
REFERENCE ONLY

UNIVERSITY OF LONDON THESIS

Degree Year 'L o © ^  Name of Author FT

COPYRIGHT
This is a thesis accepted for a Higher Degree of the University of London. It is an 
unpublished typescript and the copyright is held by the author. All persons consulting 
the thesis must read and abide by the Copyright Declaration below.

COPYRIGHT DECLARATION
I recognise that the copyright of the above-described thesis rests with the author and 
that no quotation from it or information derived from it may be published without the 
prior written consent of the author.

LOAN
T heses may not be lent to individuals, but the University Library may lend a copy to 
approved libraries within the United Kingdom, for consultation solely on the premises 
of those libraries. Application should be made to: The Theses Section, University of 
London Library, Senate House, Malet Street, London WC1E 7HU.

REPRODUCTION
University of London theses may not be reproduced without explicit written 
permission from the University of London Library. Enquiries should be addressed to 
the T heses Section of the Library. Regulations concerning reproduction vary 
according to the date of acceptance of the thesis and are listed below as  guidelines.

A. Before 1962. Permission granted only upon the prior written consent of the 
author. (The University Library will provide addresses where possible).

B. 1962 - 1974. In many cases the author has agreed to permit copying upon
completion of a Copyright Declaration.

C. 1975 - 1988. Most theses may be copied upon completion of a Copyright
Declaration.

D. 1989 onwards. Most theses may be copied.

This thesis com es within category D.

S '  This copy has been deposited in the Library of

□ This copy has been deposited in the University of London Library, Senate 
House, Malet Street, London WC1E 7HU.

C:\Documents and Settings\lproctor.ULL\Local Settings\Temporary Internet Files\OLK36\Copyright - thesis.doc





Molecular Evidence for Dietary Adaptation 
in Humans

Elizabeth Caldwell 
Ph.D. Genetics Thesis

The Centre for Genetic Anthropology 
Department of Biology 
University College London

Supervisor: Dr. Mark G. Thomas



UMI Number: U592702

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U592702
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346



Abstract

Starch digestion begins in the mouth where it is hydrolysed into smaller polysaccharides by the 

enzyme salivary amylase. Three salivary amylase genes (AMY1A, B & C) and a pseudogene 

(AMYP1) have been described and are located in tandem on chromosome 1. Polymorphic 

variation has been demonstrated in Caucasians in the form of the number of repeats of the AMY 1 

genes, as follows: (lA -lB -Pl)n-lC . This variation has been reported to result in differing levels 

salivary amylase enzyme production and, as a result, differences in the efficiency of starch 

digestion in the mouth. It is proposed in this thesis that an increase in salivary gene copy 

number may be an adaptation to high starch diets as a result of the adoption of agriculture. 

Reliable high-throughput multiplex PCR based methods have been designed to quantify AMY 1 

gene copy number and to also to type 6 microsatellite markers closely linked to the AMY gene 

cluster. Data have been collected for 14 human populations, with different histories of cereal 

agriculture and ancestral levels of starch in the diet. Data have also been collected on AMY 1 

gene copy number in 5 chimpanzees (Pan troglodytes).

The AMY 1 allele frequency difference (measured using FST) between the two most extreme 

populations, the Mongolians and Saami, was not an outlier on a distribution of FST based on 

presumed neutral 11,024 SNPs from the human genome. The chimpanzee data suggest that the 

most frequent allele (AMY1*H1) in humans may not be the ancestral allele, as all chimpanzee 

chromosomes tested carried the AMY1*H0 allele (containing only one copy of the AMY1 gene). 

A more sensitive selection test, the analysis of the intra-allelic variability of the AMY 1 repeat 

alleles using closely linked microsatellites, showed no compelling evidence for recent positive 

selection at the AMY 1 locus in humans. As a result, genetic drift could not be ruled out as an 

explanation for the observed AMY1 allele frequency differences among populations.

Alanine:glyoxylate aminotransferase (AGT) is an intermediary metabolic enzyme that is targeted 

to different organelles in different species. Previous studies have shown that there is a clear 

relationship between the organellar distribution of AGT and diet. Non-human primates show the 

herbivorous peroxisomal distribution of AGT. In humans a point mutation and insertion deletion 

polymorphism have been associated with peroxisome-to-mitochondria AGT mis-targeting. Data 

have been collected using a PCR/RFLP based method, in 11 human populations. In a comparison 

with Fst values from 11.024 SNP loci, 94.5% of SNPs had a lower FST than a comparison of AGT 

allele frequencies for Saami and Chinese. This unusually high allele frequency difference 

between Chinese and Saami is consistent with the signature of recent positive selection driven by 

the unusually high meat content in the Saami diet.
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Chapter l:Introduction

1.1 General overview

Diet is a major factor in the adaptation of an organism to its environment 

(Ulijaszek & Strickland 1993). An individual must be able to obtain and digest 

the food available in order to survive and reproduce. Diet has a major influence 

on many aspects of an organism’s anatomy, reproductive strategies and 

behaviour (see Fig 1.1). Over the course of human evolution, subsistence 

patterns have undergone a number of dramatic changes that have had a major 

effect on the survival and success of the human species. These changes include a 

shift from a predominantly herbivorous primate heritage to a diet that includes a 

significant proportion of meat, the use of non-oral food preparation techniques 

and the intensive control of plant and animal resources through domestication 

and agriculture (Gordon 1987).

FOOD
CONSUMPTION

GROWTH 
& HEALTH

FOOD /  
ACQUISITION

ADULT
MORPHOLOGYWORK

DEMOGRAPHY
^  FERTILITY

EXCHANGE
ORGANISATION

MORTALITY

TECHNOLOGY

Fig 1.1: The ecology of nutritional adaptation in humans (after Ulijaszek & 

Strickland 1993) showing the complex inter-relationships between food and 

other aspects of the life cycle and adaptive niche.

Since Darwin’s theory of natural selection was first published in 1859, questions 

have been raised about the biological processes behind human evolution. The 

study of genetics, starting with Mendel, has provided a framework to study 

adaptation and natural selection at the molecular level. Currently, one of the 

challenges in the study of human evolution is to pinpoint, in the language of 

genetics, how humans evolved (see Enard et al. 2002a, Jobling et al. 2004).
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Given its importance in the survival of any species, diet is an obvious place to 

look in order to find molecular evidence for adaptation in humans.

This chapter gives an introduction to some of the issues involved in the search 

for molecular evidence of dietary adaptation in humans. Firstly it surveys 

existing examples of nutritional adaptation. Then it examines the methods 

available for detecting the signature of selection in genetic data. Following this 

is an outline the history of human subsistence including the origins and spread of 

agriculture, as well as an overview of the methods used in the reconstruction of 

pre-agricultural diets. Finally the chapter gives an introduction to the human 

alpha-amylase multigene family, which as will be explained, forms the basis of 

the hypothesis for dietary adaptation explored in this thesis.

1.2 Examples of Nutritional Adaptation

There are number of ways in which humans can adapt in order to exploit new 

foods. With their increased brain size and manual dexterity, humans have 

developed a number of cultural practices to exploit foodstuffs that would 

otherwise be inedible. In terms of biological adaptations, however, there are 

examples of changes in gross anatomy, such as shortened gut for digesting 

smaller amounts of high quality foods (Aiello & Wheeler 1995), as well as 

changes on a molecular level. These molecular adaptations often involve 

differences in enzymes involved in the metabolism of dietary components.

The most frequently cited example of dietary adaptation on a molecular level is 

lactase persistence in adulthood (see Swallow 2003 for review). Lactase (lactase 

phlorizin hydrolase) is the enzyme that catalyses the breakdown of lactose, the 

sugar in milk, to glucose and galactose. In humans and most mammals it is 

normally only expressed in infancy and early childhood. If milk is consumed 

with insufficient levels of the enzyme present, such as in non-persistent adults, 

unpleasant bloating, cramps and stomach upset occur (Hollox et al. 2001). 

However, individuals from many European, Middle Eastern and some African 

human populations continue to express the enzyme throughout adulthood, giving 

them the ability to digest milk and milk products (Mulcare et al. 2004). It has 

been suggested (Cavalli-Sforza 1973, Hollox et al. 2001, Enattah et al. 2002,
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Poulter et al. 2003) that a selective advantage based on additional nutrition from 

dairy products explains these genetically determined population differences (see 

Enattah et al. 2002).

Sucrase-isomaltase (SI) is the enzyme responsible for sucrose digestion, as well 

as 80% of maltose digestion. Maltose is the main disaccharide produced by the 

digestion of starch by the salivary and pancreatic amylases and it is likely that 

the domestication of plants such as wheat led to an increase in starch in the diet 

of farmers compared with hunter-gatherers (Cavalli-Sforza 1981, Neel 1982, 

Turner 1979, Cordain et al. 2000tf). Sucrose has probably only been consumed 

in large quantities in recent times. Congenital SI deficiency is a serious 

condition if large quantities of sucrose are consumed early in life. SI deficiency 

in the Greenland Inuit came to the attention of Danish researchers because it was 

associated with severe malnutrition when sucrose was fed to infants, and was 

shown to be common in this population. Sucrose-isomaltose malabsorption is 

found at 7-16% in Inuit populations contrasting with 0.2% in white North 

Americans (McNair et al. 1972). It is only recently have the Inuit been exposed 

to sucrose containing foods, as traditionally the majority of their dietary calories 

are from meat and fat (Shetty 2002). It has been suggested that in populations 

that consume little dietary starch and sucrose, the SI deficiency allele is not 

under selective constraints and so has reached polymorphic frequencies.

Type II diabetes (or non-insulin dependent diabetes mellitus, NIDDM) is another 

example where there is marked difference between certain populations in terms 

of disease incidence. In the last fifty years, a number of epidemics of type II 

diabetes have been noticed among populations that have recently adopted high 

calorie / low exercise western lifestyles, such as the Namura Indians of the 

tropical Pacific, Pima Indians in Arizona and urban Wanigela people in Papua 

New Guinea (Diamond 2003). Initially it was suggested that these populations 

had experienced extremely severe famines during their history and so selection 

for a thrifty genotype had occurred (Neel 1962). His hypothesis was that the 

rapid release of the hormone insulin in response to elevated blood-sugar levels 

was an advantage to our ancestors, allowing them to build up fat deposits in
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times of plenty. However, in an environment where there is an abundance of 

food, this rapid response is detrimental -  over production of insulin leads to 

insulin resistance, which in turn leads to diabetes. In 1982, Neel revised his 

theory and suggested that NIDDM was due to genetically based insulin 

resistance in response to hunter-gatherer diets low in carbohydrate and high in fat 

and meat. Such a diet would have selectively favoured the maintenance of blood 

glucose levels as the day-to-day body fuel, while synthesising and depositing fats 

as longer-term energy stores (McMichael 2002). Support for this idea came from 

the work of Lilloija and colleagues (1993) who studied individual differences in 

insulin secretion and insulin sensitivity the Pima Indians. They found that these 

differences are predictive of subsequent diabetes and act independently of 

obesity.

It is now considered that the state found in many of the Non- European 

populations studied is more likely to be the ancestral human condition (see Me 

Michael 2002). The focus has now shifted to explaining why Europeans show 

such low incidence of type II diabetes considering their well-fed sedentary 

lifestyles. It is possible that selective constraints have been relaxed, or perhaps 

there has been selection in Europeans for increased insulin sensitivity since the 

establishment of agriculture and the resulting increase in carbohydrate in the diet.

One final example of inter-individual variation in a dietary enzyme is alcohol 

dehydrogenase (ADH). Many people are able to derive an appreciable 

proportion of their energy intake from alcohol (Roberts 1985). However 83% of 

Japanese have a variant of ADH that metabolises alcohol at a much higher rate 

(Osier 2002). This variant is only present at 6% in Europeans. If individuals 

who have the atypical form of ADH consume alcohol, acetaldehyde 

accumulation occurs causing the characteristic flushing syndrome consisting of 

nausea, tachycardia, dizziness, warmth and muscular weakness (Aebi et al.

1981). Osier (2002) found an ADH haplotype that was present at high 

frequencies in East Asians and rare or unobserved in other populations. They 

suggest that this haplotype is unlikely to have reached such high frequency 

because of random genetic drift alone (Osier 2002). The polymorphism could
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have attained such a high frequency through genetic drift or the effects of 

selection. The authors argue that it would take a very strong population 

bottleneck and/or strong subsequent random genetic drift within eastern Asia for 

this rare haplotype to become frequent. However, more data are required to 

demonstrate that selection has indeed been operating on this ADH allele.

These examples illustrate the fact that there exist differences between 

populations in terms of the individual’s ability to metabolise certain dietary 

components. Often, authors suggest adaptive scenarios to explain the 

frequencies of the variants found. However, observing an association between 

food practices and the ability (or inability) to digest certain foods, is not 

sufficient grounds to claim that natural selection has occurred to adapt us to our 

dietary environment. Rather, neutrality is the null hypothesis against which 

hypotheses of selection must be tested. There are a number of formal methods 

that have been developed to test for signatures of selection using genetic data, 

which will be outlined in the following section.

1.3 Natural Selection

In his seminal work Of the origin of species by means of natural selection 

Charles Darwin (1859) defines natural selection as the preservation of favourable 

individual differences and variations, and the destruction of those which are 

injurious. In the language of modem genetics this can be described as the 

differing reproductive success of genotypes in succeeding generations.

Genotype variation produces individuals with different capacities to survive and 

reproduce in different environments (Hard 1987). Natural selection acts on the 

phenotype of an individual, which may be determined by a number of genes as 

well as environmental factors. However natural selection can have no 

evolutionary effect unless phenotypic variation has a genetic component. That 

is, that some of the variation that created the phenotype must be able to be 

inherited by the next generation (Bamshad & Wooding 2003).

18



1.3.1 Genetic Variation

In most populations of animals and plants inter-individual genetic variability can 

be found. In humans, variation at the protein level has been recognised since the 

1960s. Less is known, however, about the functional significance of this 

variation. There are a number of types of molecular variation, which can be 

grouped into three classes: Single nucleotide polymorphisms (SNPs), insertion/ 

deletion polymorphisms (indels) and variable number of tandem repeat 

polymorphisms (VNTRs), which include mini and microsatellites. Many 

examples of these polymorphisms have no known function, but there are 

instances from all three classes that have phenotypic effects. Even if a 

polymorphism does not appear to have a function, it may still prove to be a 

useful marker for genetic analysis if it is closely linked to a locus of interest, as 

will be seen in the following sections.

1.3.2 Types o f selection

The study of natural selection has led to a proliferation of terms to describe 

different ways that changes in allele frequencies occur (see Fig 1.2). Selection 

can operate at any stage in an organism’s progress from fertilisation until the 

production of viable offspring, including survival into reproductive age, success 

in attracting a mate (sexual selection), ability to fertilise (gamete selection) and 

in the number of offspring produced.

In terms of allele frequencies, natural selection may lead to genetic uniformity or 

to diversity (Gale 1980). If selection favours phenotypes at one extreme of the 

range of variation present in the population then it is known as directional 

selection. Mutations that increase fitness are said to be subject to positive 

selection. In contrast, mutations that reduce the fitness of the individual will be 

subject to purifying selection (also known as negative selection). If a new 

deleterious
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Type of selection Description Leading to uniformity or 
diversity?

Directional or 
balanced?

Positive
(diversifying)0

Mutations that increase fitness will be selected for Uniformity Directional

Negative (Purifying)0 Mutations that decrease fitness will be selected 
against

Uniformity Directional

Codominant0 Mutations that reduce fitness of both heterozygote 
and homozygote will be selected against

Uniformity Directional

Overdominant0
(heterozygote
advantage)

Mutations that increase fitness of heterozygote 
relative to both homozygotes

Diversity Balanced

Frequency dependent0 Frequency of allele determines its fitness Diversity Balanced

Stabilising
(normalising)^

Intermediate phenotype is advantageous Diversity Balanced

Underdominant
(heterozygote
disadvantage)0

Mutations that decrease fitness of heterozygote 
relative to both homozygotes

Diversity Balanced

Disruptive^ Two or more phenotypes are fitter than 
intermediates between them

Diveristy Balanced

Background0 The elimination of neutral polymorphisms as a 
result of negative selection of deleterious mutations 
at linked sites

Uniformity Directional

Fig 1.2: A summary of terms used in discussing natural selection. Notes: aSee Jobling et al 2004, b See Futuyma 1998,c See Bamshad & Wooding 2003.



mutation arises that reduces the fitness of the heterozygote, as well as the 

homozygote, then it will be eliminated more rapidly from the population. This is 

known as co-dominant selection (see Futuyma 1998).

Alleles may increase the fitness of the heterozygote relative to both 

homozygotes. This is known as over-dominant selection (or heterozygote 

advantage) and this type of selection creates a balanced polymorphism. If an 

intermediate phenotype is fittest then stabilising (or normalising) selection is said 

to be operating. An example of heterozygote advantage in humans is sickle cell 

anaemia. The Hbs allele causes the debilitating sickle cell anaemia when 

homozygous, but also confers malarial resistance when heterozygous (Haldane 

1949).

Balanced polymorphisms, as are maintained by over-dominant selection, can be 

generated by a number of processes, which are collectively described as 

balancing selection. Frequency dependent selection is an example of balancing 

selection. Here, the frequency of a genotype is inversely related to its fitness.

The major histocompatibility complex (MHC) is suggested to have been under 

both frequency dependent and over-dominant selection (Hughes & Nei 1988). If 

pathogens have evolved to evade immune detection in individuals carrying the 

higher frequency alleles, frequency dependent selection will cause low frequency 

alleles to be favoured. In the case of heterozygote advantage, individuals with 

heterozygous MHC are better able to resist infectious disease as a result of 

having a broader spectrum of antigen binding specificities.

Another type of selection, under-dominant selection (also called heterozygote 

disadvantage), reduces the fitness of only the heterozygotes. This is an example 

of disruptive selection, where two or more of the phenotypes are fitter than the 

intermediates between them (Futuyma 1998).
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1.3.3 The neutral theory o f molecular evolution

Before the 1960s it was assumed that most of the polymorphisms in a 

populations were maintained by balancing selection (Bamshad & Wooding 

2003). During the 1960s however, protein sequencing and electrophoresis of 

allozymes started to provide data on the extensive amount of amino acid 

polymorphisms both within and between species. Mooto Kimura (1968) 

estimated the rate of amino acid substitution in a  and |3 haemoglobin sequences. 

He argued that the genetic load, or the proportion of a population’s maximum 

fitness that would be lost as a result of selection against the deleterious 

genotypes is contains, would be too great if selection was that only driving force 

in protein evolution (Kimura 1968). Instead he proposed that most 

polymorphisms, and fixed differences between species, are selectively neutral. 

This idea is known as the neutral theory of molecular evolution. Kimura’s 

neutral theory has provided the framework for evolutionary analysis of DNA 

sequence variation and change since the 1960s. Selective neutrality is an 

appropriate null hypothesis against which to test for evidence of selection 

(Kreitman 2000). Selection tests that compare observed diversity with that 

expected under neutral evolution and are known as neutrality tests (see Wayne & 

Simonsen 1998 for a review).

1.3.4 The confounding effect o f human demographic history

It should be noted here that a significant difference from the neutral expectation 

might not always be the result of selection. The neutral model assumes that the 

population is in a mutation -  drift equilibrium, which is the case in a large 

constant sized population. However in humans it is known that the species 

population size has expanded dramatically in the past 10,000 -  100,000 years, 

from a few thousands of individuals to over 6 billion (Yang 2002). The human 

population is not, therefore at a stationary equilibrium for neutral variants. This 

can cause problems for testing for evidence of selection, as some genetic 

signatures of positive selection can be similar to signatures of population’s 

expansion (Kreitman 2000). In addition the human species has a history of 

major migrations and population subdivision, which can give rise to patterns of
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variation that depart from the neutral expectation under simple models of 

evolution.

According to Kreitman (2000), the only current safeguard against gross 

misinterpretation of test results in terms of distinguishing between selection and 

historical demography, is to have an a priori hypothesis about the type and 

direction of selection that is expected for the locus under investigation. 

Population history, however, affects all nuclear genes equally, where as 

signatures of selection should only be detectable at the particular locus of interest 

(Payseur & Nachman 2002, Bamshad & Woodman 2003). This idea, which has 

formed the basis of tests for neutrality for decades (see Lewontin & Krakauer 

1973, Cavalli-Sforza 1966) has recently been given a new lease of life. The 

availability of large genome-wide data sets consisting of thousands of SNPs and 

microsatellite markers from the human genome, typed in a number of global 

human populations, has opened up the possibilities for identifying regions of the 

genome that have been influenced by local natural selection (see Akey et al.

2002, Kayser et al. 2003). Following on from this, departures from neutrality 

can be detected in loci that have been hypothesised to have been under recent 

local selection, by means of a simple comparison of frequency distribution from 

the candidate locus with the genome-wide pattern estimated from large numbers 

of markers that have been typed in the same individuals or populations.

1.3.5 Testing for selection

There are many formal methods for formally testing for the signature of past 

selection. As can be seen in Fig 1.3, the different methods available are 

appropriate for different types of data. In addition the different approaches have 

different abilities to detect different modes of selection, such as directional, 

balancing etc. When considering dietary adaptations that have occurred in 

different human populations, we are concerned with looking for evidence for 

selection using within-species polymorphisms. Some tests apply equally well to 

between-species and within-species comparisons whereas some tests require both 

types of data. In addition, some tests focus specifically on within-species
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Test Type of data required Designed to detect Best Use Reference

Tajima’s “D” Within sp. Skew in frequency spectrum General purpose test of frequency 
spectrum skew

Tajima 1989

Fu & Li’s “D” Within sp. Recent vs ancient mutations General purpose test of frequency 
spectrum skew

Fu & Li 1993

Fu “W” Within sp. Departures in frequency spectrum Population subdivision Fu 1996

Fu “G rf Within sp. Departures in frequency spectrum Population subdivision, shrinkage & 
overdominance

Fu 1996

Fu “G^” Within sp. Departures in frequency spectrum Population subdivision, shrinkage & 
overdominance

Fu 1996

Fu “Fs” Within sp. Excess or rare alleles (one sided) Pop growth, hitchhiking, background 
selection

Fu 1997

Hudson Within sp. and allele Unexpectedly low variation in allele 
class

Directional selection Hudson et al 
1994

Wall B ans Q Within sp. Linkage disequil. between adjacent 
segregating sites

Pop. Subdivision, balancing selection Wall 1999

Andolfatto’s “Sk” Within sp. (sliding window) Non-neutral haplotype structure Balancing and directional pop. 
subdivision

Andolfatto et al 
1999

HKA Within vs between sp. (2 loci) Differences in variation not accountable 
by constraints

Balancing selection, recent selection 
sweeps

Hudson et al 
1987

McDonald (run 
test)

Within vs between sp. 
(Contigous region)

Regions with non-neutral patterns of 
polymorph and diversity

Eqm. balancing selection McDonald 1996, 
1998

McDonald
Kreitman”G”

Within vs between sp. (synon. 
vs nonsynon.)

Adaptive evolution Adaptive protein evolution; mutation / 
selection

McDonald & 
Kreitman 1991

Intra-allelic
variabitilty

Within sp. Discrepancies between allele frequency 
and variability at linked loci

Directional selection Slatikin & 
Bertorelle (2001)

to
4*.

Fig 1.3 A summary of the different tests of selection (adapted from Kreitman 2000). Sp. is an abbreviation for species.



polymorphisms. The following review will focus on tests that can be applied to 

data from within-species comparisons only.

1.3.5.1 Codon-based selection tests

Nucleotides within coding sequence can be divided into synonymous mutations 

which do not result in a change in amino acids, and non-synonymous mutations, 

which result in that codon specifying a different amino acid. Synonymous sites 

are assumed to be selectively neutral. Under diversifying selection, the 

proportion of non-synonomous sites (dn) that are variable will be greater than 

synonymous sites (ds). Under purifying selection the reverse is true. This can 

be expressed as follows: 

co = dn / ds

If to > 1, this indicates that positive selection has occurred, if to = 1 then no 

selection has occurred and if co < 1 then there is evidence that purifying selection 

has been operating. By testing if co is significantly different from 1, dn is tested 

against the neutral expectation ds (see Yang & Bielawski 2000 and Yang 2001 

for a review). Rooney & Zhang (1999) examined the ratio of synonomous to 

non-synonomous substitutions in the protoamine gene in primates. Protoamines 

are proteins that bind sperm DNA during spermatogenesis in vertebrates. They 

found that the nucleotide substitution rate at non-synonomous sites is 

significantly higher than the rate at synonomous and intron sites in protoamine 

PI of hominoids and Old World Monkeys. This result suggests that positive 

selection has been operating on protoamine PI in these species.

1.3.5.2 Tests based on the frequencies o f variant sites

Under the neutral model in a constant sized population, the level of diversity in a 

population is assumed to have reached equilibrium, where the generation of new 

alleles by mutation is equal to the elimination of alleles by genetic drift. 

Therefore it is possible to define an expected level of diversity in a population 

(0) in terms of the mutation rate (p per site per generation) and drift. Since drift 

is inversely proportional to the effective population size (Ne), or the size of the 

ideal population in which the effects of drift would be the same at those seen in

25



the actual population, then this is used as a proxy for drift. This can be expressed 

as follows:

0 = 2n Ne p

Where n is the number of heritable copies of the locus per individual.

There are a number of different ways of estimating 0 from sequence data, which 

take into account different parameters derived from the observed diversity.

Under the neutral model the various different methods of estimating 0 should 

give the same result. This forms the basis of a number of different tests for 

selection (see Fig 1.3) (see Wayne & Simonsen 1998 & Kreitman 2000 for a 

review). The best known of these is Tajima’s D (Tajima 1989). This compares 

two estimates of 0, one based on the number of segregating sites, and the other 

based on the number pair-wise differences. Under neutrality Tajima’s D is 

expected to be zero. Negative values indicate positive selection, where as 

positive values indicate balancing selection.

FOXP2 is a transcription factor involved in speech and language development.

J. Zhang et al. (2002) found that the level of polymorphism in the introns of 

FOXP2 is lower than other neutral non-coding regions they examined. They 

obtained a Tajima’s D value o f -1.36 for the FOXP2 intron data, which indicates 

positive selection. Events such as background selection on deleterious mutations 

in tightly linked exons or quick fixation of advantageous mutation in these exons 

(also known as a selective sweep) could have lead to a reduced present-day 

polymorphism in the introns of FOXP2.

1.3.5.3 Intra-allelic variability

Intra-allelic variability is the joint distribution of the frequency of alleles and the 

extent of variability at closely linked marker loci. Slatkin & Bertorelle (2001) 

developed a method for finding this joint distribution of allele frequencies and 

diversity. If the population growth rate is known, then the joint distribution 

provides the basis of a test for neutrality by testing whether the observed level of 

intra-allelic variability is consistent with the observed allele frequency (Slatkin 

2001). Under the neutral model the frequency of an allele will be related to its 

age. This is because it takes a long time for rare (including new) alleles to drift
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to high frequencies in populations. If an allele is young but at high frequency in 

a population, then this reflects a departure from neutrality.

Intra-allelic variability can be modelled in a number of ways: i) number of 

recombinants at a linked binary marker, ii) the length of a conserved haplotype 

and iii) the number of mutations at linked markers (including microsatellite 

markers).

Slatkin & Bertorelle (2001) demonstrate an intra-allelic variability model using 

allele frequency data from the CCR5 locus, and two closely linked 

microsatellites from data presented by Stephens et al. (1998). The A32 deletion 

at the CCR5 gene causes an absence of the CCR5 chemokine receptor on 

lymphoid cells. This receptor serves and an entry port for a number of 

pathogens including the human immunodeficiency virus (HIV)-l. The absence 

of the receptor, as caused by the A32 deletion, is associated with a strong 

resistance against HIV infection and AIDS. The frequency of the A32 deletion 

allele is more than 10% in European populations, although diversity at the 

closely linked microsatellites suggests that it is quite young. Slatkin &

Bertorelle (2001) provide evidence with their analysis that the A32 deletion allele 

is not neutral.

Sabeti et al. (2002) developed a framework for detecting recent positive selection 

in humans by analysing the conservation of long-range haplotypes. They 

examined two loci: Gluscose-6-phosphate dehydrogenase (G6PD) and the CD40 

ligand (TNFSF5). Both these genes have alleles that are thought to provide 

protection against malaria, and so it has been suggested that these allele may well 

be under positive selection. Sabeti et al. (2002) identified the local haplotypes of 

these alleles and then examined extended haplotypes up to 500 kilobases either 

side of the genes. Under neutral evolution new variants will require a long time 

to reach high frequency in the population and the linkage disequilibrium (LD) 

around them will decay over time, due to recombination. Therefore common 

alleles will typically be old and have only short range LD. A signature of 

positive selection is that an allele will have unusually long-range LD given its
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populations frequency. Sabeti et al. (2002) found evidence of positive selection 

at both loci they examined using this method. Interestingly they also explored 

whether positive selection could have been detected using traditional methods. 

They performed Tajima’s D, Fu & Li’s D, Fay and W u’s H. The ds/dn test, the 

McDonald Kreitman test and the HKA test. None of these tests showed a 

significant deviation from neutrality for either G6PD or TNFSF5. This indicates 

that intra-allelic variability approaches are more sensitive than traditional 

methods.

The method developed by Sabeti et al. (2002) was used by Bersaglieri and 

colleagues (2004) to investigate the signatures of selection at the lactase gene.

As mentioned earlier (see section 1.2) the ability to digest lactose contained in 

milk usually disappears in childhood but in European populations, lactase 

activity frequently persists into adulthood. It has been suggested that this ability 

to digest milk in adulthood is an adaptation to pastoralism. Individuals who 

could digest lactose as adults would have an additional source of nutrition in the 

form of dairy products from their herds of cows, and would therefore have a 

selective advantage over individuals who could not. However, this intriguing 

theory has only recently been provided with formal population-genetics evidence 

for selection. Bersaglieri et al. (2004) typed 101 SNPs covering 3.2Mb around 

the lactase gene. They showed that in northern Europeans, a common (~77%) 

haplotype is unusually long given it high frequency. They estimated that strong 

selection occurred with the past 5,000-10,000 years, consistent with an 

advantage to lactase persistence in the setting of dairy farming. In addition they 

remark that the signals of selection they observed are among the strongest yet 

seen for any gene in the genome.

Humans have traditionally represented a far from ideal species on which 

population geneticists can test their models. Not only do humans have low levels 

of nucleotide polymorphism, the inability to control matings, overlapping 

generations, geographic subdivision, but also there are also ethical issues with 

sampling from native populations (Kreitman 2000). However, the more sensitive 

haplotype-based methods for identifying selection, increasing amounts of data on
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neutral loci and a greater understanding of the effect on variation of human 

demographic history, should all increase our ability to detect the signature of 

natural selection in the human genome.

1.4 A brief chronology of dietary change in human evolution

Gordon (1987) has recognised three general phases in the evolution of hominid 

subsistence behaviour. The first phase involves a shift from an unprocessed 

primarily vegetarian foods eaten by the common ancestor of the hominid line and 

chimpanzees, to a diet with a significant proportion of meat as well as substantial 

non-oral food processing. The second phase is characterised by the development 

of specialised hunting and gathering strategies, and the final phase marks the 

transition to food production and the domestication of plant and animal species.

1.4.1 The diets o f Pleistocene hominids

The earliest hominids likely derived most of their food from plants (Wrangham 

et al. 1999). Eaton et al. (1988) suggested that plant foods composed >90% of 

australopithecine diets. Stone tools appear in the archaeological record around

2.5 million years ago (Toth 1985, Susman 1994) and around this time there is 

evidence from that meat was beginning to become an increasingly important 

component to the human diet (Aiello & Wheeler 1995). There has been much 

debate about how the early hominids obtained their meat -  whether through 

hunting or scavenging from the meals of other carnivores (see Chase 1989). 

Deliberate hunting behaviour has often been thought to be associated with the 

development of group co-operation and communication (see Binford 1985), and 

has therefore traditionally been an area of archaeology that has generated much 

interest. It must however be noted here that groups of chimpanzees have been 

observed in the wild to successfully hunt and eat small mammals including 

monkeys in organised groups (Boesch & Boesch 1989, Stanford et al. 1994).

It has been suggested that the robust australopithecines (Paranthropus sp.), often 

interpreted as an evolutionary offshoot of the hominid family tree (see Fig 1.4), 

were
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Sahelanthropus
tchadensis

Orronin
tugenensis

Ardipithecus ramidus 
kadabba

Ardipithecus ramidus 
ramidus

I Australopithecus anamensis

A. afarensis 

Paranthropus aethiopicus

A. bahrelghazali 

■■ ■ 'Kenyanthropus platyops

A. garhi

P. boisei■i
A. africanus

P. robustus

A .?K .?
rudolfensis

A. habilis

Chimpanzee

Homo erectus/ergaster

H. heidelbergensis

H. neanderthalensis 

 ̂  ̂ H. sapiens

Fig 1.4: Fossil hominids, after Jobling et al (2004). The time span of each species 
indicates either the uncertainty in dating or the times of the earliest and latest fossils, 
whichever is larger. Dotted lines indicate either a lack of intermediate species 
Ardipithecus ramidus fossils, or particular uncertainty about the later dates for Homo 
erectus. Dark blue: found only in Africa. White: found in Africa and elsewhere, or 
only outside Africa. Many aspects of the classification of these fossil are still 
debated and likely to be revised.
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more vegetarian than early Homo. However analysis of strontium calcium ratios 

and strontium isotopic ratios suggest that the robust australopithecines from the 

site of Swartkrans, South Africa were omnivores (Sillen & Hall 1994). The 

massive jaws and teeth of the robust australopithecines have been interpreted as 

an adaptation to a substantial proportion of the diet stemming from very tough 

food, perhaps seeds or nuts (see Toth & Shick 1986). The identity of these foods 

however remains unknown.

The earliest use of fire in the archaeological record is still the subject of much 

debate (see James 1989 for a review). A number of claims have been made for 

the use of fire as far back as 1.7 mya. However most archaeologists accept that 

Homo erectus was using fire approx 0.5 mya. Fire is necessary for cooking, 

which makes food more available digestible by cracking open skins and husks, 

bursting cells, breaking down complex molecules and denaturing toxins. 

Wrangham et al. (1999) suggest that signals of cooking can be detected in the 

fossil record from 1.9mya, in the form of the smaller teeth (reduced digestive 

effort) and larger female body size (increased supply of food energy) of Homo 

erectus.

Around 700,000 years ago there is indisputable evidence in the archaeological 

record for hunting (Chase 1989). Brain size was comparable to that of modem 

humans, and stone tool technology shows substantial advances and 

diversification from previous tool making traditions. During this time there was 

also a shift toward larger prey species. Faunal assemblages from the Upper 

Palaeolithic period at around 40-11,000 years ago in Europe, contain remains 

from enormous numbers of larger herbivore species such as reindeer, woolly 

mammoth, bison, and horse (Olsen 1988). Marine resources (shellfish, fish, 

marine mammals &birds) began to be exploited during this phase (Richards 

1999). Plant foods are almost invisible in the archaeological record, although 

the pollen record for this period shows the presence of nut tree species such as 

walnut, hazelnut and pine nuts (Dumayne-Preaty 2001). There is also evidence 

that pre-agricultural populations collected wild grasses and grains in Western 

Asia and in North East Africa (Harlan 1989).
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Fig 1.5: The origins and spread of agriculture
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1.4.2 The origins and spread o f agriculture

The final phase in the history of human diet and subsistence began at the end of 

the Pleistocene and the beginning of the Holocene, at around 12-10,000 years 

ago. The most fundamental change was the shift from food collection to food 

production. The beginnings of agriculture were made possible by the warming 

after the last glacial maximum (c. 18,000 years), which gave rise to the 

beginnings of the modem patterns of climate, vegetation and fauna (Harris 

1996). The domestication of both plant and animal species, and the 

development of farming economies, is thought to have happened independently 

at a number of locations around the world (See fig 1.5).

1.4.2.1 The fertile crescent

The warmer climate at the end of the last glacial period favoured the growth of 

rich stands of wild cereals such as wheat and barley in an area in Western Asia 

known as the Fertile Crescent (see fig 1.6). It is likely that the domestication of 

certain plant and animal species began by sedentary foragers, who gradually 

developed more intensive techniques of plant exploitation, including storage and 

possibly small scale cultivation (Harris 1989). An example of this mode of 

living are the settlements from the Natufian period (12500-10000 ybp) in the 

Levant, where stone houses in small villages have been found, along with sickle 

blades and mortars for grinding seeds (Hillman 1989). The period of cold and 

dry conditions, which occurred between 11500-10,600 ybp, would have reduced 

the wild plant food resources. This in turn would have increased the dependence 

on the small-scale cultivation of large-seeded grasses and herbaceous legumes.

Cultivation caused substantial genetic changes in the wild cereals. For example, 

deliberate sowing and the use of sickles may have favoured the retention of non­

shattering variants (Bar-Yosef & Kislev 1989). Fully domesticated specimens of 

emmer wheat as well as other crops have been found at sites all around the 

Fertile
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Fig 1.6 The fertile crescent, showing major Neolithic archaeological sites (after 
Renfrew & Bahn 1997)
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Crescent dating from around 9,500 ybp (Zohary 1989) (see fig 1.6). Also in 

this period, there is evidence for the domestication of animals, such as sheep 

from the site of Cayonu in South East Turkey, goats in Shanidar, Iraq and cattle 

at the site of Bourqras in Syria (Harris 1981). By 8000 ybp agriculture was 

being developed and extended, with new tools such as hoes, larger trade 

networks, irrigation, and town sized settlements such as Catal Huyuk in Turkey. 

These developments opened up the possibility of colonising new territories for 

cultivation and as a result, farming expanded from the fertile crescent east to Iran 

and west to Europe and Egypt (Miller & Wetterstrom 2000).

1.4.2.2 Europe

Farming expanded into Europe from the south-eastern lobe of the Fertile 

Crescent (Harris 1996). The farming economy comprised of wheat and barley 

as well as sheep, goats, cattle and pigs. Farming spread north to the Balkans and 

from there in two directions; further northwards to along the Danube and Rhine 

towards the north sea, as well as westwards along the Mediterranean to Italy, 

Southern France and Eastern Spain. Lastly, the British Isles and Scandinavia 

show evidence of farming, although most of Scandinavia was too cold for 

growing cereals until some time after the initial farming expansion (Cavalli- 

Sforza et al.1994).

One of the mostly hotly debated topics in European Neolithic archaeology is 

whether farming spread across the continent as a result of the movement of 

people or through cultural transmission (Ammerman & Cavalli-Sforza 1973). It 

is likely that the initial arrival of agriculture in Europe was brought about by 

pioneering faming groups (Sherrat 1994). They brought with them a range of 

crops, technology and new styles of living that were very different to the hunter- 

gatherers that populated the continent. After 6,500 ybp, in the west of the 

continent it is likely that features of the farming economy were adopted by the 

indigenous inhabitants (ibid).

There is still much interest, however, in the extent to which the modem 

European gene pool is contributed to by Neolithic farmers from the near east,
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and the European Palaeolithic populations. Early work using data from classical 

markers (blood groups etc) suggested that Europe-wide gradients of allele 

frequencies were a result of the admixture between low density local hunter- 

gatherers and large numbers of new-coming farmers from the Near East 

(Ammerman & Cavalli-Sforza 1973) Richards et al. (2000a) examined 

maternally inherited mitochondrial DNA (mtDNA) from a range of modem 

European and Near-Eastern populations to shed light on the colonisation of 

Europe. They estimated that the immigrant Neolithic component comprises less 

than a quarter of the mtDNA pool of modem Europeans. This estimate contrasts 

with the data from classical markers and suggests that the influx of farmers from 

the Near East was much smaller than previously assumed. Richards et al.

(2002) also found evidence for substantial back-migration into the middle East, 

and that the majority of extant mtDNA lineages in Europe entered in several 

waves during the Upper Palaeolithic.

Semino et al. (2000) sampled Y chromosomes from males and identified two 

Palaeolithic and one Neolithic migratory episode that contributed to the modern 

European male gene pool. From a subset of their data they estimated the 

contribution of Near-Eastern farmers to the European gene pool to be 

approximately 22%. This estimate agrees with the data from the mtDNA. 

However, Chikhi et al. (2002) analysed the entire Y chromosome dataset of 

Semino et al. (2000) using a likelihood based method to estimate the change 

from place to place in Europe of admixture proportions of Neolithic and 

Palaeolithic genes. They found an average Neolithic contribution of 50% across 

all samples, 56% for the Mediterranean subset and 44% in non-Mediterranean 

samples. These estimates of a large Neolithic contribution are in agreement with 

the data from classical markers and at least twice as large as the estimate of 

Semino et al. (2000) as well as the estimates from mtDNA. It is important to 

note, however, that the estimates for the average Near Eastern contribution to the 

European gene pool do not represent the relative proportions of farmers and 

hunter-gatherers during the initial formation of settlements, but rather the 

proportion of genes that can be traced back to ancestors in the Near East.

36



1.4.2.3 East Asia

In the Yellow river area of present day China, millet was domesticated and 

became a major crop by around 8500 ybp (Sabban 2000). There is also 

evidence that the pig and dog were domesticated about this time in the same 

region. Further south in the Yangtze area, rice was cultivated and is present in 

large amounts in the archaeological record from around 7000 ybp. Rice and pigs 

also formed the basis of the Asian South Coastal cultures, which developed 

around 6000 ybp. By 3000 ybp, important techniques such as crop rotation, 

irrigation and the use of organic fertilizers had been developed (Sabban 2000)

In the steppes of Central Asia, pastoral nomadism started as a secondary 

development of the farming economy. The steppe was a difficult environment 

for agriculture but the open grasslands enabled animal husbandry. Goat, sheep 

and cattle remains are found from 6000 ybp. There is evidence for the use of 

horse and camel from 5000 ybp, which helped to bring about the dominance of 

pastoralism over agriculture. Pure pastoral nomadism with no agriculture is rare 

(Cavalli-Sforza et al. 1994). Most societies practiced semi-nomadic pastoralism 

where agriculture supplements the diet and is usually practiced for some of the 

year, or by specific groups within the society, such as women. Many nomads 

also engage in trade with their agricultural neighbours (Morgan 1990).

1.4.2.4 Africa

Africa is home to the earliest evidence for wild-grass collection in the world 

(Harlan 1989). The site of Wadi Kubbaniya, in modem day Egypt, which has 

been dated to 17,000-16,000 years, has charred remains of the tubers from a 

variety of wild grass species (Hillman 1989). Wild grains were collected for 

food from 13,000 years ago by the peoples of the Cataract tradition, who 

inhabited a region that stretched from the Nile, east to the Red sea and south to 

the Ethiopian highlands (Ehret 2002). With the dramatic changes in climate 

towards a wetter and warmer phase at the end
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of the last glacial age, a number of local developments of farming took place in 

Africa (see fig 1.7). Between 9500-7000 ybp sorghum and millet were cultivated 

in the South-Eastern Sahara region. Meanwhile, in the woodland savannas of 

West Africa planting agriculture was developed with yam as the most important 

crop around 8000-5000 years ago (Fage 1988). The Bantu-speaking peoples 

who originated from the area of modem day Nigeria and Cameroon spread 

westwards and southwards through Africa (Curtain et al. 1995). The Bantu 

people brought with them iron-smelting technology, crops (such as millet and 

squash) and farming techniques which enabled them to displace and marginalise 

the hunter-gatherers that they encountered (Needham et al. 1984)

1.4.2.5 The Americas

The earliest evidence of cultivation in the Americas comes from the Guila 

Naquitez in central Mexico (Smith 1995). Excavations there have shown 

evidence of small scale cultivation of both squash and beans and dates to approx 

9000 ybp. The earliest known maize cobs date to about 4700 ybp and were 

found in the Tehuacan valley in southern Mexico (Smith 1995). However maize 

pollen has been found in Oaxaca and dated to 7100 ybp (Pope et al. 2001). The 

wild ancestor of maize is thought to be Teosinte, a wild grass that grows over 

much of Central America. From there cultivation techniques and crops, such as 

maize and beans, spread northwards to the North American South West region, 

where they formed the basis of the Pueblo Indian cultures from 3500 ybp, and 

south through central America (Smith 1995).

In the Andean highlands, there is evidence for cultivation of potatoes, beans, 

quinoa and maize that dates to approx 4,500 ybp. There is also evidence for the 

domestication of the llama from around this time. By 2800 ybp agriculture has 

spread to the coastal region where there were large scale irrigation schemes and 

intensive cultivation (Smith 1995).
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1.4.3 Consequences o f the development o f agriculture for health and nutrition 

The advent of agriculture and the domestication of crops such as wheat, barley, 

rice and maize brought about a major change in the diets of the earliest farmers. 

Pre-agricultural hunter-gatherer diets were typically low in carbohydrate but high 

in fat and protein (Neel 1982, Cordain et al. 2000/?). In contrast with this, the 

adoption of agriculture brought about a diet that is low in fat and protein but high 

in carbohydrate (Cavalli-Sforza 1981, Turner 1979). Analysis of ratios of 

strontium to calcium in bone from the Levant indicates that between 15,000 and 

10,000 years ybp there is a marked increase in plant food consumption at this 

time (Schoeniger 1982). Plant foods are considered to be lower quality 

components of the diet than animal foods as they have a lower calorific value 

and lower concentrations of many essential nutrients such as vitamin B12, 

vitamin D, calcium and iron, as well as essential amino and fatty acids (Sullivan 

1998)

Although the vast majority of essential nutrients can be obtained from different 

plant species, a wide variety of plants must be included in the diet so that all 

required nutrients are consumed in sufficient quantities. Archaeological 

evidence as well as observations of living peasant cultivators indicates that diets 

of agriculturalists tend to be dominated by a single staple: rice in Asia, wheat in 

western Asia and Europe, millet or sorghum in Africa and maize in the new 

world (Larsen 2000). (See Fig 1.8) An over reliance on a single staple, rather 

than consuming the broad spectrum of plant species eaten by hunter-gatherers, 

can lead to dietary deficiencies and malnutrition (Cassidy 1980).

Analysis of skeletal and dental material from early agricultural populations 

demonstrates the consequences of the major changes in diet and subsistence 

brought about by the development of farming. Turner (1979) analysed 64 

archaeological and living populations from around the world and found that 

hunter-gatherers exhibited 1.7% carious teeth where as agriculturalists exhibited 

8.6% carious teeth. Dental
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caries is a disease involving demineralisation of dental tissue and is caused by 

the fermentation of dietary carbohydrate by oral bacteria (Larsen 2000). Signs 

of chronic malnutrition in skeletal material as a result of lower overall quality of 

nutrition, such as shorted adult stature and reduced skeletal robusticity, can be 

seen as well as a marked increase in the incidence of infection. The signature of 

episodic stress and reduced life expectancy during the transition to agriculture is 

also present (see Ulijaszek & Strickland 1993 for review, Cassidy 1980).

Despite a flourishing of material culture, general growth of human populations 

and the beginnings of civilisation that were eventually brought about as a 

consequence of development of agriculture, patterns of poor nutrition can clearly 

be seen in the archaeological record.

1.4.4 Methods used in the reconstruction o f Pre-agricultural Diets 

There have been a number of different methods used in reconstructing the diets 

of pre-agricultural humans. These attempts rely on two main approaches 

-examining the archaeological and fossil record for clues to the food of past 

populations, and studying the diet of modem hunter-gatherers as a proxy for 

Palaeolithic diets.

1.4.4.1 Archaeological approaches

Archaeologists can gain insight into the diets of our ancestors from both the 

analysis of human remains as well as examination of human habitation sites. 

Analysis of stomach contents (see Holden 2001) and coprolites (see Poinar et al. 

2001) is perhaps the most direct method of collecting data on single meals that 

were eaten. Trace element and stable isotope analysis of skeletal remains can 

give a picture of the individual’s diet over their lifetime in terms of the relative 

amounts of animal, marine and plant resources consumed (see Richards et al. 

2000b). Carbon (13C/12C) isotope analysis can also distinguish consumers of 

plants with different photosynthetic pathways; C4 plants (tropical grasses such as 

maize, sugarcane, sorghum and millet) as opposed to C3 plants (most leafy 

plants as well as wheat, barley, oats and rye) (Sealey 2001). A study by 

Richards et al. (2003) uses carbon isotope analysis to investigate the dietary 

habits of the inhabitants of the British Isles during the Neolithic period. They
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found that before the introduction of domesticated plants and animals into 

Britain, there was a moderate to large proportion of marine foods in the diets of 

Mesolithic Britons. However, during the Neolithic period diets are largely based 

on terrestrial species.

Inferences about the types of food eaten can also be made from micro and 

macroscopic analysis of teeth as well as the number of dental caries (Cassidy 

1980, Larsen 1998). Assessments of an individual’s nutritional status over their 

lifetime can also be made from skeletal and dental remains by examining the 

growth and development of the individual as well looking for any signs of 

nutritional deficiency diseases (see Yesner 1980, Broth well 1969).

More indirect methods of reconstructing the diets of past people include 

analysing faunal assemblages at butchery sites, as well as looking at the remains 

of hearths, middens, and storage pits. Material culture can also give us insight 

into the food behaviours of archaeological populations such as assessing the tool 

marks on animal bones for evidence of scavenging versus hunting behaviours, 

micro-wear analysis of tools and presence or absence of specific food preparation 

equipment e.g. mill stones. It should be noted here that plant are relatively 

poorly preserved in the archaeological record compared to animal remains, so 

our knowledge the role of Palaeolithic plant foods is virtually non-existent 

(Larsen 2000). However, the human impact on vegetation, as seen through the 

pollen record can give indications of woodland clearance for agriculture 

(Dumayne-Peaty 2001).

Despite these varied approaches, knowledge of the diets of our ancestors through 

human evolution and prehistory remains limited. Whilst we can gather 

information on some elements of archaic feeding behaviour, it is clear that the 

details of the broad range of (especially plant) species and the relative 

contribution of those foods to the Palaeolithic diet are still unknown.
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1.4.4.2 Dietary reconstruction using modern populations 

Humans have survived through hunting, fishing and gathering wild food 

resources for the large majority (99.6%) of the 2 million years of their existence 

(Harris 1981, Sebastien et al. 2002). It is only in the last 10,000 years that some 

humans have domesticated plant and animal species for intensive exploitation for 

food. However, many anthropologists are of the opinion that few if any hunter- 

gatherer societies exist today that have not had at least some contact with 

agricultural societies (Cordain et al. 2000Z?). It is necessary to ask how good an 

analogue the diets of present day hunter-gatherer societies are for our ancestral 

diet, considering many have been marginalised to environments that are 

impossible to cultivate, such as deserts and polar regions. Despite these 

difficulties there have been a number of studies that have attempted to estimate 

the relative contributions of plant versus animal foods as well as the 

macronutrient composition of Palaeolithic diets.

Eaton & Konner (1985) used Lee’s (1968) analysis of the Ethnographic Atlas 

(Murdock 1967), a collection of ethnographic data on 862 of the world’s 

societies, and estimated that hunter-gatherer societies have an average of 65% 

calorific intake from plant foods and 35% derived from animal sources. From 

this average ratio, Eaton et al. (1997) estimated that the average dietary 

macronutrient composition of Palaeolithic humans was 22% fat, 37%protein and 

41% carbohydrate. Since Eaton & Konner’s (1985) original estimate of 65:35 

ratio of plant: animal energy intake, many researchers now argue that the average 

hunter-gatherer subsistence pattern would have included much higher amounts of 

animal food (45-60%) (Cordain et al. 2000&). Cordain et al. (2000b) analysed the 

229 hunter-gatherer societies in the ethnographic atlas and found that 73% of 

societies derived >50% of their subsistence from animal sources. The result of 

this is that the contribution of protein to overall energy intake is elevated at the 

expense of carbohydrates.
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Study Data Source Plant
to
animal
ratio

Estimate of dietary macronutrients

Protein Carbohydrate Fat

Eaton &
Konner
(1985)

862 societies 
from
Ethnographic
Atlas

65:35 37% 41% 22%

Cordain et 
al. (2000)6

229 societies 
from
Ethnographic
Atlas

50:50 20-31% 31% 38-49%

Third US
National
Health &
Nutrition
Survey
(1994)

29,105 adults 
>20years

No
data

15.5% 50.5% 34%

Fig 1.9: A summary of dietary macronutrient estimates for hunter-gatherer and 
contemporary American diets. The table shows the increase in carbohydrate, and 
reduction in protein in the American diet compared to the two estimates for 
hunter-gatherer diets.

This contrasts greatly to typical western diets today. In the United States, the 

third National Health and Nutrition Survey (1994) showed that among adults 

aged >20y protein contributed 15.5%, fat 34%, carbohydrate 49% and alcohol 

3.4% of energy intake. Not only have the relative contributions of 

macronutrients changed, but the foods from which these are obtained have also 

altered. The 1987-1988 National Food consumption survey indicated that cereal 

grains on average contributed 31% of the total energy intake of an individual, 

dairy products 14%, beverages 8% and sugar 4%. In short, the amount of protein 

consumed in western diets today has decreased and the proportion of 

carbohydrate has increased. This is largely due to the high reliance of diets in 

western societies on cereal grains, dairy products and refined sugars, none of 

which would have been available to Palaeolithic populations.

In another study, Sebastian et al. (2002) compared the net systemic load of acid 

(or net endogenous acid production, NEAP) of pre-agricultural diets with the
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diets of modem western societies. Their analysis of the components of hunter- 

gatherer diets suggested that the transition to modem agricultural diets involved 

a switch from net base production to net acid production. They explain this shift 

as the result in a replacement of base-rich plant foods such as roots, tubers and 

leafy green vegetables by cereal grains, which are net acid producing, in addition 

to energy dense nutrient poor (EDNP) foods such as refined sugars and separated 

fats. The potential dangers of a chronic net acid producing diet are conditions 

such as osteoporosis, age-related muscle wasting, calcium nephrolithiasis, 

sodium chloride-sensitive hypertension, infertility and renal insufficiency 

(Sebastian et al. 2002).

Much of the research in this field has pointed out the potential health hazards of 

the chronic consumption of a diet to which our bodies are not sufficiently 

adapted. The dramatic changes in the diets of agricultural societies that occurred 

with the Neolithic transition have left little time for genetic adaptations to 

respond. Sebastian et al. (2002) comment that natural selection has had <1% of 

hominid evolutionary time to eliminate the inevitable maladaptations to the 

dramatic changes in diet that have occurred as a result of the development of 

agriculture. Modem diets with heavy dependence on agricultural products and 

high in EDNP foods and sodium chloride as well as low in fibre have been 

implicated in the ‘diseases of civilisation’: non insulin-dependant (type II) 

diabetes mellitus, atherosclerosis, hypertension, osteoporosis and certain types of 

cancer. As Eaton & Eaton 2000 put it genetically, humans remain Stone Agers -  

adapted for a Palaeolithic dietary regimen

Cordain et al. (2000)a draw attention to the insight that the study of hunter- 

gatherer macronutrient composition may have into therapeutic dietary 

recommendations for contemporary populations. In fact, Milton (1999 & 2000) 

argues that we should look to the diets of non-human primates to ascertain which 

foods are compatible with our digestive system. However, the human digestive 

system is reduced compared to that of non-human primates, possibly as an 

adaptation to the energetic cost of a large brain (see Aiello & Wheeler 1995). 

There is also much popular literature advocating various diets that claim in
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various ways to be more suited to our biological make-up (Graham 1998,

Cordain 2001). A number of questions remain, however: Firstly, exactly what 

was the ancestral human diet before agriculture, and to what extent have we 

adapted biologically to our agricultural foods? It is unlikely that we will ever 

have a satisfactory answer to the first question. It is the latter question that is the 

topic to be addressed in this thesis.

1.5 Starch, agriculture & amylase

We have already seen how the development of agriculture has had a profound 

impact on the diet and nutritional status of the populations that adopted it. But 

what biological adaptations have there been in the human digestive system to this 

agricultural diet? Cavalli-Sforza (1981) points out that it thus seems reasonable 

to suggest that the adaptation to agriculture may have involved an adaptation to 

low levels of protein and fat intake or high levels of carbohydrate, or their joint 

effects.

The main carbohydrate that is found in agricultural staples such as wheat, rice 

and maize, is starch. Amylase is an enzyme that is ubiquitous among animals 

that metabolize starch as part of their diet. Amylases break down glucose- 

polymers such as starch, glycogen and dextrines. The enzymes hydrolyse a - 1,4 

glucosidic bonds between the glucose and maltose units that make up the starch 

molecule.

In humans, amylase is produced by both the salivary glands and the pancreas. 

Starch digestion begins in the mouth where is broken down by the enzyme 

salivary amylase. After mastication the food is swallowed and enters the 

stomach. Amylase exhibits maximum activity at neutral pH. When the bolus 

enters the acid environment of the stomach, however, starch digestion can only 

continue as long as the acid has not penetrated into the bolus. As the food 

reaches the small intestine, starch digestion is continued by the action of 

pancreatic amylase, secreted by the pancreas and delivered to the small intestine 

via the pancreatic duct. Townes et al. (1976) demonstrated that salivary amylase 

is present in the duodenum in patients who have lost pancreatic function and
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cannot secrete pancreatic amylase. This suggests that the enzyme is able to 

survive the passage through the acidic stomach.

There has been much debate over the relative roles of pancreatic and salivary 

amylase in starch digestion in humans. Merrit & Kam (1977) estimated that 60% 

of amylase activity is derived from pancreatic amylase where as salivary amylase 

contributes to around 40% of overall starch digestion. There are however 

difficulties in estimating this figure accurately, such as ascertaining which tissue 

a certain enzyme has been produced in, as well as problems with the sensitivity 

of protein detection assays and difficulties in distinguishing salivary and 

pancreatic isozymes.

1.5.1 Determination o f the Structure & Evolution Human amylase multigene 

family

Since the discovery of amylase in 1831 (Leuchs 1831) much has been published 

about the enzyme. The majority of these studies have focussed on 

characterisation of the biochemistry and genetics of amylase protein variants 

(Karmynt & Laxova 1966, de Soyza 1978, Pronk & Frants 1979, Merritt & Karn 

1977). In 1965 Karmayt & Laxova produced the first evidence for the existence 

of two amylase loci in the human genome, one coding for salivary amylase and 

the other for pancreatic amylase. These two loci were later mapped to band p21 

of the short arm of chromosome one by in situ hybridisation (Zabel et al. 1983, 

Tricoli & Shows 1984). In 1982 Pronk et al. found evidence for duplication of 

the human salivary amylase gene in humans, through studying amylase protein 

variants in a family, which contained an individual with three different salivary 

amylase gene products.

Sequences of cDNAs for human salivary and pancreatic alpha-amylases were 

first published by Nakamura et al. (1984). The nucleotide sequences of the two 

cDNAs were 96% identical in the coding region, with predicted amino acid 

sequences of 94% identity. The sequence and structure of the exons of human 

salivary amylase was obtained by Nishide et al. (1986) by using human salivary
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amylase cDNA as a probe, followed by restriction mapping and sequencing, on a 

recombinant phage that was found to contain the whole human salivary amylase 

gene in a single insert. Horii et al. (1987) followed this with determining the 

exon structure and sequences for human pancreatic amylase. They found that the 

major difference between AMY1 and AMY2 lies in the fact that AMY 1 has one 

extra exon on the 5’ side. A third type of human amylase gene was identified 

from mRNA in a long carcinoid tissue, by Youchouchi et al. (1990), which they 

named AMY2B. This gene is highly homologous to AMY 1 and AMY2, except 

that it has two untranslated exons in the 5’ region so that the promoter lies far 

upstream relative to the other two AMY genes. The pancreatic genes (AMY2B 

and AMY2A) are closely related with approx 93% identity in the 5 ’ flanking 

region (Groot et al. 1988, Groot et al. 1989b).

Gumuchio et al. (1988) reported finding seven distinct amylase genes in cosmid 

clones of 250 kilobases (kb) of genomic DNA. They found 2 pancreatic amylase 

genes, three salivary amylase genes and two truncated pseudogenes. Finally 

Groot et al. (1989a) demonstrated that the human amylase multigene family 

consists of haplotypes with variable numbers of AMY 1 gene copies. Using a 

cosmid library and restriction maps from the same individual that led Pronk et al. 

(1982) to suggest the existence of duplicated salivary amylase genes, Groot et al. 

(1989a) identified two haplotypes consisting of different numbers of salivary 

amylase genes. The short haplotype contains two pancreatic amylase genes 

(AMY2B & AMY2A) and 1 salivary gene( AMY 1C) arranged in the order 2B- 

2A-1C. In addition to this, haplotypes exist with repeated regions containing 

additional salivary amylase genes. The approx lOOkb repeated region consists of 

two salivary amylase genes (AMY1A & AMY IB) and a truncated pseudogene 

(AMYP1). A general designation: 2B-2A-(lA-lB-Pl)n-lC  can describe the 

different haplotypes, which range from n=0 (as in the short haplotype 

AMY 1 *H0) to n=4 copies of the repeated section, which produces a haplotype 

containing 9 functional copies of the salivary amylase gene (See fig 1.10).

Groot et al. (1990) proposed that the AMY1 repeat haplotypes were formed 

through a series of unequal homologous crossover events (See fig 1.11).
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The three salivary genes (AMY1A, AMY1B, AMY 1C) are almost identical to 

one another. The only published differences are that AMY 1A & AMY IB have a 

small fragment (529bp, designated r) located approx. 3.5kb downstream of the 

genes (Groot et al. 1990). This r fragment contains sequence from exon three of 

the amylase genes and is completely absent in AMY 1C. In addition, AMY IB is 

in reverse orientation to the other amylase genes. The pseudogene (AMYP1) is 

derived from exons 4-10 of AMY2A. Groot et al. (1990) suggested that the r 

fragments and the pseudogene are the remnants of the same ancestral pancreatic 

gene. It has also been suggested by Groot et al. (1990) and Gumucio (1988) that 

the evolution of the human amylase multigene family can be explained by a 

number of consecutive events involving duplications, insertions, deletions and 

inversions, gene conversions and unequal crossovers (See fig 1.12).

Samuelson et al. (1990, 1996) investigated amylase transcription in New-World 

monkeys, Old-World monkeys and apes. They studied two inserted elements, a 

y-actin pseudogene and an endogenous retrovirus, in the salivary amylase 

promoter region. They found that the y-actin pseudogene was integrated after 

the divergence of the New-World monkeys from the primate ancestral tree and 

the retrovirus was integrated later after the divergence of the Old-World 

monkeys. They found that all human amylase (pancreatic and salivary) genes 

contain the y-actin insert and therefore conclude that all the human amylase 

genes diverged from each other after this insertion event approximately 40 

million years ago (Samuelson et al. 1990).

1.5.2 Phenotypes & Methods employed to detect AMY 1 haplotypes 

As the structure of the amylase gene family and the AMY 1 haplotypes became 

clear, it was suggested that since there is inter-individual variation in number of 

salivary amylase genes, extensive variation in salivary amylase expression would 

also be expected. In the mouse strain YBR, Meisler et al. (1986) showed that 

salivary amylase synthesis was double that of wild type mice. They also found 

evidence in this strain of mice, from quantitative analysis of genomic DNA by 

Southern blotting, for duplication of the Amy-1 locus. Bank et al. (1992) 

reported extensive
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Fig. 1.12: Hypothesis of the evolution of the human amylase multigene family (after 
Groot et al 1990). * = From the data of Samuelson et al (1990).
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quantitative variation in salivary amylase enzyme in a sample of 369 individuals 

of Caucasian origin. They then went on to explore the variation at the DNA 

level using the polymerase chain reaction (PCR). They designed an assay to 

amplify an area surrounding a 22bp poly-A insertion in AMY 1 genes that is not 

present in AMY2. This gave rise to PCR products of 604bp (all AMY 1 genes) 

and 582bp (AMY2B & AMY2A). They then measured the difference in 

intensity between the two PCR products. As the number of pancreatic genes is 

always constant in humans, the 582bp AMY2 fragment acted as an internal 

standard. They found that in the majority of cases observed relative intensities 

of the PCR products fit well with the expected values derived from the protein 

quantification phenotyping. They concluded that quantitatively different salivary 

amylase enzyme phenotypes are encoded by haplotypes with different AMY 1 

gene copy number.
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1.6 Experimental Rationale

Individuals with increased expression of the salivary amylase enzyme would be 

at an advantage in populations with high starch diets, such as the early 

agriculturalists. If the forces of natural selection for this locus were significant, 

we would therefore expect to find a high mean number of AMY 1 gene copies per 

individual chromosome in populations with a long history of high starch diets. 

Conversely, we would expect to find lower numbers of salivary amylase genes in 

populations such as hunter-gatherers, who have low starch diets. Since the small 

scale study done by Bank et al. (1992) there has been no work published on the 

distribution of salivary amylase gene copy number variation in human 

populations.

Earlier in this chapter a number of different tests for selection were discussed. 

The analysis of Intra allelic variability (Slatkin & Bertorelle 2001) is currently 

the most powerful method for detecting the signature of natural selection within 

species (Sabeti et al. 2002). In order to conduct an analysis of intra allelic 

variability data must be collected on the allelic state at the locus in question as 

well as from a number of closely linked markers such as SNPs or microsatellites. 

With the recent advances in genotyping technology it is now possible to design 

fast, reliable and cost-effective methods to type large numbers of DNA samples 

from multiple populations.

If data on salivary amylase gene copy number variation, as well variation at a 

number of closely linked microsatellites, was available in a range of human 

populations with different dietary histories, it would be possible to employ tests 

of intra allelic variability to assess the level of evidence for selection at the 

AMY 1 locus. Evidence that natural selection had been operating on the salivary 

amylase gene would provide us with a novel example of human dietary 

adaptation at the molecular level.
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Specific Aims of Thesis

1) Construct PCR based assays employing GeneScan technology for the 
high throughput typing of AMY 1 polygenic repeat alleles and closely 
linked microsatellite markers.

2) Establish the frequency of AMY 1 repeat alleles in a large number of 
human populations with different histories of agriculture and high starch 
diets,

3) Establish whether differences in AMY 1 allele frequencies between 
populations were unusual compared to the rest of the genome.

4) Construct a PCR based assay employing GeneScan technology for the 
typing of AMY1 repeat alleles in chimpanzees.

5) Investigate whether variation in AMY 1 gene copy number is present in 
chimpanzees.

6) Combine the microsatellite data with AMY 1 repeat allele data for use in 
powerful haplotype based selection tests to test whether selection has 
operated on any of the AMY 1 polygenic repeat alleles.

7) Extend the skills and experience gathered in the salivary amylase project 
to investigate other loci that may have had a role in dietary adaptation in 
humans.
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Chapter 2: Materials and methods

Introduction

The first aim of this thesis was to construct PCR based assays for typing large 

numbers of individuals for the salivary amylase polygenic repeat alleles and a 

number of closely linked microsatellites. This chapter details the materials and 

methods that were employed in order to type human DNA samples for these 

markers. These protocols required a lengthy development and optimisation 

phase, which is described in Chapter 3. The data collected using these protocols 

are described in chapter 4 and 5.

In addition to collecting data on human DNA samples, this thesis also 

investigated AMY 1 gene copy number in chimpanzees. The materials and 

methods for typing chimpanzee DNA samples are also detailed in this chapter in 

section 2.6. The development of this protocol and the resulting data are 

described in Chapter 6.

Note: Buffer compositions are given in section 2.10.3

2.1 DNA sample collection

Human DNA samples were obtained from The Centre for Genetic Anthropology, 

University College London, in the form of either buccal cells or extracted DNA. 

The exceptions were the Singapore Chinese family samples, which were 

obtained with kind permission from Prof David Goldstein, Dept. Biology 

University College London. The Irish and German family samples were 

collected for this project by Ms Noreen von Crammon-Taubadel between 

January and April 2003.

DNA samples from six Dutch individuals of known salivary amylase genotype 

(see Groot et al. 1989a) were kindly provided by Prof. Jan Pronk, Vrije 

Universiteit, Amsterdam. Chimpanzee DNA samples (see Ruano et al. 1992) 

were obtained with kind permission from Prof Dallas Swallow, Dept. Biology 

University College London.
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Buccal cells were collected from subjects by rubbing a sterile applicator, in the 

form of a tube with a swab integral to the lid (Sarstedt, Numbrecht, Germany), 

gently along the inner surface of both cheeks for approximately 30 seconds. One 

ml of 0.05M EDTA/0.5% SDS preservative was then added. The samples were 

stored at room temperature during transit and then at 4°C or -20°C until 

extraction. Samples were collected from unrelated families (2 parents and at 1+ 

children) as well as unrelated adult males.

Informed consent was obtained from all donors. Ethical approval was obtained 

from University College Hospitals and University College London Joint 

Committee on Ethics of Human Research (ref. 99/0196). Appropriate 

permissions were obtained in each of the collection countries. All donors 

provided details of self-defined ethnic identity, first and second language and 

place of birth with similar information on their mother, father, maternal 

grandmother and paternal grandfather.

2.2 DNA extraction

Firstly 40 jA of 10 m gm l1 protinase K was added to 40 ml of sterile distilled 

water. Once the buccal swab tubes had been defrosted, 0.8ml of the 

water/protinase K mix was added to each swab tube and then incubated at 56°C 

for a minimum of two hours. After incubation 0.8ml of the solution was taken 

and added to 0.6ml phenol/chloroform (1:1) in a 1.5ml tube. The mixture was 

vortexed thoroughly and then centrifuged for 10 min at maximum speed in a 

microfuge. The remainder of sample was stored at -20°C as a backup. The 

upper aqueous layer was transferred to a fresh 1.5ml tube containing 0.6ml 

chloroform and 30pl of 5 M NaCl, and then mixed and centrifuged for 10 min. 

The upper aqueous layer was then transferred to a fresh 1.5ml tube containing 

0.7ml chloroform. The samples were then mixed and centrifuged for 10 min

DNA was precipitated by adding the aqueous layer to a screw top microfuge tube 

containing 0.7ml isopropanol, mixing and then leaving it at -20°C for a 

minimum of 2 hours. It was then centrifuged at 13,000 RPM for 15 min to pellet 

the DNA. Supernatant was poured off, the tube inverted and the pellet allowed
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to dry for 1 min. The pellet was then washed by adding 0.8ml 70% ethanol and 

centrifuged at 13,000 RPM for 15 min. The ethanol was then poured off and the 

pellet was left to dry for 20 min. 400 pi TE buffer (pH 8.0) was added and the 

sample was incubated for 10 min at 56°C whilst being mixed occasionally. The 

extracted DNA samples were stored at -20°C. Agarose gel electrophoresis was 

used to assess DNA yield. Ten pi of extracted DNA sample was run on a 0.8% 

agarose gel in an Advanced Biotechnologies (Columbia, MD) gel tray at 25v for 

10 min, followed by lOOv for 30 min. DNA was visualised with UV/ Ethidium 

Bromide staining.

2.3 Polymorphism detection

2.3.1 AMY1 gene copy number quantification

The arrangement of the salivary amylase genes in the amylase gene family 

cluster on chromosome one, presented a number of challenges for designing 

assays to type individuals for AMY1 polygenic repeat alleles. A number of 

different approaches were explored and the process involved in the development 

and optimisation of the resulting protocols is described in Chapter 3.

The aim was to design a method to determine the AMY 1 polygenic repeat alleles 

present in individuals. As was outlined in Chapter 1, salivary amylase gene 

(AMY1) copy number varies between individuals. However, the number of 

pancreatic amylase genes (AMY2) remains constant. All the methods that were 

explored were aimed to quantify the number of AMY 1 genes in an individual by 

using the AMY2 genes as an internal control. By using the amount of AMY 1 

product relative to the amount of AMY2 product, the number of AMY 1 genes 

present in the individual could be determined.

The differences between the protocols that were developed, was in the method 

used to distinguish the AMY1 and AMY2 specific products from each other 

prior to quantification. Two main approaches were investigated: The first used 

restriction endonucleases to distinguish PCR products resulting from AMY2 and
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AMY 1 genes. The second method was based on PCR assays that amplified areas 

around small deletions in either AMY2 or AMY1 genes resulting in different 

length AMY 1 and AMY2 PCR products. The following section details the final 

materials and methods used for each of the two approaches.

a) Restriction endonuclease protocol

This protocol involved a PCR with two primer pairs. Each primer pair 

amplified a region in all the amylase genes that contained a restriction 

endonuclease recognition site. However, the PCR products resulting from the 

first primer pair had a restriction enzyme recognition site was present only in the 

AMY 1 genes. Thus, after lysis with the restriction endonuclease, the AMY 1 

products were cut where as the AMY2 products remained uncut. In the case of 

the PCR product resulting from the other primer pair, the restriction enzyme 

recognition site was present in only the AMY2 genes, so that the AMY2 

products were cut and the AMY1 products were not (See Table 2.1).

PCR reactions were performed in 10 pi volumes containing 200pM dNTPs, 10 

mM Tris HC1 (pH 9.0), ).1% Triton-X-100,), 0.01% gelatin, 50mM KC1, 1.5 

mM MgCl2, 0.13 units Taq polymerase enzyme (HT Biotech), 2.4 pM TaqStart 

Monclonal Antibody (MAb) (BD Biosciences Clontech, San Jose CA) and 

primers to the concentrations given in Table 2.1. Cycling parameters were: pre­

incubation for 5 min at 95°C, followed by 37 cycles of 93°C for 1 min, 59°C for 

1 min, 72°C for 1 min and then a final incubation step of 72°C for 20 min.

All PCR reagents except the Taq polymerase and TaqStart MAb were premixed 

in batches sufficient for 96 reactions and stored at -20°C. DNA samples were 

typed in batches of 95 with the one remaining tube acting as a negative PCR 

control. The use of TaqStart Mab increases the specificity of the PCR (Thomas 

et al. 1999), and so was used in all reactions. The Taq and TaqStart Mab were 

mixed as 2 volumes of 5 units/pl Taq : 1 volume of 7 pM TaqStart Mab and 

stored at -20°C in 20pl aliquots. Primers were also mixed and stored as a lOx 

stock to save time and reduce the errors associated with pipetting small volumes. 

To minimise the time that the Taq enzyme was in contact with primers and other
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Primer name Primer sequence (5’-3’) ABI
dye
label

Tm Primer
pair
final
cone
( p M )

Genes
Cut

Genes 
not cut

Product
lengths
cut uncut

AMY 02-U-HEX 5 ' -  AAA GGC AAT T T T  GGA CAA ACT G - 3 ' HEX 52.9 0.2 AMY 
2B, 2A, 
PI

AMY1 52
bp

82 bp

AMY-02-L 5 ' -  TAC CTC CTG GTA AAT GAA AGG T T T  A - 3 ' “ 52.7

AMY-04-U-FAM 5 ' -  GTC TTC  CTG CTG GCA CAT ACT - 3 ' FAM 51.0 0.08 AMY1 AMY 
2B, 2A, 
PI

60
bp

83 bp

AMY-04-MML-B 5 ' -  AGA AAC GTA GAT T T T  AAT GCC TCT - 3 ' “ 50.7

Table 2.1: Primers used for AMY1 quantification using the restriction enzyme Pstl.



reagents, 1 pi of DNA template was added to the bottom of each sample’s 0.2 ml 

PCR tube. Only then was the PCR premix, containing all the primers and buffer 

reagents, thawed out. The Taq/TaqStart mix was added to the other PCR 

components in the PCR premix, just prior to thermal cycling and the mixture 

vortexed thoroughly. Nine pi of the PCR mix was pipetted into the lid of each 

PCR tube, and the plates centrifuged to collect all PCR components at the bottom 

of the tubes. All amplifications were performed in a BioMetra (Whatman 

Biometra, Goettingen, Germany) Uno II thermal cycler using a 10-pl reaction 

volume.

The PCR products were precipitated before lysis with the restriction 

endonucleases to remove excess PCR reagents and to minimise inhibition of 

restriction enzymes. One pi of 3M sodium acetate pH 5.2 and 24.2pl of 100% 

ethanol was added to the PCR products which were then mixed before being 

placed at -20°C for at least 1 hour. The sample was centrifuged at 13,000 RPM 

for 12 mins, after which the supernatant was poured off. One ml of 70% 

ethanol was added and the tube was inverted gently. The sample was then 

centrifuged again atl 3,000 RPM for 10 mins, and the supernatant pored off.

One ml of 70% ethanol was again added and the sample centrifuge at 13,000 

RPM for 10 mins. Finally the supernatant was poured off and the pellet allowed 

to dry for 30 mins before the DNA was re-suspended in water. Digestions were 

performed in 384-well microtiter plates in a final volume of 15 pi. Each reaction 

contained 3 pi of PCR product, NEB buffer 2 (New England Biolabs, Beverly, 

MA) to a lx concentration, 0.01 pg/pl acetylated BSA and 5 units Pstl. Plates 

were incubated at 37°C overnight.

b) The QAMY protocol

This protocol involved two separate PCRs for the two markers (QAMY02 & 

QAMY03). The PCRs were designed to amplify regions around small deletions 

present either in AMY1 or AMY2 genes. The resulting PCR products could be

62



distinguished by differences in length depending on the presence or absence of 

the deletion.

PCR reaction conditions were 200 p,M dNTPs, lOmM Tris-HCl (pH 9.0), 0.1% 

Triton X-100, 0.01% gelatin, 50 mM KC1, 1.2 mM MgCl2, 0.13 units Taq 

polymerase (HT Biotech, Cambridge, UK), 9.3 nM TaqStart monoclonal 

antibody (Mab) (BD Biosciences Clontech, San Jose, CA), and primers to the 

concentrations given in table 2.2. Cycling parameters were 95°C for 5 min 

followed by 30 cycles of 94°C fori min, 60°C for 2 min and 72°C for 3 min; and 

then a final incubation step of 72°C for 10 min. After the PCR reactions were 

completed Products from both PCRs (QAMY02 & QAMY03) were mixed 

together and diluted (1/2) with water.

Table 2.2: Primers and final primer concentrations for AMY1 quantification 

protocol. Tm was calculated using Oligo v4.0 software (see Table 2.5)

Primer Name and Sequence (5’-3’) Primer
Cone.
(MM)

TM Produ
ct
size
(bp)

QAMY02-U
5 '-A T G  TGC TGT TAA TAT TTT CAA GAG A T -3 ' 0.0375 50.1

187
2B
/

191
2A+1

QAMY02-L-TET
5 ' -  CCA AGG TCT GAA AGG GTT GT - 3 ' 0.0375 50.6

QAMY03-U
5 ' -T C A  CAG TTG ATT TTT GAT CTT GTA G - 3 ' 0.0375 50.2

263
AMY1
/
267
AMY2

QAMY03-L-TET
5 ' -GAC TGC TGG AAA GTC CCT ACT T - 3 ' 0.0375 51.1

2.3.2 Microsatellite multiplex PCR protocol

This protocol was designed to amplify regions around 6 microsatellites closely 

linked to the amylase gene cluster. A six primer pairs were combined into a 

single PCR reaction known as a multiplex PCR.
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Reaction conditions were 200 jxM dNTPs, lOmM Tris-HCl (pH 9.0), 0.1% 

Triton X-100, 0.01% gelatin, 50 mM KC1, 2.2 mM MgCl2, 0.13 units Taq 

polymerase (HT Biotech, Cambridge, UK), 9.3 nM TaqStart monoclonal 

antibody (Mab) (BD Biosciences Clontech, San Jose, CA), and primers to the 

concentrations given in table 2.3. Cycling parameters were 95°C for 5 min 

followed by 37 cycles of 94°C for 1 min, at 58°C for 1 min, and 72°C for 1 min; 

and then a final incubation step of 72°C for 10 min.

2.3.3 Electrophoresis and GeneScan Analysis

The ABI377 / GeneScan™ (PE-Applied Biosystems, Foster City, CA) is an 

integrated genotype technology platform based on polyacrylamide gel 

electrophoresis with a laser detection system and a laboratory information 

management system. DNA molecules are fluorescently labelled, and both the 

wavelength and intensity of the fluorescence and the time taken for the molecule 

to migrate toward the laser from the start of the run is measured. The time taken 

for a DNA fragments to migrate is proportional to its size. The fluorescence 

detected by the laser system is displayed as peaks in the GeneScan™ Analysis 

v3.1 software (PE-Applied Biosystems, Foster City, CA). Relative quantities of 

two 5’- end labelled fragments can be determined by comparing the 

corresponding peak areas or peak heights on the resulting GeneScan™ 

electropherogram.

The size of fragments was determined using the Local Southern method, which 

uses the reciprocal relationship between fragment length and mobility. Each 

sample was loaded with an internal size standard (such as TAMRA-350) with a 

range of fragment lengths of known size. The software uses the four fragments 

closest in size to the unknown fragment to determine a best-fit line value for the
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Primer Name Primer sequence (5’ -  3’) ABI dye 
label

Final
concentration
(pM)

Repeat
Motif

Tm °C

D1S2896-U 5 ' -  CAT AGT TTC AAC CAC TGG CTA AT - 3 ' / 0.025 CA 50.0

D1S2896-L-TET 5 ' -  GTG CCC AAT CCA A T T  TAA TTC - 3 ' TET 0.025 50.6

D1S2888-U-FAM 5 ' -  GGC AAT ACA AAA TTC AAG TTA  TAG AC - 3 ' FAM 0.05 CA 50.2

D1S2888-L 5 ' -  GTA AGT TAG GCA ACA A T T  AAC ACA TAG - 3 '
/ 0.05 50.5

D1S2759-U 5 ' -  CAT CTC ACC TTC ACA ACC TCC - 3 '
/ 0.05 CA 50.9

D1S2759-L-HEX 5 ' -  CCC CTT TCA GTG ATA TAA AAT TAA A - 3 ' HEX 0.05 50.5

D1S2626-U 5 ' -  ACA GGA TGT AGG GAA GAA TTG TAT A - 3 ' / 0.15 CA 50.3

D 1S2626-L-FAM 5 ' -  CCT CCC TGA CAG A T T  TTG AAC - 3 ' FAM 0.15 50.4

D1S535-U-TET 5 ' -  GTG GGA A TT ATG GGG GTT AC - 3 ' TET 0.1 GATA 50.0

D1S535-L 5 ' -  TGC TAA GTG AGA AAA CAC A TT  GTT A - 3 ' / 0.1 50.9

MS-AMY02U 5 ' -  ACT GTC CTT A TT TAT GTG GGT TTG T - 3 ' / 0.05 CA 52.2

MS-AM Y 02L-FAM 5 ' -  TCT CTT CTT CCA TTG  CGA CTG - 3 ' FAM 0.05 52.1

Table 2.3: Primers for use in the microsatellite multiplex PCR protocol. Tm was calculated using Oligo v4.0 (see Table 2.5)



unknown fragment. Fragment sizes for TAMRA-350 size standard are as 

follows:

35, 50, 75, 100 139, 150, 160, 200, 300, 340 & 350 bp.

All PCR products were run on an ABI-377 automated sequencer; 1.1-pi aliquots 

of PCR product was mixed with 2.0 pi of loading buffer (formamide: dextran 

blue: TAMRA -labelled 350bp size standard in the ration 12:2:1). 

Electrophoresis was performed on a 5% polyacrylamide 36cm gel (National 

Diagnostics, Atlanta, Georgia). For both the QAMY and microsatellite 

protocol, the electrophoresis conditions were 2.5h at 3000 volts. For the 

restriction enzyme protocol the run time was 1.6h. ABI PRISM™ collection 

software (PE-Applied Biosystems, Foster City, CA) saves scan profiles as gel 

files, from which the raw data is then extracted. GeneScan Analysis v3.1 

software (PE-Applied Biosystems, Foster City, CA) was then used to analyse the 

data.

2.4 DNA Sequencing

DNA sequencing was used at a number of different stages in the development of 

protocols:

1) Confirming the presence of restriction endonuclease recognition sites and 

deletion in PCR products whilst developing the AMY 1 quantification protocols

2) Determining the number of microsatellite repeat motifs contained in PCR 

products from the microsatellite protocol

3) Confirming the presence of deletions, and to aid in the design of primers for 

the chimpanzee AMY 1 quantification protocol

The PCR product was purified using an equal volume of MicroCLEAN 

(Microzone Ltd, Haywards Heath, UK) to PCR product and mixing. After this 

mixture had been left at room temperature for 10 min, the PCR 

product/MicroCLEAN was centrifuged at between 2000 and 4000 g for 40 min 

in a plate centrifuge. The supernatant was then removed by inverting the plate 

and centrifuging at 50 g, and then 150pl of 70% ethanol was added. This was
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then centrifuged at 4000 g for 10 min. The supernatant was removed and the 

sample was allowed to air dry for 15 min at room temperature. 15pi of water 

was then added to re-suspend each sample and 5.5pl of this was used for the 

sequencing reaction. Sequencing reaction conditions were 5pi Better Buffer 

(Microzone Ltd, Haywards Heath, UK) lp l Termination mix from the ABI Prism 

BigDye Terminator Kit (PE-Applied Biosystems, Foster City, CA), and primers 

at 1.6 pm/pl. The sequencing reactions were performed in a GeneAmp PCR 

system 9700 thermal cycler (PE-Applied Biosystems, Foster City, CA) with 25 

cycles of 96°C for 10 seconds, 60°C for 5 seconds and 60°C for 4 minutes. To 

purify the sequencing reaction products, 80pl of 80% isopropanol was added to 

each reaction and mixed thoroughly and left at room temperature for 10 min.

The samples were then centrifuged at between 2000 and 4000 g for 40 min. The 

supernatant was removed and then 150pl 70% isopropanol was added to each 

sample. The reactions were then spun at between 2000 and 4000 g for 10 min. 

Supernatant was once again removed and the samples were allowed to air dry at 

room temperature for 15 min. The samples were run on an ABI 3100 genetic 

analyser. Prior to electrophoresis of the samples, lOpl of HiDi formamide was 

added to each sample. They were mixed and heated to 65° for 5 min to dissolve 

the sequencing products fully in the formamide. The samples were then 

transferred to a 96 well plate suitable for use on the ABI3100 machine. The 

samples were denatured at 96°C for 4 min and then cooled on ice for 5 min. 

Samples were run on an ABI3100 machine (PE-Applied Biosystems, Foster City, 

CA), and aligned and checked for read quality using Sequencher software (Gene 

Codes, Ann Arbor, Michigan).

2.5 Cloning PCR products

During the development of the chimpanzee AMY1 quantification protocol it was 

necessary to clone the PCR fragments into plasmid vectors prior to sequencing in 

order to separate the AMY1, AMY2A and AMY2B products.

PCR reactions were performed in 10 pi volumes containing 200pM dNTPs, 10 

mM Tris HC1 (pH 9.0), ).1% Triton-X-100,), 0.01% gelatin, 50mM KC1, 1.2 

mM MgCl2, 0.13 units Taq polymerase enzyme (HT Biotech), 2.4 pM TaqStart
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Monclonal Antibody (MAb) (Clontech) and primers at 0.3pM. Cycling 

parameters were: pre-incubation at 95°C for 5 min, followed by 37 cycles of 

93°C for 1 min, 56°C for 1 min, 72°C for 1 min and then a final incubation step 

of 72°C for 20 min. Amplification reactions were performed in a GRI DYAD™ 

DNA Engine Thermal cycler. Two pi of PCR product were run on 2% agarose 

gel to confirm the presence of DNA of the expected size.

PCR products were purified by adding 3 times the volume of the samples, of 4/3 

MicroClean (Microzone Ltd), mixing and then leaving to stand at room 

temperature for 10 min. The samples were then centrifuged at 13000 RPM for 

15 min. The supernatant was removed and 200 pi 70% ethanol was added. The 

samples were centrifuged at 13000 RPM for 5 min. The supernatant was 

removed and the samples were air dried at room temperature for 15 min. The 

samples were finally re-suspended in their original volume with water.

Cloning was performed using TOPO TA Cloning Kit for Sequencing 

(Invitrogen, Carlsbad, CA). Ligation of the PCR product into the pCR®4- 

TOPO® plasmid vector was carried out using 1 pi PCR product, lp l water, 0.5pi 

salt solution (200mM NaCl, lOmM MgCl2), 0.5pl vector. The resulting 

components were mixed and left at room temperature for 5 min and then cooled 

on ice. 2pl cloning reaction was transferred to a vial of One Shot® TOP10 

Chemically Competent E. coli and mixed gently. The mixture was incubated on 

ice for 5 min and then heat shocked for 30 seconds at 42°C, and then put on ice. 

250 pi of room temperature SOC medium was added and incubated, whilst 

shaking, at 37°C for one hour. lOOpl of sample was spread onto a pre-warmed 

LB plates containing 50 pg/ml ampicillin and the plates were incubated 

overnight at 37°C.

24 colonies were picked from the plates and a PCR reaction was performed using 

M13 Forward (-20) (5’-GTAAAACGACGGCCAG-3’) and M13 reverse (5’- 

CAGGAAACAGCTATGAC-3’) primers. PCR reactions were performed in 10 

pi volumes containing 200pM dNTPs, 10 mM Tris HC1 (pH 9.0), ).1% Triton- 

X-100,), 0.01% gelatin, 50mM KC1, 1.2 mM MgCl2, 0.13 units Taq polymerase
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enzyme (HT Biotech), 2.4 pM TaqStart Monclonal Antibody (MAb) (Clontech) 

and primers at 0.3pM. Cycling parameters were: pre-incubation at 94°C for 5 

min, followed by 30 cycles of 94°C for 1 min, 55°C for 1 min, 72°C for 1 min 

and then a final incubation step of 72°C for 10 min. Amplifications were 

performed in a GRI DYAD™ DNA Engine Thermal cycler. Sequencing of the 

resulting PCR products was then carried according to the protocol described in 

section 2.4.

2.6 Chimpanzee QAMY protocol

The chimpanzee QAMY protocol was developed in order to investigate whether 

the variation in AMY 1 gene copy number that is found in humans is also present 

in chimpanzees. Details of the development of this protocol can be found in 

Chapter 6.

PCR reactions were performed in 10 pi volumes containing 200pM dNTPs, 10 

mM Tris HC1 (pH 9.0), ).1% Triton-X-100,), 0.01% gelatin, 50mM KC1, 1.2 

mM MgCl2, 0.13 units Taq polymerase enzyme (HT Biotech), 2.4 pM TaqStart 

Monclonal Antibody (MAb) (Clontech) and primers QAMY02-CH-U (5 ' -GAA 

TGG CGA TGG GTT GAT A T - 3 ')  and QAMY02-LTET ( 5 ' -C C A  AGG 

TCT GAA AGG GTT G T -3  ')  at 0.2pM. Cycling parameters were: pre­

incubation for 5 min at 95°C, followed by 30 cycles of 93°C for 1 min, 56°C for 

2 min, 72°C for 3 min and then a final incubation step of 72°C for 20 min. 

Amplification reactions were performed in a GRI DYAD™ DNA Engine 

Thermal cycler. 2pl PCR product was run on 2% agarose gel to confirm the 

presence of PCR products of the expected size.

The PCR products were diluted 1 in 5 with water. 1.1 pi of the diluted PCR 

product was then added to 2pl of 1:2:12 mixture of TAMRA-500 size standard: 

dextran blue loading buffer: deionised formamide. Samples were denatured at 

96°C for 3 min and loaded onto the ABI377. Electropheresis was conducted in 

a 5% polyacrylamide gel for 3.5 hours.
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Two different sized PCR products were obtained from the PCR reaction. The 

462bp PCR product was interpreted as originating from AMY2B genes, where 

are the 466bp product was interpreted as originating from AMY 1A and AMY2A 

genes.

2.7 Establishing phase

The methods for quantifying the number of AMY 1 genes present in individuals 

as described in section 2.2, require and additional step to determine the 

apportionment of the genes, arranged into polygenic repeat alleles, between the 

maternal and paternal chromosomes. This process if known as establishing 

phase, or haplotyping. In order to establish the phase of the AMY 1 repeat 

alleles, a set of functions, called EMamy, incorporating an expectation 

maximisation (EM) algorithm was written for the MATLAB programming 

environment by M. Weale (see Table 2.6). The aim of the program was to 

resolve the haplotypes of both the father and the mother, given their resulting 

children’s genotypes. The functions were designed to analyse data in the form of 

the total number of AMY 1 repeat units present in an individual, from families 

consisting of one father, one mother and two children. However, the genotypes 

for either or both children were allowed to be missing, so that non-family 

samples could be analysed. The functions return EM estimates for allele 

frequencies and counts for each allele type given by families that can be fully 

resolved. All the possible parental genotypes are also reported, given the 

children, together with the relative probability for each genotype, using all the 

data as well as the allele frequencies from the EM estimates. Further details of 

the development of the EMamy functions can be found in section 3.3.5.

Compound haplotypes consisting of both microsatellite alleles and EM estimates 

of AMY 1 repeat number alleles were established using DNA samples from 

families (2 parents and at least one biological child). Haplotypes were assigned 

by following the pattern of co-inheritance of the alleles from the parents to the 

children, (see Nehati-Javeremi & Smith 1996) (See Fig 2.1).
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Fig 2.1: A summary of haplotype assignment (after Nejati-Javaremi & Smith 1996)

Father Haplotypes Mother Haplotypes
Genotype Locus a b Genotype Locus c d
18-19 D1S2896 18 19 19 D1S2896 19 19
19 D1S2626 19 19 25 D1S2626 25 25
18-22 D1S2888 18 22 23 D1S2888 23 23
21-27 D1S535 21 27 20-21 D1S535 20 21
17-18 D1S2759 17 18 18-21 D1S2759 21 18

y y

Child 1 Haplotypes Child 2 Haplotypes
Genotype Locus a c Genotype Locus b d
18-19 D1S2896 18 19 19 D1S2896 19 19
19-25 D1S2626 19 25 19-25 D1S2626 19 25
18-23 D1S2888 18 23 22-23 D1S2888 22 23
20-21 D1S535 21 20 21-27 D1S535 27 21
17-21 D1S2759 17 21 18 D1S2759 18 18

Numbers indicate the repeats count of each microsatellite motif. Given that the 
genotypes of both parents and progeny are known, haplotypes over several linked 
loci can be assigned by listing the allele type at each locus along the haplotype 
known to be inherited from each parent. Thus in this example the assignment 
procedure occurs as follows:

At locus D1S2896 the 18 allele present in Child 1 can only be transmitted 
paternally, along with the 19 (D1S2626), 18 (D1S2888) and 17 (D1S2759) alleles. 
Although the 21 allele (D1S535) in Child 1 could be maternally derived, the presence 
of the 20 (D1S535) which could only come from the mother confirms that the 21 
allele is paternally derived. These observations are independently confirmed by 
assigning Child 2’s haplotypes.
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2.8 Statistical analysis

2.8.1 Analysis o f AMY 1 gene copy number data to test for significant differences 
between populations
Non parametric multivariate analysis of AMY 1 gene copy number in human 

populations was carried out using the Kruskal Wallis test, calculated in the 

statistical analysis software Instat (GraphPad, San Diego, CA). Variances were 

compared using F statistics calculated using Microsoft Excel. The Dunn-Sidak 

correction was used on all multiple comparisons of populations: 

a ’ = l- ( l-a )1/k

Where k= no objects (populations) 

a  = significance level applied to any one test (0.05)

2.8.2 Analysis o f AMY 1 repeat allele frequency data from human populations to 

test for significant differences between populations

Estimates of AMY 1 repeat allele frequencies were obtained from the EMamy 

functions implemented in MATLAB (Mathworks, Natick, MA) as described in 

sections 2.8 & 3.3.5. These frequency estimates were used to estimate the 

genetic distance between populations using an analysis of molecular variance 

(AMOVA) (see Wier & Cockerham 1984, Excoffier et al. 1992, Wier 1996) 
based on the statistical measure of population difference - Fst> implemented 

using the Arlequin program (Schneider et al. 2000). The Fst measure, first 

suggested by Wright (1951) is defined in many ways. One formulation 

appropriate for data on AMY 1 gene copy number is :

Fst — £>
1H

>

VT

where Vt = Total variance of AMY1 repeat alleles of a set of n populations 

and Vw= mean variance of AMY 1 repeat alleles within populations. In 

practice the above method is further modified by bias correction factors (see 

Wier 1996).
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Expected heterozygosity (h) (equivalent to genetic diversity, see Nei 1987) was 

calculated using the formula:

m

h =  ] - 2  x ,2
i=l

where m- number of alleles

and x, = EM estimate of frequency of z'th allele

2.8.3 Displaying allele frequency differences between populations

The pair-wise Fsx comparisons for the populations, using the unbiased ‘random 

populations’ formula for haploid data given by Weir (1996), were compiled as a 

matrix and subjected to a principal co-ordinate analysis using the Genstat v3.2 

software (VSN, Hemel Hempstead, UK). Similar to Principal Component 

Analysis, this procedure explains the principal vectors of variance between 

population groups and extracts as many vectors as required to account for these 

differences. The first and second vectors were plotted against each other to 

visualise trends in variation between groups using the MATLAB programming 

environment (Mathworks, Natick, MA).

2.8.4 Analysis o f microsatellite data
Microsatellite haplotype data was analysed by an AMOVA, as well as an exact 

test of population differentiation based on haplotype frequencies, and genetic 

distances measured using RST implemented using the Arlequin program 

(Schneider et al. 2000). RST is analogous to Fsx but incorporates into the model 

the step-wise mutation process (see Slatkin 1995). (see Michalakis & Excoffier 

1996 and Rousset 1996 for details on the relationship between Fsx and Rsx).

2.8.5 Comparisons with polymorphism data from other loci in the genome 

Data on SNPs typed in 42 African Americans, 42 East Asians and 42 European 

Americans (Sachidanandam et al. 2001) was taken from a dataset of 33,487 

SNPs typed by the Orchid Laboratory, publicly available at the SNP Consortium 

web site (http://snp.cshl.org/allele frequency proiect/panels.shtml). Statistical
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analysis of the SNP data set was performed using the statistics package ‘R’

(URL: http://www.R-project.org/). All Fsx values were calculated using the 

unbiased ‘random populations’ formula for haploid data given by Weir (1996).

Rsx data for STRs typed in 48 Europeans (blood donors from Leipzig, Germany) 

and 23 East Africans (from Gondar, Ethiopia) as well as 24 Southern Africans 

(from the Nguni, Sotho-Tswanga and Tsonga groups of South Africa) was taken 

from a dataset of 332 STRs typed by Kayser et al. (2003). Statistical analysis of 

the STR data was performed using the statistics package ‘R ’ (URL: 

http://www.R-project.org/).

2.8.6 Analysis oflntra allelic variability

Analysis of intra-allelic variability was carried out on compound haplotypes 

consisting of the AMY 1 repeat allele as well as the 6 microsatellites using the 

program SYSSIPHOS written by Dr Michael Stumpf, Imperial College London. 

SYSSIPHOS is an updated version of the programs NeutraliyTest (Slatkin & 

Bertorelle 2001), EstimateGrowth (Slatkin & Bertorelle 2001) and Estimates 

(Slatkin 2001) available from Prof. Montgomery Slatkin, University of 

California, Berkeley. In contrast to earlier programs, SYSSIPHOS was 

designed to analyse data from multiple microsatellites simultaneously, as well as 

take into consideration recombination between the microsatellite loci. In 

addition, departures from the stepwise mutation model (Slatkin 1995) such that a 

length dependent microsatellite mutation rate (see Stumpf and Goldstein 2001) is 

taken into account. For a given allele at the candidate locus, the likelihood of the 

data is estimated over a range of selection coefficients (5) and exponential 

population growth (r) parameter values. Post-processing of the SYSSIPHOS 

output files was carried using the statistics package ‘R ’ (URL: http://www.R- 

project.org/). (See Appendix B)

Support intervals were calculated by taking a reduction in log-likelihood of 1.92 

from the maximum (Edwards 1992). In addition, a likelihood ratio test was used 

to test between the hypothesis that significantly greater selection has been 

operating on one AMY 1 repeat allele compared to another, and the null
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hypothesis that the difference is not significant. Likelihood ratio tests compare 

the ability of alternative models to explain the data, by considering the 

significance of the following statistic:

21og maximum likelihood under alternative hypothesis 

maximum likelihood under null hypothesis

This test statistic approximates to the %2 distribution with one degree of freedom.

2.8.7 Estimating the age o f alleles

The average ages of AMY 1 repeat alleles were estimated using both the intra- 

allelic variability method (implemented in SYSSIPHOS) and an Average 

Squared Distance (ASD) method using YTIME written by M. Weale, University 

College London (see Thomas et al. 2002) (See section 5.3).
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2.9 Bioinformatics and population genetics analysis tools

Table 2.4 Human genome databases

Name Purpose URL

GDB Sequences 
from AMY 
exons

http://www.gdb.org/

OMIM Sequences 
from AMY 
exons

http://www.ncbi.nlm.nih.gov/Omim/

GenBank Sequences 
from AMY 
exons

http://www.ncbi.nlm.nih.sov/Web/GenBank/

UniGene Sequences 
from AMY 
exons

http ://w w w. ncbi. nlm. nih. go v/U niGene/

Sanger Centre Sequence for 
lp21

http://www.sanger.ac.uk

Draft Genome 
Browser

Sequence for 
lp21

http://genome.cse.ucsc.edu/

BAC&
Accession
maps

Sequence for 
lp21

http://genome.wustl.edu/ssc/human/mappins/

Table 2.5 Sequence handling software

Name Purpose Reference

Sequencher v.4 Sequence alignments, 
identifying restriction 
enzyme sites

Gene Codes, Ann Arbor, Michigan

ClustalX Multiple sequence 
alignments

Thompson et al. 1997

Blast Finding sequence 
matches in genome 
databases

http://www.ncbi.nlm.nih.gov/BLAST/

etandem Searching for repeat 
sequences

HGMP EMBOSS
telnet: //tin .hgmp/mrc .ac.uk

Oligo v4 Primer design MBI, Cascade, CO

PAUP*v4 |310 Phylogenetic analysis Sinauer Associates, Sunderland, 
Mass.
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Table 2.6 Software used in population genetics analysis

Name Purpose Reference / Supplier

Instat Summary statistics, 

ANOVA

GraphPad, San Diego, CA

Arlequin Fst, AMOVA, Exact test 

of population 

differentiation

Schneider et al. 2000

Genstat v3.2 Principle Co-ordinate 

vectors

VSN, Hemel Hempstead UK

MATLAB

Programming

environment

Implement functions 

written by M. Weale for 

EMamy

Mathworks, Natick, MA 

(see http://www.ucl.ac.uk/tcga 

for functions)

‘R’ Statistics package http://www.R-project.org/

Generic 

Mapping Tools

Contour maps Wessel & Smith (1998) 

http;//gmt.soest.Hawaii.edu

SYSSIPHOS Analysis of Intra-allelic 

variability

M. Stumpf (unpublished)

YTIME Estimating the age of 

alleles

M. Weale

http://www.ucl.ac.uk/tcga

2.10 Miscellaneous

2.10.1 Suppliers

Unless stated in the text the following companies were suppliers of laboratory 

consumables for this thesis:

Sigma-Aldrich, St Louis, Missouri (General)

Fisher Scientific, Loughborough, Leicestershire UK (General)

Fissons Scientific Equipment, Loughborough, Leicestershire UK (General) 

Merck BDH Chemicals, Poole, Dorset, UK (General)

Sartstedt, Numbrecht, Germany (101x16.5mm transport swab tubes)

New England Biolabs, Beverly, MA (Restriction enzymes)

MWG Biotech Ebersberg, Germany (Oligonucleotides)

HT Biotech, Cambridge, UK (Taq polymerase)

BD Biosciences Clontech, San Jose, CA (Mab)
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Whatman BioMetra, Goettingen, Germany (PCR machine)

National Diagnostics, Atlanta, Georgia, (Acrylamide solution)

Microzone Ltd, Haywards Heath, UK (Sequencing reagents)

Invitrogen, Carlsbad, CA (Cloning kit)

PE-Applied Biosystems, Foster City, CA (PCR machines, DNA sequencing & 

GeneScan™ equipment)

2.10.2 Units

All values measured in this thesis use SI units.

2.10.3 Buffers and reagents 

All pH values at 25°

Buffer Name Abbreviation Contents

Tris-EDTA Buffer lxTE ImM EDTA, lOmM Tris-HCl ph 

8.0

Tris-borate-EDTA Buffer lxTBE 0.09M Tris-borate pH8.0, 2mM 

EDTA, pH 8.3

NEB Buffer No.2 for 

restriction endonucleases

NEB 2 10 mM Tris-HCl, lOmM MgCl2, 

50mM NaCl, ImM dithiothreitol, 

pH 7.9

pCR®4-TOPO® plasmid 

vector

pCR®4-TOPO® lOng/pl plasmid DNA in 50% 

glycerol, 50mM Tris-HCl pH 7.4, 

ImM EDTA, 2mM DTT, 0.1% 

Triton X-100, 100 [xg/ml BSA, 

30pM phenol red.

SOC Medium SOC 2% Tryptone, 0.5% Yeast 

extract, lOmMNaCl, 2.5 mM 

KC1, 10 mM MgCl2, lOmM 

M gS04, 20 mM glucose.
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Chapter 3: Developing protocols for typing human DNA samples for AMY1 

repeat alleles and six closely linked microsatellites

3.1 Introduction

The amylase multi-gene gene family consists of 2 pancreatic genes (AMY2A and 

AMY2B) and variable number of salivary genes (Groot et al. 1989a) (See Table 

3.1). Three salivary amylase genes (AMY1A,B & C) and a pseudogene 

(AMYP1) have been described and are located in tandem on the short arm of 

chromosome 1 (Tricoli & Shows 1984). Extensive quantitative variation has 

been demonstrated in Caucasian populations in the form of polygenic repeats of 

the AMY1 genes as follows: 2B-2A-(lA-lB-Pl)n-lC  (Bank et al. 1992) (see Fig 

1.9). The first aim of this thesis was to design PCR based protocols to genotype 

and, haplotype large numbers of individuals for the salivary amylase polygenic 

repeat alleles as well as a number of closely linked microsatellites. This chapter 

describes the development of these protocols.

As was outlined in chapter 2, two different approaches were explored whilst 

developing the method for AMY 1 quantification. Both methods were based on 

quantifying the variable number of salivary amylase genes, through a comparison 

with the pancreatic amylase genes, which are constant in number. Thus both 

schemes were based around a semi-quantitative PCR that involved co­

amplification of target sequences from both the AMY2 and AMY 1 genes. In 

addition, both approaches used the ABI 377 / GeneScan™ genotyping system. 

This technology not only provides accurate sizing of DNA fragments, it can also 

be used to quantify the relative quantities of fragments.

In order to ensure equal amplification efficiency of the AMY1 and AMY2 target 

sequences it was important the PCR products were the same or very similar 

length (See Hirano 2002, Arezi 2003). However if the PCR products from both 

the AMY1 and AMY2 genes are the same length then an additional method must 

be used to distinguish them. The first approach used PCR primers that amplified 

a region in
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Table 3.1 Nomenclature of Human alpha-amylase genes, haplotypes and genotypes 

after Groot et al (1989). The gene designations for the amylase genes were 

introduced by Gumucio et al (1988) and are in agreement with the guidelines for 

human gene nomenclature (Shows 1987). AMY 1 repeat alleles here refers to the 

number of lOOkb repeat units containing AMY 1A, AMY IB and AMYP1 that are 

present on each chromosome.

Item Abreviation

Salivary amylase genes AMY 1 A; AMY IB; AMY 1C

Pancreatic amylase genes AMY2A; AMY2B

Amylase pseudogenes AMYP1

Salivary amylase repeat alleles
AMY 1 *H0; AMY 1 *H 1; AMY 1 *H2; AMY 1 *H3; 
AMY 1*H4;

Salivary amylase genotypes
AMY*H0/H0 
AMY*H0/H2 etc
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both AMY1 and AMY2, which also contained a restriction endonuclease 

recognition site in either the AMY 1 or the AMY2 genes. If the restriction 

endonuclease recognition sequence was contained in the AMY 1 product, the 

AMY 1 product would be cut into two shorter fragments, thus distinguishing 

them from the AMY2 product.

The second approach was based on an update of Bank and colleagues (1992) 

protocol. This method used primers that amplify an area around an insertion in 

the AMY 1 sequence producing a longer AMY 1 specific product and a shorter 

AMY2 specific product. The protocol described here used very small deletions 

(maximum 4bp) to minimise the risk of unequal amplification efficiency between 

the AMY1 and AMY2 products. Experiments comparing the accuracy of the 

two approaches in AMY 1 quantification found that the second approach was the 

most reliable in assigning genotype.

3.2 Designing an assay for AMY1 Quantification

3.2.1 Previous methods o f AMY 1 repeat number quantification: Bank et al. 

(1992)

Bank et al. (1992) used a PCR based method to quantify the relative amounts of 

salivary amylase (AMY1) PCR product to pancreatic (AMY2) PCR products. 

Primers were designed to amplify a region around a 22bp insertion present in 

AMY1, which is absent in AMY2. It was therefore possible to use the ratio of 

AMY 1 PCR products to AMY2 products to quantify the number of AMY 1 genes 

present in the individual (See Table 3.2). The PCR primers were designed to 

anneal equally well to both the AMY1 genes and the AMY2 genes, by having a 

sequence complementary to regions that are identical in all AMY genes. The 

PCR results in an AMY1 specific product of 604bp and an AMY2 specific 

product of 582bp. The PCR reaction used radioactively labelled dNTPs for 

detection, and PCR products were separated by polyacrylamide gel 

electrophoresis (PAGE). Quantification was performed using a LKB2202 

Ultrascan densometer to analyse the bands on autoradiograms. To ensure 

accuracy and reproducibility, PCR products were run twice and an average taken.
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Table 3.2: Expected ratios of AMY2:AMY 1 PCR products for Bank et al (1992) 

protocol. The ratio of AMY2:AMY 1 PCR products can be used to determine the 

number of AMY 1 genes in an individual. However it must be noted that in some 

cases different genotypes contain the same number of AMY 1 genes and so will give 

the same AMY2:AMY 1 ratio.

Ratio of PCR products 

AMY 2B+AMY 2A: 

AMY1

Total number of AMY 1 

genes in an individual

GENOTYPE(S)

4:2 2 HO/HO

4:4 4 H0/H1

4:6 6 H0/H2 or H l/H l

4:8 8 H0/H3 or H1/H2

4:10 10 H0/H4 or H1/H3 or H2/H2

4:12 12 H0/H5 or H1/H4 or H2/H3
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3.2.2 Potential Modifications to Bank et al. (1992) method for AMY1 

quantification

Bank et al. (1992) use a PCR based assay that amplifies a region around a 22bp 

insertion in AMY genes, which is not present in AMY2 genes, resulting in two 

PCR fragments of different length. There is usually a negative relationship 

between the amplification efficiency and the length of the fragments that are 

amplified (Arezi et al. 2003). Thus the AMY 1 product would have a lower 

amplification efficiency than the AMY2 product. In order to minimise the risk 

of unequal amplification efficiency the two PCR products should be more similar 

or the same in length. As outlined in the introduction two solutions to this 

problem were explored. Firstly, amplifying regions from both AMY 1 and 

AMY2 of the same length that are distinguished by the presence or absence of a 

restriction enzyme site. Secondly amplifying regions around much smaller 

insertion / deletions in either AMY 1 or AMY2.

Another improvement to Bank et al.’s (1992) protocol would be to develop more 

than one PCR based assay so that a correction could be applied if any differences 

in the efficiency of the PCR were identified. Two assays could be developed 

where the gene most efficiently amplified in the first is least efficiently amplified 

in the second. An example of this would be to design a PCR protocol that 

amplified a region around an insertion in AMY 1. This would produce an AMY 1 

specific product that is longer than the AMY2 specific product. In addition to 

this protocol, a PCR could also be used that amplified a region around an 

insertion in AMY2 that is not present in AMY 1. This would produce a longer 

AMY2 specific product. The combination of both assays would provide a means 

of identifying and correcting any PCR based inefficiencies.

Table 3.2 shows that in some cases different AMY 1 genotypes contain the same 

number of AMY 1 genes and so will give the same AMY2:AMY 1 ratio. Bank et 

al.’s (1992) method can only determine the total number of AMY1 genes in an 

individual and not the way that these genes are apportioned between the maternal 

and paternal chromosomes. This information is important in constructing 

compound haplotypes
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Table 3.3: Possible combinations of AMY 1 repeat alleles. Numbers in the table 

indicate total number of AMY 1 genes present in the individual. It is important to 

note that in some cases several AMY 1 repeat allele combinations produce the same

total number of AMY 1 genes.

paternal
Cmomosome

AMY 1 
*H0

AMY 1 
*H1

AMY 1
*H2

AMY 1
*H3

AMY 1 
*H4

AMY 1 
*H5Maternal

Chromosome
AMY1*H0

AMY1*H1

AMY1*H2

AMY1*H3

AMY1*H4
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of AMY 1 repeat alleles and closely linked microsatellite alleles for an analysis of 

intra-allelic variability. Consequently an additional method would need to be 

designed to resolve the structural arrangement of the AMY 1 genes along the 

chromosome. For example, a diagnostic assay for AMYl*HO would distinguish 

between AMYl*HO/H2 and AMY1*H1/H1.

A final modification to Bank et al.’s (1992) assay would be the replacement of 

radioactively labelled dNTPs visualised with autoradiography, with fluorescent 

based detection methods.

After having reviewed the improvements that could be made to Bank et al.

(1992) method, two separate approaches were designed and tested 

experimentally to determine the best method for AMY 1 quantification. The first 

of these methods amplified AMY1 and AMY2 specific fragments that are of the 

same length, but with a small number of base changes, and used restriction 

endonucleases to distinguish AMY1 products from AMY2 products. The second 

method was an updated version of Bank et al. (1992) protocol and amplifies and 

areas around small insertion/deletions producing AMY1 & AMY2 specific 

products that differ in length by a maximum of 4 base pairs.

3.3 Obtaining sequence information for lp21

At the outset of this work, the draft human genome sequence had not been 

completed and there were still some major gaps in the assembly for lp21. 

Sequence information for the amylase gene family was required in order to 

design the PCR based assays for AMY 1 quantification and also search for 

microsatellite markers closely inked to the amylase gene cluster. Once suitable 

microsatellite markers had been located, the sequence alignments were used 

design a multiplex PCR/ GeneScan based protocol to type for microsatellite 

repeat length variation (See Section 3.6).
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Fig 3.2: Restriction enzyme maps of human amylase genes showing differences in 
genomic clusters, after Groot et al (1989). 1AB = AMY1A or AMY IB; 1C = 
AMY 1C; 2A = AMY2A; 2B = AMY2B; PI = AMYP1; R = DNA region in 
AMY1A and AMY2B hybridising with probe c2.
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In the absence of a reliable sequence assembly for this region on the human 

genome working draft, an attempt was made to construct an assembly using the 

sequences that were available (see Table 3.4). Firstly, exon sequences from the 

pancreatic (AMY2A and AMY2B) and salivary (AMY1A, IB, 1C) genes, as 

well as from the pseudogene (AMYP1), were downloaded from GenBank 

(www.ncbi.nlm.nih.gov/Web/GenBank/) . Following this, the sequence from 

four unfinished BAC clones that span the region were obtained from the UCSC 

Human Genome Working Draft (Nov 2000 assembly) and aligned, along with 

the amylase exon sequences, using Sequencher v.4 (Gene Codes, Ann Arbor, 

Michigan). This served to identify the positions of amylase genes within the 

clones, as well as to build contigs of the clone fragments (see Table 3.4). Larger 

pieces (>2kb) of BAC clone were compared to the published restriction maps 

(see Groot et al. 1989a) (Fig3.1) so that they could be plotted onto a map of the 

region, and contigs constructed (see Fig 3.2). The sequence from the contigs 

were used to design primers for AMY 1 quantification and microsatellite 

protocols.

The extremely high degree of similarity between all the salivary amylase genes 

has caused problems for sequencing and mapping the lp21 region (S. Gregory, 

The Wellcome Trust Sanger Institute, Cambs.,/?ers. comm.) Alignments of this 

region produce assemblies that superimpose the sequences from the three genes 

AMY 1 A, AMY IB and AMY 1C, and interpret them as multiple sequences from 

a single salivary amylase gene. Thus lp21 was severely truncated in many of the 

early assemblies of the region (See Fig 3.3). Despite the recent advances that 

have been made in the finishing of the lp21 region, it is still not known if the 

AMY1 lOOkb repeats are absolutely contiguous to one another, and indeed if 

there are any distinguishing features between the sequence of the intergenic 

regions between AMY2A and AMY 1C genes in the AMY 1 *H0 allele and 

AMY2A and AMY1A in the AMY*H1 allele (see fig 1.9). This information 

would be useful for designing
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Table 3.4: Name and Accession number of BAC clones from Nov 2000 UCSC 

Genome browser assembly.

Clone Name Accession

Number

Length (bp) Number of 

pieces

Amylase genes 

covered

RP11-727M5 AC0255933 189,612 65 2B, 2A, 1A, IB, 

PI, 1C

RP11-9N17 ACO13599 128,792 27 2B, 2A, 1A, IB, PI

RP11- 

259N12

AC026662 82,294 7 2A, 1A, IB, PI, 1C

RP5-

1108M17

AL356363 114,392 12 2B, 2A, 1C



bA508Cl

RP11-9N17

RP11-727M5

RP11-259N12

RP5-1108M17

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 kb

Fig 3.2: A grid showing the relative positions of the amylase genes and pieces of 5 BAC clones that span the lp21 region as plotted by comparison 
to restriction maps of the amylase gene cluster published by Groot et al (1989). Clone fragments are taken from the Nov 2000 assembly of the 
UCSC human genome draft. bA508Cl was added from the April 2001 assembly. Note the absence of contiguous coverage between AMY1A and 
AMY 1B (shown by the black arrow and dotted lines).
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PCR based assay to detect the apportionment of the AMY 1 genes between the 

maternal and paternal chromosomes.

3.4 Using restriction enzymes in AMY1 quantification

3.4.1 Principles o f the protocol

In this approach, PCR protocols were designed to amplify regions of the same 

length from both AMY1 and AMY2 genes but have small difference in their 

sequence that can be distinguished by the presence (or absence) of a restriction 

enzyme recognition site. Two different systems were designed: the first primer 

pair (AMY02) amplified a region around a restriction site present in AMY 1, but 

absent in AMY2 (See Fig 3.4). The restriction enzyme would cut the AMY1 

products but not the AMY2 products, resulting in fragments of different sizes. 

The longer uncut fragments would be specific to AMY2 products, where as the 

shorter cut fragments would have resulted from AMY1 PCR products. The ratio 

of cut to uncut products could then be determined. The second primer pair 

(AMY04) amplified an area around a restriction site of the same restriction 

enzyme as used with the first primer pair, present in AMY2 but not in AMYl. 

The results obtained from both systems should give identical results. However, 

if the restriction enzyme does not cut to completion then the combination of the 

two systems would provide a way of correcting for the inefficiency of the 

enzyme.

3.4.2 Assay design and optimisation

Exon sequences from all the amylase genes were aligned against each other 

using ClustalX (Thompson 1997). Base changes between AMYl and AMY2 

genes were identified and tested to see whether they formed a recognition site for 

a common restriction enzyme in either the AMY 1 or AMY2 genes. As there 

were a shortage of suitable restriction sites mismatch primers were designed to 

force a mutation in the PCR product, which would result in an enzyme 

recognition site.

Primers were designed to anneal to regions that are identical in both AMY 1 and 

AMY2 so as to ensure equally efficient amplification of both genes. Suitable
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Fig 3.3: Two freizes from the UCSC Human Genome Working draft browser. The 
November 2002 freeze shows both pancreatic amylase genes (AMY2B & AMY2A) 
but only one salivary amylase gene (AMY 1 A). The July 2003 freeze has two 
additional salivary genes, which correspond to AMY IB and AMY 1C. The right 
hand end of the additional elongated AMY2A gene corresponds to AMYP1.
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primers were chosen to optimise for compatibility of annealing temperature, 

elimination of false priming sites, primer dimers, high 5’ stability and low 3’ 

stability using the primer design software Oligo v4.01 (MBI Cascade, CO). Low 

3 ’ stability is required to reduce the probability of false priming in non-target 

areas of the genome and in PCR products.

It was intended that both the primers pairs (AMY02 & AMY04) should be 

combined into a multiplex PCR reaction. Multiplex PCR systems have been 

widely used to increase the throughput and decrease the cost of typing large 

numbers of both SNPs and microsatellite loci (Thomas et al. 1999, Fletcher et al. 

2003). Multiple pairs of PCR primers are added to a common reaction mixture 

so that multiple regions of the genome can be amplified at the same time. 

Multiplex PCR protocols however often require considerable optimisation. PCR 

primers must however be designed to remove the possibility of false priming 

elsewhere in the genome, as well as to reduce the probability of primers pairs 

forming 3’ dimers. All the primer pairs must also have similar annealing 

temperatures, and the resulting PCR products should have different enough 

lengths so that the products from the various primer pairs will be easy to 

distinguish when using fluorescent based detection systems. Primers can also be 

distinguished with different colour fluorescent dye labels (HEX, TET, and 

FAM). The resulting PCR products must all within a limited size range (75- 

2,500 bp) to be suitable for GeneScan™ analysis.

The PCR reactions were tested experimentally to find the optimal annealing 

temperature, primer concentrations, MgCC concentration and for use with DNA 

extracted from buccal swabs. Once primers were optimised in single PCRs, 

primers were tested in multiplex, initially at equal concentrations (0.2 pM). 

Following this, the concentrations of individual primer pairs were tested at a 

range of concentrations from 0.06pl to 0.5pl to achieve the optimal amplification 

in terms of minimising the amount of primer used to produce relatively equal 

amounts of PCR product for both markers. Final reaction conditions for PCR, 

restriction enzyme digestion and electrophoresis are described in sections 2.5.2 

& 2.5.6
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Fig 3.4: Using restriction enzymes in AMYl quantification: AMY02 and AMY04 systems

A M YQ2
Primers in bold. Labelled primer (AMY 02-U-HEX) highlighted in yellow. Restriction enzyme recognition site underlined and highlighted in green. Differences in AMYl 
and AMY2 sequence highlighted in red.

AMYl PCR Product:
82bp: a a a g g c a a t t t t g g a c a a a c t g c a t a a t c t a a a c a g t a a c t g g t t c c c | g | a g H a g t a a a c c t t t c a t t t a c c a g g a g g t a  
AMY2 PCR Product:
82bp: AAAGGCAATTTTGGACAAACTGCATAATCTAAACAGTAACTGGTTCCk 3 fc f f l f c AAGTAAACCTTTCATTTACCAGGAGGTA

AMY2 PCR Products after lysis with Pstl (AMY 1 PCR product not cut):
52bp: a a a g g c a a t t t t g g a g a a a c t g c a t a a t c t a a a c a g t a a c t g g t t c c Et ®

30bp: |GAAGTAAACCTTTCATTTACCAGGAGGTA (not detected by GeneScan™ as primer not fluorescently labelled)

A M Y 0 4
Primers in bold. Labelled primer (AMY-04-U-FAM) highlighted in blue. Restriction enzyme recognition site underlined and highlighted in green. Differences in AMY 1 and 
AMY2 sequence highlighted in red. Note that penultimate base (highlighted purple) of the lower primer (AMY-04-MML-B) is mismatched (there is a C in both the AMY 1 
and AMY2 genomic sequences) and so creates the restriction enzyme recognition site in the AMY 1 PCR product.

AMY2 PCR Product:
83bp: g t c t t c c t g c t g g c a c a t a c t g t g a t g t c a t t t c t g g a g a t a a a a t t a a t g g c a a | t g c a | a g g c a t t a a a a t c t a c g t t t c t

AMYl PCR Product:
83bp: GTCTTCCTGCTGGCACATACTGTGATGTCATTTCTGGAGATAAAATTAATGGCAAHHBA^^^AAAA10^ 0011101

AMY 1 PCR Products after lysis with Pstl (AMY2 PCR product not cut):
60bp: J t c t t c c t g c t g g c a c a t a c t g t g a t g t c a t t t c t g g a g a t a a a a t t a a t g g c a a H I H

23bp: |AGGCATTAAAATCTACGTTTCT (not detected by GeneScan™ as primer not fluorescently labelled)
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Fig 3.4b: A GeneScan™ output for the AMY02 protocol. The peaks shown correspond to fluorescence detected by the laser system in the ABI377. This display shows two 
black peaks which correspond to the cut (52bp, AMY2) and uncut (82bp, AMY 1) AMY02 protocol PCR products. In addition, the smaller red peaks represent the internal 
size marker.
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GeneScan™ software produces graphical representations of size and fluorescent 

label as peaks of fluorescence, which are relative to the amount of PCR product 

present (See Fig 3.4b). In order to estimate the relative number of molecules of 

two different sized PCR products, the ratio of respective peak areas or heights 

must be calculated. Experiments to find the most reliable measure of the amount 

of PCR product were performed. It was found that recording peak height not 

only gave a value closer to the expected value for the known genotype samples, 

but also had a lower variance across runs (see fig 3.5) As a result of these 

experiments, the heights of peaks corresponding to the PCR products were 

recorded and the ratio of peak heights from the AMY 1 and AMY2 products were 

calculated.

DNA samples from six Dutch individuals of known AMY 1 repeat allele 

genotype (see Groot et al. 1989a) were obtained from Prof. Jan Pronk, Vrije 

Universiteit, Amsterdam. These samples were used to test the accuracy of the 

protocol at determining genotype.

The ratio of AMY2:AMY1 products obtained experimentally, was compared to 

the expected ratios (see Table 3.5) and genotype was assigned. However, there 

was still an excess of uncut PCR product, compared to expected results. This 

was interpreted as a failure of the restriction enzymes to completely digest all the 

PCR products which contained cut sites. Condition for the restriction enzyme 

lysis conditions were optimised for buffer composition, amount of PCR product, 

and units of enzyme. Following this, a mathematical correction was applied to 

remove the effects of incomplete digestion as follows:
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The system comprises of two primer pairs which each amplify a regions in 

both AMYl and AMY2 around a recognition sites for the same restriction 

enzyme. The first primer pair amplifies a region around a recognition site that 

is present in AMY 1 but not in AMY2. Thus the restriction enzyme cuts the 

AMY 1 PCR product but not the AMY2 product.

Let PI = amount AMYl, P2 = amount of AMY2A+B, and E = Enzyme 

efficiency,

So that only a proportion E of AMYl cuts:

Observed fraction of cut/(cut+uncut) products,

FI = EP1 / (EP1 + P2 +(1-E)P1 

= EP1 / (P1+P2)

This enzyme also cuts at another site in another PCR product, from a different 

location in the gene. However, in this case the restriction site is present in 

AMY2 but not AMYl. Assuming that this site is cut with the same efficiency 

as the site described above, then:

Observed fraction of cut/(cut+uncut) products,

F2 = EP2 / ( EP2 + PI +(1-E)P2)

= EP2 / (PI + P2)

E can be removed by dividing FI by F2.

F1/F2 = P1/P2.

Despite the corrections for enzyme efficiency, the method still failed to produce 

reliable genotype assignments across multiple runs on the same sample of known 

AMY genotype.
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Fig 3.5: A comparison of the mean ratios of AMY2: AMY 1 PCR products’ 
fluorescence between the height and area of peaks of fluorescence measured using 
an ABI377/ GeneScan™ system. The mean values are black dots and error bars 
represent plus or minus one standard error of the mean. The data are from the 
restriction enzyme protocol for AMY 1 quantification. 73 measurements of peak 
height were taken, and 47 of peak area, from separate electrophoresis runs from the 
same PCR reaction. The expected ratio of AMY2:AMY1 products for this individual 
is 2.0. As can be seen, the mean value for peak height is closer to the expected value 
for the DNA sample used. However it must be noted that both peak height and peak 
area produce lower than expected values using the restriction enzyme protocol for 
AMYl quantification.
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Table 3.5: Expected ratios of cut and uncut PCR products for AMY02 and AMY04. 

Numbers in table are given as number of genes present in individual with genotype

shown.

GENOTYPES AMY02 CUT: UNCUT 
AMY 2B+AMY 2A+P1: 
AMY 1

AMY04 CUT: UNCUT 
AMY1:
AMY 2B+AMY 2A+P1

AMY*H0/H0 4:2 2:4

AMY*H0/H1 5:4 4:5

AMY*H0/H2 or 
AMY*H1/H1

6:6 6:6

AMY*H0/H3 or 
AMY*H1/H2

7:8 8:7

AMY*H0/H4 or 
AMY*H1/H3 or 
AMY*H2/H2

8:10 10:8

AMY*H0/H5 or 
AMY*H1/H4 or 
AMY*H2/H3

9:12 12:9
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3.4.3 Possible sources o f error in the restriction enzyme protocol 

There are a number of possible explanations for the failure of this protocol to 

produce accurate genotype assignments. Firstly, it is possible that the PCR may 

not have been amplifying the AMY 1 and AMY2 products with equal efficiency 

thus giving inaccurate ratios of AMY 1 :AMY2 products. However, as the PCR 

products are distinguished through whether they are cut by the restriction 

enzyme, it was difficult to isolate the nature and degree of error at the PCR stage.

It is also possible that a high degree of heteroduplex formation during the PCR 

was reducing the efficiency of the restriction enzymes. Ruano & Kidd (1992) 

modelled heteroduplex formation during PCR from mixtures of human and 

chimpanzee DNA templates. They found that the degree of heteroduplex 

formation depends on the ratio of starting templates. When two templates are in 

equal concentrations a high degree of heteroduplex formation was found. To 

improve the AMY quantification protocol, the use of a nuclease enzyme such as 

T7 Endonuclease I, which cleaves non perfectly matched DNA, cruciform DNA 

structures, Holliday junctions and heteroduplex DNA, prior to the restriction 

enzyme digest was considered.

However, rather than adding another costly and time consuming step to the 

protocol, an alternative approach to AMY 1 quantification was developed. This 

method was based on an update Bank et al.’s (1992) protocol that used PCR 

based method for AMY1 quantification that amplifies AMY1 and AMY2 

specific fragments of different lengths, removing the need to use restriction 

enzymes for distinguishing the AMY1 and AMY2 fragments.

3.5 Updating Bank et al.’s (1992) method: the QAMY protocol.
3.5.1 Principles o f the protocol

Initial experiments involved reproducing Bank et al.’s method, using the 

published primers and PCR conditions adapted for use with a fluorescent based 

detection system such as ABI377 / GeneScan™. However, as explained in 

section 3.2.2 there are two additional modifications to Bank et al.’s protocol that 

should improve the accuracy of the method. Firstly, in order to minimise
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unequal amplification efficiencies between the AMY1 and AMY2 PCR products, 

it was decided to design protocols that amplified areas around small (4bp) 

insertion/deletions. Thus the AMY1 and AMY2 specific products could still be 

distinguished by length, but because the length difference is small, the potential 

for unequal amplification efficiency would be reduced.

Secondly, two different PCR systems were developed: The first system 

(QAMY02) amplified a region surrounding a 4bp deletion present in AMY2B, 

but not present in AMY 1 and AMY2A. This gave rise to two fragments of 

different size, the longer one originating from AMY 1 and AMY2A, and the 

shorter one originating from AMY2B.. The second system (QAMY03) was 

designed to amplify a region surrounding a 4bp deletion present in AMY 1, not 

present in AMY2B or AMY2A. This system produced a longer fragment from 

AMY2 genes and a shorter fragment from AMY 1 genes. Both protocols were 

expected give the same result from any one DNA sample. However one would 

expect that the longer fragment would have a higher chance of being amplified 

less efficiently than the shorter fragment (see Arezi 2003). As in one system the 

longer fragment was produced from AMY1+AMY2A, and in the other system it 

originated from AMY2 then it would be possible to correct for the unequal 

amplification of the fragments.

3.5.2 Assay design and optimisation

Sequences from all the amylase genes were aligned against each other, using 

ClustalX software (Thompson et al. 1997), and searched for insertion/deletions 

that would provide a means of distinguishing between the AMY1 and AMY2 

genes. Small (<6 bp) insertion/deletions that are present in either AMY 1 or 

AMY2 were identified from the aligned amylase gene sequences.

Primers were designed to amplify regions around these insertion/deletion sites 

the criteria outlined in section 3.4.2. (See Fig 3.6a). Primers were designed to 

anneal to regions that are identical in both AMY1 and AMY2 so as to ensure 

equally efficient amplification of both genes. The PCR reactions were optimised 

for primer concentration, MgCl2 concentration and annealing temperature. The
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PCRs for QAMY02 & QAMY03 were conducted as two separate single 

reactions instead of in a multiplex reaction, in order to maximise the efficiency 

of the PCR. Once the PCRs had been carried out the PCR products from the 

two reactions were mixed together and diluted for electrophoresis with the 

ABI377 / GeneScan™ system.

In order to check that the deletions that the QAMY primers were designed 

around were real and neither due to sequencing errors or incorrectly interpreted 

by the computer alignment program, the PCR products were sequenced using the 

protocol described in section 2.4. The AMY1 and AMY2 PCR products were 

sequenced in the both the forwards and reverse direction so that the presence of 

the deletions could be ascertained without the need to separate the two different 

length fragments. The results of the sequencing confirmed the presence of 

deletions for both the QAMY02 and QAMY03 systems.

With single target PCRs, quantification results are reliable only when analyses 

are performed at points in the exponential phase of the PCR amplification curve, 

before the onset of the plateau phase (Crotty et al. 1994, Jung et al. 2000). The 

reasons for this are poorly understood but are often attributed to one or more of 

the key PCR reagents being consumed, effectively halting the reaction.

However, many people have found that co-amplification of different 

concentrations of different targets results in retention of the initial proportions 

even in the plateau phase (Morrison & Gannon 1994, Hirano 2002). To ensure 

that quantification results are reliable and elucidate the optimum number of PCR 

cycles for quantification, the QAMY02 and QAMY03 systems were tested on 

the samples of known genotype obtained from Prof Jan Pronk, Vrije Universiteit, 

Amsterdam. It was found that the optimum number of PCR cycles was 30, 

which is after the end of the exponential phase of the PCR reaction. See Fig 3.6
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Fig 3.6: Mean ratio of AMY2:AMY 1 PCR products from QAMY02 protocol for 
different numbers of PCR cycles. For all four cycle conditions (24,26,27 & 30), 4 
PCRs were carried out and the mean and standard error of the ratios obtained from 
the PCRs calculated. The mean is shown by the black dot, and the error bars 
represent plus or minus 1 standard error either side of the mean value. The red line 
represents the expected ratio of AMY 1 product: AMY2 product for the DNA sample 
used. As can be seen 30 cycles produces both the mean value closest to the expected 
value, as well as the smallest standard error.
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Fig 3.7a: Alignment of AMY 1A, AMY2A and AMY2B gene sequences 
(+1516/1796 bp from start codon). QAMY03 primers are shown in yellow, 
QAMY03 4bp deletion in AMY 1A is shown in red.

AMY1A
AMY2A
AMY2B

AMY1A 
AMY 2 A 
AMY2B

AMY1A 
AMY 2 A 
AMY2B

AMY1A 
AMY 2 A 
AMY2B

AMY1A 
AMY 2 A 
AMY2B

TCACATTACTTTCCTTTCACAGTTGATTTTTGATCTTGTAGGAAAATAGTTATAAGGTAT
TCACATTACTTTCCTTTCACAGTTGATTTTTGATCTTGTAGGAAAATAATTATAAGATAT
TCACATTACTT CTTCACAGTTGATTTTTGATCTTGTAGGAAAATAGTTATAAGATAT
* * * * * * * * * * *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * *  * * *

H ^ aaatattttggaattttattagcacactataaatttaI atcaataattctttaaat
CATGAAATATTTTGGAGTTTTATTAACATACTATAAACTTGCATCAATAATGCTTTAAAT 
CATGAAATATTTTGGAGTTTTATTAACATACTATAAACTTGAATCAATAATGCTTTAAAT 

* * * * * * * * * * * * *  * * * * * * * *  * *  * * * * * * * *  * *  * * * * * * * * *  * * * * * * * *

TTCTGCCTCTCTGTAAGTCACACTGAATTAGAAACTTTGTTTTCTAGGTTCGTATTTATG 
TTCTACCTCTCTGTAAGTCACACTGAAGTAGAAACTTTGTTTTCTAGGTTCGTATTTATG 
TTCTGCCTCTCTGTAAGTCACACTGAAGTAGAAACTTTGCTTTCTAGGTTCGTATTTATG 
* * * *  * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * *  * * * * * * * * * * * * * * * * * * * *

TGGATGCTGTAATTAATCATATGTGTGGTAATGCTGTGAGTGCAGGAACAAGCAGTACCT
TGGATGCTGTAATTAATCATATGTGTGGTAACGCTGTGAGTGCAGGAACAAGCAGTACCT
TGGATGCTGTAATTAATCATATGTCTGGTAATGCTGTGAGTGCAGGAACAAGCAGTACCT
************************ ****** * * *r *r *r * "k *r *r *r * * ★ * *r ★

GTGGAAGTTACTTCAACCCTGGAAGTAGGGACTTTCCAGCAGTCCCATATTCTGGATGGG
GTGGAAGTTACTTCAACCCTGGAAGTAGGGACTTTCCAGCAGTCCCATATTCTGGATGGG
GTGGAAGTTACTTCAACCCTGGAAGTAGGGACTTTCCAGCAGTCCCATATTCTGGATGGG
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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Fig 3.7b: A GeneScan™ output for the QAMY03 protocol. The ratio of the peak heights from the AMY 1 specific product (263bp) 
and the AMY2 specific product (267bp) as follows:

AMY2 (267bp): AMY1 (263bp) = 2726 : 1376 = 1.98 : 1 
This is rounded to 2:1 which indicates genotype AMY 1*H0/*H0.
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Details of final primer concentrations, PCR and electrophoresis conditions can 

be found in table 2.2 and sections 2.3.1 & 2.3.4. After electrophoresis on the 

ABI377, GeneScan™ outputs the resulting data as peaks of fluorescence (See Fig 

3.7b). The heights of the peaks from the AMY 1 and AMY2 products were 

recorded for each marker and the ratio of AMY2:AMY 1 peak heights was 

calculated. This ratio was then compared to the expected ratios for QAMY02 & 

QAMY03 (see table 3.6) and a genotype was assigned.

3.5.3 Confirmation Experiments

The QAMY02 and QAMY03 systems were tested on the samples of known 

genotype to test the accuracy of the assay for determining AMY 1 gene copy 

number in individuals. Initial experiments showed there was some variation in 

the ratios of AMY1:AMY2 peak heights obtained from multiple GeneScan™ 

runs the same PCR reaction. To investigate this, three PCRs were performed on 

DNA from the same individual of known genotype, and electrophoresis on an 

ABI377/GeneScan™ system was carried out 4 times on the products of each 

PCR reaction. The variance in peak height ratios between electrophoresis runs 

was then calculated.

The acceptable deviation from the expected ratio of AMY2:AMY 1 products was 

set at +/- 0.2. This range represents the range within which genotype could be 

confidently assigned, leaving a large margin where ambiguous ratios that do not 

correspond to any known AMY 1 genotype would be rejected as bad data (See 

Table 3.6). The number of electrophoresis runs required to ensure that 99% of 

the results fell within the acceptable range of the expected ratios was calculated 

as follows:
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Table 3.6 PCR product ratios for AMY 1 quantification protocols: QAMY02 and 

QAMY03 and corresponding genotypes.

Numbers in table are given as number of genes present in individual with genotype

shown.

GENOTYPES Total number 
of AMY1 
genes per 
individual

QAMY02
AMY2B:
AMY2A+AMY1

QAMY03
AMY 2B+AMY 2A:
AMY1

AMY1*H0/H0 2 2:4 4:2

AMY1*H0/H1 4 2:6 4:4

AMY1*H0/H2 or 
AMY 1*H1/H1

6 2:8 4:6

AMY1*H0/H3 or 
AMY1*H1/H2

8 2:10 4:8

AMY 1 *H0/H4 or 
AMY1*H1/H3 or 
AMY1*H2/H2

10 2:12 4:10

AMY 1*H0/H5 or 
A M Y l*H l/H 4or 
AMY1*H2/H3

12 2:14 4:12
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Let V= variance across electrophoresis runs on an ABI377/GeneScan™ system 

R = acceptable range either side of expected ratios for known AMY 1 genotypes 

C = Two tailed critical value so that 99% of data fell within the acceptable range

Number of runs required = V

R x R 
C C

Table 3.7 shows the results of the confirmation experiment. For all three of the 

PCRs the number of electrophoresis runs required to ensure that 99% of the 

ratios fell within +/-0.2 of the expected ratios for the AMY 1 genotypes was 

never more than two. As a result it was decided to perform two PCRs for both 

QAMY02 and QAMY03 on each DNA samples, and to run each PCR twice on 

an ABI377/GeneScan™ system.

3.5.4 Comparison o f the two approaches for AMY 1 quantification 

Two different approaches for AMY1 quantification were explored, namely using 

restriction enzymes to distinguish between AMY1 and AMY2 PCR products as 

well as updating Bank et al.’s protocol, which uses small differences in length to 

differentiate the products originating from the AMY1 and AMY2 genes. Once 

optimised, these protocols were tested for accuracy at assigning genotype using 

the samples of known genotype provided by Prof Jan Pronk, Vrije Universiteit, 

Amsterdam. Fig 3.8 and Table 3.8 shows data from these experiments on one 

individual with the genotype AMY1*H0/H0. As can been seen from figure 3.8, 

the QAMY02 & QAMY03 systems produce the ratios of AMY1:AMY2 peak 

heights that are closest to the expected value for that individual, with the smallest 

variance in ratios across multiple electrophoresis runs. As a result the QAMY02 

and QAMY03 systems were used to type the large number of samples from a 

number of global human populations for AMY1 repeat allele genotype.
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Table 3.7 Results of experiments on the QAMY02 system to determine the number 

of electrophoresis runs required to ensure results fall within the acceptable range of 

+/- 0.2 either side of expected ratio. The QAMY02 PCR was performed three times 

on a DNA sample of known genotype obtained from Jan Pronk, Vrije Universiteit, 

Amsterdam. Electrophoresis was carried out four times on each of the three PCRs 

that were carried out.

Let V= variance across electrophoresis runs on an ABI377/GeneScan™ system 

R = acceptable range either side of expected ratios for known AMY 1 genotypes 

C = Two tailed critical value so that 99% of data fell within the acceptable range 

Number of runs required = V

R x R
C C

PCR no. Standard 
deviation 
of results 
across runs

Acceptable range 
either side of 
expected ratios 
for known AMY 
genotypes 
(+/-)

Two tailed 
critical value 
(for 99% data 
to fall within 
acceptable 
range)

Variance 
of results 
across 
runs

Number 
of runs 
required

PCR A 0.109 0.2 2.57 0.011 1.968

PCR B 0.097 0.2 2.57 0.009 1.574

PCR C 0.098 0.2 2.57 0.009 1.617
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Fig 3.8: Mean ratio of AMY2:AMY 1 PCR products fluorescence for one individual from 
5 systems used in AMY 1 quantification. The expected value for this individual 
(genotype AMY*H0/H0) is shown in red. AMY02 (n=32) and AMY04 (n=32) are 
protocols that use restriction enzymes to distinguish AMY 1 and AMY2 specific PCR 
products. QAMY_BANK (n=15) is a PCR that amplifies the area around the same 22bp 
insertion in AMY 1 described in Bank et al (1992). QAMY02 (n=32) & QAMY03 
(n=32) are protocols that amplify regions around small insertions in either AMY 1 or 
AMY2 genes.
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Fig 3.9: T h e  A m y la s e  G e n e  C lu s te r  a n d  lo c a t io n  o f  6 C lo se ly  L inked  M ic ro sa te ll i te  
M a rk e rs
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3.5.5 Detecting the structural arrangement o f AMY 1 genes on the chromosome. 

The PCR based methods described above can determine the total number of 

salivary amylase genes present in an individual but cannot, however, determine 

the apportionment of these genes on to the maternal and paternal chromosomes 

(see table 3.4). This adds an extra layer of complexity to the problem of 

assigning phase. It is important to be able to determine phase if data is to be 

produced that can be analysed using haplotype based tests for selection. Ideally 

a further assay would distinguish between certain haplotypes, improving the 

resolution of the existing protocols. For example, a diagnostic assay for 

AMYl*HO would distinguish between AMY1 HO/H2 and AMY1 H l/H l. 

However as explained above, the sequence information to design such an assay is 

to date unavailable.

To overcome the problem of determining the phase of the AMY 1 genes a 

statistical approach, using an expectation maximisation (EM) algorithm was 

developed. A set of functions, called EMamy, incorporating the EM algorithm 

was written for the MATLAB programming environment by M. Weale (see 

Table 2.6). The EM algorithm is a general method for finding the maximum 

likelihood estimate of the parameters of a model when the dataset is incomplete 

or has missing values (Bilmes 1998). The algorithm consists of two steps: 

Firstly, the E step calculates expected values for the missing data from the 

starting parameters. The M then recalculates the parameters from the data using 

a maximum likelihood equation. These two steps are repeated until a maximum 

likelihood is reached. The maximum likelihood is expected to be returned for 

the estimates of the parameters that would give rise to the observed data.

The EMamy functions were designed to analyse data in the form of the total 

number of AMY 1 repeat units present in an individual, from families consisting 

of one father, one mother and two children. In some families it is possible to 

deduce the haplotypes of the parents by following the inheritance of the AMY 1 

repeat alleles through to the children. Using the information from these families, 

the EMamy functions return EM estimates of the frequencies of the AMY 1 

repeat alleles and
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therefore assess the relative probability of a total number of AMY 1 genes being 

the result of different combinations of AMY1 repeat alleles (See Appendix A). 

The EMamy functions report all the possible parental haplotypes, given the 

children’s genotypes, together with the relative probability for each genotype, 

using all the data, as well as the allele frequencies from the EM estimates.
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3.6 Microsatellites

As discussed in Chapter 1 (Section 1.3.5.3), haplotype-based tests for selection 

currently provide the most powerful methods of detecting departures from the 

neutral expectation (Sabeti et al. 2002). Therefore, in addition to data collected 

on AMY 1 gene copy number, protocols were designed to type six microsatellites 

closely linked to the amylase gene cluster.

Microsatellites are short tandemly repeated nucleotide motifs of between 2 and 5 

bases long that are densely dispersed throughout the genomes of eukaryotes. 

Many microsatellites have been found to be highly polymorphic in terms of 

repeat copy number (Goldstein & Pollock 1997). Even in relatively small 

samples it is typical to find more than 10 repeat number alleles with the result 

that migrational processes and other demographic events can be studied 

(Bowcock et al. 1994)

The Human Genome Project databases was searched for known microsatellite 

markers less than 1 Mb from the amylase gene cluster. Dracopoli & Meisler 

(1990) identified a polymorphic dinucleotide microsatellite marker 2.3 kb from 

the AMY2B gene. Additional microsatellites were found through analysis of 

the contigs of the amylase gene cluster region (see Fig 3.2) using the program 

ETANDEM from the Human Genome Mapping Project (HGMP) EMBOSS 

package (telnet://tin.hgmp.mrc.ac.uk). This program searches for tandem repeats 

and scores them, giving the highest scores to the longest repeated regions as well 

as those in which the repeat motif continues uninterrupted by bases not contained 

in the motif. Repeats with the highest scores were analysed visually in 

Sequencher v.4 (Gene Codes, Ann Arbor Michigan). Using these methods, six 

microsatellites were selected and primers were designed using Oligo v4.0 to 

amplify regions around the chosen microsatellite markers (See Fig 3.9).

113



I

Size (bp)
SD €0 30 120 150 18C 210 24D 270 300

48UU

D1S535D1S28964200

3600 DIS2888

D1S2759
▼ MSAMY02

D1S2626
Internal Size Markerauu

2Dfl

coo

Fig 3.10 GeneScan output for multiplex PCR of 6 microsatellites closely linked to the amylase gene cluster. The internal 
size marker appears in red.



As with other protocols, primers were optimised for annealing temperature, 

primer concentration, MgCh concentration and for use with DNA extracted from 

buccal swabs. Once primers were optimised in single PCRs, final concentrations 

(see Table 2.5) of the various primer pairs were optimised for use in a multiplex 

PCR. Primers were tested in multiplex, initially at equal concentrations (0.2 

p.M). Following this, the concentrations of individual primer pairs were tested at 

a range of concentrations from 0.06pM to 0.5pM to achieve the optimal 

amplification in terms of minimising the amount of primer used to produce as far 

as possible equal amounts of PCR product for all markers (see Fig 3.10). Final 

reactions condition for the PCR reaction and electrophoresis are described in 

sections 2.5.4 & 2.5.6.

Although the ABI377/GeneScan™ system produces very accurate relative 

estimates of the size of DNA fragments, the sizing not absolute (Thomas et al. 

1999, Dr. L. Tagg, PE-Applied Biosytems, pers. comm.). The observed product 

sizes assigned to PCR products using GeneScan analysis software, although 

consistent across runs, can differ by up to 6 nucleotides from the actual product 

size. Consequently, a number of DNA samples were sequenced in the region of 

the 6 microsatellites to provide a way of calibrating the scoring of microsatellite 

repeat alleles. Sequencing was performed according to the protocol described in 

section 2.4. The number of repeat motifs contained in the samples was counted 

from the sequencing trace. This information was combined with the GeneScan™ 

size estimate and compared to the sequence length and number of repeat motifs 

found in the reference sequence for the microsatellites obtained from GenBank. 

Where discrepancy between the GeneScan™ size estimate combined with the 

number of repeats from sequencing, and the reference sequence was found, a 

correction was applied to the GeneScan™ size estimates (see Table 3.9).
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Protocol
Name

N Mean ratio of 
AMY: AMY 
PCR products

Standard
Deviation

Variance Standard 
error of 
the mean

AMY02 32 1.575 0.567 0.321 0.100

AMY04 32 1.579 0.672 0.452 0.119

Bank et al 
(1992)

15 2.423 0.301 0.090 0.008

QAMY02 32 1.860 0.120 0.015 0.021

QAMY03 32 1.828 0.382 0.146 0.068

Table 3.8: A comparison of five protocols used in AMY1 quantification. AMY02 
and AMY04 are protocols that use restriction enzymes to distinguish AMY 1 and 
AMY2 PCR products prior to quantification. QAMY02 and QAMY03 protocols 
use small differences in length to distinguish AMY1 and AMY2 PCR products.
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Table 3.9 Results of calibration of ABI377/GeneScan™ system for 6 microsatellite

markers.

Microsatellite
Marker

Reference
sequence
length
(bp)

Number of 
repeats in 
reference 
sequence

Size of PCR 
product in 
sample 
returned by 
ABI 377 
(bp)

Number of 
repeats in 
sample run 
on ABI377 
(from
sequencing)

Adjustment
(bp)

D1S2888
(di)

139 20 133 17 0

D1S2759
(di)

157 19 157 17 +4

D1S2896
(di)

163 13 168 14 +3

AMY-MS02 
(di)

191 18 184 17 +5

D1S535
(tetra)

229 10 226 9 +1

D1S2626
(di)

282 21 276 17 +2
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3.7 Summary and discussion

The protocols described in this chapter have been employed successfully to 

amplify DNA from samples taken as blood or buccal swabs and extracted with 

standard phenol/chloroform procedures. Some variation was observed in the 

intensity of signal peaks between different DNA samples. However absence of 

clear peaks for one or more loci was observed only in samples containing DNA 

that was either severely degraded or present at very low concentrations.

The combination of the large size (lOOkb each) of the polygenic repeat regions 

and the extremely high degree of similarity between the AMY 1 genes presented 

a number of challenges in designing assays for detect the structural arrangements 

of the AMY1 genes on a particular chromosome. The first challenge was to 

design an assay to quantify the number of AMY1 genes in an individual by 

comparing the relative amounts of PCR products from AMY1 and AMY2 genes. 

It was extremely important that the relative amounts of AMY1 and AMY2 PCR 

products reflected the starting concentration in the DNA sample and so great care 

was taken to minimise the risk of unequal amplification efficiency between the 

two classes of genes. Once a reliable method had been developed to type 

individuals for AMY 1 gene copy number, a further step was required to resolve 

certain genotypes, which contained equal numbers of AMY1 genes. As reliable 

sequence information for the region of the amylase gene cluster it was not 

possible to design further PCR based assays. Consequently a statistical 

approach, incorporating and EM algorithm, was used to provide AMY 1 

haplotypes for the individual chromosomes.

To date 1128 individuals from 14 human populations have been typed for 

salivary amylase gene copy number using the QMAY02 &QAMY03 protocols. 

905 of these individuals from 7 populations have also been typed for the six 

microsatellites closely linked to the AMY gene cluster, using the AMY 

microsatellite multiplex PCR system outlined above. The methods described in 

this chapter provide a reliable and cost effective way to type individuals for these 

markers. The analysis of these data is described in the following chapters to
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investigate the worldwide distribution of variation in salivary amylase gene copy 

number in humans as well as to assess the evidence for selection at the AMY 1 

locus.
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Chapter 4: Variation in AMY1 gene copy number in humans -  does 

geography or dietary history best explain the patterns found?

4.1 Introduction

Bank et al. (1992) first reported that considerable variation in AMY 1 gene copy 

number exists in humans. As outlined in Chapter One, the hypothesis explored 

in this thesis is that the variation in AMY 1 gene copy number in humans may be 

the result of an adaptation to high starch diets, due to positive selection operating 

on AMY 1 repeat alleles with high number so AMY 1 genes. However, the 

original data set of Bank and colleagues is limited to a small number of Dutch 

families and therefore cannot inform us on differences in AMY 1 gene copy 

number at the continental level or differences between populations with different 

dietary histories. The protocol developed in Chapter 3 provided a means of 

collecting data on variation in AMY 1 gene copy number from a wide range of 

human populations from different geographical origins as well as contrasting 

dietary histories (see Table 4.1).

There are a number of questions that can be asked about the extent and nature of 

variation in AMY 1 gene copy number. Do all the populations studied show 

variation in the number of salivary amylase genes in individuals? Do all 

populations have the same modal number of AMY1 genes? Do the populations 

show significant differences in AMY 1 haplotype frequencies? Are the frequency 

differences in excess of, or less than would be expected under neutrality? And 

finally, does the distribution of AMY1 haplotype frequencies fit the predictions 

from the hypothesis that high AMY 1 gene copy number haplotypes will be at 

higher frequency in populations with a long history of high starch diets than in 

those populations that have only adopted high starch diets in recent times?

Differences in allele frequencies between populations can be influenced by a 

number of factors including genetic drift shaped by demographic history as well 

as natural selection. As outlined in chapter 1, large data sets of both SNPs 

(Sachidanandam 2001) and microsatellites (see Kayser et al. 2003) are now 

available which form a
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Population N Approx date of farming (ybp) Major prehistoric crops Modem dependence on agriculture 
(after to Murdock 1968)

Classification for AMOVA

Ethiopian families -  
Amharic speakers

156 13,000 (Harlan 1989) 
8500 (Ehret 2002)

Wild grain collection 
Ensete cultivation

60% Intensive permanent - cereals Agriculturalist

Nigerians - Ibibio 94 8000
(Ehret 2002)

Yam cultivation 60% Extensive / shifting cultivation -  roots or 
tubers

Agriculturalist

Algerian families ^

* )
7000
(Camps 1975)

Sheep, goats 70% Intensive cultivation dependent on 
irrigation, cereals

Agriculturalist

Malawi - Chewa 96 2000
(Cavalli-Sforza et al 1994)

Millet & squash 50% Extensive / shifting cultivation - cereals Non or recent agriculturalist

Armenian families 100 10,000
(Hilman 1989)

Wheat, barley 70% Intensive permanent - cereals Agriculturalist

Kuwait families ^ 32
---

10,000
(Harris 1981)

Wheat, barley 60% Intensive cultivation dependent on 
irrigation, cereals

Agriculturalist

Ashkenazi Jewish 
families

116 Unknown Wheat, barley 60% Intensive permanent - cereals Unknown

British families 94 6000
(Thorpe 1996)

Wheat, barley 60% Intensive permanent - cereals Agriculturalist

Irish families 120 5000-5500 
(Thomas 1996)

Wheat, barley 50% Intensive permanent -  roots or tubers Agriculturalist

German families 120 5.800-7,000 
(Diamond 1997)

Wheat, barley 60% Intensive permanent - cereals Agriculturalist

Swedish Saami 52 N/a N/a 0% Absence of agriculture Non or recent agriculturalist

Mongolians 96 6000-5000 
(Morgan 1990)

Sheep. Horses, cattle 10% Casual, sporadic or slight cultivation Agriculturalist

Yakut 82 Unknown 
(Forsyth 1992)

Cattle, horses 10% Casual, sporadic or slight cultivation - 
cereals

Unknown

Singaporean Chinese 
families

128 6000 - 3000
(Cavalli-Sforza et al 1994)

Rice, pigs 70% Intensive permanent cultivation & 
Horticulture

Agriculturalist

Table 4.1: A summary of agricultural history of populations under study. Ybp = years before present.



null distribution of allele frequency differences, against which to compare the 

data from the locus under investigation. As non-equilibrium population wide 

processes should affect all regions of the genome in a roughly equal fashion 

(Payseur et al. 2002), significant departures from the null distribution of 

frequency differences for sets of genome wide markers, forms the basis of 

method for testing hypotheses of local selection (Akey et al. 2002, Lewontin & 

Krakauer 1973, Cavalli-Sforza 1966). In this chapter data from AMY1 repeat 

allele frequency difference between populations will be compared to null- 

distributions generated from genome-wide SNP and microsatellite markers to see 

whether the AMY 1 locus shows unusual allele frequency differences between 

populations, compared to the rest of the genome.

4.2 Methods

4.2.1 Sample collection and typing

Samples were collected from 14 different populations from four geographical 

areas: Africa (Ethiopian families, Algerian families, Nigeria, Malawi), the 

Middle East/Western Asia (Armenian families, Kuwaiti families), Europe 

(German families, British families, Irish families, Ashkenazi Jewish families, 

Saami), East Asia (Singapore Chinese families, Yakut, Mongolia). The subject’s 

ethnicity was self identified and noted along with other biographical information 

such as place of birth, current residence, first and second languages, cultural 

identity and religion. The same information was collected for the subject’s 

mother, maternal grandmother, father and paternal grandfather. All samples 

were extracted and typed for AMY 1 gene copy number according to the 

protocols described in section 2.3 & 2.4.2 respectively.

The following section gives a breakdown of samples typed for AMY 1 gene copy 

number by country and ethno-linguistic group, as well as a brief overview of the 

population’s origins and agricultural history (See also Table 4.1 for summary)
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Africa
Ethiopia/Amharic speaking families (n=78)

In the Ethiopian highlands there exists some of the oldest evidence for the 

collection of wild grains and grasses for use as food, in the world (Harlan 1989). 

Deliberate cultivation of ensete dates from approx 8500-7500 ybp and Ethiopia 

eventually became either the primary or secondary point of dispersion for 36 

crops including teff, a small kernel grass whose flour is often baked into large 

round flat breads and is remains a major crop in Ethiopia today (Marcus 1994).

Nigeria/Ibibio (n=47)

The Niger-Congo speaking peoples are thought to have developed the intensive 

collection of wild yams, which have a high starch content in the area covered by 

modern day Nigeria. West African planting culture developed from 8,000 years 

ago in response to a reduction in the availability of wild yams due to the spread 

of a wetter and warmer climate and woodlands. The West African planting 

tradition included the deliberate cultivation of yams, black-eyed peas and 

voandzeia (an African groundnut) (Curtain et al. 1995).

Algeria/Arab families (n=18)

The beginnings of agriculture in Algeria are poorly documented (Camps 1975). 

However, the remains of domesticated sheep and goats have been found in the 

Haua Fteah cave in eastern Libya dating from 7000 ybp (Rogerson 1998). The 

present day inhabitants of Algeria are thought to have resulted from migrations 

of Arabs and Bedouins from the middle East, which admixed with local Berber 

groups (Cavalli-Sforza et al. 1994).

Malawi/ Chichewa (n=48).

Around 2000 years ago Bantu speaking peoples began migrating into the area 

around Lake Malawi, bringing with them an entire economy combining 

techniques for iron working with a range of crops such as millet and squash 

(Needham et al. 1984). They soon displaced and over-ran the hunter-gatherers 

they encountered. Between the 14th and 19th centuries, many more Bantu tribes 

migrated to Malawi (Fage 1988).

123



Middle East

Armenia/Armenian families (n=50)

Modem Armenia is a fraction of the size of Ancient Armenia, which included 

modem day North East Turkey, Armenia, and parts of Iranian Azerbaijan 

(Reigate 2000). This large area includes the early eastern arm of the expansion 

of farming from the Fertile Crescent (Harris 1981). From 8000ybp, irrigation 

techniques and new tools such as hoes extended the areas brought under 

agriculture. Wheat and barley as well as sheep, goats and cattle formed the basis 

of the new economy.

Kuwait/Arabic (n=14)

Ancient Mesopotamia, which includes the area covered by modem day Kuwait, 

became the linchpin of ancient international trade. The fertile soil between the 

Tigris and the Euphrates, as well as the development of irrigation around 8000 

ybp, produced a large surplus of food, such as wheat and barley, which was used 

to trade for minerals (such as copper from Magana in present day Oman) and 

timber from the Indus valley (Cavalli-Sforza et al. 1994). From 4000 years ago, 

regular incursions from the nomads of the interior caused the gulf coast to take 

on a distinctly Arab flavour.

Europe
Ashkenazi Jewish families (n=60)

In tenth century Christian Europe, Jewish communal and social life as well as 

Jewish scholarship developed in the three Rhineland communities of Speyer, 

Worms and Mayence. From there they spread westwards to France and 

eastwards to Eastern Germany and Bohemia, establishing a unity of custom, 

ritual and law. These communities became known as the Ashkenazim. The 

word is now generally applied to all Jews of European origin and customs (apart 

from small groups of Spanish and Portuguese Jews who follow the Eastern or 

Sephardi tradition) (Werblowsky & Wigoder 1997). Studies using both classical 

and molecular markers have shown evidence for both the common genetic origin 

of Jewish communities and admixture between Jewish communities and their 

geographical neighbours (Thomas et al. 2002).
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Germany/German (n=62)

As farming spread westwards and northwards from Anatolia and the Middle 

East, it followed first the Danube and then the Rhine valleys (Harris 1981). By 

7000 ybp the Neolithic was well established in the area that is now modem 

Germany. In Roman times, Germanic tribes repulsed their invaders to the banks 

of the Rhine, and then went on to conquer territories in much of northern Europe. 

Their legacy can be seen in the modem speakers of the Germanic languages -  the 

Dutch, Danish, English, Swiss, Flemish and Austrians (Cavalli-Sforza et al.

1994).

UK/English (n=44)

Before farming arrived, at around 6000 ybp, Britain was populated by hunter- 

gatherers who colonised the island following the retreat of the last ice age (Price 

2000). The history of the British Isles has been marked by a series of invasions 

from mainland Europe. Weale et al. (2002) analysed Y chromosomes from 

males in 7 British towns and found evidence of a substantial migration of Anglo- 

Saxon Y chromosomes into central England, but not Wales. There is also 

evidence that the Danish Vikings made a significant contribution to the gene 

pool of the British Isles, especially in the North and East coastal regions (Capelli 

et al. 2003).

Eire/Irish (n=58)

Ireland is on the very western most fringe of Europe. The earliest evidence for 

agriculture in Ireland comes from sites such as Cashelkeety, C. Kerry where 

cereal like pollen have been found dating to 5,500 ybp (Woodman 2000). It is 

generally thought that the transition to an agrarian economy in Ireland was 

largely the result of acculturation of the indigenous Mesolithic communities, 

rather than colonisation by near eastern farmers. In a study by Hill et al. (2000) 

98% males sampled had the putative ancestral Palaeolithic Y chromosome 

haplogroup (hgl). This haplogroup is found at frequencies of 89% in the 

Basque but as low as 1.8% in Turkey.
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Sweden/ Saami (n=27).

It is believed that the Saami arrived on the Fenno-Scandinavian peninsula just 

over 10,000 ybp. They are considered to be the first residents of this area since 

the last ice age and are thought to have followed their prey northwards as the 

glaciers retreated (Torroni et al. 2001). Approximately 60,000 Saami live in the 

northern regions of Norway, Sweden and Finland today. The traditional Saami 

diet consisted almost entirely of fish and meat with very little carbohydrate until 

the twentieth century (Haglin 1991, 1999)

East Asia

Mongolia/Mongolian (n=48).

The steppes of Central Asia were a difficult environment for agriculture but the 

open grasslands lent themselves to pastoral nomadism and animal husbandry. 

Goat, sheep and cattle remains are found from 6000 ybp. As is oftenlhe casB~~ 

with pastoral nom ^s, the Mongolian nomads traded with settled societies to the 

South for grain, tea and textiles (Morgan 1990). Murdock (1968) estimates that 

Mongolian nomads today cultivate approximately 10% of their food, with the 

remaining 90% being sourced through trade and from their livestock.

Russia/Yakut (n=41),

The Yakut live in central Siberia, among the Tungus people. Their language 

belongs to the Turkik family of languages along with modern Turkish. They are 

semi-nomadic pastoralists who keep cattle and horses as well as practicing 

agriculture. This subsistence pattern combined with the origin of their language 

suggests an origin from the steppes to the South rather than the Siberian forest.

As Forsyth (1992) describes: although it appears obvious that the Yakuts must 

have come from a steppe environment south of the Siberian forest, no convincing 

explanation exists of the reason for this or the time when it occurred.

Singapore/ Singaporean Chinese (n=60)

The Chinese make up approximately 77% of the population of Singapore today. 

They are a relatively heterogeneous population in terms of dialect origin with 

more than 20 dialects represented. These dialects fall into three main groups -
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6 4
(0.222)
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(0.111)

5
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1
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0
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1
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0
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0
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0
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1
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0
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0
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1
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4

Tot 18 48 47 78 44 58 62 27 60 50 14 60 41 48 655

Mean 7.22 5.96 7.06 6.03 7.23 6.93 6.29 5.70 6.23 6.84 5.86 7.10 6.93 7.79

SeM 0.63 0.28 0.30 0.24 0.48 0.37 0.32 0.54 0.29 0.38 0.64 0.27 0.51 0.35

Var 7.12 3.66 4.15 4.31 10.27 7.89 6.41 7.91 4.89 7.20 5.82 4.40 10.83 5.83

SeV 2.44 0.75 0.86 0.69 2.22 1.48 1.16 2.19 0.90 1.45 2.28 0.81 2.42 1.20

Table 4.2: Total counts of the number of AMY1 genes per individual for the 14 populations under study. Figures in brackets are frequencies 
for the number of AMY 1 genes per individual. SeM= standard error of the mean. Var = Variance, SeV = standard error of the variance.



the Hokkiens, Teochews and Cantonese which all originate from Southern 

China. In the Yangtze area of Southern China, rice was cultivated in large 

quantities from 7000ybp. Rice and pigs also formed the basis of the Asian South 

coastal cultures from 6000ybp. The spread of rice cultivation to the islands of 

South East Asia took place from 3000ybp (Cavalli-Sforza et al. 1994).

4.2.2 Statistical analysis

Estimates of allele frequency were obtained from the total number of AMY 1 

genes in individuals using the EMamy functions implemented in MATLAB 

(Mathworks, Natick, MA) as described in sections 2.8 & 3.3.5. Statistical 

analyses were performed on the AMY 1 gene copy number data as detailed in 

sections 2.9.1 -  2.9.4.

4.3 Results

4.3.1 Similarities and differences between populations under study 

Considerable variation was found in AMY 1 gene copy number between 

individuals, in all populations studied (See Fig 4.1). Some individuals had a total 

of only two AMY1 genes (one copy of AMY 1C on each chromosome with none 

of the lOOkb polygenic repeat unit (see Fig 1.9 and Table 4.2). In contrast, 

individuals were found with as many as 16 AMY1 genes. The distribution of the 

different AMY1 total gene counts in the 14 populations under study can be seen 

in Fig 4.1.

The population with the highest mean number of AMY 1 gene copies per 

individual was the Mongolian sample which had an average of 7.9 AMY1 gene 

copies per individual (see Fig 4.2) The populations with the lowest average 

number of AMY1 gene copies per individual (5.7) was the Saami.
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The modal number of AMY 1 gene copies per individual in most of the 

populations studied, was 6 AMY 1 genes per individual. There are three 

exceptions however. Algeria had a modal number of AMY 1 genes of 8, and 

both Kuwait and Ethiopia had modal values of 4 AMY 1 genes per individual.

Six of the 14 populations (Algeria, Malawi, Nigeria, Kuwait, Singapore Chinese 

and Mongolians) had a minimum of 4 AMY 1 genes per individual. All other 

populations had a minimum of 2 AMY 1 genes per individual. The highest 

number of AMY1 genes found was 16 AMY1 genes per individual, a genotype 

found in the British, Saami, Armenians, Yakut and Mongolians. Algerians, Irish 

and Germans had a maximum of 14 AMY1 genes per individual and a maximum 

of 12 AMY1 genes per individual were found in Malawi, Nigeria, Ethiopia, 

Ashkenazi Jews, Kuwait and Singapore Chinese.

Significant differences between populations under study 

As the total AMY 1 gene count data appears non-normally distributed (see Fig

4.3 Line graph of counts) a Kruksal-Wallis (non parametric ANOVA) test (with 

a Dunn-Sidak correction for pairwise comparisons) was used ascertain whether 

there were significant differences in the average AMY 1 gene count between 

populations. The p value obtained of 0.0001 demonstrates that the variation 

between medians is significantly greater than expected by chance. Pair-wise 

comparisons showed that the average AMY 1 count in the Mongolian sample was 

significantly different from the Malawi sample (p<0.005), Ethiopian sample 

(p<0.01) and the Saami sample (p<0.01).

Fig 4.4 shows the variance in AMY1 gene count in the different populations. The 

variance is expected to reflect effective population size, which in turn can reflect 

the amount of drift in a population. This is because in small populations alleles 

are quickly lost from the population through drift, whereas in large populations 

there is a balance between the loss of alleles through drift and the arrival of new 

ones through mutation. The population with the highest variance in AMY 1 gene 

count is the Yakut (10.8) where as the lowest variance is found in Malawi (3.66). 

This is an interesting result there are many loci where a greater genetic diversity 

in Africa has been found than anywhere else in the world, and that non-Africans
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Fig 4.3a: Frequency of the different total AMY 1 gene counts per individual in 
African populations. Algeria n=18; Malawi, n=48; Nigeria n=47; Ethiopia n=78.
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carry a small subset of African diversity (Bowcock et al. 1994, Tishkoff et al. 

1996, Kaessman et al. 1999, Vigilant et al. 1991).

F statistics (i.e. variance in one population divided by variance in another) were 

calculated for pair-wise comparisons of significant differences in the variances 

between the different populations. After applying the Dunn-Sidak multiple 

comparison correction it was found that the Yakut has a significantly greater 

variance in AMY1 gene count from both Malawi (p=0.00043) and the Ethiopians 

(p=0.00054).

AMY1 repeat allele frequencies in different populations

As was discussed in Chapter 3, different combination haplotype of AMY1 repeat 

alleles that make up the various AMY 1 genotypes, can give the same total 

number of AMY 1 genes in an individual (See Table 3.4). In order to resolve the 

phase of the AMY1 repeat alleles, a set of functions incorporating an EM 

algorithm were developed by M.E. Weale (See 2.8 & 3.3.5). The EMamy 

functions return estimates of AMY1 repeat allele frequencies as shown in Table

4.3 along with expected heterozygosity values. The resulting EMamy estimates 

for the AMY 1 repeat allele frequencies were used for performing an analysis of 

molecular variance (AMOVA) and genetic distance measures such as Fsx

4.3.2 Is the variation between populations best structured with geography or 

agricultural history?

To test whether geography or agricultural history best corresponds with the 

observed pattern of extant genetic diversity in AMY 1 gene copy number, an 

AMOVA was performed on the AMY 1 repeat allele frequency estimates from 

the 14 populations grouped into different classifications. First the populations 

were grouped into continents (Africa, Middle East, Europe, East Asia) and an 

AMOVA carried out. Subsequently the populations were reclassified as either 

hunter-gatherers and very recent agriculturalists (in the last 2000 years with an 

assumed previous history of hunter-gathering), or established agriculturalists 

(See Table 4.1).
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AMY1*H0 0.1004 0.1892 0.0764 0.2644 0.1949 0.2383 0.2312 0.2766 0.2271 0.1892 0.2176 0.1004 0.2361 0.0674
AMY1*H1 0.5804 0.6864 0.6328 0.5102 0.5205 0.4274 0.5532 0.6117 0.543 0.5343 0.5516 0.5215 0.4721 0.5695
AMY1*H2 0.2567 0.0789 0.2225 0.1801 0.1408 0.2666 0.1831 0.0603 0.1819 0.1417 0.1367 0.3288 0.2143 0.2423
AMY1*H3 0 0.0368 0.0682 0.0454 0.1165 0 0.0153 0.0286 0.0406 0.1173 0.0583 0.0396 0 0.0809
AMY 1 *H4 0.0312 0.0087 0 0 0.0273 0.0677 0.0082 0 0.0074 0.0175 0.0357 0.0096 0.0775 0.0809
AMY1*H5 0.0312 0 0 0 0 0 0.009 0.0227 0 0 0 0 0 0
n 36 96 94 156 88 116 124 54 120 100 28 120 96 82
heterozygosity 0.585 0.485 0.540 0.635 0.657 0.685 0.607 0.544 0.619 0.645 0.625 0.608 0.604 0.669

Table 4.3 AMY1 repeat allele frequency estimates from EMamy functions and expected heterozygosity (h) values for the 14 populations under 

study. Expected heterozygosity (h) (equivalent to genetic diversity, see Nei 1987) was calculated using the formula: 

m

* = 1 - 2  x, 2
i-1

L/1



The AMOVA method apportions the total variance in the data into three 

hierarchical levels: within populations, between populations within groups and 

between groups. The best classification of these populations is expected to 

maximise the amount of variance that is apportioned between groups (see Hurles 

et al. 2002). The results (Table 4.4) indicate that the best grouping is obtained 

when the populations are grouped by farming history rather than by continent.

Table 4.4 AMOVA on populations using two different groupings. The amount 

of variance apportioned to each of the three levels of classification is given for 

two different classifications of 12 global populations, based on farming history 

and geography. Populations are abbreviated as follows: Saa = Saami, Mai = 

Malawi, Alg = Algeria, Nig = Nigeria, Eth = Ethiopia, Kuw = Kuwait, Arm = 

Armenia, UK = British, Irl = Irish, Ger = German, Mon = Mongolian, Sing-Chi =

Singapore Chinese.

Grouping Grouping
rationale

Total % Variation

Within
Populations

Between 
populations 
within groups

Between
groups

{Saa, Mai} 
{Alg, Nig, Eth, 
Kuw, Arm, UK, 
Irl, Ger, Mon, 
Sing-Chi}

Farming
history

96.4 1.37 2.2

{Alg, Mai, Nig, 
Eth}
{UK, Irl, Ger, Saa} 
{Kuw, Arm}
{Mon, Sing-Chi}

Geography 97.9 1.50 0.59
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Fig 4.6: A principal co-ordinate plot using pairwise Fst values for the 14 populations 
under study. The pair-wise Fst comparisons for the populations, estimated using 
Arlequin (Schneider et al 2000), were compiled as a matrix and subjected to a 
principal co-ordinate analysis using Genstat v3.2 (VSN, Hemel Hempstead, UK). 
Similar to Principal Component Analysis, this procedure explains the principal 
vectors of variance between population groups and extracted as many vectors as 
required to account for these differences. Populations with a long history of 
agriculture are shown with blue crosses, non (or recent) agriculturalists are shown 
with red crosses and unclassified populations are shown with green crosses.
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From the brief survey of agricultural histories of the populations in this study in 

Section 4.2.1 (and summarised in Table 4.1) in some case the origins and history 

of agriculture are unclear. For example, the Ashkenazi Jewish sample were not 

included as they are an admixed group of Europeans with Middle Eastern origins 

(Thomas et al. 2002). In addition, the Yakut were not included in this analysis as 

their origin is uncertain (Forsyth 1992).

Fig 4.6 is a principal co-ordinate plot based on pairwise FST values for AMY 1 

allele frequencies in the 14 populations under study (see Table 4.5). The points 

on the PCO plot do not form recognisable geographical clusters. However, it 

should be noted that the points not form clusters according to agricultural history 

either.

4.3.3 Does the mean number o f AMY 1 genes in different populations follow what 

we would expect from there farming history?

If there has been adaptation to high starch diets in terms of salivary amylase gene 

copy number, we would expect to see an increase in AMY 1 gene copy number in 

those populations which have a long history of high starch diets. Populations 

that still practices hunter-gathering as their principle means of subsistence or 

have only adopted agriculture recently would be expected to have low starch 

diets and therefore a lower number of AMY 1 genes on average.

The groupings of populations into old and new agriculturalists as in the 

hierarchical AMOVA (see Table 4.4) was explored to see if there were 

significant differences in mean AMY 1 gene copy number between populations 

from the old and new group. Significant differences using a Kruskal-Wallis non 

parametric ANOVA, were found in the average AMY1 gene copy number 

between Malawi and Mongolia (p<0.05) and the Saami and Mongolia (p<0.01). 

Significant differences were also found within the old agriculturalist group 

between Ethiopia and Mongolia (p<0.01).
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Table 4.5: FST and P values for pairwise comparisons between the 14 population under study calculated with the Arlequin program (Scheider et al 2000) using 
EMamy estimates o f AMY 1 allele frequency. FST values are in the lower left of the table, P values are in the upper right. Significant comparisons (P<0.05) are 
shown by the shaded boxes.
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Fig 4.7 shows the average number of AMY 1 genes per individual plotted against 

the time since the development of agriculture for the 14 populations under study. 

There is a slight correlation (r2 = 0.1947) between the time since adoption of 

agriculture and the mean number of AMY1 genes in individuals.

4.3.4 Selection or drift? The interregional differentiation approach to 
identifying selection

Although significant differences have been found in the mean AMY 1 gene copy 

number between an old agricultural populations (Mongolia) and the new 

agricultural populations Saami and Malawi, these differences could also be 

explained by genetic drift. The allele frequency difference, quantified by FST for 

Mongolia vs Saami comparison is 0.056 (p<0.01) and Mongolia vs Malawi is 

0.03713 (p<0.01).

To examine whether the observed differences in AMY 1 repeat allele frequency 

between the Saami and non-European populations are within the range expected 

under neutrality for the genome as a whole, allele frequency difference were 

quantified using the genetic distance measure FST(Weir 1996), and compared to 

Fst values for large numbers of presumed neutral loci elsewhere in the genome, 

typed in comparable populations (See Cavalli-Sforza 1966, Lewontin &

Krakauer 1973). As non-equilibrium population wide processes should affect all 

regions of the genome in a roughly equal fashion (Payseur et al. 2002), 

significant departures from the range of FST values found in the rest of the 

genome would be consistent with local selection operating at the candidate locus. 

Thus the large data sets of SNPs and microsatellites that are now available 

effectively form a null-distribution against which to compare the data from the 

locus in question (Akey et al. 2002, Kayser et al. 2003, Sachindanandam et al. 

2001).

Currently, large data sets of SNPs, from which null distributions can be 

constructed, are only available for Europeans, East Asians and African 

Americans (Sachidanandam et al. 2001). Although the populations examined in 

this study are not identical to those for which large data sets of SNPs are
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available, it can be argued that a comparison of the Saami / Mongolian AMY 1 

repeat allele FST against the null-distribution of FSTs for the European / East 

Asian data sets is a conservative one. This is because previous studies of a large 

number of classical polymorphic markers (Cavalli-Sforza et al. 1988; Cavalli- 

Sforza et al. 1994) have shown that the FSTs between Saami and East Asian 

populations are typically lower than those between continental European and 

East Asian populations.

A total of 11,024 SNPs was carefully selected from a larger dataset of 33,487 

SNPs typed in 42 East Asians and 42 European Americans by Sachidanandam et 

al. (2001). The selection criteria were such that each SNP was (a) either 

polymorphic or variable between populations, (b) mapped only once onto the 

genome, and (c) separated by at least 50 kb from the next nearest SNP, to 

minimise correlation in FST values. It is important to point out that this SNP set 

will, by chance, contain some loci that are under selection, but unless the 

proportion of loci under balancing selection is large then this will have only a 

conservative effect on the comparison presented here, (see Caldwell et al. in 

press)

When compared with the empirical genomic distribution of FST values based on 

11,024 SNPs, the FST value for Mongolia vs Saami was found to lie in the top 

41.6% of the distribution (Figure 4.8). The Mongolians and Saami represent the 

most extreme difference in AMY1 repeat allele frequency between populations. 

However as no significant departure from the neutral expectation was found, 

even using the most extreme comparison in terms of AMY 1 repeat allele 

frequencies, it was not necessary to repeat this test for the other populations.

One major problem of comparing the AMY 1 Fsx values with data from SNPs is 

that the AMY 1 gene copy polymorphism is not simply a single nucleotide 

polymorphism. Instead the repeat alleles are made up of a complex, polygenic 

repeat unit. The creation of novel AMY 1 repeat alleles is thought to occur 

through unequal crossover events (Groot et al. 1990). In addition, many SNPs 

exist as biallelic markers, where as there are at least 5 different AMY 1 repeat
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Fig 4.8: Data on 11,024 SNPs typed in 42 East Asians and 42 European 
Americans (Sachidanandam et al 2001) was taken from a dataset of 33,487 
SNPs typed by the Orchid Laboratory, publicly available at the SNP 
Consortium web site
(http://snp.cshl.org/allele frequency project/panels.shtml). All Fsx values 
were calculated using the unbiased ‘random populations’ formula for haploid 
data given by Weir (1996). The FST value for AMY 1 between Mongolians 
and Saami (0.056) is shown by the dotted line. 41.6% of SNPs in this 
distribution have a higher Fsx than the AMY 1 comparison.
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alleles. Unfortunately, data on systems elsewhere in the genome with a similar 

mutational process is not currently available. However data does exist for 

numerous multiallelic microsatellite loci spread throughout the genome. 

Microsatellites are thought to mutate in a step-wise fashion, as a result of DNA 

replication slippage (see Stumpf & Goldstein 2001 for a review), with most 

mutations involving an increase or decrease of a single repeat unit (Goldstein et 

al. 1995). It is a reasonable assumption that AMY1 repeat alleles also mutate in 

a step-wise fashion, and therefore worth comparing the allele frequency 

differences in AMY 1 gene copy number between populations, with allele 

frequency difference calculated from microsatellites spread throughout the 

genome. The conventional measure of allele frequency differences between 

populations is Fsx, as used above. However, Slatkin (1995) developed a statistic 

known as Rsx, which is analogous to Fsx, but also incorporates information about 

the molecular distances between alleles from the step-wise mutation model.

In a comparison of 332 microsatellites between Europeans and Africans from 

across the genome, the Rsx for AMY 1 repeat allele frequency difference between 

the Ethiopians and German populations (Rsx= -0.008). A total of 84.6% of the 

332 microsatellites had a higher Rsx value (See Fig 4.9). It can be seen from Fig 

4.9 that the Rsx value for the AMY 1 locus is not an outlier compared to the other 

Rsx values for the 332 microsatellites.

4.3.5 Estimating the mutation rate o f AMY 1 repeat alleles

Slatkin (1995) showed that under an unbounded step-wise mutation model, the 

expected squared difference in repeat size (D) between two chromosomes 

separated by t generations is t\io2, where p is the per generation stepwise 

mutation rate and a 2 is the variance of the change in repeat size (assuming 

symmetric mutation). Within a single population, the expected coalescence time 

(t) is twice the effective population size (Ne). In a populations of Ne diploid 

individuals, then the average square difference (D) between two chromosomes 

picked at random is 4Nep (Goldstein et al. 1995). The average squared
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Fig 4.9: Rsx data for 332 STRs typed in 48 Europeans (blood donors from Leipzig, 
Germany) and 23 East Africans (from Gondar, Ethiopia) as well as 24 Southern 
Africans (from the Nguni, Sotho-Tswanga and Tsonga groups of South Africa) was 
taken from a dataset of 332 STRs typed by Kayser et al (2003). The RST value for the 
AMY 1 locus between Ethiopians and Germans (-0.008) is shown by the dotted line.
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difference (D) is equal to 2V, where V is the variance in repeat alleles among 

chromosomes. Thus V = 2Nep.

There is however a special case concerning the AMY 1 repeat allele data. As 

discussed in chapter 3, the structural arrangement of the AMY1 repeat alleles and 

the genes they contain meant that an EM algorithm was applied to determine 

phase of the AMY 1 repeat alleles. As this adds an extra layer of complexity to 

obtaining data on AMY 1 repeat alleles it is desirable to incorporate into 

calculations the total count of AMY 1 genes in an individual, which can be 

determined experimentally. Fortunately in this case this can be done as follows:

The average variance (V*) in 2 chromosome combined counts of AMY 1 genes, 

V*=2V.

Thus V* = 4Nep.

Average variance for AMY1 repeat alleles across all populations, V* = 6.4288. 

Current human effective populations size (Ne) is approximately 10,000 (Wall 

2003).

Thus p = 0.00016072. This result is considerably smaller than the mutation rate 

that has been found for both autosomal and Y chromosome microsatellites of 

between 0.002 and 0.004 per locus per generation (Weber & Wong 1993, Kayser 

et al. 2003).
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4.4 Summary and discussion

This is the first study to have investigated salivary amylase gene copy number 

variation in large numbers of individuals from a wide range of human 

populations. All populations studied showed extensive quantitative variation in 

AMY 1 gene copy number among individuals. Significant differences in AMY 1 

gene copy number were found between the Mongolian sample compared to 

Malawi (p<0.005), Ethiopia (p<0.01) and the Saami (p<0.01).

The method used in this chapter for comparing allele frequency difference 

between populations for the AMY 1 locus with a genome-wide distribution of 

allele frequency differences was designed to identify loci that have unusual 

frequency differences compared to the rest of the genome. One explanation for 

such differences would be local selective pressures in one population, but not the 

other, which would drive allele frequency differences. The hypothesis in this 

study was that local selective pressures in populations that adopted cultivation of 

high starch content crops would affect allele frequencies in those populations, so 

that there would be a large difference when compared to populations that had not 

adopted agriculture. However, the extent of inter-population differentiation at 

the AMY 1 locus was within the range for presumed neutral loci for both SNPs 

and microsatellites between similar populations. Therefore drift cannot be 

rejected as an explanation for the differences in allele frequencies observed 

between populations.

If high AMY 1 gene copy number is an adaptation to agriculture, which 

developed at the most 10,000 years ago, then perhaps not enough time has 

elapsed for a signal of selection to be detected. In fact, the strongest signals of 

selection in the human genome found to date have been detected for the lactase 

persistence associated allele at the lactase gene (Bersaglieri et al. 2004). Lactase 

persistence is thought to be an adaptation to milk drinking as a result of 

pastoralism, which arose less than 10,000 years ago. Salivary amylase gene 

copy number polymorphisms present an interesting and unusual case, however, 

as there is no null allele that stops the expression of salivary amylase enzyme, 

causing a detrimental effect on the individual. The higher number of salivary
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amylase genes only increase the expression of salivary amylase enzyme (Bank et 

al. 1992). Although high numbers of genes would be an advantage to individuals 

consuming high starch diets, having a low number of genes may not present a 

great disadvantage. It is likely that the selective pressures acting on AMY 1 are 

weaker than those acting on lactase, and other loci with alleles conferring 

resistance to fatal diseases. The inter-regional differentiation approach does not 

distinguish between weak selection that would, over short time periods, cause 

intermediate allele frequency differences within the range found in the rest of the 

genome, and drift which can also cause allele frequency differences. The 

method only provides a way of distinguishing loci with extreme allele frequency 

difference between populations (presumed to be the result of very strong 

differential selection) when compared with the rest of the genome.

In addition, it must be asked how appropriate a comparison of data from the 

AMY1 locus is with either SNPs or microsatellites, due to their very different 

mutation processes and rates. It is clear that more sensitive haplotype based 

methods using additional data from closely linked loci are required to rule out 

the possibility of selection having operated at the AMY 1 locus.

Despite the lack of evidence found for selection through the inter regional 

differentiation approach, some evidence was found for larger average gene copy 

number occurring in populations with a long history of agriculture. In addition a 

hierarchical analysis of molecular variance (AMOVA) showed that the best 

grouping to maximise the amount variance between groups was when the 

populations were groups according to farming history rather than by geography. 

As it is very difficult to ascertain the average amount of starch eaten in the past 

by populations, farming of high starch crops was used as a proxy for a high 

starch diet. This rests on the assumption that on average, populations that 

cultivate high starch crops consume larger quantities of starch than they did 

before they started to cultivate, as well as those populations who do not cultivate 

them. Archaeological evidence shows that once cereal agriculture has been 

adopted by a population, then the starchy staples tend to dominate the diet 

(Cassidy 1980).
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There are, however, less clear cut examples where the amount of high starch 

crops cultivated by a population is not an indicator of the amount of starch 

ingested by that population. These examples include pastoral nomads, who 

occasionally cultivate and often trade with neighbouring farmers, and hunter- 

gatherers who gather large amounts wild grains, roots and tubers. In these cases 

it is very difficult to determine the amount of starch eaten, which presents 

problems for classification of these populations for analysis.

There are many populations that were not available for this study that would 

provide additional information for a global survey of variation in AMY 1 gene 

copy number in humans. In particular it would be desirable to increase the 

number of hunter-gatherer and non-agricultural populations, such as Australian 

Aboriginies, !Kung San, and the Arctic Inuit populations in order to facilitate the 

agricultural vs non-agricultural population comparisons. It would also be an 

interesting avenue to extend the study to include populations from the Americas 

where a number of high starch crops, such as maize, were domesticated.

The data presented in this chapter have provided an initial survey of variation in 

salivary amylase gene copy number in human populations. Extensive 

quantitative variation in gene copy number has been found in all populations 

studied to date. The question still remains: How did this distribution of variation 

arise? The following chapters will look in more detail for evidence of selective 

forces acting on the AMY 1 locus using data from closely linked microsatellites, 

as well as from a sample of chimpanzees.
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Chapter 5: Microsatellites as tools for exploring variation and evolution in

the human amvlase gene cluster.

5.1 Introduction

Microsatellites have proved a valuable tool for inferring features of evolution and 

demographic processes as well as mapping complex diseases, linkage analysis 

and forensics in many species including humans. As outlined in chapter 3 

(section 3.7) microsatellites are highly polymorphic in terms of repeat motif copy 

number as a result of having many potential alleles, and have a high mutation 

rate. Consequently, microsatellites have proved to be informative in dating 

mutational events (see Stephens et al. 1998, Goldstein et al. 1999), studying 

demographic events and processes (see DiRienzo et al. 1998, Bowcock et al. 

1994), and detecting natural selection (see Slatkin & Bertorelle 2001). The range 

of applications of microsatellite data to the study of human evolution are 

illustrated in the following recent studies:

Population structure and demographic history

Rosenberg et al. (2002) studied 1056 individuals from 52 human populations 

using 377 autosomal microsatellite loci. Without using prior information about 

the origins of individuals, they identified up to six major genetic clusters, five of 

which correspond to major geographic regions, as well as subclusters that often 

correspond to individual populations. Zhivertovsky et al. (2003) used the same 

data set to infer splits and expansions in modem human populations. They 

estimated a populations tree based on the To estimator of divergence time (see 

Zhivotovsky 2001) and a stepwise mutation model, that suggests that the 

branches leading to the present sub-Saharan African populations of hunter- 

gatherers were the first to diverge from a common ancestral population approx 

71-142 thousand years ago. The branches corresponding to sub-Saharan farming 

populations and those that left Africa diverge next, with subsequent splits of 

branches for Eurasia, Oceana, East Asia and America. In addition, they were 

able to use the data to infer that African hunter-gatherer populations and the
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populations of Oceana and America exhibit no statistically significant signature 

of growth.

Using microsatellite data to infer the age o f alleles 

Stephens et al. (1998) estimated the date of the CCR5-A32 deletion that 

inactivates the chemokine receptor on lymphoid cells. This receptor serves an 

entry point for a number of pathogens, including the human immunodeficiency 

virus (HIV-1). They performed haplotype analysis of 192 Caucasian individuals 

by typing for the CCR5 deletion and two closely linked microsatellite loci. They 

identified the most likely ancestral CCR5-A32 haplotype and then estimated the 

proportion of CCR5-A32 haplotypes that exhibit no change from the ancestral 

haplotype. Assuming that mutation and recombination occur at a combined rate 

r, they then used the proportion of unchanged haplotypes to estimate the date of 

origin. Stephens and colleagues (1998) estimated the age of the CCR5-A32 

containing haplotype to be approximately 700 years old.

Detecting regions o f the genome that have experienced selection 

Both natural selection and demographic processes can lead to a skew in the 

frequency distribution of polymorphisms (Payseur et al. 2002). However, 

demographic processes such as population bottle-necks are expected to affect all 

loci in the genome in a roughly equal fashion. These population level processes 

cause a skew in the average genomic frequency distribution of polymorphisms, 

whereas selection causes localised skews in the frequency distribution for 

particular genomic regions. Payser et al. (2002) analysed publish data from 

5,257 mapped microsatellites in individuals of European descent, with a sliding 

window analysis of the frequency distribution of microsatellite polymorphisms 

across the human genome. They identified 43 regions that had unusually skewed 

frequency distributions, which may have been subject to positive selection. 

Kayser et al. (2003) used data from 332 microsatellite loci in both Europeans and 

Africans to identify genomic regions with significantly larger than average 

genetic distances (measured using RST) between populations. They identified 11 

regions of the genome that exhibited larger genetic difference between 

populations than average, consistent with selection.
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Analysis oflntra allelic variability

As outlined in Chapter 1, intra-allelic variability is the joint distribution of the 

frequency of a neutral allele and the extent of variability at closely linked marker 

loci (Slatkin & Bertorelle 2001). It can be modelled in three ways: 1) as the 

number of chromosomes carrying the ancestral allele at a linked marker locus; 2) 

as the length of a conserved haplotype shared by all copies of the allele; and 3) as 

the number of mutations at one or more linked marker loci. Slatkin & Bertorelle 

(2001) illustrate this using the data from the CCR5 locus and two closely linked 

microsatellite markers, produced by Stephens et al. (1998) (See Sectionl.3.5.3).

The frequency of the A32 allele at CCR5 exceeds 10% in Europeans, yet it 

appears to be relatively young (see Stephens et al. 1998). In their study,

Stephens et al. (1998) surveyed 46 chromosomes carrying A32 and found that 

found 44 carried the 197 allele at one closely linked microsatellite, and 41 

carried the 215 allele at another closely linked microsatellite locus. The 

combination of the high A32 allele frequency and extremely low variability at the 

two microsatellite loci is consistent with the pattern expected for a locus that has 

experienced recent selection. Slatkin & Bertorelle (2001) conducted a formal 

analysis of intra-allelic variability on the CCR5 data and confirmed the findings 

of Stephens and colleagues (1998). In addition, Slatkin & Bertorelle (2001) used 

a method described by Slatkin (2001) to estimate the selection intensity from 

these data and estimated the selection coefficient in favour of A32 to be at least 

0.2. The selection coefficient is used to define the relative fitness of alleles in a 

population, where a selection coefficient of 0.1 represents a 10% decrease in 

fitness compared to the fittest allele (see Jobling et al. 2004).

This chapter will describe the analysis of data from 6 microsatellites closely 

linked to the amylase gene cluster to examine the evidence for selection at the 

AMY 1 locus and investigate the evolution of the amylase gene cluster in 

humans. Two approaches will be used: the first involves comparing genetic 

distances between populations based on data from 6 microsatellites closely
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linked to the AMY gene cluster, to a null distribution based on the data set of 

332 microsatellite loci used by Kayser et al. (2003). The second approach uses 

an analysis of intra-allelic variability on data from compound haplotypes 

comprising of AMY1 repeat alleles and 6 closely linked microsatellites.

5.2 Methods

5.2.1 Sample collection

DNA samples from families consisting of two parents and at least one child were 

typed for the six microsatellite loci closely linked to the amylase gene cluster as 

well as for AMY1 repeat alleles (see section 2.3.1b). Buccal cells were 

collected, and the DNA extracted (See section 2.2) from the following 

populations: Africa (Ethiopia), the Middle East/Western Asia (Armenia), Europe 

(Germany, UK, Eire, Ashkenazi Jews), East Asia (Singapore Chinese). The 

multiplex PCR protocol (see sections 2.3.2) was used to genotype individuals for 

microsatellite repeat number for 6 microsatellite closely linked to the AMY 1 

gene cluster. Section 3.6 describes the development of this protocol as well as 

the process of selecting the microsatellites to be included. Family samples were 

used so that compound haplotypes of both microsatellite and EMamy estimates 

of AMY repeat alleles (see Sections 2.7 & 3.5) could be inferred by following 

the pattern of co-inheritance of the alleles from the parents to the children, (see 

Nehati-Javeremi & Smith 1996) (See Fig 2.1).

5.2.2 Statistical Analysis

Statistical analyses were performed on the microsatellite data and compound 

haplotype as detailed in sections 2.8.4, 2.8.5 and .2.8.6.

5.3 Results

5.3.1 Variation in microsatellite allele frequencies in different populations

As would be expected with microsatellite loci, all markers showed high levels of 

polymorphism. Table 5.1 shows the distribution of microsatellite alleles in the 7 

populations under study. For all microsatellite loci except D1S2888, the 

smallest range of microsatellite alleles present in a population is found in the
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Singapore Chinese sample. In the case of D1S2888 the largest range of 

microsatellite alleles was found in the British sample. The largest range of 

alleles for the six microsatellite loci were not consistently found in any one 

population: Ashkenazi Jews for D1S2888, Ethiopians for D1S2759, British for 

D1S2896, Ashkenazi Jews for AMY-MS02, and Armenians for D1S2626 (See 

table 5.1)

Microsatellite haplotype data was analysed by an AMOVA, as well as using an 

exact test of population differentiation based on haplotype frequencies, and 

genetic distances measured using Rsx implemented using the Arlequin program 

(Schneider et al. 2000). RST is analogous to Fsx but incorporates into the step­

wise mutation model of microsatellite evolution (see Slatkin 1995). Genetic 

distances between populations from the microsatellite data, using Rsx, show that 

the greatest difference was between the Armenians and Singapore Chinese (Rsx = 

0.11756). Significant differences were found between the Singapore Chinese 

and all population except Ireland (see Table 5.2). The exact test of population 

differentiation based on haplotype frequencies did not find any significant 

differences between any of the populations under study (See Table 5.3).

AMOVA analysis found that 1.07% of the variation was to be found among 

populations, with 98.93% to be found within populations (See Table 5.4).
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Table 5.1: Microsatellite repeat allele range, mode and variance for each population group. “High” indicates the largest allele for the locus found in each population; “low” 
indicates the smallest allele for the locus found in each population. “Mode” indicates the most frequent allele size found in each population. “Variance” indicates the 
variance in allele size for the population. The population with the lowest values for the summary statistics for each microsatellite locus are marked in light grey; the 
population with the highest values for the summary statistics for each microsatellite locus are marked in dark grey.

Armenia Ashkenazi British Ethiopia Germany Ireland Sing Chi. All

D1S2888
High 21 21 21 25 22 21 21 25
Low 16 11 17 16 16 15 16 11
Range 5 10 4 9 6 6 5 14
Mode 18 20 19 19 19 19 19 19
Variance 1.355 2.182 0.744 1.933 1.295 1.821 2.624 1.701

D1S2759
High 22 22 20 20 19 20 19 22
Low 12 14 14 7 14 14 17 7
Range 10 8 6 13 5 6 2 15
Mode 17 17 17 17 17 17 17 17
Variance 4.627 1.453 1.347 3.221 1.652 1.659 0.476 2.310

D1S2896
High 18 19 20 18 18 18 18 20
Low 11 11 11 11 11 11 13 11
Range 7 8 9 7 7 7 5 9
Mode 14 14 14 14 14 14 14 14
Variance 2.774 3.887 5.706 3.489 4.645 5.833 2.544 4.105

\



Armenia Ashkenazi British Ethiopia Germany Ireland Sing Chi. All
AMYMS02

High 20 20 20 20 20 20 20 20
Low 15 8 15 11 15 15 16 8

Range 5 12 5 9 5 5 4 12
Mode 17 17 17 17 17 17 17 17
Variance 0.586 1 . 9 0 0 1.335 1.137 1.197 1.007 0.952 1.223

D1S535
High 12 11 12 11 11 11 11 12
Low 8 8 8 7 9 9 9 7
Range 4 3 4 4 2 2 2 5
Mode 10 10 10 10 10 10 10 10
Variance 0.470 0 . 7 4 6 0.577 0.548 0.624 0.351 0.444 0.555

D1S2626
High 25 24 25 24 24 24 25 25
Low 16 17 17 17 17 17 20 16

Range 9 7 8 7 7 7 5 9
Mode 21 21 21 21 21 21 21 21

Variance 4.044 2.709 3.193 3.413 3.452 3.588 1.358 3.294
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Table 5.2: Comparisons of pairs of populations microsatellite data measured using RST. RST values are on the lower left of the table, associated 
P values are on the upper right. Comparisons that are significant (P=0.005) are in bold and shaded. Rsx were calculated according to Slatkin 
(1995) and P values were estimated by permutation, implemented in the Arlequin software (Schneider et al 2000).

Armenia Ashkenazi
Jews

British Ethiopians Germans Irish Singapore
Chinese

Armenia * 0.50223
+-0.0050

0.14335
+-0.0033

0.50581
+-0.0054

0.29621
+-0.0041

0.20414
+-0.0037

0.00020
+-0.0001

Ashkenazi
Jews

-0.00225 * 0.60172
+-0.0047

0.73329
+-0.0043

0.76478
+-0.0042

0.88526 
+-0.0031

0.00307
+-0.0006

British 0.01228 -0.00477 * 0.18315
+-0.0041

0.55994
+-0.0055

0.61766
+-0.0053

0.02871 
+- 0.0013

Ethiopians -0.00221 -0.00551 0.00803 * 0.37551
+-0.0045

0.30839
+-0.0044

0.00010
+-0.0001

Germans 0.00518 -0.01073 -0.00702 0.00162 * 0.69181
+-0.0041

0.01802
+-0.0012

Irish 0.00956 -0.01299 -0.00797 0.00355 -0.01264 * 017711
+-0.0043

Singapore
Chinese

0.11756 0.06228 0.04750 0.09506 0.06208 0.01659 *



Table 5.3 Exact Test of Population Differentiation -  Microsatellite data
Non differentiation exact P values. Comparisons that are significant (P<0.05) are shaded.

Armenia Ashkenazi Jews British Ethiopians Germans Irish Singapore
Chinese

Armenia *

Ashkenazi 0.27374+-0.0214 *

British 0.74511+-0.0153 0.06649+-0.0173 *

Ethiopians 0.89590+-0.0129 0.30402+-0.0306 1.00000+-0.0000 *

Germans 0.55671+-0.0257 0.13072+-0.0138 1.00000+-0.0000 1.00000+-0.0000 *

Irish 0.54834+-0.0180 0.28874+-0.0199 1.00000+-0.0000 1.00000+-0.0000 1.00000+-0.0000 *

Singapore
Chinese

0.30987+-0.0143 0.03573+-0.0044 0.77358+-0.0177 0.62196+-0.0275 0.48987+-0.0189 0.48964+-0.0206 *



Table 5.4 AMOVA for microsatellite data (Wier & Cockerham 1984, Excoffier 
et al. 1992, Wier 1996)

Source of variation Percentage of Variation P value

Among populations 1.07
0.03842+/- 0.00204

Within populations 98.93

The distributions of repeat alleles from the six microsatellites for the different 

AMY1 polygenic repeat alleles in all populations are shown in Fig 5.1 a-f. For 

AMY1*H0, HI and H2, the modal repeat allele for each microsatellite is the 

same. However for AMY 1 *H3 the modal repeat allele for D1S2888 is 20 

repeats and for AMY-MS02 is 18, whereas for the other AMY1 polygenic repeat 

alleles the modal microsatellite allele is 19 and 17 repeats respectively.

5.3.2 Comparison with other microsatellite loci in the human genome 

As explained in chapter 4, one method to distinguish between differential 

selection in different populations and drift is to look not only at the locus in 

question but also at the rest of the genome. Drift and demographic events affect 

the whole genome, whereas selection operates on a particular locus. An outlier 

on a genome wide distribution of Rsx vales would suggest that a process other 

than drift had influenced the allele frequencies at that particular locus.

Rst data for microsatellites typed in 48 Europeans (blood donors from Leipzig, 

Germany) and 23 East Africans (from Gondar, Ethiopia) as well as 24 Southern 

Africans (from the Nguni, Sotho-Tswanga and Tsonga groups of South Africa) 

was taken from a dataset of 332 microsatellites typed by Kayser et al. (2003).

Fig 5.2a-f show comparisons of the RST values for Germany vs Ethiopia for the 

AMY microsatellites with Rsx values for 332 microsatellites from the human 

genome typed in Europeans (Germans) and Africans. None of the microsatellite 

show unusually high Rsxs compared to the distribution from the 332 loci typed 

by Kayser et al. (2003).
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Fig 5.2a-f: Density plots of the distribution of Rsx values for 332 microsatellites 
typed in Africans and Germans (Kayser et al 2003). Statistical analysis of the 
microsatellite data was performed using the statistics package ‘R ’ (URL: 
http://www.R-proiect.org/). The RST values for the 6 microsatellites closely linked to 
the amylase gene cluster between Ethiopians and Germans (D1S2888 RST= 
0.04928, D1S2749 RST= -0.01341, D1S2896 RST=0.02737, AMY-MS02 RST= 
0.04906, D1S535 RST = 0.0069, D1S2626 RST= -0.02181) are shown by the dotted 
lines. The shaded areas represent the 2.5% (-0.011) and 97.5% (0.24575) quantiles 
of the distribution.
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(Kayser et al 2003). Statistical analysis of the microsatellite data was performed 
using the statistics package ‘R ’ (URL: http://www.R-project.org/). The average Rsx 
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However, two of the microsatellites (D1S2759 and D1S2626) did have unusually 

low Rst values compared to the distribution of Kayser et al.’s (2003) dataset. 

Unusually low RSTs can be interpreted signals of balancing selection (see Akey et 

al. 2002). This pattern was not found when the RST values for the six AMY 

microsatellites were averages and compared to a distribution of average RST 

values from groups of six loci randomly chosen from the Kayser et al. (2003) 

dataset (See Fig 5.2g).

5.3.3 Micro satellite variance and AMY1 repeat allele frequencies

The average variance in microsatellite repeat alleles for each AMY 1 allele can be 

viewed as a crude proxy for age, as the older an allele is, the more variation there 

will be at linked microsatellites, both as a result of mutation and recombination. 

Old alleles should be at a higher frequency in the population than young ones, as 

it takes time for alleles to drift from low to high frequency (see Slatkin & 

Bertorelle 2001). If an allele high frequency, but has low microsatellite 

variability associated with it (i.e. it is young) it must have gone from low to high 

frequency very quickly. This scenario is consistent with selection operating on 

the allele, as strong selection would drive an allele to high frequency in less time 

than it would take through drift. Fig 5.3 shows the average variance in 

microsatellite repeat alleles for the AMY 1 repeat alleles, plotted against their 

frequency. Fig 5.3a shows data form all 6 microsatellites, and in this figure 

AMY1*H1 stands out as having a similar average microsatellite variance as the 

other alleles, but is at a markedly higher frequency compared with the other 

AMY 1 repeat alleles. However, using data from only the two closest 

microsatellites to the AMY gene cluster, this pattern does not appear so striking 

(Fig 5.3b).

5.3.4 Analysis ofintra allelic variability

Analysis of intra-allelic variability was carried out on compound haplotypes 

consisting of the AMY 1 repeat allele as well as the 6 microsatellites using the 

program SYSSIPHOS written by Dr Michael Stumpf, Imperial College London. 

The program estimates the likelihood of the data over a range of selection 

coefficients (5) and population growth rates (r) for a given allele age.
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amylase gene cluster.
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The following parameters were used in the analysis of intra-allelic variability 

using the SYSSIPHOS program (see Appendix C for an example of a 

SYSSIPHOS parameter input file):

Initially the likelihood surface for selection and growth parameters was explored 

on a 50x50 grid with growth rate parameters (r) ranging from 0 to 1.0 in 

increments of 0.02, and selection parameters of 0.0001 to 0.1 with interval 

increases of 0.002 (where l=s is the relative fitness of homozygotes for the allele 

under investigation and l+s/2 is the relative fitness of herterozygotes and 1 = the 

relative fitness of homozygotes for all other genotypes. The initial wide 

incremental interval of selection coefficients was used in order observe where the 

dataset suggested the highest likelihood values. Following this, a second fine 

scale analysis was then carried out using selection parameters of 0.0001 to 0.006.

The maximum depth of the amylase gene cluster gene trees (tmax) was set to 

100,000 generations. Preliminary tests suggested that the method is relatively 

insensitive to current population size (See Fig 5.4a,b). The current population 

size (Ne0) was set at 10,000,000. A microsatellite mutation rate (mu) of 0.0012 

per locus per generation (Weber & Wong 1993) was assumed.

The probability of recombination per generation (rho) (See table 5.5) for each 

microsatellite was calculated using both physical distances from the July 2003 

assembly of the UCSC Human Genome working draft, and sex averaged 

recombination rates from deCODE (http://www.decode.com). In addition 

departures from the stepwise mutation model (Slatkin 1995) such that a length 

dependent microsatellite mutation rate (see Stumpf and Goldstein 2001) is taken 

into account. The slope (a) and intercept (b) of the length dependence were 

calculated to be -3.1 and 0.62 respectively, where k = allele length:

mud(k) = mu(a k+b)
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Fig 5.4: The effect of current population size (Ne0) on maximum likelihood 
estimates for selection (s) and growth (r) for the World data set. Post­
processing of the SYSSIPHOS output files was carried using the statistics 
package ‘R’ (URL: http://www.R-project.org/).
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Recomb Block 
(and recomb 

rate)

Marker Name 
and Position (bp).

Block 1: 
1.3
cM/Mba

Block 2: 
0.2
cM/Mb

Block 3: 
0.3
cM/Mb

Block 4: 
1.2
cM/Mb

Block 5: 
0.9
cM/Mb

cM

D1S2896 101435399 564601 1000000 553028 - - 1.0998897

D1S2626 102458557 - 541443 553028 - - 0.274197

AMY-MS02 103449926 - - 103103 - - 0.0309309

AMY2B 103452226 - - 100803 - - 0.0302409

AMY2A 103514651 - - 38378 - - 0.0115134

AMY1A 103553029 - - 0 - - 0

D1S535 103731135 - - 178106 - - 0.0534318

D1S2888 104444355 - - 446971 444354 - 0.6673161

D1S2759 105199386 446971 1000000 199385 | 1.5135378

Table 5.5: Recombination distances for amylase genes and six microsatellites closely linked to the amylase gene cluster.
Numbers in the table indicate the number of base pairs in each recombination block between the marker and the start codon 
f the AMY1A gene. Marker positions are taken from the July 2003 assembly of the UCSC Human Genome working draft. 
Recombination rates for the blocks are taken from deCODE sex average recombination rates (http://www.decode.comV 
Recombination distances (cM) are calculated by multiplying the number of base pairs in each block by the
recombination rate for that block, and then finding the sum of the results for the blocks for each marker as. This is then converted to

I— cM by multiplying the sum by 1,000,000.
Os
OO
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The log likelihoods and selection coefficients (s) for the AMY 1 repeat alleles in 

the Ethiopian, Armenian and Western European (British, Irish & German) 

populations are shown in Fig 5.5a,b,c, when the growth rate is set to zero. Only 

populations with sufficient data (n>9 haplotypes for each AMY 1 repeat allele) 

were used in the analysis of intra-allelic variability. In the Ethiopian sample the 

AMY1*H1 allele showed the highest value for 5 (5=0.0281), compared to the 

other AMY1 repeat alleles (AMY1*H1 > AMY 1 *H2 > AMY1*H0) (See Table 

5.6). With the Armenians, the AMY*H0 allele showed the highest value for 5 

(5=0.0361) compared to the other AMY 1 repeat alleles (AMY1*H0 >

AMY 1 *H1 > AMY 1 *H2). In the Western European population group, the 

AMY1*H2 allele showed the highest value for 5  (5=0.0221) compared to the 

other AMY1 repeat alleles (AMY1*H2 > AMY1*H1 = AMY1*H0). However 

none of the populations showed significant differences in 5  between the AMY 1 

repeat alleles using a likelihood ratio test (see section 2.8.6).

The maximum likelihood estimates of growth, when s=0 (see Table 5.6) are in 

agreement with previous estimates of global and European growth rates of 1.2% 

and 1.6% respectively (Cavalli-Sforza et al. 1994, see also Wilson et al. 2003 for 

a review).

5.3.5 Estimating the time to the most recent common ancestor for the AMY1 

repeat alleles.

Dates for the TMRCA were obtained through both the analysis of intra-allelic 

variability using the SYSSIPHOS program. Having estimated the maximum 

likelihood for parameters of s and r given the data, for a fixed AMY 1 repeat 

allele age, the average age in generation for each AMY 1 repeat allele is 

estimated using SYSSIPHOS, given the microsatellite data for fixed maximum 

likelihood values of 5 and r (See Slatkin 2001).
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Fig 5.5a: A plot of the trasnformed log likelihoods (L) vs selection coefficients (s) 
from the Ethiopian data set for AMY 1 repeat alleles when growth = 0. Log 
likelihoods for each value of s were calculated for each of the AMY 1 repeat alleles 
separately from microsatellite haplotype data using the SYSSIPHOS program 
(M.Stumpf, Imperial College London). The dotted line represents a -1.92 
reduction in likelihood from the maximum.
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Fig 5.5b: A plot of the trasnformed log likelihoods (L) vs selection coefficients (s) 
from the Armenian data set for AMY 1 repeat alleles when growth = 0. The dotted 
line represents a -1.92 reduction in likelihood from the maximum.
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Fig 5.5c: A plot of the trasnformed log likelihoods (L) vs selection coefficients (s) 
from the Ethiopian data set for AMY 1 repeat alleles when growth = 0. The dotted 
line represents a -1.92 reduction in likelihood from the maximum.
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r
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Log
Like

AMY 1 *H0 0.036 6.839 0.032 6.854 0.022 9.994 0.020 10.02 0.018 10.80 0.016 10.84 0.026 34.64 0.024 34.69

AMY1*H1 0.034 23.01 0.030 23.06 0.028 26.89 0.024 26.95 0.018 23.86 0.016 23.92 0.036 91.73 0.020 98.20

AMY1*H2 0.028 4.473 0.024 4.493 0.026 8.528 0.024 8.550 0.022 9.818 0.020 9.843 0.020 21.69 0.018 29.17

"able 5.6: Maximum li celihooc estimates of selection (s) and growth (r) for different AMY 1 repeat alleles in difl"erent human populations,
calculated using the SYSSIPHOS program (M.Stumpf, Imperial College London). Western Europe = British, Irish and German samples.



In addition, a microsatellite variance (ASD) method was used to estimate the age 

of the AMY 1 repeat allele, using the YTIME program written by Dr Michael 

Weale, University College London (see Thomas et al. 2002). The Average 

Squared Distance (ASD) between an ancestral microsatellite haplotype and all 

other haplotypes has been shown to be linearly related to the time since the most 

recent common ancestor (TMRCA) under an unbound stepwise mutation rate 

(Goldstein et al. 1995, Slatkin 1995)

ASD = pt

Where m = mutation rate and t = time.

ASD is calculated from the data without the need to construct a phylogeny. 

However an ancestral haplotype must be specified. In this analysis the modal 

haplotype was taken to be the ancestral (See Stumpf & Goldstein 2001 for a 

review). Growth was set at zero, and a length-dependent (see Calabrese et al. 

2001, Kruglyak et al. 1998) microsatellite mutation rate where p=0.0012 

(Weber & Wong 1993) and average microsatellite repeat length for the 6 

microsatellites was 16.407.

Table 5.7 shows the estimates of TMRCA for the AMY 1 repeat alleles from all 

the chromosomes typed for the six microsatellite loci and AMY1 repeat alleles. 

The point estimates obtained from SYSSIPHOS are within the 95% confidence 

intervals obtained from the ASD method implemented in the YTIME program 

(Dr M. Weale, University College London). AMY 1 *H0 appears to have the 

largest TMRCA (506.5 -  2725.1 generations), followed by AMY1*H1 (416 -  

2314.5 generations) and AMY1*H2 (338.3 -  1963.3 generations). All of the 

estimates place the TMRCA for the chromosomes within the last 70,000 years.
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AMY 1 repeat 
allele

SYSSIPH 
max like 
point 
estimate 
when r=0

SYSSIPH 
max like 
point 
estimate 
when s=0

YTIME
Point
estimate

YTIME
upper
quantile

YTIME
lower
quantile

AMY*H0 gens 594.06 586.16 1,089.1 506.5 2,725.1

yrs 14,851 14,654 27,228 12,663 68,128

AMY1*H1 gens 416.37 625.82 921.51 416 2314.5

years 10,409 15,646 23,038 10,400 67,863

AMY*H2 gens 644.01 632.97 773.89 338.3 1,963.3

years 16,100 15,824 19,347 8,457.5 49,083

Table 5.7: Time to the most recent common ancestor (TMRCA) estimates for the 
AMY 1 repeat alleles from a global sample of all chromosomes typed for the six 
microstellite loci and AMY1 repeat allele. Generation time was taken as 25 years. 
YTIME upper quantile corresponds to 97.5% and the lower quantile to 2.5%, so that 
95% of the data are within the upper and lower quantiles.
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5.4 Discussion

The comparisons of RST for the AMY microsatellites with 332 microsatellite loci 

in the genome failed to show any unusually large differences in the distribution 

of microsatellite alleles between populations for the AMY microsatellites. 

However, this method is somewhat crude and only loci with extreme allele 

frequency differences would stand out from the null distribution.

In addition, there are a number of problems with the comparative data set of 332 

microsatellites from the study by Kayser et al. (2003). Firstly, the 332 

microsatellites were typed in Europeans and Africans. The European sample 

was identified as 48 blood donors from Leipsig, Germany. This sample matches 

well with the German sample typed for the AMY markers. However, the African 

sample typed by Kayser and colleagues (2003) consisted of 23 Ethiopians and 23 

Bantu speaking South Africans. It is well established that higher genetic 

diversity occurs in Africa than anywhere else in the world and that non-Africans 

carry a small subset of African diversity (Bowcock et al. 1994, Tishkoff et al. 

1996, Kaessman et al. 1999, Vigilant et al. 1991). Therefore it is especially 

important to ensure that African groups are not lumped together. Using a mixed 

African population would serve to make the comparison more conservative, as 

Ethiopians are more closely related to Europeans than a mixed group of Sub- 

Saharan Africans are to Europeans (see Wilson et al. 2001). Unfortunately it was 

not possible to obtain the data from Kayser et al. (2003) with the African 

populations separated out.

The second problem with using Kayser et al.’s (2003) data set is the relatively 

small number of microsatellite markers. This dataset of 332 microsatellite loci 

gives an average of only 14 markers per chromosome, which leaves much of the 

genome unrepresented.

As explained in chapters 1 and 4, analysis of intra-allelic variability currently 

provides the most powerful method for detecting selection (see Sabeti et al.

2002). The analysis of intra-allelic variability unfortunately failed to show 

compelling evidence for selection. In the Ethiopian and Western European
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groups, the chromosomes with duplicated amylase elements (AMY1*H1, H2, H3 

etc) showed a slightly stronger signal of positive selection than those without. 

This is consistent with the hypothesis outlined in Chapter 1 that AMY repeat 

alleles with higher number of AMY1 genes, confer an selective advantage in 

populations that consume high starch diets. In contrast the Armenian sample 

shows the opposite pattern, where the highest selection coefficient was found for 

the AMY 1 *H0 allele. It must be noted however that the number of AMY 1 *H0 

chromosomes in the Armenian sample is very low (n=9). Interestingly the 

strongest signal for selection (5=0.0361, when r=0) appears in the Armenians, 

which have the longest history of cereal agriculture of all the populations in this 

study.

The range of TMRCA estimates for the AMY 1 repeat alleles are all with the last 

70,000 years, with point estimates in the region of 20,000 years. This is an 

intriguing result since there is clear evidence in the archaeological record of an 

increase in consumption of high starch content foods around this time, such as 

the charred remains of wild grass species found at Wadi Kubbaniya that have 

been dated to 17,000-16,000 years (Hillman 1989). However the estimates of 

TMRCA are also consistent with a population bottleneck due to a common and 

recent origin African origin for all non-African human populations within the 

last 44,000 -  200,000 years (Tishkoff et al. 1996, Tishkoff & Williams 2002).

A population bottleneck may reduce microsatellite diversity in such a way as to 

give the impression of a more recent origin than the actual age. Thus the 

microsatellite diversity associated with the AMY 1 repeat alleles may result from 

population demography rather than by the actual age of the mutation and the 

selective pressures that it has been subjected to (if any). It is clear, therefore, that 

caution should be applied when interpreting the results of compound haplotype 

based dating methods.
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Chapter 6: Variation in salivary amvlase gene copy number in Chimpanzees

6.1 Introduction

Variation in salivary amylase gene copy number has been found in all human 

populations studied to date (see chapter 4, section 4.3). The question remains, 

however, of whether this inter-individual variation in AMY 1 gene copy number 

is found in other primate species. If it is the case that AMY 1 gene copy number 

variation is only present in humans, then it is likely that the duplication events 

that gave rise to the different AMY 1 repeat alleles have occurred since the 

human/chimpanzee lineages diverged. The aim of this chapter was to 

investigate the extent of variation in AMY1 gene copy number in chimpanzees.

6.1.1 What can chimpanzees tell us about human evolutionary geneticsl 

Chimpanzees and humans are estimated to have shared a common ancestor 

between 4.6 and 6.2 million years ago (Chen & Li 2001). Early comparative 

studies of humans and chimpanzee genomes estimated the extent of DNA 

sequence difference to be around 1.6% (see Ebersberger 2002 for review). More 

recent studies, sampling large numbers of sequences from across the genome 

(Chen & Li 2001, Ebersberger 2002), have shown the average extent of sequence 

divergence to be in the region of 1.24%. These figures seem relatively low 

considering the phenotypic differences, such as large brains, bipedalism and 

language, that we can see between humans and our closet living relatives. 

However the key is not in the number of differences, but where they are in the 

genome and what traits they affect. It has been suggested that differences 

between chimpanzees and humans lie not in different genes, but in differences in 

the control of gene expression (Enard et al. 2002a). Thus relatively small 

genetic changes could have a large impact on the resulting organism. Enard et 

al. (2002a) identified species-specific gene expression patterns in chimpanzees 

and humans, which indicate that changes in protein and gene expression have 

been particularly pronounced in the human brain. Fortna et al. (2004) studied 

gene duplication in five hominoid species and found that genes showing copy 

number expansions were most common in humans, and included a number of 

gene thought to be involved in the structure and function of the brain.
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Enard et al. (2002b) have also studied a gene that is involved in language 

acquisition in humans. It seems that two functional copies of the FOXP2 gene 

are required for normal speech development. Through a comparison with 

FOXP2 from chimpanzee and other primates, as well as studying the variation in 

humans they were able to suggest that human FOXP2 has been a target of natural 

selection in recent human evolution. However it not possible to distinguish 

between recent natural selection in the hominid lineage, or a relaxation of 

selective constraints based on the data of Enard et al. (2002b).

Studies using chimpanzee sequence data can also be used to shed light on human 

demographic history and evolution. The rate of sequence divergence can be 

used to estimate the age of the most recent common ancestor for a given locus, 

the ages of individual lineages and the timings of prehistoric migrations as well 

as the ages of demographic events such as population expansions and 

bottlenecks. For example, comparisons of human and chimpanzee sequence 

information has provided evidence for reduced genetic diversity in humans and 

signatures of population expansion (Kaesmann et al. 2001).

As our closest living relatives, chimpanzees have also been used as an outgroup 

in many human phylogenetic studies. An outgroup is a lineage known to be 

more distantly related to the other lineages under study than they are to each 

other. The outgroup serves to root phylogenetic trees, and in addition provides a 

method for testing whether the rate of evolution is constant over all evolutionary 

lineages. Yi et al. (2002) used this method to provide evidence that a reduction 

has occurred in the rate of mitochondrial evolution in the hominoids compared to 

other higher primates.
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6.1.2 How can chimpanzees inform us in the study o f human dietary adaptation? 

Chimpanzees also provide us with an invaluable tool in the study of human 

dietary adaptation. Chimpanzee diets are relatively unaffected by human 

inventions such as agriculture and are assumed to have remained the same since 

their evolution (see Milton 1999, 2000). It is therefore likely that the diets of 

chimpanzees are closer to the common ancestor of humans and chimpanzees than 

that of humans living today. It can therefore be predicted that chimpanzees have 

not adapted at the genetic level to human foods such as cows milk or large 

quantities of cereal products.

Studies of chimpanzees in the wild have revealed that the chimpanzee diet is 

made up of 65% fruit, 20 % leaves from arboreal plant species and 5% meat and 

insects (Newton Fisher 1998, Basabose 2002). They remainder of their diets is 

made up of honey, sap, leaves and stems of terrestrial plant species, nuts, seeds 

and bird’s eggs. They exhibit a wide range of feeding behaviours, including 

hunting of prey such as wild bush pigs, monkeys and even small antelope 

(Stanford et al. 1994). Chimpanzees also use tools to acquire food such as 

hammer stones to crack nuts (Boesch & Boesch 1983) and twigs to ‘fish’ 

termites out of nests and to dip honey (Boesch & Boesch 1993).

As was discussed in Chapter 1 (section 1.2), adaptive explanations are often 

used to explain differences in eating patterns between different populations, and 

are similarly used to explain differences in feeding behaviours between humans 

and chimpanzees. If, when we explore the genetic variation in humans and 

chimpanzees for these traits, we do find not any difference between the two 

species, we can reject such adaptive explanations.

6.1.3 Chimpanzees and Amylase

There have been only a small number of studies of amylase in non-human 

primates. McGeachin & Akin (1982) reported that amylase was found in the 

saliva and pancreas in gorillas, orang-utans and chimpanzees. As was outlined in 

chapter 1 (section 1.5.1) Samuelson et al. (1990, 1996) investigated amylase 

gene promoter regions in New-World monkeys, Old-World monkeys and apes.
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They found that a y-actin pseudogene was integrated after the divergence of the 

New-World monkeys from the primate ancestral tree and a retroviral sequence 

was integrated later after the divergence of the Old-World monkeys. They found 

that all human amylase (pancreatic and salivary) genes contain the y-actin insert 

and therefore conclude that all the human amylase genes diverged from each 

other after this insertion event approximately 40 million years ago (Samuelson et 

al. 1990).

Samuelson et al. (1990) also reported the relative amounts of the amylase 

hybridising fragments they obtained. The relative intensities from the AMY2B 

and AMY2A were identical in the human and the chimpanzee samples.

However the AMY 1 fragment in the human DNA hybridised three times more 

intensely than the fragment in the chimpanzee DNA. They suggested that the 

human salivary gene had been amplified from one copy to three copies after the 

divergence of humans and chimpanzees. They also pointed out that this recent 

date for the salivary gene duplication is consistent with the lack of sequence 

divergence between the three human salivary amylase genes. However, this 

study was based on a single DNA samples from each species. Chapter 4 

(Section 4.3) shows data from a large number of humans from 14 different 

populations. Variation in AMY1 gene copy number was found in all human 

populations studied. This chapter aims to study a number of chimpanzee DNA 

samples in order to explore the extent of variation in AMY 1 gene copy number 

in chimpanzees.

6.2 Methods:

Five chimpanzee (Pan troglodytes) DNA samples (see Ruano et al. 1992) were 

obtained with kind permission from Prof Dallas Swallow, Dept. Biology 

University College London. The human QAMY02 and QAMY03 protocols 

were performed on the five samples according to the methods described in 

section 2.3.1(b).

PCR and cloning were performed as detailed in Section 2.5. Sequencing of the 

cloned PCR products was carried out according to the protocol described in
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section 2.4. The final reaction conditions for the chimpanzee QAMY02 assay 

are detailed in section 2.6.

Chromatograms produced from sequencing, by the ABI3100, were analysed 

using Sequencher v4.0 (GeneCodes, Ann Arbor, MA). Human and chimpanzee 

sequences were aligned and converted to NEXUS format. Phylogenetic analysis 

was conducted using both UPGMA distance, neighbour joining, maximum 

likelihood and exhaustive parsimony methods implemented in PAUP*V4,|310 

(Sinauer Associates, Sunderland, Mass).

6.3 Results

The ratios of peaks of fluorescence obtained from the human QAMY02 and 

QAMY03 protocols were consistent across all five of the chimpanzee DNA 

samples. QAMY02 primers amplified two different sized PCR products in the 

chimpanzee samples as in humans. The PCR products also conformed to the 

same sizes as the human products. Consistent results were obtained across 2 

PCR reactions and 2 electrophoresis runs per PCR (total 4 runs) for each DNA 

sample (See Table 6.1). However, the ratio of the peak heights of the PCR 

products to each other in chimpanzee did not correspond to any of the expected 

values for the different genotypes found in humans. The average ratio of 

191bp product: 187bp products was 0.8061 : 1. One explanation for this was that 

the primers were not be amplifying all the amylase genes in chimpanzee with 

equal efficiency due to a base change in chimpanzees, in the region where the 

primer anneals in one of the amylase genes. This would mean that the resulting 

fragments would only be amplified efficiently from 2 or less out of the 3 classes 

(AMY2A, AMY2B, AMY1) of genes intended to be amplified. The expected 

ratio for QAMY02 is calculated using all the amylase genes. If one or more 

genes are not amplified with equal efficiency then the ratio produced by the PCR 

products would not conform to the expected ratios.
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Chimp ID QAMY02 187bp 
peak height

QAMY02 191bp 
peak height

Ratio of
191:187bp peak
heights

QAMY03 263bp 
peak height

QAMY02 267bp 
peak height

Ratio of 
263:267 bp peak 
heights

Harv 2429 2037 0.8386 : 1 / 2830 0
1052 927 0.8812: 1 / 1978 0

Colin 536 443 0.8264: 1 1 / 1259 0
741 636 0.8583 : 1 / 760 0

Kassay 215 160 0.7442 : 1 / 1342 0
85 66 0.7764:1 / 2694 0

Carl 1875 1467 0.7824 : 1 / 1744 0
2172 1702 0.7836 : 1 / 2854 0

Tank 336 257 0.7649 : 1 / 2222 0
282 227 0.8050: 1 I / 2982 0

able 6.1: Data from the human QAMY02 & QAMY03 protocols on five chimpanzee DNA samples. Two PCRs were performed on each DNA 
sample. Data in the table are the heights of the peaks of fluorescence from electrophoresis using an ABI377 of fluorescently labelled PCR 
products, as displayed by the ABI/GeneScan™ software.



In humans, the QAMY03 assay primers amplify two PCR products of different 

length, which is visualised as two peaks of fluorescence when run on an 

ABI377/GeneScan™ system. In the chimpanzee samples only one peak (263bp) 

was seen. The deletion (+1586-1570bp from start codon) in AMY 1 found in 

humans that results in the smaller peak (263bp), was presumed to not be present 

in chimpanzees.

In order to confirm the hypothesis that the unusual ratios obtained with the 

human QAMY02 protocol was in fact due to base changes in the area where the 

primers anneal it was necessary to sequence the chimpanzee samples. PCR 

products were amplified that spanned the region of interest using primers AMY- 

05-U (5’- CTG GAA AGG ACA CTG ACA AC -3’) and AMY-06-L (5’- ATC 

TAG TCA CCA TGT TTC TAA ATT CAT -3’). These were primers originally 

designed to amplify a region from the start of exon 1, through intron 1, and into 

exon 2 of all three amylase genes in humans. As exon sequences are highly 

conserved it was likely that these primers would also amplify all three classes of 

amylase genes in chimpanzees. The PCR products from the chimpanzees were 

cloned into a plasmid vector before sequencing in order to produce gene specific 

DNA fragments.

A total of 24 colonies were picked from the plates and sequenced in both the 

forward and reverse directions (See Section 2.5). Of the 24 colonies sequenced, 

11 contained AMY1 sequence, 7 contained AMY2A sequence and 5 contained 

AMY2B sequence, and one colony gave only a very short amylase sequence. 

Several studies have reported that products obtained after PCR with Taq 

polymerase will contain hybrid molecules when several homologous target 

sequences such as multigene families are co-amplified (see Shafikhani 2002, 

Judo et al. 1998, Meyerhans et al. 1990, Wang & Wang 1996, Shammas et al. 

2001). Wang & Wang (1996) reported a 30% occurrence of chimeric sequences 

in a 30 cycle PCR amplification of nearly identical 16S rRNA genes from 

several bacterial species. Out of the 24 chimpanzee amylase clones in this study, 

seven (4 x AMY1A; 2 x AMY2B and 1 x AMY2A) were interpreted as having
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1 11 21 31 41 51
I I I I I I

Human AMY1A aaagcaaaAT GAAGCTCTTT TGGTTGCTTT TCACCATTGG GTTCTGCTGG GCTCAGTATT
Chimp AMY1A ......................................................................
Human AMY 2A ................ T ....CT.............................................
Chimp A M Y 2 A ............... T .....CT........... A ................................
Human A M Y 2 B ................ T ....CT.............................................
Chimp A M Y 2 B ................ T ....CT.............................................

61 71 81 91 101 QAMY02-CH-U primer
I I I I I IHuman AMY1A CCTCAAATAC ACAACAAGGA CGAACATCTA TTGTTCATCT GTTTGAATGG CGATGGGTTG

Chimp AMY1A . .C......................... G ........................................
Human AMY2A . .C...................... G ..........................................
Chimp AMY2A . .C...................... G..........................................
Human AMY2B . .C...................... G..........................................
Chimp AMY2B . .C...................... G ..........................................

121 131 141 151 161 171

^ ■ tcHuman AMY1A IHHTGCTCT TGAATGTGAG CGATATTTAG CTCCCAAGGG ATTTGGAGGG GTTCAGgtgg
Chimp A M Y 1 A ....................................... G .............................
Human A M Y 2 A ....................................... G .............................
Chimp A M Y 2 A ....................................... G .............................
Human AMY2B ......................................................................

Chimp AMY1A 
Human AMY2A

Human
Chimp
Human

Chimp AMY1A 
Human AMY2A 
Chimp AMY2A 
Human AMY2B 
Chimp AMY2B

Chimp
Human
Chimp
Human
Chimp

1811 191| 201 211 221I 231
1gtatgattca

1
tagtatcaat tgcagaattc 1 1 actgtgcttg tagtaaacac tattctgatc

. . .G..... ...G...T.G

. . .G..... ...G...T.G ..... T.. .
__A ...... ...... T.G

.......... .......... ... ........................... T.G ..........

2411 2511 2611 271 2811 291I1ttctacgtga 
..... CC. .

1agcttgggca 
.... C . .A.

1acattttact tcacaggtaa 1gtattctaag 1taaaagaatt

..A .CT. . . . ...... GA.

a .a .c .... .... A.... .G..

301| 311I 321I 331I 341I 351I1ttctgaggaa
1
aaaacaatgt

1
agtattcttt

1
gcaactgtat

1
attttgtttc

I
tgatataatc

........G. ...T.T.... .........G ..... T. . . __G ......

361 371
1

381 QAMY02-U primer 
1 1

401
1

411
1

tttcttcaac aagagccctc cgatgtgctg ttaatatttt caagagatag ctgcctatac

........ c. .A........
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421 431 441 451 461 471
I I I I I IHuman AMYlA caagattcaa gaartctttt gtattattga ttagattcta gaacattcaa tgatatacag

Chimp A M Y l A ............ G ........ A ............................................. C
Human A M Y 2 A ......................A. .C............ T ....................... C ___
Chimp A M Y 2 A .......... T  T  A .............. T .............................
Human A M Y 2 B .................T ___ A ................T  G. .
Chimp A M Y 2 B .............. T.T___ A ................T  G. .

481 491 501 511 521 531
I I I I I IHuman AMYlA taagacagaa tttggtactt atgaagactg tttaatttgt agGTCTCTCC ACCAAATGAA

Chimp A M Y l A ..................... C...............................................
Human AMY2A ......................................................................
Chimp AMY2A ......................................................................
Human A M Y 2 B  ::::.......... G .................................................
Chimp A M Y 2 B  ::::.......... G .................................................

541 551 QAMY02-L-TET primer 581 591
1 1 I I I IHuman AMYlA AATGTTGCCA TTCACAACCC TTTCAGACCT TGGTGGGAAA GATACCAACC AGTTAGCTAT

Chimp AMYlA ......................................................................
Human A M Y 2 A ....... A. . .T.......................................................
Chimp A M Y 2 A ....... A. ..T.......................................................
Human AMY2B ........A ............................................................
Chimp A M Y 2 B .............................................................. C ......

601 611
I IHuman AMYlA AAATTATGCA CAA

Chimp AMYlA ..............
Human AMY2A ..............
Chimp AMY2A ..............
Human AMY2B ..............
Chimp AMY2B ..............

Fig 6.2: Sequence comparason of human and chimpanzee amylase genes exonl, intron & 
exon 2. Human sequences were obtained from contigs produced from aligning sequences 
of BAC clones (see chapter 3) as well as exon sequences from Genbank (AMYA:
M17883, M18715, M18717, AMY2A: M18671, AMY2B: D90088, D90089). 
Chimpanzee sequences were obtained experimentally. Exon sequences are shown in 
capitals, intron sequences are shown in lower case letters. The regions in green show the 
position of the QAMY-02 primers. Note the base change (in red) in the chimpanzee 
AMY 1A sequence close to the 3’ end of the QAMY02U primer. The QAMY02-U 
primer was abandoned in favour of QAMY02-CH-U for the chimpanzee QAMY02 assay. 
The region in yellow shows the 4bp deletion in both chimpanzee and human AMY2B 
genes, around which the QAMY02 assay is designed.
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undergone PCR-mediated recombination during the initial PCR before the 

products were cloned into the plasmid vector.

After sequencing has been carried out, three groups of sequences were identified 

and these were assigned, by sequence homology with the human amylase gene 

sequences, as AMY 1 A, AMY2A and AMY2B (See Fig 6.3a). Chimpanzee 

sequences for exon 1, intron 1 and exon 2 were submitted to the EMBL 

nucleotide sequence database (URL: http://www.ebi.ac.uk/embl/) and assigned 

accession numbers as follows: AMYlA: AJ703812; AMY2A: AJ703813; 

AMY2B AJ703814 (See Fig 6.2).

Fig 6.3a, b & c show phylograms for the human and chimpanzee amylase exon 

1, intron 1 and exon 2 sequences. After phylogenetic analysis, conducted using 

PAUP*V4,piO (Sinauer Associates, Sunderland, Mass), exactly the same 

topology was obtained with likelihood, UPGMA distance and exhaustive 

parsimony methods (See fig 6.3 b&c). Maximum likelihood trees were searched 

for, both with and without the enforcement of the molecular clock. The 

molecular clock assumes that all branches have the same rate of evolution. 

However if one branch has a different rate of evolution compared to the other 

branches the molecular clock assumptions are violated. A likelihood ratio test 

was used to test for significant differences between the likelihoods obtained for 

the topologies with and without the molecular clock (see Felsenstein 1981). 

Significant differences in likelihoods were not found and so the molecular clock 

was appropriate for the data (See Fig 6.3b). The enforcement of the molecular 

clock enabled the tree to be rooted using midpoint rooting.

The results of sequencing from exon 1 to exon 2 of the chimpanzee amylase 

genes showed a number of base change differences between human and 

chimpanzees (see Fig 6.2 and 6.4). In particular, the 3’ end of the upper primer 

from the human QAMY02 protocol (QAMY02-U) annealed to an area in the 

sequence that had a base change in the chimpanzee AMYlA gene (See Fig 6.2). 

This means that the
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C h im p  AMY1A

Human AMY1A

Chimp AMY2B

Human AMY2A
Human AMY2B

Chimp AMY2A

-------------  0.005 substitutions/site

Fig 6.3a: An unrooted neighbour joining tree of chimpanzee and human 
amylase gene sequences using the Kimura (1980) two parameter model. 
Neighbour joining is a clustering method that attempts to find the smallest sum 
of branch lengths for trees based on a distance matrix (Saitou & Nei 1987). 
Phylogenetic analysis was conducted using PAUP*V4,|310 (Sinauer Associates, 
Sunderland, Mass).
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Human AMY1A

Chimp AMY1A

Human AMY2A

Chimp AMY2A

Human AMY2B

---------------------  Chimp AMY2B
0 .0 0 5  substitutions/site

Fig 6.3b: Maximum likelihood tree of chimpanzee and human amylase gene 
sequences using the HKY85 model of evolution with gamma (ie differences in 
the rate of evolution between sites). The molecular clock was enforced so that a 
root could be obtained by midpoint rooting. Phylogenetic analysis was conducted 
using PAUP*V4,plO (Sinauer Associates, Sunderland, Mass).
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UPGMA
Human AMY1A

Chimp AMY1A

Human AMY2A

Chimp AMY2A

Human AMY2B

-------------------  Chimp AMY2B
------------------------  0 .0 0 5  substitutions/site

Fig 6.3c: A UPGMA tree of chimpanzee and human amylase gene sequences 
using the Jukes Cantor model of evolution. Under the Jukes Cantor model 
trasitions are weighted more than transversions. Phylogenetic analysis was 
conducted using PAUP*V4,|310 (Sinauer Associates, Sunderland, Mass). Note 
that this tree has the same topology as the likelihood tree (Fig 6.3b)
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Chimp AMYlA
G T G C T G T T A A T A T T T T C A A G G G A T A G C C G C C T A T A C C A A G

Human AMY 1A
g t g c t g t t a a t a t t t t c a a g a g a t I a g c t g c c t a t a c c a a g

Fig 6.4: Two sequencing chromatograms from cloned chimpanzee PCR products originating from the AMY 1A gene. Shown below is the 
consensus sequence for the chimpanzee AMY 1A sequences, as well as the human AMY 1A sequence. The region of the QAMY02-U primer is 
shown in green. Differences between the chimpanzee AMY 1A consensus sequence and the human AMYlA sequence are shown in red.

• I AN JUC71 _97-192 _E08_055.ab 1 Fragment base *405. Base 405 of 628 •
T ft T T T T C A A 6 G G A T A G C C G C



primer would not anneal as efficiently to the AMYlA genes, causing a decrease 

in the amplification efficiency of AMYlA specific products. The resulting 

decrease in AMYlA products could explain the ratios that were obtained using 

the human QAMY02 primers in chimpanzees. The sequence data from the 

chimpanzee amylase genes was used to design a new upper primer for a 

chimpanzee QAMY02 assay. A suitable primer was chosen to optimise for 

compatibility of annealing temperature with the existing QAMY02-L-TET 

primer as well as elimination of false priming sites, high 5 ’ stability and low 3 ’ 

stability (See Section 3.4.2 for more details of primer design methodology). 

Although there seem to be a number of areas on the human/chimp amylase 

alignment with 100% identity (see Fig 6.2) suitable for the placement of the 

primer that also would have produced a shorter PCR product, the primer design 

criteria restricted the placing of the primer to its current location.

Once the chimpanzee QAMY02 assay had been developed, the five chimpanzee 

DNA samples were typed for AMY 1 gene copy number. Of the five 

chimpanzees typed, all five were found to be the same genotype: AMY1*H0/H0 

(SEE FIG 6.5, Table 6.2).

Table 6.2: Ratios of peaks of fluorescence for AMY1+AMY2A (466bp) and 

AMY2B (422bp) PCR products from chimpanzee QAMY protocol for five 

chimpanzee DNA samples.

Chimp ID PCR A PCR B Mean Variance

RUN 1 RUN 2 RUN 1 RUN 2

Colin 1.8326 1.9178 1.8337 1.8114 1.8489 0.0022

Harv 1.7859 2.0314 1.8733 1.8448 1.8838 0.0110

Tank 1.7980 1.8483 1.8802 1.7703 1.8241 0.0024

Kassay 1.9811 1.8702 1.7719 1.8202 1.8608 0.0080

Carl 1.8065 1.8568 1.9230 1.7289 1.8288 0.0067
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Fig 6.5: A graph to show mean values for the ratio of 466:462bp PCR product for 5 
chimpanzees for 2 PCRs each run twice on an ABI 377/GeneScan™ system. The 
variance of the runs is shown by the error bars. The predicted ratio for genotype 
AMY1*H0/H0 is 2.0. All the results are within the acceptable range (+/- 0.2) of this 
value and so all samples were assigned the genotype AMY1*H0/H0.

Colin

Sample ID
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6.4 Discussion

Despite obtaining the same AMY 1 genotype of AMY 1 *H0/H0 for all of the 

chimpanzee samples studied, it cannot be ruled out that variation in AMY 1 gene 

copy number exists in chimpanzees. With a sample of 5 chimpanzees (10 

chromosomes) the allele frequency for AMY 1 *H0 could be as low as 74% and 

still have a 5% chance of generating the observed data (see below). A much 

larger number of chimpanzee DNA samples would be needed to rule out the 

existence of variation in AMY 1 gene copy number in chimpanzees. To be 95% 

confident that the AMY1*H0 allele is at a frequency of at least 95% in the 

chimpanzee population, a further 48 chromosomes would need to be sampled. 

However a frequency of 74% for AMY 1 *H0 in chimpanzees still indicates that 

AMY1*H0 is the modal AMY1 repeat allele in chimpanzees.

P(observe 10 chromosomes same | Frequency = x) = 0.05 = x10 

Therefore x = 0.05(1/10) = 0.7411 

Solve for n and fix x at 0.95: 

n = log(0.05) = 58.404

log (0.95)

This contrasts with humans, where the modal AMY1 repeat allele is AMY1*H1 

and is present at frequencies estimated to be between 42% and 68% (See Chapter 

4, Table 4.2). It is often assumed that the modal haplotype in humans is the 

ancestral form, and all other haplotypes are derived (see Thomas et al. 2002, and 

Stumpf and Goldstein 2001 for a review). As only AMY1*H0 has been found to 

date in chimpanzees, it is likely that the duplication of the AMY 1 locus found 

throughout human populations has occurred since the human/chimpanzee 

lineages diverged approx 4-6mya. During this time, there must have been a 

number of deletion, inversion and duplication events to create the various AMY 1 

*H1 allele found in humans. Once the AMY1*H1 allele has been formed is it 

relatively easy to envisage how the other AMY 1 repeat alleles were formed 

through a series of unequal homologous crossovers (See fig 1.10).
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It is interesting to note that, in comparison to human diets, there is a notable lack 

of high starch content foods, such as grains, in the diets of chimpanzees. The 

presence of AMY 1 *H0 as the modal AMY 1 repeat allele is therefore consistent 

with the prediction from the dietary evidence. A homozygote for the AMY1*H0 

allele would have sufficient salivary amylase for a low starch diet such as that 

found in chimpanzees.

Interestingly Neighbour-Joining tree shows the chimpanzee AMY1A sequence 

as having a longer branch length than the human AMY 1A from their common 

node (see Fig 6.3). It is not immediately obvious why this should be the case. 

One explanation, however, is that human AMY 1 sequences are constrained by 

gene conversion, between the multiple copies of AMY 1 that are present in the 

majority of human individuals. Concerted evolution, through the process of gene 

conversion between paralogous genes can act to maintain sequence homology. 

An example of this comes from the 6 and (3-globin genes, which have extended 

sequence similarity despite their having diverged through gene duplication 85- 

100 million years ago (see Papadakis & Patrinos 1999). Innan (2002) developed 

a method for estimating gene conversion rates in multigene families and 

estimated it to be approximately 60-165 times higher than the mutation rate for 

synonomous sites.

The question of whether variation in salivary amylase gene copy number is 

present in chimpanzees requires further work to increase the number of 

chimpanzee chromosomes in the study. An additional avenue for further 

research would be to ascertain the extent of variation in AMY 1 gene copy 

number in other primate taxa. Both these approaches would increase our 

understanding of the evolution of the amylase gene cluster in primates.
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Chapter 7: Diet and the allele frequencies at the Alanine: Glvoxvlate 

Aminotransferase ProllLeu locus in different human populations

Note:

The work described in this chapter was done in direct collaboration with Prof 

Christopher Danpure and an undergraduate student Ms Lianne Mayor who 

carried out the initial practical work.

7.1 Introduction

Alanine:Glyoxylate aminotransferase (AGT) is an enzyme found in the liver that 

catalyses the conversion of glyoxylate to glycine. Glyoxylate is a precursor for 

oxalate, which, when present in large amounts, can lead to the formation and 

excretion of multiple calcium oxalate (CaOx) kidney stones, and can eventually 

lead to renal failure (Danpure & Purdue 1995). Most oxalate and oxalate 

precursors in the diets of humans and other animals comes from the consumption 

of plants. Oxalate is a metabolic end-product and has no known biological role 

in animals, but is involved in many important metabolic processes in plants such 

as calcium homeostasis, structural support and defence.

The activity and subcellular distribution of AGT varies widely in different 

mammals, and both are significantly correlated with diet (Danpure 1997, 

Danpure et al. 1994). In carnivores, AGT tends to have a high activity and is 

localised within the mitochondria. However in herbivores AGT tends to have a 

lower activity and be localised within the peroxisomes. In omnivores AGT is 

usually found at intermediate levels and to be located within both the 

mitochondria and peroxisomes. This dual organellar localisation of AGT is 

.thought to reflect its dual metabolic roles of glyoxylate detoxification in the 

peroxisomes and gluconeogenesis in the mitochondria (Danpure et al. 1990, 

1994). In addition, for glyoxylate detoxification to be efficient AGT must be 

concentrated at the site of glyoxylate synthesis. This is likely to be different in 

carnivores and herbivores because the main dietary precursor of glyoxylate in
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herbivores is thought to be glycolate, which is metabolised to glyoxylate in the 

peroxisomes (Noguchi 1987). In contrast, the precursor of glyoxylate in 

carnivores is more likely to be hydroxyproline, which is converted to glyoxylate 

in the mitochondria (Takayama et al. 2003).

The importance of correct subcellular distribution of AGT has been 

demonstrated by Danpure et al. (1989) in a study of two patients with the 

potentially lethal human hereditary kidney stone disease primary hyperoxaluria 

type 1 (PHI). Although in most normal humans AGT is peroxisomal, in many 

PHI patients AGT is mis-targeted to the mitochondria. Mis-targeted AGT 

remains catalytically active but is unable to perform glyoxylate detoxification 

efficiently. As a result, oxalate synthesis increases and calcium oxalate 

crystallises out as stones in the kidney and urinary tract.

The evolution of AGT has been studied two groups of mammals: the 

Anthropoidea suborder of primates (Holbrook et al. 2000) and the Carnivora 

(Birdsey et al. 2004). Evidence for strong positive selection to decrease the 

efficiency of mitochondrial AGT targeting has been found in several anthropoid 

lineages as well as in the giant panda, possibly as an adaptation to increased 

herbivory. It has been estimated by Danpure et al. (1994) that the subcellular 

distribution of AGT must have changed on at least eight occasions during the 

evolution of mammals.

Although there is a significant correlation between the subcellular distribution of 

AGT and diet (Danpure et al. 1994, Danpure 1997) humans present an unusual 

situation. Humans are considered to be omnivores but, like the other species of 

the hominoidea that have been studied, they have a herbivorous peroxisomal 

distribution of AGT (Holbrook et al. 2000). In humans, however, a common 

polymorphism has been found which has important consequences for AGT 

activity and subcellular distribution. The ‘minor’ allele differs from the ‘major’ 

allele in that a C has been replaced with a T resulting in a Prol lLeu amino acid 

substitution. The minor allele reduces the activity of the AGT enzyme to a third 

of the normal level. In addition, individuals who are homozygous for the minor
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allele, instead of targeting 100% of their AGT to peroxisomes, target 90-95% to 

peroxisomes and 5-10% to the mitochondria (Purdue et al. 1990). This ‘minor’ 

allele has been found at an allele frequency of 20% in Caucasians.

It is not unreasonable to suggest, therefore, that the minor allele at the AGXT 

Prol lLeu locus in humans, may represent an adaptation to a more omnivorous 

diet from a more herbivorous ancestral diet. The AGXT Prol lLeu locus thus 

provided another example to investigate for molecular evidence for dietary 

adaptation in humans.

The aim of this study was to determine the allele frequencies at the AGXT 

Prol lLeu locus in a range of human populations and to test whether the 

frequency differences found departed from the SNP allele frequency differences 

between populations that are found elsewhere in the genome. The AGXT 

Prol lLeu allele frequency data was compared to a null distribution of FSTs for 

11,024 SNPs, using a similar method previously described in Chapter 4 for the 

AMY1 locus.

7.2 Methods

7.2.1 Nomenclature and abbreviations

AGT denotes the alanine:glyoxylate aminotranferase enzyme. In humans, AGXT 

denotes the gene that codes for the AGT enzyme.

7.2.2 Collection o f samples

DNA samples were typed for the Prol lLeu polymorphism in 83 Mongolians, 76 

Norwegians (Weale et al. 2002), 82 North Welsh (Weale et al., 2002), 73 

Armenians (Weale et al., 2001), 62 Nigerians from the Cross-River region, 69 

Ethiopians, 88 Anatolian Turks, 34 Swedish Saami, 86 Sichuan Chinese and 85 

Indians from Mumbai. Informed consent was obtained from all donors. All 

donors provided details of self-defined ethnic identity, first and second language 

and place of birth with similar information on his mother, father, maternal 

grandmother and paternal grandfather.
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7.2.3 Polymorphism Detection

The Prol lLeu c32C>T polymorphism (previously described as C154T) was typed 

by PCR-RFLP as follows: PCR was carried out in a total reaction volume of 10 

p\ containing 0.3 pM  of primers MIT 2 (GCA CAG ATA AGC TTC AGG GA) 

and EX-2R (CTT GAA GGA TGG ATC CAG GG), 200 pM  dNTPs, lOmM 

Tris-HCl (pH 9.0), 0.1% Triton X-100, 0.01% gelatin, 50 mM KC1, 2.2 mM 

MgCl2, 0.13 units Taq polymerase (HT Biotech, Cambridge, UK), 9.3 nM 

TaqStart monoclonal antibody (Mab) (BD Biosciences/Clontech San Jose, CA) 

and 1 p \ of DNA. The Taq and TaqStart Mab were premixed prior to being 

added to the other reagents. Cycling parameters were pre-incubation at 95°C for 

5 min followed by 37 cycles of 94°C for 1 min, 58°C for 1 min, 72°C for 1 min; 

and then a final incubation step of 72°C for 10 min.

Restriction endonuclease digestion was carried out overnight at 37°C in a final 

volume of 15 p\, and contained 10 p \ of PCR product, 10 units of Sty 1, 0.01 

mg/ml acetylated BSA and NEB Buffer 3 as recommended by the manufacturer. 

Digestion products were then run on 2 % agarose gel and DNA bands were 

visualised using ethidium bromide staining. Bands on the gel corresponding to 

512bp and 619bp were interpreted as the major AGXT allele and minor AGXT 

allele respectively.

To ensure data quality and the accurate sizing of digestion products, some 

samples were also PCR amplified and Sty 1 digested as above but using a version 

of the EX-2R primer that had been fluorescently labelled with the dye NED. 

These digestion products were then run on an ABI-377 automated sequencer (5% 

acrylamide denaturing gel for 3.5h) along with a ROX-labelled size standard.

7.3 Results

The frequencies of the AGXT Prol lLeu alleles in different human 

populations are shown in Table 7.1. There is a marked South East -  North West
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MON NOR NW ARM NIG ETH AT SA ASH CHI HIN

AA 69 50 60 48 52 55 68 19 47 82 79

Aa 11 22 20 22 9 13 14 11 23 4 5

aa 0 4 2 3 1 1 6 4 3 0 0

n 82 76 82 73 62 69 88 34 73 86 85

Frequency of 
AGXT minor 
allele

0.0688 0.1973 0.1463 0.1918 0.0887 0.1087 0.1477 0.2794 0.1986 0.0233 0.0298

Table 7.1: Frequency of AGXT genotypes in 11 human populations. Allele “A” corresponds to AGXT major allele, allele a 
corresponds to AGXT minor allele (see Introduction). Population codes: MON, Mongolia; NOR, Norway; NW, North Wales; ARM, 
Armenia; NIG, Nigeria; ETH, Ethiopia; AT, Anatolian Turks; SA, Saami, ASH, Ashkenzai Jews; CHI, Chinese; HIN, Indians Hindus.
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Fig 7.1: Contour map of the geographic distribution of the major allele frequency at the AGXT Prol lLeu. The contour map was estimated and visualised by 
surface interpolation (tension factor=l) using the Generic Mapping Tools software (Wessel & Smith 1998) (URL: http;//gmt.soest.Hawaii.edu.).
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cline in the frequency of the minor allele (see fig 7.1). It is low (2.3% - 6.9%) in 

eastern and southern Asia, intermediate in Africa (8.9% - 10.9%), and high in 

Europe and the Middle East (14.6% - 27.9%). It should be noted that of the 

populations studied, the one predicted to have the most meat-based ancestral and 

current diet (the Saami) has the highest estimated frequency of the Prol lLeu 

minor allele (27.9%) (See Table 7.2).

Table 7.2: Nutrient composition and variation with latitude for nutrients for pre- 

agricultural diets (after Boyd Eaton & Boyd Eaton 2000)

Nutrient Typical contribution to 
diet

Variation with Latitude

Protein - animal Very High Positive
Protein - vegetable Moderate Negative

Total Fat Moderate to high Positive
Carbohydrate -  from 

vegetables and fruit
Very high Negative

Fibre Very high Negative
Micronutrients Very high Negative

The Saami are the only population in the sample for which there is good 

evidence for a long history of a high meat diet (Haglin 1991, 1999). To examine 

whether the observed differences in AGXT Prol lLeu minor allele frequency 

between the Saami and non-European populations are within the range expected 

for neutral alleles, frequency differences were quantified using the genetic 

distance measure FST (Weir, 1996), and compared to null-distributions of Fsx for 

comparable populations (see methods). Currently, large data sets of SNPs, from 

which null distributions can be constructed, are only available for Europeans, 

East Asians and African Americans (Sachidanandam et al. 2001). Although the 

populations examined in this study are not identical to those for which large data 

sets of SNPs are available, it can be argued that a comparison of the Saami / 

Chinese Prol lLeu minor allele FST against the null-distribution of FSTs for the 

European / East Asian data sets is a conservative one. This is because previous 

studies of a large number of classical polymorphic markers (Cavalli-Sforza et al. 

1988; Cavalli-Sforza et al. 1994) have shown that the
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Fig 7 .2 Fgj values between Europeans 2nd Enst Asians for 11,024 SNPs spread 
throughout the human genome. The dotted line represent the FST value for AGXT 
Prol lLeu locus, for a Saami vs Chinese comparison. The SNP dataset was taken 
from a dataset of 33,487 SNPs typed by the Orchid Laboratory in 42 African 
Americans, 42 East Asians and 42 European Americans publicly available at the 
SNP Consortium web site (URL:
http://snp.cshl.org/allele frequency project/panels.shtml) (Sachidanandam et al. 
2001). A total of 11,024 SNPs were carefully selected from the dataset according to 
the criteria detailed in Chapter 4 (Section 4.3.4). All FST values were calculated 
using the unbiased ‘random populations’ formula for haploid data given by Weir 
(1996). All statistical analyses were carried out using the statistics package ‘R’ 
(URL: http://www.R-pr0ject.0rg/L
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Fsxs between Saami and East Asian populations are typically lower than those 

between continental European and East Asian populations. However, a 

comparison of the Saami / Nigerian Prol lLeu minor allele Fst against the mal­

distribution of FSTs for the European / African American data sets is likely to be 

biased in favour of FST-outlier status for the Prol lLeu minor allele. This is 

because a number of studies have shown African Americans to be an admixed 

group between Europeans and West Africans, with the greater ancestry 

proportion (between 80-90%) being West African in origin (Parra et al. 1998).

As a consequence, the European / African American comparison is likely to 

produce an underestimate of the true null-distribution of FST between the Saami 

and Nigerian populations.

When compared to the null distribution for Europeans and East Asians the FST 

for the Saami vs Chinese (Fsx = 0.3024) was in the top 6.96% of the distribution 

(see Fig 7.2). The Fsx for the Saami vs Nigerians was 0.1184, which was in the 

top 29% of the European / African American Fsx distribution.

7.4 Discussion

The Fsx value for the Saami vs Chinese comparison was an outlier (in the top 

6.96%) on the null distribution for Fsxs for Europeans and East Asians. This 

indicates that there is a greater difference in allele frequency between the Saami 

and Chinese than is found for the majority of the SNPs that make up the 

distribution. This difference could be the result of local selection pressures 

increasing the Prol lLeu minor allele frequency in one population, but not the 

other. As noted in the results, the Saami are predicted to have the highest 

proportion of meat in their diet, and have the highest proportion of Prol lLeu 

minor allele, which causes AGT to be targeted to the mitochondria.

These results are an intriguing preliminary exploration into the evolutionary 

history of the Prol lLeu polymorphism in humans. The unusually high Fsx value 

for the Saami vs Chinese comparison warrants further investigation in order to 

establish whether signals of selection at the AGXT locus can be found. If such
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signatures were found then AGT would provide a further example of human 

dietary adaptation. The non-human primates show a peroxisomal distribution of 

AGT, which has been suggested to be an adaptation to increased herbivory. 

However, these results suggest that humans are moving away from this 

herbivorous distribution of AGT to a more omnivorous distribution. Thus over 

the course of primate evolution, there has been a shift towards hervbivory, which 

shows signs of being reversed in humans.

As discussed previously in this thesis (see chapter 4), the comparison of FSTs 

from the locus on interest with those from a neutral distribution is a somewhat 

insensitive indicator of selection. In order to demonstrate that selection has 

occurred at the AGXT locus in humans, additional data is needed. Currently 

haplotype based selection methods provide the most sensitive way to detect 

selection in the human genome (Sabeti et al. 2002). To apply these methods on 

the AGXT locus, data on extended SNP haplotypes or closely linked 

microsatellites would need to be collected. Unfortunately the collection of such 

data is both costly and labour intensive and was out of the scope of this project.

It is hoped that in the future data of this kind will be collected to increase out 

knowledge of the evolution of the AGXT locus and shed light on dietary 

adaptation to omnivory in humans. A study of this kind would have major 

implications for the study of human evolution as there has been much discussion 

on the importance of meat eating in the evolution of the human brain and the 

development of the human ecological niche (see Aiello & Wheeler 1994
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Chapter 8: General Discussion

The human diet is unusual among primates in both the large meat component and 

the prominence of foods derived from domesticated plant and animal species, 

such as milk and cereals. It has often been suggested that the human digestive 

system has adapted to cope with these new dietary components, on both a gross 

anatomical and molecular scale. However it is only recently has it become 

possible to adequately test hypothesis of molecular adaptation using genetic data. 

This is due to advances in both high throughput genotyping as well as analytical 

approaches to test for selection. A particularly good example of this is the 

lactase persistence phenotype, common in European, Middle Eastern and North 

African populations, which confers the ability to digest milk into adulthood (see 

Swallow 2003 for a review). For many years, population variation in lactose 

digestion capacity has been explained in terms of an adaptation to milk drinking 

as a result of the domestication of cattle (Simoons 1969, Roberts 1985, Stinson 

1992). However it is only in the last year that population genetic evidence of 

natural selection at the lactase gene has been put forward (see Bersaglieri et al. 

2004). Using both allele frequency comparisons (using FST) and haplotype based 

tests for selection, Bersaglieri and colleagues (2004) observed the strongest 

signals of selection yet seen for any gene in Europeans, as well as one of the 

strongest in all human populations.

The aim of this thesis was to explore the variation in two diet related enzymes, 

salivary amylase (AMY1) and alanineiglyoxylate aminotransferase (AGT), in 

order to assess the evidence for selection at these loci. For both genes there are 

plausible adaptive scenarios, in the time frame of the spread of modem humans 

out of Africa. In the case of salivary amylase, a high starch diet would provide a 

situation where having an increased number of fully functioning salivary 

amylase genes would be a distinct advantage. For AGT, the subcellular location 

of the AGT enzyme is known to be associated with the amount of meat and fish 

in the diet across a range of mammalian species (Danpure 1997, Danpure et al. 

1994). In carnivores AGT is found in the mitochondria, in herbivores and is 

located in the peroxisomes with omnivores having AGT in both mitochondria
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and peroxisomes (Danpure et al. 1990, 1994). Over the course of our evolution, 

humans have changed from being largely herbivorous to omnivores (see Milton 

1999, 2000). It is tempting to speculate that the Prol lLeu minor allele, which 

causes AGT to be mis-targeted to the mitochondria, is an adaptation to a more 

omnivorous diet (see Caldwell et al. in press).

All three enzymes, lactase, AGT and salivary amylase play an central role in the 

digestion and metabolism of important dietary components, and yet there seem to 

be major differences in the strength of selection that has been operating at these 

loci. Lactase has one of the strongest signals of selection ever reported, stronger 

even than many disease genes (Bersaglieri et al. 2004) and the strongest ever 

reported in Europeans. Preliminary data indicate that AGT has also been subject 

to forces other than genetic drift shaped by demography (Caldwell et al. in 

press). However the data presented in this thesis found no evidence for a fitness 

advantage for any of the AMY1 repeat alleles.

Both lactase and AGT have alleles that under the certain dietary conditions will 

produce disease states. If an individual is homozygous for the non-persistent 

lactase allele and consumes large amounts of fresh milk in adult life, abdominal 

cramps and diarrhoea occur and the nutritional benefits of lactose cannot be 

obtained. In the case of AGT, inappropriate subcellular targeting of the AGT 

enzyme can lead to the formation of calcium oxylate kidney stones and 

eventually renal failure. In contrast, salivary amylase does not have an allele that 

confers a great disadvantage in any particular dietary circumstances. Even a 

homozygote for the AMY 1 *H0 allele will still possess two copies of the AMY 1 

gene and so express amylase in the saliva. Furthermore, starch digestion is 

continued in the intestine by the action of the pancreatic amylases. Finally, 

salivary amylase is not anchored to a membrane as is the case with many 

digestive enzymes, but freely diffusible in saliva. As a result, differences in 

enzyme concentration would have a smaller effect. These factors may have 

contributed to the difference in the strength of the selective pressure acting on 

the AMY1 locus compared to the two other loci.
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Salivary amylase still presents an interesting case, however. Only the 

AMY1*H0 allele was found in the five chimpanzees studied, where are various 

AMY 1 repeat alleles responsible for variation in salivary amylase gene copy 

number have been found in all human populations studied to date. And yet if 

there has been any recent positive selection at this locus the effect on allele 

frequency across human populations and intra-allelic variability is very small. 

One explanation for this is that the variation at the AMY 1 locus is the result of a 

much older selection pressure, the signals of which have been obscured in the 

intervening years by admixture and drift shaped by demographic history.

Richard Wrangham and colleagues (1999, see also Pennisi 1999) have suggested 

that the cooking of tubers, such as potatoes, cassava, yams, manioc and turnips, 

could have been pivotal in the evolution of the genus Homo. They argue that it 

was tubers and the ability to cook them that prompted the evolution of large 

brains, smaller teeth, modem limb proportions, human life cycles and social 

structures, which stared approximately 1.8 million years ago. Although 

undisputed evidence for controlled fire comes from only 250,000 years ago, 

controversial claims for the use of fire have been made for sites dated to 1.4 

million years ago (see James 1989 for a review).

Wrangham argues that starchy tubers would have been abundant on the plains of 

Africa two million years ago. A diet of 60% cooked tubers, approximately the 

proportion used in modem native African diets, and no meat boosts caloric 

intake by about 43% over that of humans who ate nuts, berries, and raw tubers 

(Pennisi 1999). It is tempting to speculate that the variation we see in AMY1 

gene copy number in modem human populations is the result of an adaptation to 

an increase in the consumption of starchy tubers over a million years ago. 

However, it is not possible to adequately test this hypothesis using current 

population genetic methods.

An alternative explanation for the maintenance of the high levels of 

polymorphism at the AMY 1 locus in humans is that the locus has been under 

balancing selection, although it is hard to see what advantage this might confer.
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With hindsight it would seem more likely that adaptive polymorphisms under 

positive selection would be found in genes where having a low concentration of 

the gene product jeopardises to the normal functioning of the organism.

Suggestions for further work

AMY1

The methods developed for typing the AMY 1 repeat alleles as well six closely 

linked microsatellites could be applied to additional populations that were not 

available in this study. These include a number of hunter-gatherer populations, 

such as the Inuit, Australian Aborigines, the !Kung San, and new world 

populations such as the Yanomamo. As discussed in Chapter 4 this would serve 

to improve the agricultural vs hunter-gatherer comparisons.

It would also be interesting to extend the non-human primate study from Chapter 

6. Firstly it would be beneficial to increase the number of chimpanzees samples 

typed for the AMY1 repeat alleles. In addition it would be interesting to adapt 

the assay for use in other non-human primate species, especially gorillas, orang­

utans and gibbons. This information would help to clarify whether the variation 

in AMY1 gene copy number is indeed unique to humans.

AGT

The unusually high allele frequency differences between the Saami and Chinese 

at the AGT locus certainly warrants further investigation (See Chapter 7 and 

Caldwell et al. in press). If additional data such as microsatellite or extended 

SNP haplotypes were obtained then an analysis if intra-allelic variability could 

be carried out. This would provide a means of obtaining information about the 

intensity of the selection signal, as well as providing a means to date the most 

recent common ancestor for the alleles.

Other dietary enzymes

There are a number of other enzymes involved in the metabolism of dietary 

components that would be interesting to investigate for molecular evidence for 

dietary adaptation in humans. The theories and techniques used in this thesis
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could be applied to the genes involved to assess the evidence for selection at 

these loci.

Candidates for future investigation include:

Fructose 1-phosphate-splitting liver adolase:

Fructose is the sugar found in fruit and man-made fructose is used as a sweetener 

in many foods (including baby food) and drinks. Hereditary fructose intolerance 

is an autosomal recessive condition, which is characterised by recurrent vomiting 

and hypogylcemia at the time of weaning when fructose is added to the diet 

(Froesch 1963). The disease may be as common as 1 in 20,000 in some 

European countries. The aldolase B gene codes for the enzyme fructose 1- 

phosphate splitting liver adolase which catalyses the cleavage of fructose-1- 

phosphate, an intermediate in fructose metabolism, to form dihydroxyacetone 

phosphate and D-glyceraldehyde (Froesch 1966). Fructose intolerance would 

clearly be a disadvantage in a diet with a large proportion of fruit, such as the 

diet of chimpanzees and other primates. However, during human evolution a 

wide range of other foodstuffs with lower fructose content have been 

incorporated into the diet, such as meat and high starch foods. It is possible that 

dietary shifts to a diet with little or no fructose may have caused a relaxation of 

selective constraints on the defective aldolase B allele.

Pepsinogen A (PGA):

Pepsinogen is the inactive precursor of pepsin, the enzyme that breaks down 

proteins in the stomach to smaller chains of amino acids. Pepsinogen A is 

encoded by a multigene family and as with AMY 1, variation in the number of 

pepsinogen genes exists between individuals (Bebelman et al. 1989). Frants et 

al. (1984) investigates the different pepsinogen isozymes and proposed that the 

relative intensities of the different fractions are determined by differences in gene 

copy number. Due to the parallels between the pepsinogen multigene family and 

the AMY 1 genes, the principles of the AMY 1 quantification assays developed in 

this thesis could be adapted for use with PGA. An interesting initial 

investigation would be to explore the extent of variation in PGA gene copy 

number in non-human primates. In addition to this, an investigation of the
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distribution of the PGA polygenic alleles in different human populations, 

combined with haplotype analysis, would provide information on the evolution 

of this complex gene cluster.

Sucrase-isomaltase (SI):

As outlined in chapter one, sucrose is likely to have formed a large part of the 

diet only in recent times. Deficiency of the enzyme responsible for sucrose 

digestion is not uncommon and reaches 16% in Inuit of Greenland (Me Nair et 

al. 1972). To date, there have been no studies that have investigated the 

worldwide distribution of SI alleles. It would also be interesting to use 

haplotype based methods to investigate signatures of selection at the SI locus, as 

well as looking at the SI gene for evidence of relaxation of selective constraints.
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Appendix A

A Brief Explanation of the EMamy algorithm written by Dr Michael Weale, 

University College London.

Start by considering the likelihood 

P(data) = Prod (i=l:nfam) of P(family)

where P(family) = sum (i=l:ncombo) of P(Combo i)*P(ChildllCombo 

i)*P(Child2ICombo i)

(Note P(Child2) does not depend on P(Child2) beyond information in Combo i) 

Combo i = [AF1 AF2 AMI AM2] where:

AF1 = Father's allele state at Chromosome with smaller allele (if non-equal)

AF2 = Father's allele state at Chromosome with larger allele (if non-equal)

AMI = Mother's allele state at Chromosome with smaller allele (if non-equal) 

AM2 = Mother's allele state at Chromosome with larger allele (if non-equal)

Because the Chromosome with smaller allele can be inherited either from 

parent's Mother or Father, P(Combo i) = pqrs * hetweight,

where p,q,r,s are the allele frequencies of the alleles at AF1 .. AM2, etc. 

hetweight = 1 if both parent homozygous 

hetweight = 2 if one parent homozygous 

hetweight = 4 if no parent homozygous

To work out P(Child I Combo i), it needs to be realised that there are four ways 

that Chromosomes can be transmitted to Child. These are:

Father Chromo 1 / Mother Chromo 1
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Father Chromo 1 / Mother Chromo 2 

Father Chromo 2 / Mother Chromo 1 

Father Chromo 2 / Mother Chromo 2

For each of these combinations, you just need to check which ones result in a 

legal Child genotype and find Child_weight = sum(legals)/4

N.B. if Child has missing genotype than all ways of transmitting parental 

Chromos are always legal.

To work out contributions to Mcount given list possP of possible combination

for each family:

for each combination,

work out P(Combo i)

then contribute to Mcount for each haplo i P(Combo i), 

by amount = P(Combo i)/sum(P(combo i))
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Appendix B

‘R’ Post-processing code for graphically displaying data from SYSSIPHOS 

output files.

minusml < -2  # PLOT WITHIN WHAT OF MAXIMUM

LIKELIHOOD:

rrsl <-read.table(H2.1ike, header=TRUE);

gvec <- rrsl[,l];

svec <- rrsl[,2];

len= length(gvec)

len

ng <- 1 + sum(0<diff(gvec)) 

ns <- len/ng

ng
ns

lmat <- matrix(rrsl[,3],ncol=ns,byrow=T);

startg <- rrsl [1,1]

starts <- rrsl[l,2]

startg

starts

endg <- rrsl[len,l] 

ends <- rrsl [len,2] 

endg 

ends

for (i in 1: ng) { 

for (j in 1: ns) {

if (lmat[i,j] < (-minusml+max(lmat))) lmat[i,j] <- (-minusml+(max(lmat)))

>

>

mxl<-max(lmat);
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quartz()

image(seq(startg,endg,length=ng), seq(starts,ends,length=ns), lmat, 

zlim=c(mnl,mxl), nlevels = 110,col = 

heat.colors(50),xlab=Growth,ylab=Selection,box=TRUE);

contour(seq(startg,endg,length=ng), seq(starts,ends,length=ns), add=TRUE,lmat, 

zlim=c(mnl,mxl), axes=TRUE, shade = 0.95, col = 

4,main=,xlab=Growth,ylab=Selection,box=TRUE, zlab=Likelihood);

quartz()

persp(seq(startg,endg,length=ng), seq(starts,ends,length=ns), lmat, 

zlim=c(mnl,mxl),theta = 45, phi = 30, expand = 0.9,nticks = 5,ticktype = 

detailed, axes=TRUE, shade = 0.95, col =

4,main=,xlab=Growth,ylab=Selection,box=TRUE, zlab=Likelihood);
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Appendix C

Parameters required for analysis of intra-allelic variability using the 

SYSSIPHOS program written by Dr Michael Stumpf, Imperial College 

London.

Nrun 4000 #

5000]

tmax 100000 #

i 71 #

xT 0.2102 #

nrmsat 6 #

neO le7 #

mu 0.0012 #

slow 0.0001 #

shigh 0.1 #

dels 0.002 #

rlow 0.0001 #

rhigh 0.1 #

delr 0.002 #

# number of simulations per r x s [recommend 2000 to

rho 0.006673161 0.015135378 0.010998897 0.000309309

0.000534318 0.00274197 # probability of recombination per

generation

a -3.1 # intercept of length dependence (See note 1)

b 0.62 # slobe of length dependence(See note 1)

msatsO 383 # total number of observed haplotypes for all alleles

Note l:mu(k) = mu(a k+b) k = allele length
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Appendix D:

Raw AMY1 genotype data
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X X X X X X
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AMY1 Genotype
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87 ARM-FAM-27d Armenian 4 H3/H1 or H2/H2
88 ARM-FAM-28a Armenian 3 H3/H0 or H1/H2
89 ARM-FAM-28b Armenian 0 H0/H0
90 ARM-FAM-28C Armenian 1 H1/H0
91 ARM-FAM-28d Armenian 1 H1/H0
92 ARM-FAM-29a Armenian 2 H2/H0 or Hl/Hl
93 ARM-FAM-29b Armenian 3 H3/H0 or H1/H2
94 ARM-FAM-29C Armenian 4 H3/H1 or H2/H2
95 ARM-FAM-29d Armenian 4 H3/H1 or H2/H2
96 EAM-FAM-Ola Armenian 3 H3/H0 or H1/H2
97 EAM-FAM-Olb Armenian 2 H2/H0 or Hl/Hl
98 EAM-FAM-Olc Ethiopian 1 H1/H0
99 EAM-FAM-Old Ethiopian 2 H2/H0 or Hl/Hl

100 EAM-FAM-05a Ethiopian 1 H1/H0
101 EAM-FAM-05b Ethiopian 1 H1/H0
102 EAM-FAM-05C Ethiopian 1 H1/H0
103 EAM-FAM-05d Ethiopian 2 H2/H0 or Hl/Hl
104 EAM-FAM-07a Ethiopian 1 H1/H0
105 EAM-FAM-07b Ethiopian 1 H1/H0
106 EAM-FAM-07C Ethiopian 1 H1/H0
107 EAM-FAM-07d Ethiopian 2 H2/H0 or Hl/Hl
108 EAM-FAM-09a Ethiopian 2 H2/H0 or Hl/Hl
109 EAM-FAM-09b Ethiopian 1 H1/H0
110 EAM-FAM-09C Ethiopian 1 H1/H0
111 EAM-FAM-09d Ethiopian 2 H2/H0 or Hl/Hl
112 EAM-FAM-lOa Ethiopian 4 H3/H1 or H2/H2
113 EAM-FAM-lOb Ethiopian 3 H3/H0 or H1/H2
114 EAM-FAM-lOc Ethiopian 4 H3/H1 or H2/H2
115 EAM-FAM-lOd Ethiopian 4 H3/H1 or H2/H2
116 EAM-FAM-lla Ethiopian 1 H1/H0
117 EAM-FAM-llb Ethiopian 1 H1/H0
118 EAM-FAM-llc Ethiopian 1 H1/H0
119 EAM-FAM-lld Ethiopian 1 H1/H0
120 EAM-FAM-12a Ethiopian 2 H2/H0 or Hl/Hl
121 EAM-FAM-12b Ethiopian 3 H3/H0 or H1/H2
122 EAM-FAM-12C Ethiopian 1 H1/H0
123 EAM-FAM-12d Ethiopian 3 H3/H0 or H1/H2
124 EAM-FAM-13a Ethiopian 1 H1/H0
125 EAM-FAM-13b Ethiopian 3 H3/H0 or H1/H2
126 EAM-FAM-13C Ethiopian 2 H2/H0 or Hl/Hl
127 EAM-FAM-13d Ethiopian 2 H2/H0 or Hl/Hl
128 EAM-FAM-14a Ethiopian 2 H2/H0 or Hl/Hl
129 EAM-FAM-14b Ethiopian 1 H1/H0
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130 EAM-FAM-14C Ethiopian 3 H3/H0 or H1/H2
131 EAM-FAM-15a Ethiopian 2 H2/H0 or Hl/Hl
132 EAM-FAM-15b Ethiopian 3 H3/H0 or H1/H2
133 EAM-FAM-15C Ethiopian 3 H3/H0 or H1/H2
134 EAM-FAM-15d Ethiopian 3 H3/H0 or H1/H2
135 EAM-FAM-16a Ethiopian 1 H1/H0
136 EAM-FAM-16b Ethiopian 2 H2/H0 or Hl/Hl
137 EAM-FAM-16C Ethiopian 1 H1/H0
138 EAM-FAM-16d Ethiopian 1 H1/H0
139 EAM-FAM-17a Ethiopian 1 H1/H0
140 EAM-FAM-17b Ethiopian 1 H1/H0
141 EAM-FAM-17d Ethiopian 1 H1/H0
142 EAM-FAM-18a Ethiopian 2 H2/H0 or Hl/Hl
143 EAM-FAM-18b Ethiopian 2 H2/H0 or Hl/Hl
144 EAM-FAM-18C Ethiopian 3 H3/H0 or H1/H2
145 EAM-FAM-19a Ethiopian 2 H2/H0 or Hl/Hl
146 EAM-FAM-19b Ethiopian 0 H0/H0
147 EAM-FAM-19C Ethiopian 2 H2/H0 or Hl/Hl
148 EAM-FAM-19d Ethiopian 0 H0/H0
149 EAM-FAM-20a Ethiopian 2 H2/H0 or Hl/Hl
150 EAM-FAM-20b Ethiopian 1 H1/H0
151 EAM-FAM-20C Ethiopian 1 H1/H0
152 EAM-FAM-21a Ethiopian 1 H1/H0
153 EAM-FAM-21b Ethiopian 1 H1/H0
154 EAM-FAM-21d Ethiopian 1 H1/H0
155 EAM-FAM-22a Ethiopian 1 H1/H0
156 EAM-FAM-22b Ethiopian 4 H3/H1 or H2/H2
157 EAM-FAM-22C Ethiopian 4 H3/H1 or H2/H2
158 EAM-FAM-22d Ethiopian 2 H2/H0 or Hl/Hl
159 EAM-FAM-23a Ethiopian 4 H3/H1 or H2/H2
160 EAM-FAM-23b Ethiopian 2 H2/H0 or Hl/Hl
161 EAM-FAM-23C Ethiopian 4 H3/H1 or H2/H2
162 EAM-FAM-24a Ethiopian 2 H2/H0 or Hl/Hl
163 EAM-FAM-24b Ethiopian 2 H2/H0 or Hl/Hl
164 EAM-FAM-24C Ethiopian 3 H3/H0 or H1/H2
165 EAM-FAM-25a Ethiopian 1 H1/H0
166 EAM-FAM-25b Ethiopian 4 H3/H1 or H2/H2
167 EAM-FAM-25C Ethiopian 2 H2/H0 or Hl/Hl
168 EAM-FAM-25d Ethiopian 2 H2/H0 or Hl/Hl
169 EAM-FAM-26a Ethiopian 3 H3/H0 or H1/H2
170 EAM-FAM-26b Ethiopian 3 H3/H0 or H1/H2
171 EAM-FAM-26C Ethiopian 3 H3/H0 or H1/H2
172 EAM-FAM-26d Ethiopian 3 H3/H0 or H1/H2
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216 EAM-FAM-43C Ethiopian 2 H2/H0 or Hl/Hl
217 EAM-FAM-43d Ethiopian 2 H2/H0 or Hl/Hl
218 EAM-FAM-45a Ethiopian 2 H2/H0 or Hl/Hl
219 EAM-FAM-45b Ethiopian 3 H3/H0 or H1/H2
220 EAM-FAM-45C Ethiopian 3 H3/H0 or H1/H2
221 EAM-FAM-45d Ethiopian 2 H2/H0 or Hl/Hl
222 EAM-FAM-46a Ethiopian 4 H3/H1 or H2/H2
223 EAM-FAM-46b Ethiopian 2 H2/H0 or Hl/Hl
224 EAM-FAM-46C Ethiopian 2 H2/H0 or Hl/Hl
225 EAM-FAM-46d Ethiopian 2 H2/H0 or Hl/Hl
226 EAM-FAM-47a Ethiopian 2 H2/H0 or Hl/Hl
227 EAM-FAM-47b Ethiopian 2 H2/H0 or Hl/Hl
228 EAM-FAM-47C Ethiopian 3 H3/H0 or H1/H2
229 EAM-FAM-47d Ethiopian 3 H3/H0 or H1/H2
230 EAM-FAM-48a Ethiopian 1 H1/H0
231 EAM-FAM-48b Ethiopian 3 H3/H0 or H1/H2
232 EAM-FAM-48C Ethiopian 2 H2/H0 or Hl/Hl
233 EAM-FAM-50a Ethiopian 4 H3/H1 or H2/H2
234 EAM-FAM-50b Ethiopian 3 H3/H0 or H1/H2
235 EAM-FAM-50C Ethiopian 4 H3/H1 or H2/H2
236 EAM-FAM-50d Ethiopian 5 H3/H2
237 UKE-FAM-Ola Ethiopian 1 H1/H0
238 UKE-FAM-Olb Ethiopian 4 H3/H1 or H2/H2
239 UKE-FAM-Olc Br tish 3 H3/H0 or H1/H2
240 UKE-FAM-Old Br tish 3 H3/H0 or H1/H2
241 UKE-FAM-02a Br tish 1 HI/HO
242 UKE-FAM-02b Br tish 2 H2/H0 or Hl/Hl
243 UKE-FAM-02C Br tish 2 H2/H0 or Hl/Hl
244 UKE-FAM-02d Br tish 2 H2/H0 or Hl/Hl
245 UKE-FAM-04a Br tish 5 H3/H2
246 UKE-FAM-04b Br tish 5 H3/H2
247 UKE-FAM-04C Br tish 4 H3/H1 or H2/H2
248 UKE-FAM-05a Br tish 1 HI/HO
249 UKE-FAM-05b Br tish 2 H2/H0 or Hl/Hl
250 UKE-FAM-05C Br tish 2 H2/H0 or Hl/Hl
251 UKE-FAM-06a Br tish 1 HI/HO
252 UKE-FAM-06b Br tish 3 H3/H0 or H1/H2
253 UKE-FAM-06C Br tish 2 H2/H0 or Hl/Hl
254 UKE-FAM-06d Br tish 2 H2/H0 or Hl/Hl
255 UKE-FAM-07a Br tish 2 H2/H0 or Hl/Hl
256 UKE-FAM-07b Br tish 2 H2/H0 or Hl/Hl
257 UKE-FAM-07C Br tish 3 H3/H0 or H1/H2
258 UKE-FAM-07d Br tish 1 HI/HO
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259 UKE-FAM-08a Brit sh 4 H3/H1 or H2/H2
260 UKE-FAM-08b Brit sh 2 H2/H0 or Hl/Hl
261 UKE-FAM-08C Brit sh 4 H3/H1 or H2/H2
262 UKE-FAM-08d Brit sh 2 H2/H0 or Hl/Hl
263 UKE-FAM-lla Brit sh 1 HI/HO
264 UKE-FAM-llb Brit sh 1 HI/HO
265 UKE-FAM-llc Brit sh 1 HI/HO
266 UKE-FAM-lld Brit sh 0 HO/HO
267 UKE-FAM-13a Brit sh 1 Hl/HO
268 UKE-FAM-13b Brit sh 3 H3/H0 or H1/H2
269 UKE-FAM-13C Brit sh 2 H2/H0 or Hl/Hl
270 UKE-FAM-13d Brit sh 1 Hl/HO
271 UKE-FAM-14a Brit sh 1 Hl/HO
272 UKE-FAM-14b Brit sh 2 H2/H0 or Hl/Hl
273 UKE-FAM-14d Brit sh 1 Hl/HO
274 UKE-FAM-15a Brit sh 6 H3/H3
275 UKE-FAM-15b Brit sh 2 H2/H0 or Hl/Hl
276 UKE-FAM-15C Brit sh 5 H3/H2
277 UKE-FAM-15d Brit sh 3 H3/H0 or H1/H2
278 UKE-FAM-20a Brit sh 0 HO/HO
279 UKE-FAM-20b Brit sh 2 H2/H0 or Hl/Hl
280 UKE-FAM-20C Brit sh 2 H2/H0 or Hl/Hl
281 UKE-FAM-21a Brit sh 2 H2/H0 or Hl/Hl
282 UKE-FAM-21b Brit sh 1 Hl/HO
283 UKE-FAM-21C Brit sh 3 H3/H0 or H1/H2
284 UKE-FAM-23a Brit sh 1 Hl/HO
285 UKE-FAM-23b Brit sh 3 H3/H0 or H1/H2
286 UKE-FAM-23C Brit sh 2 H2/H0 or Hl/Hl
287 UKE-FAM-27a Brit sh 4 H3/H1 or H2/H2
288 UKE-FAM-27b Brit sh 2 H2/H0 or Hl/Hl
289 UKE-FAM-27C Brit sh 2 H2/H0 or Hl/Hl
290 UKE-FAM-27d Brit sh 4 H3/H1 or H2/H2
291 UKE-FAM-34a Brit sh 7 H3/H4
292 UKE-FAM-34b Brit sh 4 H3/H1 or H2/H2
293 UKE-FAM-34C Brit sh 6 H3/H3
294 UKE-FAM-34d Brit sh 4 H3/H1 or H2/H2
295 UKE-FAM-39a Brit sh 3 H3/H0 or H1/H2
296 UKE-FAM-39b Brit sh 2 H2/H0 or Hl/Hl
297 UKE-FAM-39C Brit sh 3 H3/H0 or H1/H2
298 UKE-FAM-40a Brit sh 4 H3/H1 or H2/H2
299 UKE-FAM-40b Brit sh 1 Hl/HO
300 UKE-FAM-40C Brit sh 3 H3/H0 or H1/H2
301 UKE-FAM-40d Brit sh 3 H3/H0 or H1/H2

l $ 3
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302 UKE-FAM-41a British 4 H3/H1 or H2/H2
303 UKE-FAM-41b British 6 H3/H3
304 UKE-FAM-41C British 6 H3/H3
305 UKE-FAM-46a British 2 H2/H0 or Hl/Hl
306 UKE-FAM-46b British 1 Hl/HO
307 UKE-FAM-46C British 1 Hl/HO
308 UKE-FAM-46d British 1 Hl/HO
309 UKE-FAM-47a British 2 H2/H0 or Hl/Hl
310 UKE-FAM-47b British 2 H2/H0 or Hl/Hl
311 UKE-FAM-47C British 2 H2/H0 or Hl/Hl
312 UKE-FAM-47d British 2 H2/H0 or Hl/Hl
313 UKE-FAM-48a British 4 H3/H1 or H2/H2
314 UKE-FAM-48b British 2 H2/H0 or Hl/Hl
315 UKE-FAM-48C British 2 H2/H0 or Hl/Hl
316 UKE-FAM-48d British 2 H2/H0 or Hl/Hl
317 UKE-FAM-49a British 3 H3/H0 or H1/H2
318 UKE-FAM-49b British 2 H2/H0 or Hl/Hl
319 UKE-FAM-49C British 3 H3/H0 or H1/H2
320 UKE-FAM-49d British 2 H2/H0 or Hl/Hl
321 ASH-FAM-Ola British 5 H3/H2
322 ASH-FAM-Olb British 1 Hl/HO
323 ASH-FAM-Olc Ashkenzai 3 H3/H0 or H1/H2
324 ASH-FAM-Old Ashkenzai 4 H3/H1 or H2/H2
325 ASH-FAM-03a Ashkenzai 1 Hl/HO
326 ASH-FAM-03b Ashkenzai 2 H2/H0 or Hl/Hl
327 ASH-FAM-03d Ashkenzai 1 Hl/HO
328 ASH-FAM-04a Ashkenzai 2 H2/H0 or Hl/Hl
329 ASH-FAM-04b Ashkenzai 4 H3/H1 or H2/H2
330 ASH-FAM-04C Ashkenzai 3 H3/H0 or H1/H2
331 ASH-FAM-04d Ashkenzai 3 H3/H0 or H1/H2
332 ASH-FAM-04e Ashkenzai 3 H3/H0 or H1/H2
333 ASH-FAM-05a Ashkenzai 2 H2/H0 or Hl/Hl
334 ASH-FAM-05b Ashkenzai 2 H2/H0 or Hl/Hl
335 ASH-FAM-05C Ashkenzai 2 H2/H0 or Hl/Hl
336 ASH-FAM-05d Ashkenzai 2 H2/H0 or Hl/Hl
337 ASH-FAM-05e Ashkenzai 2 H2/H0 or Hl/Hl
338 ASH-FAM-06a Ashkenzai 0 HO/HO
339 ASH-FAM-06b Ashkenzai 3 H3/H0 or H1/H2
340 ASH-FAM-06C Ashkenzai 1 Hl/HO
341 ASH-FAM-06d Ashkenzai 2 H2/H0 or Hl/Hl
342 ASH-FAM-07a Ashkenzai 4 H3/H1 or H2/H2
343 ASH-FAM-07b Ashkenzai 2 H2/H0 or Hl/Hl
344 ASH-FAM-07C Ashkenzai 2 H2/H0 or Hl/Hl
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431 ASH-FAM-47a Ashkenzai 3 H3/H0 or H1/H2
432 ASH-FAM-47b Ashkenzai 0 HO/HO
433 ASH-FAM-47C Ashkenzai 1 Hl/HO
434 SINC1F Ashkenzai 1 Hl/HO
435 SINC1M Ashkenzai 2 H2/H0 or Hl/Hl
436 SINC1C Singapore Ch nese 7 Illegal
437 SINC2F Singapore Ch nese 3 H3/H0 or H1/H2
438 SINC2M Singapore Ch nese 2 H2/H0 or Hl/Hl
439 SINC2C Singapore Ch nese 3 H3/H0 or H1/H2
440 SINC3F Singapore Ch nese 2 H2/H0 or Hl/Hl
441 SINC3M Singapore Ch nese 2 H2/H0 or Hl/Hl
442 SINC3C Singapore Ch nese 2 H2/H0 or Hl/Hl
443 SINC4F Singapore Ch nese 1 Hl/HO
444 SINC4M Singapore Ch nese 1 Hl/HO
445 SINC4C Singapore Ch nese 2 H2/H0 or Hl/Hl
446 SINC5F Singapore Ch nese 2 H2/H0 or Hl/Hl
447 SINC5M Singapore Ch nese 3 H3/H0 or H1/H2
448 SINC5C Singapore Ch nese 3 H3/H0 or H1/H2
449 SINC7F Singapore Ch nese 3 H3/H0 or H1/H2
450 SINC7M Singapore Ch nese 2 H2/H0 or Hl/Hl
451 SINC8F Singapore Ch nese 3 H3/H0 or H1/H2
452 SINC8M Singapore Ch nese 4 H3/H1 or H2/H2
453 SINC8C Singapore Ch nese 3 H3/H0 or H1/H2
454 SINC9F Singapore Ch nese 3 H3/H0 or H1/H2
455 SINC9M Singapore Ch nese 3 H3/H0 or H1/H2
456 SINC10F Singapore Ch nese 2 H2/H0 or Hl/Hl
457 SINC10M Singapore Ch nese 1 Hl/HO
458 SINC10C Singapore Ch nese 4 H3/H1 or H2/H2
459 SINCllF Singapore Ch nese 2 H2/H0 or Hl/Hl
460 SINC11M Singapore Ch nese 2 H2/H0 or Hl/Hl
461 SINC11C Singapore Ch nese 2 H2/H0 or Hl/Hl
462 SINC12F Singapore Ch nese 1 Hl/HO
463 SINC12M Singapore Ch nese 5 H3/H2
464 SINC12C Singapore Ch nese 3 H3/H0 or H1/H2
465 SINC13F Singapore Ch nese 3 H3/H0 or H1/H2
466 SINC13C Singapore Ch nese 1 Hl/HO
467 SINC14F Singapore Ch nese 3 H3/H0 or H1/H2
468 SINC14M Singapore Ch nese 3 H3/H0 or H1/H2
469 SINC14C Singapore Ch nese 4 H3/H1 or H2/H2
470 SINC15F Singapore Ch nese 2 H2/H0 or Hl/Hl
471 SINC15M Singapore Ch nese 2 H2/H0 or Hl/Hl
472 SINC15C Singapore Ch nese 3 H3/H0 or H1/H2
473 SINC16F Singapore Ch nese 5 H3/H2
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474 SINC16M Singapore Ch nese 5 H3/H2
475 SINC16C Singapore Ch nese 2 H2/H0 or Hl/Hl
476 SINC17F Singapore Ch nese 3 H3/H0 or H1/H2
477 SINC17M Singapore Ch nese 3 H3/H0 or H1/H2
478 SINC17C Singapore Ch nese 4 H3/H1 or H2/H2
479 SINC18F Singapore Ch nese 2 H2/H0 or Hl/Hl
480 SINC18M Singapore Ch nese 3 H3/H0 or H1/H2
481 SINC18C Singapore Ch nese 3 H3/H0 or H1/H2
482 SINC19M Singapore Ch nese 2 H2/H0 or Hl/Hl
483 SINC19C Singapore Ch nese 2 H2/H0 or Hl/Hl
484 SINC20F Singapore Ch nese 5 H3/H2
485 SINC20M Singapore Ch nese 2 H2/H0 or Hl/Hl
486 SINC20C Singapore Ch nese 3 H3/H0 or H1/H2
487 SINC21M Singapore Ch nese 1 Hl/HO
488 SINC21C Singapore Ch nese 2 H2/H0 or Hl/Hl
489 SINC22F Singapore Ch nese 4 H3/H1 or H2/H2
490 SINC22M Singapore Ch nese 4 H3/H1 or H2/H2
491 SINC22C Singapore Ch nese 4 H3/H1 or H2/H2
492 SINC23F Singapore Ch nese 3 H3/H0 or H1/H2
493 SINC23M Singapore Ch nese 3 H3/H0 or H1/H2
494 SINC23C Singapore Ch nese 3 H3/H0 or H1/H2
495 SINC24F Singapore Ch nese 3 H3/H0 or H1/H2
496 SINC24M Singapore Ch nese 4 H3/H1 or H2/H2
497 SINC25F Singapore Ch nese 2 H2/H0 or Hl/Hl
498 SINC25M Singapore Ch nese 3 H3/H0 or H1/H2
499 SINC25C Singapore Ch nese 3 H3/H0 or H1/H2
500 SINC26F Singapore Ch nese 3 H3/H0 or H1/H2
501 SINC26M Singapore Ch nese 2 H2/H0 or Hl/Hl
502 SINC26C Singapore Ch nese 1 Hl/HO
503 SINC27F Singapore Ch nese 3 H3/H0 or H1/H2
504 SINC27M Singapore Ch nese 4 H3/H1 or H2/H2
505 SINC27C Singapore Ch nese 3 H3/H0 or H1/H2
506 SINC28F Singapore Ch nese 2 H2/H0 or Hl/Hl
507 SINC28M Singapore Ch nese 2 H2/H0 or Hl/Hl
508 SINC28C Singapore Ch nese 3 H3/H0 or H1/H2
509 SINC29F Singapore Ch nese 1 Hl/HO
510 SINC29C Singapore Ch nese 2 H2/H0 or Hl/Hl
511 SINC30F Singapore Ch nese 2 H2/H0 or Hl/Hl
512 SINC30M Singapore Ch nese 2 H2/H0 or Hl/Hl
513 SINC30C Singapore Ch nese 2 H2/H0 or Hl/Hl
514 SINC31F Singapore Ch nese 2 H2/H0 or Hl/Hl
515 SINC31M Singapore Ch nese 2 H2/H0 or Hl/Hl
516 SINC31C Singapore Ch nese 3 H3/H0 or H1/H2
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517 SINC32F Singapore Chinese 1 Hl/HO
518 SINC32M Singapore Chinese 2 H2/H0 or Hl/Hl
519 SINC32C Singapore Chinese 2 H2/H0 or Hl/Hl
520 SINC33F Singapore Chinese 3 H3/H0 or H1/H2
521 SINC33M Singapore Chinese 2 H2/H0 or Hl/Hl
522 GER-FAM-Ola Singapore Chinese 2 H2/H0 or Hl/Hl
523 GER-FAM-Olb Singapore Chinese 2 H2/H0 or Hl/Hl
524 GER-FAM-Olc German 3 H3/H0 or H1/H2
525 GER-FAM-03a German 1 Hl/HO
526 GER-FAM-03b German 1 Hl/HO
527 GER-FAM-03C German 2 H2/H0 or Hl/Hl
528 GER-FAM-04a German 1 Hl/HO
529 GER-FAM-04C German 1 Hl/HO
530 GER-FAM-05b German 5 H3/H2
531 GER-FAM-05C German 3 H3/H0 or H1/H2
532 GER-FAM-07b German 5 H3/H2
533 GER-FAM-07C German 4 H3/H1 or H2/H2
534 GER-FAM-09b German 3 H3/H0 or H1/H2
535 GER-FAM-09f German 1 Hl/HO
536 GER-FAM-lla German 2 H2/H0 or Hl/Hl
537 GER-FAM-llb German 4 H3/H1 or H2/H2
538 GER-FAM-llc German 2 H2/H0 or Hl/Hl
539 GRM-FAM-Ola German 1 Hl/HO
540 GRM-FAM-Olb German 3 H3/H0 or H1/H2
541 GRM-FAM-Old German 2 H2/H0 or Hl/Hl
542 GRM-FAM-02a German 2 H2/H0 or Hl/Hl
543 GRM-FAM-02b German 3 H3/H0 or H1/H2
544 GRM-FAM-02C German 2 H2/H0 or Hl/Hl
545 GRM-FAM-03a German 3 H3/H0 or H1/H2
546 GRM-FAM-03b German 3 H3/H0 or H1/H2
547 GRM-FAM-03C German 3 H3/H0 or H1/H2
548 GRM-FAM-04a German 3 H3/H0 or H1/H2
549 GRM-FAM-04b German 6 H3/H3
550 GRM-FAM-04C German 2 H2/H0 or Hl/Hl
551 GRM-FAM-05a German 3 H3/H0 or H1/H2
552 GRM-FAM-05b German 2 H2/H0 or Hl/Hl
553 GRM-FAM-05C German 3 H3/H0 or H1/H2
554 GRM-FAM-06a German 2 H2/H0 or Hl/Hl
555 GRM-FAM-06b German 1 Hl/HO
556 GRM-FAM-06C German 2 H2/H0 or Hl/Hl
557 GRM-FAM-07a German 2 H2/H0 or Hl/Hl
558 GRM-FAM-07b German 0 HO/HO
559 GRM-FAM-07C German 1 Hl/HO

2 “S9
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560 GRM-FAM-08a German 1 Hl/HO
561 GRM-FAM-08b German 0 HO/HO
562 GRM-FAM-08C German 3 H3/H0 or H1/H2
563 GRM-FAM-lla German 2 H2/H0 or Hl/Hl
564 GRM-FAM-llb German 0 H0/H0
565 GRM-FAM-llc German 2 H2/H0 or Hl/Hl
566 GRM-FAM-12a German 2 H2/H0 or Hl/Hl
567 GRM-FAM-12b German 2 H2/H0 or Hl/Hl
568 GRM-FAM-12C German 1 Hl/HO
569 GRM-FAM-14a German 1 Hl/HO
570 GRM-FAM-14b German 1 Hl/HO
571 GRM-FAM-14C German 1 Hl/HO
572 GRM-FAM-16a German 2 H2/H0 or Hl/Hl
573 GRM-FAM-16b German 2 H2/H0 or Hl/Hl
574 GRM-FAM-16C German 2 H2/H0 or Hl/Hl
575 GRM-FAM-17a German 2 H2/H0 or Hl/Hl
576 GRM-FAM-17b German 2 H2/H0 or Hl/Hl
577 GRM-FAM-17d German 2 H2/H0 or Hl/Hl
578 GRM-FAM-18a German 2 H2/H0 or Hl/Hl
579 GRM-FAM-18b German 5 H3/H2
580 GRM-FAM-18C German 2 H2/H0 or Hl/Hl
581 GRM-FAM-19a German 3 H3/H0 or H1/H2
582 GRM-FAM-19b German 5 H3/H2
583 GRM-FAM-19C German 4 H3/H1 or H2/H2
584 GRM-FAM-20a German 2 H2/H0 or Hl/Hl
585 GRM-FAM-20b German 1 Hl/HO
586 GRM-FAM-20C German 3 H3/H0 or H1/H2
587 GRM-FAM-21a German 2 H2/H0 or Hl/Hl
588 GRM-FAM-21b German 3 H3/H0 or H1/H2
589 GRM-FAM-21C German 3 H3/H0 or H1/H2
590 GRM-FAM-23a German 2 H2/H0 or Hl/Hl
591 GRM-FAM-23b German 1 Hl/HO
592 GRM-FAM-23C German 1 Hl/HO
593 GRM-FAM-24a German 1 Hl/HO
594 GRM-FAM-24b German 1 Hl/HO
595 GRM-FAM-24C German 0 H0/H0
596 GRM-FAM-25a German 1 Hl/HO
597 GRM-FAM-25b German 3 H3/H0 or H1/H2
598 GRM-FAM-25C German 2 H2/H0 or Hl/Hl
599 GRM-FAM-25d German 2 H2/H0 or Hl/Hl
600 GRM-FAM-26a German 2 H2/H0 or Hl/Hl
601 GRM-FAM-26b German 1 Hl/HO
602 GRM-FAM-26C German 1 Hl/HO
603 GRM-FAM-27a German 3 H3/H0 or H1/H2
604 GRM-FAM-27b German 1 Hl/HO
605 GRM-FAM-27C German 1 Hl/HO
606 GRM-FAM-28a German 2 H2/H0 or Hl/Hl



607 GRM-FAM-28b German 2 H2/H0 or Hl/Hl
608 GRM-FAM-28C German 3 H3/H0 or H1/H2
609 GRM-FAM-30a German 1 Hl/HO
610 GRM-FAM-30b German 3 H3/H0 or H1/H2
611 GRM-FAM-30C German 2 H2/H0 or Hl/Hl
612 GRM-FAM-31a German 1 Hl/HO
613 GRM-FAM-31b German 3 H3/H0 or H1/H2
614 GRM-FAM-31C German 2 H2/H0 or Hl/Hl
615 GRM-FAM-33a German 2 H2/H0 or Hl/Hl

616 GRM-FAM-33b German 3
r r
H3/H0 or H1/H2

617 GRM-FAM-33C German 2 H2/H0 or Hl/Hl
618 IRL-FAM Ola German 2 H2/H0 or Hl/Hl
619 IRL-FAM 01b German 3 H3/H0 or H1/H2
620 IRL-FAM 01c Irish 1 Hl/HO
621 IRL-FAM 02A Irish 3 H3/H0 or H1/H2
622 IRL-FAM 02b Irish 2 H2/H0 or Hl/Hl
623 IRL-FAM 02c Irish 3 H3/H0 or H1/H2
624 IRL-FAM 03a Irish 1 Hl/HO
625 IRL-FAM 03b Irish 3 H3/H0 or H1/H2
626 IRL-FAM 03d Irish 2 H2/H0 or Hl/Hl
627 IRL-FAM 04a Irish 4 H3/H1 or H2/H2
628 IRL-FAM 04b Irish 2 H2/H0 or Hl/Hl
629 IRL-FAM 04c Irish 3 H3/H0 or H1/H2
630 IRL-FAM 05a Irish 0 HO/HO
631 IRL-FAM 05b Irish 1 Hl/HO
632 IRL-FAM 05c Irish 1 Hl/HO
633 IRL-FAM 05d Irish 0 HO/HO
634 IRL-FAM 06a Irish 5 H3/H2
635 IRL-FAM 06b Irish 3 H3/H0 or H1/H2
636 IRL-FAM 06c Irish 3 H3/H0 or H1/H2
637 IRL-FAM 08a Irish 3 H3/H0 or H1/H2
638 IRL-FAM 08b Irish 1 Hl/HO
639 IRL-FAM 08c Irish 2 H2/H0 or Hl/Hl
640 IRL-FAM 10a Irish 2 H2/H0 or Hl/Hl
641 IRL-FAM 10b Irish 2 H2/H0 or Hl/Hl
642 IRL-FAM 10c Irish 2 H2/H0 or Hl/Hl
643 IRL-FAM 11a Irish 2 H2/H0 or Hl/Hl
644 IRL-FAM l ib Irish 6 H3/H3
645 IRL-FAM 11c Irish 5 H3/H2
646 IRL-FAM 12a Irish 6 H3/H3
647 IRL-FAM 12b Irish 2 H2/H0 or Hl/Hl
648 IRL-FAM 12c Irish 5 H3/H2
649 IRL-FAM 13a Irish 2 H2/H0 or Hl/Hl
650 IRL-FAM 13b Irish 3 H3/H0 or H1/H2
651 IRL-FAM 13c Irish 1 Hl/HO
652 IRL-FAM 13d Irish 4 H3/H1 or H2/H2
653 IRL-FAM 16a Irish 2 H2/H0 or Hl/Hl
654 IRL-FAM 16b Irish 3 H3/H0 or H1/H2
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655 IRL-FAM 16c Irish 1 Hl/HO
656 IRL-FAM 18a Irish 1 Hl/HO
657 IRL-FAM 18b Irish 2 H2/HO or Hl/Hl
658 IRL-FAM 18c Irish 1 Hl/HO
659 IRL-FAM 19a Irish 4 H3/H1 or H2/H2

660 IRL-FAM 19b Ir sh 2
r f
H2/H0 or Hl/Hl

661 IRL-FAM 19c Ir sh 3 H3/H0 or H1/H2
662 IRL-FAM 19d Ir sh 4 H3/H1 or H2/H2
663 IRL-FAM 20a Ir sh 1 Hl/HO
664 IRL-FAM 20b Ir sh 2 H2/H0 or Hl/Hl
665 IRL-FAM 20d Ir sh 2 H2/H0 or Hl/Hl
666 IRL-FAM 21a Ir sh 3 H3/H0 or H1/H2
667 IRL-FAM 21b Ir sh 2 H2/H0 or Hl/Hl
668 IRL-FAM 21c Ir sh 5 H3/H2
669 IRL-FAM 2Id Ir sh 4 H3/H1 or H2/H2
670 IRL-FAM 23a Ir sh 1 Hl/HO
671 IRL-FAM 23b Ir sh 2 H2/H0 or Hl/Hl
672 IRL-FAM 23c Ir sh 3 H3/H0 or H1/H2
673 IRL-FAM 25a Ir sh 2 H2/H0 or Hl/Hl
674 IRL-FAM 25b Ir sh 5 H3/H2
675 IRL-FAM 25c Ir sh 4 H3/H1 or H2/H2
676 IRL-FAM 25d Ir sh 1 Hl/HO
677 IRL-FAM 26a Ir sh 4 H3/H1 or H2/H2
678 IRL-FAM 26b Ir sh 2 H2/H0 or Hl/Hl
679 IRL-FAM 26d Ir sh 1 Hl/HO
680 IRL-FAM 27a Ir sh 2 H2/H0 or Hl/Hl
681 IRL-FAM 27b Ir sh 1 Hl/HO
682 IRL-FAM 27d Ir sh 1 Hl/HO
683 IRL-FAM 28a Ir sh 2 H2/H0 or Hl/Hl
684 IRL-FAM 28b Ir sh 3 H3/H0 or H1/H2
685 IRL-FAM 28c Ir sh 1 Hl/HO
686 IRL-FAM 28d Ir sh 2 H2/H0 or Hl/Hl
687 IRL-FAM 29a Ir sh 1 Hl/HO
688 IRL-FAM 29b Ir sh 6 H3/H3
689 IRL-FAM 29c Ir sh 2 H2/H0 or Hl/Hl
690 IRL-FAM 29d Ir sh 5 H3/H2
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691 IRL-FAM 30a Irish 1 Hl/HO
692 IRL-FAM 30b Irish 3 H3/H0 or H1/H2
693 IRL-FAM 30c Irish 2 H2/H0 or Hl/Hl
694 IRL-FAM 30d Irish 2 H2/H0 or Hl/Hl
695 IRL-FAM 32a Irish 2 H2/H0 or Hl/Hl



696 IRL-FAM 32b Irish 3 H3/H0 or H1/H2
697 IRL-FAM 32c Irish 4 H3/H1 or H2/H2
698 IRL-FAM 32d Irish 3 H3/H0 or H1/H2
699 IRL-FAM 33a Irish 2 H2/H0 or Hl/Hl
700 IRL-FAM 33b Irish 2 H2/H0 or Hl/Hl
701 IRL-FAM 33d Irish 1 Hl/HO
702 IRL-FAM 35a Irish 2 H2/H0 or Hl/Hl
703 IRL-FAM 35b Irish 2 H2/H0 or Hl/Hl
704 IRL-FAM 35c Irish 2 H2/H0 or Hl/Hl
705 IRL-FAM 35d Irish 3 H3/H0 or H1/H2
706 IRL-FAM 36a Irish 1 Hl/HO
707 IRL-FAM 36b Irish 4 H3/H1 or H2/H2
708 IRL-FAM 37a Irish 1 Hl/HO
709 IRL-FAM 37b Irish 1 Hl/HO
710 IRL-FAM 37c Irish 1 Hl/HO
711 IRL-FAM 38a Irish 2 H2/H0 or Hl/Hl
712 IRL-FAM 38b Irish 6 H3/H3
713 IRL-FAM 38d Irish 3 H3/H0 or H1/H2
714 KUW-SA-la Irish 4 H3/H1 or H2/H2
715 KUW-SA-lb Irish 1 Hl/HO
716 KUW-SA-ld Kuwait 2 H2/H0 or Hl/Hl
717 KUW-SA-2a Kuwait 5 H3/H2
718 KUW-SA-2b Kuwait 1 Hl/HO
719 KUW-SA-2C Kuwait 1 Hl/HO
720 KUW-SA-4a Kuwait 2 H2/H0 or Hl/Hl
721 KUW-SA-4b Kuwait 1 Hl/HO
722 KUW-SA-4C Kuwait 1 Hl/HO
723 KUW-SA-4d Kuwait 1 Hl/HO
724 KUW-SA-5a Kuwait 2 H2/H0 or Hl/Hl
725 KUW-SA-5b Kuwait 1 Hl/HO
726 KUW-SA-5C Kuwait 2 H2/H0 or Hl/Hl
727 KUW-SA-5d Kuwait 1 Hl/HO
728 KUW-SA-6a Kuwait 1 Hl/HO
729 KUW-SA-6b Kuwait 1 Hl/HO
730 KUW-SA-6d Kuwait 3 H3/H0 or H1/H2
731 KUW-SA-7a Kuwait 2 H2/H0 or Hl/Hl
732 KUW-SA-7b Kuwait 2 H2/H0 or Hl/Hl
733 KUW-SA-7C Kuwait 3 H3/H0 or H1/H2
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734 KUW-SA-8a Kuwait 2 H2/H0 or Hl/Hl
735 KUW-SA-8b Kuwait 2 H2/H0 or Hl/Hl
736 KUW-SA-8C Kuwait 3 H3/H0 or H1/H2
737 ALG-LN-FAMla Kuwait 3 H3/H0 or H1/H2
738 ALG-LN-FAMlb Kuwait 6 H3/H3
739 ALG-LN-FAMlc Algerian 2 H2/H0 or Hl/Hl
740 ALG-LN-FAM2a Algerian 2 H2/H0 or Hl/Hl
741 ALG-LN-FAM2b Algerian 3 H3/H0 or H1/H2
742 ALG-LN-FAM2d Algerian 2 H2/H0 or Hl/Hl
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743 ALG-LN-FAM3a Alger an 1 Hl/HO
744 ALG-LN-FAM3b Alger an 1 Hl/HO
745 ALG-LN-FAM3C Alger an 1 Hl/HO
746 ALG-LN-FAM3d Alger an 2 H2/H0 or Hl/Hl
747 ALG-LN-FAM4a Alger an 1 Hl/HO
748 ALG-LN-FAM4b Alger an 3 H3/H0 or H1/H2
749 ALG-LN-FAM4C Alger an 3 H3/H0 or H1/H2
750 ALG-LN-FAM5a Alger an 1 Hl/HO
751 ALG-LN-FAM5b Alger an 2 H2/H0 or Hl/Hl
752 ALG-LN-FAM5C Alger an 4 H3/H1 or H2/H2
753 ALG-LN-FAM6a Alger an 3 H3/H0 or H1/H2
754 ALG-LN-FAM6b Alger an 3 H3/H0 or H1/H2
755 ALG-LN-FAM6C Alger an 2 H2/H0 or Hl/Hl
756 ALG-LN-FAM6d Alger an 2 H2/H0 or Hl/Hl
757 ALG-LN-FAM7a Alger an 2 H2/H0 or Hl/Hl
758 ALG-LN-FAM7b Alger an 3 H3/H0 or H1/H2
759 ALG-LN-FAM7d Alger an 3 H3/H0 or H1/H2
760 ALG-LN-FAM9a Alger an 3 H3/H0 or H1/H2
761 ALG-LN-FAM9b Alger an 2 H2/H0 or Hl/Hl
762 ALG-LN-FAM9d Alger an 3 H3/H0 or H1/H2
763 ALG-LNFAMlOa Alger an 5 H3/H2
764 ALG-LNFAMlOb Alger an 3 H3/H0 or H1/H2
765 ALG-LNFAMlOc Alger an 5 H3/H2
766 MLW-001 Malawi 1 Hl/HO
767 MLW-002 Malawi 2 H2/H0 or Hl/Hl
768 MLW-003 Malawi 2 H2/H0 or Hl/Hl
769 MLW-004 Malawi 2 H2/H0 or Hl/Hl
770 MLW-005 Malawi 1 Hl/HO
771 MLW-006 Malawi 1 Hl/HO
772 MLW-007 Malawi 2 H2/H0 or Hl/Hl
773 MLW-008 Malawi 1 Hl/HO
774 MLW-009 Malawi 3 H3/H0 or H1/H2
775 MLW-010 Malawi 1 Hl/HO
776 MLW-011 Malawi 2 H2/H0 or Hl/Hl
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777 MLW-012 Malawi 2 H2/H0 or Hl/Hl
778 MLW-013 Malawi 2 H2/H0 or Hl/Hl
779 MLW-014 Malawi 1 Hl/HO
780 MLW-015 Malawi 2 H2/H0 or Hl/Hl
781 MLW-016 Malawi 5 H3/H2
782 MLW-017 Malawi 1 Hl/HO
783 MLW-018 Malawi 1 Hl/HO
784 MLW-019 Malawi 1 Hl/HO
785 MLW-020 Malawi 1 Hl/HO
786 MLW-021 Malawi 3 H3/H0 or H1/H2
787 MLW-022 Malawi 3 H3/H0 or H1/H2
788 MLW-023 Malawi 1 Hl/HO
789 MLW-024 Malawi 2 H2/H0 or Hl/Hl
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790 MLW-025 Malawi 2 H2/H0 or Hl/Hl
791 MLW-026 Malawi 4 H3/H1 or H2/H2
792 MLW-027 Malawi 2 H2/H0 or Hl/Hl
793 MLW-028 Malawi 2 H2/H0 or Hl/Hl
794 MLW-029 Malawi 2 H2/H0 or Hl/Hl
795 MLW-030 Malawi 1 Hl/HO
796 MLW-031 Malawi 3 H3/H0 or H1/H2
797 MLW-032 Malawi 4 H3/H1 or H2/H2
798 MLW-033 Malawi 2 H2/H0 or Hl/Hl
799 MLW-034 Malawi 3 H3/H0 or H1/H2
800 MLW-035 Malawi 3 H3/H0 or H1/H2
801 MLW-036 Malawi 4 H3/H1 or H2/H2
802 MLW-037 Malawi 2 H2/H0 or Hl/Hl
803 MLW-038 Malawi 2 H2/H0 or Hl/Hl
804 MLW-039 Malawi 1 Hl/HO
805 MLW-040 Malawi 2 H2/H0 or Hl/Hl
806 MLW-041 Malawi 1 Hl/HO
807 MLW-042 Malawi 2 H2/H0 or Hl/Hl
808 MLW-043 Malawi 1 Hl/HO
809 MLW-044 Malawi 1 Hl/HO
810 MLW-045 Malawi 2 H2/H0 or Hl/Hl
811 MLW-046 Malawi 2 H2/H0 or Hl/Hl
812 MLW-047 Malawi 2 H2/H0 or Hl/Hl
813 MLW-048 Malawi 2 H2/H0 or Hl/Hl
814 MONOOl Mongolian 4 H3/H1 or H2/H2
815 MON002 Mongolian 5 H3/H2
816 MON003 Mongolian 1 Hl/HO
817 MON004 Mongolian 3 H3/H0 or H1/H2
818 MON005 Mongolian 4 H3/H1 or H2/H2
819 MON006 Mongolian 2 H2/H0 or Hl/Hl
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820 MON008 Mongolian 6 H3/H3
821 MON009 Mongolian 2 H2/H0 or Hl/Hl
822 MONOIO Mongolian 2 H2/H0 or Hl/Hl
823 MON012 Mongolian 5 H3/H2
824 MON013 Mongolian 4 H3/H1 or H2/H2
825 MON014 Mongolian 2 H2/H0 or Hl/Hl
826 MON015 Mongolian 2 H2/H0 or Hl/Hl
827 MON017 Mongolian 3 H3/H0 or H1/H2
828 MON018 Mongolian 2 H2/H0 or Hl/Hl
829 MON019 Mongolian 2 H2/H0 or Hl/Hl
830 MON020 Mongolian 2 H2/H0 or Hl/Hl
831 MON021 Mongolian 3 H3/H0 or H1/H2
832 MON022 Mongolian 3 H3/H0 or H1/H2
833 MON023 Mongolian 5 H3/H2
834 MON024 Mongolian 1 Hl/HO
835 MON025 Mongolian 4 H3/H1 or H2/H2
836 MON026 Mongolian 3 H3/H0 or H1/H2
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837 MON027 Mongol an 3 H3/H0 or H1/H2
838 MON028 Mongol an 3 H3/H0 or H1/H2
839 MON029 Mongol an 4 H3/H1 or H2/H2
840 MON030 Mongol an 3 H3/H0 or H1/H2
841 MON031 Mongol an 3 H3/H0 or H1/H2
842 MON032 Mongol an 3 H3/H0 or H1/H2
843 MON033 Mongol an 1 Hl/HO
844 MON034 Mongol an 1 Hl/HO
845 MON035 Mongol an 2 H2/H0 or Hl/Hl
846 MON036 Mongol an 2 H2/H0 or Hl/Hl
847 MON037 Mongol an 2 H2/H0 or Hl/Hl
848 MON038 Mongol an 4 H3/H1 or H2/H2
849 MON039 Mongol an 3 H3/H0 or H1/H2
850 MON040 Mongol an 5 H3/H2
851 MON041 Mongol an 2 H2/H0 or Hl/Hl
852 MON042 Mongol an 2 H2/H0 or Hl/Hl
853 MON043 Mongol an 2 H2/H0 or Hl/Hl
854 MON044 Mongol an 2 H2/H0 or Hl/Hl
855 MON045 Mongol an 3 H3/H0 or H1/H2
856 MON046 Mongol an 3 H3/H0 or H1/H2
857 MON047 Mongol an 2 H2/H0 or Hl/Hl
858 MON048 Mongol an 4 H3/H1 or H2/H2
859 MON049 Mongol an 3 H3/H0 or H1/H2
860 MON050 Mongol an 5 H3/H2
861 MON051 Mongol an 2 H2/H0 or Hl/Hl
862 IK-ED-001 Nigerians 2 H2/H0 or Hl/Hl
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863 IK-ED-002 Niger ans 4 H3/H1 or H2/H2
864 IK-ED-003 Niger ans 2 H2/H0 or Hl/Hl
865 IK-ED-004 Niger ans 1 Hl/HO
866 IK-ED-005 Niger ans 5 H3/H2
867 IK-ED-006 Niger ans 3 H3/H0 or H1/H2
868 IK-ED-007 Niger ans 4 H3/H1 or H2/H2
869 IK-ED-008 Niger ans 3 H3/H0 or H1/H2
870 IK-ED-009 Niger ans 2 H2/H0 or Hl/Hl
871 IK-ED-010 Niger ans 3 H3/H0 or H1/H2
872 IK-ED-011 Niger ans 2 H2/H0 or Hl/Hl
873 IK-ED-012 Niger ans 2 H2/H0 or Hl/Hl
874 IK-ED-013 Niger ans 1 Hl/HO
875 IK-ED-014 Niger ans 2 H2/H0 or Hl/Hl
876 IK-ED-015 Niger ans 4 H3/H1 or H2/H2
877 IK-ED-016 Niger ans 1 Hl/HO
878 IK-ED-017 Niger ans 2 H2/H0 or Hl/Hl
879 IK-ED-018 Niger ans 4 H3/H1 or H2/H2
880 IK-ED-019 Niger ans 3 H3/H0 or H1/H2
881 IK-ED-020 Niger ans 1 Hl/HO
882 IK-ED-021 Niger ans 1 Hl/HO
883 IK-ED-022 Niger ans 2 H2/H0 or Hl/Hl
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884 IK-ED-023 Niger ans 3 H3/H0 or H1/H2
885 IK-ED-024 Niger ans 2 H2/H0 or Hl/Hl
886 IK-ED-025 Niger ans 3 H3/H0 or H1/H2
887 IK-ED-026 Niger ans 2 H2/H0 or Hl/Hl
888 IK-ED-027 Niger ans 3 H3/H0 or H1/H2
889 IK-ED-028 Niger ans 4 H3/H1 or H2/H2
890 IK-ED-029 Niger ans 3 H3/H0 or H1/H2
891 IK-ED-030 Niger ans 2 H2/H0 or Hl/Hl
892 IK-ED-031 Niger ans 3 H3/H0 or H1/H2
893 IK-ED-032 Niger ans 5 H3/H2
894 IK-ED-033 Niger ans 3 H3/H0 or H1/H2
895 IK-ED-034 Niger ans 2 H2/H0 or Hl/Hl
896 IK-ED-035 Niger ans 2 H2/H0 or Hl/Hl
897 IK-ED-036 Niger ans 4 H3/H1 or H2/H2
898 IK-ED-037 Niger ans 2 H2/H0 or Hl/Hl
899 IK-ED-038 Niger ans 2 H2/H0 or Hl/Hl
900 IK-ED-039 Niger ans 2 H2/H0 or Hl/Hl
901 IK-ED-040 Niger ans 2 H2/H0 or Hl/Hl
902 IK-ED-041 Niger ans 2 H2/H0 or Hl/Hl
903 IK-ED-042 Niger ans 2 H2/H0 or Hl/Hl
904 IK-ED-043 Niger ans 2 H2/H0 or Hl/Hl
905 IK-ED-044 Niger ans 3 H3/H0 or H1/H2
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906 IK-ED-045 Nigerians 3 H3/H0 or H1/H2
907 IK-ED-046 Nigerians 3 H3/H0 or H1/H2
908 IK-ED-047 Nigerians 1 Hl/HO
909 SA014 SAAMI 2 H2/H0 or Hl/Hl
910 SA071 SAAMI 7 Illegal
911 SA093 SAAMI 2 H2/H0 or Hl/Hl
912 SA020 SAAMI 1 Hl/HO
913 SA079 SAAMI 1 Hl/HO
914 SA080 SAAMI 1 Hl/HO
915 SA089 SAAMI 1 Hl/HO
916 SA097 SAAMI 3 H3/H0 or H1/H2
917 SA115 SAAMI 1 Hl/HO
918 SA010 SAAMI 2 H2/H0 or Hl/Hl
919 SA015 SAAMI 1 Hl/HO
920 SA028 SAAMI 2 H2/H0 or Hl/Hl
921 SA035 SAAMI 2 H2/H0 or Hl/Hl
922 SA038 SAAMI 2 H2/H0 or Hl/Hl
923 SA060 SAAMI 3 H3/H0 or H1/H2
924 SA061 SAAMI 2 H2/H0 or Hl/Hl
925 SA068 SAAMI 1 Hl/HO
926 SA119 SAAMI 3 H3/H0 or H1/H2
927 SA122 SAAMI 2 H2/H0 or Hl/Hl
928 SA127 SAAMI 4 H3/H1 or H2/H2
929 SA128 SAAMI 0 H0/H0
930 SA145 SAAMI 0 HO/HO



931 SA153 SAAMI 2 H2/H0 or Hl/Hl
932 SA076 SAAMI 2 H2/H0 or Hl/Hl
933 SA136 SAAMI 1 Hl/HO
934 SA139 SAAMI 0 HO/HO
935 SA011 SAAMI 2 H2/H0 or Hl/Hl
936 YAK-271 YAKUT 1 Hl/HO
937 YAK-273 YAKUT 3 H3/H0 or H1/H2
938 YAK-274 YAKUT 2 H2/H0 or Hl/Hl
939 YAK-277 YAKUT 0 HO/HO
940 YAK-278 YAKUT 3 H3/H0 or H1/H2
941 YAK-279 YAKUT 1 Hl/HO
942 YAK-288 YAKUT 1 Hl/HO
943 YAK-291 YAKUT 5 H3/H2
944 YAK-305 YAKUT 2 H2/H0 or Hl/Hl
945 YAK-307 YAKUT 3 H3/H0 or H1/H2
946 YAK-401 YAKUT 5 H3/H2
947 YAK-402 YAKUT 3 H3/H0 or H1/H2
948 YAK-404 YAKUT 2 H2/H0 or Hl/Hl
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949 YAK-409 YAKUT 0 HO/HO
950 YAK-412 YAKUT 5 H3/H2
951 YAK-413 YAKUT 4 H3/H1 or H2/H2
952 YAK-414 YAKUT 3 H3/H0 or H1/H2
953 YAK-416 YAKUT 1 Hl/HO
954 YAK-424 YAKUT 2 H2/H0 or Hl/Hl
955 YAK-432 YAKUT 2 H2/H0 or Hl/Hl
956 YAK-435 YAKUT 1 Hl/HO
957 YAK-M-85 YAKUT 1 Hl/HO
958 YAK-N-06 YAKUT 0 HO/HO
959 YAK-N-11 YAKUT 4 H3/H1 or H2/H2
960 YAK-N-18 YAKUT 0 HO/HO
961 YAK-N-22 YAKUT 1 Hl/HO
962 YAK-N-29 YAKUT 2 H2/H0 or Hl/Hl
963 YAK-N30 YAKUT 3 H3/H0 or H1/H2
964 YAK-S-09 YAKUT 3 H3/H0 or H1/H2
965 YAK-S-16 YAKUT 2 H2/H0 or Hl/Hl
966 YAK-S-17 YAKUT 2 H2/H0 or Hl/Hl
967 YAK-S-20 YAKUT 2 H2/H0 or Hl/Hl
968 YAK-S-23 YAKUT 7 H3/H4
969 YAK-S-25 YAKUT 2 H2/H0 or Hl/Hl
970 YAK-S-29 YAKUT 2 H2/H0 or Hl/Hl
971 YAK-S-32 YAKUT 2 H2/H0 or Hl/Hl
972 YAK-VE-103 YAKUT 3 H3/H0 or H1/H2
973 YAK-VE-104 YAKUT 6 H3/H3
974 YAK-VE-105 YAKUT 3 H3/H0 or H1/H2
975 YAK-VE-107 YAKUT 2 H2/H0 or Hl/Hl
976 YAK-VE-115 YAKUT 5 H3/H2



Appendix E:

Raw AMY1 and microsatellite haplotype data
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3|3||e Ê0d0j TAWV o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o
X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

dnojo 3iuq)3 c c c c c c c c c
I D ( 0 10 10 10 10 10 10 <0
C c c c c c c c c
d) <u ( U <u cu i u <u QJ <u
F F F E E F E E E

L_ L-
< < < < < < < < <

c c c c c
(D 1C ID ID ID
CL CL Q . ' a .  Q.O O O O O
!c r  r  r  !c

c c c c c c
ID ID ID ID ID ID
'a. cl q. a. cl "cl0 0 0 0 0 0  
r  r  r  i: r  r

c c c c
10 (0 (D ID

"CL CL CL "cl x
o  o  o  o  . 52
jc 'sz !c x: -1=:

I/) V) V) I/I I/) U)
_ c
V)

L U L U L U L U L U I U L U L U L U L U I U L U L U L U L U L U L U L U I U L U C O C Q C Q C Q C O C O O Q C Q C Q

0 uieN 9|duies

■O TJ SO u ■a T3 u TJ T3 10 ■O T3 IO JO u 10 JO U ■O ■a SO XI TJ (O (0 XI 10 U U XJ XI 10 u (0 XI (0 SO ~o SO (0 XI 10
CM O rH rH VO 00 00 cn IN IN CT> CM VO cn (T> CT> 0 CM 00 00 tH N" O CM CM CO IN LO rH rH 0 O 1—1 CO VO CO VO VO cr>
O tH rH rH CM CM rsi1 IN CM 0 O O rH rH tH rH rH rH rH CM CM CM CM m CO N- N" O O rH rH CM CM CM CM N" 0 0 O 0
z z z Z z z Z z z Z Z z Z z z z Z Z Z Z Z Z Z z Z Z z Z z z Z z Z z 1z z z Z Z Z Z Z
< < < < < < < < < < < < < < < < < < < < < , < < < < < < < < < < < < < < < < < < < < <
LL LL LL LL LL LL LL LL UL1 u_ u_ LL LL u_ LL u_ LL u_ Li. u . UL LL. U_ Ll_ LL LL LL LL LL LL LL LL LL LL LL LL LL LL LL LL LL LL

z Z z z z Z z z Z Z Z z Z Z z Z Z Z z Z z Z z Z Z Z z Z z 1
LU LU LU LU

1
LU

1
LU

1
LU

1
LU LU X X X X

CL CL CL CL CL CL CL CL < < < < < < < < < < < < < < < < < < < < V ±L in LO IO LO
< < < < < < < < < LU LU LU LU LU LU LU LU LU LU UJ LU LU LU LU LU LU LU LU LU 3 3 3 3 3 3 3 3 3 < < < <

'on 3|duies
Hl MPl ^l / l ^ONOOOl OHl NPD' t mt ON o o c n o H i M n ^ m i O N

H H r M f N C M I N I N l N I N f M
c o c ^ O H f N n ^ i / n o N c o c n o H( N N i D n f n n n n t D n n n ^ ^



Sa
m

pl
e 

N
o.

Sa
m

pl
e_

N
am

e

E
th

ni
c_

G
ro

up

AM
Y1

 
re

pe
at

 
al

le
le

D
1S

28
88

 
al

le
le

D
1S

27
59

 
al

le
le

D
1S

28
96

 
al

le
le

AM
YM

S0
2 

al
le

le

D
1S

53
5 

al
le

le

D
1S

26
26

 
al

le
le

43 ASH-FAM-lla Ashkenzai HO 19 17 13 17 9 21
44 ASH-FAM-lld Ashkenzai HO 20 17 14 18 9 23
45 ASH-FAM-16C Ashkenzai HO 18 14 14 17 10 21
46 ASH-FAM-25C Ashkenzai HO 15 17 17 17 10 21
47 ASH-FAM-33d Ashkenzai HO 20 16 14 18 10 21
48 ASH-FAM-36d Ashkenzai HO 19 17 18 17 10 21
49 ASH-FAM-37a Ashkenzai HO 19 17 11 17 9 24
50 ASH-FAM-42b Ashkenzai HO 19 17 11 17 10 24
51 ASH-FAM-42C Ashkenzai HO 17 17 13 17 10 21
52 ASH-FAM-44b Ashkenzai HO 19 19 17 17 10 22
53 ASH-FAM-47C Ashkenzai HO 19 17 14 19 9 19
54 ASH-FAM-47d Ashkenzai HO 20 17 13 16 9 20
55 SINC26C Sing. Chinese HO 16 17 17 17 10 23
56 GER-FAM-03D German HO 18 17 16 18 11 23
57 GRM-FAM-20b German HO 18 17 17 19 10 20
58 GRM-FAM-20D German HO 18 17 11 18 11 21
59 GRM-FAM-23d German HO 20 17 17 18 11 20
60 GRM-FAM-24C German HO 16 17 16 18 10 24
61 GRM-FAM-26D German HO 20 19 14 17 9 23
62 IRL-FAM 01b Irish HO 19 18 11 16 10 19
63 IRL-FAM 05a Irish HO 19 17 11 18 10 24
64 IRL-FAM 05b Irish HO 18 19 11 17 9 19
65 IRL-FAM 16b Irish HO 19 17 16 18 10 21
66 IRL-FAM 26b Irish HO 21 19 14 17 10 24
67 IRL-FAM 28a Irish HO 19 17 11 19 10 17
68 IRL-FAM 29a Irish HO 20 18 18 16 10 23
69 IRL-FAM 32a Irish HO 19 17 11 20 11 21
70 KUW-SA-4C Kuwait HO 17 19 14 17 10 18
71 ALG-LN-FAM4a Algerian HO 17 16 16 17 9 20
72 ARM-FAM-02a Armenian HI 18 17 14 17 10 17
73 ARM-FAM-02b Armenian HI 18 17 16 18 10 22
74 ARM-FAM-02C Armenian HI 19 16 12 16 10 21
75 ARM-FAM-03C Armenian HI 19 20 13 17 10 21
76 ARM-FAM-03d Armenian HI 19 19 14 17 10 24
77 ARM-FAM-04a Armenian HI 18 17 14 18 10 21
78 ARM-FAM-08a Armenian HI 17 19 12 18 10 20
79 ARM-FAM-08b Armenian HI 19 22 16 18 10 20
80 ARM-FAM-lOa Armenian HI 18 17 16 17 10 19
81 ARM-FAM-lOb Armenian HI 18 18 17 18 11 20
82 ARM-FAM-lOc Armenian HI 17 17 14 15 11 20
83 ARM-FAM-lld Armenian HI 19 19 11 19 10 24
84 ARM-FAM-12a Armenian HI 19 17 13 17 11 19
85 ARM-FAM-12b Armenian HI 20 20 14 18 10 19
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129 EAM-FAM-31b Ethiopian HI 20 17 17 18 10 20
130 EAM-FAM-31C Ethiopian HI 17 19 16 18 10 23
131 EAM-FAM-31d Ethiopian HI 20 19 16 15 10 21
132 EAM-FAM-34b Ethiopian HI 20 16 15 17 10 20
133 EAM-FAM-34C Ethiopian HI 18 19 11 18 10 21
134 EAM-FAM-34d Ethiopian HI 20 16 16 18 11 24
135 EAM-FAM-36a Ethiopian HI 19 16 13 18 10 21
136 EAM-FAM-36C Ethiopian HI 17 17 16 18 11 23
137 EAM-FAM-36d Ethiopian HI 19 16 14 17 10 22
138 EAM-FAM-38a Ethiopian HI 18 17 11 17 10 18
139 EAM-FAM-38b Ethiopian HI 19 17 16 17 10 18
140 EAM-FAM-38d Ethiopian HI 19 17 11 18 10 21
141 EAM-FAM-40a Ethiopian HI 20 17 13 17 9 21
142 EAM-FAM-40C Ethiopian HI 18 19 13 17 9 21
143 EAM-FAM-40d Ethiopian HI 20 17 16 17 9 21
144 EAM-FAM-42b Ethiopian HI 20 17 14 18 10 20
145 EAM-FAM-42d Ethiopian HI 19 14 13 17 10 20
146 EAM-FAM-43a Ethiopian HI 19 19 14 17 10 21
147 EAM-FAM-43b Ethiopian HI 20 17 11 18 10 23
148 EAM-FAM-43d Ethiopian HI 20 17 16 17 11 21
149 EAM-FAM-45a Ethiopian HI 20 17 17 18 10 19
150 EAM-FAM-45b Ethiopian HI 21 18 11 17 10 17
151 EAM-FAM-45C Ethiopian HI 17 17 12 17 10 21
152 EAM-FAM-50a Ethiopian HI 19 18 17 15 9 21
153 EAM-FAM-50C Ethiopian HI 17 19 12 17 9 24
154 EAM-FAM-50d Ethiopian HI 18 19 14 18 9 21
155 UKE-FAM-02a British HI 19 17 14 17 9 20
156 UKE-FAM-02C British HI 20 19 14 17 10 24
157 UKE-FAM-02d British HI 18 17 13 15 11 22
158 UKE-FAM-05a British HI 19 17 14 17 11 21
159 UKE-FAM-05C British HI 19 17 11 20 10 20
160 UKE-FAM-05d British HI 21 17 14 17 10 22
161 UKE-FAM-08b British HI 19 17 15 18 10 20
162 UKE-FAM-08C British HI 19 17 14 20 10 21
163 UKE-FAM-08d British HI 20 17 11 17 9 21
164 UKE-FAM-llb British HI 20 18 16 18 10 21
165 UKE-FAM-lld British HI 20 20 18 18 9 19
166 UKE-FAM-14C British HI 18 19 11 18 10 24
167 UKE-FAM-14d British HI 20 17 18 17 10 23
168 UKE-FAM-20d British HI 18 17 11 17 10 24
169 UKE-FAM-23a British HI 19 17 13 17 10 20
170 UKE-FAM-23C British HI 19 17 20 18 10 22
171 UKE-FAM-27b British HI 19 17 11 19 9 21
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172 UKE-FAM-27C British HI 18 19 11 17 11 18
173 UKE-FAM-27d British HI 18 19 19 18 10 21
174 UKE-FAM-39C British HI 17 19 12 18 8 21
175 UKE-FAM-39d British HI 19 19 16 18 9 21
176 UKE-FAM-46a British HI 19 17 13 17 9 21
177 UKE-FAM-46b British HI 19 19 13 20 9 24
178 UKE-FAM-46C British HI 19 17 11 17 10 19
179 UKE-FAM-47a British HI 18 17 17 17 9 25
180 UKE-FAM-47b British HI 20 19 17 20 12 21
181 UKE-FAM-47C British HI 18 17 11 18 10 21
182 UKE-FAM-47d British HI 19 17 16 17 9 21
183 UKE-FAM-48b British HI 19 17 14 20 10 17
184 UKE-FAM-48C British HI 18 17 14 18 10 21
185 UKE-FAM-48d British HI 19 20 18 17 10 21
186 UKE-FAM-49b British HI 20 17 17 18 10 23
187 UKE-FAM-49C British HI 19 17 13 17 10 21
188 UKE-FAM-49d British HI 19 17 14 19 9 21
189 ASH-FAM-Olc Ashkenzai HI 20 17 11 18 9 23
190 ASH-FAM-Old Ashkenzai HI 20 20 13 19 9 19
191 ASH-FAM-03a Ashkenzai HI 18 17 13 18 9 19
192 ASH-FAM-03C Ashkenzai HI 17 17 11 18 10 21
193 ASH-FAM-03d Ashkenzai HI 19 17 14 18 10 19
194 ASH-FAM-05a Ashkenzai HI 17 16 11 17 10 19
195 ASH-FAM-05b Ashkenzai HI 20 17 14 18 9 23
196 ASH-FAM-05C Ashkenzai HI 17 17 13 18 10 20
197 ASH-FAM-05d Ashkenzai HI 19 19 14 17 10 22
198 ASH-FAM-06d Ashkenzai HI 19 19 14 18 8 21
199 ASH-FAM-07a Ashkenzai HI 20 17 19 17 8 21
200 ASH-FAM-07C Ashkenzai HI 18 17 14 15 10 21
201 ASH-FAM-07d Ashkenzai HI 20 16 13 18 9 23
202 ASH-FAM-08a Ashkenzai HI 19 17 14 18 11 19
203 ASH-FAM-08b Ashkenzai HI 18 17 13 18 11 20
204 ASH-FAM-08C Ashkenzai HI 20 19 11 17 10 19
205 ASH-FAM-08d Ashkenzai HI 20 17 14 18 9 23
206 ASH-FAM-09d Ashkenzai HI 18 19 14 17 10 19
207 ASH-FAM-16a Ashkenzai HI 19 22 17 17 10 21
208 ASH-FAM-16b Ashkenzai HI 20 17 14 17 11 20
209 ASH-FAM-16d Ashkenzai HI 18 19 18 17 10 21
210 ASH-FAM-23a Ashkenzai HI 19 17 13 19 11 19
211 ASH-FAM-23b Ashkenzai HI 19 17 14 17 10 24
212 ASH-FAM-23C Ashkenzai HI 19 17 14 17 10 21
213 ASH-FAM-23d Ashkenzai HI 21 17 13 17 11 17
214 ASH-FAM-25a Ashkenzai HI 18 16 14 18 10 21
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Ashkenzai HI 20 17 14 17 11
Ashkenzai HI 18 17 16 17 9
Ashkenzai HI 18 20 14 19 9
Ashkenzai HI 20 17 12 17 11
Ashkenzai HI 20 17 17 8 10
Ashkenzai HI 20 17 11 18 9
Ashkenzai HI 19 17 13 17 11
Ashkenzai HI 17 19 13 17 10
Ashkenzai HI 19 19 14 18 8
Ashkenzai HI 18 17 14 17 11
Ashkenzai HI 20 17 17 17 10
Ashkenzai HI 11 19 14 17 10
Ashkenzai HI 18 17 13 17 11
Ashkenzai HI 18 17 14 17 8
Ashkenzai HI 18 19 17 17 11
Ashkenzai HI 17 19 11 18 10
Ashkenzai HI 19 17 11 18 10
Ashkenzai HI 18 19 14 18 11
Ashkenzai HI 18 17 14 18 9
Ashkenzai HI 17 17 14 17 10
Ashkenzai HI 20 17 18 17 10
Ashkenzai HI 19 17 14 18 11
Sing. Chinese HI 19 17 13 17 10
Sing. Chinese HI 19 18 14 20 10
Sing. Chinese HI 16 17 17 17 9
Sing. Chinese HI 19 19 14 19 9
Sing. Chinese HI 16 17 17 18 10
Sing. Chinese HI 19 17 14 18 10
Sing. Chinese HI 16 17 14 17 10
Sing. Chinese HI 20 17 14 17 11
Sing. Chinese HI 16 18 14 19 9
Sing. Chinese HI 19 18 14 18 11
Sing. Chinese HI 19 18 18 17 11
Sing. Chinese HI 20 19 14 19 10
Sing. Chinese HI 17 18 13 19 10
German HI 21 19 17 19 11
German HI 19 19 17 15 11
German HI 18 17 14 18 10
German HI 18 18 14 16 10
German HI 19 17 13 17 9
German HI 19 17 17 17 10
German HI 22 19 12 18 10
German HI 19 17 14 18 9
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258 GRM-FAM-20C German HI 19 14 13 17 10 20
259 GRM-FAM-21a German HI 19 14 11 19 10 22
260 GRM-FAM-21b German HI 17 17 13 18 11 19
261 GRM-FAM-21d German HI 19 18 13 20 11 21
262 GRM-FAM-23a German HI 18 19 13 19 10 24
263 GRM-FAM-23b German HI 19 17 16 17 9 19
264 GRM-FAM-23C German HI 19 19 17 19 9 21
265 GRM-FAM-24b German HI 18 17 14 16 10 21
266 GRM-FAM-24D German HI 20 16 11 17 11 20
267 GRM-FAM-26a German HI 18 17 14 19 9 20
268 GRM-FAM-26b German HI 19 19 11 17 9 21
269 GRM-FAM-26C German HI 19 18 16 18 11 18
270 IRL-FAM 01D Irish HI 18 19 14 19 11 23
271 IRL-FAM 05c Irish HI 19 17 11 18 10 21
272 IRL-FAM 05d Irish HI 19 17 18 18 9 21
273 IRL-FAM 10a Irish HI 16 17 17 19 11 20
274 IRL-FAM 10b Irish HI 19 18 16 18 9 20
275 IRL-FAM 10c Irish HI 18 19 14 17 10 19
276 IRL-FAM lOd Irish HI 19 14 13 18 10 24
277 IRL-FAM 11a Irish HI 17 19 16 17 10 19
278 IRL-FAM l ib Irish HI 21 18 14 18 10 21
279 IRL-FAM 13d Irish HI 18 16 16 18 10 23
280 IRL-FAM 16c Irish HI 17 17 18 17 10 23
281 IRL-FAM 26c Irish HI 18 20 18 17 10 24
282 IRL-FAM 26d Irish HI 20 19 13 17 10 20
283 IRL-FAM 28c Irish HI 17 17 12 18 10 21
284 IRL-FAM 29b Irish HI 18 17 14 17 11 20
285 IRL-FAM 32c Irish HI 17 17 17 16 10 20
286 KUW-SA-4a Kuwait HI 18 16 14 19 11 20
287 KUW-SA-4b Kuwait HI 19 19 13 18 9 24
288 KUW-SA-4d Kuwait HI 19 14 16 18 11 24
289 ALG-LN-FAM4b Algerian HI 18 17 14 18 9 21
290 ALG-LN-FAM4C Algerian HI 19 18 12 16 10 20
291 ALG-LN-FAM9b Algerian HI 19 17 11 17 10 20
292 ALG-LN-FAM9C Algerian HI 18 17 11 17 10 20
293 ALG-LN-FAM9d Algerian HI 18 18 18 16 10 21
294 ALG-LNFAMlOb Algerian HI 20 17 16 20 11 17
295 ALG-LNFAMlOd Algerian HI 19 17 14 17 12 21
296 ARM-FAM-04C Armenian H2 19 14 13 18 9 19
297 ARM-FAM-08C Armenian H2 17 19 13 18 10 20
298 ARM-FAM-16b Armenian H2 18 14 13 17 10 21
299 ARM-FAM-20d Armenian H2 20 19 13 17 12 21
300 ARM-FAM-26b Armenian H2 19 17 14 18 9 19
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344 IRL-FAM 13c Irish H2 19 17 11 17 11 21
345 IRL-FAM 16a Irish H2 15 17 11 18 10 19
346 IRL-FAM 16D Irish H2 20 18 14 18 10 20
347 IRL-FAM 28b Irish H2 18 19 13 16 10 21
348 IRL-FAM 28d Irish H2 19 17 14 17 9 21
349 IRL-FAM 29c Irish H2 17 17 17 17 10 21
350 IRL-FAM 32b Irish H2 20 17 14 18 10 21
351 IRL-FAM 32d Irish H2 21 17 14 17 9 20
352 ALG-LN-FAM4d Algerian H2 20 19 13 17 10 21
353 ALG-LN-FAM9a Algerian H2 19 17 14 18 10 17
354 ALG-LNFAMlOc Algerian H2 18 17 14 16 10 20
355 ARM-FAM-03b Armenian H3 20 20 12 17 10 21
356 ARM-FAM-04b Armenian H3 20 17 14 18 10 20
357 ARM-FAM-04d Armenian H3 20 17 12 17 10 23
358 ARM-FAM-08d Armenian H3 17 19 14 17 9 21
359 ARM-FAM-lla Armenian H3 17 19 13 18 8 21
360 ARM-FAM-llc Armenian H3 18 21 16 17 10 25
361 ARM-FAM-14d Armenian H3 18 17 13 17 9 17
362 ARM-FAM-29C Armenian H3 20 19 11 18 10 24
363 EAM-FAM-22C Ethiopian H3 19 19 11 18 10 23
364 EAM-FAM-28C Ethiopian H3 19 17 14 18 10 21
365 EAM-FAM-39d Ethiopian H3 20 17 14 18 10 22
366 EAM-FAM-50b Ethiopian H3 19 19 14 18 10 24
367 UKE-FAM-08a British H3 18 18 13 18 10 17
368 UKE-FAM-27a British H3 19 17 11 18 8 20
369 UKE-FAM-34a British H3 18 18 14 18 10 19
370 UKE-FAM-48a British H3 19 17 11 19 9 24
371 ASH-FAM-Olb Ashkenzai H3 20 17 18 17 11 21
372 ASH-FAM-07b Ashkenzai H3 20 17 11 18 9 22
373 ASH-FAM-09C Ashkenzai H3 19 17 14 20 11 20
374 ASH-FAM-25b Ashkenzai H3 18 17 11 19 9 19
375 SINC20M Sing. Chinese H3 21 18 14 17 10 25
376 ARM-FAM-03a Armenian H4 20 19 14 18 9 23
377 UKE-FAM-34b British H4 19 19 14 18 9 21
378 GRM-FAM-18C German H4 18 17 16 19 11 21
379 IRL-FAM 11D Irish H4 19 19 13 17 10 23
380 IRL-FAM 26a Irish H4 20 17 16 16 9 21
381 IRL-FAM 29d Irish H4 19 19 12 18 10 17
382 ALG-LNFAMlOa Algerian H4 18 16 14 18 9 21
383 GRM-FAM-04D German H5 20 17 13 17 10 20


