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Abstract

A complex system is a system with a large number of interacting components without any
mechanism for central control that displays self organisation. Understanding how these
interactions affect the overall behaviour of a system is of great interest to science. Indeed,

researchers use a wide variety of models to investigate complex systems.

The problem with most models is that they disregard the hierarchical nature of complex
systems: they ignore the fact that components of real world systems tend to be complex
systems as well. This prevents researchers from investigating the interactions taking place
between the lower and the higher levels of the model which may be crucial in order to gain a
full understanding of the examined phenomena and of complex systems in general.
Therefore, this thesis introduces Mosaic World, a multi-agent model for the purpose of
investigating interactions (focusing on ‘complex’ multilevel interactions) within a
hierarchical complex system, in addition to other computational and biological hypotheses.
Mosaic World comprises a population of evolving neural network agents that inhabit a

changing visual environment.

By analysing the interactions that occur within Mosaic World, this thesis demonstrates the
importance of incorporating hierarchical complexity into a model, and contributes to our
understanding of hierarchical complex systems by showing how selective pressures cause
differentiation across levels. Additionally, the study of multilevel interactions is used to
probe several hypotheses and provides the following contributions among others:

- Analysis of agent evolvability as affected by the usage of different types of
structural mutations in the evolutionary process.

- Demonstration that agents controlied by modular neural networks are fitter than
agents that are controlled by non-modular neural networks; the improvement in
fitness occurs through specialisation of modules.

- Empirical support for a biological theory suggesting that colour vision evolved as a

method of dealing with ambiguous stimuli.
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Chapter 1

Introduction

Until the arrival of the field of complex systems to the scientific arena, diverse systems such
as the stock market, the weather, an ant-hill and the internet were perceived to have little in
common. Throughout the last decade and a half it became increasingly clearer that there are

in fact many commonalities between all these types of systems.

Although even now there is still no universal definition of a complex system (see [14, 36,
148, 166] for various definitions), it is possible to state that a complex system is a system
with a large number of interacting components without any mechanism for central control.
There is no conceptual limit placed on the components: they can be identical — but they do
not have to be; they can interact with neighbours or with distant components; they can be
simple — or they can be complex systems in their own right. The result is a system that
displays self organisation despite the lack of central control. The behaviour of this system is

emergent and cannot be normally predicted by looking at the individual components alone.

Even though the list of attributes varies according to the exact definition used, it is commonly
accepted that interaction between components is one of the major requirements for a system
to be termed a complex system. In fact, interactions may even be the most fundamental

aspect:

“Complex systems cannot be understood by studying parts in
isolation. The very essence of the system lies in the interaction
between parts and the overall behavior that emerges from the

interactions” [166].

These interactions are highly nonlinear; perturbing a single component can potentially affect

the entire system.

Understanding how interactions affect the overall behaviour of a system is of great interest to
science [15]. The ability to affect or predict the emergent behaviour of certain complex
systems could be useful in countless situations ranging from stabilising a problematic
economy to helping the immune system fight pathogens. This may be achievable by altering
the system in some fashion, for example, by adjusting its interaction with the environment in

such a way that affects its emergent behaviour [167].



1 Introduction 17

The methods which researchers use to investigate complex systems can be divided to two
main groups [149]. The first includes mathematical models such as nonlinear dynamics,
differential equations, game theory and network theory. One weakness of these models is that
they only enable deriving aggregate variables — the collective behaviour of many elements —
but do not give any indication as to how this aggregate behaviour is linked to the individual

behaviour of all the elements, and why [156, 169, 171].

The second group consists of simulations via agent-based models, where the goal is to create
models that capture some aspects of the real world [74]. Examples of agent-based models
include artificial life models, genetic algorithms, and cellular automata [149, 166]. Generally
speaking, it is impossible to simulate every detail of real phenomena if only from a
computational point of view; thus, every model designer needs to decide which elements are
important and should be included, and which are better to be left out. Although many models
are significantly simpler than their real world counterparts, this approach is feasible; using
this method, much can be learned about the real world. Nevertheless, the design stage is
particularly problematic when modelling complex systems, as one of the fundamental
paradigms of this field is that reductionism is not the right approach for investigating
complex systems [14, 66, 166] — that the system’s overall behaviour emerges from highly
nonlinear interactions between potentially all of its components — including ones that may not

appear to be important, and so, are possibly likely to be left out.

Perhaps unsurprisingly, there is a fundamental and crucial difference between most current
models of complex systems and their real world counterparts. Unlike many computer models,
components of real world systems tend to be complex systems as well. In turn, these
components may also consist of complex systems. Consequently, interactions going on at the
lowest levels may affect the higher levels, and vice versa. More importantly, the emergent
whole [83] of a lower level — potentially the result of highly nonlinear and unpredictable

interactions — may serve as a component for an emergent whole of the next level.

An example to help illustrate this important point: an ant-hill is a component of its ecosystem,
which is a hierarchical complex system. The ant-hill itself is also a hierarchical complex
system, one which consists of ants. An individual ant consists of organs. Each of these organs
consists of cells. These cells are controlled by the ant’s genes. Although the hierarchical
structure of complex systems is a well known fact [84, 181], in most computer simulations of
an ecosystem, the ant-hill is modelled rather simply, as an elementary component — without
modelling the individual ants within, and in most simulations of an ant-hill, the ant is

modelled rather simply, without considering its organs. However, in reality both types of
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‘elementary’ components are not elementary, but are complex systems. More importantly, the
emergent behaviour of these lower level components (the behaviour of an ant, the collective
behaviour of an ant-hill) is an important element of the higher levels — and as stated, these

behaviours cannot be easily modelled because of their emergent nature.

Although nested hierarchies are an integral aspect of complex systems, most models neglect
to incorporate this aspect into their design. This may be the result of the inherent
programmatic difficulty of modelling multiple levels of a hierarchical complex system.
Regardless, this flaw causes a reasonable chance of incorrect modelling, particularly of the
higher levels of the system (as small inaccuracies in the behaviour of lower levels can
accumulate and cause larger inaccuracies in the behaviour of higher levels). Moreover, this
prevents researchers from investigating the interactions going on between the lower and the
higher levels such as — using the previous example — the effects of different models of ant
organs or the evolution of genes that define those organs on the overall behaviour of the ant-

hill or even the entire ecosystem.

This flaw in modelling complex systems occurs not only in computational models, but also in
conceptual models as well. In fact, the field of economics has been criticised for traditionally
ignoring the hierarchical nature of the economy by not attempting to directly link
microeconomics and macroeconomics, instead researching each discipline independently

[169].

This work argues that incorporating hierarchical complexity may be essential in order to
correctly model a system and gain a more comprehensive understanding of the target
phenomena; more importantly, the fact that the nested hierarchies aspect of complex systems
is mostly disregarded raises the possibility that novel insights about complex systems in
general may be obtained by specifically investigating multileveled interactions within a

hierarchical complex system model.

In recent years, some models of complex systems were in fact constructed with hierarchical
complexity in mind. This is mainly true for models coming from the field of ecology [100,
125, 170, 244] (whose members are fully aware of the importance of maintaining the
hierarchical nature of complex systems and of the need to explore the interactions between
different levels of the model [100, 170, 244]), but also true for models coming from other
fields, such as computer science [123, 203], chemical engineering [127] and economics
[224]. Ironically, even though these models are the only ones that can be appropriate for

examining multileveled interactions within complex systems, they were mostly created to
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pursue directions other than complex systems. Therefore, it is the aim of this work to create a
model for the purpose of investigating interactions within a hierarchical complex system,
with a focus on multileveled interactions. It is believed that this study will contribute to our
understanding of complex systems in a new way and improve our ability to predict and affect
complex systems in general. Furthermore, by specifically focusing on multilevel interactions
in a particular model, it will be possible to gain interesting insights about the modelled
phenomena which normally would not appear in most models, thus, demonstrate the

importance of incorporating hierarchical complexity into model design.

1.1 Aims and objectives

The main hypothesis of this research can be defined as follows:

It is useful to evolve hierarchical visually guided neural network agents for the purpose of

investigating complex interactions.

Where:
The model can be referred to as ‘useful’ when it enables the demonstration and investigation
of behaviours that normally do not appear in simpler, non-hierarchical or less hierarchical

models and consequently, provides new insights into complex systems in general.

Hierarchical visually guided neural network agents are artificial agents used in a multi-agent
system that are controlled by internal neural networks receiving visual stimuli from a

simulated environment.

Complex interactions are defined in this work to:

- be an information exchange between two or more elements within a hierarchical
complex system, at the same or different level, where the interaction causes a
modification to one or more of the elements (similar to a concept introduced in [26]).

- be affected by small perturbations to the elements or their context, which may cause
highly unpredictable or unintuitive effects to the overall behaviour of the system.

- take place within a hierarchical system whose emergent results (which can be
behaviours or objects) of lower levels can serve as basic components for a higher

level (e.g. evolved agents are components of collective aggregates) [83].

In this thesis, complex interactions will be represented using the affecting—affected

notation, where affecting interacts with affected. This may indicate that a physical effect
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takes place in the system; in this case, affecting has an effect on affected (e.g.
critter—environment means that the environment is changed as a result of the critter
consuming a part of it). Alternatively, this notation may indicate that a flow of information
takes place in the system; in this case information flows from affecting to affected (e.g.
environment—receptor indicates that information from the environment is perceived by a

receptor).
In order to provide evidence towards the hypothesis, the following objectives are defined:

1. Explore biological systems and universal principles in nature that are suitable for

investigation using a hierarchical complex system model.

2. Develop a computational multi-agent, hierarchical complex system model, Mosaic
World.

3. Identify key interactions in the model, and create accordingly a set of challenges that will
focus on each one. Each challenge will consist of a small perturbation to the system or its

context; the resulting effect on the interactions will be systematically investigated.

4. Correlate and understand the behaviour of the perturbed aspects of the system (its

elements or context) with the results of those interactions in the system as a whole.

5. Demonstrate that incorporating hierarchical complexity into the model can provide an
improvement in the understanding of the modelled phenomena, by finding novel

observations that could not be made in a non hierarchical or less hierarchical model.

6. Demonstrate that the model can be used to support or refute existing and novel
computational and biological hypotheses that cover some or all levels of the model
including:

- The usage of different types of structural mutations will affect the evolvability of
neural network agents.

- Like biological visual systems, physical similarity or behavioural similarity of
resources will affect the visual system of evolving virtual agents.

- Like biological visual systems, increased physical similarity of resources will affect
the visual system of evolving virtual agents.

- The need to deal with ambiguous environments is a possible reason for the evolution

of colour vision in nature.
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- Evolving virtual agents in environments of various levels of difficulty will result in
behaviours that are similar to those encountered in nature under equivalent
conditions.

- Virtual agents that are controlled by modular neural networks (specifically, a
mixture-of-experts architecture) will be fitter than agents that use non-modular neural
networks.

- Predation is sufficient to cause the emergence of multicellularity.

- Accidental aggregation, without any explicit immediate advantages, is sufficient to
cause the emergence of multicellularity.

- Significant environmental variation can affect the evolution of morphogenesis.

1.2 Thesis overview

Chapter 2 reviews several topics that are required in order to recognise the problem that is
presented in this thesis and the methods used to address this problem. In addition, a useful
methodology for creation of models of biological phenomena is provided (and its source

cited), which will be used throughout the thesis to justify the design decisions that are made.

Chapter 3 presents Mosaic World, the model which is used for all work in this thesis; this
includes a thorough description of the system’s components and operation, and also includes

a conceptual analysis of the complex interactions that take place within the model.

Chapter 4 begins the investigation of complex interactions by presenting the first challenge to
Mosaic World: evolvability. This challenge explores the relationship between agent
evolvability and various types of genes—genes interactions by using five different types of

structural mutations in the process of evolution.

Chapter 5 presents the colour vision challenge to Mosaic World. This challenge examines the
effect of different environments (specifically, environments with various visual
characteristics) on the visual evolution of agents that inhabit them (environment—receptor

interactions).

Chapter 6 presents the behaviour challenge to Mosaic World. This challenge examines the
effect of different environments (specifically, environments of various levels of difficulty) on

the evolved behaviours of agents that inhabit them (environment—-critter).
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Chapter 7 expands the hierarchical nature of Mosaic World by replacing the standard
networks used to control agents with modular neural networks. The challenge in this chapter
is modular specialisation: by examining in detail the interactions that take place within the
new mechanism (control network—module interactions), the effect of utilisation of

modularity on agents in terms of fitness and functionality is assessed.

Chapter 8 further expands the hierarchical nature of Mosaic World by creating mechanisms
that allow agents to aggregate. In this chapter, the aggregation challenge is presented to
Mosaic World: by examining in detail the conditions that are required in order for agents to
successfully utilise this mechanism (in terms of the interactions between agents,
critter—critter, and the interactions between aggregates and agents, critter—aggregate),
insights about the conditions in primordial Earth that triggered the original emergence of
multicellularity are gained. In the second part of the chapter, the aggregation challenge is
extended by examining whether a new ability of aggregates to change their shape and grow
protective shells is utilised when a new environment is added to Mosaic World that provides

new benefits but incurs new costs.

Chapter 9 concludes the thesis by summarising the results and describing four observations
that can be obtained using this work. In addition, the chapter provides an evaluation of the
model and revisits the objectives that were set for the thesis. The chapter concludes by

reviewing several possible ways to extend the work described in this thesis.

1.3 Publications

Some of the work in this thesis has been published in the following papers:

Schlessinger, E., Bentley, P. J., and Lotto, R. B. (2006) Investigating the Emergence of
Multicellularity Using a Population of Neural Network Agents. In Proc. of Parallel Problem
Solving from Nature (PPSN IX), September 9-13, 2006, Reykjavik, Iceland

Schlessinger, E., Bentley, P. J., and Lotto, R. B. (2006) Modular Thinking: Evolving Modular
Neural Networks for Visual Guidance of Agents. In Proc. of Genetic and Evolutionary
Computation Conference (GECCO 2006), July 8-12, 2006, Seattle, WA

Schlessinger, E., Bentley, P. J., and Lotto, R. B. (2005) Analysing the Evolvability of Neural
Network Agents through Structural Mutations. /n Proc. of European Conference on Artificial
Life (ECAL 2005), September 5-9, 2005, Canterbury, UK
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Several Different Levels of Difficulty and Hunger.
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Chapter 2

Background

In order to investigate complex interactions, a computational multi-agent, hierarchical
complex system model has been developed. This chapter provides the relevant background

for this work.

In this chapter, the field of complex systems, which is the context for this work, is reviewed,
and several examples of work that qualify as investigations of complex interactions are given.
In addition, the field of artificial life is presented together with some useful guidelines for
building biological models. Since the model described in this thesis focuses on the evolution
of neural network agents, relevant background on artificial neural networks, evolutionary

computation, and the evolution of artificial neural networks is provided as well.

2.1 Complex Systems

Complex systems can be found everywhere: biological systems (living organisms [14], brains
[14], protein folding [14], ant colonies [71, 148], ecosystems [6, 14]), manmade systems (the
economy [8], human civilisation [14], traffic jams [128, 187], the internet [6]), natural

systems (weather patterns [ 14]).

Complex systems are systems with many interacting components that display self
organisation without any central organiser [6, 29, 148, 149, 166, 167]. Adaptability and
robustness are two characteristics that can be used to describe most complex systems:
adaptability — some complex systems will continue functioning even if their environment

changes [6, 166, 167], and robustness — they may operate even if partially damaged [6, 166].

Complex systems are difficult to understand because they often display emergent global
behaviour [148, 167], and thus, are difficult to understand using a reductionist approach — by
examining every part in isolation [148, 166, 170]. It has been claimed that the only way to
understand a complex system is by examining it as a whole, since the global behaviour of the

system is a result of all its components and their interactions [166].

The components of complex systems can have a range of diverse attributes. They may be
identical or different; for example, individual cars in a traffic jams are (conceptually)
identical, whereas the components of the global economy are diverse and varied. They may

be simple building blocks or be complex systems as well; for example, individual air and
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water molecules in a tornado are simple systems, unlike individual animals in an ecosystem
which are complex systems. They may interact with close components or only with distant
components; for example, in the economy, two very distant companies — geographically and
economically — may trade, whereas in neural networks there has to be a direct connection
between neurons for them to interact. They may have a specific role in the system or be
interchangeable with other components; if they do have a role, it may be static or dynamic
[6]. For example, in a flock of migrating geese, any member of the flock may act as the

‘leader’, however, individual worker ants in an anthill can never replace their queen.

The interactions that occur within a complex system typically form a complex network [6].
There are numerous possible types of interactions between components in a complex system
[149]. These interactions have the potential of being highly nonlinear: a small change to one
component may affect the entire system [148, 191]. The connectivity between components is
not static and may change: interactions can be added or removed from the system. A pair of
interactions may be symmetric (for example, competition among agents on resources in an
ecosystem) or asymmetric (such as the interactions that take place between predator and prey)
[149]. An interaction may have a cost/limited capacity associated with it (for example, an
airport must limit the number of departures/landings per hour for space and time constraints),
or an ‘age’ which sets its removal time (for example, individuals cannot stay in an
organisation forever). Finally, there is often a random element affecting the interactions:

noise within the system [6].

The field of complex systems aims to discover rules that govern the behaviour of different
emergent, self-organising complex systems [6, 148, 167]. So far, it has contributed to
evolutionary theory by taking ideas and results from other complex systems in order to better
explain evolution (e.g. the concept of “energy landscape” which builds on fitness landscapes)
[149]. In addition, the study of complex networks is a prominent subfield of complex systems
that has recently discovered certain fundamental laws and organising principles that appear in
real world complex networks [15] (for example, the fact that several distinct types of
networks, including small world networks and scale free networks, frequently describe the

connectivity of real world complex systems; all of which share certain commonalities [6]).

2.1.1 Hierarchical complexity

Real world complex systems frequently exhibit hierarchical complexity: a basic component
in one level is often a complex system -- an emergent whole [83] — at a lower level. Complex
systems may consist of numerous such levels [75, 83, 100, 170, 181]. These levels may have

different temporal and spatial scales [181]; for example, behaviours at the higher levels, i.e.
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the ecosystem level, take place over larger spatial areas and also happen over larger periods
of time than behaviours at lower levels, i.e. the brain of an animal which is a component of
the ecosystem. Fig. 2.1 demonstrates a hierarchical complex system within a greater

hierarchical complex system; there are a total of four levels in the greater system.

Fig. 2.1: A hierarchical complex system that is characterised by four distinct levels. The
basic components of the greater hierarchical complex system (level 4: the entire figure)
are the purple circles. Each of the purple circles is a hierarchical complex system in its
own right (level 3) which comprises several smaller complex systems (level 2: blue and

green circles), which are made up of basic elements (level 1: small circles and squares).

As briefly mentioned in the introduction chapter, a consistent limitation of the majority of
investigations of real world complex systems is their focus on a limited range of levels of the
model, mostly one, which are assumed to be separate from the other levels [100, 125, 127,
170]; this is obviously an unrealistic assumption, as it is clear that interactions that are
initiated by a component at one level may affect the behaviour at other levels [100, 170]
(presumably, this approach was taken in order to make the study more feasible [170]). In fact,
it is increasingly demonstrated that the behaviour of a hierarchical complex system is a result
of numerous nonlinear interactions that take place among components at different levels of
the system [170]; this has already resulted in a large number of global ecological phenomena
to be reinterpreted as events that are a result of interactions that take place between
components at different levels - such as the colonisation within groups in a species [11] and

the tendency of organisms within a population to be distributed in a log-normal manner over
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a terrain [222]. Those interactions that occur within a hierarchical complex system between
components at different levels are included in the concept of ‘complex interactions’ which is
introduced in this thesis (and also includes interactions that take place between components at

the same level).

The field of complex systems has been instrumental in beginning to change this outlook.
Incorporating complex interactions and their effects into models of real world systems has

greatly influenced the way ecological dynamics are explained [170].

This approach is still only infrequently adopted; only some ecological models, and a few
other models from different fields, have modelled real world systems hierarchically. In this
thesis, the aim is not to investigate the phenomena of one field using a hierarchical complex
system, as is normally the case, but instead to use this type of system to investigate complex

interactions from a complex systems perspective.

Dynamical hierarchies

A new subfield of complex systems known as dynamical hierarchies has recently emerged,
which aims to create systems capable of spontaneously self-organising into hierarchies; a
specific goal is the demonstration that simulations are capable of exhibiting more than one
hierarchical level of emergent structure [21, 75, 124]. However, to this date, models that

exhibited more than a single level of emergent structure are rare [124].

According to researchers in this area, in order for a dynamic structure to be considered a new
emergent level, it must be demonstrated that new functionalities emerge as a result of the
interactions between simpler building blocks (which can be dynamical structures as well) [21,
75]. For example, Prokopenko et al [180] demonstrated a system where a collection of simple
sensor cells can form multicellular structures — impact boundaries — which have two new
properties: they can be closed and continuous, thus, can be considered to be second level
emergent structures. Additionally, these structures can combine in order to enclose spaces,
and so, effectively form impact networks which have a new property — a spanning tree

topology — thus, can be considered third level emergent structures.

In contrast to the subfield of dynamical hierarchies, where the goal is the dynamical creation
of multiple emergent hierarchies, this work focuses on the usage of a hierarchical complex
system, which can be emergent, predefined or a mixture of both, in order to investigate
complex interactions. Obviously, it is impractical to wait until a model that exhibits multiple

dynamical hierarchies is created for the purpose of investigating complex interactions, as this
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may take quite some time. Therefore, the subfield of dynamical hierarchies is only of limited

relevance to the work in this thesis.

2.1.2 Emergence
Emergence is a fundamental concept in complex systems and artificial life research. There

are many different definitions of the term, and yet, there does not seem to be one that is
universally accepted. A popular definition states that an emergent phenomenon is one that
arises from the behaviour of low level components, but is difficult/impossible to predict or to
reduce to the properties of those components [29, 148, 149, 157], or similarly, its behaviour
cannot be derived by analysing a model of the system [31]. One criticism of these definitions
is that the unpredictability may simply be a result of lack of information of the system, and
so, it is not an appropriate criterion for determining emergence [29, 59]. Interestingly, this
definition implies that an observer is required in order to form expectations about the result:
if his expectations are correct, there is no emergence. However, if he is ‘surprised’,

emergence occurs [30, 51, 191].

An alternative definition, which does not change based on the amount of information
possessed or availability of an observer, states that emergence occurs when the interactions
between many components generate a new behaviour providing that (i) the underlying
components are not aware of this new behaviour, and (ii) a new vocabulary is required in

order to describe the new behaviour but is not needed to describe the components [218].

Another alternative definition is weaker: emergence is defined as the collective behaviour of

many elements that cannot be attributed to a single element [48].

To some extent, all the above definitions attempt to capture a notion that we grasp intuitively,
thus, are precise only to a limited degree; consequently, some researchers have pursued more
formal definitions of emergence that do not depend on any human descriptions. That said,

there is no universal agreement on one formal definition as well.

One approach by Polani, which is based on information-theoretic criteria, attempts to
characterise emergence in a way that naturally arises from the inherent structure of the
dynamical system, thus, emergent descriptions are defined as a “complete decomposition of
the system into independent subsystems which are individually predictable"; these

3

subsystems are seen as “‘emerging’ from the global system dynamics.” [177]. Another
approach by Kubik is based on language-theoretic and grammar systems, and defines an

emergent property as a one that is generated when a “multiagent system as a whole can
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generate a language (behaviour) that cannot be generated by the superimposition (summation)
of individual agents’ languages (behaviors)” [114]. Shalizi argues that emergence has nothing
to do with external observers and is an intrinsic and objective quality; thus, he defines
emergent processes as processes that have a greater predictive efficiency than the process
they are derived from [205], that is, "each bit of macroscopic information delivers more

predictive information at the higher levels than the lower ones" [206].

The lack of agreement for the definition of emergence makes any definition arguable. For this
thesis, the popular definition is seen as most appropriate:

An emergent phenomenon is one that arises from the behaviour of low level
components, but is difficult/impossible to predict or to reduce to the properties of those

components [29, 148, 149, 157].

| .
" n/l" '

1 2 3

)

JM U

|
7 8 9

Fig. 2.2: An emergent Glider from Conway’s game of life. Using a few simple rules, the

object that appears in (1) ‘glides’ to the lower right in (5) and (9).

Examples of emergence include:

* The coordinated behaviour of a flock of birds emerges from the behaviour of
individual birds [19].

* The ability of individual ants to find the shortest path to food sources is an emergent
property ofthe interactions between searching ants [166].

* The fact there are many competing species and not just one is an emergent property
ofan ecosystem [149].

* The associative memory of the artificial neural network known as the Hopfield

network is an emergent property [14].
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e Conway’s game of life [64] is a famous example of a cellular automata that exhibits

emergent life-life behaviours (see fig. 2.2 for an illustration of the Glider object).

2.1.3 Complex interactions
Complex interactions are interactions that take place within a hierarchical complex system

between elements at the same or different levels. In hierarchical complex systems, the

emergent results of a lower level can serve as components for a higher level.

Since there are virtually no studies that explicitly focus on this area of research, in this
section a review of related research that deals with complex interactions is given;
unsurprisingly, most of the described work was not conducted within the context of complex
systems. Interestingly, as the real world is characterised by an abundance of hierarchical

complex systems, this type of research is very diverse and spans many scientific disciplines.

The following studies further confirm that the study of complex interactions is crucial
towards gaining a more complete understanding of the investigated phenomena, and in fact,
unless viewed with a hierarchical complex system point of view, many times it cannot be
correctly understood at all. Therefore, in order to gain a comprehensive understanding of
many types of real world phenomena, their hierarchical nature needs to be incorporated into

relevant computer models.

Computer modelling: investigating the effect of component integration

Malkin and Lotto [135] created a hierarchical complex system in order to investigate the
effect of the level of component integration on fitness and evolvability. In their study, a
population of modular agents was required to evolve movement strategies, where the motion
of each agent depends on the motion of its components, in order to reach energy sources; the
fitter the agent, the more energy it collected. One of the evolvable traits every agent
possessed controlled the level of component integration between the modular components,
1.e., the degree to which each component affected the behaviour of the overall agent which

was comprised by many components.

It was discovered that integrated agents are fitter but less evolvable, whereas unintegrated
agents are less fit but more evolvable. This was the result of the interactions between the
components of every agent given that the motion of each agent is an emergent behaviour
resulting from the collective behaviours of its components. In an integrated agent, it is much
easier for the components to evolve a coordinated collective behaviour which results in high

fitness. In an unintegrated agent, it is virtually impossible to evolve a coordinate collective
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behaviour which results in low fitness. In turn, unintegrated agents are more evolvable as
they enable smaller changes on the phenotype, whereas integrated agents are less evolvable
as a result of the disruptive effect of changes. The results clearly show how interactions at
low levels of a hierarchy affect the behaviour of a system at higher levels: the interactions of
components making up agents affected the agents’ behaviours, which in turn affected their
fitnesses, which affected the evolution of populations of agents. In order to improve

evolution, it was necessary to alter the interactions of the low-level components.

Computer modelling: a large scale traffic simulation

The Nagel group has created a traffic simulation tool for the purpose of analysing large scale
traffic dynamics [13, 154, 155, 183]. This tool enables transportation planners, engineers and
environmentalists to make better decisions regarding the effects of traffic. The system’s
capabilities were demonstrated by running a simulation of the transportation dynamics of
Switzerland, which comprise a very large hierarchical complex system. The simulation
divided Switzerland’s street map to 3,066 distinct zones (local authorities). Using census
information, 7.2 million inhabitants were simulated as agents, and a travel plan (3 trips per
day) was assigned for each: leaving times, a destination and a route. Traffic flow was
simulated using a realistic cellular-automata method, simulating details such as number of

lanes, turn and merge lanes and traffic signal phases.

Using the aggregated interactions of millions of individual trips, detailed transportation
dynamics were generated: the connectivity information of every simulated road as well as the
congestion map and the location of grid-locks (and also the resulting air quality). Many
interactions take place in this simulation; demand that is higher than the road’s capacity
causes congestion. Congestion affects travel time and causes grid-locks. In turn, these
emergent behaviours may cause individual drivers to change their travel plans, and utilise less
congested roads. Consequently, many of the possible routes for every destination are actually
utilised, including some that would not normally be used. Interestingly, although utilisation
of a traffic management system makes traffic more efficient by moving traffic from
congested roads to less congested roads, it results in traffic predictions becoming less
predictable, as the system is pushed closer to its maximum capacity, where even small
fluctuations can have a large effect. Finally, the higher utilisation of the system also generates

more air pollution.

Ecology: the roles of competition, predation and desiccation
Wilbur investigated the role that that competition, predation and desiccation (caused by

ponds that dry at different rates) have in regulating the structure of a controlled ecology,
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specifically, the distribution and abundance of species [240]. He conducted a series of
experiments using 36 small artificial ponds which were populated by 4 frog species and their

predators, a species of newts.

The experiments demonstrated that species that live in high-density communities, which are
characterised by limited food, are more resistant to competition than species that live in low-
density communities. The same species are also more resistant to predation than species that
live in low-density communities. However, species that live in high-density communities are
more susceptible to desiccation than species that live in low-density communities. Based on
these results, it was possible to conclude that predation only weakly affects the biomass of all
frogs; however, it greatly affects the species composition since some species (low-density
communities) are more sensitive to predators than others. Thus, predation reduces
competition, consequently, survivors are able to grow rapidly enough to leave the ponds
before they dried and so, avoided desiccation. When predation is not present, competition
slows growth, and as a result, death by desiccation is more likely. This study concludes by
stating that there is no one crucial force, such as predation or competition, that determines the

structure of the ecology, but instead it is determined by the interaction of all forces.

These results show how interactions at one level of a hierarchy affect the behaviour of a
system at higher levels, and vice versa: for example, by introducing or removing individual
predators, the structure of the ecosystem — its biomass and species composition — changes,
which in turn affects the survival and final body size of individual tadpoles. These changes
are a result of the interactions between the different levels of this hierarchical complex
system: organisms (tadpoles and newts), species and the ecosystem — together with the
environment — which is what the original paper referred to as the forces of predation,

competition and desiccation.

Metropolitan development

Innes and Booher [89] argue that the reason metropolitan development fails to achieve its
goals, namely, economical development and environmental protection, is because it attempts
to impose high level rules, through laws and regulations, on the system; although these may
temporarily help, their consequences are unpredictable and generally are unable to solve the
problem. They argue that once the social, political, and economic world are viewed as a
complex system, and one understands the interactions between fiscal policy, governance
structure, and infrastructure policy, it is possible to pursue both economical development and

environmental goals, and not just one of the two. This can be achieved by treating
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metropolitan development like an adaptive self-organising system and allowing its

components to interact and change in response to external conditions.

In order to achieve this goal: first, the components of the system must have full knowledge of
its state and must be allowed to interact with each other — this will enable better coordination
of activities. Currently, the system’s components have only limited knowledge of its state and
the environment, and so, cannot operate in its best interests and frequently only pursue their
own limited goals. These components come from all levels of the system, including planners
and policy makers as well as residents, businesses, community groups and public agencies.
Of particular importance is that components are provided with feedback regarding the results
of decisions made. Second, groups that include members from various agencies and
jurisdictions should be created for the purpose of addressing problematic aspects of the
system (e.g. air quality). Group members will come from all areas relevant to the problem,

and will have the mandate to decide how to monitor the problem and how and when to act.

To summarise, in order for metropolitan development to succeed — enable both economical
development and environmental protection — interactions between the system components
must be increased, and new interactions between the system’s components and the

environment must be formed.

Design 6f distributed systems

Gribble designed a scalable, fault-tolerant storage system called a distributed data structure
(DDS) [73]. A DDS is intended to be used as a virtual hash-table that is replicated across
many storage units; it consists of many components that are located on different machines.
Numerous software clients (such as web servers) can connect to the DDS and use it
concurrently. A DDS relies on timeouts to detect failures of components (a component has
failed if it does not respond within a given amount of time). Every component relies on a
garbage collector (an automatic memory release mechanism) whose performance depends on

the local machine’s load.

A flaw in the DDS design caused a cascading reaction across all levels of the system: when
many clients interact with the DDS it occasionally reaches near-maximum capacity; in this
state, random fluctuations in the load placed on individual garbage collectors cause the
component’s throughput to decrease, thus, to ‘fall back’ on its load. In turn, this causes the
DDS to reassign work to other components which results in further performance degradation.
Once a component responds slower than the timeout period, the system assumes it has failed.

Eventually, the entire system fails. Although the system was designed with robustness in
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mind, cascading interactions occasionally resulted in total failure.

One solution suggests that the system adapt its behaviour according to its dynamics: by
monitoring the ongoing interactions, the system could determine it is in danger, and behave in
a way that guarantees stable performance (e.g. reject some client requests). Interestingly, this
conclusion is very similar to conclusions reached by the Nagel group regarding the usage of

their traffic simulation tool to optimise traffic.

In addition to these diverse studies of complex interactions in various systems, there are

many others in areas such as medicine and finance, as briefly summarised below:

Medicine

Seely and Christou [201] demonstrated that patients with the multiple organ dysfunction
syndrome (MODS) can be better treated and monitored by evaluating the patient’s response
to trauma or shock as a hierarchical complex system (“a complex nonlinear system involving
a great number of variables and systems of variables”) that is characterised by numerous
complex interactions between the metabolic, neural, endocrine, immune and inflammatory

systems.

Financial Valuations

Limburg et al [130] argued that when performing valuations, the financial estimation of
ecological processes (“‘ecosystem services”) must take into account the possibility that the
interactions between the financial processes and ecological processes may cause aspects of
the ecology to irreversibly destabilise (for example, by over fishing, a species of fish may be
driven to extinction), in order to be able to determine whether the result of a financial process

is ecologically safe or not.

Whether in computer modelling, ecology, metropolitan development, distributed systems,
medicine or finance, researchers have all shown that the overall behaviour of hierarchical
complex systems is dependent on complex interactions between many levels of the
components that make up those systems. Often seemingly inconsequential interactions at a
low level of a hierarchy can have significant effects on resulting behaviours at higher levels.
The work in this thesis is one of the first attempts to explicitly study such interactions and

their effects in a complex Artificial Life system.
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2.2 Artificial life

Atrtificial Life, or ALife, as it is commonly called, is a field that deals with investigating
simulation models of living systems for the purpose of increasing our understanding of
biological and other natural types of phenomena [157, 221}; ALife studies not only biological
systems, but also social groups and economic populations [19]. Some view ALife as a branch
of complex systems [19, 170]. ALife is thought to supplement traditional types of biological
research by synthesising life-like behaviours within computers [120]. It is hoped that by
studying various models of many different natural systems, fundamental principles that

govern numerous classes of complex systems across fields can be discovered [19, 20, 158].

The field of ALife is still in its infancy, and even now, nearly two decades since the first
workshop on the subject, there is still no agreement on major issues, such as whether ALife is
a true discipline or merely a novel and useful collection of methods [158], as well as no
established metrics for the main phenomena researched by its practitioners [158]. Indeed,
even the main direction of the field is unresolved, such as whether it should only focus on
investigating biological questions that are grounded in our reality, or also investigate
theoretical questions that do not relate to life on earth as we know it (arguments supporting

one view or another are in [41, 157, 237)).

Research in ALife is conducted by construction of easy to manipulate models that are
powerful enough to capture much of the complexity of biological systems [221]. These types
of models often involve some form of artificial evolution (using a type of evolutionary
algorithm such as genetic algorithms [157]), but may not use evolution and still ‘qualify’ as
AlLife work. Evolution is fundamental to many ALife models because it can be used as a way
to search a large space of possible solutions for a specific problem (see section 2.4); ideally,
the discovered solution will mirror natural strategies that are utilised by biological organisms
and gained through natural selection [157]. The overall aim is that by understanding how the
models behave, and how this behaviour is affected by altering aspects of the model
(parameters, initial conditions, etc), insight can be gained with regards the modelled

phenomena [237].

AlLife simulations are mostly agent-based, and normally take a bottom-up approach, where
many simple elements (e.g. molecules, cells, organisms) are allowed to interact with the
intention that global, life-like, patterns, which are normally the object of study, will emerge at
a higher level as a result [19, 31, 100, 147, 157, 170, 184, 223]; in this type of simulation, the
investigated property is not explicitly coded in the model, but is supposed to emerge [100,
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170, 184]. A fundamental assumption behind the approach taken by ALife is that the essence

of biological complex systems can be captured using (relatively) simple models [19, 20].

Compared to mathematical models, ALife models typically enable a finer-grained description
of the systems being modelled. Thus, for the purpose of this thesis, ALife models are likely to
be better suited to the investigation of interactions between multiple levels within a

hierarchical complex system [100].

2.2.1 Why should artificial life models be used?

If life could be restarted from the beginning, it is possible many characteristics would evolve
differently; for example, it is conceivable we might have a number of digits in our hands and
feet which is not five. Yet it is also possible many characteristics would evolve as before; for
example, there may always be animals that can swim, fly or walk. Even though these are
among the most fascinating questions, traditional science generally cannot resolve whether
certain aspects are present because they are necessary or are merely the result of a particular
historical development. There are many such open questions in biology that are unlikely to
ever be answered using traditional methods. Some of these questions require creating
conditions that cannot be made empirically; others require experiments that would take time
scales too vast for scientists to perform [147] or involve biological data that is too complex

and incomprehensible to be used [19, 147].

The primary advantage of Artificial Life models is that they enable investigating hypotheses
that would be difficult or even impossible to test in other ways [19, 54, 100, 147, 157]. In
addition, ALife models can be used to test the coherence of existing theories: examine the
underlying assumptions of existing models [54, 100, 147, 158], as well as the consequences
of altering these assumptions [100]. Perhaps the most novel usage of ALife models is that
they can be used to examine fundamental concepts of life such as self-organisation, natural
selection, the theory of complexity [100]; ALife enables exploring not just models of
biological life as we know it, but can also explore life-like systems that only exist in theory
[237]. In fact, as mentioned in the previous section, one of the goals of ALife is to look for
unifying principles that can govern living systems [19, 100, 237] (though some doubt
whether this can be achieved [219]). Even if none of ALife’s achievements are considered, at
the very least the tools and methods created by its practitioners can be used by other fields
[237].

Unlike biological experiments, every aspect of ALife experiments has the potential of being

fully controllable [41]. The scientist can also have complete access to every component of the
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simulation and its behaviour over time (i.e. dynamics of evolution) — yet he need not fear that
gaining these observations affect the results of the simulation [41, 170]. Every experiment
can be repeated as many times as the researcher wants [147], and he is at liberty to alter the
starting conditions, and restart the experiment to see how these affect the system’s behaviour
{147]. Furthermore, by explicitly modelling evolution using a computer simulation, it is
possible to view evolution as a computational process, specifically, analyse it from a novel,
computational perspective, e.g. measure the ‘information’ contained in a population and
understand how this information eventually is used to increase fitness [147] (in one such
study by Bergstrom and Lachmann, the fitness value of information of the environmental
state within the model was calculated [28]. In another study by Chu and Adami, the
relationship between fitness and mutation rate and the propagation of information within an

AlLife simulation was examined [47]).

Although ALife models often cannot be used to make precise predictions of real world data
[147, 170], they are very good at displaying a system’s dynamics, and observing the
conditions and mechanisms that result in unexpected behaviours; thus, can be used to provide

users with an intuition of the system: which events are normal and which are not [147, 170].

2.2.2 Criticisms of artificial life
Even though ALife is a promising field, it certainly has its share of problems. It is hoped that

as the field matures, its problems will be resolved.

A common criticism of ALife researchers is that they have been running experiments without
any clear hypothesis and lacking theoretical frameworks [41]. Indeed, its practitioners have
been generally accused of not always being very rigorous when it comes to methodology [54,
223]. This is certainly not made easier by the fact that, as all computational models, ALife
models are difficult to verify; it is not easy to identify the extent that each of the rules of the
model contributes to the global behaviour of the system, and whether these rules are based on
valid assumptions [100, 170]. At times it can also be difficult to explain a system’s
behaviour: decide whether its behaviour is a result of the model or is caused by unknown and

irrelevant elements, such as conceptual or programmatic errors [41, 100, 170].

With regards to practical problems, ALife models frequently have to be simplified in order to
be computationally feasible and for their results to be comprehensible [147]. Furthermore,
because they are often too abstract, it is difficult to relate their dynamics to the behaviour of

the real world phenomena they simulate [147, 219].
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In order to do good research in ALife, it may be advisable to follow guidelines on building
good models (next section). In addition, it has been suggested that cooperation between
ALife researchers and biologists be made for the work to be biologically significant [100].
Finally, whenever possible ALife models should incorporate real world data [100, 170] — it is

particularly important to incorporate real world empirical constraints into the model [31].

2.3 Modelling biological systems

2.3.1 Agent-based modelling or equation-based modelling

As briefly mentioned in the introduction chapter, there are two main ways in which
researchers model complex systems: agent based models (ABMs) and equation-based models
(EBMs). ABMs comprise many individual agents that encapsulate the behaviours of the
various components of the system. EBMs consist of a set of equations that are evaluated
when the model is executed [171]. Although each type of model has its advantages and
disadvantages, and it cannot be said that one type is superior to the other [41], it seems that

ABMs are more suitable to modelling systems of the type this thesis is focusing on.

Equation-based models consist of a set of equations that describe the relationship between
system variables [171]. EBMs capture only the global dynamics of the system, the collective
behaviour of many elements, and cannot be used to look at individual components of the
system and their interactions [147, 149, 156, 169, 171]. In order to be solvable, this type of
model often has to be greatly simplified — at times, enough that the model becomes
unrealistic and does not provide any useful insights about its target [147]. EBMs are
particularly unsuitable when modelling systems which have different hierarchical levels
[100], spatially distributed phenotypes [41], small populations [221], as well as when there
are complex, non-linear interactions between components [41]. In fact, according to Taylor
and Jefferson [221], modelling biological systems using EBMs is completely impractical, as
even simple models of an organism’s behaviour require hundreds of equations — a feat
modern mathematics cannot perform. That being said, an advantage of EBMs is the maturity
of the supporting mathematical sciences (statistics, dynamical systems theory, etc) [41] as
well as the availability of several popular tools for construction and analysis of system

dynamics models [171].

Agent-based models consist of many individual agents, each encapsulating the behaviours
that make up the various elements of the system. ABMs enable access to all the components
and processes of the system: these can be analysed at any given moment [170]. However, like

EBMs, ABMs also capture the global variables of the system — these simply emerge from the
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interactions of all components and are not simply calculated; this also makes verification of
ABMs easier, as there are is more than one level of variables that can be compared [171]. In
addition, ABMs are not susceptible to the limitations of EBMs mentioned above, and so, can

be used for a wider range of problems [100].

Construction of ABMs is easier, their usage tends to be more intuitive, and comparing their
results with their targets is easier [171]. That said, like EBMs, ABMs frequently have to be
simplified in order to be computationally tractable and for the results to be understandable —
thus, run the risk of modelling the target incorrectly, and not being able to provide any useful
insights about it [147]. One disadvantage of ABMs is the lack of universal tools for creation

and analysis, which usually must be developed by researchers independently [157].

ABMs are particularly appropriate for usage in ALife simulations for two reasons. First, since
ALife experiments attempt to recreate a desired phenomena through the collective
interactions of many components, ABMs are the perfect match [157]. Second, being able to
analyse the components and behaviour of the simulation is a primary concern in ALife

simulations.

2.3.2 On the design of models of biological phenomena
Even though computational models are built and used in many different fields, there does not

seem to be one methodology which is agreed by all on being the ideal one [233], nor is there
an agreement on the proper role of models [185]. In fact, there is even no agreement on what
is meant by the word ‘model’ in science [122]. In her excellent review, Webb [233] surveyed
seven dimensions which simulation models can vary in and provides a comprehensive
framework that can be used. This thesis supplements this framework with definitions made
by other authors. Throughout the thesis, every expansion to the model is thoroughly analysed
using this methodology. Note that only six dimensions — those relevant to this thesis — are
mentioned; the seventh dimension, ‘medium’, which deals with the physical material used for
implementation of the model, is clearly only relevant for models that are implemented in

hardware and not the software models used in this thesis.

Definitions

A model is the representation of a hypothesis underlying an explicit real world phenomenon
[223, 233]. The model’s hypothesis clearly specifies the components and interactions thought
to be sufficient to generate the desired behaviour [233]. Thus, by implementing the model,

the researcher is able to view the consequences of the assumptions underlying the hypothesis
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[41, 233]. If the behaviour of the model is similar to that of the target, then it is reasonable to

assume that the model’s assumptions are in fact true [157, 233].

Ideally, the model implements the hypothesis and nothing besides, so that the generated
behaviours can in fact only be attributed to the hypothesis [223, 233]. However, the process
of implementation normally requires elaborations or simplifications of the hypothesis for it to
be tractable, and these may not have an underlying theoretical justification, and so, the actual

model is likely to contain some elements that are not a part of the hypothesis [233].

If the model does not generate the target behaviour, then it is assumed that the underlying
assumptions are not enough to generate the target; it is possible to alter the assumptions and
try again [223]. It is important to remember that a model that correctly generates the desired
behaviour may still erroneously explain the target behaviour for one reason or another — the

correctness of the assumptions is not guaranteed [233].

Dimension 1: Biological relevance

This dimension defines the degree in which a model is biologically relevant, meaning, it is a
model that is useful towards improving our understanding of the modelled biological
phenomena. These type of models can be used to test hypothesis that are relevant to a
biological system; however, the extent of which these models can be used to ask questions
varies: some models aim to represent biological phenomena more or less closely than other
models, for example, one model makes specific empirical claims about a biological system

while the other only generally describes its dynamics.

Dimension 2: Level

This dimension describes the hierarchy of processing levels — the levels of organisation — that
the model represents, specifically, the rudimentary elements. Deciding the appropriate levels
to represent is problem specific — there is no one ‘correct’ level: levels that provide relevant
details towards gaining an understanding of the system should be included. However, for the
purpose of this dimension, it is not crucial that every level is ‘anatomically’ accurate, as long

as its functionality and behaviour are correctly replicated [208, 233].

Dimension 3: Generality
This dimension describes the generality of the model: the more general a model is the more

real systems it applies to.
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Dimension 4: Abstraction

This dimension describes the level of abstractness of the model: the degree of which the
modelled phenomenon’s components and processes are described. A detailed model is less
abstract. There are advantages and disadvantages for both complex and abstract types of
models. Complex models are more difficult to implement, understand and verify. However,
abstract models are in danger of ignoring aspects that are crucial towards understanding the
system. Segev suggests that complex models are required at first to discover what the
appropriate simplifications are [202]; it is possible to ‘simplify’ in the ‘wrong way’,

particularly when the system is not well understood.

Dimension 5: Accuracy

This dimension describes the level of accuracy of the model: whether the mechanisms and
process of the model mirror those in the real system. When the accuracy dimension of the
model is high, it can be said the scientific content of the model is justified. Even models with
some inaccuracies can be biologically relevant, that is, useful towards increasing our
understanding of the system as long as the erroneous assumptions are well understood. Some

models that are very inaccurate can still be very biologically relevant [233].

Dimension 6: Match

This dimension describes the degree which the model behaves like the target phenomenon;
only the behaviour is considered (and not the mechanisms). There are many different ways in
which a model can behave like its target ranging from being able to produce roughly similar
dynamics to being able to provide precise predictions. If the target behaviour does not match
the model’s behaviour then the hypothesis can be rejected or possibly altered; otherwise, the
underlying hypothesis is strengthened to an extent that depends on the model’s mechanisms

matching the target’s [233].

2.4 Evolutionary computation

The field of Evolutionary computation (EC) deals with algorithms for solving computational
problems using principles from evolutionary biology and genetics. Evolutionary algorithms
(EAs), as these types of algorithms are called, include Genetic Algorithms, Evolutionary
Programming, Evolutionary Strategies and Genetic Programming [27]. EAs have been shown
to be among the most flexible, efficient and robust of all search algorithms [68], thus, are
now used to solve a wide range of different problems [27]. EAs are particularly suitable for
problems that require programs are adaptive: continue operating even when the environment
changes (e.g. controlling a robot in a dynamic environment). EAs are also useful for

researching aspects of evolution and nature [27, 147]. A computational and conceptual
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advantage of EAs is their simplicity: incorporating the principles of random variation
(mutation, recombination) and selection (survival of the fittest) together with reproduction

effectively defines an EA [147].

There are several principles which are true for all EAs. All EAs primarily deal with search:
they enable finding a useful solution for a problem within a huge collection of potential
solutions (called the ‘search space’) [27]; this is accomplished by evolving a population of
candidate solutions to a given problem using operators inspired by the principles of genetic
variation and natural selection [12]. The fact that EAs use a population of solutions grants
them the benefits of parallelism: they effectively search many different parts of the search
space simultaneously and do not focus on a single point [147]. However, even though they
are good at global search, EAs are relatively inefficient in fine-tuned local search [238, 245].
EAs aim to find a good solution in a reasonable amount of time, but not necessarily the

optimal solution [147].

2.4.1 When should an evolutionary algorithm be used?
There are many types of search algorithms. Good search algorithms operate by using an

intelligent strategy in order to pick the next area of the search space to examine [147].
According to the no-free-lunch theorem, there is no single algorithm which is on average
superior to any other algorithm [241]. Consequently, EAs are better for some types of

problemsv and worse for others.

There are several situations where EAs are particularly appropriate:

- When the search space is large and is not perfectly smooth or is not well understood. In
such situations, EAs are appropriate since they do not need additional information —
unlike other types of search algorithms which require a lot of additional information to
work properly (e.g. gradient techniques need derivates) that may not be available or is
difficult to obtain [68, 238, 245]. In other situations, EAs may not do as well as other
search algorithms.

- When the fitness function is noisy.

- When the global optima is not required, and a good solution will be sufficient [147].

- When it is less crucial to understand the way which the evolved solution works. Evolved
solutions often have a lot of irrelevant components [147]; consequently, it may be very
hard to understand how they work. When it is crucial to understand the operation of the

solution (e.g. for medical applications), EAs are probably not the best choice.
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2.5 Genetic algorithms

Genetic algorithms (GAs), which were invented by John Holland in the 1960s and 1970s
[86], are search algorithms based on the principles of natural selection and natural genetics
[68]. GAs operate by balancing exploration (discovering new components of solutions) and
exploitation (usage and incorporation of the known components) [147]. GAs are probably the
most widely used of all of the evolution based search algorithms [27], and are known for their
ability to deal with many types of optimisation problems and produce excellent results [27,
68, 86].

GAs, like other evolutionary algorithms, require maintaining a population of candidate
solutions. Each of the potential solutions has a genotype, which encodes all the traits of a
phenotype in genes. Using a fitness function, every candidate solution is assigned a fitness
value. This value assesses the quality of the phenotype for the purpose of the solving the
problem; it is crucial that the fitness function accurately determines the quality of the

phenotype [147].

The operation of the GA starts by generating an initial population of random candidate
solutions. The candidate solutions are then evaluated using the fitness function: the fitter ones
are kept, while the unfit ones are removed. The solutions that remain are allowed to
reproduce, and using the genetic operators of mutation and crossover, create new offspring to
maintain the population [147]. This process is called a generation, and is repeated a number
of times, often between 50 and 500. As long as the selection criteria relate to actual fitness,
there will be selection pressure towards areas in the search space with increasingly better
solutions [27, 147].

A genetic algorithm is a type of a complex system; the genetic operators and the various
parameters of the system interact nonlinearly to generate the global behaviour of the GA.
Although GAs are conceptually simple, their behaviour is complicated, and understanding

how they work, and what type of problems are appropriate is still unresolved [147].

2.5.1 Encoding a candidate solution
A candidate solution is frequently implemented using bit strings, but other encodings, such as

real numbers or characters, can also be used when more appropriate (e.g. when evolving the
weights of neural networks) [147]. Fixed-length, fixed-order, binary encodings are the most
common encodings for GAs. This has mainly been the case for historical reasons: a large
portion of GA theory, such as the Schema theorem, is based on the assumption of using these

encodings [147] (however, Schema theorem has been extended later on to include real
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numbers encoding as well [243]). The way in which candidate solutions are encoded is
extremely important and may in fact be the most important element that affects the success of
the GA [147].

It is also possible to adapt the encoding: instead of using a fixed size genome, its size can
grow or shrink as needed. This approach has a lot of potential, since it enables evolution to
find the ideal size for the genome. However, there are also some disadvantages: the genome

may grow extremely large [147].

2.5.2 Fitness landscapes
It is possible to create a visual representation of the entire space of genotypes with their

corresponding fitnesses: this is called a fitness landscape. It can be said that a GA is a method
for searching fitness landscapes for highly fit strings [147]. For problems with very ‘hilly’
fitness landscapes, finding the globally optimal solution (the highest peak) can be very
difficult [27] since it is possible to be trapped in a local optima — a candidate solution whose
immediate neighbours are all worse than it is — and thus, not be able to find the global optima.
However, the fact that GAs (and other EAs) use a population of solutions decreases the

likelihood of this occurring [68].

For most types of problems GA deal with, the fitness landscape is static; this is biologically
unrealistic — in the real world, the fitness landscape cannot be separated from the organisms
that inhabit it [147]. That said, for some problems, particularly for those where the quality of
one solution affects the fitness of the others (such as ecological simulations), the fitness

landscape constantly changes.

2.5.3 Genetic operators
The simplest form of a genetic algorithm has at least three operators: selection, crossover and

mutation. However, some problems require creating custom operators. Deciding which
genetic operators to use and how to implement them greatly depends on the encoding of the
problem [147].

It is very important that the effect of genetic operators is not too disruptive: the phenotypes of
generated offspring should not be too dissimilar from their parents’ phenotype [27]. In
addition, enabling the GA to adapt its own rates of mutation and crossover, as well as other
parameters and aspects of selection (such as the population size) during a run has the
potential of improving its effectiveness [147]. See section 4.2 for a more thorough discussion

of these issues.
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Selection

Selection determines which candidate solutions in the population are selected to reproduce -
create offspring for the next generation - and the number of offspring created. The purpose of
selection is to allow the fit solutions to survive; the fitter the solution, the more likely it is to
be selected. Selection has to be carefully balanced: too strong a selection will result in a loss
of diversity and convergence on a local optima, too weak a selection will result in slow
evolution. Selection works on the phenotypes and not on the genotypes - it does not ‘care’

how a trait is encoded [147].

There are many types of selection methods, including but not limited to:
Tournament selection: two individuals are randomly chosen from the population, and at a
predefined probability, one of them is selected to reproduce. This is repeated until the
number ofnecessary offspring is created [69].
Rank selection: the fitnesses of the candidate solutions are sorted, and each is given a
rank. The rank effectively becomes its new fitness. The advantage ofthis method is that it
prevents premature convergence. Its disadvantage is that it eliminates the relative
differences in fitness, which may be large [147].
Elitism: in every generation, some of the best individuals are kept [53].
Fitness-proportionate selection: every candidate solution is given a probability of being
selected to reproduce directly related to its fitness. This method is very popular, but can

decrease variability and as a result can often result in premature convergence [86].

I

Parent 1 0 1 0 1 0 110 1 0 1 0
1

Parent 2 0 0 0 1 1 111 0 0 0 0
1
1

Offspring 0 1 0 1 0 1 1 0 0 0 0

(after one point

crossover)

Fig. 2.3: Example of one-point crossover.

Crossover
Crossover causes the exchange of genetic material between the two parents. The conventional

theory of GAs states that the power of GAs is derived by recombining good ‘building blocks’
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of solutions to form better solutions, thus, it is believed that crossover is a primary reason
why GAs are successful [147]. Single point crossover is implemented by selecting a random
crossover point, and the before and after parts of the two parents are exchanged and form two
new offspring. Two point crossover works in a similar way, except two crossover points are

selected. See fig. 2.3 for an example of crossover.

Mutation

Mutation randomly changes the value of some of the genes of a solution; every gene has a
probability, normally very small, of being mutated. When genes are represented using bit
strings, mutation is normally done by flipping a bit (see fig. 2.4 for an example). When genes
are real numbers, a Gaussian function changes the value of the number or a new value is
randomly created. Holland suggested that the role of mutation is to prevent diversity loss for
a given gene, thus, it is significantly less important than crossover [86]. However, other EC
methods, such as evolutionary programming use mutation without crossover [147], and so,

evidently for some systems the role and importance of the mutation operator are different.

Parent 0 1 0 1 0 1 0 1 0 1 0

Offspring o 1 o0 1 0 1 111 o 1 o0

(after mutation)

Fig. 2.4: Example of mutation

2.6 Artificial neural networks
Artificial neural networks (ANNs) are distributed computational models with the ability to

learn or adapt, whose operation is based on parallel processing [113]. Neural networks are
particularly useful in areas where conventional programming fails since it requires possessing
a complete understanding of the problem which many times is unavailable [2]. Neural
networks have been useful in many areas, including vision, speech recognition, neurocontrol,
classification, handwriting analysis and more. A particular advantage of neural networks is
their ability to generalise - produce reasonable outputs for inputs that were never encountered
during training [77]. Neural networks were partially inspired by the ability of the brain to
make complex decisions quickly despite the slow speeds of biological neurons [151]. That
said, neural networks are only loosely based on biological nervous systems; there are many

biological complexities which are ignored [151].
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Input Layer

Hidden Layer

Output Layer

Fig. 2.5: A sample neural network with 6 input units, 3 hidden units and 2 output units.

An artificial neural network consists of many simple, interconnected, processing units [77],
which communicate by sending signals to each other through numerous weighted
connections [113]. A neural network can be viewed as a layered network. It has an input
layer, which contains input units that receive signals from outside the network. It has an
output layer, which contains output units that send signals out of the network. In between, it
has one or more hidden layers that contain hidden units whose input and output signals stay
within the network (see fig. 2.5 for a sample neural network). It has been shown that a single
hidden layer suffices to approximate any function with many discontinuities to arbitrary

precision as long as the activation functions of the hidden units are non-linear [76].

Feed-forward networks are neural networks with no closed loops [2], meaning, the data flow
is one directional: units receive their input from the immediately preceding layer and send
their output to units in the immediately succeeding layer. In such networks there are no
connections within the same layer [113]. This type of network can be fully connected; in this
case, every input unit is connected to every output unit [2], or they can be partially connected
- some connections are missing [77]. A recurrent neural network is similar to a feed-forward
network, but the flow of the data is bidirectional: it may have at least one feedback loop,
meaning, it may have at least one unit whose output connects to input of a unit from the same

or a preceding layer - or even itself[2, 77].
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This process of learning in neural networks, which is normally called ‘training’, requires that
the weights of a network, which is where the knowledge is stored, are altered in order to
achieve a particular function [2, 77]. There are three paradigms of learning: In supervised
learning, the network is trained by a ‘teacher’, which provides it with a set of inputs and
matching outputs in order for it to learn to associate patterns of the inputs with patterns from
the outputs [2]. In unsupervised learning, the network discovers complex, yet statistically
persistent, features in the input data which it has been trained on without requiring a teacher
[2, 77]. In reinforcement learning, the network learns to associate a set of inputs with the
appropriate set of outputs without requiring a teacher; this task is accomplished through
continued interaction with the environment in order to minimise a measure of the

performance of the network [77].

Back-propagation is a popular training algorithm for supervised learning [194]. When using
this method, the neural network is presented with a set of input data and the corresponding
desired responses. The weights of the network are altered in such a way as to minimise the
differences between the desired response and the actual response produced by the network.
This procedure is repeated many times, until there are no further significant changes in the
weight values. This way, the network learns by creating an input-output mapping for the
presented problem [77]. Although back-propagation is a very powerful technique, at times it
does not always work. For instance, when the network is trapped in local optima and is never
able to escape and find the global optima (this can happen if the error function is multimodal
or non-differentiable) [147, 245]. An additional limitation of this algorithm is the necessity of

having a teacher [147].

A neural network can also be trained by evolution. Using evolutionary algorithms, the
network weights and topology can be evolved [147]. This type of training has its own set of

advantages and disadvantages (see next section).

2.7 Evolving artificial neural networks

Standard training algorithms for neural networks, such as back-propagation, have many
limitations; using evolutionary algorithms, such as genetic algorithms, it is possible to
overcome many of these. It is, therefore, unsurprising that there has been a lot of work on
using evolutionary algorithms to evolve neural networks. The evolution of neural networks
using genetic algorithms (also called Neuroevolution [70] and Evolutionary Artificial Neural

Networks [245]) is a useful method of combining the benefits of evolution with learning.
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2.7.1 Aspects of neural networks that can be evolved
There are several ways in which genetic algorithms can be used to evolve aspects of neural

networks.

Evolving the connection weights

It is possible to evolve the values of the connection weights of a neural network [147, 238,
245]. One benefit of this process is that it enables training of neural networks without
requiring differentiable or continuous error functions — or even that there is an error function
at all; therefore, it is less likely to become stuck at local optimas and more likely to find a
good global solution [245]. Additionally, the network does not require a ‘teacher’ to supply it

with pairs of inputs and matching outputs.

Evolving the network’s architecture/topology

It has been shown that altering the structure of a neural network affects its functionality,
particularly its speed and accuracy of learning; however, it is difficult to determine the ideal
architecture of a neural network for the problem at hand, and there is no systematic way to
find it [147, 215, 245]. This can be solved by evolving the network’s topology; it is possible
to evolve any parameter related to the structure of the network, including: number of units
(hidden, input), number of layers, connectivity of the network (number and location of
connections, and whether to include recurrent connections), as well as the activation function
of potentially every hidden and output unit in the network [147, 238, 245]. See fig. 2.6 for an

example of an encoding of a network’s topology.

Many methods are limited to evolving only the connection weights and the connectivity of
the network and do not evolve other aspects (such as the number of units or layers) [214, 238,
245]. Other methods enable the evolution of most or all aspects. It has been shown that
evolving both structure and weights greatly improves performance since finding a suitable

structure decreases the dimensionality of the search space of connection weights [215].

Evolving input features

The possible inputs a neural network receives can be potentially very large. However, it is
possible some are redundant or unimportant. By determining through evolution which inputs
to consider, performance can be improved and the network size reduced. An interesting
benefit is that the researcher also discovers which input features are important and which are
not [238, 245].
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Fig. 2.6: An example of an encoding of a network’s topology. (A) The network’s
structure and connectivity. (B) The connectivity matrix (1 indicates units are connected)

(C) The final genome.

Evolving learning rules

Traditional neural network training algorithms use a learning rule that determines how the
weight updating takes place. There are many possible weight updating rules with many
variations (different value for the rate of learning parameter, using momentum, etc).
Choosing the right rule can greatly improve the learning ability of the network. Instead of
empirically searching for the ideal value, it is possible to use a genetic algorithm and evolve

the learning rules; this can greatly facilitate the process [147, 245].

In addition, modular neural networks/ensembles can be evolved (see section 7.1).

2.7.2 Additional considerations

There are several additional issues relevant to the decision whether the evolution of neural

networks should be used or not.

Generality
One advantage of using genetic algorithms is that it is possible to evolve different types of

networks (recurrent, feed-forward) using the same algorithm [245].

Special elements

It may be desirable that the training of the network includes additional elements. By
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incorporating special elements into the fitness function, it is possible to affect their training in
a way that takes these elements into account [245]. For example, by including the size or
complexity of the network in the fitness function, it is possible to bias the search so that it

will look for particularly small networks.

Initial conditions
Evolutionary algorithms are less sensitive to initial conditions than standard training
algorithms [245].

Speed

Several studies show contradictory results whether evolving networks is faster than standard
training methods, it seems there is no clear winner in terms of the best training method, and
that the best method is always problem dependent [245] (an unsurprising conclusion
according to the no-free-lunch theorem [241]). That said, since evolutionary algorithms are
relatively inefficient in fine-tuned local search but are good at global search [238, 245], and
traditional training methods are not ideal at finding global solutions, hybrid methods that
combine the advantages of both appear to be ideal [238, 245]: the GA is used for global
search, and a standard method is initialised with the results found and performs the local
search [245].

2.7.3 Encoding and genetic operators
There are several issues regarding the encoding and genetic operators to consider when

evolving neural networks, in addition to those mentioned in section 2.5.1 on encoding a GA.

Encoding: when evolving topology

When a network’s structure is evolved, the decision how to encode the network’s genome

becomes significant. There are two different ways in which a network can be encoded:

(a) Direct encoding: using this encoding, every aspect of the network is specified in the
genome. One disadvantage of this encoding is its scalability: when evolving very large
networks, the genome becomes very large, and consequently, the search space is likely to
be intractable [216]. An additional disadvantage is that repeated structures cannot
normally be reused, thus, they effectively have to be continuously rediscovered by
evolution [147]; for example, attempting to evolve the shape of a hand with five digits
would be very challenging using direct encoding as each digit would have to be evolved
separately — a far more sensible approach would be to evolve the design for one digit and
allow evolution to reuse it (see next item). Note that using custom operators, it is possible

to enable some reuse of structures — this is demonstrated in chapter 7.
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(b) Indirect/developmental encoding: using this encoding, the network is generated using
developmental rules which can be evolved. Unlike direct encoding, the information that
is encoded does not specify every trait in the network explicitly but rather specifies the
information required in order to construct the network. The advantage is that the genome
can be very compact because not every unit and every connection are described [215,
245]; this is also more biologically plausible [216, 245]. Additionally, this method
enables structures to be reused [147]. There are several disadvantages: the connectivity
patterns generated by this method are not very accurate [245] (because the genome only
describes the manner in which the phenotype is created, unlike direct encoding where a
complete and precise description of the phenotype is encoded in the genome), and
because the generated phenotypes do not map directly to genotypes, they can affect the
search in unpredictable ways [215].

It was shown that direct encoding is at least as good as indirect encoding with regards to the

creation of smaller neural networks [209].

Genetic operators

Deciding how to implement the search operators (mutation, crossover), and whether to add
custom operators, can have a very large effect on network training [245], and the evolvability
of the phenotype [196]. The choice of search operators greatly depends on the representation
used and on the aspects of the network that can be evolved; certain search operators are more

suitable than others for some representations [215]. See section 4.2 on evolvability.

Crossover problem: competing conventions

One consistent problem when evolving neural networks is the competing conventions
problem, also called the permutations problem: during the evolution of neural networks,
when two genomes that represent identical networks (in terms of solution) that are encoded
differently cross over, the offspring is likely to be unfit [215, 238]. This problem occurs
because the networks represent the solution differently: the same genes (same position in the
genome) may express different traits, and the same traits may be in different locations of the
parent genomes. Thus, crossover would disrupt the functionality of the offspring: its structure

may have duplicated traits or omitted traits — with both variants being unfit [215, 238].

In order for crossover to work, it is crucial that the right genes are crossed over with their
counterparts [215, 238]. Some methods solve this problem by eliminating crossover
completely, and only using mutation [238], others use historical information that keep track

of related genes, and so, know which genes to pair together during crossover [215], and
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others identify functional aspects of units in order to be able to perform intelligent crossover
[153]. Regardless of the mechanism, the important element remains the crossing over of

related genes [238].

2.8 Summary of chapter

This chapter reviewed the field of complex systems, with a particular focus on hierarchical
complexity. The result of this review indicated that although it is a well known fact that
complex systems in the real world tend to be hierarchical, scientific models rarely incorporate
this aspect, furthermore, a systematic investigation of the interactions that occur between
different levels of a hierarchical complex system model has never been performed. Indeed,
the importance of these interactions, which were labelled ‘complex interactions’, was further
reaffirmed by a survey of work conducted in many different fields that has repeatedly shown
that often the overall behaviour of hierarchical complex systems is dependent on complex

interactions.

Since a systematic exploration of complex interactions has never been conducted, the work in
this thesis introduces Mosaic World, a hierarchical complex system model that comprises a

population of evolving neural network agents, for the investigation of complex interactions.

In order to understand the context and usefulness of such models, and be able to create one
which correctly accomplishes its aims, a review of the field of artificial life, and a useful
methodology for the design of models of biological phenomena, were presented. The rest of
the chapter surveyed the practical matters involved in the creation of Mosaic World. Thus, a
description of the usage of neural networks and genetic algorithms was given, and an
evaluation of the issues — advantages and disadvantages — involved with the evolution of

neural networks using genetic algorithms was provided.
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Chapter 3

System: Mosaic World

3.1 Introduction

In order to explore complex interactions, a model that possesses the necessary characteristics
must be created and investigated. This chapter introduces Mosaic World, a hierarchical
complex system model that can be used for the investigation of complex interactions as well

as for the exploration of other computational and biological hypotheses.

3.2 System overview: concept and goals

The investigation of complex interactions required that a hierarchical complex system model
is created. This could be accomplished by selecting a hierarchical complex system seen in
nature and systematically modelling its components across all levels. Although this approach
would result in a model which possesses many complex interactions that could be
investigated, it was determined that it would be too limiting in terms of the range of possible
interactions and hypotheses that could be explored. Thus, in the early stages of the project it
was decided to select several interesting biological systems and universal principles for
modelling; in this type of model, every part is biologically plausible, however, the overall
model is only partially accurate from a biological point of view. On the other hand, such a
model enables investigating a much larger range of interactions and hypotheses, and so, its
computational and biological relevance and overall usefulness is considerably greater. This is
justified because the model is biologically relevant — its results are plausible and realistic —
consequently, it is mostly irrelevant that the model is not biologically accurate in its entirety
(this viewpoint is supported in Webb’s review [233]). More importantly, since the ultimate
goal is the detailed investigation of complex interactions in a hierarchical complex system,

the precise nature of the overall system is of secondary importance.

As a result, several versions of Mosaic World have been used for the work described in this
thesis. The initial version is described in this chapter. Additional versions are expanded and
examined in later chapters. All versions of the model are hierarchical complex systems that
enable the exploration of the interactions that occur between the various levels of the model
and the examination of interesting hypotheses. That said, the more advanced versions are
more hierarchical than their predecessors, and as a result, the study of complex interactions
becomes more informative in the later versions (and later chapters) as the hierarchical

complexity of the model is incrementally increased.
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The visual environment is a suitable environment for modelling. Although this may not be
immediately obvious, the stimuli that the visual system receives are inherently ambiguous.
This ambiguity is a result of the unknown contributions of the three elements that make up
the visual stimuli: the reflectance of the viewed objects, the quality of the illumination and
the effect on the passing light of the surrounding medium. Thus, because the visual system
has no direct way to ascertain the source of the image, it can be argued that disambiguating
the received stimulus is the most basic challenge of all visual systems [131, 132, 133, 182].
For this reason, a visually ambiguous environment is an appropriate context for the study of
complex interactions, and also provides a useful model for exploring other interesting

computational and biological hypotheses.

Therefore, the initial version of Mosaic World (which is equivalent to the system described in
[197]) was created and is described in this chapter; note that this version is used for the
studies described in chapters 4, 5 and 6 — though each of these chapters required several
additional minor features whose proper place is in the relevant chapter and not here. This
version of Mosaic World consists of a two dimensional grid of coloured surfaces under one
or more simulated light sources, and aims to emulate key characteristics of natural scenes.
This environment is inhabited by virtual agents, ‘critters’, that survive by consuming positive
resources and avoiding negative resources. Every surface’s value is determined from its
reflectance — its colour. Every critter starts out with a certain amount of energy and dies if it
runs out of energy. The critter population is maintained by the critters themselves; critters can
reproduce both sexually and asexually. Critter behaviour is determined using a modified 3D

feed-forward neural network.

Mosaic World naturally comprises many levels of abstraction: genes, neurons, receptors,
networks, critters, population and species; figure 3.1 illustrates the object model of the initial
version of Mosaic World. The construction of Mosaic World enables the investigation of
interactions between components at each level, and between levels, see figure 3.2. In
subsequent chapters, the model will be expanded and interactions table updated accordingly.
These interactions and their effects on the overall system are investigated by presenting a
series of challenges to Mosaic World, each designed to affect key interactions within the
system and enable their study. Note that the exploration of complex interactions includes not
only these key interactions, but also the cascade of interactions that takes place in the system,

across its various levels, following the original perturbation.

3.2.1 The methodology behind the initial version of Mosaic World

In this chapter, the methodology behind the initial version of Mosaic World is examined
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using Webb’s methodology for the design of models of biological phenomena (which was

introduced in section 2.3.2). Subsequent chapters will examine the additions to the model.

Recepti
Neuron Neuron
Critter Network
Environment
Neuron Neuron Neuron
Population
Fig. 3.1: Object model of the initial version of Mosaic World
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Fig. 3.2: Major interactions within the initial version of Mosaic World. For example, the
critter—*environment interaction denotes the depletion of the environment whereas the

environment—>critter interaction refers to the critter’s consumption of the environment.
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Before the methodology is examined, it is important to emphasise that Webb’s framework
provides guidelines for the construction of good models rather than presents a list of
statements that determines what a good model is and what is not; in fact, there is no single
description of a model that is universally agreed to be ideal {233]. Furthermore, many of the
criteria are subjective and so, cannot be objectively quantified and judged: how does one
decide whether model X is more ‘accurate’ than model Y when their results are not numeric?
Or more ‘biologically relevant’? Or whether the selection of ‘abstraction’ and ‘levels’ is
indeed appropriate to the problem? Many times there is no way to determine whether the
choice has been appropriate or not, the only thing one can do is provide good reasons for

one’s choices and back these with real data when available.

Biological relevance: the initial version of Mosaic World utilises three main biological

metaphors.

The primary biological metaphor used is a generic simple ecosystem. An ecosystem consists
of a community of organisms together with its physical environment; thus, the community
processes (reproduction, predation, etc) are strongly related to the physical environment [23].
In this case, the visual environment serves as the underlying context and as the resources
available for the critters, the inhabitants of the ecosystem. In this ecosystem there are many
types of resources, and one type of organism which has the potential of speciating into
different species; however, all critters must be herbivores (at this stage). Therefore, the

dynamics of the evolving ecosystem should resemble the dynamics of natural ecosystems.

In addition, the biological metaphor used for the environment is an abstract visual
environment, and the critter visual system is based on biological cone photoreceptors. The
usage of such an environment forces evolving critters to deal with one of the most
fundamental challenges faced by all organisms which rely on vision, namely the inherent
ambiguity of visual information. The usage of this visual system increases the likelihood of

biologically relevant results (and this is indeed the case, as the ‘match’ section shows).

Therefore, this version of the model is biologically relevant because:
e it can be used to examine complex interactions. This claim is backed in all the data
chapters (ch. 4-8) where a complex interactions analysis is performed.
e it can be used to examine hypotheses that relate to visual evolution (shown in ch. 5).
e it can be used to gain insights about simple ecosystems (demonstrated in ch. 6),
e it can be used to examine other computational and biological hypotheses (in ch. 4 it is

used to explore evolvability).
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Level: in this version the model consists of several levels: genes (level 1), neurons and
receptors (level 2), networks and critters (level 3), population and species (level 4). This
selection of levels was chosen in order to provide a sufficient initial framework for exploring
complex interactions while creating a realistic challenge for evolution that is not easy but not
prohibitively difficult. Although even in this version the system is hierarchical and thus,
useful for exploration of complex interactions, the study of complex interactions becomes
increasingly more informative as the number of levels increases. Such an increase in

hierarchical complexity occurs in chapters 7 and 8.

Generality: the main purpose of the model is the investigation of complex interactions which
can be achieved using many types of hierarchical complex system models, and does not
require modelling a specific biological system. Furthermore, as stated in section 3.2, the fact
that the model was designed to enable the investigation of a large range of hypotheses, and
does not focus on a single biological system, suggests that it is general and not specific. That

said, the model can be used to examine many specific hypotheses.

Abstraction: the modelled ecosystem, visual environment and critter visual system can be
said to be fairly abstract. Although many aspects of the real world have been modelled — and
as the accuracy section discusses, these features are based on real world mechanisms — clearly
many aspects have been omitted. The rest of the model can be said to be complex. Since this
thesis deals with the investigation of complex interactions within a hierarchical complex
system, the minimal hierarchical complexity of the model has to be relatively high (thus, in
ch. 9 it is shown that a minimum of 6 levels was necessary in order to obtain a// the insights

discovered in this thesis).

Accuracy: although the model is relatively abstract and does not describe complete real
world mechanisms, the aspects that are based on the real world are accurate. As stated at the
beginning of this section, it is difficult to back this claim; the only way to do so is describe
the model’s mechanisms that are used and show their similarity (and point out the
differences) to the real world phenomenon that is modelled. This will be done in the
following chapters as well. The following aspects are based on natural phenomena:
e the model’s ecosystem is based on real world ecosystems (as discussed in the
‘biological relevance’ section).
e the abstract visual environment is strongly based on the visual characteristics of the
natural environment, including: the usage of the human visual spectrum, the
implementation of multiple illuminants, environment and perceived stimuli.

e The critter visual system is based on the biological cone photoreceptor.
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In addition, a caveat which applies to many computational models applies here as well: the
algorithm for artificial neural networks used is based on a standard feed-forward artificial

neural network and not on the biological neural network.

Match: in the next chapters, the behaviour of the model will be compared with the behaviour
of the real world phenomena it aims to capture. That said, it can be said that the version of the
model described in this chapter matches the real world behaviours that it aims to capture
because its generated behaviours are similar to the behaviour of the target phenomena.
Therefore:

e In chapter S, it will be demonstrated that the evolved visual systems are not only
similar to biological visual systems, but also utilise mechanisms reminiscent of those
used in nature.

e In chapters 6, it will be shown that the model’s ecosystem greatly resembles many

real world behaviours that are examined in the chapter.

3.3 Definitions

Three elementary concepts are frequently used in this thesis: reflectance, illumination and

stimulus.

3;3.1 Reflectance

Real world objects have a reflectance: a physical constant which determines the percentage of
light the object reflects for any given wavelength [225]. In Mosaic World, every object has a
reflectance function: the percentage of reflected light in the human visual range (400nm to
700nm [182]) that the object reflects. This is modelled using 31 real numbers between 0 and
1, each representing the percentage of reflected light for a specific wavelength in increments

of 10nm.

Although in some experiments the values of all wavelengths are randomly determined, in
most experiments only 7 wavelengths are randomly created (referred to as the 7 major
wavelengths:  400,450,500,550,600,650,700nm) — all other wavelengths are linear
combinations of the two major wavelengths around them (e.g. 460nm =
0.8*450nm+0.2*500nm). This was done in order to generate a set of possible reflectance
values that is very large, yet is not too large to be computationally impractical. A sample

reflectance is illustrated in figure 3.3.
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Fig. 3.3: a sample reflectance; a reflectance can be defined using 31 real numbers that

describe every wavelength between 400 and 700nm in increments of IOnm.

3.3.2 Illumination

[llumination is the light that shines on a scene [182]. In Mosaic World, every object has an
illumination function: the intensity of the light source (in the human visual range) that
reaches the object. This is modelled using 31 real numbers between 0 and 1, each
representing the intensity of the light for a specific wavelength in increments of 10nm.

Essentially, this defines the colour ofthe light source.

The values of the illumination function are generated precisely the same way as the
reflectance function - in most experiments, only the 7 major wavelengths are randomly
generated; however, an additional limitation is that illumination intensity values are normally
limited to values between 0.2 and I (to avoid creating environments that are often too 'dark’

for recognition).

3.3.3 Stimulus

As in natural environments, the perceived stimulus for every object is determined by the
relative contribution of its reflectance and the shining illumination (in the human visual
range). Note that, similarly to the real world, there is no direct way to discern the underlying
reflectance and illumination. See fig. 3.4 for visual examples ofthe creation of stimulus using

reflectance and illumination.

700

Sf(o = Z Re©tf(o (3-D

/=400
Where St(i) is the stimulus value of wavelength i, Re (i) is the reflectance value of

wavelength i and I1(i) is the illumination value of wavelength 1i.
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Fig. 3.4: Three examples, each displaying a set of 3x3 reflectances that are illuminated

by a 3x3 varied light source; the result is a set of 3x3 stimuli.

3.4 Environment

Mosaic World’s environment is a 2D grid that consists of a customisable number of surfaces,
normally a 100x100 (empirically determined to be a sufficient size that is computationally
feasible). One or more simulated light sources of various qualities and sizes illuminate the
surface matrix. A number of holes are present in the world. Nothing exists beyond the edges
of the world; a critter that attempts to move more than one surface away from the edges dies

instantly.

3.4.1 Surfaces

Surfaces are the most fundamental element of Mosaic World. Every surface has a reflectance
function which determines the way it reflects simulated light, and a resource value which
determines its behavioural significance: the energy it grants or detracts from a critter that

consumes it.

Surfaces are the critters’ source of nourishment. Critters ‘eat’ the constituent wavelengths of
a surface’s reflectance function. When a critter takes a ‘bite’ out of a surface, every

wavelength in the surface’s reflectance function is decreased by the bite size; if a bite reduces
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a wavelength to a negative value, it is instead set to zero. This implementation was chosen
because it was reminiscent of natural consumption: a critter may only eat the wavelengths

that are actually there.

A surface’s current resource value depends on the percentage of wavelengths that remains
from its maximum value. As it is consumed, a surface’s resource value diminishes and it also
becomes increasingly transparent, eventually becoming invisible. The value of a surface that
has been completely consumed is zero. For example, if a surface that has a maximum
resource value of 30 has 50% of its constituent wavelengths eaten, its current value is 15; if

the surface’s maximum resource value is -30, after being consumed its value becomes -15.

Mosaic World uses two methods to determine a surface’s resource value: dynamic value

function and predefined value function. Both are used in different types of experiments.

Dynamic Value Function

This value function operates by assigning a value for every wavelength in the visual
spectrum; normally this is determined using a linear function (equation (3.2)); this essentially
defines the behavioural ‘worth’ of a wavelength. The surface’s value is calculated by
summing the multiplication of every one of the wavelengths that constitute its reflectance
with its behavioural value (equation (3.3)). By altering the values ofa and b in equation (3.2),
different values can be assigned for equivalent surfaces. Note that using this type of value
function, some wavelengths are worth significantly more than other wavelengths. In fig. 3.5,
a sample value function is illustrated; using this value function, the value of the reflectance

displayed in fig. 3.3 is -17.43, thus, when such a surface is consumed, it detracts energy.

20

15

*
400 450 500 550 .« 600 650 70

Wavelength

Fig. 3.5: A sample value function. In this example, a = -1.1666 and b = 17.5. The chart

illustrates how much every wavelength contributes to the surface’s overall value
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In addition, complex value functions can be created by using different functions for

describing individual wavelengths — this means that equation (3.2) is replaced with other

functions.

a(i—400) +b
10

Where V(i) is the behavioural value of wavelength i using the value function, and a and b are

V(i) = (3.2)

predefined constants.
700
S =Y Re()V (i) (3.3)
=400

Where S is the surface’s value, Re(i) is the reflectance value of wavelength i, and V(i) is the

behavioural value of the wavelength.

This type of value function has been adopted because it provides a useful model of natural
phenomena: using this function, similar colours have similar values, and different colours
normally have different values as well. Furthermore, it assigns different values to different
wavelengths, and thus, may encourage critters to evolve strategies that require them to
identify specific wavelengths, which is a desirable goal because it may enable comparison of
evolved visual strategies with their natural counterparts. Last, another appealing advantage of
this value function has been the fact that every surface is likely to possess both positive
wavelengths and negative wavelengths, with the overall value dependent on the proportions
of each; this enables creating surfaces with extremely diverse value structures: e.g. the
following ‘surfaces are all equivalent and are equal to zero: (i) a surface with few short
wavelengths (400nm, highly positive) and many long wavelengths (600nm, mildly negative)
(ii) a surface with many medium wavelengths (500nm, mildly positive) and few very long
wavelengths (700nm, highly negative) (iii) a surface with a uniform amount of all

wavelengths.

Predefined Value Function

This value function operates by simply assigning a predefined value for every type of surface
(e.g., the value of red is 25, the value of blue is -25). The types of wavelengths have to be
predefined and given a specific characteristic reflectance. A consumed surface’s current value
is worth the percentage of wavelengths that remain, multiplied by the maximum surface
value. For example, if 80% of a red surface’s wavelengths have been consumed, and its

maximum value is 25, the surface’s current value is 5.

This value function is useful but only infrequently used (specifically, in the colour vision

experiments — chapter 5); even though it offers far greater control than the dynamic value
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function - similar colours can have radically different values, and different colours can have
identical values - there is a serious limitation to this mechanism: all the possible colours have
to be predefined and a specific value must be assigned. This is a serious constraint, since
some of the environments used in experiments have thousands of randomly defined shades of
colour. Thus, this value function is suitable for experiments that require only a small number

of colours.

Fig. 3.6: A demonstration of surface regeneration: this image shows the trajectory of a
critter that consumes all surfaces in its path. The coloured squares are surfaces, and the
white square outlined by blue is a critter. The less that remains of a surface, the more
transparent it is. As can be seen, the surfaces the critter recently consumed have not

regenerated whereas the surfaces it consumed a while ago are almost fully restored.

Regeneration

A surface that has been consumed slowly regenerates; this is necessary - otherwise, the
environment will quickly run out positive resources and the population will become extinct.
Two parameters affect regeneration: regeneration speed determines the amount of time steps
between intervals of regeneration and regeneration rate determines the percentage of a
wavelength’s maximum value that regenerate during an interval ofregeneration. The value of
the surface that regenerated depends on the wavelengths that actually grow. See fig. 3.6 for a

visual demonstration of surface regeneration.

Surface display

There are two modes of surface display. The first accurately portrays the surface’s current
status, meaning, a surface that has 11% ofits reflectance’s wavelengths remaining will appear
like a very weak shade of its full, unconsumed, colour. The second mode displays surfaces
that have more than 10% oftheir maximum value as full (unconsumed surfaces) - the rest are
displayed as consumed surfaces (completely transparent). Unsurprisingly, the first mode

presents a more difficult challenge than the second - each is used in different experiments.
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Fig. 3.7: A sample hole: this hole is 7x7 surfaces across.

3.4.2 Light sources: illumination matrix

In order to emulate natural illumination conditions, an illumination matrix that shines on
every surface has been created. This simulates the presence of one or more light sources
which vary in terms of quality (spectral distribution) and size, and frequently change. The
illumination does not affect the value of a surface, however, it affects the way the surface is

perceived by critters.

Depending on the experiment, the illumination matrix changes every predefined amount of
time, normally 50 time steps (this duration was empirically determined to be the most
challenging; shorter durations are simply ignored, while longer durations cause critters to
adapt to the specific illumination). This change occurs gradually: an incremental shift
between the old and the new illumination matrices takes place. At any given moment, the
current illumination matrix is a weighted average of both the new and the old illumination
matrices. This attempts to emulate natural scenes, which rarely change completely in a short

amount of time.

3.4.3 Perceived stimuli

As in natural environments, the stimuli - the colour - that is perceived by the critters and
external viewers (us) depends on the relative contribution of the reflectance (the surface) and
the shining illumination, as described in equation (3.1). It is this ambiguous stimulus that is
presented to the critters, with the consequence that there is no direct way for a critter’s
sensors to estimate a given surface’s type from the stimulus alone. Thus, a way must be found
in order to correctly determine the type of resource - discover whether a surface is ‘food’ or

‘poison’.

3.4.4 Holes

In most experiments, a number of holes, normally 3-9, are present in the surface matrix. A
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hole’s size is customisable, but is often selected to be 7x7 surfaces across (these dimensions
are usually a percentage of the dimensions of the surface matrix). Holes are equivalent to the
world’s edges: they are completely black (thus, are not affected by illumination), and a critter
that attempts to move more than one step into them, falls and dies immediately. Holes were
added in order to increase the difficulty of the environment and force critters to evolve a

strategy of dealing with edges. See fig. 3.7 for a screenshot demonstrating a hole.

3.4.5 Background colour

The surface matrix includes a background colour — a reflectance that is not seen unless
surfaces are consumed and consequently become transparent. Therefore, as less of a surface
remains, it becomes increasingly similar to the background colour. The chosen background
colour is normally grey; it is identical for all surfaces and it is static — it never changes as a

result of an action initiated by a critter.

The background colour was incorporated in order to increase the level of difficulty for
critters. In early runs, before this feature has been implemented, it was discovered critters
learned to recognise good surfaces by the fact they were frequently at least partially eaten.
This behaviour was undesirable, as the intention was that critters learn to recognise specific
surfaces and not only pursue surfaces that have been eaten. The solution was the creation of
the background colour: as a surface gets eaten, it becomes increasingly similar to the
background colour; however, since the background colour is grey, and so, similar to all
colours, seeing it gives no clue whether a partially eaten surface is good or not. Therefore, the
background colour feature increases the difficulty for critters as they are forced to evolve
mechanisms for surface recognition and cannot rely on other information to determine
whether a surface should be eaten or not. In theory, critters could still use the status of a
surface — i.e. whether it is eaten or not — to determine whether it should be consumed;
however, because an eaten surface is transparent, and thus, appears like the background

colour which is similar to all surfaces, this becomes a very challenging task in its own right.

3.5 Environment creation

In nature, because objects and illuminants are extended in space, two neighbouring points in
any image are more likely to have the same physical characteristics than are two points
further away from each other. To model this statistical relationship in Mosaic World, an
algorithm was created that enables complete control over such clustering across the surface
and illumination matrices, as well as the relative proportion of negative and positive

wavelength resources in the world. Thus, the generated matrix can be customised in terms of
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surface/illumination cluster size, which can vary from one surface to the entire surface

matrix, as well as each clusters’ shading, which can be gradual changes to random transitions.

Specifically, the algorithm must be able to create random surface and illumination matrices,
where certain fundamental parameters can determined in advance, including: the number of
clusters and their size (very small — one surface across to very big — entire surface matrix),
the degree of shading (very gradual changes between clusters to random transitions), the
average value of surfaces and the distribution of positive and negative clusters — the last three

are only applicable to the creation of the surface matrix.

The algorithm is described in figure 3.8 and four sample environments are displayed in figure
3.9. In addition, in figure 3.10, a sample surface matrix is displayed four times: once with a
uniform illumination and three times with different illumination matrices. Note that although
the same algorithm is used for the creation of the surface and illumination matrices, different

parameter values are used for each.
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CLUST = the probability (0-100%) of new surfaces being identical to neighbouring
surfaces,

SHADE = similarity factor (0-100%) of non-identical surfaces to neighbour surfaces.
POS_RES = the probability (0-100%) of generating a positive surface/resource.

NEG RES = the probability (0-100%) of generating a negative surface/resource.

SEEDS = thenumberofmndomsaedsusedtomlwasemem ,

(l) An ‘ matrix is creaxed

(2). A number of surface seeds (SEEDS) are generated. Every seed is placed in a random
location in the matrix and is initialised in one of the following two ways (predefined):
- (a) The reflectance function is randomly generated (described in 3.3.1, 3.3.2).

(b) Using POS_RES and NEG_RES, the surface’s type is determined: whether the
surface is positive (desired value greater than 3), negative (desired value less
than -3) or neutral (desired value is between -3 and 3). :

i. A reflectance function is randomly generated and its value is calculated
using the value function (3.4.1).
ii. If the reflectance function’s value is of the correct type, proceed.
Otherwise, repeat step (i).

(3) A new surface is generated at a random location in the matrix. If there are no adjacent
surfaces near this surface, it is removed from the matrix and this step is repeated.

(4) If there are one or more adjacent surfaces, a reflectance function is generated for the
surface; this reflectance function is based on a randomly selected neighbouring
- surface. Using CLUST it is determined whether the new surface is identical or not to
the selected neighbour, i.e. with a CLUST value of 0, there is 0% chance it will be
identical to one of its neighbours, and 100% it will be different.
(a) If the new surface is determined to be identical to its neighbour, the
neighbour’s reflectance function is copied and used.

(b) If the new surface is determined to be different from its neighbour, using
SHADE it is determined how similar it would be; this parameter randomly
changes all the major wavelengths of the reflectance function, i.e. a SHADE
value of 0 causes every major wavelength in the reflectance function to be
copied and randomly changed by 0 (so it will be identical to its neighbour), a
value of 1 causes major wavelengths to be randomly changed by -1 to +1 (so it
will be very different from its neighbour).

(5) Steps (3) and (4) are repeated until all surface positions have been filled.
(6) This step is used only for surface matrix creation. Measure world statistics: unless the

average surface value and the distribution of positive and negative clusters are within
predefined ranges, go back to step (1).

Fig 3.8: the algorithm for environment creation
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Fig. 3.9: the two top matrices: CLUST set to 0.7, SHADE to 0.2. Lower left matrix:
CLUST set to 0, SHADE to 0. Lower right matrix: CLUST set to 0.99, SHADE to 0.
Note that certain settings of CLUST may cause the SHADE parameter to have no effect
on the surface matrix (e.g., in the lower left image, the fact CLUST is set to 0, defining
all surfaces to be different from their neighbours, causes SHADE'S setting of 0, which

determines the similarity of neighbouring surfaces, to have no effect)

3.6 Critters

Critters are the inhabitants of Mosaic World. Every critter has field of view which is the area
it receives stimuli from the environment, and an orientation - a direction it is facing. All
critters are created with a certain amount of energy, which decreases in time; this models the
flow of resources in and out of biological organisms. If a critter runs out of energy, it dies,
giving it a strong incentive to gain energy by consuming surfaces. The amount of energy lost
every time step is also dependent on the actions the critter performs (see section 3.6.1).
Finally, critters have a limited life span - a critter that manages to survive longer than 15,000

time steps dies immediately; this feature prevents particularly fit critters from taking over the
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environment and gives new critters with novel behaviours an opportunity to thrive. Figure

3.11 displays a snapshot of Mosaic World with multiple critters.

Fig. 3.10: Top left: a surface matrix (without a light source). Top right and the two

lower images: the same surface matrix lighted by with different illumination matrices.
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Fig. 3.11: A close-up on a section of Mosaic World with many critters. The critters are
the squares surrounded by a blue frame; the white line indicates the direction they are

facing.
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The critter population is maintained in Mosaic World through sexual and asexual
reproduction. Depending on the mode of reproduction, an offspring’s genome will either be a
mutated version of its parent (asexual reproduction), or will be a mutated and recombined

version of its parents’ genomes (sexual reproduction).

Although the environment is two dimensional, it can be said that critters hover above the

surface matrix and underneath the illumination matrix.

3.6.1 Energy

Upon instantiation, all critters are given a certain amount of energy which decreases in time.
If a critter’s energy level drops to zero, it dies immediately. This feature models an
organism’s metabolism, specifically, the fact that some required internal processes cost
energy. Furthermore, the addition of this feature prevents critters from simply standing and

forces them to forage (and indirectly, to find a way of finding positive resources).

Gaining energy

A critter can gain energy by consuming a surface. For consumption to occur, a critter needs to
be in contact with the surface for a predefined amount of time (2 time steps). The critter
determines on its own the size of its bite (using the ‘bite’ output unit in its artificial neural
nétwork). A critter’s bite decreases the surface’s reflectance function by the bite size and the
critter gains/loses energy depending on the amount and value of the wavelengths consumed.
A critter may only consume wavelengths that are actually present (i.e. it cannot cause a
reflectance's wavelengths to become negative through repeated biting). Biting costs an
amount of energy that is relative to the bite size; however, there is a fixed component to this

cost as well (meaning, biting costs energy even if its size is infinitesimal).

The bite size feature was implemented in order to encourage critters to evolve biting
strategies, thus, the cost relative to the bite size was determined to be appropriate. However,
in order to prevent situations where critters take infinitesimal bites to sample surfaces and
thus, avoid the need to recognise surfaces, an additional fixed component was added to the

cost.

Losing energy
Even a critter that does not perform any action loses a certain amount of energy every time
step. In addition, the amount of energy lost also depends on the following:

¢ Rate of motion

e Turning
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e Surface consumption
e Reproduction: sexual and asexual

¢ Failed attempts of reproduction (sexual and asexual)

3.6.2 Movement and turning
A critter may move between 0 and 4 surfaces every time step; similar to the real world,

moving faster costs considerably more energy in terms of energy per surface moved. A critter
may only move forward. The critter’s movement depends on its orientation, which is the
direction it is facing. By activating the ‘move’ output unit in its artificial neural network, the

critter determines whether it wants to move, and if it does, the speed of movement.

A critter can turn in increments of 90 degrees. When a critter turns, its orientation and field of
view turn with it. A critter turns by activating two output units: ‘left’ and ‘right’. If the
difference in activations between ‘left’ and ‘right’ is greater than a given value (0.25), the
critter turns right; if it is lesser than a negative value (-0.25), the critter turns left; if in
between these values, the critter does not turn. In early runs, movement was controlled by a
single output unit, however, there was a noticeable bias towards turning in one direction; this

bias was eliminated by using two output units.

3.6.3 Genome

Every critter has a genome which defines all its traits: its brain (visual layer/receptors:
position, sensitivity, peak and state), brain structure (number and position of hidden units),
brain contents (all information regarding the connection weights: weight values, starting
coordinate, ending coordinate and state, and all the information regarding partial connections:
weight values, ending coordinates) and the critter’s transmittance. There is a one to one
relationship between the genes in the genome and a critter’s phenotype. Similar to natural
evolution, when critters reproduce their offspring inherits traits from them using the genetic

operators of mutation and crossover.

Each physical attribute of the critter is treated as an object, and each object can either mutate,
or parts of it can be recombined with comparable objects from other critters during sexual
reproduction. Thus, the only time the genome is explicitly displayed is when a critter is saved

for analysis and is stored in a text file (see summarised genome in Figure 3.12).

This specific representation for the genome was selected because it is easy for a human to
read and modify it, and also because it is unambiguous: only one possible phenotype can be

constructed using this genome.
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Transmittance: 0.33, 0.35, 0.37, 0.40, 0.42, 0.44, 0.45, 0.46, 0.46, 0.47, 0.48, 0.50, 0.52,
0.54, 0.56, 0.58, 0.57, 0.5, 0.53, 0.51, 0.49, 0.51, 0.52, 0.54, 0.55, 0.57, 0.58, 0.58, 0.59,
0.60, 0.61

3D Neural network (partially connected):

Visual layer: 3 units:
- Health unit
- Receptor 1: coordinate: [0,-1], peak: 680nm, tuning: 0.01226, active.
- Receptor 2: coordinate: [0,0], peak: 400nm, tuning: 0.02868, active.

Hidden layer: 4 units:
- Hidden unit 1: coordinate [-1,-1]
- Hidden unit 2: coordinate [0,0]
- Hidden unit 3: coordinate [2,0]
- Hidden unit 4: coordinate [-1,1]

Output layer: 7 units
Active Connections: 33

Partial connections: 1

Fig. 3.12: Summarised sample of a critter genome.

3.6.4 Reproduction

Critters can reproduce both sexually and asexually. In both types of reproduction, the
parent(s)b must have at least a minimum amount of energy (20% of maximum energy),
otherwise reproduction fails. In addition, the parent(s) must not move for a predefined
amount of time (3 time steps). The created offspring is spawned in the vicinity of its

parent(s), with decreasing probability of spawning farther away.

Sexual reproduction was implemented to be able to examine the strategies critters evolve in
order to recognise and attract mates; however, early runs demonstrated that using only sexual
reproduction is simply too difficult for an untrained critter — learning how and when to
reproduce is hard enough even when there is no need to also identify a potential mate. Thus,

asexual reproduction was created in addition.

Sexual reproduction

In order to sexually reproduce, two critters need to be in contact — they must be on the same
surface. At least one of the critters involved must ‘want’ to reproduce sexually: the ‘sexual
reproduction’ output unit in its artificial neural network must be activated; this enables
critters to determine when may be a good time to reproduce (e.g. currently have a lot of

energy resources).
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Once sexual reproduction occurs, an offspring spawns. The offspring’s initial energy is
transferred from both its parents: 25% of a critter’s maximum energy is transferred from each
parent. If the partner (the critter that did not initiate the reproduction) does not have this
amount of energy, mating fails. If as a result of mating, the initiating critter’s energy level
drops below zero, reproduction is still successful; however, the offspring only gets the

initiating critter’s available energy, and the initiating critter dies at the end of this process.

If a critter tries reproducing sexually but fails because there’s no other critter next to it, or it
has not waited the required number of time steps, it pays an energy penalty: this was done to

discourage critters from constantly trying to reproduce sexually.

Asexual reproduction

A critter can reproduce asexually without requiring a partner. The critter must ‘want’ to
reproduce asexually (the ‘asexual reproduction’ output unit in its artificial neural network
must be activated). Once asexual reproduction occurs, an offspring is created. The offspring’s
initial energy, 40% of a critter’s maximum energy, is transferred from its parent. If the parent
does not have this amount of energy, whatever energy it possesses is transferred to the

offspring, and afterwards, the parent dies.

If a critter tries reproducing asexually but fails because it has not waited the required number
of time steps, it pays an energy penalty: this was done to discourage critters from constantly
activating the ‘asexual reproduction’ output unit and effectively using the ‘movement’ output

unit to initiate reproduction.

The offspring’s genome

There is a predefined probability (70%, determined using [147]) that an offspring’s genome
that is created through sexual reproduction will be a recombined version of both its parents’
genomes, using the custom crossover operator described in 3.7.3 (note that the actual
percentage of crossover is lower since asexual reproduction does not utilise crossover). As
part of the process, the offspring’s genome is also mutated. If crossover does not occur, the
offspring’s genome is cloned from one of its parents (randomly determined) and mutated in

the process.

An offspring’s genome that is created through asexual reproduction is cloned from its parent

and mutated in the process.
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3.6.5 Transmittance
Transmittance describes the percentage of light that passes through an object [182]. Every

critter possesses a transmittance; this property defines the percentage of light for every
wavelength in the human visual range that passes through the critter, and effectively defines
the critter’s colour. The critter's transmittance is defined in the critter’s genome and is
evolvable — thus, critters have the potential of using transmittance as a way of recognising

conspecifics or as camouflage; this is the reason this feature has been added.

The critter’s transmittance affects the stimulus that is perceived by other critters and external
viewers — a critter cannot see itself. Therefore, when critters hover above a surface, equation
(3.4) should be used instead of equation (3.1). There are two elements to this change:
@) Some of the light source passes through the critter, which acts as a filter. The
resulting light reaches the surface and gets reflected.
(ii) The rest of the light source is reflected of the critter and thus never reaches the
surface.

The resulting stimulus is a sum of (i) and (ii).

For the sake of simplicity, when more than one critter is present in the same physical
location, the transmittance of the critter that arrived first dominates the transmittances of the

other critters.

St(i) = fRe(i)Iz(i)Tr(m %11(:‘)(1 — Tr(i)) (3.4)

Where St(i) is the stimulus value of wavelength i, Re(i) is the reflectance value of wavelength
i, 71(i) is the illumination value of wavelength i and 7#(i) is the critter’s transmittance value of
wavelength i. The left side of the equation, which characterises the light that passes through
the critter, is described by item (i) above. The right side of the equation, which characterises

the light that is reflected of the critter, is described by item (ii) above.

3.7 Critter Brain

Every critter possesses a brain that determines its actions according to the stimuli received
from the environment. The brain comprises a 3D neural network, which is essentially a

modified feed-forward artificial neural network. See figure 3.13 for a sample critter brain.

The 3D network is composed of multiple 2D layers. The visual layer is equivalent to a
standard input layer and contains receptors (which are effectively modified input units). The

hidden layer contains standard hidden units. The output layer contains output units, which
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determine the critter’s behaviour: turn left or right, move forward or stay in the same

position, sexually reproduce with a nearby critter, asexually reproduce and bite surface.

Every unit in the network has an [x,y] coordinate relative to the critter’s centre, which defines
its location in the layer it is placed in - only a single unit can be placed at any given location.
Thus, networks of vastly different architectures can be crossed over during sexual
reproduction, as each network possesses the same virtual coordinate reference frame; this
deals with the competing conventions problem in crossover of neural network (described in

2.7.3), and is the reason why this structure has been selected.

Fig. 3.13: Sample critter brain which has three layers. The visual layer contains three
receptors (one highly tuned, the other two possess lower tuning values). The visual layer
is connected to the hidden layer, specifically to five hidden units and two empty

coordinates (partial connections). The hidden layer is connected to the output layer.

The units of the network communicate through connection weights that extend between units
from higher layers to lower layers. Connections can be active, inactive, or completely
nonexistent. In addition, partial connections may be present in the network; these connections
extend from a unit to a coordinate instead of terminating at a unit. Inactive or partial
connections do not participate in the feed-forward process; however, they are passed on to a
critter’s offspring where they may be reactivated or reconnected as a result of crossover - this
offers the potential of creating novel patterns of connectivity that existed in neither parent.

Connections are discarded if inactive or partial for long periods of evolutionary time (this was
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implemented to prevent bloat: without this feature a large number of inactive connections

quickly accumulate).

3.7.1 Visual Layer

The visual layer, which contains receptors, is equivalent to the input layer in a standard neural
network. Like all units in the network, every receptor has a spatial position, an [Xx,y]
coordinate in the visual layer. In some experiments, the receptor’s position in the visual layer
also determines the location — relative to the critter’s centre — where it detects light from
Mosaic World (i.e., its visual ‘receptive field’). For example, a receptor located in [-1,0]
receives stimuli from a surface that is to the left of the critter. In other experiments, a receptor
has another [x,y] coordinate in addition to the position, which specifies the critter’s receptive
field instead of the location coordinate. Viewing an area outside of Mosaic World returns
nothing but darkness (as there is no light outside the world). This enables evolution to select
what the critter sees and also enables the researcher to see what locations (relative to the

critter’s centre) are considered important.

The manner in which a receptor responds to the received light is determined by its peak and
tuning. The receptor’s peak sensitivity can be for any wavelength within the human visual
range (400-700nm at increments of 10nm); this determines where the receptor’s sensitivity is
greatest, and effectively, what colours this receptor is particularly sensitive to. The receptor’s
tuning defines the number of wavelengths to which it will respond around its peak (its ‘half
bandwidth’). A receptor can be very narrow — span just a few nm — or it can span the entire
visible spectrum. The peak and tuning can be viewed as a Gaussian function. This particular
design was strongly inspired by the cone type used in the retinas of biological eyes [182, 225]
and attempts to emulate this mechanism — the goal was to discover whether evolved

structures (peak and sensitivity) bear any resemblance to their biological counterparts.

A receptor can be either active or inactive. Inactive receptors do not participate in subsequent
processing, but are nonetheless inherited by offspring; these are discarded if inactive for a
long period of evolutionary time (and so are all connections leading out of this receptor) —

this was implemented in order to avoid bloat — many inactive receptors for every critter.

In addition to receptors, every critter also has a health monitor unit, a special type of input
unit which is located in the visual layer; this unit receives the percentage of the critter’s
remaining health. This unit cannot be removed or disabled through evolution; however,

leading connections can be disabled. This feature was implemented in order to enable critters
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to evolve behavioural strategies that depend on their current level of health (see chapter 6,

challenge: behaviour).

3.7.2 Genetic operator: mutation
Mutation takes place during sexual and asexual reproduction. There are several types of

mutations.

Value Mutation affects the values of the connection weights through a Gaussian function:

small changes are much more likely to occur than large changes.

Structural Mutations are mutations which alter the brain’s topology.

Add unit mutation enables addition of units (receptors, hidden) (2%). When a
receptor is added, it is randomly placed in the visual layer with a bias towards the
centre; this receptor’s design is based on an existing receptor (randomly picked): its
peak and connectivity, as well as its outgoing connections are copied. When a hidden
unit is added, it is randomly placed in the hidden layer with a bias towards the centre
and forms connections with units in the adjacent layers — it is fully connected; all new
connections are initialised with random values.

Delete unit mutation enables deletion of units (receptors, hidden) (0.5% per unit).
When any type of unit is removed, all its outgoing connections are deleted. If as a
résult of a unit being deleted a connection now has no end destination, it remains in
the network as a partial connection.

Add connection mutation enables addition of connections (1%). Connections can only
be added between units that do not already have an existing connection. New
connections are initialised with random values

Delete connection mutation enables deletion of connection weights (0.1% per

connection).

Receptor mutations are mutations that change properties of receptors.

Drift Receptor mutation (0.3% per receptor) changes a receptor’s location in the
visual layer; all its outgoing connections move with it. The receptor’s new position is
random yet biased: it is more likely to be closer to the critter’s centre than farther
away.

Drift Receptive Field mutation (0.3% per receptor) changes the location of the
receptor’s receptive field (the area it receives stimulus from). The new receptive field

is random yet biased — it is more likely to be closer to the critter’s centre than farther
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away. In experiments where the receptive field is dependent on the receptor’s
position, this mutation does not exist.

e Alter Peak mutation (2% per receptor) randomly changes the receptor’s peak to
another wavelength (400 to 700nm, in increments of 10nm)

e Alter Tuning mutation affects the receptor’s tuning value through a Gaussian

function: small changes are much more likely to occur than large changes.

State mutation has a given probability of activating or deactivating a connection (0.3% per
connection) or a receptor (0.3% per receptor). If a connection or a receptor has been inactive

for a large period of evolutionary time (15,000 time steps), it gets discarded.

Transmittance mutations alter the critter’s transmittance (10% for each of the seven major
wavelengths). The wavelength’s value changes by up to +0.05, however, it cannot increase

above 1 or below 0.2. The minor wavelengths are automatically adjusted.

The initial values of the parameters were determined using available literature on genetic
algorithms [147] and the evolution of neural networks (particularly [215]). Afterwards, a
considerable amount of preliminary experiments was conducted in order to discover useful
values for the used parameters. Since the number of possible permutations and the amount of
interactions going on between some of the parameters is quite large, it is possible that some

of these va_lues are not ideal.

3.7.3 Genetic operator: crossover
Crossover takes place during sexual reproduction at a predefined probability (70%). During

crossover, a random point is selected on each network layer of both mating critters. All 3D
layers of each critter brain are ‘sliced’ at this point. These two parts are copied, and the result
is combined to form the offspring’s genome. This process may cause partial connections to
reconnect, for instance, if a partial connection is obtained from one parent, and a hidden node
at the corresponding coordinate that previously lacked a connection is obtained from the other

parent, the partial connection is converted to a standard connection.

This method of crossover has been selected because it has the potential of overcoming the
competing conventions problem encountered in crossover of neural network (described in

2.7.3).

Crossover also recombines the transmittances of both mating critters; a random major

wavelength is randomly picked and divides the transmittance to two parts: a part is copied
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from every parent. Thus, the offspring critter’s colour is similar to both its parents’ colours.

3.8 Evolution

To maintain an open-ended system, Mosaic World’s evolution utilises a genetic algorithm
with no fixed population size and no explicit fitness function. The critters themselves decide
when to reproduce (sexually or asexually) by activating the appropriate output neurons.
Critters survive if they can eat good resources and stay on the world. Thus, there’s an implicit
evolutionary selection pressure to improve all traits that increase such skills. For the
population to survive, the critters must balance reproduction with resource consumption.
Otherwise, there may be too many critters for the world to sustain, or too few critters to
maintain the population. This implicit version of selection has been implemented because it is
closer to biology than the explicit selection algorithms used in standard genetic algorithms.
Note that there is no maximum population size; however, the environment can only sustain

more than a certain number of critters (around 700 critters) for short periods of time.

Because at time-step 0 all critters are randomly instantiated, a statistical consequence of this
is that the initial population sometimes dies. When this happens, a new population of random
critters is instantiated, with the caveat that 20% are mutated clones of critters that showed

general promising surviving skills (a combination of survival age and mating amount).

3.9 Technical Aspects

e Programming language used: Mosaic World was written in C++ under the Windows
environment (Visual C++).

e Computational requirements: the vast majority of experiments were designed to run
approximately 15 hours (overnight experiments). However, several difficult
experiments (most notably, those in chapter 5 part 1) were designed to run over

longer periods of time (approximately 2 days).

3.10 Chapter Summary

This chapter introduced Mosaic World, the model used in this thesis for the investigation of
complex interactions and other computational and biological hypotheses. Because an abstract
visual environment was picked as the underlying context of the model, the chapter began by

outlining the essential fundamental concepts of reflectance, illumination and stimulus.

Afterwards, a detailed description of the environment was given: the resources it provides
(surfaces), the dangers that are present (holes and edges) and the inherent ambiguity that is

incorporated into the environment (the light sources that illuminate the environment). In
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addition, the algorithm used for environment creation (surface and illumination matrices) was

given.

The chapter concluded by giving a thorough description of the inhabitants of Mosaic World:
the critters. This included a description of critter capabilities and behaviour (movement,
reproduction and consumption), critter operation (brain and genome), and the evolutionary

process that takes place.
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Chapter 4

Challenge: evolvability

4.1 Introduction
Evolvability is the ability of a population to continually produce offspring fitter than any

currently in existence. Since genes directly determine the organism's phenotype, it can be said
that that the way in which the genome is altered through the course of evolution by way of
mutation and recombination, in addition to epistasis, the effect that some genes have on the
operation of others, is essentially the cause of higher or lower evolvability. Therefore, it can
be said that evolvability is the ability of genes in the population to change in a way that
produces fitter offspring. Consequently, the study of evolvability involves interactions that

occur between genes (genes—genes interactions).

There are several ways in which the interaction of genes can affect the fitness of the
phenotype. When a gene gets altered, the value of the trait it encodes is changed. In Mosaic
World, this means that a neuron, a receptor or a trait gene is expressed differently the next
time the phenotype is created from the genome, and consequently, the network controlling
the critter (and possibly even the population the critter is a member of) is affected by this
change. This change to the phenotype may have an indirect effect on traits encoded by other
genes; for example, in Mosaic World, consumption of a resource requires standing still for a
period of time, thus, a gene that makes a critter constantly move would indirectly affect the
gene that controls consumption, effectively neutralising it. In addition, a gene may affect
other genes in a more straightforward manner: when a gene that controls the peak or tuning of
a receptor is altered, the stimulus that is perceived by the network may be very different, and
thus, the network’s behaviour — which depends on many other genes — may be completely
changed. A gene may also affect other genes during the process of reproduction: for example,
the gene controlling the distance parameter, explained later in this chapter, would affect the

number and identities of units that connect to a newly added hidden unit.

Later chapters investigate the effect of evolving genes on the major aspects of critters (e.g.,
receptors, neural networks, population-level behaviours). However, it can be argued that the
most fundamental effect of genes on other genes is during reproduction: children inherit their
parents’ genes with some mutation, and so it is the interaction of parent genes, and parent and
child genes, that produces a new and potentially better solution. A useful interaction between

parent and child genes implies an evolvable population, so an understanding of the
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evolvability of a population provides knowledge on useful parent and child gene interactions.
It is this evolutionary genes—genes interaction that forms the focus of this chapter.
Therefore, the experiments described in this chapter investigate the resultant effect on
evolvability as a consequence of the process used to evolve the neural networks used in critter

control. The challenge posed for Mosaic World in this chapter is:

Can appropriate genes—genes interactions occur that improve the effective and resilient
evolution of critters that adapt to an environment which becomes increasingly more difficult

through time?

To enable Mosaic World to address this challenge, several different ways of transferring
parent genes to child genes (focusing on the genes responsible for the topology of the critters’
neural networks) will be examined, allowing the investigation of the way different forms of

genes—genes interactions affect the evolvability of neural network agents.

4.2 Investigating evolvability

Evolvability is generally defined as the capacity to evolve [136], or more specifically, as the
ability of a population to produce offspring fitter than any yet in existence [4], and not to
produce less fit variants [212]. Evolvability is also known as evolutionary adaptability [107]
and as such, a major element of evolvability is the capacity to adapt to changing
environments by learning to exploit commonalities over time in those environments. Thus, by
understanding evolvability and how to promote it, not only will it be possible to solve
increasingly complex problems, but one may also better understand the process of evolution

generally.

Evolvability should not be confused with fitness. It is possible to have two populations of
solutions, both with identical levels of fitness. However, if one is more evolvable than the
other, then its offspring are more likely to be fitter in relation to those in the less evolvable
population in subsequent generations [227]. This can prove to be crucial when the

environment is dynamic.

The key properties required to generate systems exhibiting high evolvability are still not
completely understood, particularly in the context of artificial life simulations. The
evolvability of a system appears to be strongly linked to the representation of the problem —
the way genetic variation is mapped onto the phenotype [22, 228], as well as the choice of
search operators [4]; these parameters determine the distribution of local optima in the search

space, and as a result affect the difficulty in finding fitter offspring [67]. It was shown that for
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the search to be successful, the mapping should put similar phenotypes close to each other in

solution space [116], or in other words, the search operators’ effect should be gradual [5].

A necessary precondition for high evolvability would involve a many-to-one genotype-to-
phenotype mapping. This redundant mapping would enable many mutations to have no effect
on the phenotype, and as a result, better explore the search space through neutral networks
[58]. It can be argued that evolution of neural networks, particularly those that are used for
control and classification, qualifies for the complex mapping condition; Fogel [61] defined an
evolved neural network’s phenotype as its behaviour, and not its constituent weights. Using
this definition, changing many aspects of a neural network would not necessarily change its

phenotype (behaviour).

Modularity has been recognised as an element that increases evolvability [228]. It has been
suggested that the ability to reuse structures in neural networks should increase evolvability
as well [160]. It has also been proposed that adaptive evolution, the ability of evolution
adapting elements of itself, promotes evolvability [22, 67]; this was theorised to enable

evolution to tune search operators as needed during various evolutionary stages.

Even though there are many issues to consider when evolving solutions using standard
genetic algorithms, there are many more challenging issues one must consider when it comes
to the evolution of neural networks, for example, evolving network topology requires adding
and removing elements from the network. This does not sound like a terribly complicated
procedure, but then, how are these network elements added? Are new units fully connected?
Are they connected at all? Can we allow evolution itself to make this decision? Each of these
decisions may have a huge impact on the evolution process by affecting the genes that
determine the network structure and the interactions that occur between them. Inevitably,
these changes to the genome affect the entire hierarchy of the phenotype — which influences
many additional parameters including likelihood of runs being successful as well as the

variability and quality of evolved solutions; consequently, it is crucial to pick a good method.

While a lot of research focused on evolution of neural networks, including topology, it is
difficult to predict whether a method will be superior to others and understand why that is the
case. The problem is there are no clear guiding principles as to what will work better, and this
becomes more complicated when trying to evolve neural networks in artificial life models,
where even measuring the quality of the evolved solution becomes problematic. The answer
to this problem largely depends on the system’s evolvability, which in turn depends on

numerous parameters — all essentially relating to the interactions that go on between genes.
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In this chapter, the question of the process by which network elements are to be added (and
removed) is addressed by focusing, not on the evolved solutions as such, but on the
evolvability of the critters themselves. (The work described here has been published in
[196]). This investigation of evolvability is conducted using several different types of
structural mutations which affect the interactions between genes in different ways. For a
mutation type to be useable, it must have the ability to completely alter a neural network’s
structure by adding and deleting elements. In order to be able to test the effects of the
suggested principles thought to increase evolvability, every mutation type used in the
experiments incorporated some of these principles. The three principles tested are:

- Incremental changes to network topology, where every change made to the network

structure is very small.
- Adaptive evolution, where evolution can modify some aspects of itself.
- Structural duplication, where existing substructures of the network are copied and

can be reused.

4.3 Additions to Mosaic World

The investigations described in this chapter required that initial version of Mosaic World be

expanded in several minor ways.

4.3.1 New types of structural mutations
The investigations of evolvability were performed using several different types of structural

mutations in order to evolve the topology of the neural networks that form the critter brain.
Therefore, the following five types of structural mutations are added to the model and replace
the relevant types described in section 3.7.2 (see fig. 4.1 for an illustration). All structural
mutations must be able to add and remove units and connections from the networks; the only
difference is the manner in which this change is accomplished — the way the genes interact.
All new connections to the network are initialised with random values. The probabilities of
occurrence of these mutations are identical for all types. The tested principle appears in

parenthesis.

Structural mutation type 1 — fully connected (non-gradual changes): when using this
mechanism, new receptors and hidden units that are added to the network connect to all units
in adjacent layers. Using this method, every mutation makes a potentially large change to the

networks.

Structural mutation type 2 - single connection (gradual changes): when using this

mechanism, new receptors and hidden units connect to a single, randomly chosen, unit in
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every adjacent layer - exactly two new connections are added to the network in case of a
hidden unit addition, and one new connection for the addition of a receptor. In addition, the
Delete Unit mechanism is disabled - units are automatically removed when they have no
outgoing or incoming connections. Using this method, every mutation makes a small change

to the network.

Fig 4.1. A visual illustration of addition of a hidden unit using the five types of
structural mutations. [A] The original neural network with 1 receptor, 3 hidden units,
and 2 output units. [BJ Using mutation type (i), new unit (H5,6) is fully connected
through 3 random connections. [C] Using mutation type (ii), new unit (H5,6) connects to
(RL1) and (02,2). [Dj Using mutation type (iii), new unit (H5,6) is a clone of (H1,1). [E]
Using mutation type (iv) new unit (H12,8) only connects to (02,2) as the distance
parameter is very high. [F] Using mutation type (v) new unit (H12,8) connects to the

closest receptor (R1,1) and closest output unit (02,2).

Structural mutation type 3 - reuse of structures (structural duplication): When using
this mechanism, added receptors and hidden units are cloned from a random unit in the same
layer. The new unit possesses a copy of every incoming and outgoing connection of the

original.

Structural mutation type 4 - distance dependent (adaptive evolution, gradual changes):

When using this mechanism, added receptors and hidden units connect to all units in adjacent
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layers within a given distance (which is calculated using the coordinate scheme described in
section 3.7). The distance parameter is an evolvable gene of a critter. By evolving a low

distance parameter, the change to the network can be very small or very large.

Structural mutation type 5 — shortest connection (adaptive evolution, gradual changes):
when using this mechanism, added receptors and hidden units connect to the closest unit in
every adjacent layer. The Delete Unit mechanism is disabled — units are automatically
removed when they have no outgoing or incoming connections. Using this method, every
mutation makes a small change to the network — exactly two connections are added to the
network for a hidden unit addition, and one connection is added for a receptor addition.
Additionally, evolution can now utilise the 3D coordinate system to create modules, which

adds an adaptive element (albeit weaker than type 2).

4.3.2 Slowing regeneration rate
The experiments described in this chapter required that the environment become more

challenging over time. This was implemented using a slowing regeneration rate; in the
beginning of every run, the regeneration rate of consumed surfaces operates at a predefined
rate. During the course of the run, every predefined amount of time, the regeneration rate
slows down by one unit until a predefined minimum regeneration rate is achieved. This
means that consumed surfaces regenerate at a much faster rate at the beginning of a run than

at its end.

4.3.3 The methodology behind these additions

Biological relevance: the changes to the model enable to directly examine the effects of
structural mutations (which operate by changing the underlying genes) on the evolvability of
the agents. The five types of structural mutations that are examined incorporate three
principles believed to affect evolvability in nature: adaptive evolution, the ability of evolution
of altering elements of itself, incremental changes, the size of the changes caused by genetic
operators and structural duplication, the ability of evolution to reuse existing genetic
structures. Thus, these changes to the model are both computationally relevant (as indicated
by various computational literature on the subject [4, 136, 212, 227]) and biologically
relevant (as indicated by various biological literature on the subject [42, 87, 107, 228]).

Level: the changes to the model do not affect this parameter.

Generality: the changes to the model do not affect this parameter: the model can still be said

to be a general model despite the fact it is used in this chapter to examine specific hypotheses.
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Abstraction: the examined principles which are believed to affect evolvability are fully
implemented using the five types of structural mutations; however, even though these
changes are relatively simple and do not require significant alterations to the model they are

detailed enough to completely capture the modelled phenomenon.

Accuracy: the additions to the model implement the examined real world principles
concisely (without a lot of overhead) and accurately:

e Incremental changes: this is implemented directly, e.g. in the case of mutation type 2,
by forcing the search operators to make minimal changes to the phenotype.

e Adaptive evolution: this is implemented directly, e.g. in the case of mutation type 4, by
allowing evolution to evolve elements (the distance parameter) that affect the process
of evolution.

e Modularity: this is implemented directly, e.g. in the case of mutation type 3, by
allowing the mutation operator to duplicate existing network structures. Albeit, this is
only one form of modularity, whereas modularity in nature can span structures of many

different scales.

Match: the changes to the model that are believed to affect evolvability in nature are shown
to in fact affect it within the model as well. As the results section in this chapter shows,
incremental changes are shown to increase evolvability (expected from [5, 116]) and so does
adaptive evolution (expected from [22, 67]). Modularity is shown to indeed affect
evolvability (expected from [160, 228]), but at least in the way it has been implemented here,
it decreases evolvability rather than increase it which is an interesting observation by itself.

This is elaborated more broadly in section 4.2 of this chapter.

4.4 Measuring evolvability in Mosaic World

Mosaic World is more than just a population of individual critters — it is a dynamic ecosystem
in which critters survive if their genomes enable them to interact with each other and their

current environment effectively enough to gather resources.

Previously suggested measurements of evolvability (for example, Altenberg’s evolvability
measure using Price’s theorem [4] and Smith et al’s evolvability metrics [212]) do not take
into account conditions specific to the ecologically relevant conditions of Mosaic World (and
potentially other artificial life systems), and as a result they could not be used. These methods
require accurately measuring fitness, which is not feasible for three reasons: first, no one
statistic encapsulates all the required behaviours a critter must possess to be termed fit, and

there is no universal method of combining all statistics to create a true fitness measure.
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Second, the fitness of all critters is linked, as critters compete against each other on resources;
a fit critter, effectively, decreases the fitness of other critters; this effect is difficult to
measure. Third, although reproduction does not directly contribute to a critter’s fitness,
controlling reproduction is crucial to the species’ collective fitness: the population, as a
whole, must replenish itself at a rate that is sustainable by the available resources of the

world. Thus, a critter must share some of this collective fitness.

Therefore, the evolvability measurement used in this chapter is based on the evolvability
measure used in the Avida ALife environment [162]. This measurement was expanded by
factoring in the environment difficulty. It can be argued that evolvability can either be
expressed by demonstrating that a population gradually improves over time, or alternatively,
by showing a population adapting to an environment that gradually becomes more
challenging. By quantifying these aspects, it is possible to define the total evolvability
indicator in Mosaic World, E.1, using equation (4.2) — its range of possible values is 0 to 1,
and the evolvability function through time, using equation (4.1). Both measures incorporate
four different elements: survivability, population success, environment difficulty and time
variance. Note that a similar definition of evolvability appeared in [204] a year after the

original paper describing this work was published [196].

Survivability: the critter’s survival ability is the closest thing to fitness, and is best expressed
by its age. A critter that can survive for long obviously managed to learn important skills
required to survive in the world and managed to overcome many of the difficulties (e.g. it is
able to recognise positive resources and negative resources, it managed to avoid falling from
the edges or into the world’s holes). Furthermore, by surviving longer, a critter may get more

opportunities to reproduce and as a result spread fit genetic material to its offspring.

Population success: a population’s ‘fitness’ is best expressed by its size at a given time. A
population that managed to maintain itself through time, collectively learned how to balance
resource consumption and reproduction through its constituent critters. Also, a larger
population has more individuals that pass on traits to offspring, and is more likely to survive

a ‘catastrophe’ purely because of its greater size.

World difficulty: in certain Mosaic World experiments the environment is altered over time
to make it more challenging for a critter to survive. A population that manages to survive
under conditions in which the selection pressure continuously grows shows an indication of
adaptability, and thus, evolvability. This aspect of the equation is controllable by the

researcher and must be directly tied in, from a numerical point of view, to the difficulty of the
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world in order to measure evolvability, i.e. if survival in the world at time t is twice as hard as

the initial conditions, the difficulty factor at time t is 2.

Time: only by looking at the relative changes of survivability, population success and world

difficulty over time, it is possible to precisely obtain the total evolvability measure.

In conclusion, these four elements provide useful measures of the capacity of Mosaic World’s
population to evolve. A population that maintains large numbers, where each agent survives
for long periods of time, despite an increasingly difficult environment, consistently through
time — can be said to be a population with a great capacity to evolve. Therefore, this function

can be said to measure the capacity of a population to generate fit offspring through time.
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Where: E. is a population’s evolvability indicator, E(t) is the evolvability at time t, D(1) is
the difficulty factor at time t, D, is the maximal difficulty of D(t), P, is the size of the
population at time t, A,, is the age of a member of population p at time t, A, is the critter
maximum life span, P, is the maximal population the environment can support, ty. is the

total length of time of the experiment, n is the number of data values available.

Explanation for both equations: The top right part of equation (4.1) calculates the average
survivability for all critters, the bottom right part factors in the population success, and the
left part of the equation incorporates the world difficulty. Thus, this characterises the
evolvability function through time. Equation (4.2), which calculates the evolvability

indicator, simply averages the total evolvability (as measured using eq. (4.1)) per time unit.
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Example: With a population size P of 400 at time 10000, all critter ages 4 are 1500, the
difficulty factor D at time 10000 is 100, using maximum difficulty Dnax of 350, maximum
population size Prnax of 10000, and maximum age Anaxof 15000, evolvability at time 10000 is
E(10000)= 100/350 * (400* 1500/15000)/10000 = 0.00114.

In addition, figure 4.2 demonstrates the evolvability function through time, Resilience and

Stamina values for a sample population.

By extracting the height and the slope of a linear trendline of the evolvability function

through time (using equations (4.3) and (4.4)), two extra indicators can be gained:

(1) Resilience (slope)’, this indicator defines the resilience of the population to change.
Lower values indicate populations more tolerant to change.

(i1) Stamina (height): this indicator defines the population’s ability to thrive when

conditions are easy.

Evolvability function through time

0.08

Y =-0.00000089x + 0.13322675
0.06
0.04

0.02
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Time Step (Difficulty)

Fig 4.2. The evolvability function through time for a sample population. Using a linear
trendline of the evolvability function through time, the Resilience and Stamina values

for the population can be calculated: Resilience = -0.00000089, Stamina = 0.13322675.

4.5 Experiments

The main objective of the experiments was to investigate the conditions necessary to
overcome the challenge. This required measuring the evolvability function through time, E(t),
and the total evolvability, Etad. A secondary objective was to obtain additional statistics
examining effects other than evolvability of the structural mutations used: variability of
evolved forms (average structure), quality of critter solutions and the percentage of successful
runs (a run is considered to have failed when no population of critters successfully evolved

without the need for a restart).
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To this end, two sets of experiments were performed. Each of the experiments required
multiple populations that were evolved using the five structural mutations. Therefore, at least
eight successfully evolved populations were collected for each of the mutation types (using
the same randomly generated world). Each run started with identical population
characteristics (all critters possessing fully connected networks: 3 receptors, 3 hidden units
and 8 output units, 33 connections), and was stopped after 550,000 time steps. During each
run, the regeneration rate of consumed surfaces was slowly reduced to increase challenge and
force critter populations to adapt. Initially, consumed surfaces regenerated every 13 time
steps 3% of their maximal value. Every 3,500 time steps regeneration slowed down by one
unit, until the regeneration rate of 99 was reached. To analyse the effects of the mutation

operators only, crossover was disabled during all runs and experiments.

4.5.1 Experiment 1: measuring evolvability through adaptation
This experiment aimed to test the maximum difficulty that a population can adapt to. Using

the collected data and equations (4.1) and (4.2), E(t) was charted and E,y, was calculated.
Since the regeneration rate has a direct (and numeric) effect on the difficulty of the world, the
rate was used as the difficulty factor in equation (4.1). Therefore, five copies of the five
longest-lived critters of every evolved population were placed in an identical test world. The
starting regeneration rate was set to 99, and every 1,000 time steps the it slowed down by one
u‘nit, indefinitely. A run was considered to have finished when all critters died. Note that in

this experiment, critters are allowed to reproduce (unlike the next experiment).

4.5.2 Experiment 2: measuring the quality of evolved solutions
This experiment aimed to measure the quality of evolved solutions, the critters. The criterion

used was critter survivability, which was measured by averaging the critter survival ages
across runs. To do this accurately, the effect of the critters on each other was negated by
prohibiting reproduction, and by placing a very small number of critters in every world.
Furthermore, the difficulty of the world was made static by fixing the regeneration rate (to
99). Therefore, five copies of the five longest lived critters of every run were placed in an
identical test world. Critters were left to survive as long as they could. All runs were stopped
after 10,000 time steps, and were each repeated 3 times. Critters that survived until the end of
the run were 'killed": marked as if they had died then (a necessary assumption, otherwise long

lived critters might have a non proportional effect on the average survival age).

4.6 Results

In table 4.1, the Ey, for each type is shown (as a percentage of the maximum E,,, of type 4),
as well as the resilience and stamina for each type (using equations (4.3) and (4.4) and

divided by type 4’s resilience for comparison purposes). In fig. 4.3, the evolvability function
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(weighted average) through time is shown with E,, appearing in the legends for every type.
Table 4.2 shows the minimum, maximum and average of the maximum regeneration rate a
population could adapt to and of critter average survival age, as well as the percentage of

successful runs and the average critter structure per type.

When comparing the E, of all types, it is clear that adaptive evolution and gradual changes
to networks increase Ei.,, whereas non-gradual changes, and structural duplication decrease
it. Types 4 and 5, both utilising adaptive evolution and gradual changes, had the highest Ei
with type 4 the higher of the two. Their evolvability functions were, however, very different:
Type 5 had — on average — a higher stamina, but it was less resilient than type 4, and its
populations quickly weakened as difficulty increases. Type 4 was more resilient, as evident in
its average adaptation rate. Overall, the data suggests that the type 4 structural mutation is
slightly more evolvable [note that type 4's average survival age was also the best of all runs;
type S's was lower, but still very good]. It could be said, however, that type 5, having a higher
stamina, and lasting the longest in the adaptation experiment, is the most evolvable type.
However, it can be argued that the total area under the curve is the best indication of

evolvability, since this measure takes into account both stamina and resilience.

Type 2, which operates by making only gradual changes to the network, had a higher E,y,
than type 1's. It also had a better average survival age and the best rates of success. Despite its
populations’ decent performance, once the difficulty of the environment becomes too great,

its evolvability decreases considerably which results in its populations becoming extinct.

Type 1, which operates by making only large (non-gradual) changes to the network, had low
(and second worst) average adaptation rate and average survival ages, as well as a low Ey.
Generally, it seemed unable to utilise the structural mutations to alter the network’s size: on
average, only one receptor, and no hidden units, were added at all. This appears to be another

indication of its low evolvability.

Table 4.1. The evolvability elements incorporated, the obtained E, as a percentage of
Etota Of type 4 and the extracted resilience and stamina values using a linear trendline of

E(t) for every type (divided by type 4’s resilience for comparison purposes)

Mutation type Element incorporated Eiota1 (%) | Resilience | Stamina
4 Adaptive evolution, Gradual changes 100.00% -1.00 5.68
5 Adaptive evolution, Gradual changes 98.12% -1.13 6.39
2 Gradual changes 78.50% -0.98 5.53
1 Non-gradual changes 71.47% -0.94 5.29
3 Structural duplication 41.58% -0.41 2.34
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Fig. 4.3. The evolvability function (weighted average) through time for the five types of

structural mutations and their relative evolvability indicator (ofthe Etotai for type 4)

Table 4.2. Several statistics (average, minimum, maximum) describing the maximum
regeneration rates the tested populations adapted to and the critter survivability, in
addition to the average critter structure, and percentage of successful runs; broken

down according to mutation types

. Maximum adapted . Ave. critter structure:
Mutation A Survival age: . Successful
type regenera.tlon rate: Ave. (Min.-Max.) Receptors, Hldden runs (%)
Ave. (Min.-Max) (Connections)
Random
critter 57.36 (56.08-59.48)
1 191.14(119-222)  3182.37(1277.23-4600.12)  4.03, 3.13 (29.47) 64%
2 197.12(159-237)  3733.34 (2781.13-4801.6) 8.32, 10.74(108.70) 73%
3 163.87(109-277) 2388.49 (893.44-5339.6) 4.86,4.51 (41.45) 50%
4 224.36(171-272)  3905.31 (1625.16-5021.96) 4.98, 6.26 (55.48) 69%
5 202.62(167-305)  3651.06 (2613.92-5321.28)  10.39, 12.21 (144.25) 62%

Type 3, utilising structural duplication, had the lowest E,0ti as well as the lowest scores on all
other tests. It would be easy to dismiss this method of evolution as completely non-evolvable,
except for the fact that, despite having the low results of the vast majority of type 3 runs,
some of its individual runs scored the highest average survival age and the near highest
adaptation rates. The weakness of this approach is that cloning a fully connected hidden unit
usually results in very large changes to the network (in some instances, 10+ connections
being added at once), so it is possible this negative evolvability promoter far outweighs the
positive evolvability gained by the structural duplication aspect. Thus, it can be deduced that

this method has potential, but its weakness often far outweighs its strength.

Looking at the evolved forms, it is obvious that all types utilised the structural mutations to
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increase their network’s complexity, with some more than others. Some types in particular
(types 2, 5) resulted in networks significantly larger than the starting networks. However, it
does not seem as if the larger networks were inherently better or worse than the smaller ones.
Interestingly, it seems as if these larger networks tended to provide the most consistent

critters in terms of average survival age.

A possible criticism would suggest that highly evolvable populations would continue
evolving forever, with E(t) values always above zero and E,, tending to infinity. However,
in this system this is impossible. At the slowest rates of regeneration tested in the
experiments, there are not enough resources left to support individuals, regardless of their
genomes. Inevitably, evolvability must drop to zero at some point, for there will be no critters
left in the population to evolve. Such eventual resource limitation leading to extinction is
inevitable in all real and modelled systems (time will always be limited, if nothing else), so

an infinite E,, may be impossible to achieve.

4.7 Complex interactions analysis

The work described in this chapter primarily deals with genes—genes interactions and their
effect on evolvability. The required expansions to the model consist of five types of structural
mutations; each of the mutations incorporates principles believed to affect evolvability
positively or negatively. These effects on evolvability occur through genes—genes
interactions and essentially determine the likelihood that the offspring created during
reproduction would be fitter or not. Therefore, these interactions are crucial towards
accomplishing the challenge set for this chapter. It is interesting to note that although these
changes take place at the lowest level of the hierarchy, the level of genes, their effects reach
all levels in the critter phenotype (receptor, neuron, network), and because the critters interact
(through competition on resources and reproduction), these affect the population level as well

(population, species):

The interaction(s) that takes place are in parenthesis at the end of each sentence.
1) Every critter attempts to survive — this requires several different behaviours:

(a) Perception: stimuli are perceived by the critter’s receptors
(environment—receptor). Naturally, the ability to perceive the environment may
be affected by the underlying changes to the genes.

(b) Communication: the receptors relay this information to the network through
neurons (receptor—neuron, neuron—network). The ability to relay the
information may be affected by the changes to the genes as well.

(c) Control: the networks control the critter’s behaviour (network—scritter).
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2)

3)

4)

5)

6)

(d) Consumption: the critter may consume surfaces (critter—environment); and in
this case, positive or negative energy is transferred from the environment to the
consuming critters (environment—critter). This decision may be affected by the
underlying changes to the genes.

(e) Movement: the critter may choose to move (forage for food, avoid the world’s
edges and holes) (environment—-critter). This behaviour may be affected by the
underlying changes to the genes.

(f) Reproduction: the critter may choose to reproduce (critter—critter). This
decision may be affected by the underlying changes to the genes.

Selection (to evolve appropriate behaviour): many critters die during stages 1-d to 1-f,
either by consuming negative surfaces, or by falling from the edges/into a hole, or by
moving too quickly (and running out of energy), or by reproducing when not possessing
enough energy. Because critters that possess appropriate behaviours are more likely to
survive, and thus, pass on genes that define them, the advantages these behaviours confer
directly affect the selection of these genes (network— genes).

Selection (to better compete): the critters that survive compete on resources
(critter—critter). Consequently, critters that are fitter are more likely to win in such a
competition, thus, features which increase fitness (this includes both evolved behaviours
and other aspects of the critter such as transmittance) affect the selection of genes which
define these features (network—genes, critter—genes).

Selection (to survive in a more difficult environment): the surface regeneration rate
slows down, thus, the environment effectively becomes more difficult, as per the
conditions of the experiment. Therefore, features which increase a critter’s fitness in any
way (including behaviours and structures) affect the selection of genes which define these
features (network—genes, critter—genes).

Reproduction: continuing (1-f), the critters that survive past steps (2) to (4) and are now
able to reproduce are fitter and more adaptable than those that died (genes—genes).
Because the selection pressure is becoming increasingly stronger, in the long run the only
offspring that survive are those that are more evolvable and so, more adaptable. As the
results show, the different structural mutations affect evolvability, thus, affect the fitness
of the resulting offspring. Therefore, the resulting changes to genes affect the phenotype
of the critters across all levels (genes—receptor, genes—neuron, genes—network,
genes—critter) and eventually the population (genes—population).

Steps (1) to (5) are repeated until the run ends. As was shown, the five structural
mutations result in critters and populations with different characteristics. As elaborated in
section 4.2, evolvability is the ability of genes in the population to change in a way that

produces fitter offspring across generations. This occurs by changing the offspring's
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genome which affects existing genes—genes interactions or creates new ones in certain
ways that are more likely to create fit offspring; these differences in offspring fitness are
a result of the various principles that are incorporated into each structural mutation, each
affecting evolvability in a different way. For example, when making a large (non-
gradual) change to the offspring's genome using mutation type 1, which has been shown
to decrease evolvability, the change is prone to creating unfit offspring because the large
change is more likely to damage structures in the genotype than to create useful ones. The
changes to the genes affect the entire hierarchy of objects in Mosaic World: genes affect
neurons and receptors, which affect the networks and critters, which affect population
and species, and of course, this effect goes downward as well — the critter’s altered
behaviour affects receptors and neurons, and eventually genes, through selection
pressure. According to the results:

(a) Non-gradual changes to network decrease evolvability. during reproduction, the
offspring inherits its parent(s)'s genes with some mutations (genes—genes). For
populations that use the mutation types that incorporate this principle, this
interaction between parent and child genes results in a new genome that differs
by a large amount from the parent genome. These changes are more likely to
disrupt existing structures than they are to increase innovation and produce useful
structures in the genome, thus, the offspring's fitness is likely to be lower and the
population's evolvability decreases when incorporating this principle
(genes—genes).

(b) Gradual changes to network increase evolvability: during reproduction, the
offspring inherits its parent(s)'s genes with some mutations (genes—genes). For
populations that use the mutation types that incorporate this principle, this
interaction between parent and child genes results in a new genome that only
differs by a small amount from the parent genome. These changes are more likely
to increase innovation and produce useful structures than they are to disrupt
existing structures in the genome, thus, the offspring's fitness is likely to be
higher and the population's evolvability increases when incorporating this
principle (genes—genes).

(c) Usage of modular elements decrease evolvability: during reproduction, the
offspring inherits its parent(s)'s genes with some mutations (genes—genes). For
populations that use the mutation types that incorporate this principle, this
interaction between parent and child genes results in a new genome that contains
one extra copy of an existing structure from the parent's genome. Because an
entire structure is copied, these changes are likely to be large, and the new

genome will differ by a non-trivial amount from the parent genome. Thus, (in
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Mosaic World) these changes are more likely to disrupt existing structures than
they are to add useful structures in the genome. Consequently, the offspring's
fitness is likely to be lower and the population's evolvability decreases when

incorporating this principle (genes—genes).

(d) Adaptive evolution increases evolvability: during reproduction, the offspring

inherits its parent(s)'s genes with some mutations (genes—genes). For
populations that use the mutation types that incorporate this principle, this
interaction between parent and child genes results in a new genome that only
differs by an amount whose size depends on a gene in the parent genome.
Consequently, during stages of evolution where large changes are appropriate
(exploration), a large change may be performed, and vice versa, when small
changes are appropriate (exploitation), a small change may be performed.
Therefore, these changes are more likely to increase innovation and produce
useful structures than they are to disrupt existing structures in the genome, thus,
the offspring's fitness is likely to be higher and the population's evolvability

increases when incorporating this principle (genes— genes).

Consequently:

(M)

(i)

(iii)

Mutation type 1, which only comprises element (a), results in populations that are
not very adaptable and perish quickly when the environment changes. In these
populations, the changes to genes tend to result in critters that are not fit to
survive in an increasingly more difficult environment. In fact, considering the
small network structure, it appears that most additions to the network result in

unfit critters.

Mutation type 2, which only comprises element (b), results in populations that
are not very adaptable and perish quickly when the environment changes. In
these populations, the changes to the genes tend to result in critters that are not fit
to survive in an increasingly more difficult environment. However, considering
the large network structure, the additions caused by the structural mutations are

likely to be neutral.

Mutation type 3, which comprises elements (c) and (a), results in populations that
are not very adaptable, and perish quickly when the environment changes. In
these populations, the changes to the genes tend to result in critters that are not fit

even in unchanging environments.
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@iv) Mutation type 4, which comprises elements (b) and (d), results in populations
that are adaptable and are resistant to environmental change. In these
populations, the changes to the genes tend to result in critters that are fit to
survive in an increasingly more difficult environment. Considering the medium

network structure, these changes are relatively small.

W) Mutation type 5, which comprises elements (b) and (d), results in populations
that are adaptable and are resistant to environmental change. In these
populations, the changes to the genes tend to result in critters that are fit to

survive in an increasingly more difficult environment.

4.8 Conclusions

The aim of this study was to investigate the genes—genes interactions taking place in the
system by setting a challenge to Mosaic World that necessitated useful parent-to-child gene
interaction. Since useful evolutionary interactions imply evolvability, these genes—genes
interactions were investigated by exploring the evolvability of neural networks within an
artificial life simulation. In the described experiments, the effectiveness of five different types
of structural mutations, which incorporate different general principles thought to be important
for network evolvability, was tested. Two experiments were performed, and the resulting E;y

and evolvability function over time were calculated and compared.

The experiments conducted indicate that certain principles increase evolvability when used to
evolve neural network artificial agents. The inheritance of genes through the process of
gradual changes to networks appeared to promote evolvability. Another promoter of
evolvability was the presence of genes that enabled evolution to adapt elements of itself, by
actively affecting the process of genome copying from parent to child. However, when the
inheritance of genes occurred through the duplication of network structures from parent to
child, evolvability appeared to be hindered; that being said, despite exhibiting on average
very low evolvability, this process showed some potential by evolving some of the best
individual runs. Finally, when the inheritance of genes occurred through the process of non-
gradual changes to the networks, evolvability appeared to be inhibited as well (or at least, did

not seem to be promoted).

To conclude: this chapter has demonstrated that the method used in the evolution of neural
networks for artificial life simulations plays a significant factor in all elements of the evolved

runs.
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Given that the results of the experiments indicated that usage of structural mutation type 4
results in the most evolvable populations, it was decided that subsequent experiments will use

this type instead of the equivalent mechanisms which were described in chapter 3.
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Chapter 5

Challenge: colour vision

The previous chapter explored the lowest level — the gene level — of the Mosaic World model,
by investigating genes—genes interactions and their effect on evolvability. This chapter
continues this narrative, and moves to the next level in the model: receptors. For that reason,
this chapter describes a set of experiments that were conducted in order to further investigate
the complex interactions that occur in Mosaic World, specifically, those interactions that
occur between receptors and the environment. The challenge posed for Mosaic World in this

chapter is:

Can receptors suitable for specific environments evolve in a population of critters, and how
do the characteristics of visually different environments affect the resulting visual systems?

(i.e., can critters evolve colour vision?)

In order to achieve this, two separate studies were conducted. The first examined the effect of
physical and behavioural similarity and dissimilarity on the evolution of visual systems in
abstract environments. The second explored the hypothesis that the need to survive in
ambiguous environments is a possible reason for evolving visual systems that possess colour

vision.

5.1 Introduction

Colour vision is the capacity of a visual system to distinguish between light of different
wavelengths. The perceived colour is a subjective feeling generated by the brain — it is not an

aspect of the physical world.

Vision requires three stages. In the first, light from the image is projected onto the retina. The
second requires light-sensitive visual cells to absorb photons and generate electrical signals.
In the third, these signals are analysed in the brain [134]. Although there is a great diversity
in the design of eyes between different species, there is also a great convergence in the ability
of these eyes to extract crucial aspects from light such as contrast, colour, shape and motion

[176].

Many species have two different visual systems that are used in different conditions: one
enables dim light vision, and another enables daylight and colour vision. In vertebrates, these

two systems are represented by the two types of photoreceptors: rods and cones [176]; both
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are light sensitive receptor cells in the retina that transform the received pattern of light into a

pattern of neural activity that represents the image [225].

Rods are particularly sensitive to light, thus, are mostly effective at night or other situations
where there is a minimal light level. Rods enable only low-acuity monochrome vision, so
cannot be used to tell colours apart. During the day the rods are ineffective as they become

saturated.

Cones are more suited for use during the day, as they are less sensitive than rods to low light
levels. Cones can differentiate between different spectral distributions, so are mainly used for
colour vision. At night, or other situations where there is a minimal light level, colour vision
generally cannot be used [82]. At intermediate light levels, both rods and cones contribute to
vision [172].

There are three cone types used by humans and Old World primates [225], thus, these species
have the potential to possess trichromatic colour vision. Each of the cone types has different
spectral sensitivities; the short wavelength photoreceptor peaks at 420nm (‘bluish’ light). The
medium wavelength photoreceptor peaks at 530nm (‘greenish’ light). The long wavelength
photoreceptor peaks at 565nm (‘reddish’ light) [225]. Many reptiles and birds possess four
cone types; thus, have the potential for tetrachromatic colour vision. Most mammals possess

two cone types, and so have the potential to possess dichromatic colour vision [172].

A photoreceptor’s sensitivity only defines the region of the spectrum that it is activated by,
i.e. the rate at which photons are caught [65]. Using only a single photoreceptor gives no
information about the spectral distribution of the light, its direction or its intensity. A single
photoreceptor cannot differentiate between changes in wavelength and changes in the
intensity of light [225]. A weak light at a wavelength it is sensitive to may cause an identical
activation to a strong light at a wavelength it is less sensitive to [134]. In order to support
colour vision, a comparison of activations from at least two photoreceptors that differ in
spectral sensitivity is required [134, 225]; this comparison — or opponent interaction [232] —
can take place in the eye or more centrally [91, 93]. The signal coming from the
photoreceptors must be kept segregated for the postreceptoral circuitry, so that they could be
compared [172].

Some computational models that investigate vision
Liese et al created an ALife simulation in which a population of visual agents evolved

sensors to survive. In their system, survival required that the agents' sensors become sensitive
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to the spectral characteristics of lamps, energy giving elements present in the environment.
To avoid collision with other agents, additional sensors sensitive to agent emitters were
evolved as well [129].

In another ALife model, Menczer and Belew evolved a population of agents to study the
evolution of sensory systems. In their system, recognising and consuming a specific
combination of resources was required to survive; however, recognition required evolving
two types of sensors: a type to perceive the external environment, and a type for the internal
environment [141]. Kortmann et al evolved a population of visuo-motor systems to
investigate the trade-off between spatial and temporal resolution that occur in biological
systems [109]. Aleksander and Morton have created a model that investigates the cause of
certain visual deficits in patients of Parkinson's disease [3]. Olsson et al investigated a
developmental control system for a rqbot that creates on its own a model of its sensors and
actuators. By learning to associate sensor readings with possible actions, the robot is able to

perform motion tracking and simple imitation [165].

In this chapter, the interactions between the environment and receptors, as expressed in visual
evolution, are examined. In the first part of the chapter, two sets of experiments are
conducted; in these experiments, a population of critters is evolved in simple, conceptually
abstract, environments. These experiments examine the effect physical similarity, the
similarity of the wavelengths that describe an object, and behavioural similarity, the
similarity of the behavioural significance of the object, have on visual evolution and also
explore how varying degrees of similarity differently affect the evolution of the visual
system. In the second part of the chapter, another set of experiments is conducted; these
experiments examine the hypothesis that environmental ambiguity — the one-to-many
relationship between perceived stimulus and its behavioural significance — is a possible
reason for the evolution of colour vision in nature. The chapter is concluded with a complex

interactions analysis of the experiments.

5.2 Additions to Mosaic World

The experiments that were conducted in this chapter required that the model is expanded in

several minor ways.

5.2.1 Simple environments
The ability to create simple, conceptually abstract, environments was added to Mosaic World.

These simple environments enable precise control of many environmental aspects (i.e.

number of colours and their distribution, environmental statistics). In these environments,
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normally up to 4 colours are used and each is assigned a specific value using the predefined
value function (see section 3.4.1). The colours are distributed in grids, and the size of each
region is customisable (e.g. each region can be 3x3, 4x4, 5x5 surfaces across). See fig. 5.1 for

two sample environments.

Fig. 5.1. Two simple environments. The left environment contains two types of resources
divided into regions that are 3x3 surfaces across. The right environment contains three

types of resources divided into regions that are 5x5 surfaces across.

5.2.2 Ambiguous value function

A new ambiguous value function is created by expanding the dynamic value function which
is described in section 3.4.1. This value function creates a one-to-many relationship between
stimuli and their behavioural value, as every stimulus may have different values (and
therefore, different behavioural meanings) at different time steps. Thus, the stimuli can be

said to be ambiguous.

Similarly to the dynamic value function, this value function operates by assigning a value for
every wavelength in the 400-700nm range which is determined using a linear function and
essentially defines the behavioural ‘worth’ of a wavelength. However, in each time step,
every element in the function is altered by adding or subtracting a random value in a
predefined range (see equation (5.1)). The surface’s value is calculated by summing the
multiplication of every one of the wavelengths that constitute its reflectance with its
behavioural value (equation (5.2)). Note that using this value function, the value of every
wavelength may change in every time step. However, on average, the wavelengths that
provide the best nourishment continue doing so despite the random element; this particular
aspect is crucial, as evolution may be able to exploit this statistical regularity in order to

enable critters to survive. In figure 5.2, two sample value functions are illustrated.
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V(i) =a(*i’°°)+6+ (RAND(2r +1) - (5.1

Where V(i)is the behavioural value of wavelength 1 using the value function, RAND() is a
random number generator function, and a, b and r are predefined constants; @, b are constants

in a linear function and 7 is the range constant for the random number generator.

5= loi){e(«)K(i) (5.2)

»=400

Where S is the surface’s value, Re(i) is the reflectance value of wavelength i for the surface,

and V(i) is the behavioural value ofthe wavelength.

40

Dynamic Ambigl Ambig2

Fig 5.2. Two examples of the ambiguous value function and the dynamic value function
they are based on (from fig. 3.5). In this example, a = -1.1666, b = 17.5 and r = 25. The
figure demonstrates that in two different time steps the value function can be very

different.

5.2.3 Ambiguous perceived stimuli
In section 3.4.3, it was described that the stimuli that is perceived by the critters depends on

the relative contributions of reflectance and illumination. In this section, a new ambiguity
mode, ambiguous perceived stimuli is added. When this mode is active, the standard dynamic
value function is used (defined in section 3.4.1); however, in each time step, a random value
is added to or subtracted from the constituent wavelengths of the stimuli. An individual
wavelength cannot be set above the maximum intensity (1) or below the minimum intensity
(0). This effectively creates a one-to-many relationship between stimuli and their source, as
every stimulus can be generated by many different types of surfaces. Thus, the stimuli can be

said to be ambiguous.

5.2.4 The methodology behind these additions

Biological relevance: all additions to the model are conceptually very simple and are meant
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to represent abstract principles; nonetheless, they enable running experiments that are useful

towards improving our understanding of biological phenomena:

e The simple environments feature enables examining abstract principles such as the effect
of physical similarity on visual evolution. Although the environments are extremely
simple, the results of the experiments (sections 5.3.4 and 5.3.5) are biologically relevant
as indicated by the literature which is referenced in sections 5.3.1 and 5.3.2.

e The ambiguous value function and the ambiguous perceived stimuli features are
particularly abstract. Although these do not have corresponding biological phenomena,
the results of the experiments (sections 5.3.3, 5.3.4, 5.3.5) are biologically relevant as

indicated by the literature which is referenced in section 5.4.1.
Level: the additions to the model do not affect this parameter.

Generality: the additions to the model do not affect this parameter: the model can still be
said to be a general model. That said, in this chapter it is used to examine very specific
hypotheses, as the environment and critter visual system are particularly suitable towards
examining hypotheses that relate to the evolution of visual systems. In fact, the usage of the

model here is more specific than in any other chapter.

Abstraction: all additions to the model can be said to be very abstract and do not emulate

any specific feature of a real world phenomenon except for the overall concept.

Accuracy: In this chapter, the additions to the model emulate two overall principles:

e Abstract concepts, such as the effects of physical similarity and behavioural similarity:
this is implemented using the simple environments feature.

e Ambiguity: this is implemented using the ambiguous value function and the ambiguous
perceived stimuli features.

Both types of additions capture well the overall concept, but are abstract enough that the

question of ‘accuracy’ does really not apply here.

Match: as both results sections of the chapter show, the additions to the model result in

behaviours that are very similar to their real world counterparts.

e Inpart 1, it is shown that evolved visual systems evolve to perform tasks similar to their
biological counterparts (specifically, detect the presence of positive resources: food).
Another biological parallel is the exhibited increase in sensitivity and specialisation as a

result of challenging visual conditions.
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e In part 2, it is shown that when exposed to ambiguity, critters evolve visual systems that
can be characterised as colour vision, and utilise mechanisms that are similar — in

principle — to their biological counterparts.

5.3 Part I: similarity and visual evolution

Two sets of experiments were conducted in order to investigate the relationship between the
similarity of the environment and visual evolution. In both experiments, it is anticipated that
environment—receptor interactions that take place will result in the visual system of the
critters becoming better adapted to the environment in the course of evolution; the
experiments are conducted in order to confirm this and investigate the precise nature of the

adaptations.

5.3.1 Visual systems and environments
In order for vision to be beneficial to an organism that possesses it, it must be able to perceive

relevant and useful information that is present in the environment. That being said, many
environments — such as dim environments with very low levels of light — offer a considerable
challenge for the visual system. In fact, it can be said that the greatest challenge of visual
systems in dim areas is capturing enough light to be able to reliably see [121]. Many species
have evolved special visual adaptations that enable them to thrive in challenging

environments.

The intensity of the illumination during a full moon night is roughly a million times dimmer
than illumination during the day [232]; in moonless nights, the light is further 100 times
dimmer [134]. Consequently, nocturnal animals that wish to rely on vision must evolve visual
mechanisms that enable them to overcome these difficulties. Similar difficulties are faced by
animals that reside in the ocean, where light levels drop very quickly with depth: after 600-
700m the level of illumination drops to starlight levels. However, the ocean creates additional
difficulties, such as a limited spectrum of light in deeper water, e.g. in the first 100m of the
ocean, virtually all of the orange-red part of the spectrum (>550nm) is absorbed, as well as
the direction of the light source: in the depths of sea, virtually all the light comes from above
[232].

There are numerous kinds of adaptations evolved by nocturnal animals or animals that live in
deep-sea that enable them to detect the light in such challenging environments. One way to
adapt is to evolve very sensitive eyes; the eyes of invertebrates in the deep sea are considered
to be some of the most sensitive eyes found in the animal kingdom [142]. Eyes can be made

sensitive by being very large, thus, they can capture as many photons that are available — e.g.
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the eyes of a giant deep-sea squid were reported to be 37cm in diameter [232]. Alternatively,
the visual signal can be summed in space and time by neurally integrating signals in the
visual system,; this has the potential of drastically improving vision in dim light at the cost of
a decrease in spatial resolution (when using spatial summation) or a decrease in visual
response time (when using temporal summation) [232]. Another adaptation is used by
superposition eyes, a type of compound eyes that are known for their high sensitivity; this
type of eye — possessed by nocturnal insects and deep-sea crustaceans — enables light from a
narrow area of space to be collected by a large number of lenses and be focused onto a single
photoreceptor [232]. Finally, some arthropods adapt to the dark by widening the receptive
fields of their photoreceptors at night and narrowing them during the day [118].

Low levels of light are not the only issue that requires specific adaptations: organisms can
evolve visual specialisations for specific purposes. For example, some organisms need to
detect the presence of a bright point source of light. A point source of light could be a star in
a clear night sky, the occasional flash of bioluminescence in deep sea or a bioluminescent
signal that is used by fireflies to attract potential mates [232]. Many deep sea organisms that
are faced with this challenge, for survival and reproduction, have large pupils and long
photoreceptors that are very sensitive [230, 231], thus, can recognise whether a point source
of light is present. Of course, if this light source must be located (rather than just identified)

then more adaptations are necessary.

Rather than solve a general problem, some visual systems resort to simply solving a specific
problem that is faced; this can be said to be analogous to the engineer term known as
‘'matched filters' (a matched filter is a filter that maximises the signal-to-noise ratio for a
known signal when noise is present [78]). Normally this is enabled by limiting the amount of
information that is perceived from the environment and looking for a specific visual signal
which serves a cue to perform a specific task. Naturally, this severely limits the general
usefulness of the system, but it relieves the visual system and brain from the need to do
considerably more complicated work [234]. For example, Ocypode crabs overcome the
problem of size constancy (the ability to reliably estimate an object's size regardless of its
distance) without estimating the distance and size of objects; instead, these crabs treat objects
that stimulate a certain number of vertical rows in the equator of their eyes as if they are in
the correct size; whereas in humans, this is done in a much more complicated way, by
measuring the absolute distance to the object and using the retinal image size. The crab's
visual strategy works — but only when its visual environment is very predictable, as is
normally the case in its flat environment [247]. A somewhat similar strategy is used by the

toad; toads stick their tongues out and snap at any small, dark, moving object that is nearby,
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even if it is a piece of small dark paper that is thrown at it [188]. Although the toad’s ability
to perceive its prey is very limited, in its environment it is sufficient for its purposes: in

nature, any small, dark, moving object is essentially prey for the toad.

5.3.2 The usefulness of colour vision
Colour vision is a commonly evolved mechanism for perceiving useful information that is

present in the environment. Animals use colour to detect, identify and distinguish between
objects, and normally possess visual systems that are adapted to the colour of objects of

importance, such as conspecifics, predators and food sources (prey, fruits, leaves, etc) [232].

The benefits colour vision provides are numerous; most often, colour vision has been
considered a specialisation for finding food [92, 213]. In the context of primates, who include
some fruit in their diets, trichromatic colour vision may grant a distinct advantage in
detection of yellow and orange fruits in green foliage [152, 213]; it certainly becomes very
difficult to detect fruit without colour vision against mottled foliage when the light source
varies randomly, a situation which may occur when the illuminant is interrupted by foliage
[152]. This hypothesis is strengthened by the observation that primates tend to forage on
colourful fruit, unlike non-primate diurnal mammals (e.g., squirrels eat brown and grey nuts)
[137]. Interestingly, it has been suggested that yellow and orange tropical fruit have
coevolved with the trichromatic colour vision of Old World monkeys [152]. Trichromacy
also evolved in several species that only eat leaves, and can be used in this case to
differentiate between different types of leaves [55]. Similarly, bee, wasp and moth colour

vision has been demonstrated to be ideal for the task of flower discrimination [46].

Some animals use colour as a cue for orientation. For example, honey bees and ants use a
chromatic signal as a compass [235]. Similarly, in water environments, the colour of the
illumination can serve as an indication of the current depth and the orientation [97]. Although
it is likely that colour vision is used for mate recognition, no conclusive proof has been found
so far; however, with many types of animals, existing evidence strongly suggests that colour
vision is used for this purpose, for example, jumping spiders, dragonflies and firefly squids
[232].

As described in previous section, dim environments require specific adaptations. In the case
of colour vision, colour discrimination is limited because of the inherent photon noise [232].
Until recently, it was believed that true colour vision has not been evolved under starlight
conditions; however, Kelber et al have shown that a type of nocturnal hawkmoth possesses

trichromatic colour vision at light levels a 100 times dimmer than the dimmest which can be
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perceived by humans [101]; this is believed to be possible using temporal and spatial

summation [101, 119].

5.3.3 Experiments

Two sets of experiments were conducted. In the first set, it is examined how ‘physically’
similar/dissimilar environments that are behaviourally similar/dissimilar affect visual
evolution. The aim is to discover whether there are common recurring characteristics to the
evolved visual systems and whether there are similarities between these and the
corresponding natural analogies. In the second set, it is examined how increased similarity of
environments affects visual evolution. The aim here is to discover whether any particular
visual strategy is required to deal with the increased similarity (and consequently, increased
difficulty of the environment), and whether this strategy bears any resemblance to the visual

strategies evolved by natural organisms.

In all experiments simple environments with four colours were utilised. The colours used are:
red, green, blue and grey (see fig. 5.3 for their reflectance functions); however, different
predefined values were assigned for every colour in the various experiments. The used
environments consist of regions that are 3x3 surfaces across and all surfaces within a region
are of the same colour. Although the regions were placed randomly, a predefined distribution
of resources was used. In all experiments a random population of 2,200 evolving individual
critters Was placed in the environment for 1,100,000 time steps (roughly 40-45 hours).
Afterwards, the critter population was stored and analysed. Each experiment was repeated at
least 3 times — reported results were averaged across runs. In every set of runs, the same
randomly generated environment was used. In these experiments, a receptor’s position also
specified its receptive field, that is, the area it is sensitive to (see section 3.7.1). Therefore,

only a single receptor may detect any given surface relative to the critter’s centre.

Experiment 1: the effect of physical and behavioural resource similarity on visual
evolution

The purpose of this experiment was to see how physical similarity, which is the similarity of
the wavelengths that describe each surface (e.g. blue is different from green because blue has
a reflectance function that peaks at 470nm and green peaks at 550nm) and behavioural
similarity, the similarity of the meaning of a surface from the critter’s perspective, affect the
evolution of the critter visual system. The surface matrix was illuminated by a static uniform

illumination source. Four different categories of experiments were run (see table 5.1).
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Table 5.1. The four types of run in experiment 1.

Experiment Surface Value of blue Value of red Value of green
# type surface surface surface
1.1 Saturated 25 -25 0
1.2 Saturated -25 25 0
1.3 Saturated -12.5 -12.5 25
1.4 Saturated 12.5 12.5 -25

Note: the purpose of the grey surface is to provide additional difficulty for critters because a
critter that examines a grey surface cannot tell whether this is a grey surface or a consumed
positive surface (which becomes transparent when consumed and shows the grey background
colour). Additionally, the values of 25 were picked because consuming a full surface with a
value of 25 brings a starved critter roughly to 80% of its maximum health, and consuming a

full surface with a value of -25 will bring a healthy critter to roughly 20% of its health.

Table 5.2. The four types of run in experiment 2.

Experiment # Surface type Value of blue | Valueofred | Value of green
surface surface surface
2.1
(identical to 1.1 — Saturated (level 3) 25 -25 0
same results used)
2.2 Saturated (level 2) 25 -25 0
23 Saturated (level 1) 25 -25 0
24 Unsaturated 25 -25 0

Experiment 2: the effect of increased resource similarity on visual evolution

The purpose of this experiment was to discover the effect of greater physical similarity on the
evolution of visual systems. These experiments utilised the concept of saturation. Saturated
colours are closer to pure colours whereas unsaturated colours look like pure colours mixed
with neutral grey. The significance of saturation lies with the fact that unsaturated colours are
harder to tell apart: the more unsaturated a surface is, the flatter its reflectance function. A
saturated red and a saturated blue can be very easy to distinguish as their reflectance
functions might not even overlap. However, an unsaturated red and an unsaturated blue might
have significant overlaps, making the recognition of both a more difficult task. Thus, the
effects of decreasing levels of saturation on the visual system, which result in recognition of

resources becoming increasingly difficult, are examined in this set of experiments.

In this set of experiments, three additional versions of experiment 1.1 were performed (see
table 5.2); in each subsequent run type, the used colours were less saturated than the previous
run type. See figure 5.3 for an illustration of the reflectance functions of used colours and

figure 5.4 for screenshots of the four types of saturated environments. Note that an additional
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(and intentional) difficulty for critters evolving in the later experiments is caused by the

increased similarity ofthe colours used to the grey background colour.

Blue sat 3
Blue sat 2
Blue sat 1
Blue unsat
Red sat 3
Red sat 2
Red sat 1
Red unsat
Green sat 3
Green sat 2
Green sat 1
Green unsat
Background

400 450 500 550 600 650 700

Wavelength

Fig. 5.3. The reflectance functions of the four colours in four different levels of
saturation that were used in the experiments. There is a greater overlap of reflectance
functions of unsaturated colours, thus, they are harder to tell apart. Note that the most

unsaturated colours are also the most similar to the grey background colour.

Fig 5.4. The four levels of saturation in clockwise order (from top left).
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5.3.4 Results of experiment 1
The results of exp. 1 are shown in fig. 5.5 and 5.6, and in table 5.3. After analysing these

results, several conclusions are immediately obvious. First, as fig. 5.5 and 5.6 show, in all run
types of the experiment most of the critters evolved receptors that peak in the vicinity of the
positive resource’s peak (see fig. 5.3 for the reflectance functions of all resources) — that is,
these receptors are most sensitive where the positive resource’s intensity is maximised, and
thus, it is easiest to detect; in exp. 1.1, 68.11% peaked at 470-480nm, in exp. 1.2, 83.65%
peaked at 620-640nm, in exp. 1.3, 83.33% peaked at 540-560nm. When there are two
positive resources (exp. 1.4), some of the critters evolve to detect one positive resource
(39.33% peaked at 450-480nm) and the rest of the critters detect the other (50.76% peaked at
620-630nm); this is apparent in two different peaks in the receptor distribution. Furthermore,
as the receptor distribution shows, there appears to be relatively little diversity: the majority
of receptors that were evolved peaked either directly on the positive wavelength’s peak or in

its close vicinity.

In addition, it appears that, on average, between 1 and 2 receptors were evolved in all types of
run (see table 5.3). When analysing where these receptors are placed, it appears one structure
is consistently evolved: there is always a receptor placed to detect stimulus from the critter’s
current location (distance = 0); this receptor’s peak is always very close to the peak of the
positive resource of the environment (in exp. 1.4, the average peak is actually close to the
average of the two positive resources; this demonstrates that some critters detect one of the
positive tesources and the rest detect the other). Interestingly, this evolved receptor is
primarily very highly tuned, that is, it is very sensitive and covers a small area of the
spectrum; the average and median coverage show that it covers between 26-34nm. Note that
the median statistic was obtained and used in table 5.3 as well, because an exceptionally high
coverage caused by a very wide tuning function can skew the average of the entire

experiment and the median statistic thus may be more appropriately used for this type of data.

In those runs where multiple receptors were evolved, the extra receptor still primarily peaked
around the positive resource; however, the tuning function of these receptors is much wider,
that is, their coverage was significantly higher — these receptors predominantly cover the
entire visual spectrum. The extra receptors were not placed in a consistent location across
runs, so distance > 0 was picked to describe their location (e.g., in some runs these receptors
detect stimuli from one surface to the left and one surface above the critter’s location, and in

other these receptors detect stimuli from one surface to the right of the critter’s location).
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Fig. 5.5. The receptor distribution of evolved critters in all runs of experiment 1
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The purpose of the first receptor (distance = 0) is clear: this is the receptor that enables the
recognition of surfaces to be consumed. However, the purpose of other receptors, when
present, is less obvious: these are not always evolved, and when they are evolved, they do not
seem to detect anything novel - they peak around the same area of the first receptor, but are
considerably wider. The results of the next experiment shed some light on the usefulness of

these receptors.

To conclude, the answer to the question ‘how do physical and behavioural similarity affect
visual evolution?’ is perhaps unsurprising: evolution does not ‘care’ about physical similarity.
Indeed, the only aspect that seems to matter is behavioural similarity. Surfaces that are
physically different but behaviourally similar result in similar visual strategies being evolved.
Surfaces that are physically identical but behaviourally different are treated differently by

evolution.

50.00%
40.00%
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20.00%
10.00%

0.00% J
400 420 440 460 480 500 520 540 560 S80 600 620 640 660 680 700

Exp. 1.1 Exp. 1.2 Exp. 1.3 Exp. 14

Fig. 5.6. The receptor distribution of evolved critters in all runs of experiment 1, shown

together in order to enable comparison.

Table 5.3. Average number of receptors, average peak, average coverage and median
coverage for receptor (distance = 0) and receptor (distance > 0) for experiment 1;

broken down according to category of experiment

Average / median Average / median
Average peak
coverage for

for receptor

Average Average peak

. coverage for
Experiment num.of for receptor g

Receptors (distance = 0) (d;f:i‘::“i o (distance>0) (dil;::zl::(): 0
1.1 2.00 476.66 nm 26/28 nm 491.50 nm 300/ 300 nm
1.2 2.00 625.00 nm 30 /34 nm 622.00 nm 250 /250 nm
13 1.34 552.66 nm 30/30 nm N/A N/A

1.4 1.61 559.00 nm 32/34 nm 490.00 nm 300 /300 nm
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5.3.5 Results of experiment 2

As can be seen in fig. 5.7 and 5.8 which show the receptor distribution in experiment 2,
evolved receptors peak around the positive’s resource peak as they did in experiment 1.
However, the more difficult the run is, the less diverse the receptor distribution; in fact, in the
most difficult environment (exp. 2.4), 99.3% of all receptors in all runs peaked at 470nm —
receptor diversity was negligible. Additionally, table 5.4 indicates that the average number of
receptors drops when the environment becomes harder. These observations can be explained
in the following way: one receptor, which detects stimuli in the critter’s immediate location
(distance = 0), is sufficient and provides all the required information for survival in this type
of environment. The additional information provided by extra receptors is simply not needed
— it is possible that in the easier environment, the selection pressure is simply not strong
enough to remove this extra receptor. In fact, because the extra receptor is not kept in the
more difficult environments, it is likely that the computational overhead of managing the
inputs from more than one receptor is detrimental to the critter’s survival chances — thus, in

the most difficult run only a single receptor is evolved.

In addition, the peak seems to be shifting towards 470nm; although in the easier
environments the average peak is already very close to the peak of the positive resource
(470nm), in the more difficult runs the average peak becomes even closer. Finally, the tuning
function, which determine the coverage of the receptors becomes smaller as the run becomes
more difficult (in some runs receptors which covered as little as 6nm were evolved); these
observations can be explained by the greater need to tell apart the overlapping reflectance
functions, which becomes an easier task when receptors are more accurate and are
exceptionally sensitive (the more sensitive the receptor, the greater the differences in
activations as a result of perceiving different resources). Interestingly, the more difficult the
run type, the harder it was to evolve: in the hardest environment the population repeatedly

perished and many attempts were required in order to obtain a number of successful runs.

To conclude, the answer to the question ‘how does increased similarity affect receptor
evolution’ is straightforward: increased similarity requires greater visual specialisation in
order to be able to correctly recognise the various types of resources; this is evident by the
smaller coverage of receptors and the average peak drifting closer to the good resource’s
peak. Furthermore, because the increased similarity of resources makes the environment more
challenging, in order to survive, the margin of error becomes smaller, thus, virtually all
evolved receptors in the difficult runs have the same characteristics — both in terms of the
visual structure (peak and coverage) and also by the fact that only a single receptor is used in

the most difficult environment.
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Fig. 5.7. The receptor distribution of evolved critters in all runs of experiment 2
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Fig 5.8. The receptor distribution of evolved critters in all runs of experiment 2, shown

together in order to enable comparison.

Table 5.4. Average number of receptors, average peak, average coverage and median
coverage for receptor (distance = 0) and receptor (distance > 0) for experiment 2;
broken down according to category of experiment

Average / median Average / median
Average Average peak g Average peak £
coverage for

. coverage for
Experiment num. of for receptor for receptor

Receptors (distance = 0) (dil;::fnl;zoi 0) (distance > 0) (di:::zlé?: 0)
2.1 2.00 476.66 nm 26 /28 nm 491.50 nm 300 /300 nm
2.2 1.25 474.50 nm 28/26 nm N/A N/A
23 1.33 473.33 nm 20 /22 nm N/A N/A
2.4 1.01 469.66 nm 18/20nm N/A N/A

5.3.6 Discussion of experiments

It is clear that the more challenging the environment is, fewer mistakes can be made or the
critters will not survive and as a consequence, the evolved receptors virtually always evolve
to peak in the ideal region - whereas in the easier environments, receptors mostly peak in the
close vicinity of the ideal region but occasionally peak even farther way. Moreover, as was
seen, the harder the environment, the average number of receptors seems to be going down;
in fact, all runs in the most difficult environment evolved a single receptor. This has a simple
explanation: examining a single and specific range of'the spectrum is enough to give a critter
all the information it requires in order to survive, there really is no need for other receptors
(this can be demonstrated by looking at the reflectance functions of fig. 5.3: certain intensities
at some peaks can indicate exactly one type of resource, e.g., intensity of 1 at 470nm has to
be ‘blue’). Thus, even if the evolved extra receptor provides some usefulness (a conclusion

which has not been demonstrated so far), it can be said that in the more difficult



5.4 Part II: ambiguity and visual evolution 119

environments it is likely to cause more harm than good, otherwise it would have been

retained.

Perhaps the most interesting result is the similarity of the evolved receptors’ purpose to the
primary task of vision in many biological organisms. First, the evolved receptors primarily
learn to recognise resources that provide nourishment. Second, when the environment
becomes more challenging, the evolved visual mechanisms of critters become specialised:
these receptors detect a very narrow and specific region of the spectrum — the critter sees
nothing besides. Finally, the evolved visual systems in part 1 can be said to be 'matched
filters' systems; the critters are looking for a specific cue — once given, the critters consume
the perceived resources; as demonstrated in section 5.3.1, this is similar to many visual

strategies seen in nature.

These results indicate that certain universal guiding principles shape the evolution of visual
systems, both in nature and in artificial systems. These principles work through the
interaction of the environment and the visual system, which in Mosaic World are
environment—receptor interactions, and result in the visual system becoming increasingly
better adapted to performing its task: to provide useful information that assists the organism's
survival, and not to create a full portrayal of the environment. In the experiments described
here, these interactions resulted in the evolution of simple 'matched filters' visual systems of

various levels of specialisation.

5.4 Part II: ambiguity and visual evolution

In this part, the hypothesis that the need to deal with ambiguous environments is a possible
reason for the evolution of colour vision is examined. Therefore, a set of experiments is
conducted in which a population of critters is exposed to environments of various types of
ambiguity. It is anticipated that the environment—receptor interactions that take place will
result in the visual system of the critters becoming better adapted to the environment in the
course of evolution; the experiments are conducted in order to confirm this and assess

whether these adaptations can be referred to as 'colour vision'.

5.4.1 The evolution of colour vision
The selection pressures underlying the origins of colour vision are still unknown [50],

however, it is known that colour vision evolved several distinct times during evolution [232].
One theory suggests that the original appearance of colour vision in vertebrates was a result
of the need to maintain lightness constancy [44, 137] — the ability to filter the differences

between sunny and shaded regions. In other words, colour vision originally evolved in order
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to deal with ambiguity of the visual environment, and not necessarily to tell different colours
apart. This could have been the case in shallow water environments, where illumination

flickers pose a serious constraint on visual processing [137].

Ecological forces have been shown to be a major element in directing the evolution of visual
systems [90, 134]. There is a great diversity in the number and the spectral sensitivities of the
cone types in different mammals. This is not only the case for mammals; for example, insects
that occupy entirely different ecological niches occasionally possess very similar sets of
receptor cone types [37]. It is widely assumed that these variations represent adaptations for
specific visual needs that are linked to specific habitats or lifestyles; however, in many cases
the adaptive usefulness of the examined system is not identified {172]. A possible explanation
is that these organisms have inherited these systems from a common ancestor, and constraints
(e.g. molecular) have kept them from optimally adapting to their environment [37]. Other
constraints, such as those imposed on the processing of receptor signals, may explain why

some animals (e.g. non-primate mammals) have not evolved trichromacy [137].

5.4.2 Experiments

In order to examine the relationship between ambiguous environments and the evolution of
colour vision, a set of experiments was conducted. All experiments required a random
population of 2,200 evolving individual critters to be placed in a test world and ended after
550,000 ﬁme steps (roughly 20-24 hours). Once finished, the critter population was stored
and analysed. Each experiment was repeated at least 8 times — reported results were averaged

across runs. All runs used the same randomly generated environment.

This set of experiments consisted of four types of runs. The dynamic value function (see
section 3.4.1) was used in all runs except where stated otherwise; the parameters of the value
function assigned positive value to the short wavelength and negative value to the long
wavelength. Consequently, surfaces which are rich in short wavelength (and tend to look
‘bluish’) provide the most potent nourishment and surfaces that are rich in long wavelength
(and tend to look ‘reddish’) provide the most damaging ‘poison’ (green, grey, and purple
surfaces would — on average — offer no reward as they would add as much to the health of a

critter as they take away).

(1) No ambiguity: uniform illumination. In this run type, a uniform static illuminant
illuminates the surface matrix (a constant 0.6 across all wavelengths). Consequently,
there is a one-to-one relationship between stimuli and their behavioural significance,

meaning, a perceived surface may only have one behavioural meaning: it could
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potentially be generated by only one reflectance (which would have a value that could be

reliably predicted).

(2) Ambiguity type I: multiple illuminants. In this run type, multiple light sources illuminate
the surface matrix (see sections 3.4.2 and 3.5). Thus, there is a one-to-many relationship
between stimuli and their behavioural significance; meaning, a perceived surface may
have many different behavioural meanings because it could have been potentially created
by a lot of different reflectances (thus, its perceived value is ambiguous — more difficult

to predict).

(3) Ambiguity type II: ambiguous value function. In this run type, a uniform static illuminant
illuminates the surface matrix, and the ambiguous value function (section 5.2.2) is used.
As a result, there is a one-to-many relationship between stimuli and their behavioural
significance — thus, a perceived surface may have different underlying values at different

points in time.

(4) Ambiguity type III: ambiguous perceived stimuli. In this run type, a uniform static
illuminant illuminates the surface matrix, yet the perceived stimuli are ambiguous as

. described in section 5.2.3. As a result, there is a one-to-many relationship between
stimuli and their behavioural significance. Potentially, the same surface could have been
generated by many different reflectances (thus, its perceived value is ambiguous — more

difficult to predict).

Note that some of these ambiguities are quite different from each other, in particular
ambiguity type II which differs from the rest. The aim behind incorporating such diverse
ambiguities was to see whether the type of ambiguity makes a difference with regards to the

evolved results, and if so, what sort of difference.

5.4.3 Results

An analysis of results for the different run types (see table 5.5) clearly shows that ambiguous
environments, regardless of the way the ambiguity is generated, result in a greater average
number of receptors evolving per critter (see fig. 5.9 for an illustration of the receptors of
three evolved critters). When compared with the control (the ‘no ambiguity’ runs), it appears
these results are statistically significant (a t-Test with a one-tailed distribution was used). A
more detailed analysis of the results shows that when there is no ambiguity in the
environment, the vast majority of critters (92.41%) possess only a single receptor. However,

when there is any type of ambiguity in the environment, there is a definite effect on the
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evolution of multiple receptors: for some types of ambiguity, most critters evolve multiple
receptors (e.g. in ambiguity type III, 99.01% of the critters evolved multiple receptors), for
others the effect is weaker (e.g., in ambiguity type II, 35.19% of the critters evolved multiple
receptors); regardless, the percentage of critters that evolve multiple receptors is considerably
higher in all of these than when there is no ambiguity present (only 7.52% of the critters

evolved multiple receptors).

Yet the presence of multiple receptors does not mean that an organism possesses colour
vision — to truly possess colour vision, an organism must (i) perform a comparison of
activations from two receptors (or more) that (ii) differ in spectral sensitivity [134, 225].
Without integrating receptor activation in post-receptor processing, it is impossible to

differentiate a change in colour from a change in stimulus intensity.

Since it is now known that in the run types with ambiguous environments, the critters
frequently, and in some run types mostly, possess two receptors or more, an additional
analysis was performed in order to discover the kind of spectral sensitivities the receptors
possess. This analysis will enable the determination of whether the receptors the critters
evolved possess different spectral sensitivities which is a requirement for colour vision. The
results of this analysis (see table 5.6) show the percentage of critters that have certain
receptor types and receptor combinations. Receptors were broken to three categories: short
wavelengths (peaking between 400-490nm), medium wavelengths (peaking between 500-
600nm) and long wavelengths (peaking between 610-700nm).

Table 5.5. The average number of receptors in the population and the statistical
significance in comparison to the control (no ambiguity), the percentage of critters in all
runs that evolved a single receptor and multiple receptors (2 or more); broken down
according to the type of runs. Note: a very small number of critters in the 'no
ambiguity' category have no receptors, thus, the total percentage of critters in the row is
less than 100%)

Average Prale % of critters % of critters

Run type number of (Comparison with with a single with multiple

receptors 'No ambiguity' runs) receptor (2+) receptors
No ambiguity 1.31 - 92.41% 7.52%
Ambiguity type I 2.11 0.0045 29.44% 70.56%
Ambiguity type 11 2.29 0.028 64.81% 35.19%
Ambiguity type 111 2.87 0.000095 0.99% 99.01%
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Fig. 5.9. Evolved receptors for three sample critters: (A) evolved in the unambiguous
environment, has a single receptor (B) evolved in ambiguous environment I, has two

receptors (C) evolved in ambiguous environment III, has four receptors.

It appears that the vast majority of critters in all run types evolved a receptor tuned to the
short wavelengths - thus, it may be assumed that a short receptor is mandatory for survival,
as this short receptor can detect the presence of wavelengths that provide positive resources

(according to the dynamic value function which was used). An additional receptor, tuned to
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the long wavelengths, was also frequently evolved in the ambiguous run types to various
degrees. In fact, in all ambiguous environments, the combination of a receptor tuned to the
short wavelengths and a receptor tuned to the long wavelengths seemed to be the most
commonly evolved combination by far among the various permutations (short + medium,

short + long, medium + long).

Table 5.6. The percentage of critters in all runs that evolved: a short wavelength
receptor, a medium wavelength receptor, a long wavelength receptor, a short and a
medium receptor, a short and a long receptor, a medium and a long receptor; broken

down according to type of run.

Category Short | Medium | Long I\S/ll::i:n; S;:Ool:; Me:‘::'gn +
No ambiguity 99.59% | 3.34% | 4.59% 3.06% 4.54% 0.08%
Ambiguity type I 99.52% | 17.98% | 53.88% | 17.72% | 53.43% 2.56%
Ambiguity type II | 97.30% | 21.33% | 22.45% | 19.24% | 20.99% 7.09%
Ambiguity type IIl ] 99.51% | 33.84% | 87.71% | 33.51% | 87.30% 22.88%

An additional analysis was performed in order to find the exact average peak of the evolved
receptors. Performing an average for the peak of all receptors resulted in confusing data;
however, when the average peak was obtained and broken down according to the receptor's
distance from the critter's location, interesting results were gained. Additional statistics
obtained in this analysis are the average and median coverage (based on the tuning function)
for these receptors. Since this analysis resulted in a large volume of data, the only results that
are given are receptor categories which appeared in at least a third of all the runs in the
category, where 'appeared' means that at least 10% of the critters of the run evolved this type

of receptor. Tables 5.7, 5.8, 5.9 and 5.10 show the results of this analysis for every run type.

Interestingly, the results are very consistent: a short wavelength receptor between 435 and
451nm was evolved in all run types, and was always positioned so it could detect stimuli
from the critter’s current position. In addition, in the ambiguous run types, an additional
receptor was frequently evolved; in ambiguity type I and III runs this receptor detects light
from one surface away from the critter's centre, and is sensitive to long wavelengths: between
628nm and 657nm. Intriguingly, the extra receptor for ambiguity type Il was sensitive to
medium wavelengths (peaks in 545nm), and was also consistently placed to perceive stimuli
farther away from the critter's centre (distance = 4). This receptor is also considerably less
sensitive than all other receptors, according to the median statistic, normally covering most or
all of the modelled spectrum, unlike the 74 to 118nm, far more sensitive receptors utilised by

all other run types.
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Table 5.7. The percentage of runs, average peak, and average and median coverage for

the 'mo ambiguity' runs.

Category of run Rec.eptors of % of runs Average | Median | Average
distance peak coverage | coverage
No ambiguity 0 100.00% 444.67nm 74nm 76nm

Table 5.8. The percentage of runs, average peak, and average and median coverage for

the 'ambiguity type I' runs; broken according to the distance of receptors from critter

centre.
Category of run Rec.eptors of % of runs Average | Median | Average
distance peak coverage | coverage
Ambiguity type | 0 100.00% 451nm 102nm 104nm
Ambiguity type 1 1 54.54% 628.27nm | 106nm 300nm

Table 5.9. The percentage of runs, average peak, and average and median coverage for

the 'ambigui e II' runs; broken according to the distance of receptors from critter
g typ g p

centre.
Category of run Recfeptors of % of runs Average | Median | Average
distance peak coverage | coverage
Ambiguity type 11 0 100.00% 435.77nm 130nm 118nm
Ambiguity type 11 4 46.15% 545.67nm | 272nm 300nm

Table 5.10. The percentage of runs, average peak, and average and median coverage for

the 'ambiguity type III' runs; broken according to the distance of receptors from critter

centre.
Category of run Rec.eptors of % of runs Average | Median | Average
distance peak coverage | coverage
Ambiguity type 111 0 100.00% 441.5nm 118nm 212nm
Ambiguity type 111 1 62.50% 657.8nm 102nm 98nm
Ambiguity type 111 2 37.50% 604.33nm | 118nm 300nm

The results of this analysis show that the evolved critters for all ambiguous environments
possess two or more receptors, where one is sensitive to the short wavelengths and the other
is sensitive to the long wavelengths (or much less frequently, the medium wavelengths), thus,

they fulfil the 'different spectral sensitivities' criteria required for true colour vision.

The last remaining requirement for colour vision is the comparison of activations from
different receptors. In Mosaic World critters, this type of comparison may occur when a
hidden unit receives stimulus from one receptor and subtracts it from the stimulus received
from another receptor (R1 — R2 or R2 — R1), and both receptors differ in spectral sensitivities.

A network examination showed that the networks that comprise the critter brains often
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contain many such connections. However, since statistically it is likely to frequently get such
connections randomly, an analysis was performed in order to determine which of these
connections were functional, that is, discover whether their presence makes any difference
with regards to critter behaviour. Interestingly, these types of connections are somewhat
reminiscent of colour opponent processing in mammals that are used for comparing

activations from different photoreceptors [182].
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Fig. 5.10. Three samples of the test stimuli used in the opponency analysis

Therefore, a selection of 25 representative critters that possess two or more receptors from all
runs was presented with 71 hand-made stimuli (see fig. 5.10 for three sample stimuli) and the
behaviour of every critter - specifically, the amount of positive and negative resources
consumed - was recorded. These stimuli were created to be challenging for the critters that
evolved in Mosaic World, e.g. stimulus 3 in fig. 5.10, which is a negative resource, would
look like a positive resource to any critter which possesses only a single receptor in the short

wavelengths.

Afterwards, this analysis was repeated multiple times for every critter: in each repetition, a
different connection between a receptor and hidden unit was lesioned (disabled); the purpose
of this analysis was to discover which ‘opponent’ connections have an effect on critter
consumption. The opponent connections that altered behaviour were termed ‘true opponent’
connections. An additional goal was to examine whether the presence of true opponent
connections was conductive towards more successful behaviour of the critter, that is, whether

these types of critters tended to consume more positive resources and less negative resources.
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The results of the analysis showed that the number of true opponent connections varied from
0 to 4 per network (with 27.3% of critters have 0 connections, 63.7% with 2, and 9% with 4;
the number of connections is even since every comparison requires exactly two connections,
one from each receptor). Furthermore, the more °‘true opponent’ connections a critter
possessed, the more efficient was its behaviour towards consuming positive resources and
avoiding negative resources, which is shown in figure 5.11. Thus, critters with a maximum
number of ‘true opponent’ connections consumed the highest amount of positive resources

and were able to avoid consuming negative resources altogether.

The Effect of Colour Opponeney on Consumption
500

m Posithe
Resources
Consumed

m Negttive
Resources
Consumed

Single receptor, 0  Multiple receptors, 0 Multiple receptors,2 Multiple receptors, 4

'true opponent' 'true opponent’ 'true opponent' 'true opponent'
connections connections connections connections
Category

Fig. 5.11. The average consumption of positive and negative resources per critter;

broken down according to number of 'true opponent' connections.

Three additional questions remain: first, why do critters that evolve in ambiguous
environments require two receptors and not a single receptor? Second, why is the most
common combination a short and a long receptor rather than another combination, such as a
short and a medium receptor? Finally, why does the short wavelength receptor peak around

430-450nm and not at 400nm, where the value of every wavelength is at maximum value?

It is possible to answer the first question by considering the criteria for colour vision. By
having at least two receptors, each sensitive to different regions of the spectrum, and
comparing their activations, it is possible to discern the overall value of the resources; using a
single receptor would not give enough information to determine the quality of the resource.
For example, fig. 5.12 demonstrates this principle by taking a test critter with two receptors

(the first peaks at 450nm and the second peaks at 650nm) and displaying three test stimuli to
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it: a positive resource (rich in short wavelengths), a neutral resource and a negative resource

(rich in long wavelengths). By comparing the activations for each resource, it is possible to

estimate whether the resource should be consumed or not, specifically, the resource should be

consumed when the activation for the short wavelength receptor is stronger than the

activation for the long wavelength receptor.
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Fig. 5.12. Three sample stimuli and the activations they elicit from a sample critter: the

first column is the stimuli, the second is the critter (the same always), and the last

column is the activation
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The answers to the second and third questions can be gained by looking at fig. 5.13, which
explains why - in statistical terms - the majority of critters evolved receptors tuned to the
short and long wavelengths, specifically, the values that were evolved. The figure describes
the correlation coefficient value of every individual wavelength with the surface value; for
example, 440nm is highly positively correlated with the surface value, and so, by looking
specifically at the value of 440nm only, it is possible to predict with some reliability the value
the surface will have. Therefore, by evolving a receptor that examines a wavelength that is
highly correlated with the overall surface value, a critter may be able to evolve a useful visual
strategy that would lead for survival. Furthermore, the wavelengths in the long wavelengths
range are highly negatively correlated with the overall surface value, thus, by possessing both
types ofreceptor, a critter significantly increases its ability to predict the overall surface value
(see fig. 5.14 for an example). In addition, the wavelengths in the medium range have very
low correlation values with the overall value, thus, a critter that evolves a receptor that detects
these wavelengths will gain very little information towards predicting the overall surface
value. Finally, although 400nm provides the most potent positive wavelengths, it is not as
correlated with the overall surface value as 430 and 440nm, thus, it is less useful to a critter
relying on its state for prediction of the overall surface value - that is why most receptors do

not evolve to detect wavelengths at 400nm.
0.6
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-0.2

-0.6

Range

Fig. 5.13. The correlation coefficient of individual wavelengths in the test environment
with the surface value (using the dynamic value function). Certain wavelengths are
highly correlated (positively or negatively) with the overall surface value, thus, are the

best predictors of the overall surface value.

Note that the 'bumpy' shape of the graph in fig. 5.13, where 430nm and 670nm are the
wavelengths most highly correlated with the overall surface value is a result of the way

reflectance functions are generated in the system, specifically, the use of 7 major wavelengths
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(described in section 3.3.1). Although this resulted in very interesting (and surprising) effects,
this particular element is unique to this system and does not correspond to anything specific

in nature.

Critter 1 has a single receptor which peaks at 450nm and covers 420-480nm.
Uses: 420, 430, 440, 450, 460, 470, 480nm as predictors.
R=0.537 ' ’

Critter 2 has two receptors; receptor 1 peaks at 650nm and covers 630-670nm, receptor
2 peaks at 430nm and covers 400-470nm.

Uses: 400, 410, 420, 430, 440, 450, 460, 470, 630, 640, 650, 660, 670nm as predictors.
R=1

Fig. 5.14. Two sample critters and the correlation coefficient of their receptors with the

overall surface value (calculated using multiple correlation for all the wavelengths the

receptors span)

5.4.4 Discussion of experiments
The experiments and analysis described in this part of the chapter provide evidence

supporting the hypothesis that colour vision is the result of ambiguous environments. These
experiments demonstrated that ambiguous environments result in the evolution of multiple
receptors. In addition, it was shown that these receptors consistently evolve to detect two
different parts of the spectrum: the short wavelength range and the long wavelength range.
Finally, it was shown that critters often have 'opponent' connections between two receptors
with different spectral sensitivities which are reminiscent of biological opponency channels;
the more of these a critter possesses, the better it is at consuming positive resources and

avoiding negative resources.

It is clear that adding ambiguity to the system resulted in the evolution of colour vision. Not
only do the evolved critters satisfy the colour vision criteria, but they use their evolved colour
vision the same way living organisms use their natural colour vision, specifically, to
differentiate between resources. It is interesting to note that it does not seem to make a
difference whether the ambiguity is a result of the value function having a random
component, perceived stimuli having an ambiguous component or simulated multiple
illuminants — all these result in evolved colour vision. However, runs involving ambiguity
type II seemed to possess different characteristics; this may be a result of the different type of
ambiguity involved: where the random component is affects the resource value, and not the

perceived stimuli (like the other two types of ambiguity).

One possible criticism of the evolved vision may be that the two different receptors do not

detect stimuli from the same surface, but instead detect neighbouring surfaces. Although
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technically correct, one of the premises of environments used in Mosaic World is that
neighbouring surfaces are likely to be identical or very similar (see section 3.5) — which is the
reason the environment evolves various types of clusters of colour. Thus, it can be reliably
stated that although these receptors detect neighbouring surfaces, the comparison of signals
that takes place would frequently be identical to the one that took place if the detection took
place from the same surface. However, in this case, what is the advantage of ‘looking ahead’
using receptors that do not perceive the current location of the critter? There are two possible
answers. The first possibility is that the ‘look ahead’ mechanism is indeed unutilised most of
the time, however, the few instances it is used — for example, for edge and hole detection
(only occasionally perceiving the darkness as a cue to turn around) — are important enough
for evolving this mechanism. The second possibility is that looking ahead does not confer any
compelling advantages but is used in the process of colour vision simply because it is
impossible to evolve two receptors that view the same location, thus, viewing a nearby

surface is as close as the critter can get to viewing the same surface.

It is also interesting to note the visual structures used by evolution; although some critters
survived in the ambiguous environments with a single receptor, possessing multiple receptors
appears to be a major advantage (and in fact, were occasionally — but not often — evolved in
the unambiguous environment as well). The receptor tuned to the short wavelengths is used
to detect the presence of short wavelengths in the resource (positive components), and the
receptor tuned to the long wavelengths is used to detect the presence of long wavelengths in
the resource (negative components). By comparing the activations of these two types of
sensors, a critter can determine quite reliably whether the resource is likely to be positive or
not, thus, whether it should be consumed or avoided. This is also shown to be the case from a

statistical point of view.

To conclude, colour vision is evolved in Mosaic World in order to gain a more reliable way
of discerning the value of a resource, which becomes particularly important in ambiguous
environments. Critters that evolved in an unambiguous environment tend to 'settle’ for a
single receptor simply because the perceived stimuli are more reliable and multiple receptors
require a greater computational overhead, whereas in the ambiguous environment, multiple
receptors were evolved more often because the perceived stimuli is less reliable, thus, the
increase in overhead is deemed to be worthwhile. This illustrates very well how the
interactions between the environment and the visual system (environment—receptor
interactions) cause the visual system to become increasingly more adapted to the
environment. This is a recurring process: the ability of the receptors to perceive the

environment influences the critter’s overall behaviour and likelihood of survival and this
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enables such critters to be selected for reproduction. Finally, these experiments support the
hypothesis that the original evolution of colour vision in nature occurred as a result of

ambiguous changing light sources [40, 189].

5.5 Complex interactions analysis

The work described in this chapter primarily deals with the interaction of the visual system

and the environment through environment—receptor interactions. In both parts of the chapter,

a population of critters is presented with different environments which incorporate several

different principles and the effect on the evolved visual systems is examined:

e In part 1, experiment 1: several combinations of physical similarity/dissimilarity and
behavioural similarity/dissimilarity are incorporated into the design of the environment.

e In part 1, experiment 2: increasing levels of physical similarity are incorporated into the
design of the environment.

e In part 2: an unambiguous environment and three types of ambiguous environments are

used.

These environments present various types of challenges for the critters; the primary way
which the critters overcome these challenges occurs through alterations to the visual system,
by.evolving specific adaptations that enable perceiving elements of the environment that are
crucial towards survival and disregarding elements that are not. Therefore, the
envifonment—»receptor interactions are crucial towards accomplishing the challenge. It is
important to emphasise that although these specific interactions take place in one level of the
system, the level of the receptors, their effects reach all levels in the critter phenotype: both
higher (neuron, network) and lower (genes), and because the critters interact, through
competition on resources and reproduction, these affect the population level as well

(population, species):

The interaction(s) that takes place are in parenthesis at the end of each sentence.
1) Every critter attempts to survive — several different behaviours are required:

(a) Perception: the environment is perceived by the critter’s receptors
(environment—receptor), thus, the receptors are in charge of filtering the
information that reaches them and relaying the 'right' information to the network.
The more adapted to the environment the visual system of the critter is, the better
it will be at extracting the relevant and useful information from the environment
and passing it on and disregarding information that is of no use. Thus, the

difficulty of this task depends on the nature of environment.
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e Although the environments used in exp. 1, part 1, are different from each
other, the visual systems required for each follow similar principles,
specifically, the need to perceive the peak of a positive resource within the
environment; all 4 environments are quite simple and are roughly the same
level of difficulty.

e Several environments of varying levels of difficulty are used in exp. 2, part 1.
The more unsaturated the resource types, the more challenging the task faced
by the visual system of the critters, and the greater the difficulty in adapting
the receptors so that they relay useful information from the environment.

e All environments used in part 2 are complex, and so, the visual systems of
critters must labour to determine which information is relevant and which is
not. That said, the three ambiguous environments all have one-to-many
relationship between stimuli and their behavioural significance, thus, offer a
considerable challenge to the visual systems of the critters by requiring them
to compare activations from multiple receptors in order to reliably determine
the nature of the perceived stimuli. These environments are more challenging
than the unambiguous environment.

(b) Communication: the receptors relay this information to the network through
neurons (receptor—neuron, neuron—network).

(c) Control: the networks control the critter’s behaviour (network—-critter).

(d) Consumption: the critter may consume surfaces (critter—environment); and in
this case, positive or negative energy is transferred from the environment to the
consuming critters (environment—critter). The ability to recognise positive and
negative resources is directly affected by the receptors’ ability of
perceiving/interacting with the environment.

(e) Movement: the critter may choose to move (forage for good, avoid edges and
holes) (environment—-critter). This behaviour is also affected by the receptors’
ability of perceiving the environment.

(f) Reproduction: the critter may choose to reproduce (critter—critter). This
decision, in case of sexual reproduction, may be affected by the receptors’ ability
of perceiving other critters.

2) Selection (to evolve appropriate visual system and behaviour): many critters die
during stages 1-d to 1-f, either by consuming negative surfaces, or by falling from the
edges/into a hole, or by running out of energy, or by reproducing when not possessing
enough energy. Because critters that possess appropriate behaviours are more likely to
survive, and thus, pass on genes that define them, the advantages these behaviours confer

directly affect the selection of these genes (network—genes). Furthermore, because
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3)

4)

5)

critters that have a visual system that is better adapted to the environment are more likely
to identify good resources for consumption and avoid consuming bad resources, they are
more likely to survive, thus, the advantages these visual systems confer directly affect the
selection of the genes that define them (receptor—genes).

Selection (to better compete): the critters that survive compete on resources
(critter—-critter). Consequently, critters that are fitter are more likely to out-compete
others, thus, features which increase fitness (both evolved behaviours and other aspects of
the critter) affect the selection of genes which define these features (network—genes,
critter—genes). Critters that have a visual system that is better adapted to the
environment are more likely to out-compete other critters on resources (receptor—genes).
Reproduction: continuing (1-f), the critters that survive past steps (2)-(3) and are now
able to reproduce are fitter than those that died (genes—genes). Their offspring’s
phenotype is likely to be fit as well, as affected by the selection pressure in (2) and (3).
These changes to genes affect the phenotype of the critters across all levels
(genes—receptor, genes—neuron, genes—network, genes—-critter) and eventually the
overall population (genes—population).

Steps (1) to (4) are repeated until the run ends. The critters with visual systems that are

better adapted to the environment are those that survive. Depending on the experiment,

- the critters that survive at the end of the runs have these types of visual systems:

o Inexp. 1, part 1, critters that survive have a single receptor that receives stimuli from
the critter’s current location (distance = 0) and peaks in the vicinity of the positive
resource’s peak. Occasionally these critters evolve more receptors that perceive
stimuli from various distances from the critter’s current location (distance > 0) whose
function is not clear — but appear not to be crucial for survival.
o In exp. 2, part 1, critters that survive have a single receptor at (distance = 0) that
peaks on the positive resource’s peak or very close, and is extremely sensitive.
o In the experiments of part 2:
= In the unambiguous environment, critters mostly evolve a single receptor at
(distance = 0) that peaks around 440nm (a wavelength likely to enable good
prediction of the surface value).

= In all ambiguous environments, most critters evolve one receptor that receives
stimuli from the critter’s location and peaks between 435 and 451nm
(wavelengths that enable very good prediction of the surface value). In
ambiguous environment I, most critters evolve an extra receptor that peaks
around 630nm and receives stimuli from one surface away from the critter's
location. In ambiguous environment II many critters (46%) evolve an extra

receptor that peaks around 550nm and receives stimuli from 4 surfaces away
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from the critter's location. In ambiguous environment III most critters evolve an
extra receptor that peaks around 650nm and receives stimuli from one surface
away from the critter's location, and about a third of the critters evolve a receptor
that peaks around 600nm and receive stimuli from two surfaces away from the
critter's location. The long wavelengths enable very good prediction of the

surface value (through negative correlation).

As indicated, the evolved visual systems assist survival by:

(a) In part 1, the evolved visual system enables the critter to survive by identifying
only what it should eat (and of course, how to avoid other pitfalls of Mosaic
World, such as the holes and edges). Only a single receptor is necessary and is
used to detect a specific region of the spectrum which indicates whether the
resource is good or not. This information flows from the receptor to the critter’s
network, and leads to the critter behaving in the appropriate manner.

(b) In part 2, the evolved visual system enables the critter to survive by identifying
resources that are most likely to increase the critter’s health (and avoid the other
pitfalls of Mosaic World). In both unambiguous and ambiguous environments,
two (or more) receptors are useful: by comparing activations from a receptor
which detects short wavelengths in the resource and a receptor that detects long
wavelengths, it is possible for the critter to compare the activations and quite
reliably determine the quality of the resource it perceives. However, in the

- ambiguous environments possessing such a visual system is more crucial because
the perceived visual stimuli is less reliable, so critters are more likely to evolve

this type of visual mechanisms there than they are in unambiguous environments.

5.6 Conclusions

The aim of the work presented in this chapter was to investigate the environment—receptor
interactions that take place in the system by setting a challenge to Mosaic World that required
potentially several different types of visual adaptations to be evolved. By picking different
environments, it was interesting to see the similarities and the differences between various

adaptations that were evolved in the two parts of the chapter.

On one hand, very similar mechanisms were evolved by critters in both parts: one receptor is
evolved, which is positioned to detect stimuli from the surface the critter is currently above,
and tuned towards the peak of the positive resource of the environment. On the other hand,
some differences were apparent as well: first, it appears that the first receptor is used in

different ways; in part 1, it is used as a 'matched filter' — as a cue to be used when a resource
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can be reliably determined to be positive or not, thus, should be consumed, whereas in part 2,
it is often used as a part of a colour vision system — comparing its activation with another
activation is crucial. Consequently, it appears that the nature of the extra receptor that is
evolved in both types of environments is very different. In part 1, the extra receptors are not
very different from the first receptor (except for location), whereas in part 2, the extra
receptors are mostly tuned to detect long wavelengths in order to accomplish their role in the

colour vision mechanism; thus, the extra receptors are very different from the first receptor.

Another difference is that in part 1, multiple receptors were a liability that should be
optimised when dealing with difficult environments, whereas in the part 2, multiple receptors
were a significant advantage when dealing with difficult environments. The reason for this
potentially conflicting information is fairly straightforward. In the environments used in part
1, there is nothing to be gained by possessing multiple receptors: the environment is simple
enough that all the necessary information can be obtained using a single receptor, for
example, a perceived intensity of 1 at 470nm can mean only one thing: the viewed resource is
blue. However, as demonstrated by fig. 5.13, in part 2, multiple receptors of certain types
provide useful information that can considerably increase a critter's likelihood of recognition

of the surface type.

Why, then, were two receptors occasionally evolved in part 1? The usefulness of these
receptors was never established, however, it is possible that these extra receptors help create
neutral networks — allowing the phenotype of the critter to be changed without affecting its
fitness (see section 4.2). If this is the case, then these extra receptors could have been used as
a way to make the critters more evolvable, and would have been discarded when the critter

reached its optimal state. In order to test this hypothesis, further work would have to be done.

Interestingly, the fact that at times the critters’ receptors aimed to extract as much information
as possible from the environment, and other times aimed to extract only a limited amount of
information from the environment is suggested by Polani et al to depend on the information
that is relevant — in the sense that it is useful — in the environment to the agent; in their work,

they attempt to provide a framework for quantification of this relevant information [178].

To conclude: all experiments indicate that visual systems adapt to the environment they are
placed in through their interaction with it. When it is useful to extract more information from
the environment for survival, a visual mechanism evolves that achieves this. When it is useful
to filter existing information and only use some of it, the evolved visual systems will do that

instead.
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Chapter 6

Challenge: behaviour

In the previous chapter, the interactions that occur between the receptors and the environment
were investigated, as expressed by the evolution of structural adaptations to the visual system
that facilitated survival in various environments. This chapter continues the investigation of
Mosaic World and moves to a higher level in the model: the network level. In order to
achieve this, a set of experiments was conducted to investigate the complex interactions that
occur between the behaviour of the critter and the environment it is situated in: whereas
previously the environment's effect on structural adaptations was examined, in this chapter,
the environment's effect on behavioural adaptations is examined. The challenge posed for

Mosaic World in this chapter is:

Can behaviours suitable for specific environments evolve in a population of critters, and if
so, how do the characteristics of environments of various levels of difficulty affect the

resultant behaviour?

In order to achieve this, a set of experiments was conducted to study the effect of three
different types of environment on the behaviour of evolved critters under seven different

health levels_.

6.1 Introduction

Even though some of the Earth's environments are characterised by extreme conditions — for
example, the cold at the icy shelves of Antarctica or the heat at the Saharan desert during
midday — these are the habitats of many animals [23]. A species that wishes to survive in such
environments — or any environment — must obtain a way of adapting to its conditions. A
species can adapt to an environment by evolving certain structural adaptations. In addition, a
species can adapt to an environment by evolving behavioural adaptations [139]. For this
purpose, the behaviour of an entity, both natural (such as an animal) and artificial (such as a
robot), can be defined as the dynamic interaction that takes place between itself and the
environment it is situated in [143]. If a behaviour is genetically based rather one that has been
learned in an individual animal's lifetime then it can be referred to an evolutionary strategy

[139].

Even with appropriate structural adaptations, an animal's survival is critically dependent on

its behaviour [139]. For example, in nature, dark moths are more difficult to spot when placed
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on a dark background and light moths are more difficult to spot when placed on a light
background. However, to benefit from this type of camouflage, a moth must behave in an
appropriate manner, by actively seeking backgrounds that are better suited for its colouring
[103]. Consequently, the process of evolution results in animals that are very efficient at
survival; this includes behaviours such as foraging, reproduction, hunting prey and avoidance

of predators [139].

All behaviours an animal may perform cost energy; this energy must be replaced by the
animal in various ways, all of which may be referred to as foraging. Yet the rate at which an
animal is able to restore its lost energy also depends on the availability and accessibility of
food. Furthermore, there may be occasions where an animal has only a limited amount of
energy or time it can spend on foraging; this constrains the behaviour of the foraging animal.
An animal can prepare for such a situation by saving energy (e.g. storing fat). Under natural
selection, efficient foragers have an advantage; thus, most animals are very efficient at

searching and obtaining food [139].

The best way to search for food depends on numerous factors, including the distribution of
food (or prey) and whether it is static or moves [188]. Naturally, the physical structure of the
habitat (e.g. the structure of the vegetation) also plays an important part at determining the
search methods that can be used [189]. Different species possess different foraging methods;
somé actively search for their food while others lie and wait for food. Consequently, some
spend a lot of energy while foraging but forage only a short amount of time, while other
spend little energy while foraging but forage for long amounts of time [139]. In general, the
more actively a forager looks for food — by moving faster or dedicating more time to the
process — the faster it will find it; however, the more active the search, the higher the energy

cost the forager pays {9, 161, 189].

In nature, food is frequently distributed in patches (e.g. different bushes, different leaves);
when this is the case, the forager has to determine which patch to pick and how much time to
spend in it. The forager may be able to determine which patch is likely to have food based on
perceptual cues or memory [79, 99]. Once a patch has been picked, the forager needs to do an
‘area-restricted search' within it (also called 'local search' [79]) to locate the food source [23].
There are many recurring foraging strategies which are used by animals when food is
distributed in patches. For example, after a food item has been obtained, some animals
perform a local search which is characterised by a decreased rate of movement and an

increased rate of turning — this appears as spiralling movement patterns; clearly, this
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behaviour is useful when food/prey is distributed in clumps/groups, and such movements

increase the likelihood of finding more food items [23, 25].

The study of foraging in insects, animals and humans relates to several areas of research in

biology, psychology, behavioural ecology and anthropology with a very large body of work.

Food abundance (spatial distribution) and foraging behaviour

One topic of study is the effect of the food abundance (or prey) within a patch, specifically
the spatial distribution of the food within the region, on the foraging strategies of the forager.
Often the animal's behaviour aims to increase its chances of obtaining food which may be
affected by the food's distribution; thus, the abundance of food tends to be negatively
correlated with the length of time or speed the forager pursues it [60]. In a study of the
environment's effect on the movement patterns of Chacma baboons that live in two different
areas: the slopes and the belt [81], it was discovered that the slopes baboons foraged in longer
journeys while moving faster than the belt baboons because of the lower food availability
present on the slopes. However, when food availability increased, the length of the journeys
decreased. In another study, on Rana catesbeiana tadpoles, it was reported that when food
levels were low, the tadpoles increased their foraging efforts by moving more frequently and
faster [9]. A study on bumblebees demonstrated that a change in foraging strategy takes place
as a result of nectar abundance; when there is more nectar per flower, the bumblebees search
more for flowers in the area; thus, the bumblebees clearly aim to forage mainly in more
rewarding areas [139]. Finally, it was shown that the foraging strategy of thrushes depends on
the distribution of food; when food is placed in small clamps, the best foraging strategy is to
move straight and turn once a food item has been obtained in order to find the rest of the
nearby food, however, when the food is spaced out, after a food item has been obtained it is

best to continue moving [210, 211].

Food abundance (availability of food) and food preferences

Similar research investigates the effect of the availability of different types of food or prey
within a patch on the food preferences of the forager [23]. Normally, when food is abundant,
animals prefer the higher quality food — but when food is scarce, animals are less choosy. It
was shown that foraging bluegill sunfish show no preferences with regards to capturing
small, medium or large water fleas when these were available at low densities; however,
when there were plenty of fleas, the fish preferred to capture the largest fleas and ignored the
rest [236]. Similarly, it was shown that the redshank, a type of bird that feeds on worms,
tends to ignore smaller worms and catch only worms that are above a certain size; however,

its size preference depends on the rate of encounter of larger worms [72]. Another study
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examined the effect of seasonality on Tai Chimpanzees and showed that in dry season — when
food resources are scarce, the chimpanzees spend more time feeding and eat more frequently

lower quality food items than when food resources are abundant [56].

Temperatures and foraging behaviour

Temperatures may also affect the foraging behaviour of animals which require
thermoregulation [161]; for example, a bumblebee must spend energy to keep its flight
mechanisms warm when it is cold, and increasingly more as it gets colder [139]. It was
shown that bumblebees forage on rhododendron flowers, very rewarding flowers in terms of
energy in a wide range of temperatures — but they do not forage on wild cherry at low
temperatures because the energy gained from these flowers is less than the energy costs of

keeping warm and foraging [80].

Starvation and foraging behaviour

Foraging behaviour has also been found to be dependent on parameters that are internal to the
organism such as the presence of hunger; these studies are linked to the previously described
studies on the effect of resource abundance, i.e. when resource levels are low, an animal may
be hungry. Generally, when an organism is hungry, it increases its efforts of locating food in
several ways. In a study of Rhynocoris marginatus, a type of predatory insect, it was shown
that the hungrier the insect, the shorter the distance it travels in search of prey; on the other
hand,b the hungrier it gets, the faster its movement rate and the more tumns it makes during this
search [49]. Another study, on wolf spiders [229], demonstrated that Hogna helluo changes
its movement patterns when starved: it travels farther, more frequently, and its maximum
speed is higher than the satiated spider. This is believed to be the case because Hogna seeks
new areas with better chances of finding prey; it 'assumes’ it is hungry because its current area
has low prey availability. A study of Drosophila flies reported that hungry flies are more
active than satiated flies — their level of locomotion increases [108]; the authors suggested
that the increase in speed is a part of altered search behaviour, and argued that if food had
already been found during the experiment, the speed would not have increased despite the
fly's hunger. Conversely, in a study of darkling beetles [140], it was shown that hungry
beetles move slower and cover less ground than satiated beetles. Although this behaviour
appears to contradict the previously described work, its purpose appears to be the same: the
authors argue that hungry beetles move slower in order to do a more thorough search (area-
restricted foraging). A different study reported similar effects of hunger on the behaviour of
Coccinellid Larvae [45]; the hungrier the larva, the slower it searches for food and the more
turns it makes. Here, too, the change in speed aims to achieve a more thorough search within

a patch.
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Risk sensitivity and foraging behaviour

A related area of research is risk-sensitive foraging, the study of the effect of uncertainty on
foraging decisions [17]. Several theoretical models, and numerous studies suggest that
animals tend to be risk-averse when the amount of reward is variable and unpredictable, that
is, they will always prefer the constant alternative, and are mostly risk-prone when the
variability is related to delay, that is, they will prefer the uncertain alternative when reward is
delayed in a random amount of time [16, 17]. In addition, it was reported that positive and
negative energy-budgets — defined according to whether the animal receives enough food to
satisfy its energy needs including elements such as thermoregulation [16] — occasionally
cause an animal to switch from one behaviour to the other (risk-averse to risk-prone and vice
versa). It is important to emphasise that a lot of contradictory results have been reported in
multiple studies, thus, many research questions are still unresolved. It appears that foraging
decisions are very complex and may be affected by what appear to be trivial elements in the

conducted experiment — no one theory explains all the reported behaviour [17].

Computational models that investigate foraging

There are numerous computational models that simulate the behaviour of real world animals
(e.g. one simulation was used in order to investigate the movement patterns of confined pigs
[220]). However, there are fewer models that attempt to investigate the foraging behaviour of
animals. In an agent-based simulation model, the foraging strategies of the common
Hippépotamus were investigated and compared with field results from wild Hippopotami
[126]. In another model, four foraging strategies of animals harvesting renewable resources
from isolated patches in competitive situations were investigated and compared using a
simulation model [163]. In another agent-based simulation, a predictive model attempted to
determine the patch choice of animals for simulated landscapes characterised by various
spatially distributed resources [150]. Finally, in her PhD thesis, Favreau used an agent-based

simulation to investigate the effects of food availability on animal movement [60].

It is commonly accepted that the evolutionary persistence of a trait an animal possesses is
linked to its contribution towards its survival and reproduction in its natural environment;
therefore, when an animal behaves in a certain way, it is possible to ask how every behaviour
contributes to its survival in its natural environment [139]. Since it is difficult to determine
the quality of the animal's adaptation to its environment, similar species that reside in
different environments are compared instead. Thus, this can illustrate the aspects of
behaviour that are important in the animal’s adaptation to its environment [139]. This refers
to both the behaviours that an animal exhibits in its natural environment (e.g. the behavioural

strategies of an animal that resides in a tough environment with little food) as well as the
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adaptive behaviours the animal expresses when its environment changes (e.g. the behavioural

strategies that an animal displays when food becomes scarce in its environment).

In this chapter, the foraging behaviour of evolved critters is analysed (including movement,
turning, movement speed, type of consumed food) under several different types of
environments (easy, standard, difficult) and internal conditions (7 different levels of
starvation). It is examined whether certain environmental conditions result in different
behavioural strategies, and more so, whether these behavioural strategies are sensible
strategies in light of the challenges the critters face. Finally, the evolved behavioural
strategies are compared with the foraging strategies of natural organisms that face

comparable conditions.

6.2 Additions to Mosaic World

The experiments that were conducted in this chapter required no additions to the model. The
version of the model that is used is the one described in chapter 3, with the exception that it

uses the most evolvable structural mutation discovered in chapter 4 (mutation type 4).

6.2.1 The methodology behind the model

Although no additions were made to the model, it is used in a way that differs from the way it
was used in the previous two chapters: the behaviour of the critters is now compared with the

behaviour of animals or insects, thus, further justification for its design is provided here.

Biological relevance: the model is used to compare the foraging behaviour of evolved
critters in an ecosystem with the behaviour of animals and insects. As the result and
discussion sections show, the results are clearly similar and the evolved strategies are

sensible. Thus, this usage of the model is biologically relevant.
Level: there is no change to this parameter.

Generality: the fact no additions were made to the model, yet it can still be used to ask

general biological questions, further supports the notion that the model is general.
Abstraction: this usage of the model can be said to be abstract and does not emulate any
specific feature of a real world phenomenon except for the overall concepts of food

distribution, food availability, distance, movement and foraging in an ecosystem.

Accuracy: in the experiments, environments with various amounts and distributions of food



6.3 Experiments 143

are presented to the critter. This can be said to be directly comparable to biological
experiments that examine the effect of varying distribution of food and varying availability of
food sources on animal behaviour (for example, [9, 49, 56, 140]) both because there is less
food in the environment and also because there is a greater distance between food sources. In
addition, by setting predefined values to the health monitor unit, the critters are 'misled' to
believe that they have different health levels: this can be compared to the biological notion of
positive or negative energy budgets. Both these usages of the model can be said to be

accurate.

In addition, as will be shown in later sections, the behaviour of the critters can be described at
times as risk-averse and other times as risk-prone. Although it is clear that these descriptions
do in fact apply to the critters (who attempt to minimise and maximise energy/variability),
this metaphor is only somewhat equivalent to the biological version which refers more to
behaviour towards uncertainty. However, with this caveat in mind, this comparison is still
very interesting and only applies to the analysed results and does not apply to the validity of

the experiments.

Match: as the results and discussion sections show, most of the evolved behaviours — but not
all -~ are strikingly similar to the foraging behaviour expressed by animals and insects under

comparable conditions.

6.3 Experiments

The experiments described in this chapter were conducted in order to examine the behaviour
of critters under three different types of environments: easy (plenty of resources, relatively
close to each other), standard, and difficult (few resources, far apart). Furthermore, the effects
of starvation and satiation on the critters' behaviour were examined as well. It is anticipated
that environment—network interactions that take place in the experiments will result in the
behavioural strategies of the critters becoming better adapted to the environment in the course
of evolution; these experiments are conducted to confirm that this is indeed the case, and

examine the precise nature of the evolved adaptations.

A simple way of increasing the difficulty of the environment is to alter the value function
used (section 3.4.1). By altering the numerical rewards that certain wavelengths provide to
the critters, the overall worth of all surfaces can be made to increase or decrease. Thus, the
overall environment can be made easier for the critters by making the wavelengths that
provide positive rewards (400-540nm) more rewarding — or alternatively, it can be made

harder by making the wavelengths that provide negative rewards (560-700nm) more
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damaging. These changes not only affect the availability of food, but also affect its
distribution in the environment, as there would be more or less resources, thus, the distance
between good resources would decrease or increase. For example, increasing the numerical
worth of all the wavelengths between 400-450nm would cause all surfaces that have
reflectance functions that include these wavelengths to be more positive; this would make
some positive surfaces even more positive, some negative surfaces less negative, and some
weak negative surfaces could become weak positive; however, the overall environment
would unquestionably become more positive, and the average distance between positive
resources would unquestionably decrease (as there would be more positive resources in the
environment). Note that 550nm is ignored because in this type of value function it provides
zero reward. Figure 6.1 demonstrates the three value functions used, which were picked after
a period of experimentation with various values functions; even though the differences in the
functions used are relatively small, they makes a big effect with regards to the difficulty of

the environment.

Value functions used for the easy and difficult environments

450 500 550 600 650 70

-15

-10.5
-12
-13.5

Easy Difficult
Fig. 6.1. The value functions used to describe the easy and the difficult environments.
Note that the function for the standard environment overlaps with the difficult

environment when wavelength<550 and overlaps with the easy environment when

wavelength>550, so it is omitted for clarity.

Equations (6.1) and (6.2) are used as value functions (instead of equation (3.2)) as specified
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21 (i-400)
24

Where V(i) is the behavioural value of wavelength i using the value function.

V()= +3.125 (6.2)

Table 6.1. The three types of runs used in the experiment

Exp. # Environment | Value function for wavelengths | Value function for wavelengths
type between 400-540nm between 560-700nm
1.1 Easy equation (6.2) equation (6.1)
1.2 Standard equation (6.1) equation (6.1)
1.3 Difficult equation (6.1) equation (6.2)

As the three types of environments result in environments that have various amounts and

distributions of resources, the results of these experiments can be compared to:

- Biological studies that examine the effect of the spatial distribution of food on the
foraging behaviour of the animal (such as [9, 60, 81, 210, 211]).

- Biological studies that examine the effect of the availability of food on the food
preferences of the animal (such as [56, 72, 111, 236]).

- Biological studies that examine the effect of starvation on the foraging behaviour and the
food preferences of the animal (such as [45, 49, 108, 140, 229]).

All ‘runs required a random population of 2,200 individual critters to be placed in the
environment and ended after 550,000 time steps. Once finished, the critter population was
stored. Each experiment was repeated at least 5 times. The same randomly generated
environment was used for all run types; this environment was created using the standard
mechanism for environment creation (section 3.5). Although the environments are identical
for the three environment types in terms of visual statistics, they differ in terms of value and
behavioural significance, e.g. a positive resource in the easy environment may be negative in
the difficult environment. Consequently, it is possible that the critters will evolve some
structural adaptations (through receptors, for example) to improve their survival. In order to
minimise the likelihood of this occurrence, the same environment was used for all run types,
thus, it is possible this will be a minor, if not negligible, element of these experiments. Only

the behavioural adaptations are compared in this chapter.

In order to examine the behaviour of the evolved critters, five representative critters (the five
longest lived critters of every run) were cloned five times and placed in a test world identical
to the one they evolved in (in terms of environmental conditions) for 10,000 time steps.
During this time, the behaviour of the critters was closely monitored including (among other
statistics): the average number of accumulated bites per critter (the bite mechanism is

explained in section 3.6.1) for a given interval defined as 100 time steps, the average value of
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resources consumed for the given interval, the number of positive and negative bites
(meaning, the number of bites taken from positive resources and the number of bites taken
from negative resources), average number of steps taken for the given interval, the average
number of times a critter stood without moving for the given interval, and the average
number of turns a critter made in the interval. In addition, after the run ended, the average
survival age was measured. To be able to accurately quantify these behaviours and also
reduce the effects of critters on each other, only a small number of critters was used in every
run and these were prevented from reproducing (e.g. to avoid a situation where one critter
reproduces very quickly and its offspring distort the results). Critters that survived until the

end of the run were assumed to have died then.

Every test run was repeated 7 times with a small yet significant difference: in each test run,

rn

the critters' "perceived health" was fixed: the critters were instructed to believe that their
health was at a predefined level regardless of its real value; this was accomplished by setting
the value of the health monitor unit to a predefined value (0%, 10%, 30%, 50%, 70%, 90%
and 100%). These runs enable comparing the behaviours of the same critters for different
levels of health. After the test runs were complete, results were averaged across categories for

every health level.

Because the test runs cannot give any information on the critters' reproduction, an additional
analysis was performed. This required taking 500 random surfaces from the environment.
Every chosen surface was taken twice in two levels of consumption (9%, 25% left of the
surface — these values represent the two states of the surface: ‘eaten’ and ‘full’), and fed to
the five critters which were used in the test runs. By analysing the activations of the critter
brain, it was possible to determine when the ‘reproduction’ output unit was active. This
analysis was performed 7 times; in each, the value of the health monitor is set to the same
values used in the test runs (0%, 10%, 30%, 50%, 70%, 90% and 100%). By averaging the
results for all critters in the same environment type, it was possible to determine the average

number of times that the random stimuli caused the critter to reproduce for every health level.

6.4 Results

Although the three types of environments that were used have the same visual characteristics,
the different value functions which were used affect the percentage of positive and negative
resources in each environment. An analysis was performed in order to quantify these
differences. Table 6.2 shows the percentage of positive, negative and hole surfaces for every
environment type (hole surfaces are surfaces that are a part of a hole). As can be seen, in the

easy environment there are almost twice as many positive surfaces as there are negative
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surfaces, in the standard environment the number of positive surfaces is roughly equivalent to
the number of negative surfaces, and in the difficult environment there are almost twice as
many negative surfaces as there are positive surfaces. Logically, the fewer positive resources

that are present in the environment, the greater on average the distance between positive

resources.

Table 6.2. The percentage of positive, negative and hole surfaces in every environment

type
Environment Type  Positive Negative Hole
Easy 64.45%  34.05% 1.50%
Standard 49.41%  49.09% 1.50%
Difficult 34.03%  64.47% 1.50%

Average Survival Age
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Fig. 6.2. Average survival age per health level for every run type

As can be seen in fig. 6.2 which shows the average survival age for every examined level of
perceived health, broken down according to run type, critters appear to be best at survival
when their perceived level of health is between 10% and 70%, and worst when their
perceived level of health is 0% or 100% (depending on the run type). This is true for all
environment types, but most noticeable - the differences in survival age are the largest - for
critters that evolved in the difficult environment where these differences are very large (5734
time steps in 30% compared with 3435 in 100%). In addition, it appears that on average,
critters that evolve in difficult environment tend to survive less than critters that evolved in
easy or standard environments; this result is unsurprising considering the lower amount of
resources. However, it also appears that critters that evolved in the standard environment tend
to survive more than critters that survived in the easy environment; this result is surprising,

but may be within statistical errors as the differences are quite small.
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Average Number o f Accumulated Bites
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Fig. 6.3. Average number of accumulated bites per health level for every run type

Fig. 6.3 shows the average number of accumulated bites for every examined level of
perceived health, broken down according to run type; the accumulated bites statistic does not
refer to the discrete number of bites but rather refers to the total amount of bite sizes
(therefore, small and large bites are not treated as identical). As can be seen, in the difficult
environment, the number of accumulated bites increases when the perceived health level
increases, so a critter that perceives its health to be at maximum levels bites a lot more than
critter that perceives its health to be 0%. This trend appears to be true for critters that evolved
in standard environments as well, although the differences are much smaller. In the easy
environments this trend appears to be somewhat opposite - critters with perceived health
levels of 0% have the highest amount of accumulated bites, which decreases when the health

level drops to 10% and stabilises afterwards.

Fig. 6.4 and 6.5 which describe the average number of positive and negative bites
respectively, indicate that for critters that evolved in difficult environments, as the perceived
level of health goes up, so do the number of positive and negative bites. A similar, but much
weakened, trend occurs for critters that evolve in the standard environments: the number of
negative bites goes up with perceived health, and the number of positive bites goes up by a
bit as well. In the easy environments this trend is partially opposite: as the critter’s health
goes up, its number of positive bites goes down, but its number of negative bites goes up by a
very small amount. It is difficult to explain the differences in behaviour in the three types of

environments - additional statistics below help shed light.

In terms of absolute values, in the easy environment on average, more positive bites were
taken than in the standard environment, and more positive bites were taken in the standard

environment than in the difficult environment, for all health levels. These results are
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unsurprising, considering table 6.2; after all, the easy environment has more positive
resources than the standard environment, which has more resource than the difficult
environment. As for the absolute average number of negative bites, it is surprising that the
standard environment has the highest amount for health levels between 0% and 70%, and in
fact, the difficult and the easy environments have a comparable amount on health levels
between 0% and 30%. It is possible that the easy environment has a low number of negative
bites because it has fewer negative resources than the other two environments - but why does
the standard environment have more negative bites than the difficult environment? A possible
explanation is that the strong selection pressure in the difficult environment causes evolved
critters to be very discriminating in the resources they consume, and in the standard
environment the selection pressure is not strong enough to cause this behaviour, but there are

enough negative resources for the critters to consume.

Average Number of Positive Bites

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Health Percentage
— — Easy — — Standard — — Difficult

Fig. 6.4. Average number of positive bites per health level for every run type

Average Number o f Negative Bites

0% 10% 20% 30% 40% 50% 60% 80%
Health Percentage
Easy Standard Difficult

Fig. 6.5. Average number of negative bites per health level for every run type
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Average Value of Consumed Resources
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Fig. 6.6. Average value of consumed resources per health level for every run type

Fig. 6.6, which shows the average value of consumed resources, raises more questions; in the
difficult environments, the average value of consumed resources goes down as the perceived
level of health goes up: this complements the observations from the previous paragraphs. In
the standard environments, the average value of consumed resources also appears to slightly
go down as the perceived level of health goes up (although there is a small increase in the
average value between health levels 0% and 10%). However, in the easy environments, the
average value of consumed resources increases between health levels 0% and 10%, but then
appears to stabilise at its current value). With regards to the absolute values, an interesting
observation is that in the difficult environment, the average value is actually higher than the
standard environment at health levels between 0% and 70%, which is higher than in the easy
environment; this is surprising consider the fact that the easy environment is the most positive

environment ofthe three, followed by the standard environment.

Fig. 6.7 and 6.8 show the average number of steps taken and the number of times the critter
stood still, respectively. The data shows that in difficult environments, the lower the
perceived level of health, the faster the critter runs and the fewer times it stands still. In
standard environments, a similar but weakened trend is apparent. In the easy environments,
the average number of steps taken actually goes up with health between 0% and 10%, but
then it stabilises on a consistent level - and the opposite reaction happens to the number of
times the critter stands still: it goes down between 0% and 10%, and then stabilises. In terms
of absolute value, in the difficult environments on average, the critters run almost 2 to 3 times
as fast as critters in the easy environments - the differences shrink as the perceived health

increases.



6.4 Results 151

Average Number of Steps Taken
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Fig. 6.7. Average number of steps taken per health level for every run type.

Average Number of Critter Standing Still
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Fig. 6.8. Average number of times a critter stands still per health level for every run

type

Fig. 6.9 shows the results of the analysis performed to discover when the critters reproduce,
and shows the percentage of stimuli that causes the critters to reproduce at every health level
for every run type. Although the reproductive behaviour of the critters was sampled only at 7
discrete different health intervals, it appears - as was also expected - that the behaviour of
the critters in other health levels follows the same trends as the obtained values (e.g., the

value at health level of 80% would be somewhere between 70% and 90%).

Interestingly, it appears that critters in all environments mainly reproduce when their health
levels are over 70%. However, critters in the difficult environment tend to reproduce
considerably more than critters in the easy and standard environments (1.47%, 16.05% and
38.28% of stimuli cause reproduction in health levels of 70%, 90% and 100% respectively in
the difficult environment in comparison with 0.3%, 3.30% and 25.94% in the standard

environment and 1.01%, 3.10% and 21.15% in the easy environment). Essentially, this means
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that critters in the difficult environment mainly reproduce when their health levels are over
70%, whereas critters in the standard and easy environments mainly reproduce when their

health levels are over 90%).

Critter reproduction

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Health Percentage
Easy Medium

Fig. 6.9. Percentage of stimuli that causes critters to reproduce per health level for every

run type.

Turning behaviour
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Fig. 6.10. The turning behaviour of two critters: one that exhibits turning behaviour,

and one that does not.

Finally, fig. 6.10 shows an observation that occurs occasionally in evolved critters; increased
turning at 0% health, which decreases as health goes up. This behaviour is clearly involved in
the area-restricted search: once a critter finds a positive resource, it makes more turns with

the hope that more positive resources will be found.

6.5 Discussion
Taking all the above results into consideration, it is possible to come up with several

conclusions.
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First, it is possible to state that in the difficult environments, a behavioural strategy is

repeatedly evolved:

0%-10% health: When the health levels are low, the critter runs very quickly, only
rarely stopping to stand still; the critter does this because it looks for specific types of
food. This is apparent in the fact the critter does not bite a lot, but when it does bite a
resource, it makes as few mistakes as it possibly can, and also in the fact that the average
value of consumed resources in this case is the highest, meaning, the critter is very
selective. Thus, in this perceived level of health, the critter is in ‘emergency’ mode. This
strategy allows the critter to maximise the value of resources it consumes, and it may be
most appropriate when having such a low amount of health when it “knows’ eating the
wrong type of food may kill it immediately, and so, it should be extremely careful; but in
the long run, this is not the optimal strategy. This is evident by the fact that the average
survival age is relatively low for this perceived level of health — probably because the
costs for looking for specific resources are too high, both in terms of movement costs and
also in terms of having a small selection of possible resources to consume. This
behaviour is analogous to the biological behaviour reported in the beginning of the
chapter in two different ways.
(i) This behaviour can be said to be ‘risk-averse behaviour’, as the critter minimises
its risk by being selective with what it eats.
(i) This behaviour is clearly ‘area-restricted search’, as the hungry critter performs
an exhaustive search to find good resources: this is apparent in the critter running
very quickly while consuming a few types of resource. This behaviour bears a
strong similarity to all the biological examples described in the hunger
experiments in the introduction, but particularly resembles the behaviour of the
wolf spiders.
10%-70% health: once the levels of health rises, the critter starts running less quickly
and becomes less cautious with regards to what resources it consumes (and so, the
average value of consumed resource decreases as well). It can be said that the critter’s
behaviour is balanced when the critter’s health is between 10% and 70%. Afterwards, its
number of negative bites skyrockets and its average survival plummets.
70%-100% health: at these levels of health, the critter’s behaviour can be said to be
‘reckless’ — it consumes plenty of negative resources and eats much of what it
encounters: this is apparent in the high amount of standing still it does, in the lower
average value of consumed resource, and in the low average survival ages. This
behaviour does not seem to make any sense, until one looks at the reproduction analysis:
since a large number of stimuli triggers reproduction, it appears the critter does not ‘plan’

on staying at this level of health: a successful asexual reproduction would remove 40% of
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its maximum health (see section 3.6.4), so even in an ideal state, its health would be 60%
— which is within the range of reasonable behaviour. This behaviour can be said to be
‘risk-prone behaviour’, as the critter maximises its risk (and number of resources

consumed) by being unselective in what it eats.

Second, it appears that in the standard environments, a similar — but much weakened —
behavioural strategy is seen. However, this behavioural strategy does not appear to be utilised
in the easy environments, even though some behaviours are reminiscent of it (most notably,
the behaviours at perceived level of 0%, and the identical shape of the average survival

curve).

It is not obvious why there are such great differences between critters that evolve in the three
environments: there appears to be a progression between the difficult and medium
environments — a weakening of the same behavioural strategy — and a further progression
between the medium and easy environments — a possible weakening to the point of non-
existence of the same behavioural strategy. It is possible that in the difficult environment, the
selection pressure is so strong that specialised behaviours are required, whereas in the easy
environment it is very easy to survive, thus, no specialised behaviour is required; the standard

environment is somewhere in between in terms of ideal behaviours.
There are also several interesting parallels with behaviours seen in nature:

Scarcity of resources (spatial distribution)

Scarcity of resources in terms of greater spatial distribution of resources causes critters to
move faster while foraging. Clearly some of this behaviour occurs, both in Mosaic World and
in nature, because the organism needs to look for food more actively because there are greater
distances between the food sources. Therefore, in the difficult environments it is harder to
find a good resource, so more running is required — whereas in the easy environments, a good
resource is likely to be found closely at any given point, so less running is required. It is
important to emphasise that this is not the only reason for running, as indicated by the higher

average consumed resource in the difficult environments; this is explained in the next item.

Scarcity of resources (availability of food)

Fig. 6.6 revealed an interesting observation: the average value of consumed resources is
actually higher for critters in the difficult environments than the other environments, despite
the fact these environments contain the fewest amount of positive resources. Interestingly,

these critters also bite the lowest number of positive and negative bites. Although the critters
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bite fewer negative and positive resources, the overall value of what they consume is higher —
this means that either the positive resources they eat are very potent and/or the negative
resources they eat are relatively mild. Most importantly, it is clear that these critters are far
more efficient in their consumption habits — and that they attempt to minimise the risk and the
bite cost. Thus, it can be said that scarcity of resources in terms of a lesser availability of
positive resources causes critters to become choosier in what they eat by consuming more

positive surfaces and/or less negative surface than they normally would.

Interestingly, this behaviour at first appears to conflict with behaviours normally seen in
nature: as described in the introduction, when resources are scarce, animals tend to be less
choosy in what they eat, which is not the result obtained here. Yet a simple explanation can
resolve this mystery. In the real world, when food is scarce, animals become less choosy for a
straightforward reason: the best resources, those resources they would prefer to eat are simply
not available in the quantity they desire; otherwise they would continue only eating them.
Thus, foraging bluegill sunfish eat whatever water fleas they find when food is scarce, but
prefer to eat the largest fleas when food is abundant [236]. However, in Mosaic World,
because the same environment is used both for the easy and the difficult environments with
the only difference being the value function used to characterise the resources, the result is
that resources that are the most positive in the easy environment continue being the most
positive in the difficult environment — the only difference would be the absolute value of the
resource. Therefore, the availability of food analogy is not mirrored here: the best food is
available in all types of environments, in a suitable amount (the fact the critters survive is
evidence of that), so there is no need to consume lesser alternatives; the positive food that is
no longer positive is food that previously could be classified as ‘mild’. But this only explains
why the critters do not become /ess choosy and does not explain why the critters become
more choosy. The critters become more choosy for the obvious reason: there is a greater
selection pressure present because of the harsher conditions that forces them to become better
foragers, thus, learn to recognise better food; this is equivalent to the increasing specialisation

of the visual systems of critters in challenging environments in chapter 5.

That being said, this evolved behaviour is reminiscent of the bumblebee behaviour described
in the introduction — in cold environment, bumblebees only forage from flowers they know
will restore the energy costs for both foraging and thermoregulation — here the critters only

consume resources that they 'know' will sustain their survival.

Starvation

Starvation causes critters to increase their search effort by moving faster. Clearly this
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behaviour occurs, both in Mosaic World and in nature, because the hungry organism

increases its search efforts to find nourishment before it weakens and eventually dies.

Area restricted search
Occasionally, critters evolved a search strategy that is comparable to biological search

strategies that require many turns once a resource has been found.

Risk sensitivity

The fact that the behaviour seen in the difficult environment at 0% health is risk-averse
behaviour which gradually changes to risk-prone behaviour at 100% is very interesting,
specifically because the ‘switch’ from these two extreme behaviours is also seen in biological

organisms, as described in the introduction.

These results further support the results from the previous chapter that indicate that certain
universal guiding principles affect the behaviour of both biological and artificial organisms.
These principles operate through the interaction of the environment and the critter, and result
in the critter's behaviour becoming better adapted to the environment it is placed in. Similar
to natural organisms, the critter's survival is directly dependent on its behaviour: its ability to
determine what resources it should and should not consume, when it should invest the extra
energy in moving faster, and when it should reproduce. This conclusion is supported by the
fact that most behavioural strategies that were evolved in this chapter bear a striking

resemblance to behavioural strategies seen in nature.

6.6 Complex interactions analysis

The work described in this chapter primarily deals with the interaction of the environment
and the critter through its behaviour (environment—-critter interactions, e.g. consumption of a
resource). In the described experiments, a population of critters was presented with three
different types of environments that possess different amounts and distributions of resources,
and their effect on the evolved behaviour was examined. By setting the critters' health
monitor unit to 7 different values, it became possible to examine the range of different

behaviours that critters exhibit at the various health levels.

The environments presented various types of challenges to the critters: the primary way
which the critters overcame these challenges occurred through behavioural strategies, by
evolving behaviours that are appropriate for the prevailing conditions in the environment, and
passing them on to future generations. Therefore, the critter—environment and

environment—critter interactions are critical towards accomplishing the challenge that was
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set in this chapter. Although these specific interactions take place in one level of the system,
their effect reaches every other level: network, neuron, receptor and gene; these are essential
in order to enable behavioural changes, and to enable that these are passed on to the critter's
offspring. Furthermore, because the critters interact through competition on resources and
reproduction, the interactions between the critter and the environment reach and affect the

population and species levels as well.

The interaction(s) that takes place are in parenthesis at the end of each sentence.
1) Every critter attempts to survive — this requires several different behaviours:

(a) Perception: the environment is perceived by the critter’s receptors
(environment—receptor). Obviously, it is important that the receptors relay
useful and relevant information to the controlling network. Furthermore,
although the visual environments are identical in all run types, there are
behavioural differences between the run types: a resource that is positive in the
easy environment may be negative in the difficult environment; thus, it is
possible that some visual adaptations are evolved. However, these are
disregarded in this analysis.

(b) Communication: the receptors relay this information to the network through
neurons (receptor—neuron, neuron—network).

(c) Control: the networks control the critter’s behaviour (network—critter).
Obviously, this interaction is very important as it enables the effect of the

~ environment to eventually reach and affect the critter's behaviour.

(d) Consumption: the critter may consume surfaces (critter—environment); and in
this case, positive or negative energy is transferred from the environment to the
consuming critters (environment—scritter). This critter—environment interaction
is one of the critical interactions, as the critter's behaviour and likelihood of
survival directly depend on its ability to consume resources selectively.
Nonetheless, this interaction matters more in some environments than other:

e Difficult environment: in this environment this interaction is most important,
as the critter exhibits different consumption patterns under different health
levels. Presumably, were the critter to be less selective, they would not
survive (or could not survive as well) in such an environment. As was
explained in the results section, as the critter's health becomes lower, it
becomes increasingly more selective with regards to the resources it
consumes: both positive and negative resources. Because of this
selectiveness, the average consumed value of what it eats becomes

increasingly higher, thus, enabling survival.
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Standard environment: in this environment this interaction is important, but
less so than the difficult environment for the same reason described in the
last item.

Easy environment: it appears that because there are abundant resources in the
environment, the critter can survive without evolving a specific behavioural
strategy of consumption. However, just like in any other environment, in this
environment, the critter's consumption is critical: obviously, if the critter did

not consume anything, it would perish quickly.

(e) Movement: the critter may choose to move (forage for food, avoid the edges and

6y

holes) (environment—critter). Similar to the previous interaction, this

environment—critter interaction is one of the critical interactions as the critter's

behaviour and ability to survive directly depend om its ability to move

appropriately. As before, in some environments this imteraction matters more

than others:

Difficult environment: in this environment this interaction is most important,
as the critter displays different movement patterns under different health
levels. Clearly, in order for the critter to be selective in what it consumes, it
must be able to find these resources. For this purpose, as the critter's health
becomes lower and it becomes more selective in what it eats, it also moves
increasingly faster in search of nourishment. If the critter did not have this
ability to vary its movement rates, it would not be able to consume the
resource of its choice, and as a result, would not be able to survive in such an
environment.

Standard environment: this interaction is less important than in the difficult
environment, but still vital for the same reasons described in the last item.
Easy environment: because there are abundant resources in the environment,
the critter can survive without evolving a specific movement strategy.
However, just like in any other environment, here too the critter's movement
is critical: obviously, if the critter could not move, it would die.

All environments: as indicated, occasionally the critters evolve the Mosaic
World equivalent of restricted-area searching, by making many turns once a
resource has been located. Just like in nature, this strategy is likely to convey
advantages on critters that possess it, although it does not appear to be crucial

for survival (otherwise it would appear on most or all critters).

Reproduction: the critter may choose to reproduce (critter—critter). This

decision also appears to be related to the critter's health (as fig. 6.9 indicates),
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2)

3)

4)

5)

thus, it can be assumed that the decision to reproduce in certain health levels, and
in certain amounts, is necessary for the critter's survival, particularly in the
difficult environment. Presumably, if the critter were less cautious with this
strategy (e.g. reproduce when its health is low), it would not survive (or not
survive as well).
Selection (to evolve appropriate behaviours): many critters die during stages 1-d to 1-f,
either by consuming negative surfaces, or by falling from the edges/into a hole, or by
moving too quickly (and running out of energy), or by reproducing when not possessing
enough energy. Critters that behave appropriately are better adapted to their environment,
and consequently, are more likely to overcome its challenges and survive. Therefore, the
advantages these genetically encoded behaviours confer directly affect the selection of
the genes that define them (network—genes).
Selection (to better compete): the critters that survive compete on resources. Critters
that have evolved behavioural strategies appropriate for their environment are more likely
to out-compete critters that did not evolve any behavioural strategies on resources, thus,
are more likely to survive and pass on their genes (network—genes). Similarly, additional
aspects (e.g. critter transmittance) that enable critters to out-compete other critters also
affect the selection of genes that define them (critter— genes).
Reproduction: continuing (1-f), the critters that survive past steps (2)-(3) and are now
able to reproduce are fitter than those that died (genes—genes). Their offspring’s
phenotype is likely to be fit as well, as affected by the selection pressure in (2) and (3).
These changes to genes affect the critter's behaviour, which affects its genes at all levels
(genes—receptor, genes—neuron, genes—network, genes—critter) and the population
(genes—population). Because of the nature of experiments in this chapter, this selection
pressure is likely to be expressed in the evolved behavioural strategies which result in the
critter becoming better adapted to its environment (although, admittedly, it is possible
that some structural adaptations have occurred as well as the previous item indicated).
Steps (1) to (4) are repeated until the run ends. The critters that evolved appropriate
genetically encoded behavioural strategies are better adapted to the environment and are

those that survive.

6.7 Conclusions

It is very interesting to note the parallels between behaviours seen in the real world and

behaviours evolved in the experiments in this chapter, particularly in the difficult

environment. [t can be said that within this environment:
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e Scarcity of resources in terms of greater spatial distribution causes critters to move faster
and forage in longer trips. This is very similar to the behaviour of Chacma baboons [81]
and Rana catesbeiana tadpoles [9].

e Starvation causes critters to increase their search effort by moving faster. This is very
similar to the behaviour of Rhynocoris marginatus (a predatory insect) [49], wolf spiders
[229] and Drosophila flies [108]. Additionally, although other animals move more slowly
when hungry, their behaviour is also explained by an increase in search effectiveness,
thus, this too resembles — in intent — the evolved behaviour.

e Some critters evolved a search strategy that mirror their biological counterparts in the fact
that many turns are taken once a food has been located. This is very similar to the
behaviour of thrushes [210, 211].

e The critter's evolved behaviour is risk sensitive (rather than risk indifferent). At times the
critters behave in a risk-averse manner, and other times they behave in a risk-prone
manner. The fact that these behaviours depend on the critter's hunger level is also

significant and has been reported to occur in some animals as well [16, 17].

To conclude, critters in Mosaic World evolve behavioural strategies that vary when the
environment varies. This indicates that the interaction of the environment and critter has an
enormous effect on the evolved behaviour: as anticipated, the environment acts as a selective
force that determines the behaviour of the critter. In addition, the evolved behaviours are
sensible — there is a sound reason underlying their usage. Finally, most of the evolved
behaviours strongly resemble behaviours used by animals and insects in comparable natural
situations; this further supports the conclusion from ch. 5 that certain universal guiding
principles similarly affect the evolution — in this case, the evolution of behaviour — of both

biological and artificial organisms.
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Chapter 7

Challenge: modular specialisation

In this chapter, the hierarchical nature of the system is expanded through the addition of a
new level to the model, by replacing the standard network used to control a critter’s
behaviour with a new control mechanism: the modular neural network. The modular neural
network encompasses a control network and up to eight modules. This new level is the focus

of this chapter’s investigation of complex interactions.

Similarly to chapter 4 where the interactions that occur between genes that could lead to more
effective evolution of the critter brain were investigated, in this chapter, the interactions
within a modular network, in particular, the interactions between the control network and its
subordinate modules are investigated for the purpose of improving critter fitness and
exploration of modular specialisation. The challenge posed for Mosaic World in this chapter

is:

Can appropriate control network—module interactions occur that improve the fitness of
critters that adapt to an environment which changes in time? If so, will modular

specialisation be responsible for this improvement?

In order to achieve this, a set of experiments that presents several populations of critters with
modular brains and non-modular brains to a changing environment was conducted and

additional behavioural analyses were performed.

7.1 Introduction

It is commonly believed that solving multiple simple subtasks is easier than solving a single
complex task. For this reason, decomposing a complex problem into several simpler
problems may be a potent way to approach a problem. Unsurprisingly, this seems to be a
frequently used strategy in nature as well; it is a well known fact that the human brain works
in a modular manner [207]. A neural network that exploits this principle by utilising multiple
specialised modules, each trained to solve a specific subtask, should be better than a single
large network. Another advantage attributed to this architecture is that it reduces the presence
of crosstalk (conflicting training messages that occur as a result of a network trying to learn

two tasks [95]).

Several approaches have been taken to achieve this goal. One computational approach
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literally decomposes the task to several subtasks. This method is referred to as a ‘mixtures-of-
experts’ architecture, and is mostly used for supervised learning tasks [96]. Under this
scheme, a gating network is connected to several expert networks. Both the gating network
and the expert networks are concurrently trained. By the time that the process is complete, the
gating network learns to break the task into useful subtasks enabling each expert network to
solve an aspect of the larger task. It has been shown that this approach is faster than using a
single network [95]. Interestingly, the way the task is decomposed matters greatly; it has been
shown that different ways of decomposing a task affect the quality of the result — some ways
are superior to others [7]. Therefore, by understanding how the gating network decomposes

the task, interesting insights about the nature of the problem faced can be gained.

The principles behind ‘mixtures-of-experts’ can be utilised in many ways. Koza added
architecture-altering operators to a genetic programming simulation that were inspired by
gene duplication and gene deletion mechanisms [110]. These additions enabled a main
program to create subprograms to deal with subtasks dynamically, effectively decomposing a
larger problem into smaller subproblems. The effect of adding these operators was an
improvement in the performance of the system. The parallels are clear: the main program is

equivalent to the gating network, and the subprograms are equivalent to the modules.

Similar principles underlie Brooks’ subsumption architecture, which is used for controlling
robots [38]. This architecture decomposes the overall robot control task into several simpler
behaviourally oriented subtasks (e.g. avoiding objects, moving, exploring). Each of the

subtasks is explicitly solved; combining these solutions enables successful robot control.

Modular neural networks are another type of methods that exploit the same principles. Using
this approach, a network that is comprised of several subcomponents is used to solve a task.
The structures of these subcomponents can vary greatly, and their number can be dynamic
(grow or shrink as needed). Consequently, every component of the neural network has the
potential of specialising in a subtask; thus, this architecture is more powerful than a
‘standard’ architecture. In support of this notion, Rueckl et al demonstrated that a neural
network with a modular architecture is better at solving the “what” and “where” vision tasks
than a non-modular neural network [193]. In another study, five different architectures were
used to control a robot for a garbage collection task [159]. The one that performed best was
named ‘emergent modular architecture’ and had modules competing for control of output

units in a control network.
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Ensembles are another category of methods. Normally, when evolving neural networks, the
best individual is picked from the population. However, there is a lot of information in other
members of the population that is not used; ensembles try to use this extra information. An
ensemble works by combining outputs of several individuals from the population (using a
few different mechanisms), and ideally generalises better than any individual network [246].
A good ensemble is likely to comprise individuals that specialise in different aspects of the
overall problem, and thus, it can be argued that this method is related to the other previously

mentioned approaches.

In addition, hybrids of the various approaches mentioned have been created, e.g. a method of

evolving a population of modules, which are synthesised into modular neural networks [104].

A study of the interactions that take place within a modular neural network used to control
critters is useful for two reasons. First, according to the relevant literature, it is likely that
incorporating modularity into the critter brains will result in an improvement in the efficacy
of evolution in the system, which is naturally a very desirable goal. Second, by understanding
how and when modular specialisation occurs in the system, valuable insights into critter
functionality and dynamics in general may be obtained. This is accomplished by expanding

the existing framework to include a unique hybrid of the approaches described.

In the version of the model described in this chapter, the critters start with a control network
that is linked to one module. The number of modules may grow up to eight, and individual
modules as well as the control network itself, are concurrently evolved. As was previously
described, every aspect of these networks is subject to evolution: number, attributes,
topology, weights; allowing the system to evolve both the number and the structure of the
modules is a big advantage which most existing systems do not have. This allows evolution
to fit the appropriate structure to the subtask, which increases the likelihood it will work well
with the overall task [94]. Furthermore, allowing modularity to work at the level of the
network is said to have significant advantages [95]. In this sense, it can be said that the new
mechanism described here is a hybrid between ‘mixture-of-experts’ and modular neural

networks. The work described here has been published in [199].

7.2 Additions to Mosaic World

The investigations described in this chapter required that Mosaic World be expanded in
several ways. The most significant change is the addition of a new level to the model, which
now comprises the following levels of abstraction: genes, neurons, receptors, modules,

control networks, critters, population and species; figure 7.1 illustrates the differences
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between the object models of the standard and the modular critter brains. Figure 7.2, which is

an expansion of fig. 3.2, shows the interactions map for all objects in Mosaic World.

Module |

Critter Critter

(with modular brain) (with standard brain)

Fig. 7.1: The object model of the standard and the modular critter brains: the network
object is replaced by a control network that activates modules. Note that both critters

are the same size within the environment.

7.2.1 Neighbour indicator unit
The standard critter brain was expanded by adding a neighbour indicator unit in addition to

the existing health monitor unit. The neighbour indicator unit receives a signal if another
critter is present at the critter’s location. Neighbour recognition is important because in order
for a critter to reproduce sexually, it must have a neighbour in its present location - more
importantly, if no critter is present its current location, the critter pays an energy penalty (this
was added to encourage critter recognition, as explained in section 3.6.4). This feature was
added to decrease the difficulty of recognition of other critters, as recognition that is purely
based on transmittance, that is, being able to extract the critter’s transmittance from the
perceived stimuli (see section 3.6.5 for the full explanation), appeared to be too difficult to

evolve.
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Fig. 7.3: An illustration of a modular critter brain comprised of a control network (2
receptors, 3 hidden units), that connects to 3 modules. The first module has 2 receptors,
3 hidden units. The module has 1 receptor, 2 hidden units. The third module has 3
receptors, § hidden units. All modules possess the neighbour indicator and health units.

This figure disregards the 3D coordinate scheme

7.2.2 Modular brains

The modular visual brain is comprised of a control (gating) network and one to eight
modules; see fig. 7.3 for an illustration. The control network is roughly identical to a standard
non-modular critter brain described in section 3.7 with two exceptions; the first is that it does
not have a health monitor unit or a neighbour indicator unit. The second is that it has eight
output units. The control network is evolvable in the same way a standard non-modular brain
is (topology, weights, attributes); it receives stimuli from the environment and determines
which module to activate at any given time step. The module activated is the one that
connects to the output unit that returns the highest activation. When there is only one module,

it is automatically active all the time.

The number of modules is evolvable; a critter starts with one module connected to its control
network and new modules can be added and removed up to a total of eight modules. Each
module is identical to a standard non-modular critter brain in all respects. With this scheme,
every action requires two layers of decisions: first, the control network has to decide which
module to activate; then, the activated module determines what action the critter should

perform.

It is important to emphasise that only one module can be active at any given moment. Some
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decisions simply cannot be made by several module simultaneously: e.g. if there are eight
modules and at one point, two modules determine that the critter turn left, two determine that
the critter turn right, two determine that the critter move forward, and two determine that the

critter stand still - there is no simple way to reach a decision using all these choices.

7.2.3 Genetic operators

As stated in section 3.7.2, mutation takes place during both sexual and asexual reproduction
and crossover takes place during sexual reproduction. Modular brains use all the genetic
operators mechanisms previously described in sections 3.7.2 and 3.7.3 with the control
network and modules, but have a few more types of mutation operators that are activated

during reproduction.

Crossover of Modular Brains

The control network undergoes crossover the same way a standard non-modular brain does.
In addition, a number between 1 and 8 is randomly picked. All modules from 1 to the picked
number are cloned from one parent, and the remainder are cloned from the other parent. If as

a result ofthis process a brain is created with no modules, the process is repeated.

Mutation of Modular Brains

The control network undergoes mutation the same way a non-modular brain does. The

currently active module (the last module that has been active) is mutated normally. The other

modules are not mutated (otherwise very quickly they will not be usable at all). In addition,
there are four new types of mutations:

*  4dd Module’: the currently active module is cloned at a given probability (2%). The new
module is randomly placed in an empty slot. If there are already eight modules, this
mutation is disabled.

*  Delete Module’: one module is randomly deleted (2%). This module cannot be currently
active. If only one module is left, this mutation is disabled.

*  Duplicate Module’ the active module is randomly (2% to 35%) duplicated and
overwrites the least used module.

*  Discard Module’: if a module has not been active for a given amount of time steps, it is
deleted. The exact number is evolvable.

All percentages were determined empirically and were modified in experiments described

below.

7.2.4 Modular duplication

In the experiments described below, a ‘Duplicate Module’ operator was utilised that acts
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similarly to gene duplication in nature. Multiple experiments were performed with various
probabilities assigned to this operator since the literature stated that this makes a big
difference with regards to functional specialisation. One theory suggests that gene duplication
facilitates modular specialisation by first relaxing the selection pressure (as the same module
exists twice) and then altering the regulation of this module which causes it to be utilised in a
different functional context [43]. This allows the new module to accumulate mutations and
specialise [164, 248]. An alternative theory suggests that in nature, the gene being duplicated
mostly already has two functions and that gene duplication simply allows the two daughter
genes to specialise in one of the original tasks [88]. Indeed, Nolfi demonstrated how
hardwired modularity without gene duplication resulted in unspecialised modules in his
system [159]. In addition, Calabretta et al [43] showed that the duplication rate linearly

affects performance, with greater values leading to better performance in a robot control task.

7.2.5 Changing environments
When this setting is active, every predefined amount of time a new environment is generated

using the same algorithm and the same environmental statistics. The current environment is
continually and gradually replaced with the new environment — this change can be made to

occur instantaneously, or it can be made to occur extremely slowly.

This setting presents a challenge to the critters not only because they cannot memorise the
location of resources, but also because the actual process of changing is greatly ‘confusing’;
dufing a significant percentage of the time, there are effectively no good resources as all
surfaces'cbnstantly shift. A critter may start consuming a positive resource (a process which
takes time), only to find out that the resource became a negative resource by the time it
finished.

7.2.6 The methodology behind these additions

Biological relevance: the additions to the model presented in this chapter, which explicitly
incorporate modularity into the design of neural networks (though evolution can choose to
ignore these modular aspects), represent conceptual principles rather than specific biological
metaphors. Specifically, the modular brain feature does not aim to correctly represent
biological brains but rather to investigate the effect of modularity on agent fitness and
behaviour. That said, as the next few sections show the results are biologically relevant as
they increase our understanding of biology (in terms of the effect of gene duplication and the
usefulness of modular specialisation), and are computationally relevant because they
demonstrate how useful modular designs are, both in terms of capabilities (indicated by

critter fitness) and in terms of analysis of the problem (indicated by the strategies evolved by
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the control network which are shown to be appropriate for this setting).

Level: the version of the model described in this chapter contains of a new level and consists
now of: genes (level 1), neurons and receptors (level 2), modules (level 3), control networks
and critters (level 4), population and species (level 5). Because the model now comprises a
larger hierarchical complex system, this addition increases the range of complex interactions
that can be explored. In addition, the expanded model enables to demonstrate that
incorporating hierarchical complexity into the model can provide an improvement in the
understanding of the modelled phenomena. For example, in this chapter:
e The effects of internal interactions within a modular brain on critter fitness are examined.
e The effect of environment on modular specialisation is examined:

o interms of the number of modules and the behavioural strategies evolved.

o in terms of visual structures and strategies evolved for each module within the

modular brain and type of task it is allocated for.

Generality: the changes to the model do not affect this parameter: the model can still be said

to be a general model despite the fact it is used in this chapter to examine specific hypotheses.

Abstraction: all the additions to the model can be said to be very abstract — the notion of

modular complex brains has been abstracted to the approach used in this chapter.

Accuracy: the additions to the model implement modular designs accurately; however,
unlike modular designs in nature, the usage of modularity here is limited — only up to 8
modules can be evolved, and creation of explicit sub-modules is not possible. Thus, these
additions do not mirror the real world principle completely. That said, this level of accuracy

is sufficient to enable the investigations conducted in this chapter.

Match: as the results sections of the chapter show, the additions to the model produce

behaviours that are very similar to their real world counterparts, specifically:

e Modular specialisation occurs in terms of behaviours.

e Modular specialisation occurs in terms of visual systems.

e Control networks learn to break a task in a meaningful way.

e 'Module duplication', the model’s genetic operator that is equivalent to biological gene
duplication, is shown to affect the fitness of evolved critters since the utilisation of
modularity in the critter brains appears to be linked to the probability of mutation — which

is what theory suggests gene duplication does in nature.
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Therefore, it can be said that the model matches the real world behaviours that it aims to
capture because its generated behaviours are similar to the real world behaviour of the target

phenomena.

7.3 Experiments

In order to investigate the interactions within a modular network, specifically, discover
whether appropriate control network—module interactions can occur that lead to an increase
in the critter fitness, and understand the nature of these interactions, two sets of experiments
were performed. In setting the experiments, the goals were threefold. First, it was aimed to
determine whether the novel mechanism introduced in this chapter would enable critters with
modular brains to perform better than critters with the standard, non-modular brains. Second,
if this proved to be the case, it was aimed to discover how modularity improved the fitness of
the critters: does specialisation take place, and if so, what sort of specialisation it is. Finally, it
was aimed to discover how the control network operated: by discovering when modules were
activated, it was hoped interesting insights about critter behaviour and the conducted

experiments would be gained.

To be able to answer these questions, a task was chosen that critters with non-modular brains
had difficulties with: survival in a changing environment. It was anticipated that critters with
modular brains would perform better in this task, and that the predicted improvement in
fitness would be the result of control network—module interactions within the modular brain.
However, in order to be certain that the results do not depend on the task itself, a limited set

of runs were performed when the environment is static (non-changing).

The purpose of both experiments was comparing the fitness and functionality of critters with
modular brains and critters with non-modular brains. Both experiments required a population
of evolving critters to be placed in a training world, and ended after 550,000 time steps. Once

finished, the critter population was stored and analysed.

The criterion used to measure the fitness of the evolved critters was survivability: the average
survival ages of critters across runs. Though somewhat arbitrary, this criterion is strongly
correlated with fitness as survival requires possessing many important skills (see section 4.4
for a more thorough discussion of critter fitness). This was done by placing 15 copies of the 5
oldest critters of every run in a survival test world (the attributes of which varied depending
on the experiment); the critters were expected to survive as long as they could — reproduction

was disabled during these runs. The test runs were stopped after 10,000 time steps.
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7.3.1 Experiment 1: changing environments
The goal of this experiment was to measure the fitness of evolved critters in a changing

environment. In this experiment, the changing environment operated as follows: after a run
started, every 1300 time steps the world changed randomly, a process which took 300 time
steps (meaning, at time step 1000 the world gradually started ‘morphing’ to its new
configuration, a process which completed at time step 1300). This process was repeated until
the run ended. Fitness was measured using the survival test world, however, unlike training
conditions, this environment changed at a faster rate: every 800 time steps there was a 300
time step period of changing. This was done to increase the selection pressure on critters that
are not good at dealing with the change period. Six types of runs were conducted; each was
repeated at least 16 times. As stated, different mutation probabilities were picked for
‘Duplicate Module’ in order to probe the influence this has on the fitness of evolved critters

and the specialisations that emerge.

(1) Critters with non-modular brains: all critters started with the same characteristics (3
receptors, 3 hidden units, fully connected).

(2) Critters with modular brains: all critters started with one control network (3 receptors,
1 hidden unit, fully connected) and a single module (same structure as the non-modular
critters). The probability of the ‘Duplicate Module’ mutation is 2%.

(3) Same as (2), but the probability of ‘Duplicate Module’ is 12%.

(4) Same as (2), but the probability of ‘Duplicate Module’ is 18%.

(5) Same as (2), but the probability of ‘Duplicate Module’ is 25%.

(6) Same as (2), but the probability of ‘Duplicate Module’ is 35%.

7.3.2 Experiment 2: static environments
The goal behind this experiment was to measure the fitness of evolved critters in a static

environment. This experiment investigated whether the results of exp. 1 are different for an
easier problem: a static environment. This experiment effectively repeated exp. 1, run type 1
(non-modular brains) and run type 5 (modular brains, ‘Duplicate Module’ value is 25%), but
the environment is static — it does not change (note: the ‘Duplicate Module’ value of 25%
was used because it was found to produce the most effective results in exp. 1, see section

7.5). Fitness was measured using the test world. The test world environment does not change.

7.4 Results

Table 7.1, columns 1-2, shows the results of experiment 1: the average survival ages of the
critters, broken down according to category of run. As can be seen, the average survival age

for the critters with non-modular brains was lower than the average survival age of most
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critters with modular brains. Furthermore, the value of the ‘Duplicate Module’ mutation
strongly affected the average survival age: when ‘Duplicate Module’ was set to 25%, the
average survival age was highest (3831.23 — 63% higher than the average survival age of
critters with non-modular brains, 2341.13), when set to 35%, the average survival age was
lowest (2051.44), in fact, even lower than the average survival age of critters with non-

modular brains.

Table 7.1. Average survival age, average number of total modules, average number of
functional modules and percentage of modular critter brains for critters in test worlds;
broken down according to category (critters with non-modular brains, critters with

modular brains with 2%, 12%, 18%, 25%, 35% probability of ‘Duplicate Module’)

Average Average # Average # of % of
Category of Critter Brain Survival Functional
of Modules Modules
Age Modules
Non-modular 2341.13 1 1 N/A
Modular (Duplicate Module 2%) 2375.70 3.52 1.58 50.00%
Modular (Duplicate Module 12%) 302141 3.98 1.85 68.75%
Modular (Duplicate Module 18%) 2513.76 4.81 1.46 43.75%
Modular (Duplicate Module 25%) 3831.23 4.02 1.78 66.67%
Modular (Duplicate Module 35%) 2051.44 4.85 1.56 38.89%

Table 7.2, rows 1-2, shows the results of experiment 2, the average survival age for critters
with modular and non-modular brains in a static environment. Evidently, in this setting too
the critters with modular brains survived longer on average than critters with non-modular

brains, although the differences were not as extreme.

Table 7.2. Average survival age for critters with modular and non-modular brains in a

static (non-changing) environment

Category of Critter Brain Average Survival Age
Static environment, non-modular 4279.77
Static environment, modular (all) 5472.04
Static environment, modular (most critters utilised modularity) 5537.19
Static environment, modular (most critters did not utilise modularity) 5363.45

7.5 Analysis

It is clear, then, that incorporating modularity into the brains increased fitness as indicated by
critter survivability. However, it is still unknown why this was the case. In addition, it is still
unknown whether functional specialisation took place, and if it did, what was the manner of

specialisation. To obtain this information, two types of analyses were performed.

For this purpose, it is necessary to know the number of modules: the number of evolved
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modules is readily available; however, the number of functional modules, modules that are
actually used is unknown. Thus, the first type of analysis studies the control network and
attempts to discover the number of functional modules and what causes the control network
to activate them. This is obtained using an analysis similar to the one used in chapter 6, by
creating five sample environments and taking 500 random surfaces from each. Every chosen
surface is taken five times, in two levels of consumption (9%, 25% left of the surface — these
values represent the two states of the surface: ‘eaten’ and ‘full’), and fed to the five oldest
critters of all runs. By analysing the activation of the control network, it is possible to
discover the modules that are actually used. Moreover, by examining the stimulus that
activated every module, it is possible to understand when the control network activates the

various modules.

Table 7.1, columns 3-5, show the average number of modules and functional modules
evolved, as well as the percentage of critters with functional modularity (defined as the
percentage of runs where most critters utilised modularity) for critters in the test world in
every category of run. In general, the greater the value of the ‘Duplicate Module’ mutation,
the more modules were evolved, though this number does not seem to correlate with the
average survival age. However, the number of functional modules was correlated with the
ability to survive; the longest surviving runs (12%, 25%) had the most functional modules.
Interestingly, the percentage and number of functional modules appeared to be influenced by
the mutation value: a higher percentage of functional modules was evolved when the
mutation value was in a certain range (12% to 25%). This may be the cause of the higher

survival age.

By breaking down the results of exp. 1 according to category and according to whether
functional modularity evolved, a new average survival age figure was created (fig. 7.4).
Evidently, critters with modular brains that utilised modularity were always better than
critters with modular brains that did not utilise modularity (and used a single module).
Interestingly, when evolution had the ability of evolving modular brains, and yet did not
utilise this mechanism, the results tended to be worse on average than when evolution could
not evolve modular brains. Table 7.2, rows 3-4, shows the results of the same analysis for
critters evolved in a static environment. Under a static environment modularity played a role

as well, albeit smaller than under changing environments.

To understand the differences between critters of varying qualities, several representative
critters were picked for the next analyses. Each selected critter was the oldest critter in a run

with modular brains where most critters utilised modularity, thus, the critters used were: 9
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very good critters (survived more than 5,100 time steps on average), 6 good critters (survived

between 2,100 and 3,300 time steps), and 5 poor critters (survived less than 1,100 time steps).

Table 7.3 shows the results of the analysis of the control network activations for the selected
critters. First, all critters evolved two functional modules (occasionally there were more, but
modules that were utilised less than 2% of the time were disregarded). Second, the operation
of the control network was very consistent: one module was activated under all conditions
(surfaces appeared as full or empty), and the second module was only activated when the
surface appeared as full. Thus, it appears that one module acts as the primary module

(appropriate for all stimuli) and the other acts as the secondary module (used only in some

situations).
Average Survival Age
5000
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3000 2812
>pl
2500
2000
1500
1000
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0
Non-Modular 2% 12% 18% 25% 35%

Category

m Runs where most critters did not utilise modularity m Runs where most critters utilised modularity

Fig. 7.4. Average survival age for critters; breakdown according to category (non-
modular critters, percentage of ‘Duplicate Module’), and according to whether

modularity was utilised by most critters in run.

Table 7.3. Control network activation for the tested critters; break down according to

critter quality

. . Average Active Module 1 active Module 2 active
Critter Quality .. ‘e
Modules under all conditions under all conditions
Very Good 2 33.33% 66.66%
Good 2 33.33% 66.66%

Poor 2 60.00% 40.00%
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Average Number of Modules per Action
1.83

170  Modules

AH (average) Consumption Reproduction Turning Standing Still Slow Fast
Movement Movement
Category

m Very Good m Good m Poor
Fig. 7.5. Average number of modules dealing with every type of action; breakdown

according to critter category.

Although by now it was understood when the modules were activated, their manner of usage
was still unknown. To obtain this information, every representative critter was cloned 75
times and placed in the survival test scenario of exp. 1 for 3,000 time steps. During this time,
whenever an action was taken, the identity of the module that activated it was recorded. The
actions analysed were: consumption, standing still, slow movement, fast movement, sexual
reproduction, asexual reproduction, turn left, turn right (some actions were grouped based on
their common properties, e.g. ‘turning’ refers to both turning left and turning right). In

addition, during times the world was changing, it was recorded which modules were active.

According to the average number of modules assigned to control a given action for every
category (fig. 7.5), the better the critter, the more specialised it was: on average, fewer
modules controlled any given action. When looking at the module analysis of the individual
critters, specifically, the division of tasks between the primary and secondary modules (table
7.4), more conclusions are apparent. First, it is clear that the fitter the critter, the more
specialised it tended to be: 33.33% of the very good critters were fully specialised, where
every action was controlled by a single module, contrary to 16.66% of the good critters and
none of the poor critters. As for the other critters, almost all were partially specialised,
meaning, most actions were controlled by a single module but there were one or more actions
which were controlled by both modules; this overlap was often in reproduction or slow
movement. Finally, 20% of the poor critters (and no critters in the other categories) had no

specialisation at all - both modules controlled all actions.
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Table 7.4. The division of tasks between primary and secondary modules for tested
critters. The specialisation column characterises the division of tasks. The two other
columns describe which actions are controlled by which module. ‘***’ defines an action
that is exclusively controlled by the module. ‘++> defines an action that is controlled
most of the time by the module. ‘+’ defines an action that is only occasionally controlled

by the module. An empty space defines an action that the module has no control over

Actions controlled by Actions controlled by
primary module secondary module
v wn Ige] 723 72} g3
e 7 g g 5 B o 7 g g & B
2 3 g8 ¢ 212 % 8 2 2 2
E & 8 7 2 £ 5 g & g 2 =
Critter o 8 g ® @& 5 2 £ ® & 2 2
. # Specialisation R 2 3 12 S 23
1 2 =g « =N~ 172]
Quality e 9 2 & 8 |g o g g 3
3 5 = 3 a8 |® B = B @9
3 = 8 R
Very good 1 Fu“ *kk kkk kkk kkk *kk * %Kk
Very good | 2 [Full *okok *kk * Kk *ok
Very good 3 Full dkkk dkoksk kkk kkk kkok * %k
Very good | 4 |Partial: overlap in reproduction + R *rx *FAE *xx
Very good | 5 |Partial: overlap in reproduction + ke *Hx R *kx
Very good | 6 |Partial: overlap in slow movement | **% *¥* o6k d%x 4 ++
Very good | 7 [Partial: overlap in slow movement | ¥¥* *¥* % sk 4 +
Very good | 8 |Partial: overlap in slow movement [*** **% *%% x¥* 44 +  kEx
Very good | 9 |Partial: overlap in slow movement | *** *** *¥x x4* 4 4 KA
Good 1 |Partial: overlap in slow & fast ko x4 4 . o
movements
Good 2 |Partial: overlap in slow movement | *** *¥¥ *k* xx% 44 +
Good . 3 |Partial: overlap in slow movement | *** *** i o s + kX
Good 4 Full * %k %k ek dkdkk kokok sk Kk %ok %
Good 5 [Partial: overlap in slow & fast BRE KRR g KRR L 4 " 4 o+
movements
Good 6 [Partial: overlap in slow movement [ *¥* k¥ dokk xwk 4 ++
Poor 1 [Partial: overlap in slow movement [ *** *** kx4 ok el
Poor 2 [No specialisation - complete overlap| + + + 4+ Rl S o S o
Poor 3 |Partial: overlap in slow movement | *** *** x4 *okk + kX
Poor 4 |Partial: overlap in turning and slow |, .. sxx + oex it —
movement
Poor 5 [Partial: overlap in turning RRE KEK o KEE KR + il

Interestingly, when examining the ‘Duplicate Module’ value of the runs the critters were
taken from, it appears it had no effect on module specialisation. Another surprising discovery
was that no specific module was allocated for the times the world was changing — both

modules were used regularly during these times.

7.6 Discussion

The results lead to several interesting conclusions. First, enabling the ability to evolve
modular brains increased the fitness of the evolved critters on average, a difference that is
exaggerated further when only critters that used more than one module are considered. This

finding was true for both static and changing environments, though bigger differences were
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observed in changing environments. Interestingly, critters that did not utilise modularity
despite having structurally modular brains occasionally performed worse than critters with
non-modular brains — this seemed to be linked to the utilised probability of ‘Duplicate

Module’.

The value of the ‘Duplicate Module’ mutation had a large effect on evolution of critters with
modular brains: too low (2%) or too high (35%), and the overall average survival age was
equivalent or worse than the average survival age for critters with non-modular brains.
According to the analysis, the modular critters that utilised modularity still did better than the
modular critters that did not, however, there appeared to be fewer of the former. In other
words, the value of ‘Duplicate Module’ affected the emergence of functional modules, and
consequently, affected overall critter fitness. Interestingly, once functional specialisation does
occur (regardless of the mutation value), it occurs normally — modular specialisation patterns
are very consistent. Therefore, it can be argued that when the value of ‘Duplicate Module’ is
too low, evolution is unable to successfully utilise the modules for specialisation (as indicated
by the gene duplication literature). When it is too high, it becomes disruptive to the

evolutionary process. The ideal value is somewhere in between.

Specialisation played a key factor in critter fitness; the more specialised the critters’ modules,
the fitter the critters were. The very good critters tended to be more specialised, whereas the
poor critters often had a large overlap in specialisations, and at times no specialisation at all
(complete overlap). As table 7.4 shows, the specialisations became less distinct the worse the
critters were, and the division of tasks became less logical (e.g. a ‘poor’ critter #4 divided
control of ‘turning’ and ‘slow movement’ and as a result did not do very well: if a critter
turns while consuming a resource or attempting to reproduce, the action is negated.
Therefore, limiting the number of modules that can control this activity appears to be a smart

strategy).

Looking at the analysis of the control network, it is clear the network uses the state of a
viewed surface as a cue for switching between modules. Thus, it always breaks the stimuli
into two groups (‘full surface’ and ‘eaten surface’), and assigns one module to deal with all
surfaces (the primary module) and another to deal with only the eaten surfaces (the secondary
module). This breakdown is probably why two modules were mostly used — it is possible that
a different problem may require a different number of modules. When correlating this with

the analysis of the modules, two dominant behavioural strategies emerge:
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e Strategy one: use the primary module for most actions. When reaching an eaten surface,
activate secondary module which specialises in movement and occasionally in turning as
well. This strategy works by minimising the danger of consuming a negative resource; if
a surface is already eaten, better to assign a module that can never eat. Furthermore, in
some critters this module specialised in fast movement, which can be a very appropriate
behaviour when running out of energy and scanning quickly for a good surface (as seen

in the previous chapter). This strategy is very common, and was utilised by most critters.

e Strategy two: use the primary module for movement and turning. When reaching a full
surface, activate secondary module which specialises in consumption and reproduction.
This strategy works by allowing one module to specialise in tasks that require standing
still (consumption and reproduction). Given that identifying the right surface is the most
difficult task in Mosaic World, creating a specialised module for consumption appears to
be a good strategy. This strategy was less frequently used and only a third of the very
good critters utilised it (‘very good’ critters #2, #4 and #5 in fig. 6).

The above conclusions are consistent with the findings of Calabretta et al [43] which reported
that modular networks performed better than non-modular networks. However, in the system
described in this chapter, specialisation is the reason behind the increased fitness, whereas in
their system specialised modules were not fitter than non-specialised ones. Conversely, in a
study by Anderson and Hong [7], modular networks were not fitter than non-modular ones. It

is possible that the differences are a result of the nature of the problems that were addressed.

To conclude, the results described in this chapter indicate that modularity does indeed
improve the fitness of critters that utilise it. This is a direct result of the interactions between
the control network and the subordinate modules. The reason fitness is improved is (a)
because the control network learns to break down the task in a meaningful way and (b)
because each module specialises in some tasks. Thus, this type of network is frequently
superior to a standard, non-modular network in solving the tasks described in this chapter
(and probably others as well). Consequently, it is unsurprising modular designs are frequently

seen in nature.

7.7 Modularity and the visual system

In this chapter it was shown that critters with modular brains improved their fitness by
dividing tasks between modules and by learning to activate the appropriate module in every
situation. It is logical to assume that the visual systems of every module and the control

network are similarly affected — the only question is: in what way? For this purpose, two
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different critters (described in table 7.5) which were used in the previous analysis were
picked, their control network was analysed to discover which modules are used and when are
they active, and most importantly, the visual systems of these modules and the control

network were studied.

Table 7.5. Description of the two critters used in the analysis: the number of modules
and functional modules, the conditions which cause modules 1 and 2 to activate, and the

task breakdown for modules 1 and 2

# of Module 1|Module 2

Critter| #of . . . Tasks performed | Tasks performed by
functional | active active
# modules by module 1 module 2
modules for: for:
Consumption,
1 8 2 All Only full reproduction, some Most movement

surfaces | surfaces .
movement, turning

Consumption,
Most movement reproduction, some
movement, turning

All Only full
surfaces | surfaces

Figures 7.6 and 7.7 illustrate the evolved visual system for the control network and the two
functional modules of critters 1 and 2 respectively. An analysis of the two critters suggests
that there are many similarities between their evolved visual systems. Both critters have a
module which is exclusively used for consumption and reproduction, and in both this module
utilises a sophisticated visual system, clearly very useful for the recognition of surfaces. In
addition, both critters have a module which is primarily responsible for movement, and in
both this module utilises a simple visual system that is colour blind (indicated by the presence
of a single receptor which is insufficient for colour vision); these visual systems appear to be
indifferent to useful wavelengths, evident by the fact that critter 1's single receptor is very
insensitive and critter 2's receptor is attuned to a rather useless wavelength. A possible
explanation is that in both critters, the module only 'cares' about moving properly: avoiding
the holes and edges. Since these are dark, a visual system that only detects brightness is

sufficient, and colour vision is not necessary.

Interestingly, the visual systems of the control networks of both critters are somewhat similar
as well. Both systems are relatively sophisticated and have the potential for possessing colour
vision (2+ receptors). In fact, critter 1's control network's visual system has two receptors of
nearly ideal peaks and tuning for colour vision in Mosaic World (one in the short
wavelengths and one in the long wavelengths). It is possible — even likely — that these
sophisticated visual systems of the control networks improve the critters' capabilities by
operating in sync with the two modules' visual systems. This can be accomplished, for

example, by using the visual system of the control network to redirect potentially dangerous
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surfaces to a module which cannot consume surfaces, or alternatively, to a module which

possesses a superior visual system that can reliably determine whether the surface should be

consumed.
Wavelength
R/410) Finofr,
Control N<
Module 1: everything, little movement| Module 2: most movement
Wavelength W avelength
R(450-1) R(450-11) R<590) Rj;420)

Fig. 7.6. The visual system of the control network, modules 1 and 2 of critter 1. The

control network has 2 receptors. Module 1 has 3 receptors. Module 2 has 1 receptor.

In order to obtain a conclusive answer for this puzzle - discover whether the visual systems
ofthe control network and the modules work in sync - an additional analysis was performed.
Thus, each critter was exposed to 500 different surfaces under three different conditions and
the behaviour of its control network and activated modules was noted. The conditions were:
(1) full (uneaten) surfaces, randomly picked from the test world (ii) very positive surfaces,
randomly picked from the available potent surfaces in the test world (resource value>30) (iii)

very negative surfaces, randomly picked from the available lethal surfaces in the test world

(resource value<-30).
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Fig. 7.7. The visual system of the control network, modules 1 and 2 of critter 2. The

control network has 3 receptors. Module 1 has 1receptor. Module 2 has 4 receptors.

Tables 7.6 and 7.7 show the results of this analysis, specifically, the percentage of stimuli of
every type that activates every module for critters 1 and 2 respectively. It appears that when
the surfaces are very positive, module 1 ofcritter 1- which controls consumption - is always
activated, whereas when the surfaces are very negative, module 2 - which only controls
movement - is always activated. Critter 2 behaves in a similar way: when surfaces are very
positive, module 2, which controls consumption, is (almost) always activated, and when

surfaces are very negative, module 1is activated.

Therefore, it appears that in both cases, the visual system of the control network improves
fitness by acting as an additional filter: when it estimates the surfaces are likely to be
negative, it activates a module which cannot consume (and possesses a simple visual system);

however, when it estimates the surfaces might be positive, it activates a module with a
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sophisticated visual system which further estimates whether the surface should be consumed
or not. Bearing this in mind, when one examines critter 1's visual systems, an improved
understanding of this behaviour is gained: critter 1's control network's visual system
examines surfaces that possess very negative wavelengths (600-700nm). If these surfaces do
not possess many of these, thus, are more likely to be positive, module 1 is activated. This
enables module 1's visual system to examine a different part of the surface's spectrum (~540
to 600nm) for the presence of weaker negative wavelengths. If there are few of these, the
surface is likely to be positive, and thus the module instructs the critter to consume the

surface.

Table 7.6. Percentage of stimuli (of every type) that activates each module of critter 1

Stimuli types Percentage of stimuli that cause | Percentage of stimuli that cause
activation of primary module activation of secondary module
Positive 100.00% 0.00%
Random 35.60% 64.50%
I\Legative 0.00% 100.00%

Table 7.7. Percentage of stimuli (of every type) that activates each module of critter 2

Stimuli types Percentage of stimuli that cause | Percentage of stimuli that cause
activation of primary module activation of secondary module
Positive 1.00% 99.00%
Random 73.40% 26.60%
Negative 100.00% 0.00%

To conciude: it is interesting to note that the structural specialisation also occurs in other
areas of the critter brain, such as the visual system within every module. In particular, the fact
that different parts of the modular critter brain respond to different aspects of the visual
stimuli bears a resemblance to biological visual systems. In both analysed critters, one
module reacts to the colour information in the visual stimulus and thus is in charge of the
critter's consumption and reproduction behaviours, and another reacts to the brightness
information in the stimuli and thus is in charge of the critter's movement behaviours. This is
analogous to many visual strategies which can be seen in nature, for example, in monkeys,
different aspect of the perceived stimuli are analysed in different pathways of the brain [225];
these can normally be classified into two general categories: 'what' and 'where'. The 'what'
pathways process the features of stimuli (e.g. shape, colour), whereas the 'where' pathways

process the spatial elements of the stimuli (e.g. motion, form).

An interesting additional observation is the fact that the visual systems of certain modules
Jfilter some of the visual information. For example, a module which only controls movement

is colour blind. This further supports the observation reported in chapter 5, that when
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appropriate, the visual system only relays relevant information to the brain and disregards

information that is unnecessary.

The analysis described in this section, which examined the effect of incorporating modularity

on the evolved visual systems, is particularly important because it supports part of the

premise underlying this thesis, specifically, that incorporating hierarchical complexity into
models is necessary in order to gain a more comprehensive understanding of the modelled
phenomena. Indeed, the greater number of levels of this model enabled discovering that:

(1) Specialisation takes place at more than one level of the model. Not only modular
specialisation took place within the critter brain, but each module had specialised visual
systems as well. This specialisation is directly linked to the environment.

(2) Visual specialisation for artificial agents can occur for a specific task (like movement)
and not just for the general survival task.

(3) The evolved visual strategies for subtasks are consistent with known visual principles, for

instance, that filtering irrelevant information is at times beneficial.

In a simpler, non hierarchical (or less hierarchical) model, these observations are likely not to

be available.

7.8 Complex interactions analysis

The work described in this chapter primarily deals with the interaction of the control network
with its subordinate modules (control network—module interactions) as a way of increasing
critter fitness through modular specialisation. In order to be able to examine these
interactions, a set of experiments which presented two types of critter populations (critters
with modular brains, and critters with non-modular brains) to two different types of

environments (changing environment and static environment) was conducted.

The results of the experiments showed that critter fitness is indeed higher for critters with
modular brains, and this was determined to be the result of the interactions within the
modular brain: the control network specialised in breaking the task to two (or more) different
subtasks, and several modules specialised in performing their assigned subtasks. Therefore,
the control network—module interactions were critical towards accomplishing the challenge
that was set in this chapter. These interactions took place within the modular brain, however,
their effect reached lower levels: neuron, gene, and as was demonstrated, receptor. And also
higher levels: critter (as it is controlled by the network), population and species, (through the

behavioural effects on competition and reproduction).
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The interaction(s) that takes place are in parenthesis at the end of each sentence.

1) Every critter attempts to survive — this requires several different behaviours:

(@)

Perception: the environment is perceived by the critter’s control network's
receptors (environment—receptor). It is crucial that these receptors relay the
relevant information to the control network: specifically, information that will
enable it to do an appropriate breakdown of the task. The two critters analysed in
section 7.7 possessed visual systems that were sophisticated enough for the
purpose of assisting modules in the survival task; that said, it is possible that
other types of control strategies may require different types of visual systems. In
addition, it does not appear that the changing environment problem required any

specialised visual adaptations (as none were found).

(b) Communication: the receptors relay this information to the control network

(©)

through neurons (receptor—neuron, neuron—-control network).

Activation: the control network determines, based on the stimuli it receives,
which module to activate (control network—module). This is possibly the most
important interaction, as the control network must be able to properly break
down the stimuli into meaningful tasks. For critters that evolved in the conducted
experiments, it appears that the control network needs to be able to break the task
to at least two distinct parts: the primary part includes — potentially — all visual
stimuli, and the secondary part includes only stimuli that come from eaten
surfaces. This interaction is also important because through the interaction of the
control network and the module, the critter brain may be able to achieve

additional capabilities (for example, as exhibited by the critters in section 7.7).

(d) Perception: the environment is perceived by the activated module's receptors

(e)

(environment—receptor). It is crucial that the receptors relay the relevant
information to the activated module: the better adapted the visual system of the
module to the task it is supposed to perform, the better the critter will be. As was
shown, different modules have specialised visual systems according to the task
they are supposed to perform. It is possible that different critters have different
specialisations; however, according to the analyses performed:

- Consumption: it appears that tasks that demand colour perception
(such as consumption) require the visual system to be able to
differentiate between visual stimuli, presumably using colour vision.

- Movement, turning: tasks that only demand brightness perception
require the visual system be able to differentiate only between light and
dark stimuli. In this case, a simple visual system is sufficient.

Control: the activated module controls the critter’s behaviour (module—critter).
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Clearly, this interaction is important as it enables the environment to exert
selection pressure and eventually determine the task breakdown (of the control
network) and specialisations of every module.

(f) Consumption: the critter may consume surfaces (critter—environment); and in
this case, positive or negative energy is transferred from the environment to the
consuming critters (environment—scritter). This behaviour appears to be linked to
the evolutionary strategy evolved. There are two strategies; in the first,
consumption is controlled by the primary module (deals with all surfaces). In the
second, consumption is controlled by the secondary module (deals only with full
surfaces). In both cases, the module specialises in recognition of positive
surfaces. Obviously, it is also possible that the evolved critter does not have
specialised modules, and in this case, all modules may attempt to control
consumption (the critter fitness is likely to be mediocre at best).

(g) Movement: the critter may choose to move (forage for food, avoid edges and
holes) (environment—critter). Similarly to the previous item, the identity/task of
the controlling module appears to be dependent on the strategy taken: according
to one strategy, movement and turning are performed by the primary module and
in the other, movement and turning are performed by the secondary module,
which is activated when the critter reaches eaten surfaces.

(h) Reproduction: the critter may choose to reproduce (critter—critter). This
decision is also dependent on the evolutionary strategy taken: in one scenario, the
primary module controls reproduction, and in the other, the secondary module

~ controls reproduction, and is activated when the critter reaches a full surface.

2) Selection (to better break down the task): many critters die during stages 1-f to 1-h,
either by consuming negative surfaces, or by falling from the edges/into a hole, running
out of energy, or by reproducing when not possessing enough energy. Critters whose
control networks have learned to break the task ideally (for these experiments, breaking
the task to two subtasks appears to be ideal) are far more likely to survive than critters
whose control networks break the task incorrectly or do not break the task at all, and only
utilise a single module. Therefore, the advantages these control networks grant directly
affect the selection of the genes that define them (control network—genes).

3) Selection (to evolve appropriate behaviours and structures): the critters that survive
are likely to have appropriate structures for their modules, and are more likely to exhibit
the appropriate behaviour in every situation. Therefore, the advantage of possessing
appropriate behaviours and structures (which are now expressed in individual modules)
affects the selection of genes that define them (module—genes).

4) Selection (to better compete): the critters that survive compete on resources



7.9 Conclusions 186

(critter—critter). Critters that evolved a good breakdown of tasks, and have evolved
specialised modules (suitable structures and behaviours) are more likely to out-compete
critters that have not evolved either, thus, are more likely to survive and pass on their
genes (control network—genes, module—genes). Other aspects that enhance the critters’
ability to compete also affect the selection of the genes that define them (critter—genes).

5) Reproduction: continuing (1-h), the critters that survive past steps (2)-(4) and are now
able to reproduce are fitter than those that died (genes—genes). Their offspring’s
phenotype is likely to be fit as well, as affected by the selection pressures in (2), (3) and
(4). These changes to genes affect the critter's task breakdown to modules, modular
specialisation and overall behaviour which affects it across all levels (genes—receptor,
genes—neuron, genes—module, genes—control network, genes—critter) and eventually
the population as well (genes—population). As was shown in this chapter, the critters do
not exhibit any specific strategy in order to deal with changing environments, but instead
simply become better at all tasks, thanks to modular specialisation.

6) Steps (1) to (5) are repeated until the run ends. The critters that evolved a good task
breakdown between modules, appropriate structures for every task, and consequently,

appropriate behaviours for every situation are those that survive.

7.9 Conclusions

The aim of the work presented in this chapter was to investigate the premise that control
network—module interactions can enable critter fitness to increase through modular
spécialisation by setting a challenge to Mosaic World that seemed to be very demanding,
thus, will fequire specialised adaptations or behaviours. The results confirm this hypothesis:
incorporating modularity into brains used for critter control can greatly improve their
capabilities, as critters that evolved modular brains survived much longer on average than
critters with non-modular brains. Although critters faced a challenging problem (changing
environments), the enhanced survival ability appeared to be derived from the improved
capabilities of the modular brains, rather than any specific adaptation to this problem. This
improvement in fitness was achieved by dividing the tasks between two modules.
Furthermore, the way the tasks were divided was important, the more distinct the division of

tasks, the better the overall result.

To conclude: this chapter demonstrated the way in which modular specialisation can greatly
improve fitness. Furthermore, and perhaps, more interestingly, it showed that when the
evolving structure is hierarchical, this improvement occurs by evolving appropriate
specialisations for the various levels of the structure (i.e. each of the specialised modules

evolved visual systems appropriate for the module's role).
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Chapter 8

Challenge: aggregation

In this chapter, the hierarchical structure of the system is expanded once again through the
addition of a new level to the model, by enabling individual critters to aggregate and form
Mosaic World’s equivalent of multicellular organisms. An aggregate may consist of up to 25
critters, and is controlled by its constituent members. This new level is the focus of this
chapter’s investigation of complex interactions. Specifically, this chapter focuses on the
interactions that take place between individual critters and aggregates, as well as interactions
that take place within an aggregate. These interactions include aggregation: the forces that
cause individual critters to interact and form new aggregates, differentiation: the interactions
of critters within an aggregate that enable it become an appealing evolutionary alternative to

critters, and predation: the effects of predation by aggregates on critters and smaller

aggregates.

Naturally, the study of theses types of interactions bears a strong similarity to investigations
conducted by biologists in the attempt to understand the evolutionary transition from single
cells to multicellular organisms. This chapter complements these studies by exploring the
factors that may have provided an advantage for multicellular life when it first appeared in

nature. The challenge posed for Mosaic World in this chapter is:

Can stable species of aggregates evolve in Mosaic World, and if so, what is the nature of the

critter—aggregate and critter—critter interactions that are necessary for this to occur?

In order to investigate this challenge, a set of experiments examines the effect of several
different conditions on the formation of aggregates within a population, and these are

compared with biological equivalents.

A second study described in this chapter examines the effect of environmental change on
aggregates capable of altering their shape and growing protective structures around
themselves, by adding a new type of environment to Mosaic World that offers new benefits
but new dangers as well. This study also investigates the origin of development, specifically,
morphogenesis, as exhibited by aggregates that evolve specific shapes and shell structures

that increase their chances of survival.
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Finally, as this chapter presents the full version of Mosaic World, a thorough analysis of one
evolved aggregate is provided and demonstrates how complex interactions across all levels

are integral for a broader understanding of the modelled phenomenon.

The work described in the first part of the chapter has been published in [198].

8.1 Part I: the transition to multicellularity

Explaining the transition from single cells to multicellular organisms is one of the key
challenges faced by evolutionary theory [145]. A multicellular organism is comprised of
more than one cell that are in physical contact; these cells are specialised (or differentiated) to
perform specialised tasks — and their activities are coordinated, at least with regards to some
key functions. Multicellular life, which is believed to have independently arisen multiple
times in the different kingdoms [33], is evident even in the most ancient fossils dating some
3.5 billion years (these microfossils are of filamentous cyanobacteria, which are considered
the Earth’s oldest known multicellular organisms) [98, 200]. Multicellularity can be achieved
in two ways: through aggregation and through cell division accompanied by adhesion [242].

Although it is accepted that for this transition to repeatedly take place it must offer some
advantages, no one knows for certain the conditions that led to the original emergence of
multicellularity, nor how it emerged. One view is that the transition to multicellularity
occurred by accident, caused by a mutation that prevented offspring cells from separating
[33], and that at first there were no advantages [173]. In this scenario, the benefits came later,
thus causing the selection of the organism. Another theory suggests that predation pressure
was one of the causes leading to the emergence of multicellularity, as multicellular organisms
would be more resistant to phagotrophy (ingestion of whole prey) [217]. This theory was
tested by exposing a unicellular organism, Chlorela vylgas, to a predator. Within few
generations the multicellular version of the organism, a rare mutant, evolved and was nearly

immune to predation [35].

The possible advantages associated with multicellularity are numerous. One is the enhanced
efficiency of dividing labour between cells [138]. This can provide advantages in feeding
(e.g. efficient feeding through cooperation) and dispersion (e.g. a larger fruiting body
improves spore dispersion) [33]. The larger size may improve protection from environmental
disturbances [24] and enable greater storage capacity of inorganic nutrients [105]. It also
enables a greater division of labour — more cell types that offer greater specialisation [34].
Perhaps, most importantly, sheer size itself can be advantageous with regards to predation:

the prey may be too large for the predators to eat and organisms may be able to move faster
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so could better catch prey or escape predation (e.g., in water environments [32]).

It is important to emphasise that a group of individual cells is not a multicellular organism.
The first necessary step for this transition is that the individual cells stop competing and start
cooperating; in other words, the individual cells start sacrificing their fitness for the fitness of
the group [144]. Only then can cell differentiation begin and the organism becomes
multicellular [106]. It is crucial that functions that limit internal conflict emerge [146].
According to some, successful complex multicellular organisms must be comprised of

genetically identical members [242].

Computational models that investigate the transition to multicellularity

It is difficult to study events such as the emergence of multicellularity for obvious practical
reasons. This is where artificial life models can greatly help. Indeed, several researchers have
modelled aspects of the emergence of multicellular life: for example, Rothermich and Miller
investigated the emergence of multicellularity by modelling cells using Cartesian genetic
programming [192]. Bull used versions of the abstract NKC model to examine the conditions
under which multicellularity is likely to occur [40]. Furusawa and Kaneko studied the origin
of multicellularity using artificial chemistry [63]. Bryden modelled the macrocyst stage in

slime mould in order to understand why an organism might decide to aggregate [39].

8.2 Additions to Mosaic World

The investigations described in this chapter required that Mosaic World be expanded in
several ways. The most significant change is the addition of a new level to the model, which
now comprises the following levels of abstraction: genes, neurons, receptors, modules,
control networks, critters, aggregates, population and species; figure 8.1 illustrates a sample
model of an aggregate which comprises 4 critters (each possessing a modular brain, described
in the previous chapter). Figure 8.2, which is an expansion of fig. 3.2, shows the interactions

map for all objects in Mosaic World.

8.2.1 Action capacities and metabolism
In all versions of Mosaic World used until this chapter, a critter loses a certain amount of

energy every time step (explained in 3.6.1). The critter can also perform all actions:
reproduction, consumption, movement, turning. In this version of Mosaic World, these two
elements are linked: the aim is to model the notion that in nature, different types of cells have
different energy costs (e.g. [190]). Thus, every critter has a metabolic rate which determines

the rate of energy it loses over time.
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Capacities:
Movement
Turning
Capacities:
Predation
Consumption
Capacities:
None
("fat cell")

Reproduction
Consumption

Aggregate

(comprised of four critters)
Fig. 8.1: The object model of the aggregate. The aggregate described here comprises 4

critters, each possessing its own structure and capacities (described later in the

chapter).
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The metabolic rate is determined according to the actions the critter has the capacity of
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performing. Accordingly, a critter that can perform more actions will have a faster
metabolism, and consequently, lose more energy every time step, whereas a critter that can
perform no actions at all will lose a very low amount of energy every time step. Although the
costs used do not capture the mechanisms of biology in detail, it can be argued that the model

presents the critters with challenges similar to those faced by living organisms.

All critters are created with the capacity of performing all basic actions: the capacity to
consume surfaces, the capacity to move/turn, and the capacity to reproduce (predation, which
is a new feature that is shortly explained, is enabled by the capacity to prey and is not
included in the critter's basic repertoire). By losing some of these capacities through
evolution, the critters can decrease their metabolic rate. Critters that lose the capacity to
perform a certain action cannot perform it; however, through evolution the critters' offspring
can regain this capacity. Even a critter with no capacity to do any action still loses energy at a

slow rate.

The basic metabolic rate for a critter is 10 units per time step, reproduction adds 30 units,
consumption adds 30 units, moving/turning adds 30 units, and predation adds 30 units. E.g. a
critter that can only reproduce and move, but not eat, loses 70 energy units per time step,

which is 70% of the rate of a critter that can also eat.

8.2.2 Aggregates in Mosaic World

In order to investigate the transition to multicellularity, mechanisms for critter aggregation
have been added (see fig. 8.3 for a screenshot of aggregates in Mosaic World). An aggregate
can comprise up to 25 adjacent critters in any form within a 5x5 square, and is subject to all
the costs and limitations that the critters sustain. Although the limitation of 25 critters per
aggregate is biologically unrealistic, this design choice was necessary in order to enable
running experiments in a realistic time frame; that said, this limitation did not appear to make
any difference as aggregates rarely possess more than 10 members, and no aggregate was

ever observed to possess 19 or more members.

The primary goal of adding this major feature was to discover the conditions that lead to
aggregation rather than enforcing it: by making the aggregation methods optional, evolution
is able to discover the utility (or not) of aggregation — there is no bias towards multicellularity

or differentiation and no requirement for critters to aggregate.

Actions

Aggregates can use all abilities of their constituent members: if no members have the
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capacity to perform certain actions, the aggregate cannot perform them. Some actions can
only done by the aggregate as a whole: reproduction, predation and splitting; therefore, as
such actions involve all members, these decisions are determined ‘democratically’ - an
aggregate performs these only if at least half its members wish to. Furthermore, because
members that have lost the capacity to perform an action do not participate in the decision
process, this may result in the effective specialisation of the aggregate’s members. Thus,
evolution can assign certain decisions to a single member by devolving the capacities to make

these decisions for most members; this is Mosaic World’s equivalent of a specialised organ.

EEER
EEan

Fig. 8.3: A close-up of Mosaic World, demonstrating aggregates and critters living side

by side.

Health and metabolism

Aggregates pool the energy of their constituent members; an aggregate’s current and
maximum health levels are the combined total of its members’ current and maximum health
levels. Similarly, an aggregate’s metabolism is the combined metabolic rates of its members.
These changes reflect the fact that an aggregate is literally the sum of its parts, which were
previously individual critters (e.g. Dictyostelium - also known as slime mould - is an
multicellular organism formed through the aggregation of individual cells [39, 138], thus, it

can be stated that its ‘health’ is the overall ‘health’ ofall its constituent cells).

Sensing and consumption
Aggregates enjoy the combined sensing capabilities of all their comprising members: every

individual critter senses the environment and can affect the behaviour of the aggregate. This
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models the sensing capabilities of some aggregating organisms, for example, the
Dictyostelium amoeba which has receptors for cyclic AMP that instruct it to move in a

specific direction in order to aggregate [1].

In addition, every member that has the capacity to consume can still decide whether to
consume a surface or not, although it is still subject to the same limitations faced by critters
(i.e. it cannot consume while moving, and this depends on other members of the aggregate as
well). This models the ability of evolution to determine the size and shape of the feeding

organ of organisms. The energy gained (or lost) is added to the aggregate’s energy pool.

Movement and turning

An aggregate’s movement is determined by its members, and is effectively their combined
movements. Since aggregate members can turn inside an aggregate, an aggregate’s overall
movement depends on its members’ individual orientations. Consequently, the movement of
an aggregate is difficult to coordinate. The movement and turning energy costs are identical
to those of an ordinary critter — this models multicellular organisms using flagellates for
swimming [32]. An aggregate does not fall from the world’s edges as long as its central

member is still on the surface matrix.

Reproduction

Aggregates can only reproduce asexually. To reproduce, an aggregate must not move for a
gi\}en number of time steps and must also transfer a percentage (40%) of its maximum health
to its offépring. All reproduction attempts incur an energy cost relative to the aggregate’s size
regardless of their success. When an aggregate reproduces, all its members are cloned and the
outcome is mutated (i.e. every member undergoes the same mutations that a reproducing
critter’s offspring experiences). The members’ spatial position is also copied, thus, the
aggregate’s shape is cloned as well. This type of reproduction is equivalent to budding, which
is one of the forms of asexual reproduction seen in nature. In budding, a new individual
grows as a bud out of the body of its parent, eventually detaching and becoming a full
individual which is genetically identical to its parent [85]. Many animals reproduce through

budding, for example: hydras and calcareous sponges.

In addition to the ‘standard’ mutations, the offspring of an aggregate also undergoes the

following three new types of mutations:

e 'Clone element': this mutation causes one of the offspring’s members (randomly picked)
to be cloned twice at a given probability (4%). The new member is attached randomly to

an existing member. This mutation also affects the aggregate's metabolic rate.
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o 'Delete element': this mutation causes an offspring’s member (randomly selected) not to
be copied at a given probability (4%). The selected member must not be the only
connection between two parts of the aggregate (i.e. it cannot split the aggregate in two).
This mutation also affects the aggregate's metabolic rate.

*  'Shift element': this mutation causes an offspring’s member (randomly picked) to change

position (altering the aggregate’s shape) at a given probability (4%).

Genome

When critters form an aggregate, their genomes combine and form the aggregate’s genome
(see fig. 8.4). The aggregate genome also contains additional genes that indicate every
member’s position and orientation in the aggregate. The genome defines all the traits of the
aggregate, and by definition, of its comprising critters; thus, during reproduction this genome
can be used to create the aggregate’s offspring - and furthermore, if this aggregate splits, its
members can be recreated as critters as well. Although in nature aggregating organisms do
not combine their genomes, this mechanism was necessary in order to enable reproduction of
aggregates; this has been the case because the mechanisms for true development are beyond
the current capabilities of Mosaic World. Such mechanisms would enable a multicellular
organism to grow from a single cell/critter that has a single genome; this cell/critter would
divide multiple times with some of the offspring differentiating into different cell/critter

types, and eventually form the multicellular organism.

Location in aggregate [3,2] Location in aggregate [2,3]
litﬁng capacity capacity Pi*dwuan capacity ~ Rtprotocuo* capacity  Etfing capacity Ifovwntnt capacity Pi*dac*Lcapacity R*productun capacity
tine true true false false false false false

-Begin control module

Receptor (location [0.0], peak [400nm], tuning [0 003], on)
Receptor (location [0,1], peak [470nm], tuning [0 01], on)
Receptor (location [-1,0], peak [SS0nm], tuning [0 02], on)
Receptor (location [0,- 1j, peak [630nm], tuning [0.09], on)
Receptor (location [ 1,1], peak [690nm], tuning [0 5], on)

-Begm control module

Receptor (location [0,2], peak [430nm], tuning [0.25], on)
Hidden (location [0,0])

Hidden (location [0, 1j)

* Weight (RecftU], Htdp.O], val(D 83], on]

Fig. 8.4: Sample aggregate (size 2) genome; most genes for critters are not shown (see

chapter 3)

8.2.3 Predation

The ability to prey on smaller aggregates and critters is added to this version of Mosaic
World and requires evolving a capacity for predation. For this purpose, a new output unit is
added to the critter's standard module; this unit must be activated in order to attempt
predation. This feature was added because one of the investigated hypotheses in this chapter

suggests that predation is one ofthe possible reasons multicellularity evolved [217].
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In Mosaic World, an organism may prey on another organism if it is larger than its prey; this
means that effectively only aggregates can prey on other aggregates and critters. Even though
critters can evolve the capacity for predation, in practice this will only increase their
metabolic rates without bestowing any additional abilities, except if the critter forms an

aggregate or joins an existing one.

In order to prey on another organism, an aggregate must physically overlap at least 75% of its
prey. Preying may not kill the target: only some of its energy is transferred to the aggregate
(80% of the prey's maximum energy). Preying also incurs an energy cost that depends on an
aggregate’s size, regardless of whether it has actually successfully 'caught' a victim (i.e. the

aggregate may attempt to prey on an aggregate that is larger than itself).

8.2.4 Aggregation
All critters have the ability to aggregate. For this purpose, a new output unit is added to the

critter's standard module. There are two ways for critters to form an aggregate; each is used in

different experiments.

Aggregation by choice enables critters to aggregate with other willing critters and aggregates
that are in immediate contact with it. A critter may be in ‘join’ mode, where it adheres to any
willing organism it is in contact with, ‘neutral’ mode where it does not initiate aggregation,
But adheres to any other organism that attempts to adhere to it, and ‘split’ mode where it

never aggregates.

Accidental aggregation causes a percentage (4%) of every reproduction to result in a small
(size 2) aggregate — this models an offspring that does not separate from its parent during
reproduction. When this setting is active, aggregates cannot split or grow during their
lifetime. Note that the vast majority of aggregates that form this way do not survive.

Aggregates cannot increase their size by joining other organisms; however, a critter
attempting to join an aggregate succeeds and adds its energy to the aggregate’s (with a

corresponding increase in its metabolic rate).

8.2.5 Splitting

An aggregate can decide to split; this causes the aggregate to split to its individual members.
There is no way for a single member of an aggregate to leave it: the only way for a member
to regain its individuality is if the entire aggregate disbands. When an aggregate splits, every
critter receives the appropriate part of the full genome. Although all members of the

aggregate have the ability to split, some may choose to forego participating in the splitting
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decision (which, as previously described, occurs 'democratically’). This feature parallels the
A ability of the fruiting body of aggregated organisms such as Myxobacteria and Dictyostelium
to differentiate into spores that can be released to the world [1, 138]. It is important to
emphasise that the vast majority of new aggregates split immediately after forming (and most
of those that do not, die not long afterwards). As the results later in this chapter show, critters
are always preferable to aggregates unless there is an advantage to being in the aggregate

state which critters cannot duplicate.

Individual members were not allowed to leave an aggregate because this could have a very
negative effect on the aggregate's ability to survive (which may depend on all its members),
particularly when the aggregate is larger in size, where a single mutation may cause a
member to leave. This is less of an issue in biological multicellular organisms which
normally share the same genes and thus, members are less likely to behave in a way that does
not contribute to the greater organism's benefit, however, for aggregates such as
Dictyostelium there is a definite need to 'police’ members that do not act in the aggregate's
best interests. In fact, it is believed that the presence of such elements may be a serious
problem for even simple forms of cooperation unless mechanisms for controlling it exist
[226].

8.2.6 New mutation: mutate capacity
In addition to the new mutations that were described in the aggregate reproduction section,

another mutation type has been added and affects both critters and aggregates during

reproduction.

"Mutate Capacity”. this mutation switches the action capacity of the critter or aggregate: 6%
per action (i.e. if a critter does not have the capacity for an action, this mutation restores it —

and vice versa). This mutation also affects the critter's or aggregate’s metabolic rate.

8.2.7 Aggregate monitor unit

An additional sensor, the aggregate monitor unit, has been added to all critter modules (but
not to the control network). This unit receives a signal if the critter is a part of an aggregate;
the intensity of the signal is proportionate to the aggregate's size. Indeed, it is reasonable to
assume that an individual cell must be able to tell whether it is within an aggregate and
receive additional useful information for it to be able to function properly in this environment
(for example, members of a Dictyostelium aggregate receive positional information in order

to generate a prestalk-prespore pattern [112]).
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8.2.8 The methodology behind these additions

In the course of the various investigations that were conducted using Mosaic World, it
became obvious that Mosaic World’s extensive model of evolutionary agents in a complex
environment poses many challenges related to those faced by primitive unicellular organisms.
Therefore, this version of the model aims to improve on the metaphor, and attempts to
simulate the cellular environment: the critters represent unicellular organisms and the
aggregates represent multicellular organisms. Accordingly, the controlling neural networks
within each critter can be viewed more as abstractions of gene regulatory networks in a cell,
and the receptors can be viewed as cells receptors (instead of biological cone photoreceptors
in an eye). Indeed, as the rest of the chapter demonstrates, the behaviours that result from the
interactions between critters, and the higher level they form, the aggregate, bears a strong

similarity to behaviours seen in nature.

Certain environmental features (specifically, multiple illuminants) are unnecessary and are
thus disregarded in this particular study. It is also important to separate the modelled
phenomena from the algorithms used to model it; specifically, the controlling neural
networks within each critter are used as a learning mechanism and are not intended to

represent biology (as unicellular organisms do not contain neural networks).

Biological relevance: by emulating specific conditions theorised to have affected the
emergence of multicellular life in nature, the expansion of the model enables to directly
exémine several biological theories. As the results section demonstrates, these additions to
the model are clearly biologically relevant. In addition, by showing that simulated aggregates
that are formed of several different critters, each specialised in certain functions, are a
successful alternative to simulated critters, it can be argued that cooperative distributed

specialised systems are a useful alternative to standard non-modular systems.

Level: the version of the model described in this chapter contains a new level and consists
now of: genes (level 1), neurons and receptors (level 2), modules (level 3), control networks
and critters (level 4), aggregates (level 5), population and species (level 6). The model
presented in this chapter is the full version of Mosaic World, thus, it can be used to explore
many different complex interactions. This type of model can be used to gain a better
understanding of a modelled phenomenon. For example, in this chapter it will be shown how
incorporating aggregation into the model affects all levels of the model, and more so, how
these various effects provide insight into the nature of the modelled phenomena that normally

may not be apparent.



8.3 Experiments 199

Generality: although the changes to the model were incorporated in order to address specific
questions about aggregations, multicellular organisms and differentiation, the model can still

be considered to be a general model.

Abstraction: all changes in this chapter are related to the critter model and aim to emulate
the biological features of aggregation and differentiation. These changes can be said to
abstract the target phenomena to a large degree. Some assumptions have been made, for
example, in assigning specific metabolic rates for action capacities; primarily because
modelling this at greater detail (and more accurately) would be impossible, as the critter

model is vastly simpler than its biological counterpart.

Accuracy: generally, the changes to the model are biologically accurate. However, as
mentioned in the previous item, the changes to the critter model simplify reality to some
extent, thus, are inaccurate to a degree. Specifically:

e The aggregation feature generally captures the biological phenomenon of aggregation;
however, clearly its implementation is greatly simplified.

e The accidental aggregation feature aims to model multicellular life that occurred through
cell division accompanied by adhesion (specifically, the biological mutation that
prevented offspring cells from separating [33]). The general concept is accurately
modelled; however, the probabilities used in this work are not based on biology.

e The aggregation by choice feature aims to model the concept of multicellular life through
aggregation. This feature correctly captures the general idea of aggregation, but is
othéfWise not biologically accurate.

e The relative metabolic costs assigned for each cell type are not based on biological
constants which would have been impossible to apply in a model so different from

biology. However, the general concept is correctly modelled.

Match: as the result section shows, all three hypotheses that have been suggested to affect
the emergence of multicellularity, and the behaviours and characteristics of evolved
aggregates and ecologies, bear a striking similarity to the real world. Therefore, it can be said

that the model behaves like the target phenomena

8.3 Experiments

In order to be able to investigate the interactions between aggregates and critters, and the
interactions between critters within a formed aggregate, it became necessary to discover the

conditions that lead to aggregate formation. Interestingly, as briefly mentioned before, this
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study mirrors the biological search for the origins of multicellularity. Consequently, five

experiments were run with the aims of:

@) Obtaining relevant data regarding the interaction between individual critters that
leads to the formation of aggregates, as well as the effect predator aggregates have on
this process (which is another type of interaction between critters and aggregates).
This data will directly test existing theories for the emergence of multicellularity in
nature.

(ii) Examining the interactions within evolved aggregates that make aggregation feasible
— and determine whether the evolved aggregates share characteristics common to
natural multicellular systems (i.e. differentiation).

(iii)  Analysing the evolved ecosystems and discerning whether there is any consistent

correspondence between the structure of the aggregate and its ecosystem.

In each experiment, the environmental conditions are set to emulate conditions suggested to
have affected one of three different hypotheses regarding the emergence of multicellularity.
The data collected measures the percentage of runs in which aggregation occurred. In
addition, a representative aggregate is taken from all runs (where applicable) and its genome
analysed; this data, together with the population statistics is used to characterise the type of
ecosystem that was evolved. Behavioural analysis of aggregates is done by presenting the
selected aggregates to 500 random surfaces at two levels of consumption (‘full' and 'eaten')
while recording their actions; this enables characterising the behaviour of members of the

aggregate and understanding the task they perform.

All experiments require a random population of evolving individual critters to be placed in a
test world, and end after 400,000 time steps. Once finished, the critter population is stored

and analysed. Each experiment is repeated at least 10 times.

The examined hypotheses are:

e Hypothesis 1: predation is a sufficient condition to cause the emergence of
multicellularity [217].

e Hypothesis 2: accidental aggregation, without any explicit immediate advantages, is a
sufficient condition to cause the emergence of multicellularity [33].

e Hypothesis 3: member differentiation is important to multicellular organisms [173].

Experiments 1-3 examine hypothesis 1 by attempting to discern what aspect influences
multicellularity: the ability to prey or the actual presence of predators. In all runs, the

aggregation mode is ‘aggregation by choice’. Experiment 4 examines hypothesis 2 by
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attempting to determine whether random occurrence of aggregation without any immediate
advantages is enough to initiate multicellularity without any guiding selection pressure.
Experiment 5 examines hypothesis 3 by attempting to discover how crucial the presence of

differentiation is for multicellularity to occur.

Experiment 1: ‘predation’ is disabled — aggregates must be herbivores.

Experiment 2: ‘predation’ is disabled — aggregates must be herbivores, however, every 1000
time steps, 7 sterile predators are placed in the population. These predators cannot reproduce,
split, or consume surfaces, and die unless they can catch prey. Furthermore, they are very
small (size 2), and so can only eat critters but not other aggregates.

Experiment 3: ‘predation’ is enabled — evolved aggregates may prey on organisms.
Experiment 4: the aggregation mode is set to ‘accidental aggregation’. ‘Predation’ is
disabled so it would not affect aggregation.

Experiment 5: the ability of aggregates to evolve the capacities for different behaviours is
turned off; in other words, the aggregates’ differentiation is disabled — they are always
capable of performing all actions. A secondary effect of this condition is that evolved
aggregates have multiple redundancies of all behavioural capacities, consequently, a very
high metabolic rate. The aggregation mode is set to ‘aggregation by choice’, and ‘predation’

is enabled (to encourage multicellularity).

8.4 Results

Table 8.1 shows the percentage of runs that evolved aggregates for every experiment. As the
data shows, preventing evolution of predators when critters ‘choose’ to aggregate, results in
no aggregates evolving (exp. 1). However, the presence of predators is enough to encourage
some aggregate formation (exp. 2). When predators can be evolved, aggregates form very
frequently (exp. 3). Furthermore, accidental aggregation is sufficient to cause aggregation
quite frequently even when predators cannot evolve and there is no immediate advantage of
aggregation. Finally, although differentiation is disabled, multicellularity still occurred

according to exp. 5, albeit less frequently than when differentiation is enabled (exp. 3).

Table 8.1. Percentage of runs that evolved aggregates for every experiment

. % of Runs with
# Experiment
Aggregates

1 | Aggregation by choice, predation disabled 0.00%
2 | Aggregation by choice, predation disabled, sterile predators present 30.00%
3 | Aggregation by choice, predation enabled 76.92%
4 | Accidental aggregation, predation disabled 60.00%
5 | Aggregation by choice, predation enabled, differentiation disabled 60.00%
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When the stored populations and representative aggregates are analysed, it becomes apparent
that there are recurring patterns: Three types of aggregates and four types of ecosystems
consistently appear. A description ofthese with details of a run that exemplified them is listed

in fig. 8.5.

Types of aggregates:
e Herbivore: an aggregate that consumes surfaces and cannot prey.

e Carnivore: an aggregate that survives on prey (but may occasionally consume
surfaces).

* ‘Coral’ Carnivore: a carnivore that cannot move and only eats prey that moves into
its area.

Types of ecosystems:

* Herbivorous Aggregates: this ecosystem is dominated by herbivorous aggregates -
there are few or no unaggregated critters. E.g. exp. 3, run 5: total of 248 herbivorous
aggregates, 16 critters.

» Coexistence - Herbivorous Aggregates and Critters: this ecosystem contains stable
amounts of herbivorous aggregates and unaggregated critters. E.g. exp. 4, run 4: total
0f20 herbivorous aggregates, 227 critters.

* Predator/Prey: this ecosystem contains stable amounts of carnivorous aggregates and
unaggregated critters. E.g. exp 3, run 11: total of 45 carnivorous aggregates, 158
critters.

* Predator (‘Corals’)/Prey: this ecosystem contains stable amounts of ‘coral’
carnivorous aggregates and unaggregated critters. E.g. exp 3, run 2: 280 ‘coral’
carnivorous aggregates, 149 critters.

Fig. 8.5: Types of aggregates and ecosystems that were repeatedly evolved during the

experiments

Since the number of shapes and structures the aggregates evolved was large, 4 sample
aggregates were picked for close analysis (fig. 8.6). Aggregates A,B,C were taken from exp.
2-4. Aggregate D was taken from exp. 5, and was picked in order to demonstrate the effects

of limiting explicit differentiation.

Aggregate A: this aggregate was taken from a ‘predator/prey’ ecosystem. It consists of 6
members and possesses a metabolic rate of 270 units. Member 3 performs all actions: it is
able to consume surfaces, move/turn, and participate in decisions for reproduction, predation,
splitting.  Member 5 is able to consume surfaces and participates in decisions for
reproduction and predation. Members 2 and 4 do not perform any task, but participate in
decisions for splitting. Members 1 and 6 do not perform any task, and thus, can be considered
as ‘fat cells’. Although this aggregate is also capable of consuming surfaces, based on its
capability to act as a predator and its originating ecosystem, this aggregate can be defined as a

carnivore with a relatively unoptimised division of tasks.
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Fig. 8.6: Four representative aggregates. Note: every member has an orientation (the

white line).

Aggregate B: this aggregate was taken from an ‘herbivorous aggregates’ ecosystem. It
consists of 6 members and possesses a metabolic rate of 210 units. Member 3 is able to
consume surfaces, and move/turn. Member 5 is able to consume surfaces and participates in
decisions for splitting. Member 6 is able to consume surfaces, participates in decisions for
splitting, and controls reproduction (is the only decision maker). Members 1, 2 and 4 do not
perform any task (‘fat cells’). Based on its behaviour and ecosystem, this aggregate can be

defined as an herbivore with a relatively optimised division of tasks.

Aggregate C: this aggregate was taken from a ‘coral predator/prey’ ecosystem. It consists of
3 members and possesses a metabolic rate of 90 units. Member 1 controls reproduction.
Member 3 determines when to prey (actively try to catch prey). Member 2 does not perform
any task (‘fat cell’). As this aggregate cannot move, has a perfect division of tasks, and a
metabolic rate lower than an ordinary critter’s, it can be said to be a coral predator - and one

which is very well adapted to its environment (highly optimised).

Aggregate D: this aggregate evolved in an environment where explicit differentiation was
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disabled (exp. 5), and was taken from a ‘predator/prey’ ecosystem. It consists of 9 members
and possesses a metabolic rate of 1170 units. Member 5 performs all actions: it is able to
consume surfaces, move/turn, and participate in decisions for reproduction, predation,
splitting. Member 1 is able to consume surfaces and turn (but not move), and participates in
decisions for predation and reproduction. Members 2 and 6 can consume surfaces and
participates in decisions for predation and reproduction. Members 3, 4, 7, 8 and 9 can

consume surfaces and participate in decisions for predation.

Based on the aggregate’s capabilities and ecosystem, it can be defined as a carnivore — and
one which is, unsurprisingly, very inefficient in terms of metabolism; although some division
of tasks has occurred, there is still a great deal of redundancy in the aggregate’s member
behaviours. Interestingly, one member affects movement and turning and another can only
affect turning: this would normally never take place, as the same action capacity controls both
— but apparently was able to evolve in this run because this division of labour occurred

implicitly.

Table 8.2 shows the average size of aggregates per type of ecosystem using the definitions of
fig. 8.5. It seems that the type of ecosystem greatly affects the size of the aggregate:
carnivores are significantly larger than herbivores and ‘coral’ carnivores. In addition,
herbivorous aggregates that coexist with critters are larger than herbivorous aggregates that

reside in an ecosystem unpopulated with critters.

Table 8.2. Average size of aggregate per type of ecosystem (classified using fig. 8.5)

Type of Ecosystem Ave. Size of Aggregate
Herbivorous Aggregates 2.22
Coexistence: Herbivorous Aggregates and Critters 3.04
Predator/Prey 5.64
Predator/Prey (‘Corals’) 2.06

8.5 Discussion

After analysing the results, it is possible to draw several conclusions with regards to the three
hypotheses. First, regarding hypothesis 1, it is clear that when there is no threat of predators
and the aggregation mode is ‘aggregation by choice’, there is not enough selection pressure
for critters to interact and form aggregates — individual critters are more adequate as they
need less energy and can more easily reproduce. However, the threat of predation is enough
to cause critter aggregation, primarily in order to gain protection from predation, but possibly

also to obtain a new energy source: prey.
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With regards to hypothesis 2, it is clear that leaving aggregation to random chance by
enabling ‘accidental aggregation’ is sufficient to induce multicellularity: aithough at first
aggregates are inefficient in comparison to critters as there are no advantages to this state, and
furthermore, considerable challenges of member coordination must be overcome, eventually

evolution learns to exploit the benefits multicellularity offers and overcome the difficulties.

Finally, with regards to hypothesis 3, in runs where the aggregates could not differentiate, the
percentage of multicellularity was somewhat lower, supporting the notion that differentiation
is important. More so, of particular interest is the fact that evolution found a way to implicitly
differentiate: although the aggregate‘s members had the capacity to perform all behaviours,
and the aggregate ‘paid’ the metabolic rate cost for these capabilities, most members still
chose not to perform certain tasks (e.g., members 3,4,7,8 and 9 in aggregate D in fig. 8.6 do
not, rather than cannot, move, turn, and participate in decisions for reproduction and
splitting). This result clearly supports the idea that differentiation is a major benefit for
aggregation: both because a differentiated aggregate is more optimised, and also because it is
much more difficult to coordinate members with multiple behaviours (e.g. movement,

turning).

In addition, even from only viewing the 4 representative aggregates, it is possible to state that
many shapes and specialisations were evolved, ranging from complete redundancy to a
perfect division of labour. A common pattern was to evolve several ‘eater’ members (as cach
meﬁber eats independently), a single ‘mover’ member (to minimise coordination issues), and
several ﬁréy/reproduce/split members (allows several critters to affect the overall behaviour
of the aggregate - e.g. fig. 8.6, A, B). Also, members without any capabilities were often
evolved and were apparently used as ‘fat cells’; their only purpose was to grant the aggregate

a larger maximum health capacity.

Of particular relevance is that there was a consistency in the various types of evolved
ecosystems. Furthermore, different types of aggregates appear to require different structures
(indicated by the consistency in average size). This is unsurprising: herbivores eat often while
carnivores have to catch their prey so are not likely to eat as frequently, thus, require larger
energy storage. Another explanation is the predation ability: larger predators can eat more
types of organisms, and are harder to eat. Likewise, the emergence of ‘coral’ carnivores was
intriguing: in these ecosystems, there were enough critters that ‘corals’ would rarely starve
and had no need to move. As ‘corals’ reproduced in the vicinity of their parent, reef-like

structures consistently emerged.
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To conclude, the described results indicate that aggregation can occur from two different
reasons: first, in order to avoid a potentially lethal interaction with a higher organism such as
a hunting predator, critters will interact and form aggregates. Second, in order to benefit from
a useful interaction between internal members, critters will interact and form a differentiated
aggregate. Although not explicitly studied, the ability to benefit from a new food source,

prey, may be another motivation for critters to interact and form aggregates.

The system described here has investigated perhaps the earliest, most primitive form of
multicellularity using the notions of aggregation for growth and fission for reproduction. This
can be seen as analogous to the hypothesised symbiosis that resulted in mitochondria
becoming incorporated into modern cells [138]. Multicellular organisms comprising more
complex cells are capable of developmental growth via mitosis and differentiation, and
reproduction via a specialised gamete cell, resulting in all cells sharing identical genes and
thus all genes benefiting from the collaboration. This work can be seen as the first

evolutionary step towards this ultimate form of multicellularity.

8.6 Aggregation and the rest of the model

In this section it is demonstrated how the addition of aggregation affects all levels of the
model, and how this effect provide insights into the modelled phenomenon and enables
gaining a more complete understanding of it. For this purpose, a single aggregate has been
picked and was analysed in brief from the perspective of every level. This aggregate was
exposed to 500 different surfaces under several different conditions and its behaviour,
specifically of its constituent members and their underlying control networks/activated
modules, was noted down. The conditions were (i) full (uneaten) surfaces, randomly picked
from the test world (ii) very positive surfaces, randomly picked from the available potent
surfaces in the test world (resource value>30) (iii) very negative surfaces, randomly picked
from the available lethal surfaces in the test world (resource value<-30) (iv) Only hole
surfaces (v-xi) full surfaces, when health level is set to 0%, 10%, 30%, 50%, 70%, 90%,

100%. In addition, the individual members of its population were analysed.

Table 8.3. Analysis of the population the selected aggregate

Type Number of individuals Percentage of population

Critters 28 19.31%
Aggregates (size 2) 1 0.6%
Aggregates (size 3) 74 51.03%
Aggregates (size 4) 6 4.13%

| Aggregates (size 5) 27 18.62%
Aggregates (size 6) 10 6.89%
Aggregates (size 7) 1 0.6%
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Species (level 6):

Speciation is the process by which two new species are formed from a single species [23].
Two organisms are recognised as being of the same species if they could, at least in principle,
breed together in nature and this would produce a fertile offspring. That said, this definition is
not really used by biologists as a way of recognising a species because it requires too much
time and resources which are not available — and it is also problematic when asexual
reproduction is considered [23]. One of the ways in which species are classified is character
based, that is, an organism is a member of a species if it possesses a specific observable
characters or combination of characters regardless of the origin of these characters [18].
Using the above definition and picking ‘size of aggregate’ as a defining character, the
population of the selected aggregate was analysed (table 8.3); the goal was to see whether

speciation took place within this population as a result of the addition of aggregation.

This table does not state there are 7 different species within the population — obviously
individual aggregates do not qualify as species, but rather intended to demonstrate the natural
variation within this evolving population. That said, it is also possible that more species are
present in the population based on other parameters (such as number of modules of members,
specific shape of aggregate, or the presence of certain genes). Furthermore, other characters
for species’ classification that relate to aggregation are noticeable (e.g. ecological behaviour:
carnivores and herbivores, ability to aggregate: aggregates and critters). Consequently, it is
possible to argue that speciation took place within this population because of the

incorporation of aggregation.

Aggregates (level 5)

After analysing the behaviours of each member under the conditions described in the
analysis, it is possible to assign ‘roles’ for every member (see fig. 8.7). Member E is the brain
of the aggregate and also is its reproductive unit: it controls reproduction, movement and
turning, and controls behaviours for different health levels (see next item). Furthermore, by
determining when to move, it effectively controls the decision of consumption for the entire
aggregate (despite not eating anything itself). Member C is an eater/predator unit: it always
attempts to consume surfaces and prey on critters. Member B is an eater unit as well.
Members A, D and F are 'fat cells' — they only store energy and do not fulfil any other

function.

Control network and modules (levels 4 and 3)
An analysis of functional modules of all members discovered that only members E and C

utilise more than a single functional module. Naturally, these two members also exhibit the
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most sophisticated behaviours. Both control networks of members E and C break the stimuli
according to whether an empty (eaten) or a full (uneaten) surface is viewed: in exactly the

same manner as the evolved critters in chapter 7.

Module 0 (all stimuli except holes and edges)
Consumption
Predation

None ( Fat Cell )

MpdMle 1 (all $1;imuli)
Consumption
Predation

Consumption None ( Fat Cell )

Module 0 (full surfaces, except holes and edges)
Decision for consumption (through movement)
Reproduction

Behavioural strategies for all levels of health

Modgle 1 (al[ stimulL.Lncludin.q holes and edges)
Movement/turning

None ( Fat Cell )

Fig. 8.7: An analysis of the roles of every member of the selected aggregate, its control

network and subordinate modules

Table 8.4. The percentage of stimuli that causes member E’s control network to activate

module 0; broken down according to the stimuli type

Stimuli types Percentage of stimuli that cause activation of module 0
Positive 56.20%
Random 69.00%
Negative 88.60%

When evaluating how member E’s responsibilities are divided between its modules, it
appears that member E’s module 0 determines when to consume surfaces and how to behave
in various levels of health, whereas module 1 controls all aspects of movement and turning
(and how to avoid edges and holes). Furthermore, as table 8.4 demonstrates, it appears that
the control network of member E is much more likely to assign negative surfaces than
positive surfaces to module 0. Based on this behaviour, it seems that the aim is to minimise
consumption of negative surfaces by assigning them to the 'specialist' of consumption, which
is module 0 - thus, its activation is much higher when there are more negative surfaces than

when there are positive or random surfaces.
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Table 8.5. Member E unit 0’s behaviour under various health levels, specifically, the
number of times the reproduction and movement output units were activated in

response to the test stimuli

Health level Number of stimuli that caused | Number of stimuli that caused
the module to move the module to reproduce

0% 363 0

10% 354 0

30% 292 0

50% 107 0

70% 9 0

90% 0 23
100% 0 89

Both of member C’s modules appeared to display similar behaviours — there did not seem to
be any particular situation where the control network showed a preference to one module or

the other; thus, it is possible the process of specialisation is still incomplete in this case.

Interestingly, neither member C nor E has the full repertoire of behaviours possessed by the
evolved critters in chapter 7, presumably because each of these is only a member of an

aggregate, and accordingly possesses only a subset of its behaviours.

Another interesting observation is the fact that none of the modules appeared to be sensitive
to the aggregate’s health level except for member E’s module 0. According to this analysis, it
appears that the same behavioural strategy that is described in chapter 6 is also exhibited by
the selected aggregate and is controlled by member E, module 0. As table 8.5 indicates, when
the aggregate’s health is low, the module never initiates reproduction, but many types of
stimuli cause it to initiate movement. However, once the aggregate’s health increases, fewer
types of stimuli cause it to initiate movement, and at one point (when the health is 70%) it
stops the movement and begins to initiate reproduction. As the health further increases, so do
the occurrences of reproduction. Thus, this behavioural strategy appears to be advantageous

for aggregates as well as critters.

Receptors (level 2)

Since member E is the sole member which makes behavioural decisions for the aggregate,
only its visual system is analysed (fig. 8.8). The control network of member E has 2
receptors, both insensitive (wide) and peak at the long wavelengths. Module 0, which
controls consumption decisions, has 5 very sensitive receptors (appropriate for surface
classification), yet none of them peak in the long wavelengths (600nm+). However, this
region of the spectrum appears to be well covered by the visual system of the control

network. Thus, similarly to the analysed critters in section 7.7, the visual systems of the
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control network and module 0 appear to be working in sync; the control network evaluates
the dangerous elements of the stimuli: if the surface is estimated to be dangerous (rich in very
negative wavelengths), module 0 is activated - this is evident by the fact that the control
network is more likely to transfer stimuli to module O that are negative (see table 8.4).
Because module 0 specialises in short and medium wavelengths, it can apparently estimate
whether the surface possesses enough positive wavelengths to warrant consumption, thus, it
is able to provide a better estimate of whether the surface should be consumed or not. Note
that the behaviour here is comparable, yet different, to the behaviour exhibited by the critters
in section 7.7, where the control network activates the module in charge of consumption

when the surfaces are estimated to be positive rather than negative.

In addition, the fact that all the receptors module 1 possesses are very insensitive suggests
that it is indifferent to the colour of stimuli (similarly to the modules in section 7.7 that
control movement); however, since 3 receptors are certainly sufficient for colour vision, this

may not necessarily be the case.

Control Module

0.8
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0.2
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Wavelength
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Module 0 Module 1
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ub U® 1
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Fig. 8.8: The receptors of the control network and modules 0 and 1 of member E

Genes (level 1)
Unsurprisingly, enabling aggregation makes a large difference with regards to the genes. The
average genome size of critters is 4,794 bytes in the analysed population, whereas the average

genome size of aggregates in the analysed population is 17,944 bytes.
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Although this specific example combines aspects of multiple domains (multicellularity with
vision and behaviour), and is thus somewhat contrived, it serves to illustrate how both lower
and higher levels of the model interact in a way that is useful towards gaining a
comprehensive understanding of the studied phenomenon. In this specific example, the study
of the visual layer (level 2) of all modules is necessary towards understanding the behaviour
of the control network (level 4), and understanding its part in the critter and the overall
aggregate. Additionally, this example further demonstrates the notion that
differentiation/specialisation occurs across all levels. Therefore, to abstract away some of
these details would be ill advised, as the complex interactions that occur in the target must be

present in the model as well.

8.7 Part 1I: the evolution of form

The previous study investigated a primitive form of multicellularity that is formed through
aggregation and reproduces through budding. It can be argued that Mosaic World’s
aggregates parallel many characteristics of both dictyostelium and cyanobacteria (which were
mentioned in sections 8.1, 8.2.2, 8.2.5 and 8.2.7). In the following section, this work is
extended by allowing the aggregates to follow a similar evolutionary path that cyanobacteria
followed on primordial Earth, and giving them the ability to alter their shape and grow

protective shell structures.

Cyanobacteria, also known as blue-green algae, are photosynthetic bacteria that possess an
evblutionary history of about 3,500 million years [239]; indeed, microfossils of filamentous
cyanobacteria are considered the most ancient fossils [98, 200]. Cyanobacteria appear as
unicellular organisms, as filaments or in colonies. The colonies of cyanobacteria take the
form of microbial mats, dense communities of multilayered, entangled filamentous
cyanobacteria, which can be found in many different environments [239]. An essential
property for microbial mats is that cyanobacteria are able to move internally: this is
accomplished through gliding (“self-propulsion along a surface”); cyanobacteria continuously
position themselves within the microbial mat in order to find optimal conditions, i.e. move
towards or away from the light [239]. Some cyanobacterial float on water (e.g. in marshes);

consequently, these mats are mobile [186].

In some conditions, microbial mats build rock-like structures. Stromatolites, which are widely
researched, are formed through the accumulation of many layers, each created by the
precipitation of minerals by the bacteria, primarily calcite, and/or through the trapping and
binding of sediment grains [57, 239]. Additional structures are thrombolites which are created

in a similar manner, however, unlike stromatolites, which have an internal laminated
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structure, thrombolites have an internal clotted structure and are primarily formed through
calcification [102] and oncolites, which are like small mobile stromatolites: they grow around

a part of a detached microbial mat and are moved by tidal action [52, 179].

Many stromatolites are formed through calcification [239], but stromatolites can also be
formed through silica precipitation [174], silica and iron precipitation [175], dolomite or
celestite minerals [195]. The process of lithification (turning into rock) is extremely rare and
is not well understood [115, 239]; however, it is known to be mostly under biological control
by the cyanobacteria [239]. The bacteria may enhance, inhibit or passively witness the
lithification process [57]. The lithification process and the growth of stromatolites are
dependent on certain environmental parameters [10]. For example, in order for the mats to
precipitate iron, there need to be sufficient amounts of it in the environment [175].
Furthermore, the growth, shape and size of stromatolites depend on the interactions between
the microbial mat and the environment [57, 115]. Environmental aspects that affect
morphology are salinity, supply of nutrients, the turbulence of the environment, sediment
grain size, and saturation of calcium carbonate [57]. Although it is argued by some that the
environment is the only parameter that affects the crystal shape [62], others believe that
certain types of cyanobacteria grow specific morphologies (e.g. cup shaped forms) and that

these shapes are under direct biological control [57, 62].

Stromatolites have been mainly formed during Precambrian times; indeed, stromatolites that
dafe 3,500 million years have been found [239]. Although very rare, there are also few places
on modern Earth where stromatolites continue growing; some are very similar to fossil
stromatolites [239]. It is believed that the lack of grazing organisms is the reason
stromatolites were primarily formed in ancient times and not today, as the presence of grazing
organisms (e.g. nematodes, crabs and fish) can affect the diversity of the microbial mats
[115]. This is supported by the fact there was a sharp drop in their number in the beginning of
the Cambrian believed to be linked to the rise of the metazoan (a group of multicellular
organisms) which appeared at the same time [115], and also by the fact that contemporary
stromatolites normally grow in environments which grazers cannot or rarely reach [239]. It is
also believed that the greater alkalinity of the ancient marine environments is another reason
for their greater numbers at the time, as cyanobacterial mats are very often found in hot

springs or other areas with alkaline conditions [239].

The morphology of stromatolites may be potentially explained by several elements. It was
suggested that the morphology of the microbial mat (and thus, of the formed stromatolites) is

an attempt to optimise access to solar energy [57]. An additional explanation may be gaining
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protection from an environmental hazard: because in primordial times the ozone layer has not
been formed yet, the environment was exposed to high intensity UV radiation [175]. This is
very dangerous to bacteria in shallow water environments (such as cyanobacteria) as they are
particularly vulnerable to the harmful UV radiation (which does not reach deep water) [174].
Interestingly, it was demonstrated that cyanobacteria that reside in contemporary
stromatolites that were encrusted with silica are protected to a considerable degree from UV
radiation [174]. Furthermore, it was shown that cyanobacteria that mineralise iron and silica
have a high resistance to UV light in comparison to non-mineralised cyanobacteria; thus, by
precipitating iron and silica, ancient bacteria gained an effective UV shield [175]. Finally,
some cyanobacteria microbial mats that grow stromatolites are able to colonise areas which
are normally inhospitable (such as gypsum crystals). Such mats precipitate dolomite or
celestite minerals as a by product of the adaptation that enables them to survive in such

environments [195].

Thrombolites appeared much later in time than stromatolites, in the early Cambrian period. It
has been suggested that the appearance of heavily calcified cyanobacteria and thrombolites is
an evolutionary adaptation meant to protect cyanobacteria against grazing and burrowing

organisms which appeared at the same time [102].

This section describes the second study in this chapter, which was conducted in order to
examine the effect of environmental change on aggregates capable of altering their shape and
grdwing protective structures around themselves. By adding a new type of environment, one
which offers new benefits but also creates new dangers, the aggregates gain an incentive to
evolve adaptations that enable them to utilise the new environment while overcoming the
dangers. It is believed that enabling aggregates to control their shape will allow them to
evolve shapes advantageous for life in Mosaic World: this work will examine the nature of
these adaptations. In addition, this work continues the previous investigation into the
beginning of development: if the aggregates are able to evolve specific shapes and/or build
protective structures of specific shapes for a specific purpose (in this case, gain protection
from an environmental hazard while gaining benefits of this new environment), it can be said
that this work achieves a third primary process of development: morphogenesis, the process
which enables development to accurately control the form of an organism using cell
movement for a specific purpose, in addition to two primary processes which were evolved in
the previous work: differentiation and growth [117]. Finally, this work continues the
investigation of complex interactions of the first part, by examining the effect of
environmental change on the evolved shapes and strategies of shell growth of the aggregates.

For these purposes, several new features have been added to Mosaic World.
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8.8 Additions to the model

The following changes introduce a new type of environment to Mosaic World, one that
provides new benefits but also new dangers. In addition, new abilities are given to the
aggregates; these mirror the ability of colonies of cyanobacteria to grow protective structures

and determine their shape.

Two new interactions are added to the table in figure 8.2:

e critter—aggregate: a member with the evolved capacity now has the ability to move
within an aggregate. The result is that the aggregate’s shape is altered.

e critter—aggregate: a member with the evolved capacity now has the ability to grow
protective shells. The result is that the aggregate possesses new benefits but also new

COSts.

8.8.1 New environment
Until now, no assumptions were made regarding the nature of the surface matrix, other than

the fact it is modelled after a natural visual environment. Therefore, there is no reason not to
be able to expand the metaphor, and assume the critters and aggregates have always inhabited
a type of aquatic environment: deep water. In this section, a new environment type is added:
shallow water. Critters and aggregates may move between deep and shallow water as they
please, however, unless they have some form of protection from UV radiation, they are very
likely to perish quickly (this is analogous to the scenario described in [174]). Nonetheless, the
risk is accompanied with advantages: as a new and unutilised environment, shallow water
offers more potent nourishment than deep water. Consequently:
e In shallow water, positive surfaces provide 20% more energy than they would in deep
water.
¢ In shallow water, the metabolic costs paid every time step by critters and aggregates are
400% of the standard costs to reflect the damaging effect of UV, the new environmental

hazard, on metabolism.

From a visual perspective, both deep and shallow water are identical — this was done on
purpose in order to prevent a case where one environment is preferred based on the ability to
visually recognise resources within them; however, in order to tell apart between deep and

shallow water, a new type of receptor was added (shortly explained).

8.8.2 Shells: protective structures
The capacity to grow shells which serve as protective structures has been added; critters may

evolve this capacity, which increases the metabolic cost (by a rate identical to the other
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metabolic costs) to a critter/aggregate that evolves it. However, because of the shell weight,

only aggregates may grow shells.

In adding this feature, several goals were aimed for:

Shells may be used as a way of protection from predators, i.e. in a fashion similar to the
way molluscs protect their soft bodies with protective shells [85]. In addition, as stated, it
has been suggested that thrombolites were grown to act as a protective measure against
grazing organisms for colonies of bacteria [102].

Shells may be used as a way of protecting an organism from UV radiation, the new
environmental hazard. As stated, cyanobacteria that precipitate iron or silica and use
these to grow stromatolites gain considerable protection from UV radiation [174, 175].
Of course, aggregates may choose to remain in deep water, which are safe from UV
radiation (and this is true in nature as well, as meters of water block UV light).

The disadvantages of shells in Mosaic World mirror, to some extent, those in nature. For
example, a marine mollusc that grows shells sustains an energy cost [168].

Because certain floating microbial mats are mobile [186] and oncolites are mobile [52,
179], aggregates who build shells are capable of moving in Mosaic World. Although in
nature oncolites do not control their movement, enabling aggregates who build shells to
move is a necessary compromise: preventing some aggregates from controlling their

movement would be too destabilising to the Mosaic World ecology as it may prevent

“predators from evolving and may thus result in aggregates rarely evolving as well.

For the purpose of shell growth, two output units were added. The first unit determines

whether a critter wants to grow a shell, and the second determines the grown shell's width

(measured in shell segments, 1 to 3 surfaces across). Note that ‘shell segment’ refers to a

shell element in a specific location, and ‘shell’ refers to the entire structure the aggregate has

grown.

A member may grow up to 3 shell segments simultaneously: the first shell segment
occupies the space directly in front of it, the second occupies the space diagonally to its
left, and the third occupies the space diagonally to its right. A member may grow a shell
segment in a space only if another member of the aggregate does not occupy it.
Obviously, if a member turns, it can grow more shell segments in the next time step if the
space is open.

The aggregate pays an immediate energy cost for every shell segment it grows.

The shell of the aggregate increases its weight, thus, potentially decrease its speed. Every

member of the aggregate may carry up to 4 shell segments (not necessarily grown by it)
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without any effect on the aggregate. However, every additional shell segment decreases
the speed of the aggregate; the aggregate may continue moving at its previous speed but
must pay an energy cost proportional to its extra weight.

Shells enable aggregates to resist being preyed on by larger aggregates: the grown shell
segments count towards the aggregate size when gauging whether a predator is larger
than it is and the 75% required overlap. Similarly, the shell segments count towards the
predator's size when attempting to prey on other aggregates.

Shells offer aggregates protection from UV radiation in shallow water. In Mosaic World,
these dangers result in an increase of the metabolic costs paid by the aggregate. Adequate
protection decreases the metabolic costs to levels lower than in deep water. An
unprotected aggregate suffers the standard 400% metabolic costs, whereas a fully
protected aggregate pays only 30% of the standard metabolic costs. Intermediate degrees
of protection offer a proportionate decrease or increase in the metabolic costs (e.g., 50%
protection would result in 215% metabolic costs).

The offspring of an aggregate does not inherit the shell of its parent. However, it can
grow a similar shell structure.

A critter may not join an aggregate if a shell segment has been grown in that location.

8.8.3 New receptor types, and the shell indicator unit
Several types of receptors have been added:

Environment detection receptor: this receptor receives a positive signal if it detects
stimulus from a deep water surface, and no signal if it is a shallow water surface. This
signal represents the different pressures encountered by critters and aggregates in the
different environments (as the pressure of water is greater in deep water).

Organism viewer receptor: this receptor does not receive signals from the surfaces, but
instead views the transmittance of a critter if one is present in its receptive field. In
addition, this receptor receives a signal if another aggregate's shell is in its receptive field,
and a different signal if its own shell is in its receptive field. This offers aggregates a
simplified way of detecting the presence of other aggregates and shells, and was deemed
necessary because the ability to extract the visual element of critters/aggregates and shells

from the stimuli has proven to be too difficult to evolve in this context.

Additionally, there is a shell indicator unit for every critter and aggregate member that

receives a signal proportionate to the number of shells the member has grown.

8.8.4 Member migration
All members of an aggregate may migrate within it: this enables an aggregate to change its
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morphology. A member may move up, down, left or right as long as: (a) the space is
unoccupied (b) it is still connected to the aggregate in its new location and (c) this move does
not split the aggregate to two scparate parts. This feature parallels the required ability of

cyanobacteria to move within a microbial mat [239].

Member migration may cause shells to be left unattached: when a shell is attached to another

shell, it stays with the aggregate — otherwise, it is removed.

8.8.5 The methodology behind these additions

Biological relevance: the additions to the model described in this section grant aggregates
the ability to alter their shape in real time and grow protective shells. As the results show,
these additions are clearly biologically relevant as they enable investigating both the effect of
environmental change on the evolved shape and function, and also an important
developmental principle: morphogenesis, by examining what shapes the aggregates evolve

and how these shapes are controlled.
Level: the additions to the model described in this section do not affect this parameter.
Generality: the additions to the model do change the fact the model is general.

Abstraction: the added changes can be said to be abstract in nature.

e New environment/dangers: the addition of shallow water and UV radiation can definitely
be said to be abstract and not specific as no specific biological aspects are modelled,
except for the fact that advantages are bestowed (more potent nourishment in shallow
water) and costs are incurred (increased metabolic costs that reflect UV radiation).

e Shell growth: this addition enables aggregates to grow protective shells that are abstract
and do not specifically model any particular biological system. As such, they can be said
to emulates the ability of multicellular colonies (such as cyanobacterial mats) to grow
stromatolites as well as the ability of higher organisms to grow protective shells.

e Shape alteration: these changes enable the aggregate’s members to move to new
locations, thus, enabling the aggregate to alter its shape. These changes are more specific
than those described in the previous two items as they specifically grant every member
the ability to decide whether to move for its ‘own’ purposes, which is similar in concept
to cyanobacteria moving within a microbial mat (the bacteria move to find optimal

conditions [239]).

Accuracy: generally, the changes to the model that emulate specific biological elements can
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be said to be biologically accurate. However, the fact that most additions are abstract makes
this item less relevant. For example, the precise advantages and disadvantages associated
with shallow water are reminiscent of some environments in nature but since no particular
environment has been modelled, these changes are neither biologically correct nor incorrect.

e Shell alteration: these changes aim to model certain biological elements and can be said

to be accurate to a degree.

Match: as the result section shows, the evolved behaviours certainly resemble those
exhibited by microbial mats in nature in terms of shape alteration and shell growth.
Furthermore, it can be argued that the growth of stromatolites by colonies of cyanobacteria is
among the first examples of morphogenesis in nature; therefore, the behaviour of Mosaic

World’s aggregates is particularly reminiscent of its natural equivalent.

8.9 Experiments

The hypothesis which was investigated in the course of the experiments is:

e Significant environmental variation can affect the evolution of morphogenesis.

Three sets of experiments were run with the aim of:
>i) Examining the form of aggregates that are capable of altering their shapes: do any
. specific forms affect aggregates positively?
(i1) Examining the protective structures that aggregates grow: in what manner are these
| shells used? How are these shells grown?
(iii) Examining the evolved ecosystems: are there new recurring types of behaviours and

organisms?

All experiments require a random population of evolving individual critters to be placed in
the test environment and end after 250,000 time steps. In each experiment, certain conditions
are different (see table 8.6); these conditions examine the effect of enabling aggregates to
change their shapes with and without the ability to grow shells. Once finished, the population
is stored and analysed. Each experiment is repeated until at least 9 successful runs are

collected.

Table 8.6. The three types of experiments

Aggregates can change | Aggregate can grow

Experiment their shape? protective shells?
1 Yes Yes
3 No Yes

3 Yes No




8.10 Results 219

8.10 Results

In all three experiments aggregates and critters were evolved. In these runs, the evolved
aggregates often grew shells, and occasionally changed their shape in real time; however,
most often a static shape was used. A study of several sample aggregates from every run was

conducted, and the evolved shapes and grown shells were analysed.

It is important to stress that this study was exceptionally difficult to accomplish because three
stages in evolution were required: first, critters must successfully establish a thriving
population; second, a stable species of aggregates must emerge afterwards; and third, these

aggregates must utilise these new mechanisms (in order for them to be studied).

Morphologies

Although the ability of aggregates to change their morphologies in real time was not often
seen by observers, clearly it has been used through the course of evolution by aggregates as is
evident by the fact that aggregates with this ability tended to have long and diagonal shapes
whereas previously this was not a common trait; therefore, it appears that this ability was
used in order to increase the aggregate’s chances of survival. These recurring shapes appear
to be a useful morphology, as an aggregate can minimise its size (thus, the need for food)
while still covering as large an area as possible, both in terms of ability to consume surfaces
and the ability to catch prey. This is also an advantage for an aggregate that wishes to move
in different directions, as an aggregate cannot change its orientation (only individual
members can). Interestingly, there were no observed differences between aggregates that
primarily evolved to live in deep water and aggregates that exploited both deep and shallow
water. However, since the evolved shapes appeared to be sufficient for survival, it can only
be concluded that specific shapes (regardless of the grown shells) were not necessary for

survival in Mosaic World’s implementation of shallow water.

Figures 8.9 and 8.10 provide examples of aggregates which can alter their shape and
aggregates that cannot. Each of these aggregates was picked from a different run where a

majority of aggregates evolved the same or similar forms.

An analysis of the manner in which evolved shells were used by aggregates that evolved this
capability was performed together with a real time analysis of the aggregate’s behaviour
within its ecosystem, revealed that there appear to be two reasons for shells to be grown by

aggregates:
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D) Surviving in shallow water: aggregates grow shells in order to be able to avoid UV
radiation and exploit the new niche, shallow water. This is indicated by the fact that
in the vast majority of runs aggregates grow shells and successfully manage to
populate both deep and shallow water.

10 Predation: in many runs the aggregates evolved both the capacity to prey on other
organisms and the capacity to grow shells, although no critters are present in the run.
It is clear that the aggregates prey on each other, and clearly the shells are a

mechanism for avoiding predators as well as a mechanism for overcoming this

defence.

Fig. 8.9: Five examples of aggregates that could alter their morphology in real time.

Fig. 8.10: Three examples of aggregates that cannot alter their morphology in real time.

Shell growth

Shells are grown in three different ways.

Static growth: This method of growing shells occurs when one or more members evolve

the capacity to grow shells and grows them around their immediate area. This was the

most frequently used mechanism.
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e Dynamic growth: this method of growing shells occurs when one or more members
evolves the capacity to grow shells and the capacity to turn; this enables the members to
turn and coat a large part of the aggregate with shells. This mechanism was occasionally
used by one or more members.

* Dynamic growth with cell migration: this method of growing shells occurs when one or
more members evolves the ability to migrate within the aggregate (change its shape) in
addition to the capacity to grow shells and the capacity to turn: by combining movement
with turning and growing shells, this type of mechanism enables growing relatively
sophisticated shells. This mechanism was rarely used, probably because of the
coordination issues involved in using three different abilities for a single purpose, and
because these mechanisms may increase the difficulty of evolving the aggregate, for
example, if one member controls movement/turning and another member creates shells in
this manner, the second member can affect the aggregate’s movement by default, and will

have to evolve additional strategies to avoid this situation.

Fig. 8.11 demonstrates some of these mechanisms using two evolved aggregates. Within
aggregate 1, member A is able to both turn and grow shells and is thus responsible for a large
portion of the aggregate shell while members B, C and D grow shells in their immediate area.
Similarly, within aggregate 2, member G is able to grow shells while turning, while member |

is only capable of growing shells in its immediate area.

o |

= If

Fig. 8.11: A close-up of two sample aggregates with grown shells. Aggregate 1 consists of
members that are denoted by the letters A,B,C,D,E,F, and marked in bright green.
Aggregate 2 consists of members that are denoted by the letters G,H,I and are marked

in purple. The thin yellow squares around both aggregates are grown shells.

Ecosystems
The addition of the ability to grow shells (experiments 1 & 2) appears to have influenced the

types of ecosystems that can be evolved (table 8.7). These ecosystems are mostly variations
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of the ecosystems which appear in fig. 8.5, however, new types of ecosystems were evolved

as well, including:

e Aggregate carnivores (unarmoured): aggregates that can both consume surfaces and
prey on other aggregates; these aggregates evolved in runs where no critters were
evolved.

e Armoured aggregate carnivores: an armoured version of the previous aggregates.

e Armoured herbivores: an armoured version of herbivorous aggregates ecosystem.

¢ Armoured predators/prey: an armoured version of the predator/prey ecosystem.

e Armoured corals: predator/prey: an armoured version of the coral predator/prey

ecosystem.

In addition, in some of the runs the aggregates do not appear to grow shells. Interestingly,
occasionally armoured aggregates showed a preference for deep or shallow water: but mostly
they were capable in surviving in both types of environments. Finally, it appears that
aggregates are generally larger than in the previous set of experiments (but not always). This
can be explained by the greater need for size in order to be able to carry the weight of the
shells.

Table 8.7. Average size of aggregate per type of ecosystem

Type of Ecosystem Ave. Size of Aggregate
Armoured Herbivorous Aggregates 4.38
Coexistence: Armoured Herbivorous Aggregates and Critters 2.00
Armoured Aggregate Carnivores 5.32
Armoured Predator/Prey 5.86
Armoured Corals: Predator/Prey 2.43
Aggregate Carnivores (Unarmoured) 4.75

8.11 Discussion

It is interesting to note the similarities and differences between the construction of protective
structures by cyanobacteria and the growth of protective shells by Mosaic World’s
aggregates.

First, it appears that when a new environmental niche is created, one which provides new
rewards, an attempt to exploit it is made despite the fact that additional difficulties are
involved in this process, specifically, the need to obtain protection from an environmental
hazard (UV radiation). This is true for organisms that evolve both in Mosaic World and for
cyanobacteria in nature. Second, this attempt requires aggregates to control their shapes and
the shape of the grown shells — this resembles the behaviour which the model aimed to

capture. Third, although Mosaic World’s environment is very simple when compared to the
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natural environment, evolution discovered a way of utilising the ability to change an
aggregate’s shape to better exploit this environment; that being said, there were no
differences observed between the shapes of aggregates that were evolved primarily for deep
water and the shape of aggregates that were evolved for deep and shallow water. Fourth,
although aggregates frequently grew shells, more often they grew partial shells rather than
complete shells — this may be explained by the need to balance the trade-off between
management of shell construction and the rewards the shallow water environment provides.
Finally, even though only occasionally aggregates changed shapes in real time, and no
elaborate movements were evolved (mostly a single member moved member back and forth
in a way that was used to consume additional surfaces), this clearly mirrors the behaviour of

moving cyanobacteria in microbial mats: to optimise access to resources (light).

To conclude: in this study, it was shown how the environment’s interaction with the
aggregate affects both its shape and the shape of its grown shell. Clearly, the selection
pressures involved with the addition of a new type of resource are significant enough that
they provided an evolutionary incentive for aggregates to evolve the mechanisms required to
benefit from these. Even more interesting is the fact that the aggregates were able to evolve
mechanisms for precise control of their shape and the shape of their shell structure in order to
benefit from shallow water; for that reason, it can be said that the aggregates were able to
exhibit another primary process of development: morphogenesis, in addition to growth and
differentiation. Thus, the examined hypothesis can be said to be true: significant

environmental variation can indeed affect the evolution of morphogenesis.

8.12 Complex interactions analysis
The work described in the first part of this chapter primarily deals with the interactions that

take place between aggregates and critters and the interaction between critters within an
aggregate. In order to examine these interactions, five experiments that exposed a critter

population to several types of evolutionary and environmental conditions were conducted.

The results of these experiments showed that the potential interaction between predator
aggregates and critters is sufficient to cause critters to interact and form aggregates in order to
avoid the threat of predation. Additionally, the interactions between critters within a formed
aggregate, which occurs through differentiation, appears to be crucial towards the aggregate
becoming an attractive alternative to critters: this is the true because differentiation makes the
aggregate more efficient and also because reducing capabilities makes coordination of several
behaviours an easier task. Therefore, both these types of interactions, critter—critter and

critter—aggregate, are crucial towards accomplishing the challenge set in the beginning of
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this chapter. These interactions take place between two different levels of the model,

however, their effects reach all other levels as well.

The interaction(s) that takes place are in parenthesis at the end of each sentence.

1) Every critter attempts to survive — this requires several different behaviours:

2)

(a) Perception: the environment is perceived by the critter’s control network's receptors

(b)

()

(d

(e
¢y

(2
(h)

(@)

(environment—receptor). It is important that the receptors relay relevant information
to the control network so it could activate the appropriate module.

Communication: the receptors relay this information to the control network through
neurons (receptor—neuron, neuron—control network).

Activation: the control network determines using the received stimuli which module
to activate (control network—module).

Perception: the environment is perceived by the activated module's receptors
(environment—receptor). It is essential that these receptors relay information that is
relevant towards the task the module is in charge of. In the context of the chapter's
experiments, it is crucial that the receptors relay information regarding the presence
of predators in order for the critters to be able to avoid them (run away). In addition,
the receptors should inform whenever other critters that can aggregate are nearby.
Control: the activated module controls the critter’s behaviour (module—-critter).

Consumption: the critter may consume surfaces (critter—environment); in this

case, energy is transferred from the environment to the critter

(environment—critter).

Movement: the critter may choose to move (environment—scritter).

Reproduction: the critter may choose to reproduce (critter—critter). Under the
'accidental aggregation' scenario, this action may result in the formation of a size 2
aggregate. The vast majority of these aggregates do not survive, as no coordinated
behaviour of both critters has been evolved yet (frequently such aggregates fall from
the edges or into a hole).

Aggregation: under the 'aggregation by choice' scenario, a critter may choose to
aggregate with another critter or aggregate. Although this may occasionally happen,
the choice to aggregate by no means guarantees the survival of the new (or

extended) aggregate (critter—critter, critter—aggregate).

Selection (to better break down the task): many critters die during stages 1-f to 1-i,

either by consuming negative surfaces, or by falling from the edges/into a hole, or by

running out of energy, or by reproducing when not possessing enough energy. Critters

whose control networks have learned to break the task ideally are far more likely to

survive than critters whose control networks break the task incorrectly or do not break
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3)

4)

5)

6)

7

8)

the task at all. Thus, the advantages such control networks grant directly affect the

selection of the genes that define them (control network— genes)

Selection (to evolve appropriate behaviours and structures): the critters that survive

are likely to have appropriate structures for their modules and also exhibit appropriate

behaviours in various situations; thus, the advantages gained as a result cause the
selection of the genes that define these modules (module—genes).

Selection (to better compete): the critters that survive compete on resources; critters

that are fitter are more likely to out-compete others, thus, all features which increase

fitness affect the selection of the genes that define them (critter—genes).

Selection (to aggregate): as was shown, even when predators are only occasionally

present, there is a strong selection pressure on critters to aggregate as a way of

overcoming the threat of predation (aggregate—critter, critter—genes). Once
aggregated, the fact that these newly formed aggregates are difficult to prey on, can now
obtain a new energy source (prey), and can differentiate (and optimise their metabolic
rates) causes the selection of genes that prevent the aggregates from splitting

(aggregate—genes).

Reproduction: continuing (1-i), the critters that survive past steps (2)-(5) and are now

able to reproduce are fitter than those that died (genes—genes). Their offspring’s

phenotype is likely to be fit as well, as affected by the selection pressure in (2)-(4).

In the course of evolution a stable population of critter often emerges. It is very

important to emphasise that it is only at this moment in time that stable species of

aggregates can emerge. Although occasionally aggregates are formed before this
moment, they never manage to survive and continuously reproduce; to achieve this goal,

a stable base of fit critters must be present. However, if enough selection pressure is

present (as indicated in (5)) or if 'accidental aggregation’ is enabled, eventually a stable

species of aggregates emerges.

Aggregate behaviour: the average aggregate attempts to survive and exhibits the

following behaviours through its members. During every time step, all members of the

aggregate generate behaviours depending on their capacities:

(a) Standard behaviours: Like an ordinary critter, the member's control network
perceives the environment (environment—receptor) and relays this information to
the control network (receptor—neuron, neuron—control network). The control
network determines which module to activate (control network—module). The
activated module perceives the environment (environment—receptor), and controls
the member's behaviour (module—-critter).

(b) Consumption: a member who has the capacity to consume surfaces can attempt to

do so; if the aggregate does not move at the moment, it succeeds
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9)

(aggregate—environment). In this case, positive or negative energy is transferred to
the aggregate's energy pool (environment—aggregate).

(c) Movement: a member who has the capacity to move or tun can do so
(environment—aggregate); since this behaviour affects the rest of the aggregate,
coordination of behaviours must evolve. Otherwise, for example, two members may
push in different directions and the aggregate will not move — certainly the aggregate
is unlikely to survive.

(d) Reproduction: a member who has the capacity to reproduce may attempt to do so.
Since this ability is 'democratic’, the aggregate only reproduces if the majority of
members with this capacity wish to do so simultaneously (aggregate—aggregate).

(e) Predation: a member who has the capacity to prey may instruct the aggregate to
attempt catching prey which could be critters and other aggregates. Since this ability
is 'democratic', the aggregate only performs this action only if the majority of
members with this capacity activate it (aggregate—aggregate, aggregate—critter).

(f) Splitting: a member may attempt to initiate splitting. Although this ability is
'democratic', only members who evolve the ability to participate in this decision
affect the outcome. If the majority of members wish to split, the aggregate dissolves
and every member becomes a standard critter (aggregate—critter). Note that most of
these critters will not survive if the aggregate is differentiated.

Selection ('standard’ pressures): many aggregates die during stages 8-b to 8-¢. Those

that survive face the same selection pressures critters face in steps (2) to (5): selection

for every member's control network to better break down the task, selection for every
member to evolve appropriate structures and behaviours, selection to better compete —
both with critters (aggregate—critter) and with other aggregates (aggregate—aggregate)

— (module—genes, control network— genes, critter—genes). In addition, aggregates face

several additional selection pressures.

10) Selection (to grow): because aggregates are also susceptible to predation, there is a

constant pressure on them to become larger in order to escape the threat of larger
predators. In addition, there is pressure on predator aggregates to become larger in order
to become more effective predators (aggregate—genes). This is evident in results of the

experiments: aggregates that are predators are larger than aggregates that are herbivores.

11) Selection (to split or shrink): since it is much easier to find enough resources to survive

as a critter or a smaller aggregate, there is constant selection pressure on aggregates to
split or become smaller. This is evident in those runs that had 'aggregation by choice'
enabled and no predators: in these runs, no aggregates were evolved at all

(critter—genes, aggregate—genes).

12) Selection (to differentiate): an aggregate that is differentiated is more likely to survive,
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both because it is more efficient, and also because it is far more likely to be able to
coordinate the various actions of its constituent members (aggregate—aggregate). This is
evident in all runs, but in particular in those runs where explicit differentiation was
disabled; in this case, aggregates implicitly differentiated, by only utilised some of their
abilities despite enormous metabolic costs. Thus, because differentiation increases an
aggregate’s likelihood of survival, the advantages it confers directly affect the selection
of genes that encode this trait (aggregate—genes).

13) Steps (1)-(12) are repeated until the run ends. Depending on the evolutionary conditions,
some runs only result in species of critters, other result in both critters and aggregates
(predator/prey, coexistence), and yet others result in the extinction of critters and only
aggregates remaining. The critters and aggregates that survive tend to be very fit, in

terms of structure and behaviours, as well as in terms of internal differentiation.

8.12.1 Complex interactions analysis: part 2
The second part of the chapter continues investigating the challenge set for this chapter by

adding a new type of environment to Mosaic World, shallow water, and by enabling the
aggregates to alter their shapes and grow shells. These additions affect the interactions that
take place in Mosaic World within aggregates and between critters and aggregates. Although
these effects are (mostly) beneficial for aggregates, they are not crucial towards exploring the
challenge; however, they do provide an opportunity to examine very interesting effects on the

interactions in the system.

As the results show, aggregates increase their adaptation to the environment by evolving
shapes that grant advantages, both in order to better utilise deep water and also to exploit the
new environment, shallow water; by doing so, the aggregates exhibit morphogenesis. This is
evident in the long and diagonal shapes that were frequently evolved by aggregates, and also
in the shells that were grown to protect the aggregates from the environmental hazards (UV

radiation) that are present in shallow water.

Because the work in part 2 extends the work in part 1, the vast majority of complex
interactions are identical. Therefore, only the new interactions that take place within Mosaic
World are described in this section.

1) Expanded aggregate behaviour: aggregates that can alter their shape and grow shells
have all the behaviours described in (8) and are also subject to the same selection
pressures described in (9) to (12); they do have additional behaviours and selection
pressures:

(a) Member migration: a member who has the capacity to migrate within the aggregate
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2)

3)

4)

can attempt to do so. This works as long as the movement does not split the
aggregate in two or causes a member to migrate to a location where a shell is present
(critter—aggregate). This ability enables the aggregate to change its overall shape
through its members, and has the potential of increasing the aggregate's ability to
survive.

(b) Shell growth: a member who has the capacity to grow shells may do so
(critter—aggregate). These shells provide benefits (protection from UV radiation)
but also costs (additional weight, cost of growth) to the aggregate. As the results
indicate, gaining protection from UV through shell growth is necessary in order to
safely utilise shallow water. In addition, shells make aggregates better predators but
also more efficient at avoiding predators as the shell count towards the aggregate’s
size for predation purposes. However, an aggregate that carries too many shells may
face additional — at times significant — energetic costs for movement.

Selection (to grow shells or not): aggregates face additional pressures in addition to the

selection pressures described in the previous section. On one hand, growing shells

certainly provides advantages as it enables the aggregate to safely exploit the new
environment and also become a better predator and less of a prey; these issues certainly
affect the aggregate, selecting traits that cause it to grow more shells. However, shells
are not crucial: as many runs have shown, aggregates can certainly survive without the
extra costs and weight of shells, and in fact, can also utilise shallow water, albeit, only to
a limited degree. Thus, there is also pressure on aggregates for selecting traits that cause
aggregates not to grow shells. Consequently, whether the aggregates grow shells, and
how many, depends on the balance between the advantages and disadvantages of the
shells in comparison to the benefits of shallow water (aggregate—genes). Moreover, the
fact that aggregates compete against other aggregates (through predation and
competition on resources), affects selection of genes that cause growth of shells as well

(aggregate—genes). This is also affected by other parameters, e.g. if many aggregates

choose to exploit shallow water then there would be pressure towards not growing shells

and staying in the (now relatively empty) deep water, and vice versa.

Selection (to evolve an appropriate shape): since now aggregates are much more

capable of finding an advantageous shape at a very low cost (only the cost of the

immediate move), there are considerable pressures towards the selection of genes that
encode shapes that are useful in Mosaic World (aggregate—genes).

Selection (to differentiate): in addition to item (12) in the previous section, as there are

more capabilities for the aggregates to ‘divide’ between members, the benefits of

differentiation become greater, thus, the pressure towards genes that encode

differentiation is greater than before as a result of competition (aggregate—genes).
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5) Selection (to grow, to split or shrink): in addition to items (10) and (11) in the previous
section. The fact that aggregates are in a sense ‘better’ than before, since only aggregates
can grow shells and safely exploit shallow water, affects the selection of genes that cause
critters to aggregate, grow, split or shrink. In addition, the fact that aggregates can now
‘optimise’ their shapes confers additional advantages to aggregates in comparison to
critters. Also, as shells affect both predators and prey, this affects the selection pressure
leading for aggregation as well — although it is difficult to estimate in what direction.
Finally, as the previous item described, differentiation is now more advantageous; this is
another benefit only aggregates can utilise. It is difficult to estimate the precise effect of
these changes on selection pressures (as they were not explicitly measured), however, it
is logical to assume that these additions increase the likelihood of aggregation, simply
because aggregates gain more benefits than critters as a result (aggregate—genes).

6) Steps (1)-(12) from the previous section and (1)-(4) in this section are repeated until the
run ends. As the results section described, the evolved ecologies are more varied,
showing multiple types of behaviours and ecologies. In addition, the aggregates have
evolved appropriate morphologies and utilise the ability to grow shells to their advantage

when exploiting the new environment, shallow water.

8.13 Conclusions

The goal of the work described in this chapter was to investigate several interesting
interactions that take place between critters and aggregates and between members of an
aggregate. This investigation also provided evidence that supports several biological theories
regarding vthe emergence of multicellularity, namely that both the presence of predation and
accidental aggregation are sufficient to initiate the transition to multicellularity, and also that
differentiation is indeed a major benefit for aggregates and will occur even if an aggregate
pays a large metabolic cost for it. In addition, the evolved results shared many parallels with
natural systems, from the emergence of a division of labour within an aggregate, to the life-

like dynamics of the evolved ecosystems.

The second part of the chapter continued investigating these interactions, by examining the
effect of environmental change on the behaviour of aggregates that are capable of altering
their shape and growing protective structures around themselves. The results showed that
despite the additional costs associated with the required changes, evolution utilises these new
additions in order to exploit the new environment, by evolving mechanisms that enable
aggregates to precisely control their shape and the shape of their grown shells; it is interesting
to note that by doing so, the aggregates exhibited an additional primary process of

development: morphogenesis.
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Chapter 9

Conclusions

9.1 Investigating complex interactions: an overview

As all model builders know, it is impossible to simulate every aspect of complicated real
world phenomena. This is normally not an insurmountable challenge when simulating simple
systems (non-complex systems) as it is generally possible to identify the important
components in the target and only incorporate these into the model. However, because a
complex system’s behaviour is generated by highly nonlinear interactions between many
different components, building a model that successfully captures the emergent behaviours of

the target phenomena can be challenging.

Consequently, there is a recurring flaw in most models of complex systems. Whereas natural
complex systems are frequently hierarchical — they are composed of hierarchies of nested
complex systems — in most models only a limited range of levels of the phenomena, mostly
one, is incorporated into the model. This means that an aspect of the model that is modelled
as a simple component is often in reality a complex system in its own right, capable of
expressing emergent and unpredictable behaviours. This oversimplification introduces an
element of inaccuracy into the model because the emergent behaviour of an elementary
component is modelled too simply. In addition, this prevents the examination of the
relationship between components that are placed in different levels of the modelled
phenomena, since these levels do not exist in the model. Most importantly, this prevents the

systematic exploration of multilevel interactions in a hierarchical complex system model.

The aim of this thesis was to create a hierarchical complex system model in order to
systematically investigate complex interactions. The concept of complex interactions includes
both multileveled interactions and interactions that take place between components of the
same level. The construction of such an analysis was intended to provide new insights into
complex systems in general. At the same time, this thesis aimed to demonstrate the
importance of incorporating hierarchical complexity into model design, by demonstrating that
a more comprehensive understanding of the target phenomena can be gained as a result. For
this purpose, the Mosaic World model was created and systematically investigated in the

course of the thesis.
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9.2 Summary of work

Chapter 1 provided an introduction to the problem that is addressed in this thesis, the fact that
most models disregard the hierarchical nature of complex systems. Additionally, it described
the underlying hypothesis behind this work, that creating a model that focuses on
interactions, specifically complex interactions, may provide novel insights, and stated the
aims and objectives of this thesis and the contributions that are expected to be created in

solving this problem.

Chapter 2 provided the full background necessary to understand the context of the work this
thesis addressed. This required providing a detailed description of complex systems with a
focus on systems that exhibit hierarchical complexity. In addition, the concept of emergence,
which is integral to many aspects of the thesis, was explained, and a definition of complex
interactions was created and provided together with a critical review of related research that
explores complex interactions. Because the work described in this thesis belongs to the

artificial life field as well, a relevant review of this field was given.

The second part of the chapter supplied the essential background in order to create a model of
a hierarchical complex system. For this purpose, two types of models were described, and a
useful methodology [233] for the creation of models of biological phenomena was given. The
creation of Mosaic World required creating a framework of evolving agents: hence, the field
of -evolutionary computation was introduced, and the usage of genetic algorithms was
thoroughly explained. Because every agent is controlled by one or more neural networks,
their opefation was also described. Finally, some methods and considerations regarding the

usage of genetic algorithms to evolve neural networks were provided.

Chapter 3 presented a detailed technical description of the initial version of Mosaic World
which was used for this work (and was continuously expanded in the course of this thesis).
This required elaborating on the concept and goals underlying the model, describing several
basic terms which were frequently used, and providing a thorough overview of the model in
terms of the complex interactions that take place within. In addition, the environment: the
surface matrix and the illumination matrix were outlined, and a full description of the
algorithm used to create each was provided. A complete description of the inhabitants of
Mosaic World, the critters, was also given, including their behaviour (reproduction,

movement, sensing), their genomes, their brains and the evolutionary process they undergo.

Chapter 4 described the first challenge presented to Mosaic World: evolvability. This
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challenge began the complex interactions investigation at the lowest level of the model, and
so, focused on genes—genes interactions. The goal was to discover the nature of
genes—genes interactions that improve the effective evolution of critters that adapt to an
environment which becomes increasingly more difficult through time. This was
accomplished through experiments that investigated the effect on evolvability as a
consequence of the process used to evolve the neural networks used for critter control. It was
discovered that when the process of evolution, as expressed in five different types of
structural mutations, produces gradual changes to the neural networks and enables evolution
to adapt elements of itself, the evolvability of the critters was promoted. Conversely, when
the process enables duplication of existing network structures, the evolvability of the critters

was inhibited.

Chapter 5 continued the complex interactions investigation at the next level of the model,
thus, the focus was on receptor—environment interactions and the challenge was colour
vision. The goal of the chapter was to discover the effect of environments of various visual
characteristics on the visual system of critters that evolved in them. It was discovered that the
necessity of adapting to the environment exerts pressure on the visual systems of the critter to
provide the relevant information to the network; when it is useful to filter information and
only use a part of the available stimuli, the visual system adopts this strategy, however, the
visual system adopts a different strategy when survival requires extracting a greater amount

of information.

Chapter 6 explored the next level of the model by focusing on network—environment
interactions; therefore, the investigated challenge was behaviour. The aim in this chapter was
to discover the effect of environments of various levels of difficulty on the behaviour of
critters that evolved in these environments. Whereas the previous chapter demonstrated that
by evolving specific structures (specifically, the structures of visual systems) the critter is
able to adapt to its environment, this chapter continued this investigation by demonstrating
another mechanism of adapting to the environment: behavioural changes. Thus, it was
demonstrated that when the environment varies, the appropriate behaviour frequently changes
as well, and so, a critter that wishes to survive must adapt its behaviour accordingly. This
adaptation occurs through the interaction of the environment and the critter: the environment

acts as a selective force that determines the behaviour an adapting critter will exhibit.

More importantly, by demonstrating that the evolved behavioural strategies strongly resemble
those exhibited by natural organisms under equivalent conditions, this chapter has shown that

there are universal behaviours that are appropriate for certain kinds of environments
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regardless of whether they are virtual or physical; these behaviours are used by the inhabiting

organisms, which can be animals, insects or critters.

In chapter 7, the model's hierarchical nature was augmented by replacing the standard
network used to control the critter’s behaviour with a new control mechanism: the modular
neural network. The interactions that occur within this new level, specifically, the control
network—module interactions, were the focus of this level's investigation and the challenge
was modular specialisation. The experiments that were set in the chapter examined the nature
of the control network—module interactions that occur in order to improve the fitness of
critters that adapt to an environment which changes in time. It was demonstrated that this
improvement occurs through modular specialisation: the control network learned to break the
task it faced in a meaningful way and assign each of these subtasks to its subordinate
modules, and each of the subordinate modules specialised in its assigned task. This modular

specialisation is what enabled the modular networks to increase the fitness of the critters.

In chapter 8, the model's hierarchical nature was expanded again, by enabling individual
critters to aggregate and become multicellular organisms. The interactions that are associated
with the new level, specifically, the interactions that occur between critters and aggregates,
critter—aggregate, and the interactions that occur within aggregates, critter—critter, were the
focus of this chapter's investigation. Consequently, the challenge in this chapter is
aggregation. Experiments were carried out in order to examine the conditions that lead to
aggregation, and the results showed that aggregation occurs when the environment provides
an advantage for being big (as in the case of predators) or when aggregation enables greater
efficiency (which is caused by internal differentiation). This demonstrated again two
principles that appeared in the previous chapters: that the selection pressures exerted by the
environment determine the nature of the adaptation that is required, and that this adaptation

(improvement in fitness) is enabled by internal interactions, in this case, differentiation.

The second part of the chapter reinforced these conclusions by showing that when a new type
of environment is introduced which provides new rewards but incurs new costs, aggregates
demonstrate precise control of their morphology, by evolving specific shapes and by growing
specific forms of protective shells in order to benefit from this environment in relative safety;
it is important to stress that by doing so, the aggregates exhibited morphogenesis. Thus, the
differentiation process is further extended by enabling each member to carry a greater number

of possible tasks.



9.3 Evaluation and criticism of the model 234

9.3 Evaluation and criticism of the model

To ensure that the design decisions of all aspects of Mosaic World are justified, Webb’s
comprehensive framework [233] for the design of models of biological phenomena was used
throughout this thesis. This framework used 6 different dimensions to examine the model and

its extensions: biological relevance, level, generality, abstraction, accuracy and match.

The modelled biological systems

In section 3.2 it was discussed why several different biological systems were chosen to be
modelled in various degrees of accuracy instead of a single large biological system which
could have been modelled very accurately. The reason given was that to model precisely a
single biological system would be too limiting in terms of the range of interactions and
hypotheses that could be explored. In this section it is argued that this appears to have been a

correct design decision.

On one hand, there was a loss of accuracy in the model which prevented very detailed
biological hypotheses from being explored. However, many more biological hypotheses
which did not require extremely precise models were investigated, and overall, this enabled
investigating a far greater range of hypotheses which were still biologically relevant and
useful: this was demonstrated to be the case in chapters 4 to 8 in the respective methodology
sections. More importantly, exploring few very detailed biological hypotheses was not the
goal of this work; the goal was the detailed analysis of interactions in a hierarchical complex
system, in addition to a demonstration that implementation of hierarchical complexity is

necessary: as section 9.4 shortly demonstrates, these objectives were satisfied.

Number of levels of the model

One criticism of this work could be that a smaller number of levels in the model would have
been sufficient to obtain the insights that were obtained. However, this is untrue; the number
of levels in the final version of the model (6) is the minimum number required to discover a//
four observations that are reported (see next section). A choice of 4 levels (equivalent to a
‘standard’ model) could have discovered the first three observations (first: adaptation takes
place, second: 'rate’ of adaptation is determined by evolvability, third: adaptation occurs
through differentiation/specialisation). A choice of 5 levels would have raised the possibility
of the fourth observation (differentiation occurs across all levels), but examination of two
levels (e.g. control network and modules) would not have been sufficient to prove that this
occurs across all levels. However, a choice of 6 levels demonstrates that this consistently

occurs across multiple levels. Even though it is possible to play devil’s advocate and say that
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a choice of 7 levels would demonstrate that only 6 levels are affected by this principle, this is

unlikely to be the case.

In addition, it is possible that further insights would have been found if more levels were
incorporated to the model. Although this may very well be true, for practical reasons related

to the length of a PhD, this number of levels in the model was used.

Underlying context of the model: the visual environment

It is possible to argue that the choice of the underlying context for the model, a visual
environment, was perhaps not the ideal choice. Although it is impossible to state with
confidence that no other choice of environment would have been better, this choice of
environment can be justified in three ways. First, using this environment enabled creating
conceptually simple environments that are very challenging. Furthermore, by altering few
parameters of the environment, it was possible to create many types of environments of
various levels of difficulty. This capability was extremely useful. Second, this type of
environment also enabled performing experiments with environments that are inherently
different from each other: for examplie, the highly complex ambiguous environments and the
simple environments that are used in chapter 5. Finally, the usage of this environment
enabled examining interesting biological hypotheses that relate to the evolution of visual

systems, which is a worthy goal in its own right.

In hindsight, the main disadvantage of this environment was the fact that it is computationally
demanding. Simulating thousands of detailed reflectance functions for both the surface and
the illumination matrices sources took its toll on the system, and certainly reduced the scope

of possible experiments that could have realistically been conducted.

Usage of an artificial life model
A common criticism of artificial life is that the construction of models can occasionally force
the desired result, even if unintentionally. Thus, the results of all artificial life models have to

be taken with scepticism.

Although this is a valid concern, and as every model designer knows, the choice of
parameters and design certainly affects the model’s behaviour, this is also the strength of the
approach. When designing a model, while it is possible to enforce high-level behaviours on
low level components, doing so would cause all conclusions that can be drawn from the
model to become meaningless because the high level behaviours could not be explained by

the behaviour of the components of the model. Conversely, because many artificial life
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models, Mosaic World included, examine the conditions that cause low level components to
exhibit high level behaviours, when the hypothesised conditions cause these low level
components to express the hypothesised high level behaviours, it is reasonable to assume that
the model and its underlying assumptions are true. This is discussed at greater length in

section 2.3.2.

It is important to state that this also makes certain artificial life models difficult to use. For
example, it has proven to be remarkably difficult to find the conditions that cause aggregates
to grow shells, since these also affect the conditions that cause critters to aggregate: altering
some conditions often caused critters to never aggregate, thus, examining their shell growth
was not possible. It is the view in this thesis that this difficulty demonstrates that once these

conditions are found, they are meaningful.

Analysis of complex interactions

An additional criticism of this work could be that a mathematical analysis of complex
interactions (e.g. measuring the precise flow of information between components of the
model) might provide similar, yet more accurate, insights to those found by the process-level
analysis used in this thesis. In response, it is argued that while this criticism is valid, and this
type of analysis would in principle offer a more precise way of understanding the interaction
dynamics within the system, in practice the challenges in performing such an analysis cause it

to be beyond the scope of this thesis for several reasons.

First, even though the measurement of the precise flow of information in a system is possible,
and this could potentially be used in order to achieve a more accurate quantification of the
system's internal dynamics, in practice this may simply be too complicated to perform for an
continuously evolving population of hierarchical agents within a complex system (such as

Mosaic World).

Second, even though tracking the flow of information of some interactions in the system is
likely to be feasible using this type of technique (e.g. measuring the flow of information from
the environment to a receptor), tracking many other types of interactions is not a
straightforward task at all; for example, how does one measure the selection pressure an
environment exerts on a critter? or the selection pressures within a competing population that
is exerted on its members? Furthermore, the fact that these interactions and many others are
supposed to be tracked simultaneously lends an additional complication which must be

overcome.
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Finally, while it is conceivable that some of these challenges may be overcome, doing so
would be too time consuming and prevent performing the investigations that are the primary
focus of this thesis, which are establishing the interactions that exist in the model and their
system-wide effects rather than the precise quantification of these interactions. That being
said, this type of investigation is inarguably promising and so, could be performed as future

work.

Choice of challenges

In this thesis, 5 different challenges were presented to Mosaic World: evolvability, colour
vision, behaviour, modular specialisation and aggregation. It can be argued that this choice of
challenges is rather arbitrary. In response it can be said that these specific challenges were
selected for two reasons: primarily because they enable examining every level of the model,
and also because they present interesting challenges that parallel those encountered by real
world organisms, e.g. real organisms must be evolvable, perceive their environment, find
appropriate behaviours for survival. It is important to state that coming up with other
challenges is probably possible, but their choice is not likely to be better justified than those

that were used in this thesis.

9.4 Objectives revisited

The aim of this work was to demonstrate that evolving a population of hierarchical visually
guided neural network agents for the purpose of investigating complex interactions is useful,
in the sense that it enables the demonstration and investigation of behaviours that normally do
not appear in simpler, non hierarchical or less hierarchical, models, and thus enable finding
new insights into complex systems in general. This section reviews the objectives described

in chapter 1 deemed necessary to test this hypothesis:

1. Explore biological systems and universal principles in nature that are suitable for
investigation using a hierarchical complex system model.

In the course of this thesis, several biological systems and universal principles were

investigated using Mosaic World:

e In chapter 3, a generic simple ecosystem was picked as the primary model of Mosaic
World, and an abstract visual environment was chosen to be the underlying context. In
addition, the biological cone photoreceptor was selected as inspiration for the critter
visual system.

e In chapter 4, the concept of evolvability was investigated using different types of
structural mutations.

e In chapter 5, the concept of ambiguity was incorporated into the visual model. In
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addition, the effect of various environments on visual evolution was investigated.

e In chapter 6, the behaviour of the Mosaic World ecosystem was likened to biological
ecosystems, thus, the behaviour of the critters was compared to the behaviour of certain
animals (e.g. Chacma baboons, Rana catesbeiana tadpoles) and insects (e.g. wolf spiders
and drosophila flies).

e In chapter 7, the concept of modularity was incorporated to the brain model and enabled
investigating the effect of modular brains and their operation. In addition, the effect of
gene duplication, as expressed through the ‘duplicate module’ mutation was investigated.

e In chapter 8, the behaviour of the Mosaic World ecosystem was compared to the cellular
environment; by enabling the ability of critters to aggregate, and as enabling the
evolution action capacities, it was possible to investigate several hypotheses regarding the
evolution of multicellularity. In this study, the behaviour of aggregates was compared to
the behaviour of primitive multicellular organisms that are formed through the
aggregation of individual cells, such as dictyostelium and cyanobacteria. In the second
part of the chapter, a feature enabling aggregates to grow shells and alter their shape was
added, and so it was possible to examine the effect of environmental variation on the
evolution of morphogenesis. By adding these features, the similarity of aggregates to
cyanobacteria was further extended since colonies of cyanobacteria in microbial mats are

able to build rock-like structures such as stromatolites.

2. Develop a computational multi-agent, hierarchical complex system model, Mosaic
World.
The initial version of the Mosaic World model was described in chapter 3. In chapters 4, 5, 7

and 8 additional features were incorporated into the model.

The initial version of Mosaic World that was described in chapter 3 comprises four distinct
levels: ‘genes’ (level 1), ‘neurons’ and ‘receptors’ (level 2), ‘networks’ and ‘critters’ (level
3), ‘population’ and ‘species’ (level 4). In chapter 7 an additional level was added by
replacing ‘networks’ with ‘control networks’ and adding ‘modules’. In chapter 8 an addition
level was added by inserting ‘aggregates’ between ‘critters’ and ‘population’. These additions
were necessary in order to explore increasingly hierarchical systems and a greater range of

complex interactions.

3. Identify key interactions in the model, and create accordingly a set of challenges
that will focus on each one. Each challenge will consist of a small perturbation to the
system or its context; the resulting effect on the interactions will be systematically

investigated.
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A thorough analysis of the Mosaic World model and its behaviour showed that the following

interactions are integral to many emergent behaviours exhibited by the model:

e Genes—genes (investigated in chapter 4: the evolvability challenge:),
receptor—environment (investigated in chapter 5: the colour vision challenge),
critter—environment (investigated in chapter 6: the behaviour challenge), control
network—module (investigated in chapter 7: the modular specialisation challenge),
critter—aggregate (investigated in chapter 8: the aggregation challenge), and
critter—critter (investigated in chapter 8: the aggregation challenge).

e Since all changes are driven by selection pressure, the relevant interactions are integral.
This thesis explored: genes—genes, receptor—genes, network—genes, module—genes,

control network—genes, critter—genes, and aggregate—genes.

4. Correlate and understand the behaviour of the perturbed aspects of the system (its
elements or context) with the results of those interactions in the system as a whole.

In every chapter, an aspect of the system (its elements or context) was perturbed, resulting in

an overall effect on the system; this effect was thoroughly analysed in every chapter in the

complex interactions analysis section.

The following describes the perturbation done to the system, and the overall effect of this
perturbation. In chapter 4, different types of structural mutations led to different evolvability
of the critters. In chapter 5, different types of environments resulted in different types of
visual systems. In chapter 6, different types of environments resulted in different behaviours.
In chaptér 7, different types of brains resulted in modular specialisation and increased fitness.
In chapter 8, different environmental conditions and incorporation of the ability to aggregate
affected whether aggregates would evolve or not, and a new type of environment and the
ability to change shape and grow shells affected the aggregates” morphology and their choice

of habitat (deep water, shallow water, or both).

In devising the complex interactions analysis, the aim was that interesting properties of the
system, which may not normally be easily detected in the data would become more apparent,
and by becoming so, some general knowledge about complex systems (specifically,

biological complex systems) would be obtained. This was found to be the case.

While performing the complex interactions analysis for the diverse challenges that were
presented to Mosaic World, four major patterns were observed. These observations apply not

only to Mosaic World, but also to real world biological systems. Note that the analysis of
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interactions, performed in a coherent and structured manner enabled the development of these

insights.

First observation: adaptation takes place

The first observation is that an evolving virtual organism, just like its natural counterpart, has
three ways of adapting to a difficulty that it faces. It may adapt its structure to better deal with
the difficulty, as demonstrated by the visual adaptations in chapter 5. Alternatively, it may
adapt its genetically encoded behaviour to better deal with the challenge, as demonstrated by
the behavioural strategies in chapter 6. Or it may adapt both its structure and its genetically
encoded behaviour to better deal with the challenge, as demonstrated by the aggregating
critters in chapter 8: not only did the critters aggregate to avoid the threat of predation, but at
times they also evolved different behaviours and began preying on other organisms. Note that
in all cases, these adaptations were a result of the interactions between the environment and

the organism which lead to a selection pressure that is exerted on the organism.

Although it can be argued that the reported behavioural changes are also a form of structural
adaptation as these behaviours are genetically encoded, and this claim is certainly true, it is
possible to view genetically encoded behaviour as a distinct subset of structure, thus, worthy

of classification in its own right.

Second observation: the ‘rate’ of the adaptation is determined by evolvability

The second observation is that the ‘rate’ of the adaptations that take place in the course of
evolution is determined by the organism’s evolvability. As was seen in chapter 4, the way the
genes interact, as indicated by different types of structural mutations, determines the
population’s ability to adapt to a changing environment, and that more evolvable populations
are faster in their rate of adaptation (as those that were not fast enough perished because the

changing environment became too challenging).

Third observation: adaptation occurs through differentiation

The third observation is that one significant and regularly exploited way for these structural
and behavioural adaptations to occur is through internal specialisation (through interaction of
internal components). In chapter 5, different environments caused critters to evolve
specialised visual systems appropriate for these environments, thus enabling them to survive.
In chapter 7, critters with modular brains increased their fitness through modular
specialisation. This was achieved by breaking the survival task to subtasks, both
behaviourally (different modules were activated in different types and performed different

tasks) and structurally (different modules possessed different types of visual systems,
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appropriate for their tasks). In chapter 8, although new aggregates at first had no advantage,
by differentiating the aggregate’s members, they were able to gain an advantage: for example,
they could obtain a metabolic rate lower than a standard critter’s and still possess more
capabilities. In the same chapter, section 8.6, it was also shown that the population speciated:
multiple species were evolved to explore different niches; this is essentially the same

principle, but on the scale of the ecosystem.

Fourth observation: the process of differentiation occurs across all levels of the
hierarchy: each one specialises in its function.

The fourth observation is that the process of differentiation occurs across all levels of the
hierarchy: in every level, the component specialises/differentiates in order to fulfil its task in
an efficient (but not necessarily optimal) manner, and the nature of this differentiation is
dependent on the differentiation that takes place at other levels. Since this finding is novel,

this observation probably best demonstrates the validity of the hierarchical model.

In chapter 5 which deals with the initial version of Mosaic World, it is repeatedly shown that

the visual system of evolving critters adapts to the environment by specialising.

In chapter 7, it is shown that the control network and its subordinate modules adapt to the
environment by specialising: the control network specialises in breaking the survival task into
meaningful subtasks and the subordinate modules specialise in their allocated subtasks.
Furthermore, in section 7.7, the visual systems of the control network and subordinate
modules are analysed, and it is demonstrated that both the visual systems of the control
network and the visual systems of the subordinate modules become specialised as well; these
adapt to the specific subtasks of the control network/module. For example, a module
responsible for controlling movement contains a visual system that is colour-blind whereas a
module responsible for consumption contains a sophisticated visual system. This interaction
of the control network and the subordinate modules is what enables the improvement in
fitness (e.g. as demonstrated by the visual systems of the control network and subordinate
modules working together). It is important to emphasise that unless the model had these
levels, these details would have been lost (the standard non-modular network would have a
relatively generic visual system with some, but not all, of the capacities of the modular

network).

In chapter 8, it is shown that members of an aggregate differentiate in order to increase the
aggregate’s fitness (as indicated by a lower metabolic rate), that is, the aggregate divides

certain of its capabilities between its members: each is controlled only a subset of the
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aggregate’s actions. Furthermore, in section 8.6, a thorough analysis of a representative
aggregate demonstrated that this differentiation/specialisation takes places across all levels.
Consequently, some of the aggregate’s differentiated members had specialised modules, and
these specialised modules had specialised visual system, appropriate for performance of a

specific subset of the module’s behaviours.

When one examines the speciation analysis (also in section 8.6), which demonstrates that
multiple species of various sizes and behaviours (predators and non-predators) evolved in the
ecosystem, it becomes apparent that differentiation truly occurs across all functional levels of
the model: receptor (level 2), modules (level 3), control networks (level 4), aggregates (level
5) and species (level 6), and that the specialisation of lower levels clearly depends on the

specialisation of higher levels.

In conclusion of this objective, even though this thesis provided an interesting opportunity to
witness these four patterns in process in several different variations, it cannot be said that all
of them are surprising (or novel). Clearly, evolving organisms adapt to a changing
environment, and this adaptation can take the form of a structural and/or a genetically
encoded behavioural adaptation. That said, witnessing some of these observations in natural
organisms in real time would be impossible, and so, the fact that Mosaic World enables
exploring such hypotheses and witnessing their results in real time is noteworthy and
interesting (for example, examining whether different ‘rates’ of adaptation to environmental
change of natural organisms can be achieved using different evolutionary mechanisms is
currently impossible as present-day science does not have the ability of changing such

fundamental aspects of evolution).

Furthermore, the fact that differentiation occurs across all levels of a hierarchical complex
system is a novel observation which was not expected. This particular insight is a finding
shown in detail for the first time in this work and was enabled by implementing hierarchical
complexity and discovered through the investigation of complex interactions. It is believed
that by continuously using this type of analysis, additional insights can be gained of real
world biological and non-biological complex systems; these insights may be used to better

predict and affect such systems.

5. Demonstrate that incorporating hierarchical complexity into the model can provide
an improvement in the understanding of the modelled phenomena, by finding novel
observations that could not be made in a non hierarchical or less hierarchical

model.
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As was demonstrated in the previous objective, had the model not incorporated hierarchical
complexity, some interesting and novel observations would not have been apparent. A good
example of such an observation is the fact that the process of differentiation/specialisation
occurs across all levels of the hierarchical model; as was shown, in order to witness such a
phenomenon, the model must possess at least six functional levels (this was discussed in

section 9.3, 'number of levels of the model").

An interesting additional observation is the fact that some of the modules analysed in section
7.7 take the same strategy demonstrated in chapter 5 and filter information that is irrelevant:
e.g. a module which controls movement is colour blind — it does not receive information
about colour which is unnecessary. This demonstrates that evolved visual strategies for

subtasks are consistent with known visual principles.

Clearly, for many types of studies, obtaining such observations can be very useful towards
gaining a broader understanding of the modelled phenomena. It is also conceivable that at
times such observations may be even necessary towards understanding the modelled
phenomena. In addition, it is easy to imagine situations where disregarding hierarchical
complexity has the potential of affecting the model’s overall behaviour, thus, this may affect
its validity (e.g. when emergent behaviours that appear at lower levels of the model are
modelled too simply). Consequently, it can be said that incorporating hierarchical complexity
into a model is useful, and in some situations, crucial, towards understanding the modelled

phenomena.

6. Demonstrate that the model can be used to support or refute existing and novel
computational and biological hypotheses that cover some or all levels of the system
including:

- The usage of different types of structural mutations will affect the evolvability of
neural network agents.

This hypothesis was explored in chapter 4. It was discovered that adaptive evolution and

gradual changes promote evolvability, while structural duplication inhibited it in Mosaic

World.

- Like biological visual systems, physical similarity or behavioural similarity of
resources will affect the visual system of evolving virtual agents.

This hypothesis was explored in chapter 5. It was shown that evolution does not ‘care’ about

physical similarity; the only thing that matters is behavioural similarity. In Mosaic World,

when resources are physically different but behaviourally similar, similar visual strategies are
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evolved. However, when resources are physically identical but behaviourally different,

different visual strategies are evolved.

- Like biological visual systems, increased physical similarity of resources will
affect the visual system of evolving virtual agents.

This hypothesis was explored in chapter 5. It was shown that increased similarity requires

greater specialisation of the visual system in order to correctly recognise the various types of

resources; in other words, suitable adaptations are evolved so that the visual system can fulfil

its role. This resembles visual adaptations evolved by organisms that live in visually

challenging conditions.

- The need to deal with ambiguous environments is a possible reason for the
evolution of colour vision in nature [137].

This hypothesis was explored in chapter 5. It was shown that ambiguous environments result

in critters that evolve visual systems that can be referred to as colour vision. Critters evolve

this in order to gain a more reliable way of discerning the value of a resource, which becomes

particularly useful in ambiguous environments.

- Evolving virtual agents in environments of various levels of difficulty will result
in behaviours that are similar to those encountered in nature under equivalent
conditions.

This hypothesis was explored in chapter 6. It was shown that the type of environment (in
terms of difficulty) has a large effect on the behaviour of the critters. Additionally, critters
exhibit different behaviours when they have different levels of health. Interestingly, both
these types of behaviours mirrored many real world behaviours exhibited by animals and

insects.

- Virtual agents that are controlled by modular neural networks (specifically, a
mixture-of-experts architecture) will be fitter than critters that use non-modular

neural networks [95, 96].
This hypothesis was explored in chapter 7. It was shown that utilising this type of architecture
for critter control improved their fitness. This improvement resulted from modular
specialisation: the control network found a useful strategy of breaking the overall task into

smaller subtasks, and each one of the modules specialised in its assigned task.

- Predation is sufficient to cause the emergence of multicellularity [217].

This hypothesis was explored in chapter 8, and was shown to be true for aggregating critters
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that evolve in Mosaic World in the presence of predators (and is true even when the

aggregates themselves cannot become predators).

- Accidental aggregation, without any explicit immediate advantages, is sufficient

to cause the emergence of multicellularity [33].
This hypothesis was explored in chapter 8, and was shown to be true. When aggregation is
involuntary, even though most new aggregates die, eventually enough survive and manage to
obtain the advantages of multicellularity; this occurs despite the fact that aggregation does

not provide any advantages at first.

- Significant environmental variation can affect the evolution of morphogenesis.
This hypothesis was explored in chapter 8, and was shown to be true. When a new
environment is added that requires protective structures, the aggregates exhibit

morphogenesis by evolving mechanisms for growing shells in a precise manner.

After obtaining each of these objectives, it is possible to review the hypothesis of this thesis

as well:

It is useful to evolve hierarchical visually guided neural network agents for the purpose of

investigating complex interactions.

In this thesis, a population of visually guided neural network agents was evolved in order to
explore numerous hypotheses. In the course of the thesis, these agents became increasingly
hierarchical as the model was expanded. In addition, in every chapter a complex interactions

analysis was conducted for the experiments that took place.

By performing the complex interactions analysis, it was possible to discover new findings
that relate to biological complex systems. At the same time, this investigation also enabled
the demonstration that incorporating hierarchical complexity into model design increases the
understanding of the modelled phenomena, and allowed the exploration of several
computational and biological hypotheses (which resulted in multiple contributions). To
conclude, this thesis has provided clear and unambiguous evidence that it is useful to evolve

hierarchical visually guided neural network agents.
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9.5 Thesis contributions

This thesis makes a number of novel contributions to the fields of computer science
(evolutionary computation, artificial life), complex systems, neuroscience and evolutionary

biology.

Mechanisms and methods
1. Creation of Mosaic World, a hierarchical complex system model that can be used to
investigate complex interactions and numerous additional computational and biological

hypotheses.

2. Creation of the complex interactions analysis, a novel form of analysis of complex

systems.

3. Creation of the visual brain, a 3D modular feed-forward artificial neural network for

control of agents by visual guidance.

4. Definition of Ey., a novel method for measurement of the evolvability of agents in

artificial life simulations.

Analyses

5.  Detailed analysis of multiple complex interactions that take place within a hierarchical
complex system model (Mosaic ~World), focusing on:  Gene—gene,
receptor—environment, critter—environment, control network—module,

critter—aggregate and critter—critter.

6. Analysis of agent evolvability as affected by the usage of five different types of structural

mutations in the evolutionary process.
7. Demonstration that agents controlled by modular neural networks are fitter than agents
that are controlled by non-modular neural networks and that the improvement in fitness

occurred through specialisation of modules.

8. Demonstration that members of aggregates of artificial agents differentiate in order that

the aggregate become more efficient.

9. Demonstration that usage of modularity encourages the formation of specialised modules
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that are assigned for different tasks.

Artificial life and biology

10. Demonstration that evolved computational visual systems resemble biological systems in
the sense that both evolve in order to detect behaviourally significant visual elements
regardless of the physical appearance of these elements (e.g. visual systems evolve to

identify specific food items both in nature and in Mosaic World).

11. Demonstration that evolved computational visual systems resemble biological systems in
the sense that both evolve specific visual adaptations in order to be able to successfully

function in visually challenging environments.

12. Empirical support for a biological theory suggesting that colour vision evolved as a

method of dealing with ambiguous stimuli.

13. Demonstration that artificial agents can evolve the computational equivalent of colour

vision.

14. Demonstration that artificial agents evolve different behavioural strategies for
environments of different levels of difficulty, and that the behavioural strategies of
evolved artificial agents under harsh conditions (hunger, scarcity of resources) parallel
the behavioural strategies of certain insects and animals in nature under equivalent

conditions.

15. Empirical support for the theory suggesting that the mechanisms of gene duplication
affect functional specialisation (specifically, in this case it is shown that such

mechanisms affect the utilisation of specialised modules).

16. Empirical support for three biological theories regarding the emergence of multicellular
life on primordial earth, specifically:
(a) Predation is a sufficient condition to cause the emergence of multicellularity.
(b) Accidental aggregation, without any explicit immediate advantages, is a
sufficient condition to cause the emergence of multicellularity.

(c) Member differentiation is important to multicellular organisms.

17. Demonstration that environmental variation can affect the morphology of evolved

aggregates.
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18. Demonstration that different types of life-like ecosystems can evolve in an artificial life

environment.

9.6 Future work

Considering the fact that the work in this thesis spanned multiple fields and subfields, it is

possible to extend this work in many different ways.

Modular brains

Although modular brains were demonstrated to exhibit superior performance in comparison
to the standard non-modular brains, the implementation of modularity used is partial. This
limitation not only prevented thoroughly examining the fitness increase that can be obtained
through modularity, but is also likely to have limited the functional specialisation that was

used by evolution.

It is possible to extend this model by (a) removing the 8 module limit and (b) extending the
control hierarchy, that is, allow a module to act as a control network to its own subordinate
modules (and these modules can also act as control networks).

It is quite likely to assume that this will increase the usefulness of this mechanism, and
additional insights about the breakdown of the task and the specialisations of the subordinate
modules may be found as well. It is particularly interesting to see whether further task

breakdowns across modules and levels will be apparent when this mechanism is used.

The beginning of development

By chapter 8, Mosaic World exhibited some of the elements of development: growth,
differentiation, and to some extent, morphogenesis. Originally it was aimed to implicitly
evolve more developmental mechanisms. Initial steps were taken to achieving this goal, but
the investigation required more time that was available, and the results were not of sufficient
quality and interest to be included in this thesis. Two aspects of development were partially

explored.

Pattern formation

Although the work in this thesis undeniably demonstrated that morphogenesis can be
implicitly evolved, it would have been very interesting to see whether specific and precise
morphologies can be induced to evolve implicitly as well. This can be of use to
developmental biology, by examining the conditions that are necessary for pattern formation
to take place, and to computer science, since it could enable the construction of precise

structures.
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This can be accomplished by assigning explicit advantages to specific shapes that are evolved
in several different ways:

(a) By providing energy advantages to aggregates of a specific form: e.g. cube-like
aggregates are fitter, or aggregates that are very narrow and long. These energy
advantages can decrease the cost of aggregate metabolic activities.

(b) By enabling sexual reproduction of aggregates that evolve compatible shapes.
Specifically, by predefining the shape of one species of aggregates, it would be
possible to encourage other species of aggregates to evolve compatible shape in

order to mate with it.

Cell signalling
This aspect of development can be studied by examining the conditions that cause cells in an

aggregate (individual critters) to communicate information to other cells. This could be of
interest both to developmental biology and to computer science (by demonstrating that
evolved members are able to cooperate by sharing information in order to achieve an overall

goal).

Simulation of cell signalling can be achieved by enabling internal communications within
aggregates, which can be achieved in several different ways:

(a) By enabling critters to change their transmittance (colour) in real time, it would
be possible for critters to relay information to other critters. The mechanism for
transmittance detection is already in place.

(b) By incorporating a chemical diffusion network into the aggregate system, which
may be used in the same way. This would require mechanisms for creation of a

chemical, as well as mechanisms of detection of the chemical.

Both mechanisms would require that communication between members would be necessary

or advantageous.

Complex interactions

In order to expand the investigation of complex interactions, the model’s hierarchical
complexity needs to be further increased. Although this can be potentially accomplished in
several ways, one way in particular seems like an appropriate choice: the creation of multiple
societies within Mosaic World. By treating Mosaic World’s ecosystem as a society, creating
multiple societies (each a complete and separate ecosystem), and enabling communication

and interaction between societies, it will be possible to investigate the interactions that take
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place between different societies, and also compare the interactions that take place within

several societies.

This setting can be used to investigate several different premises. For example, investigating
the evolution of society: under what conditions a society manages to successfully stabilise?
And how similar is it to its parent society? Alternatively, it is possible to investigate the
evolution of language: by implementing a simple and evolvable form of communication and
watching how members of a society communicate, and the difficulties of communication
between members of different societies, some interesting insights about the evolution of

language and communication may be obtained.

Evolvability

It is possible to examine the effect of different crossover operators using the evolvability
measure defined in chapter 4. By incorporating the same principles believed to affect
evolvability, it is likely that different types of crossover operators that have a positive effect
on critter evolvability will be found. Specifically, these crossover operators can incorporate
the same principles that were explored in chapter 4: gradual changes, structural duplication,

and adaptive evolution.
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