bunnell and Morgan, 1998), to name but a few. The technology is still in its infancy 

but has already offered successes, as well as publicised setbacks.

One o f the earliest suggestions of using genetic material therapeutically was in 1968 

by Rogers and Pfuderer, who proposed that viruses could be modified, then used to 

“transmit...information” (Rogers and Pfuderer, 1968). The first gene therapy trial in 

humans was conducted on two patients with thalassaemia in 1980, although in secret 

and without official approval (Grosshans, 2000). The first sanctioned human gene 

therapy study was in 1989, however the aim of this trial was not treatment but to 

demonstrate the safety of viral gene transduction (Rosenberg et al, 1990). This was 

followed in 1991 by a study treating two patients with a form o f the genetic disease 

severe combined immunodeficiency (SCID), caused by the lack of functional 

adenosine deaminase (ADA)(Culver et al, 1991). Initial reports indicated success, 

however the gene therapy failed long term and subjects resorted back to
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pharmacological intervention (Blaese et al, 1995; Cavazzana-Calvo et al, 2001). 

Cavazzana-Calvo and colleagues described the first successful gene therapy in 

humans in 2000, in patients suffering from an x-linked form of SCID. 

Haematopoietic cells were transfected ex vivo with a retrovirus expressing a yc 

cytokine receptor subunit, and reinfused into the patient, resulting in correction of the 

disease phenotype (Cavazzana-Calvo et al, 2000).

However, gene therapy remains controversial. The success of the cure for SCID in 

2 0 0 0  was tempered by the news that two of the children developed a leukaemia-type 

disorder, as a direct result of the treatment (Hacein-Bey-Abina et al, 2003). 

Furthermore in 1999, Jesse Gelsinger an 18-year-old suffering from a partial 

deficiency of ornithine transcarbamylase (OTC), was given an adenovirus as part of a 

study to test the safety of the vector and died 4 days later following liver failure, as a 

direct consequence of the treatment (Marshall, 1999).

Gene therapy clinical trials and research into more effective and safer vectors 

continues. At the time of writing 1192 clinical trials were completed, ongoing or 

pending (http://www.wilev.co.uk/genmed/clinical/1. A literature search of the term 

“gene therapy” revealed around 2500 publications, at a rate of 130 per week in the 

year 2006 alone (http://www.ncbi.nih. gov/entrez/querv. fcgi). Gene therapy has 

potential as a method of targeting the cause of the disease, rather than merely treating 

the symptoms, which makes this strategy an attractive proposal.

5.1.2. Methods of gene therapy

Gene therapy falls principally into two categories: somatic and germline. Somatic 

gene therapy is the treatment of any cell except the germline, and its purpose is to 

ensure treatment affects one generation and is not passed on to future progeny 

(Grosshans, 2000). The overall genetic makeup of the individual is not altered. So far 

all clinical trials currently approved in humans have been somatic gene therapy. In 

contrast, in germline gene therapy the sperm and ova are targeted, therefore changes 

in the genetic make-up are passed onto future generations. This has the potential to 

treat genetic diseases that may arise in unborn progeny, but is currently untested.

The two main approaches for gene therapy are in vivo and ex vivo.
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5.1.2.1. Ex vivo gene therapy

In this approach, cultured cells obtained from a patient are transfected with a 

therapeutic gene, then transplanted back into the individual. The modified cells act as 

a “sink”, producing and releasing therapeutic factors into the local environment. The 

cells removed must be easy to obtain and maintain in culture, accept and express the 

therapeutic gene, and not elicit a host immune response when re-introduced. 

Advantages o f this approach are that cells can be characterised before genetic 

modification, and used only once alteration has taken place, with uninfected cells 

being selected out before transplantation (Selkirk, 2004). The disadvantages are 

difficulty o f harvesting cells and maintaining them in culture, plus effective 

transfection of genetic material. Reintroduction may also cause immunological 

consequences (Selkirk, 2004). Types o f cells used for this approach include primary 

astrocytes (Selkirk et al, 2002), which have so far only been used in proof o f concept 

preclinical studies, and fibroblasts for AD (Horellou et al, 1990; Tuszynski, 2002, 

Tuszynski et al, 2005).

5.1.2.2. In vivo gene therapy

This strategy involves direct delivery o f DNA into the target tissue. Requirements for 

this method are that the target cells are easily accessible and readily take up, integrate 

and express the genetic material, and infection does not spread to surrounding tissue. 

Viral vectors are most commonly used for in vivo and ex vivo gene therapy, however 

they are not the only methods o f delivering genetic material. Each method o f  gene 

delivery has advantages and disadvantages, some o f which are discussed below.

5.1.3. Methods of gene delivery

5.1.3.1. Viral Vectors

Viral vectors are useful for gene therapy as they have evolved to transmit genetic 

information, and use a host to carry their genome. These vectors are powerful means 

of delivering therapeutic genes into target, and currently have been used in 

approximately 70% o f clinical trials (http://www.wilev.co.uk/genmed/clinical/). 

They are used both in vivo and ex vivo (Brooks, 2002), and must be modified for 

clinical use. Modifications are necessary to prevent viral replication, so they do not 

multiply and become actively pathogenic. Viral genes may also initiate pathogenic 

host response, so these must be removed along with non-essential genes, to allow

132

http://www.wilev.co.uk/genmed/clinical/


insertion of therapeutic genetic material. All viral vectors have both advantages and 

disadvantages to their use. Some of these vectors are described below.

5.1.3.2 Adenoviral delivery vectors

Currently 26% of gene therapy clinical trials have used adenoviral vectors 

(http://www.wilev.co.uk/genmed/clinical/). making them the most common vector in 

gene delivery. Adenoviruses are non-enveloped double-stranded DNA viruses 

usually associated with respiratory infections in humans, but may also cause 

gastrointestinal and ocular complaints (Vargosko et al, 1965). There are at least 51 

serotypes of adenovirus, classified into 6  subgroups A-F. Serotype 5 (Ad5) and 

serotype 2 (Ad2), which belong to subgroup C, have been used most extensively in 

gene therapy (Xu et al, 2005). They infect dividing and non-dividing cells readily, 

and most cells are susceptible to infection. Entry of the adenovirus into the host cell 

occurs by receptor-mediated endocytosis, via the coxsackievirus and adenovirus 

receptor (CAR), a widely distributed membrane protein (Roelvink et al, 1998). Once 

inside the cell the virus is packaged inside an endosome and avoids lysosomal 

degradation. Inside the endosome the virus is disassembled, allowing the virus to 

release its genome into the nucleus (Xu et al, 2005), whereupon the host’s nuclear 

machinery replicates the virus (figure 5.1). Adenoviral DNA is not integrated into the 

host genome, which means that transfection is transient. In gene transfer therapeutic 

DNA takes the place of viral DNA, and beneficial proteins are generated in place of 

viral replication.

Non-integration of the adenoviral DNA into the host genome has advantages and 

disadvantages. Short-term expression is beneficial in treating disorders like cancer, 

where therapeutic genes may not be useful once the disease is treated (Stewart et al,

1999). However problems arise treating chronic diseases such as cystic fibrosis, 

which require repeated administration of adenovirus. This presents major difficulties, 

as one of the main setbacks of adenoviruses is the severe innate immune response 

they can trigger (Kaffi et al, 1998). Indeed, this property limits their survival in host 

cells and most hinders their use in gene therapy (Byrnes et al, 1995; van Ginkel et al, 

1997). As a result these viral vectors have been extensively engineered and toxicity 

has been attenuated through the development of helper-dependent adenoviruses (HD-
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Figure 5.1. Adenoviral-mediated gene delivery. Step 1); Adenoviral vector binds and 

enters the cell via receptor-mediated endocytosis. Step 2); Adenovirus is released 

from the endosome and the viral capsid is translocated into the nucleus. Step 3); 

Therapeutic DNA is transcribed and translated from episomal adenoviral genome, 

resulting in beneficial protein.

Adapted from Brooks, 2002.
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Ads), which decrease immunogenicity, and prolong the life of the virus making them 

more useful long-term (Morsy and Caskey, 1999).

HD-Ads are adenoviruses completely devoid o f all viral protein-coding sequences. 

Their development represents another valuable advantage o f adenoviral vectors; their 

ability to accommodate large foreign genetic inserts. First-generation adenoviruses 

could accommodate genes approximately 7 kilobases (kb) long (Bett et al, 1993), 

however HD-Ads now allow insertion o f up to 37 kb sequences that can contain 

large genes like dystrophin that is involved in DMD (Clemens et al, 1996; Morsy et 

al, 1998). In addition, HD-Ads have reduced toxicity (Schiedner et al, 1998). 

Another advantage o f using adenovirus gene transfer is that they can be manipulated 

relatively easily and purified to generate high-titre stocks, which is required for in 

vivo administration (Brooks 2002; Selkirk, 2004).

5.1.3.3. Retroviral delivery vectors

Retroviruses are enveloped single-stranded RNA viruses that enter cells via receptor- 

mediated endocytosis. This method of gene delivery was the first used clinically 

(Rosenberg et al, 1990), and is currently the second most popular method of gene 

transfer, with 24% of clinical trials utilizing retroviruses 

(http://www.wilev.co.uk/genmed/clinical/). Once inside the host cell, viral RNA is 

reverse-transcribed to DNA and then integrated into the host genome. The gene 

inserted will then be maintained for the life of the cell, and will be part o f the 

resulting daughter cells should replication take place. This leads to long-term 

expression of retroviral DNA, and makes it a good candidate for gene delivery, with 

in vivo application established in several diseases including SCID (section

5.1. l)(Cavazzana-Calvo et al, 2000) and ovarian cancer (Tait et al, 1999).

Retroviruses can incorporate therapeutic genes into the cell efficiently, however they 

integrate randomly into the host genome. This can be disadvantageous if  viral DNA 

is inserted into an essential gene, causing loss of function and even tumourigenesis in 

some cases (Check, 2002). Additionally, retroviruses are unable to infect non­

dividing cells, so gene therapy can only be targeted at tissues where cell replication 

occurs (Roe et al, 1993; Lewis and Emerman, 1994), although this maybe useful for 

tumour therapy (Wu and Ataai, 2000). Furthermore, there are restrictions of
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approximately 8  kb on the size of therapeutic genes (Shin et al, 2000), so larger 

genes cannot be delivered via retrovirus. Additionally retroviral vectors are difficult 

to produce in high-titre stocks (Wu and Ataai, 2000). However they are well 

characterised and a relatively safe, and remain popular in gene therapy clinical trials.

5 .1 .3.4. Other types o f  viral vector

Adenoviruses and retroviruses are the most popular gene therapy vectors, however 

others exist that may offer improved delivery, and make up approximately 2 0 % of 

trials. Lentiviruses are a class of retroviruses that includes human immunodeficiency 

virus (HIV) and can transfer genes to non-dividing cells (Lewis and Emerman, 1994; 

Naldini et al, 1996). It is possible to purify lentiviral vectors to high titres, however 

there are safety concerns due to the HIV derivation, and the risk of re-activation.

Adeno-associated viruses (AAV) are linear single-stranded viruses not associated 

with any disease in humans (Rose et al, 1969), which reduces risk o f adverse 

reactions (Jooss et al, 1998). Like adenoviruses, they infect dividing and non­

dividing cells. However AAV’s can integrate into the genome o f infected cells at 

specific locations, which in humans is chromosome 19 (Samulski et al, 1991). Once 

the AAV genome is in the nucleus the single-stranded DNA is synthesized to form 

double stranded DNA that is incorporated into the host genome. However, the size of 

genes that can be inserted is currently only 5 kb, which limits their use.

5.1.4. Non-viral methods of gene therapy

Concern over the safety of viral vectors for gene therapy has lead to the development 

o f non-viral vectors as alternatives. Generally these are safer and easier to produce in 

large quantities than viruses, however they also have some disadvantages. Some of 

these methods used are described below.

5.1.4.1. Naked DNA

This method involves the direct transfer of therapeutic DNA incorporated in a 

plasmid vector into the host, and can be done in vivo or ex vivo like viral transfection. 

In ex vivo naked DNA transfer, patients cells are removed and have therapeutic DNA 

inserted, usually by microinjection. Expression of the therapeutic gene is confirmed 

before the cells are implanted back into the patient. This method has been used
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successfully in endothelial and smooth muscle cells (Nakamura et al, 1998; Mann et 

al, 1999), although it is limited in cells types that are difficult to harvest or maintain.

In vivo naked DNA delivery is the simplest o f all gene therapy methods, as the 

therapeutic genetic material is injected straight into the tissue. It was first used in 

1990 in a mouse model, and use continues today in patients being treated for 

conditions including critical limb ischaemia (Isner, 1998; Nakagami et al, 2005), and 

myocardial ischaemia (Losordo et al, 1998). The exact mechanism o f uptake is 

unknown, but DNA can be introduced in a variety of ways including intramuscular 

injection, inhalation and intravascular delivery (Wolff et al, 1990). Cellular uptake of 

naked DNA is inefficient, however techniques such as the particle bombardment or 

“gene gun” approach, and electroporation, can increase uptake. The gene gun 

approach uses gold or tungsten particles coated with therapeutic DNA, propelled at 

high velocity using a pulse of helium gas into the cell (Fynan et al, 1993). 

Electroporation involves high-voltage electrical pulses that disrupt cellular 

membranes to deliver DNA. However a large number of cells die in this method, 

which has been minimised in vivo (Rols et al, 1998). This has been successful in skin 

and muscle (Rols et al, 1998). So far naked DNA gene therapy has been used in 17% 

of all gene therapy clinical trials (http://www.wilev.co.Uk/genmed/clinical/l.

5.1.4.2. Cationic lipids and polymers

Cationic lipids and polymers can transfer DNA into cells when the tissues being 

treated are inaccessible to naked DNA. Lipids or polymers are mixed with the DNA 

to form lipid/DNA complexes that can enter cells by endocytosis. Once inside the 

cell the DNA is released and must travel to the nucleus to be expressed. This method 

has been successful in delivering the cystic fibrosis transmembrane conductance 

regulator (CFTR) gene to cystic fibrosis patients (Noone et al, 2000) and to patients 

with melanoma (Nabel et al, 1996). This form of gene transfer accounts for 8 % of 

clinical trials (http://www.wilev.co.Uk/genmed/clinical/l.

5.1.5. Gene therapy in neurodegenerative disease

Neurodegenerative diseases such as AD and PD respond little to treatment and 

currently have no cures. In addition there are long-term problems associated with 

drug treatment for these disorders. Gene therapy may be beneficial in
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neurodegenerative diseases as a more direct, curative approach. In patients suffering 

from AD, ex vivo gene therapy using fibroblasts engineered to produce nerve growth 

factor (NGF) resulted in an improvement in cognitive decline in phase 1 clinical 

trials (Tuszynski et al, 2005). Clinical trials involving production of the inhibitory 

amino acid neurotransmitter y-aminobutyric acid (GABA) in the subthalamic nucleus 

via AAV gene therapy, have been approved for PD patients. This study aims to 

prevent over-stimulation o f the globus pallidus that occurs in PD (During et al, 

2001), and preliminary results presented at the Society for Neuroscience, 2006 

suggest this may be a successful approach (During et al, 2006). In another phase 1 

clinical trial AAV-mediated delivery of aromatic amino acid decarboxylase (AADC) 

to the striatum of patients with PD, aims to increase the clinical effectiveness of 

levodopa drug therapy, by enhancing the conversion of this precursor to 

DA (Dass et al, 2006). Early results from this trial appear to be encouraging 

(http://www.avigen.com/press release/2005/Avigen EarlvData PDClinicalTrial 07 

1805.php). Additionally, a study aiming to deliver neurturin (NTN), a growth factor 

belonging to the same family as glial cell-derived neurotrophic factor (GDNF), via 

an AAV vector to the striatum of Parkinson’s patients, has reported a 40% 

improvement in motor scores (http://www.ceregene.com/press 101006.asp). In a 

primate model of PD, lentiviral delivery of glial cell line-derived neurotrophic factor 

(GDNF) prevented nigrostriatal degeneration and improved regeneration (Kordower 

et al, 2000). There are several other neurodegenerative diseases that gene therapy is 

being evaluated for including Huntingdon’s disease (HD) and Amyotrophic lateral 

sclerosis (ALS), although these are still at the preclinical stage (Haque and Isacson, 

1997; Mohajeri et al, 1999).

5.1.6. Gene therapy for tetrahydrobiopterin deficient states

Although gene therapy has not been used clinically in BH4 deficiencies, preclinical 

data suggests this approach may be valuable. Introducing genes that can elevate the 

production of BH4 may be useful in neurodegenerative diseases, where acquired BH4 

deficiencies are observed, and in inborn errors of metabolism where a lack o f BH4 is 

fundamental to the disease state.
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5.1.6.1. Gene therapy fo r  tetrahydrobiopterin deficiencies in neurodegenerative 

disease

Gene transfer using GTP-CH transfection, combined with genes regulating DA 

production such as tyrosine hydroxylase (TH), partially restores behavioural and 

biochemical deficits in animal models o f PD (Bencsics et al, 1996; Leff et al, 1998; 

Mandel et al, 1998). Intrastriatal injection of 6 -hydroxydopamine (6 -OHDA) induces 

a PD-like syndrome in rats, which can be ameliorated using both ex vivo and in vivo 

AAV-mediated gene transfer of human TH and GTP-CH. This increases levels of L- 

Dopa in the rat striatum, resulting in an improved behavioural profile (Bencsics et al, 

1996; Leff et al, 1998; Mandel et al, 1998). Furthermore, a study involving triple 

AAV-mediated transduction of the striatum in 6 -OHDA treated Parkinsonian rats, 

showed that gene transfer with TH, AADC and GTP-CH could increase DA levels 

and improve the Parkinson’s-like behavioural syndrome, above values reported in 

rats transfected with just TH and AADC (Shen et al, 2000).

5.1.6.2. Gene therapy fo r  inborn errors o f  tetrahydrobiopterin metabolism

In human fibroblasts derived from PTPS-deficient patients, retroviral gene transfer of 

GTP-CH, PTPS and SR increases BHU dramatically, demonstrating a use for gene 

transfer in these disorders (Laufs et al, 1998, 2000). Amplifying BH4 using viral 

transfection can also augment NOS function. An adenovirus encoding GTP-CH 

raised BH4 levels, as well as NOS activity, protein and dimerisation in human 

endothelial cells (HEC’s)(Cai et al, 2002). Furthermore, when BH4 was increased in 

hyperglycaemic HEC’s using an adenovirus containing GTP-CH, NO production 

was augmented and O2’ production decreased (Cai et al, 2005). Endothelial cells and 

arterial rings from a rat model of diabetes had impaired NO synthesis. NO 

production and vasorelaxation could be improved when BH4 levels were elevated 

with adenoviral GTP-CH treatment (Meininger et al, 2004). Attenuated NOS 

function is also observed in diabetic (Alp et al, 2003), hypertensive (Zheng et al, 

2003) and atherosclerotic (Alp et al, 2004) rats in vivo, which can be reversed when 

gene transfer is used to increase BH4 . Taken together these data demonstrate the 

amelioration of some BFL-deficient states.
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5.2. AIMS

• Use adenoviral mediated gene transfer with AdGCH to introduce human 

GTP-CH into hph-1 astrocytes, to correct the defect in BH4 metabolism in 

these cells.

• Confirm successful adenoviral gene transfer infection and expression in hph- 

1 astrocytes using confocal microscopy and Western blotting.

• Investigate the ability of AdGCH to correct impaired NO metabolism in hph- 

1 astrocytes, using NO2’ and NO3' measurements as an index of NO 

production, under basal and LPS + IFN-y stimulated conditions.

• Investigate the molecular mechanisms behind the impaired NO metabolism 

found in hph-1 astrocytes after LPS + IFN-y stimulation, by using Western 

blotting techniques to measure the total amount o f iNOS protein expressed 

and the relative levels of iNOS dimer and monomer found in the cell.

• Use AdGCH transfection to attempt to correct any defects in iNOS protein 

expression or dimer formation found in hph-1 astrocytes following LPS + 

IFN-y stimulation.
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5.3. METHODS

5.3.1. Adenoviral construction

All work involved in the construction o f adenoviral vectors was carried out by Dr. 

Shijie Cai at the Department of Cardiovascular Medicine, at the John Radcliffe 

Hostpital, University of Oxford according to the method described in Cai et al, 2002. 

Briefly, 1.2-kb human GTP-CH cDNA (provided to Dr. Cai by Dr. H Ichinose, 

Japan) (Togari et al, 1992) was modified using polymerase chain reaction (PCR) and 

subcloned to include a haemagglutinin (HA) epitope tag at the 5’ end (figure 5.2 B). 

This HA-tagged human GTP-CH cDNA was then cloned into the plasmid 

pShuttleCMV (provided to Dr. Cai by Dr. Bert Vogelstein) (He et al, 1998), and 

used to generate a recombinant adenovirus AdGCH. This adenovirus encodes HA- 

GTP-CH under the control o f a cytomegalovirus immediate-early promoter, and was 

produced by transfection in 293 cells using the AdEasy system (He et al, 1998). A 

recombinant adenovirus AdeGFP was generated using the same system (Cai et al,

2005) and used as a control for viral infection (Cai et al, 2005). Viruses were isolated 

by three rounds of plaque purification, amplified in 293 cells, then purified using 

CsCl gradient ultracentrifugation (Channon et al, 1996). The structure of the human 

GCH gene in AdGCH (Togari et al, 1992), and a schematic outline of AdEasy 

system used to generate AdGCH and AdeGFP (He et al, 1998) are shown in figure

5.2 C.

5.3.2. Cell culture

Primary astrocytes were cultured from wild type and hph-1 mouse neonates as 

described in section 2.2.2. On day 13 cells were transported to the Wellcome Trust 

centre for Human genetics, Department of Cardiovascular Medicine, at the John 

Radcliffe Hostpital, University of Oxford, to undergo gene transfer. For 

transportation to Oxford cell culture flasks were filled to capacity with MEM 

supplemented with 1% volume/volume antibiotic antimycotic, along with 10% FBS 

(vol/vol) and 2mM L-Glutamine, and placed in an insulated environment. 

Transportation time varied, but was typically between 2.5 to 3 hours. Upon reaching 

Oxford, media was replaced by fresh MEM, and cells placed into an incubator at 

37°C, with 5% CO2, 95% air and 95% humidity. After 2 hours cells were passaged
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Figure 5.2. A) The structure of the full-length cDNA for human GTP-cyclohydrolase 

type 1 (GCH). B) The structure of human GCH type 1 used by Cai et al (2002) in 

AdGCH. Line, untranslated region; red box, coding region; blue box, 5’ 

haemagluttinin tag. C) Simplified schematic outline of the AdEasy system for 

producing AdGCH and AdeGFP (Cai et al, 2001). GCH (or eGFP) is cloned into a 

shuttle vector under the control of a cytomegalovirus immediate-early promoter 

(green boxes). The plasmid is linearized by digesting with restriction endonuclease 

Pme I, and cotransformed into E. coli cells with an adenoviral backbone plasmid 

(pAdEasy) containing gene for kanamycin resistance (yellow box). Recombinants 

(pAdGCH) are selected for kanamycin resistance, and recombination was confirmed 

by multiple restriction endonuclease analyses. The linearized (.Pac\) recombinant 

plasmid is then transfected into adenovirus HEK 293 packaging cell lines, which 

produce recombinant adenoviruses that are typically generated within 7-10 days. 

Viruses are purified with CsCl gradient ultracentrifugation (Channon et al, 1996).
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onto 6  well plates for BH4 and NO2" and NO3" measurements (see section 2.6.), or 12 

well plates for Western blotting (section 2.7.). They were treated on days 14 and 15 

as described in section 2.2.4. Details of treatments used are found in the results 

section of this chapter. Cells were harvested as described in section 2.3. BH4, NO2' 

and NO3’ and protein samples were transported back for analysis frozen in dry ice. 

Cell pellets for Western blotting were kept at the Wellcome Trust centre for Human 

genetics, University of Oxford at -20°C until analysis took place.

RAW 264.7 cells (Raschke et al, 1978) that were used as positive controls for iNOS 

Western blotting, were a generous gift from Dr. Shijie Cai. The cells were fed with 

Dulbecco’s Modified Eagle’s Medium (DMEM) (Gibco BRL, Renfrewshire, UK) 

supplemented with 1% volume/volume antibiotic antimycotic, along with 10% FBS 

(vol/vol) and 2mM L-Glutamine, and changed every 3 days. Cells were placed in an 

incubator at 37°C, with 5% CO2, 95% air and 95% humidity, and upon reaching 

confluence were passaged onto 12 well plates for Western blotting (see section 

2.2.3), and treated the following day as described in the results section of this 

chapter.

For experiments where AdGCH and AdeGFP viral transfection was carried out, 

viruses were kindly donated by Dr. Shijie Cai. AdGCH and AdeGFP were supplied 

in known titres, and then diluted accordingly. Stock titres of viruses were in plaque 

forming units (pfu), which are units of infectious virus that determine the ability of 

the virus to form a “plaque”, or area o f lysed cells on a monolayer of susceptible 

cells. This indicates how many particles are present in a stock solution. Multiplicity 

o f infection units (MOI) are then calculated by dividing the number o f phage added 

(pfu) by the number o f cells present. This gives a measure of the number of viral 

particles added per cell. So 1.0 MOI indicates 1 viral particle per cell.

5.3.3. Tetrahydrobiopterin measurement

Cells were prepared for analysis o f BH4 and measured as described in section 2.3.4 

and section 2 .1  respectively.
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5.3.4. Nitrite and nitrate measurement

NO2" and N 0 3‘ were measured in the cell culture media of wild type and hph-1 

astrocytes as an index of NO production, which is described in section 2.6.

5.3.5. Western blotting

Western blotting was carried out as described in section 2.7. To investigate iNOS 

homodimer formation in endothelial cells, low-temperature SDS polyacrylamide gel 

electrophoresis (SDS-PAGE) was performed as described previously (Klatt et al,

1995). Throughout the preparation for Western blotting cells were kept on ice to 

prevent dimer dissociation. 10fig of cellular protein was run at 5mA overnight on ice 

to keep temperature to a minimum, and then transferred for 3 hours at 400mA. For 

primary antibody binding each membrane was incubated at 4°C overnight with 20ml 

o f a 1:2000 dilution of mouse anti-iNOS monoclonal antibody (Transduction 

Laboratories, Lexington, KY, USA) in 6 % weight:volume Marvel ® (Premier 

International Food) in PBS-T. For the secondary antibody membranes were 

incubated with 20 ml of a 1:4000 dilution of polyclonal anti-mouse horse-radish 

peroxidase (HRP) conjugate antibody (Promega, Madison WI, USA) in 6 % 

weight:volume Marvel ® (Premier International Food) in PBS-T at room 

temperature for an hour. Bands were visualised using chemiluminescence, and 

quantified using GelPro analysis system and software (Media Cybernetics, Silver 

Springs, MD). Protein bands of approximately 130kDa and 260kDa were measured 

as iNOS monomer and dimer, respectively (Geller et al, 1993).

For total iNOS Western blots, samples were first heated at 60°C for 5 minutes to 

ensure that iNOS protein was predominantly as the 130kDa monomer form. 7fig of 

protein from each sample was run for 1.5 hours at 100mA, and transferred for 3 

hours at 400mA. Primary and secondary antibody incubations were the same as 

described above for iNOS homodimer formation. A band at 130kDa was quantified 

as total iNOS (Geller et al, 1993).

Western blotting for recombinant GTP-CH protein expressed in hph-1 astrocytes was 

performed in the same manner as for total iNOS. Samples were heated at 60°C for 5 

minutes then 20pg o f protein was run for 1.5 hours at 100mA, and transferred for 1.5 

hours. Recombinant human GTP-CH cloned into AdGCH had been subcloned to
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contain a HA epitope tag. Anti-HA antibodies were used to visualize recombinant 

GTP-CH protein in cells transfected with AdGCH. For primary antibody incubations, 

membranes were left overnight at 4°C with 20 ml of 1:1000 mouse anti-HA high 

affinity monoclonal (Roche diagnostics, Lewes, UK) in 6 % weight:volume Marvel ® 

(Premier International Food) in PBS-T. Secondary antibody incubations were 

performed with 20ml 1:2000 anti-mouse HRP conjugate antibody (Promega, 

Madison WI, USA) in 6 % weight:volume Marvel ® (Premier International Food) in 

PBS-T. Bands visualised at approximately 30kDa were determined to be 

recombinant GTP-CH protein (Cai et al, 2002). As a positive control, cell lysates 

from endothelial cells transfected with 50 multiplicity of infection units of AdGCH, 

kindly donated by Dr. Shijie Cai were included in the experiment.

Western blotting for GAPDH was also carried out on membranes that had been used 

for total iNOS protein semi-quantification, to show equal protein loading. GAPDH is 

often used to demonstrate equal protein loading, as it is ubiquitously expressed 

(Zhang et al, 2004; Ferguson et al, 2005). However, NO production can inhibit 

GAPDH activity (Padgett and Whorton, 1995), so it was recognized that results may 

not show equal intensity bands. It was proposed that (3-actin, another ubiquitously 

expressed protein, may be used in place of GAPDH. However it was not possible to 

visualise any [3-actin protein using these samples, possibly due to the low quantity of 

protein loaded (7pg). Membranes that had previously been used for total iNOS 

Western blots were stripped with a solution of 6.25mM Tris pH 6 . 8  containing 2% 

SDS and lOOmM [3-mercaptoethanol, to remove any associated antibodies bound to 

the membrane. Membranes were then incubated with 20ml of 1:1500 mouse primary 

anti-GAPDH monoclonal antibody (Chemicon, Temecula, CA USA), followed by 

20ml 1:2000 anti-mouse HRP secondary conjugate antibody (Promega). Bands of 

35kDa size were determined to be GAPDH.

5.3.6. Confocal microscopy

Visualisation of cells expressing recombinant eGFP from AdeGFP was demonstrated 

using confocal microscopy, which is described in section 2 .8 .

5.3.7. Statistical analysis

Statistical tests were conducted as described in section 2.10.
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5.4. RESULTS

5.4.1. Basal tetrahydrobiopterin and NO2’ and NO3' levels in wild type and hph- 

1 mouse astrocytes used for 24 hours treatments

Table 5.1 shows that basal BH4 levels in wild type astrocytes used for 24-hour 

treatments remain significantly lower in hph-1 astrocytes compared to wild type (p < 

0.05, n = 5-7). BH4 levels in the hph-1 astrocytes were approximately 51% of wild 

type. This demonstrates that after transporting the cells to Oxford, a BH4 deficiency 

was still observed in the hph-1 astrocytes.

Corresponding basal levels o f NO2’ and NO3’ were not significantly different 

between wild type and hph-1 astrocytes (p = 0.36, n = 4-5) (table 5.2).

5.4.2. Effect of AdGCH adenoviral transfection on tetrahydrobiopterin and 

N 0 2 and NO3'levels in hph-1 astrocytes

Table 5.1 shows hph-1 astrocytes transfected for 24 hours with 200, 10, 5, 2.5, 0.2 

and 0.1 multiplicity o f infection (MOI) units of AdGCH had increased levels of BH4 

that rose in a dose related manner, except at the highest dose 200 MOI where a 

degree of cell death occurred. The dose response curve was the product of attempts 

to modify the amount of BH4 generated to appropriate levels. A dose of 0.1 MOI was 

selected for most experiments (unless specified), as this is within the range of wild 

type LPS + IFN-y stimulated BH4 levels. AdGCH at 0.1 and 0.2 MOI significantly 

increased BH4 levels above basal (p < 0.01 and 0.001, respectively; n = 6-10). BH4 

increased approximately 80-fold in 0.2 MOI and 50-fold in 0.1 MOI AdGCH treated 

astrocytes. Control virus AdeGFP has no effect on basal BH4 levels, at any MOI 

tested (data not shown).

However, adenoviral transduction with 0.2 MOI or 0.1 MOI AdGCH had no 

significant effect on basal NO2’ and NOs‘ in hph-1 astrocytes (p > 0.05, n = 6-7). 0 .1  

MOI AdeGFP also did not significantly affect basal NO2" and NO3' (p > 0.05, n = 6 - 

7) (table 5.2). Doses of 5.0 and 2.5 MOI also appeared to have no effect on basal 

N 0 2‘ and NO3' (table 5.2).

146



Treatment BH4  pmol/mg protein

WT Control 7.35 ± 1.28

hph-1 control 3.22 ± 0.36 +

hph-1 0.1 MOI AdeGFP 3.10 ± 0.60 +

hph-1 0.1 MOI AdGCH 197.39 ±37.02 **

hph-1 0.2 MOI AdeGFP 2.93 ± 0.60 +

hph-1 0.2 MOI AdGCH 313.69 ± 61.57 *

hph-1 2.5 MOI AdGCH 1004.20 (n = 1)

hph-1 5.0 MOI AdGCH 1617.74 (n = 1)

hph-1 10.0 MOI AdGCH 8017.68 (n = 1)

hph-1 200 MOI AdGCH 457.31 (n = 1)

Table 5.1. BH4 levels in wild type (WT) and hph-1 astrocytes following adenoviral 

transfection.

Astrocytes were incubated in the presence and absence of 200, 10, 5, 2.5, 0.2 and 0.1 

multiplicity of infection units (MOI) AdGCH and AdeGFP. Cells were harvested 

after 24 hours and BH4 was measured in extracts of homogenised cells by reverse- 

phase HPLC coupled with ECD. Data expressed as mean ± SEM of 3-10 

independent cell preparations (except where indicated). +, p < 0.05 vs. wild type 

untreated control determined by one way ANOVA followed by least significant 

difference test. , p < 0 .0 1  vs. hph-1 untreated control, **, p < 0 .0 0 1  vs. hph-1 

untreated control determined by one way ANOVA followed by least significant 

difference test.
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Treatment NOx nmol/mg protein

WT Control 2.37 ±0.51

hph-1 control 2.80 ±0.82

hph-1 0.1 MOI AdeGFP 1.91 ±0.23

hph-1 0.1 MOI AdGCH 2.58 ±0.26

hph-1 0.2 MOI AdeGFP 2.19 ±0.73

hph-1 0.2 MOI AdGCH 2.47 ± 0.50

hph-1 2.5 MOI AdGCH 2.85 (n = 1)

hph-1 5.0 MOI AdGCH LfJ 4̂ II

Table 5.2. NO2’ and NO3’ levels in cell culture media o f wild type (WT) and hph-1 

astrocytes following adenoviral transfection. Astrocytes were incubated in the 

presence and absence of 5.0, 2.5, 0.2, 0.1 multiplicity of infection units (MOI) 

AdGCH and 0.1 and 0.2 MOI AdeGFP. NO2' and NO3" concentrations were 

measured using the Griess reaction. Data expressed as mean ± SEM of 3-10 

independent cell preparations (except where indicated).
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5.4.3. Expression of AdGCH in hph-1 astrocytes determined by Western 

blotting

Expression o f the recom binant human GTP-CH protein was confirmed in hph-1 

astrocytes transfected w ith 0.1 and 0.2 M OI AdGCH (figure 5.3). No AdGCH 

expression was observed in other treatm ent groups. Expression o f recombinant 

human GTP-CH protein from AdGCH appeared to increase as the titre o f  the virus 

and levels o f BH* were enhanced, as 0.2 M OI AdGCH showed greater intensity than 

0.1 MOI. As a positive control, cell lysates from endothelial cells transfected with 50 

MOI AdGCH were included in the W estern blot to show that the protein expressed 

was indeed recom binant human GTP-CH tagged with the HA epitope. These cell 

lysates had been used in published data demonstrating expression o f GTP-CH from 

AdGCH (Cai et al, 2002). A strong band was observed in positive control lanes.

5.4.4. Visualisation of hph-1 astrocytes transfected with AdeGFP using 

fluorescence microscopy

Treatment o f cells w ith AdeGFP enables visualisation o f  expression o f  recombinant 

viral proteins. Confocal microscopy showed that hph-1 astrocytes transfected with 

200, 100, 10, 0.2 and 0.1 MOI AdeGFP expressed the recom binant green fluorescent 

protein (figure 5.4). Furthermore, as the viral titre increases, fluorescence appears to 

enhance. In addition, only a small proportion o f  cells contained fluorescence at 0.1 

and 0.2 MOI, which is consistent with the doses used, where only theoretically 1 in 

10 and 2 in 10 respectively o f the cells are transfected. At higher concentrations o f 

vector (10, 100, 200 MOI AdeGFP), greater dose-dependent levels o f  transfection 

are observed.

5.4.5. Effect of increasing exogenously applied tetrahydrobiopterin on 

intracellular tetrahydrobiopterin in wild type and hph-1 cortical astrocytes.

Uptake o f  BH4 into hph-1 astrocytes was investigated, to find whether the BH4 

demonstrated to be produced and released by Cai et al, 2002 in endothelial cells 

following transfection with AdGCH, can be taken up by neighbouring cells, or 

w hether the 1 in 1 0  cells that are theoretically transfected are the sole source o f the 

BH 4 measured. Both wild type and hph-1 astrocytes were included to compare 

uptake o f  cofactor between cell types. Astrocytes were incubated for 3 hours with 1, 

5, 10, 20 and 50pM  BH 4 , washed 3 times w ith HBSS
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Figure 5.3. Effect o f 0.1 and 0.2 multiplicity o f infection units (MOI) AdGCH and 

0.1 and 0.2 MOI o f control virus AdeGFP on BEL* levels in wild type (WT) and hph- 

1 cortical astrocytes.

A) BH4 was measured using reverse-phase HPLC coupled with ECD. Data is 

expressed as mean ± SEM o f 3-10 independent cell culture preparations. * = p 

< 0.01 vs. untreated control calculated using one way ANOVA followed by 

least significant difference test. + = p < 0.05 vs. wild-type, +t = p < 0.01 vs. 

wild-type calculated using Student’s t-test.

B) Expression o f recombinant human GTP-CH from AdGCH in hph-1 

astrocytes. Western blotting was carried out as described in section 2.7. Cell 

lysates were fractionated by SDS-PAGE and immunoblotted with antibodies 

to HA tag epitope. As a positive control, cell lysates from endothelial cells 

transfected with 50 MOI AdGCH were included in the experiment.
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Figure 5.4. hph-1 astrocytes treated with A) Control cells -  no virus, B) 0.1 MOI 

AdeGFP, C) 0.2 MOI AdeGFP, D) 10 MOI AdeGFP E) 100 MOI AdeGFP and F) 

200 MOI AdeGFP, visualised using confocal fluorescence microscopy. Cells 

expressing eGFP are visible as areas of greater fluorescent intensity, an effect that 

appears to be dose-dependent. These images are representative of individual cells 

that display the typical distribution of eGFP. Bar = 50pm

151



then harvested for BH4. An empty poly-L-omithine coated 6 -well plate was included 

in the experiment, which was incubated with increasing concentrations of BH4. This 

control measure was to show that the washing procedure was effective, and that BH4 

measured in cells from these experiments was not from residual BH4 left on the 

plates. BH4 was not detected in the plates treated in this manner (data not shown).

Intracellular BH4 increased significantly above untreated levels in hph-1 astrocytes 

following treatment with BH4, dose-dependently at concentrations of 5, 10, 20 and 

50pM (p < 0.01 for 5-20pM, n = 3-4; p < 0.05, n = 3-4 for 50pM)(figure 5.5). In 

wild type, exogenous BH4 also augmented intracellular BH4 dose-dependently (p < 

0.05, n = 4-7). Concentrations of lpM  did not elevate BH4 in either cell type. No 

differences in BH4 uptake was observed between wild type and hph-1 astrocytes 

(figure 5.5.).

Basal values of BH4 were then subtracted from these concentrations, to observe 

whether there is any difference in uptake, once values of BH4 already present in the 

cell are deducted. When basal levels were subtracted, there were still no significant 

differences between uptake in wild type and hph-1 cells (table 5.3.).

5.4.6. Effect of AdGCH treatment on lipopolysaccharide + interferon-y 

stimulated tetrahydrobiopterin and NO2’ and NO3" levels in wild type and hph-1 

astrocytes

To assess whether adenoviral transfection with AdGCH can correct the impairment 

in LPS + IFN-y stimulated NO metabolism in hph-1 astrocytes (figure 5.6.), cells 

were treated with a combination of 0.1 AdGCH and LPS + IFN-y for 24 hours. LPS 

+ IFN-y stimulation increased NO2’ and NO3" levels in wild type and hph-1 

astrocytes, an effect that was attenuated in hph-1 cells (p < 0.05, n = 4-5). Co­

stimulation with 0.1 MOI AdGCH had no effect on NO2' and NO3' levels in hph-1 

astrocytes treated with LPS + IFN-y, whilst 0.1 MOI AdeGFP also had no effect 

(figure 5.6.).

When BH4 levels were analysed following these treatments, BH4 was lower in hph-1 

astrocytes compared to wild type following stimulation (p < 0.05, n = 4-5). The 

combination of 0.1 MOI AdGCH with LPS + IFN-y stimulation in hph-1 astrocytes,
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Figure 5.5. Effect of increasing exogenous concentrations o f 5,6 ,7,8- 

tetrahydrobiopterin hydrochloride on intracellular BH4 levels in wild type (WT) and 

hph-1 cortical astrocytes.

Astrocytes were treated for 3 hours with 1, 5, 10, 20 and 50pmol/litre BH4 . 

Following this treatment cell culture media was removed and cells were washed 3 

times with 0.5ml Flank's Balanced Salt Solution (HBSS), and then harvested for BH4 

quantification. BH4 was measured using the reverse-phase HPLC. Data is expressed 

as mean ± SEM, n = 3-7 of separate cell culture preparations. *, p < 0.05 vs. 

untreated control, " , P < 0 .0 1  vs. untreated control calculated using one way 

ANOVA followed by least significant difference test.
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Treatment wild type BEL* 
(pmol/mg protein)

hph-1 BH4 

(pmol/mg protein)

Control 0 0

lpM 2.42 ± 1.43 * 3.77 ±1.58**

5jiM 10.89 ± 3.17 * 15.33 ±2.83 **

10pM 22.51 ± 10.13 * 26.41 ±4.54 **

20pM 46.51 ±21.46" 74.03 ±13.73 **

50pM 170.75 ±50.96* 293.45 ±84.31 **

Table 5.3. Effect of increasing exogenous concentrations of BH4 on intracellular BH4 

levels in wild type (WT) and hph-1 cortical astrocytes, minus basal levels.

Astrocytes were treated for 3 hours with 1, 5, 10, 20 and 50pmol/litre 5,6,7,8 - 

tetrahydrobiopterin hydrochloride. Following this treatment cell culture media was 

removed and cells were washed 3 times with 0.5ml Hank’s Balanced Salt Solution 

(HBSS), and then harvested for BH4 quantification. BH4 was measured using the 

reverse-phase HPLC. Data is expressed as mean ± SEM, n = 3-7 of separate cell 

culture preparations, minus basal values. *, p < 0.05 vs. untreated control, **, p < 0.01 

vs. untreated control calculated using one way ANOVA followed by least significant 

difference test.
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Figure 5.6. Effect of adenoviral transfection on NO2' and NCb" levels in cell culture 

media of wild type (WT) and hph-1 astrocytes.

Astrocytes were incubated in the presence and absence of LPS + IFN-y (1 pg/ml and 

lOOU/ml respectively), in combination with 0.1 multiplicity o f infection units (MOI) 

AdGCH and 0.1 MOI AdeGFP. N0 2 * and NO3’was measured using the Griess assay. 

Data expressed as mean ± SEM, n = 3-9 of separate cell culture preparations. *, p < 

0.05 vs. untreated control calculated using one way ANOVA followed by least 

significant difference te s t.+, p < 0.05 vs. wild type LPS + IFN-y treated, determined 

by one way ANOVA followed by least significant difference test.
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augmented levels of BH4 in these cells approximately 24-fold (table 5.4.) (p > 0.05, n 

= 4), although this was not significantly different from 0.1 MOI AdGCH treatment 

alone. AdeGFP in combination with LPS + IFN-y did not raise BH4 above LPS + 

IFN-y stimulated levels.

5.4.7. Effect of 24 hour AdGCH pre-treatment on lipopolysaccharide + 

interferon-y stimulated tetrahydrobiopterin and N0 2 * and NCV levels in wild 

type and hph-1 astrocytes

To correct the impaired NO metabolism in hph-1 astrocytes stimulated with LPS + 

IFN-y, it was proposed that BH4 levels needed to be increased prior to stimulation, to 

support dimerisation during the initial time course of iNOS expression. Therefore 

cells were pre-treated for 24 hours with 0.1 MOI AdGCH before being stimulated 

with LPS + IFN-y for a further 24 hours (figure 5.7). In hph-1 astrocytes receiving 

stimulation but no pre-treatment, levels of NO2" and NO3' were significantly 

impaired in comparison to wild type (8.48 ± 1.57nmol/mg protein versus 17.62 ± 

3.97nmol/mg protein; p < 0.05, n = 8-10). In AdGCH pre-treated hph-1 astrocytes, 

NO2* and N 0 3' increased significantly to 14.81 ± 2.97nmoles/mg protein upon 

stimulation (p < 0.05, n = 7). Furthermore NO2" and NO3" levels following pre­

treatment were no longer significantly different from wild type LPS + IFN-y 

stimulated values, and AdeGFP had no effect (7.85 ± 2.16nmol/mg protein). 

Additionally, control levels in wild type and hph-1 astrocytes, neither of which 

received pre-treatment or stimulation, were statistically identical, and 0.1 MOI 

AdGCH and AdeGFP had no effect on NO2’ and NO3' alone (figure 5.7).

Corresponding BH4 levels in wild type and hph-1 astrocytes with these treatments 

(figure 5.8.) showed a similar pattern to the 24-hour co-treatments (table 5.4). Wild 

type basal levels (6.21 ± 1.07nmol/mg protein) remained significantly higher than 

hph-1 (3.33 ± 0.48nmol/mg protein) (p < 0.05, n = 5-7), and LPS + IFN-y stimulated 

hph-1 astrocytes (10.29 ± 1.73nmol/mg protein) produced lower amounts of BH4 

than wild type (73.93 ± 25.47nmol/mg protein) (p < 0.05, n = 5-6). Treating hph-1 

astrocytes with 0.1 MOI AdGCH for 48-hours before stimulation significantly 

increased BH4 above basal (384.16 ± 67.55nmol/mg protein) (p < 0.01, n = 6 ), and 

LPS + IFN-y stimulated hph-1 astrocytes (p < 0.01, n = 6 ), but also beyond 0.1 MOI 

AdGCH treated cells (248.21 ± 48.67nmol/mg protein) (p < 0.05, n = 6 ). The control
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Treatment BH4  pmol/mg protein

WT Control 7.35 ± 1.28

hph-1 control 3.22 ± 0.36 +

WT LPS + IFN-y 24 101.13 ± 31.22 *

hph-1 LPS + IFN-y 24 6.31 ± 1.33 *+

hph-1 0.1 MOI AdGCH + LPS + IFN-y 24 151.60 ± 29.86 + *

hph-1 0.1 MOI AdeGFP + LPS + IFN-y 24 13.21 ±7.11 *

hph-1 0.1 MOI AdGCH 197.39 ± 37.02 f *

hph-1 0.1 MOI AdeGFP 3.10 ± 0.60 *

Table 5.4. Effect of adenoviral pre-treatment plus LPS + IFN-y stimulation on BH4 

levels in wild type (WT) and hph-1 astrocytes.

Astrocytes were incubated in the presence and absence of LPS + IFN-y (1 jag/ml and 

lOOU/ml respectively), in combination with 0.1 multiplicity of infection units (MOI) 

AdGCH or 0.1 MOI AdeGFP. Cells were harvested after 24 hours and BH4 levels 

measured. Data expressed as mean ± SEM, n = 3-11 of separate cell culture 

preparations. +, p < 0.05 vs. wild type calculated by one way ANOVA followed by 

least significant difference test. *, p < 0.05 vs. untreated control as determined by one 

way ANOVA followed by least significant difference test.
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Figure 5.7. Effect of adenoviral pre-treatment on LPS + IFN-y stimulated BH4 levels 

in cell culture media of wild type (WT) and hph-1 astrocytes.

Astrocytes were pre-treated for 24 hours in the presence or absence o f 0.1 

multiplicity of infection units (MOI) AdGCH or 0.1 MOI AdeGFP, then stimulated 

with LPS + IFN-y (lpg/ml and lOOU/ml respectively) for a further 24 hours. NO2' 

and N 0 3‘ was measured using the Griess assay. Data expressed as mean ± SEM, n = 

4-7 of separate cell culture preparations. *, p < 0.05 vs. untreated control calculated 

using one way ANOVA followed by least significant difference test. +, p < 0.05 vs. 

wild type LPS + IFN-y stimulated as determined by one way ANOVA followed by 

least significant difference test.
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Figure 5.8. Effect of adenoviral pre-treatment on LPS + IFN-y stimulated BH4 levels 

in wild type (WT) and hph-1 astrocytes.

Astrocytes were pre-treated for 24 hours in the presence or absence of 0.1 

multiplicity of infection units (MOI) AdGCH or 0.1 MOI AdeGFP, then stimulated 

with LPS + IFN-y (lpg/ml and lOOU/ml respectively) for a further 24 hours. BH4 

was measured using the reverse-phase HPLC. Data expressed as mean ± SEM, n = 4- 

7 of separate cell culture preparations. *, p < 0.05 vs. untreated control, **, p < 0.01 

vs. untreated control calculated using one way ANOVA followed by least significant 

difference test. , p < 0.05 vs. wild type LPS + IFN-y stimulated as determined by 

one way ANOVA followed by least significant difference test. $, p < 0.05 vs. 0.1 

AdGCH treated cells calculated by one way ANOVA followed by least significant 

difference test.
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virus AdeGFP in combination with LPS + IFN-y stimulation did not increase BH4 

levels further than LPS + IFN-y alone (13.99 ± 3.07nmol/mg protein) (figure 5.8).

5.4.8. Effect of 24 hour AdGCH pre-treatment on inducible nitric oxide 

synthase dimer and monomer protein ratios in wild type and hph-1 astrocytes

To investigate the possible mechanisms behind the AdGCH pre-treatment mediated 

correction of NO status in hph-1 astrocytes, the level of expression of iNOS dimer 

and monomer protein was measured (figure 5.9). Dimerimonomer ratios were 

calculated then transformed as described in section 2.10, which is reported to yield a 

normal distribution that enables statistical analysis (Gegg et al, 2003). All statistical 

values reported for dimerimonomer ratios are calculated for transformed data. Also 

included in these experiments was the macrophage cell line RAW 264.7 as a positive 

control (Raschke et al, 1978), as these have previously been shown to express iNOS 

dimer and monomer protein following cytokine stimulation (Albakri and Stuehr,

1996).

Inducible NOS protein expression was only observed in cells treated with LPS + 

IFN-y in these experiments, including RAW 264.7 macrophage cell lines. Analysis 

o f dimerimonomer ratios revealed approximately 6-fold greater levels of 

dimerisation in wild type astrocytes (0.461 ± 0.05) compared to hph-1 (0.073 ± 

0.02)(p < 0.01, n = 3-4). When hph-1 astrocytes were pre-treated for 24 hours with 

0.1 MOI AdGCH the ratio of dimerimonomer was significantly augmented from 

0.073 ± 0.02 to 0.365 ± 0.08 (p < 0.05, n = 4), such that differences from the wild 

type were no longer apparent. AdeGFP pre-treatment appeared to have no influence 

on levels of dimerisation.

5.4.9. Effect of 24 hour AdGCH pre-treatment on inducible nitric oxide 

synthase total protein levels in wild type and hph-1 astrocytes

In addition to the ratio of dimer to monomer, the total amount of iNOS protein was 

quantified in LPS + IFN-y stimulated wild type and hph-1 astrocytes. Total iNOS 

protein was calculated by measuring the intensity of bands at 130kDa. Boiling 

samples removed 260kDa bands, which has been previously documented (Ohtsuka et 

al, 2002; Ravi et al, 2004), and further confirms the identity o f the bands.
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Figure 5.9. Effect of adenoviral pre-treatment on iNOS dimerimonomer ratio in LPS 

+ IFN-y stimulated wild type (WT) and hph-1 astrocytes.

A) Astrocytes and RAW 264.7 cell lines were pre-treated for 24 hours in the 

presence or absence of 0.1 multiplicity of infection units (MOI) AdGCH or 

0.1 MOI AdeGFP, then stimulated with LPS + IFN-y (lpg/ml and lOOU/ml 

respectively) for a further 24 hours. Western blotting was carried out as 

described in section 2.7. Cell lysates were fractionated by SDS-PAGE and 

immunoblotted with antibodies to iNOS. Bands were quantified using GelPro 

analysis system and software (Media Cybernetics). Data expressed as mean ± 

SEM, n = 3-4 separate cell culture preparations. \  p < 0.05 vs. wild type LPS 

+ IFN-y stimulated cells calculated using one way ANOVA followed by least 

significant difference test. f, p < 0.05 vs. hph-1 LPS + IFN-y stimulated as 

determined by one way ANOVA followed by least significant difference test.

B) Western blot showing presence of iNOS dimer and monomer in wild type 

and hph-1 astrocytes and RAW 264.7 cell lines following LPS + IFN-y 

stimulation.
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Examination of total iNOS expression revealed a slight trend toward a decrease in 

the amount of iNOS protein in hph-1 astrocytes compared to wild type following 

stimulation with LPS + IFN-y, however this was not significant (p = 0.10, n = 4- 

5)(figure 5.10 A). In addition, no significant effects were observed in hph-1 

astrocytes after pre-treatment with AdGCH or AdeGFP, when compared with wild 

type or hph-1 LPS + IFN-y stimulated cells (figure 5.10 A). Western blotting for 

GAPDH showed equal protein loading in these experiments, and hybridisation with 

anti-HA antibodies revealed expression o f recombinant human GTP-CH only in hph- 

1 astrocytes treated with AdGCH (figure 5.10 B).
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Figure 5.10. Effect of adenoviral pre-treatment on total iNOS protein in LPS + IFN-y 

stimulated wild type and hph-1 astrocytes.

A) Astrocytes and RAW 264.7 cell lines were pre-treated for 24 hours in the 

presence or absence of 0.1 multiplicity of infection units (MOI) AdGCH or 

0.1 MOI AdeGFP, then stimulated with LPS + IFN-y (Ipg/ml and lOOU/ml 

respectively) for a further 24 hours. Data expressed as mean ± SEM, n = 4-5 

separate cell culture preparations. Western blotting was carried out as 

described in section 2.7. Cell lysates were fractionated by SDS-PAGE and 

immunoblotted with antibodies to HA tag epitope, GAPDH and iNOS. Bands 

were quantified using GelPro analysis system and software (Media 

Cybernetics) and the density measured in arbitrary units.

B) Representative Western blots of iNOS, recombinant human GTP-CH from 

AdGCH and GAPDH.
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5.5. DISCUSSION

5.5.1. Effect of AdGCH transfection on tetrahydrobiopterin and nitrite and 

nitrate levels, in hph-1 and wild type astrocytes

Adenoviral transfection with AdGCH significantly increases BH4 in a dose- 

dependent manner in hph-1 astrocytes, except at the highest dose (200 MOI) where 

some cell death was observed. These data are supported by Western blots showing 

expression of recombinant protein, and by confocal microscopy demonstrating 

infection of hph-1 astrocytes with AdeGFP vector. Perhaps surprisingly, hph-1 

astrocytes produce very high levels of BH4 given the amount of virus they are 

transfected with. A dose of 0.1 MOI AdGCH generates approximately 200pmol/mg 

protein BH4, which is considerably higher than previously reported levels of 25- 

75pmol/mg protein BH4 with 5-100 MOI AdGCH in human endothelial cells 

transfected with the same vector (Cai et al, 2002). The reasons for this are not yet 

clear, but a number o f factors may be involved. One aspect could be permissiveness 

of cells to adenoviral transfection. Entry of adenoviruses into cells depends on the 

expression of coxsackievirus and adenovirus receptors (CAR), a widely distributed 

type 1 membrane protein (Roelvink et al, 1998). Susceptibility o f cells to adenoviral 

mediated gene transfer is directly correlated to the level o f CAR expression (Miller et 

al, 1998). Astrocytes highly express CAR, with more than 50% of cells expressing 

the receptor (Fueyo et al, 2003). In contrast, endothelial cells are transduced by both 

viral and non-viral vectors with low efficiency compared to other cell types (Nicklin 

et al, 2004). Therefore this may be why gene transfer with AdGCH generates more 

BH4 production in hph-1 astrocytes than human endothelial cells.

A study investigating the toxicity of anticancer drugs shows adenoviruses can initiate 

functional effects in astrocytes at just 0.1 MOI viral titre (Maron et al, 1997). This 

suggests that the results obtained with such a low amount of AdGCH in hph-1 

astrocytes are not necessarily unique, and that adenoviral transfection may be 

extremely efficient in this cell type. However, another potential explanation for the 

high concentrations of BH4 found in hph-1 astrocytes, could be species differences in 

the forms of GTP-CH and GFRP found in human and mouse cells. GTP-CH activity 

is highly regulated by the feedback regulatory protein GFRP, which responds to BH4 

and phenylalanine by inhibiting and stimulating GTP-CH activity, respectively
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(Harada et al, 1993; Milstien et al, 1996). The human form of GTP-CH is used to 

transfect mouse cells in these experiments. Therefore, differences in the amino acid 

sequence o f human GTP-CH could mean that the mouse form of GFRP is unable to 

inhibit the human form of GTP-CH, resulting in uncontrolled activity of transfected 

GTP-CH and very high concentrations of BH4. Human and mouse GFRP differ by 

three amino acids, enough difference to make antiserum specific for human GFRP 

unreactive for mouse GFRP (Professor G. Wemer-Felmayer, Innsbruck Medical 

University, Innsbruck, Austria, personal communication).

However, studies in GTP-CH transgenic mice {GCH-Tg), a mouse line with 

endothelial-targeted over-expression of the human form of GTP-CH, suggests that 

mouse form of GFRP can inhibit human GTP-CH (Alp et al, 2003; Meininger et al,

2004). In GCH-Tg mice, expression of recombinant human GTP-CH is found in 

tissues rich with endothelial cells, such as lung, liver, and aorta. In these tissues, 

although the total amount of GTP-CH is elevated 5-10 fold, BH4 levels only rise up 

to 3-fold (Alp et al, 2003). If mouse GFRP cannot regulate human GTP-CH, it would 

be expected that very high levels of BH4 would be generated in the tissues of these 

animals; however this is not the case in GCH-Tg mice.

Another possible reason for high concentrations of BH4 in hph-1 astrocytes following 

gene transfer, is that multiple translations of the recombinant human GCH transcript 

results in high quantities of GTP-CH protein in each cell. A way to investigate this 

would be to use in situ hybridisation to compare expression of recombinant with 

native forms of the enzyme. This may give an idea of how much enzyme is 

expressed from AdGCH. A further possibility is that transfected human GTP-CH 

somehow influences expression of the native form; however in GCH-Tg mice human 

GTP-CH had no impact on the quantity of native enzyme detected (Alp et al, 2003).

Although BH4 levels increase following AdGCH gene transfer, basal NO2’ and NO3' 

remain unaffected in hph-1 astrocytes. Furthermore, hph-1 cells do not respond to 

sepiapterin, suggesting that under basal conditions BH4 is not limiting for NO 

metabolism in these cells (see also section 4.4.4). The specific activity of NOS in 

hph-1 astrocytes is undetectable in non-stimulated cells (Barker et al, 1998). In 

addition, iNOS expression is not detectable in hph-1 astrocytes under basal
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conditions in our experiments, or in previous studies (Barker et al, 1998). Therefore 

the primary source o f  N O is likely to be nNOS or eNOS. Both nNOS and eNOS 

produce picomolar amounts o f NO, whereas iNOS is capable o f  micromolar 

quantities (Geller and Billiar, 1998). Since the limits o f detection o f N O 2 ' and N O 3' 

are around 1 nanomolar for this assay, it is unlikely that increased BH 4  would result 

in accumulation o f NO in hph-1 astrocytes. Studies in murine CAD cells, an nNOS- 

expressing neuronal line, show that 50pM  sepiapterin applied to unstimulated cells 

did not cause nitrite levels to rise (Xu et al, 2004). Therefore, simply increasing BH 4  

levels is not enough to show correction o f NO metabolism in hph-1 astrocytes.

5.5.2. Uptake of tetrahydrobiopterin into hph-1 and wild type astrocytes

Due to the relatively high concentrations o f BH 4  generated following AdGCH 

transfection in hph-1 astrocytes, the uptake BH 4  into these cells was investigated, and 

BH 4  accumulation compared with wild type astrocytes. In theory at 0.1 M OI, only 1 

in 10 hph-1 astrocytes are transfected with AdGCH, which elevates concentrations o f 

BH 4  50-fold. These experiments were carried out to observe whether BH 4  can be 

taken up by surrounding cells, and if  impaired BH 4  metabolism has an impact on 

cofactor accumulation. As the amount o f BH 4  applied to cells increases, intracellular 

levels o f  BH 4  rise dose-dependently in wild type and hph-1 astrocytes. W hen the 

uptake o f BH 4  in wild type and hph-1 is compared, no differences are found between 

these cells. These data show that astrocytes can take up BH 4 , and that the small 

proportion o f cells transfected by AdGCH may be able to produce BH 4  that 

neighbouring cells can utilise. This raises the possibility that for in vivo work only a 

small proportion o f  astrocytes may need to receive adenovirus to produce BH 4  for the 

rest o f  the population.

BH 4  release and uptake has been studied in vivo (Sawabe et al, 2004), as well as in 

human endothelial cells, hepatocytes, PC 12, rat synaptosomes and rat striatal tissue 

(Anastasiadis et al, 1996; Cai et al, 2002; Sawabe et al, 2005). Depending on the cell 

type BH 4  is taken up directly via passive diffusion that is not glucose or sodium 

dependent, or by a methotrexate sensitive indirect pathway (Anastasiadis et al, 1996; 

Sawabe et al, 2005). It is proposed in the indirect pathway BH 4  is first oxidised to 

BH 2, then converted back to BH 4  inside the cell via DHFR (Sawabe et al, 2004,

2005). It is not clear which o f the pathways is in operation in these cells, however
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DHFR expression (Kaufman, 1991) and activity (Ludwig et al, 1987) are low in the 

brain compared to other organs. Therefore it is more likely that the direct pathway is 

in operation in hph-1 and wild type astrocytes. Additional experiments with 

methotrexate, an inhibitor o f DHFR would be necessary to explore this further.

5.5.3. Effect of AdGCH treatment on lipopolysaccharide + interferon-y 

stimulated tetrahydrobiopterin and nitrite and nitrate levels in wild type and 

hph-1 astrocytes

Stimulating hph-1 and wild type astrocytes with LPS + IFN-y increases NO 2" and 

NO 3 " levels in both cell types, however in hph-1 cells this response is attenuated by 

approximately 50%. Results from section 4.4.5. demonstrate that increasing BH4 via 

sepiapterin can abolish differences between wild type and hph-1, so AdGCH was 

used to attempt to increase NO. However, when cells were treated with AdGCH at 

the same time point as LPS + IFN-y, after 24 hours although BH4 levels increased, 

hph-1 NO 2 " and NOs' did not change. A time course o f iNOS and GTP-CH 

expression reveals these enzymes are induced in parallel following LPS + IFN-y 

(Hattori and Gross, 1993). Sepiapterin potentiates NO synthesis in LPS + IFN-y 

stimulated rat aortic smooth muscle cells, and shifts the profile o f induction to earlier 

time points (Gross and Levi, 1992). If BH4 is increased at the same time as iNOS 

induction, production o f NO is shifted to earlier times and rises at a steeper rate 

(Gross and Levi, 1992). Therefore, BH4 may limit the onset and magnitude o f the 

NO response. It is possible there is a delay in the production o f BH4 from AdGCH, 

from the vector being transported across the cell membrane and into the nucleus, 

then from the time taken to express GTP-CH from AdGCH. Delayed BH4 production 

from AdGCH may result in diminished availability o f  BH4 to promote iNOS 

dimerisation. This delay may explain why AdGCH does not potentiate NO2 " and 

NO 3 " production in LPS + IFN-y stimulated hph-1 astrocytes, when transfection 

occurs at the same time as stimulation.

5.5.4. Effect of 24 hour AdGCH pre-treatment on lipopolysaccharide + 

interferon-y stimulated tetrahydrobiopterin and nitrite and nitrate levels in wild 

type and hph-1 astrocytes

To augment NO production in LPS + IFN-y stimulated hph-1 astrocytes to wild type 

levels, cells were pre-treated with AdGCH for 24 hours to allow BH4  to increase
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sufficiently to support NO synthesis. NO2’ and NO3' are significantly elevated in 

hph-1 cells treated this way, and are statistically identical to wild type. BH4 is known 

to have a number of roles in NO synthesis. It increases the affinity of NOS for 

arginine leading to greater activity of this enzyme (Brand et al, 1995; Klatt et al, 

1994). Inducible NOS is only active as a homodimer (Ghosh et al, 1995), and BH4 is 

required for both dimer formation and to stabilise the enzyme in this structure (Baek 

et al, 1993; Tzeng et al, 1995). Furthermore, BH4 promotes uptake of arginine into 

cells (Schwartz et al, 2001). The combination o f these factors may explain why 

impairment of BH4 metabolism results in attenuated LPS + IFN-y stimulated NO 

synthesis in hph-1 astrocytes, and why increasing BH4 via AdGCH corrects NO 

generation. The contribution of these mechanisms is scrutinized in further detail in 

section 4.5.2. Furthermore, the role of BH4 in iNOS dimerisation and the total 

amount of iNOS protein is examined below in sections 5.5.5. and 5.5.6.

hph-1 cells pre-treated with 0.1 MOI AdGCH then stimulated with LPS + IFN-y 

generated more BH4 than 0.1 MOI AdGCH alone. The amount o f BH4 produced 

appears to be greater than the sum of transfection and stimulation. These data 

contrast with section 4.4.5., where sepiapterin combined with LPS + IFN-y did not 

improve BH4 beyond the individual treatments. Other literature describes the 

influence of sepiapterin in combination with LPS + IFN-y on NO stimulation, but 

these studies do not report BH4 levels (Gross and Levi, 1992; Nakayama et al, 1994). 

One reason for these results may be that LPS + IFN-y increases activity of 

transfected GTP-CH. LPS + IFN-y stimulates activity o f GTP-CH, but not the other 

enzymes in the biosynthetic pathway, including sepiapterin reductase (Wemer- 

Felmayer et al, 1993). Furthermore, NO can suppress GFRP expression, thus 

enhancing GTP-CH activity (Park et al, 2002). Therefore if there are any inhibitory 

effects of hph-1 GFRP on human GTP-CH from AdGCH, the increase in NO that 

was observed may suppress the action of GFRP leading to greater BH4 production. 

However, further work is necessary to investigate these results.

5.5.5. Effect of 24 hour AdGCH pre-treatment on inducible nitric oxide 

synthase dimer and monomer protein ratios in wild type and hph-1 astrocytes

Homodimerisation is essential for iNOS activity (Baek et al, 1993). Factors required 

for dimer formation include calmodulin, FAD, FMN, NADPH and haem (Baek et al,
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1993). For dimers to become stable and active enzyme structures, BH4 and arginine 

binding are essential (Baek et al, 1993; Ghosh et al, 1997). It was proposed that the 

impaired NO synthesis observed in LPS + IFN-y stimulated hph-1 astrocytes was the 

result of reduced iNOS dimerisation arising from impaired BH4 production. To 

investigate this, iNOS dimer and monomer protein were compared using Western 

blotting (Klatt et al, 1995). When the ratio of iNOS dimerimonomer is calculated in 

stimulated hph-1 and wild type astrocytes, it is found that hph-1 had significantly 

less dimer complex than wild type.

These data suggest that BH4 availability impacts on the dimerisation of iNOS 

enzyme in LPS + IFN-y stimulated cells. So far a number o f studies have looked at 

the influence of different factors on iNOS dimerisation. Most are under dictated 

experimental conditions using recombinant protein or partial domains, rather than in 

cells or tissues. However, there is some literature especially relevant to the results 

presented here. Experiments using phosphoinositide 3-kinase (PI3K) deficient 

macrophages investigated the relationship between BH4, NO, GTP-CH expression, 

iNOS dimerisation and total iNOS following LPS + IFN-y stimulation (Sakai et al,

2006). PI3K deficient macrophages display lower concentrations of BH4, along with 

attenuated expression of GCH mRNA and GTP-CH protein after stimulation (Sakai 

et al, 2006). This is coupled with decreased NO, and impaired iNOS dimerisation in 

comparison to wild type (Sakai et al, 2006). Ratios o f dimerimonomer compare 

favourably between data presented here and in Sakai et al, 2006, which provides 

additional evidence that the bands detected were iNOS. In wild type cells a ratio of 

0.45 and 0.4 were reported in this thesis and in Sakai et al, 2006, respectively. In 

PI3K mutant macrophages the ratio was 0.2 (Sakai et al, 2006), whereas hph-1 

astrocytes values were approximately 0.07. This may reflect the degree of BH4 

deficiency. BH4 levels in hph-1 astrocytes were around 14% of wild type after LPS + 

IFN-y stimulation, whereas the relative deficiency o f BH4 in PI3K cells is 50%.

When hph-1 astrocytes were pre-treated with AdGCH for 24 hours, an elevation in 

the level of dimerisation is observed following LPS + IFN-y stimulation. The amount 

of dimer present is increased to within the wild type range, demonstrating that the 

amount of BH4 is associated with the ability o f cells to produce active iNOS dimers. 

When BFL-deficient PI3K cells were incubated with L-sepiapterin during LPS +
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IFN-y stimulation, levels o f dimer found in the cells were also increased to within 

wild type range (Sakai et al, 2006). An enhancement of iNOS dimerisation may also 

be why NO metabolism can be increased after L-sepiapterin treatment in hph-1 LPS 

+ IFN-y stimulated astrocytes in section 4.4.5. This suggests that the level of BH4 is 

critical to iNOS dimerisation, and that gene transfer with AdGCH may be a viable 

approach to correct NO synthesis in the hph-1 mouse.

Although BH4 is found in abundance in wild type and AdGCH transfected hph-1 

astrocytes, most of the iNOS found in the cell was still present as monomer. In wild 

type and AdGCH plus LPS + IFN-y stimulated hph-1 cells, approximately 30% of 

protein was dimer, in RAW 264.7 cells used as a positive control this was lower at 

20% (data not shown), and in hph-1 astrocytes without AdGCH this figure was 10%. 

These data correspond well with levels in macrophages (Sakai et al, 2006) and RAW 

264.7 cells (Albakri and Stuehr, 1996), where in both cases the majority of iNOS was 

monomeric. O f the NOS subtypes, iNOS is the least stable isoform, followed by 

nNOS, with eNOS being the most durable (Panda et al, 2002). In both the presence 

and absence of arginine or BH4, iNOS is the most easily dissociated, either by 

temperature or chemical disruption (Panda et al, 2002). Reports suggest the 

dissociation of iNOS may be mediated by NO (Chen et al, 2002; Albakri and Stuehr,

1996). In RAW 264.7 cells iNOS accumulates in a linear manner over 16 hours 

(Albakri and Stuehr, 1996). Dimer also increases, but at a slower rate, and this 

slowly tails off until approximately 25% of iNOS is dimer. When iNOS activity is 

inhibited using N^-nitro-L-arginine methyl ester (L-NAME), formation of dimer 

increases, suggesting that NO synthesis blocks dimer assembly. However, L-NAME 

also reduces the total amount of iNOS protein by half (Albakri and Stuehr, 1996).

It is believed NO prevents dimer assembly either by limiting haem insertion into the 

enzyme (Albakri and Stuehr, 1996; Chen et al, 2002), or by S-nitrosation of the zinc 

tetrathiolate cysteine in iNOS, resulting in release of zinc from the enzyme and loss 

of dimer (Mitchell et al, 2005). However, the issue of NO preventing iNOS 

dimerisation is not straightforward. Some groups report that NO disrupts dimer 

assembly (Albakri and Stuehr, 1996; Chen et al, 2002; Li et al, 2006), whilst others 

claim it promotes dimer formation (Park et al, 2002). When rat hepatocytes were pre­

treated with S-Nitroso-N-acetyl-d/-penicillamine (SNAP), an NO donating molecule,
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BH4 and GTP-CH, and NO production and dimerisation all increased after IL-1(3 and 

IFN-y stimulation (Park et al, 2002). However, the same experiment in two different 

cell types, including RAW 264.7 cells, had no effect on dimerisation or NO levels. 

Therefore these effects may be cell specific (Park et al, 2002). In hph-1 astrocytes it 

is not clear if  NO produced from iNOS reduces the proportion of dimer over time. 

However, there is an association between the amount of BH4 present and iNOS 

dimerisation, which results in greater NO production. Treating hph-1 astrocytes with 

AdGCH can correct the deficiency in NO metabolism, by providing more BH4 for 

iNOS dimer assembly.

5.5.6. Effect of 24 hour AdGCH pre-treatment on inducible nitric oxide 

synthase total protein levels in wild type and hph-1 astrocytes

Analysis of the total amount of iNOS protein in astrocytes stimulated with LPS + 

IFN-y, did not reveal differences in expression between hph-1 and wild type, either 

in the presence or absence of AdGCH or AdeGFP. There was slight trend toward 

decreased iNOS in hph-1 cells in comparison to wild type, however this did not reach 

significance (p = 0.10, n = 4-5). Previous studies looking at the amount of iNOS 

protein following stimulation demonstrate increased total iNOS expression and 

activity in hph-1 astrocytes, when compared to wild type (Barker et al, 1998). It is 

suggested greater expression and activity arises from NO limiting NFkB-dependent 

iNOS expression (Park et al, 1997); thus lower production of NO in hph-1 cells leads 

to augmented iNOS protein and activity (Barker et al, 1998). These results were 

obtained using enzyme linked immunosorbant assay (ELISA). It is possible this 

assay is more sensitive changes in protein levels, so perhaps if the number o f samples 

was increased for these experiments similar results may be obtained.

In macrophages from the PI3K mouse line, B f^  and NO levels, GTP-CH expression 

and iNOS dimerisation are all shown to be reduced upon LPS + IFN-y stimulation in 

comparison to wild type (Sakai et al, 2006). However, iNOS protein levels remain 

unaffected. In rat hepatocytes, addition of BH4 to iNOS stimulated cells does not 

influence total iNOS expression (Loughran et al, 2005), and pre-treating these cells 

with an NO-donor also has no effect (Park et al, 2002). But when NO synthesis in 

LPS + IFN-y stimulated RAW 264.7 cells was blocked, although the proportion of 

iNOS dimer increased, total levels of protein were halved (Albakri and Stuehr,
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1996).Taken together these data provide contrasting viewpoints on whether changes 

in the levels of BH4 or NO have an influence on total iNOS protein. The work from 

this chapter in hph-1 astrocytes would suggest that a BH4 deficiency has no influence 

on iNOS protein, but perhaps if  iNOS protein was measured by two different assays 

such as Western blotting and ELISA, a clearer picture may be formed.

5.6. CONCLUSIONS

The deficiency of BH4 and also NO metabolism in hph-1 astrocytes can be corrected 

using adenovirus-mediated gene transfer o f GTP-CH. AdGCH increases BH4 dose- 

dependently in hph-1 cells, with one virus particle per ten cells leading to an 

approximate 50-fold up-regulation of BH4 content in cells. Stimulation of hph-1 

astrocytes with LPS + IFN-y increases iNOS expression and NO synthesis, however 

the level of NO generation and iNOS dimerisation is impaired when compared to 

wild type. Simultaneous treatment of AdGCH plus LPS + IFN-y in hph-1 astrocytes 

did not augment NO levels, however 24-hour AdGCH pre-treatment yields higher 

NO generation, as well as augmented iNOS dimer formation that was no longer 

lower than wild type. Analysis of the total iNOS protein demonstrated no significant 

differences between wild type or hph-1, both in the presence and absence of AdGCH.

These results are encouraging for the future in vivo work using AdGCH in the hph-1 

mouse, as the level of BH4 obtained in hph-1 cells with just 0.1 MOI AdGCH may 

make this curative approach very efficient. If the adenovirus is administered to these 

animals, transfecting a small proportion of cells may produce enough BH4 to increase 

BH4 in neighbouring cells, and correct the impaired BH4, NO and monoamine 

deficiencies in these mice.
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6.1. GENERAL DISCUSSION

Tetrahydrobiopterin (BH4 ) is an essential cofactor for TH, TRH, and NOS in the 

brain. Thus, it has a vital role in brain cathecholamine, 5-HT and NO metabolism. 

BH4  is synthesized from GTP via three enzymatic stages, the first o f which is the 

initial rate-limiting step, catalysed by GTP cyclohydrolase 1 (GTP-CH). Inborn 

errors o f BH4  metabolism arise from mutations to the genes involved in BH4  

metabolism, and a number o f  conditions such as PD (Lovenberg et al, 1979; 

Williams et al, 1980) and AD (Barford et al, 1984; Casal et al, 2003) have associated 

acquired BH4  deficiencies. Autosomal recessive mutations to the gene encoding 

GTP-CH result in a debilitating syndrome where sufferers synthesize virtually no 

BH4  and experience profound neurological symptoms, including severe mental 

retardation in the absence o f treatment (Blau et al, 2001). The autosomal dominant 

form o f GTP-CH deficiency is known as dopa-responsive dystonia (DRD), which 

manifests itself in a partial BH4  deficiency, and is less severe but is accompanied by 

neurological symptoms if  left untreated (Segawa et al, 2003).

An animal model of BH4 deficiency has been developed, known as the hph-1 mouse, 

which has a partial deficiency of BH4 arising from defective GTP-CH (Gutlich et al,

1994). This mouse has impaired DA, 5-HT and NO metabolism, and is therefore 

proposed as a model for BH4 deficiency (Hyland et al, 1996, 2003). The aim of this 

thesis was to further investigate the biochemistry o f the hph-1 mouse, both in whole 

brain tissue, as well as in astrocytes derived from the hph-1, then use gene therapy to 

correct the defective BH4 and NO metabolism found in the mouse, by upregulating 

GTP-CH expression. This is with an ultimate view to treating patients with inborn 

errors of BH4 metabolism using gene therapy.

Initial background work further demonstrated that BH4 metabolism is impaired in the 

brain of the hph-1 mouse. Levels of BH4 in the brain were approximately 30% of 

wild type. Furthermore, the ability o f the hph-1 biosynthetic pathway to produce BH4 

from the initial substrate GTP was reduced. Residual activity of this pathway 

combined with levels of BH4 in the brain further support evidence of a partial GTP- 

CH deficiency in the hph-1 mouse (Gutlich et al, 1994; Barker et al, 1998). Activity 

of the BH4 recycling pathway remains unaffected in the hph-1 brain, which provides
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assurance that if  gene therapy was used to increase GTP-CH expression, an intact 

recycling system exists to maintain BH 4  levels. W hen “DHNTP” was introduced 

downstream o f the m etabolic block, levels o f  BH 4  comparable with wild type were 

synthesized in brain cytosol. This indicates that the other enzymes in the BH 4  

biosynthetic pathway function normally, and further suggests that GTP-CH is the site 

o f the hph-1 metabolic block. In addition, the BH 4  deficiency in the hph-1 mouse 

impacts on the levels o f  monoamine neurotransm itters and their metabolites, as NA, 

DA and its metabolite HVA, as well as 5 -HI A A, the metabolite o f 5-HT, were all 

found to be lower in the hph-1 brain.

Experiments using cultured cortical hph-1 astrocytes provided more evidence o f 

impaired BH4 and NO status. Basal levels o f  BH4 were lower in hph-1 cells, however 

NO 2’ and NO 3' were comparable to w ild type, suggesting that BH4 may not be 

limiting for NOS under basal conditions. Stim ulation with LPS + IFN-y, elevated 

BH4 and NO 2 ' and N O 3' in wild type and hph-1 cells, however in hph-1 astrocytes 

the BH4 and NO response were significantly impaired, hph-1 astrocytes also generate 

less BH4 following L-sepiapterin treatment. This may suggest that the impairment o f 

GTP-CH in these cells reduces either sepiapterin reductase or DHFR activity, 

although further work m ust verify this. W hen hph-1 astrocytes were stimulated with 

LPS + IFN-y, and had BH4 levels augm ented via L-sepiapterin, levels o f  NO 2’ and 

N O 3' rose to within wild type range. These data suggest that transfecting hph-1 

astrocytes with an adenoviral vector containing GTP-CH could be an approach for 

correcting both the BH4 and NO status o f  these cells.

Deficiency o f BH 4  and also NO m etabolism  in hph-1 astrocytes can be corrected 

using the adenovirus AdGCH. AdGCH contains the gene for recombinant human 

GTP-CH (Cai et al, 2002), and increases BH 4  dose-dependently in hph-1 cells, with 

one virus particle per ten cells leading to approximately 50-fold up-regulation o f 

BH 4 . Efficiency o f  the viral transfer is confirmed by Western blotting showing 

expression o f recombinant GTP-CH protein, and by fluorescence microscopy 

demonstrating expression o f  viral proteins within hph-1 astrocytes. The reason for 

the high efficiency o f  uptake and expression in hph-1 astrocytes is not presently 

clear, although literature suggests that this effect may not be unique (M aron et a l,

1997). Astrocytes express a high concentration o f  CAR receptors needed to mediate
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transport o f virus into the cell (Fueyo et al, 2003). Thus, a high proportion o f viral 

particles are likely to be taken up by hph-1 cells. This may have useful implications 

for future work in vivo in the hph-1 mouse, as a lower viral titre could be used to 

produce functional effects if  administered to the brain. Furthermore, BFL* produced 

from the AdGCH transfected astrocytes may be taken up by neighbouring cells 

(Sawabe et al, 2005), demonstrating that transfected cells may act as a “sink”, 

generating BH4 that can be utilised throughout the organism.

Simultaneous treatment of AdGCH plus LPS + IFN-y in hph-1 astrocytes did not 

augment extracellular NO2’ and NO3’, however 24-hour pre-treatment with virus 

yielded NO generation that was comparable to wild type. This may be the result of a 

difference between the time course of iNOS stimulation and the time taken for 

AdGCH to infect hph-1 astrocytes then express GTP-CH. When the molecular 

mechanisms behind the increase in NO2’ and NO3' were investigated, it was 

discovered that hph-1 astrocytes had a lower proportion o f iNOS dimer to monomer 

in comparison to wild type. When cells were pre-treated with AdGCH for 24 hours, 

the proportion of the dimer increased. However, the amount of iNOS protein present 

in the cells was not different between hph-1 and wild type, and did not alter 

following AdGCH pre-treatment. These results o f AdGCH viral transfection in hph-1 

astrocytes are encouraging for the future in vivo work in the mouse, as the level of 

BH4 obtained in hph-1 cells with just 0.1 MOI AdGCH may make this curative 

approach very efficient. In addition the molecular mechanisms behind the observed 

impairment of NO synthesis in hph-1 astrocytes appear to have been elucidated, i.e. 

the impaired ability of hph-1 astrocytes to produce iNOS dimers. A summary 

illustration of the key findings in hph-1 astrocytes is shown in figure 6 .1 .

The results from the experiments in this thesis have revealed additional information 

about the biochemical characteristics of the hph-1 mouse, and have demonstrated the 

potential of gene therapy in correcting the metabolic defect. These data may 

eventually be useful as a treatment strategy for sufferers of inborn errors of BH4 

metabolism, and offer a more long-term approach to alleviating the associated 

impairment of phenylalanine, monoamine neurotransmitter and NO metabolism in 

these individuals.
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Figure 6.1. Summary diagram of the key findings in hph-1 astrocytes.

A) AdGCH transfects hph-1 astrocytes, resulting in B) expression o f recombinant 

human GTP-CH, which C) allows more efficient conversion o f GTP to D) BH4. E) 

Sepiapterin may also be converted to BH 4 to increase cofactor in hph-1 cells. Only 1 

virus particle per 10 astrocytes is needed to augment BH4 50-fold, which F) can be 

taken up by neighbouring cells. BEL* produced via AdGCH can support LPS + IFN-y 

stimulated iNOS expression G). BFL assists iNOS dimerisation H), thus increasing 

NO generation I). NO produced in these cells can then activate sGC to produce 

cGMP J), be released to other cells, e.g. astrocytes and neurones K), or L) be 

metabolized to NO 2’ and NO 3', and measured in cell culture media.
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6.2. FUTURE WORK

Some future work has already been highlighted throughout the results chapters, so 

this section will not reiterate these potential experiments but will instead focus on a 

possible next step, which is to carry out gene transfer with AdGCH in vivo in the 

hph-1 mouse. This will most likely take place in several stages. Initial pilot studies 

may validate the gene transfer approach, and also investigate markers that show the 

success of AdGCH transfection. Pilot studies will use a small sample size, perhaps 

just 3 or 4 of both wild type and hph-1 mice. The first of these pilot studies will 

investigate the hyperphenylalaninaemic state of the hph-1 mouse, as a potential 

marker of gene transfer success. As discussed earlier in section 3.1.1, hph-1 mice 

were initially developed as a model o f HP A (Bode et al, 1988), although this HPA is 

normalised in the hph-1 after its first 3 weeks o f life (McDonald and Bode, 1988). 

However, if  the mice are given a phenylalanine challenge, metabolism to tyrosine 

remains impaired (McDonald and Bode, 1988). Therefore, to show successful 

transfection with AdGCH, hph-1 mice could be given a phenylalanine challenge to 

see if  they clear it more quickly than mice that do not receive AdGCH.

Initially this pilot study will not be done in mice treated with any virus, but to 

investigate the feasibility of this approach as a foundation for further experiments. 

Phenylalanine will be given via intraperitoneal (I.P.) injection, as this is the preferred 

route of administration in literature documenting phenylalanine challenge in mice 

(McDonald and Bode, 1988; Hyland et al, 2004). Mice aged 30 days will be used for 

these experiments, and will be a mixture o f male and female, as 

hyperphenyalaninemia is not documented to be sex related (McDonald and Bode, 

1988). Phenylalanine and tyrosine levels can then be measured over a time course of

0-360 minutes post-injection, every 30 minutes in blood from mouse tail snips 

(McDonald and Bode, 1988). Blood from the tail will be spotted onto filter paper 

known as a Guthrie card and allowed to dry (Guthrie and Susi, 1963). Then 

automated electrospray tandem mass spectrometry will be used to measure the 

amounts of phenylalanine and tyrosine contained in the whole blood (Rashed et al,

1997).
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A small study has already been carried out on Guthrie blood spots (Guthrie and Susi, 

1963), measuring phenylalanine and tyrosine levels in blood spots from decapitated

1-2 day old wild type and hph-1 mice (table 6.1). Phenylalanine and tyrosine from 

blood spots were measured by Mr. Geoff Lynes in the Neurometabolic Unit, at the 

National Hospital for Neurology and Neurosurgery, Queen Square, London, UK 

using automated electrospray tandem mass spectrometry (Rashed et al, 1997). They 

were quantified using a constant neutral loss scan with internal standards of ring- 

labelled phenylalanine, and tyrosine-cfi. Phenylalanine concentrations were shown to 

be significantly elevated in hph-1 neonates compared to wild type (585.46 ± 58.19 

vs. 84.59 ± 7.24nmol/ml; p < 0.001, n = 7-8). However, tyrosine concentrations were 

not different between hph-1 and wild type (123.83 ± 11.42 vs. 138.23 ± 

11.64nmol/ml; p = 0.50, n = 7-8). When the ratios of phenylalanine:tyrosine were 

analysed, the proportion of phenylalanine was significantly higher in hph-1 mice 

(4.87 ± 0.48 vs. 0.62 ± 0.04nmol/ml; p < 0.001, n = 7-8)(table 6.1). These 

experiments demonstrate further an impaired ability to metabolise phenylalanine, 

resulting from a deficiency of BH4 in the neonatal hph-1 mouse. This small study 

also illustrates the feasibility of using small blood volumes on Guthrie cards from 

hph-1 mice, to measure phenylalanine and tyrosine levels in blood. Challenging hph- 

1 mice with a dose of phenylalanine may then be a valid approach as a marker of the 

success of AdGCH gene transfer.

Once these experiments looking at the HP A status of the hph-1 mouse have been 

conducted, it will be possible to begin treating some o f the mice with AdGCH. The 

most likely route of administration of AdGCH will be via the tail vein, as the liver 

can take up adenovirus administered by this route, and then potentially act as a 

source of transgene product for the rest of the organism (Chu, 2004). Of note, BH4 

injected into the periphery (lOOmg/kg s.c.) can elevate brain levels of BH4 in hph-1 

mice (Canevari et al, 1999). Another option would be to introduce AdGCH into the 

brain via intracerebroventricular (ICV) injection. This would increase the chances of 

correcting the brain monoamine, NO and BH4 deficiencies in the hph-1 mouse, 

because the virus could enter the brain, which it would be unlikely to do if  injected 

peripherally. However, ICV injections are both expensive and technically 

demanding, as they require a cannula to be surgically implanted into the brain of the
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wild type hph-1

Phenylalanine (nmol/ml) 84.59 ± 7.24 585.46 ± 58.19*

Tyrosine (nmol/ml) 138.23 ± 11.64 123.83 ± 11.42

Phenylalanine: Tyrosine 
Ratio 0.62 ± 0.04 4.87 ± 0.48s

Table 6.1. Comparison o f the levels of phenylalanine, tyrosine and the phenylalanine 

to tyrosine ratio in wild type versus hph-1 whole blood. Whole blood was collected 

onto a Guthrie card, as described by the method of Guthrie and Susi, 1963. 

Phenylalanine and tyrosine were measured by Mr. Geoff Lynes in the 

Neurometabolic Unit, at the National Hospital for Neurology and Neurosurgery, 

Queen Square, London, using automated electrospray tandem mass spectrometry. 

Data is expressed as mean ± SEM (n = 7-8). * = p < 0.001 vs. wild-type, as judged 

using Student’s t-test. s = p < 0.001 vs. wild-type, as determined first by 

transformation of ratios for statistical analysis (section 2 .1 0 .), followed by one way 

ANOVA followed by least significant difference test.
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animal (Gupta and Bhargava, 1965); a method that is made more challenging in a 

small rodent such as a mouse.

Before larger scale experiments can begin, another set of pilot studies will need to 

examine which dose of virus is acceptable for treatment. A therapeutic window must 

be found where functional effects are observed, but toxicity is minimal. One of the 

drawbacks of using adenoviruses as vectors for gene transfer is the severe innate 

immune response they can trigger. This can limit their survival in host cells and their 

use in gene therapy (Byrnes et al, 1995; van Ginkel et al, 1997). With these toxicity 

issues in mind, Dr. Shijie Cai has been developing an adeno-associated virus, which 

will contain human GTP-CH like AdGCH. This may reduce toxicity and be better 

tolerated by the animals. However, at present this remains in development.

Once a safe and efficacious dose of virus is found, it is possible to begin experiments 

to validate the success of the gene transfer. Parameters that would need to be 

measured include BH4 levels in brain, liver and also plasma; NO2 ' and NO3’ in brain 

and plasma, as well as cGMP and monoamine neurotransmitters in the brain. 

Expression of recombinant GTP-CH in liver and brain would be analysed using 

Western blotting for the anti-HA epitope, and visualization of AdeGFP in liver slices 

would provide more evidence of gene transfer.

An alternative approach to correcting the GTP-CH deficiency in hph-1 mice, is to 

administer AdGCH to neonatal pups, aged between 1-5 days. The advantage o f this 

approach is that the HP A hph-1 mice display before 3 weeks old (McDonald and 

Bode, 1988) can be used as a marker of gene transfer success, rather than dosing 

animals with phenylalanine. Furthermore, gene transfer in neonatal mice may be 

more successful than in adult mice, as the neonatal immune system and blood-brain 

barrier is less developed, and adenoviral gene transfer has been shown to be more 

effective in neonates (Gilchrist et al, 2002; Saunders et al, 1999). One of the major 

drawbacks of using adenoviral vectors is the immune response they can trigger 

(Kaffi et al, 1998), so dosing neonatal mice may lead to fewer immunological 

consequences.
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However, using mice so young can also have drawbacks. To begin with, measuring 

phenylalanine requires obtaining blood from the mice, which may be problematic in 

such young animals, as the volume of blood that can be taken is very low, unless 

blood is obtained from decapitation as described above and shown in table 6 .1 .

However, this requires killing the animal, so monitoring the longer-term effects of 

gene transfer is not then possible. An alternative method of taking blood from 

neonates is from tail snips, but this limits the amount volume of blood that can be 

removed, which may not be sufficient for accurate determination of phenylalanine 

and tyrosine concentrations. However, pilot studies would reveal whether this 

technical difficulty might be an obstruction to conducting full gene transfer studies in 

neonatal hph-1 mice.

The route of administration of AdGCH must also be taken into account in neonatal 

mice. Injecting virus via the tail vein may prove to be technically difficult, due to the 

size of the blood vessel, so an alternative may be intramuscular (i.m.) injection or s.c. 

injection (Gilchrist et al, 2002). If this is successful then the mice would be left to 

develop, and markers of gene transfer success including BH4, NO and monoamine 

metabolism, and recombinant GTP-CH expression, could be measured over various 

time-points to monitor correction of the defect.

Taken together, these two different approaches to in vivo gene transfer of AdGCH in 

neonatal and adult mice, are potential methods to correct the impaired BH4 

metabolism in the hph-1 mouse. If either or both o f these approaches are successful 

then perhaps ultimately a viral vector containing recombinant human GTP-CH could 

be used for gene therapy in humans suffering from impaired BH4 metabolism.
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