UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Enhancing the oxygen supply to whole-cell oxygenase bioconversions.

Fish, S.; (2006) Enhancing the oxygen supply to whole-cell oxygenase bioconversions. Doctoral thesis , University of London. Green open access

[thumbnail of U592773.pdf] Text
U592773.pdf

Download (3MB)

Abstract

The aim of this work was to investigate the effect of oxygen limitation on whole-cell oxygenases, and to determine how the physiochemical properties of oils affect their ability to enhance the oxygen transfer rate. Whole-cell oxygenase biocatalysts require oxygen as a substrate for the reaction and for the electron transport chain. The productivity of these bioconversions is therefore influenced by the maximum oxygen transfer rate of the fermenter. Organic solvents are commonly used in oxygenase bioconversions to alleviate substrate or product limitation, and they can also increase the oxygen transfer rate to the aqueous phase. The model system was the bioconversion of bicycloheptenone to oxabicylooctenone using a recombinant E.coli biocatalyst overexpressing cyclohexanone monooxygenase (CHMO). Above a critical biomass concentration the oxygen transfer rate determined the maximum activity. When oxygen was not limited, the electron transport chain used twice as much oxygen as the CHMO. When it was limited, the CHMO and the electron transport chain competed for the oxygen - the CHMO used approximately 20% whatever the severity of the limitation. The oxygen transfer rate to the aqueous phase increased up to 2.5 fold depending on the physical properties and the volume fraction of the oil phase. The oxygen transfer rate only increased if the oil drops were small enough - the magnitude was determined by the oxygen solubility of the oil. There was no correlation between the spreading coefficient and the oxygen transfer rate. A model that predicted the enhancement in the oxygen transfer rate caused by the addition of oil was in good agreement with the experimental results. The specific activity of an oxygen limited CHMO bioconversion was increased up to 2.25 fold using perfluorotributylamine.

Type: Thesis (Doctoral)
Title: Enhancing the oxygen supply to whole-cell oxygenase bioconversions.
Identifier: PQ ETD:592773
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Thesis digitised by Proquest
UCL classification: UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Biochemical Engineering
URI: https://discovery.ucl.ac.uk/id/eprint/1445451
Downloads since deposit
106Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item