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Abstract

A complex system is a system with a large number of interacting components without any 

mechanism for central control that displays self organisation. Understanding how these 

interactions affect the overall behaviour of a system is of great interest to science. Indeed, 

researchers use a wide variety o f models to investigate complex systems.

The problem with most models is that they disregard the hierarchical nature of complex 

systems: they ignore the fact that components of real world systems tend to be complex 

systems as well. This prevents researchers from investigating the interactions taking place 

between the lower and the higher levels of the model which may be crucial in order to gain a 

full understanding of the examined phenomena and of complex systems in general. 

Therefore, this thesis introduces Mosaic World, a multi-agent model for the purpose of 

investigating interactions (focusing on ‘complex’ multilevel interactions) within a 

hierarchical complex system, in addition to other computational and biological hypotheses. 

Mosaic World comprises a population of evolving neural network agents that inhabit a 

changing visual environment.

By analysing the interactions that occur within Mosaic World, this thesis demonstrates the 

importance of incorporating hierarchical complexity into a model, and contributes to our 

understanding of hierarchical complex systems by showing how selective pressures cause 

differentiation across levels. Additionally, the study of multilevel interactions is used to 

probe several hypotheses and provides the following contributions among others:

Analysis o f agent evolvability as affected by the usage of different types of 

structural mutations in the evolutionary process.

Demonstration that agents controlled by modular neural networks are fitter than 

agents that are controlled by non-modular neural networks; the improvement in 

fitness occurs through specialisation of modules.

Empirical support for a biological theory suggesting that colour vision evolved as a 

method of dealing with ambiguous stimuli.
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Introduction
Until the arrival of the field of complex systems to the scientific arena, diverse systems such 

as the stock market, the weather, an ant-hill and the internet were perceived to have little in 

common. Throughout the last decade and a half it became increasingly clearer that there are 

in fact many commonalities between all these types of systems.

Although even now there is still no universal definition of a complex system (see [14, 36, 

148, 166] for various definitions), it is possible to state that a complex system is a system 

with a large number of interacting components without any mechanism for central control. 

There is no conceptual limit placed on the components: they can be identical -  but they do 

not have to be; they can interact with neighbours or with distant components; they can be 

simple -  or they can be complex systems in their own right. The result is a system that 

displays self organisation despite the lack of central control. The behaviour of this system is 

emergent and cannot be normally predicted by looking at the individual components alone.

Even though the list of attributes varies according to the exact definition used, it is commonly 

accepted that interaction between components is one of the major requirements for a system 

to be termed a complex system. In fact, interactions may even be the most fundamental 

aspect:

“Complex systems cannot be understood by studying parts in 

isolation. The very essence of the system lies in the interaction 

between parts and the overall behavior that emerges from the 

interactions” [166].

These interactions are highly nonlinear; perturbing a single component can potentially affect 

the entire system.

Understanding how interactions affect the overall behaviour of a system is of great interest to 

science [15]. The ability to affect or predict the emergent behaviour of certain complex 

systems could be useful in countless situations ranging from stabilising a problematic 

economy to helping the immune system fight pathogens. This may be achievable by altering 

the system in some fashion, for example, by adjusting its interaction with the environment in 

such a way that affects its emergent behaviour [167].
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The methods which researchers use to investigate complex systems can be divided to two 

main groups [149]. The first includes mathematical models such as nonlinear dynamics, 

differential equations, game theory and network theory. One weakness of these models is that 

they only enable deriving aggregate variables -  the collective behaviour of many elements -  

but do not give any indication as to how this aggregate behaviour is linked to the individual 

behaviour o f all the elements, and why [156, 169, 171].

The second group consists of simulations via agent-based models, where the goal is to create 

models that capture some aspects of the real world [74]. Examples of agent-based models 

include artificial life models, genetic algorithms, and cellular automata [149, 166]. Generally 

speaking, it is impossible to simulate every detail of real phenomena if only from a 

computational point of view; thus, every model designer needs to decide which elements are 

important and should be included, and which are better to be left out. Although many models 

are significantly simpler than their real world counterparts, this approach is feasible; using 

this method, much can be learned about the real world. Nevertheless, the design stage is 

particularly problematic when modelling complex systems, as one of the fundamental 

paradigms of this field is that reductionism is not the right approach for investigating 

complex systems [14, 66, 166] -  that the system’s overall behaviour emerges from highly 

nonlinear interactions between potentially all of its components -  including ones that may not 

appear to be important, and so, are possibly likely to be left out.

Perhaps unsurprisingly, there is a fundamental and crucial difference between most current 

models of complex systems and their real world counterparts. Unlike many computer models, 

components of real world systems tend to be complex systems as well. In turn, these 

components may also consist of complex systems. Consequently, interactions going on at the 

lowest levels may affect the higher levels, and vice versa. More importantly, the emergent 

whole [83] of a lower level -  potentially the result of highly nonlinear and unpredictable 

interactions -  may serve as a component for an emergent whole of the next level.

An example to help illustrate this important point: an ant-hill is a component of its ecosystem, 

which is a hierarchical complex system. The ant-hill itself is also a hierarchical complex 

system, one which consists of ants. An individual ant consists of organs. Each of these organs 

consists of cells. These cells are controlled by the ant’s genes. Although the hierarchical 

structure of complex systems is a well known fact [84, 181], in most computer simulations of 

an ecosystem, the ant-hill is modelled rather simply, as an elementary component -  without 

modelling the individual ants within, and in most simulations of an ant-hill, the ant is 

modelled rather simply, without considering its organs. However, in reality both types of
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‘elementary’ components are not elementary, but are complex systems. More importantly, the 

emergent behaviour of these lower level components (the behaviour of an ant, the collective 

behaviour of an ant-hill) is an important element of the higher levels -  and as stated, these 

behaviours cannot be easily modelled because of their emergent nature.

Although nested hierarchies are an integral aspect of complex systems, most models neglect 

to incorporate this aspect into their design. This may be the result of the inherent 

programmatic difficulty of modelling multiple levels of a hierarchical complex system. 

Regardless, this flaw causes a reasonable chance of incorrect modelling, particularly of the 

higher levels of the system (as small inaccuracies in the behaviour of lower levels can 

accumulate and cause larger inaccuracies in the behaviour of higher levels). Moreover, this 

prevents researchers from investigating the interactions going on between the lower and the 

higher levels such as -  using the previous example -  the effects of different models of ant 

organs or the evolution of genes that define those organs on the overall behaviour of the ant­

hill or even the entire ecosystem.

This flaw in modelling complex systems occurs not only in computational models, but also in 

conceptual models as well. In fact, the field of economics has been criticised for traditionally 

ignoring the hierarchical nature of the economy by not attempting to directly link 

microeconomics and macroeconomics, instead researching each discipline independently 

[169].

This work argues that incorporating hierarchical complexity may be essential in order to 

correctly model a system and gain a more comprehensive understanding of the target 

phenomena; more importantly, the fact that the nested hierarchies aspect of complex systems 

is mostly disregarded raises the possibility that novel insights about complex systems in 

general may be obtained by specifically investigating multileveled interactions within a 

hierarchical complex system model.

In recent years, some models of complex systems were in fact constructed with hierarchical 

complexity in mind. This is mainly true for models coming from the field of ecology [100, 

125, 170, 244] (whose members are fully aware of the importance of maintaining the 

hierarchical nature of complex systems and of the need to explore the interactions between 

different levels of the model [100, 170, 244]), but also true for models coming from other 

fields, such as computer science [123, 203], chemical engineering [127] and economics 

[224]. Ironically, even though these models are the only ones that can be appropriate for 

examining multileveled interactions within complex systems, they were mostly created to



1 Introduction 19

pursue directions other than complex systems. Therefore, it is the aim of this work to create a 

model for the purpose of investigating interactions within a hierarchical complex system, 

with a focus on multileveled interactions. It is believed that this study will contribute to our 

understanding of complex systems in a new way and improve our ability to predict and affect 

complex systems in general. Furthermore, by specifically focusing on multilevel interactions 

in a particular model, it will be possible to gain interesting insights about the modelled 

phenomena which normally would not appear in most models, thus, demonstrate the 

importance of incorporating hierarchical complexity into model design.

1.1 Aims and objectives
The main hypothesis of this research can be defined as follows:

It is useful to evolve hierarchical visually guided neural network agents fo r the purpose o f  

investigating complex interactions.

Where:

The model can be referred to as ‘useful ’ when it enables the demonstration and investigation 

o f behaviours that normally do not appear in simpler, non-hierarchical or less hierarchical 

models and consequently, provides new insights into complex systems in general.

Hierarchical visually guided neural network agents are artificial agents used in a multi-agent 

system that are controlled by internal neural networks receiving visual stimuli from a 

simulated environment.

Complex interactions are defined in this work to:

be an information exchange between two or more elements within a hierarchical 

complex system, at the same or different level, where the interaction causes a 

modification to one or more o f the elements (similar to a concept introduced in [26]). 

be affected by small perturbations to the elements or their context, which may cause 

highly unpredictable or unintuitive effects to the overall behaviour o f the system, 

take place within a hierarchical system whose emergent results (which can be 

behaviours or objects) o f  lower levels can serve as basic components fo r  a higher 

level (e.g. evolved agents are components o f  collective aggregates) [83].

In this thesis, complex interactions will be represented using the affecting-*affected 

notation, where affecting interacts with affected. This may indicate that a physical effect
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takes place in the system; in this case, affecting has an effect on affected (e.g. 

cr itte rs  environment means that the environment is changed as a result o f  the critter 

consuming a part o f  it). Alternatively, this notation may indicate that a flow  o f information 

takes place in the system; in this case information flows from  affecting to affected (e.g. 

environment-+receptor indicates that information from the environment is perceived by a 

receptor).

In order to provide evidence towards the hypothesis, the following objectives are defined:

1. Explore biological systems and universal principles in nature that are suitable for 

investigation using a hierarchical complex system model.

2. Develop a computational multi-agent, hierarchical complex system model, Mosaic 

World.

3. Identify key interactions in the model, and create accordingly a set of challenges that will 

focus on each one. Each challenge will consist of a small perturbation to the system or its 

context; the resulting effect on the interactions will be systematically investigated.

4. Correlate and understand the behaviour of the perturbed aspects of the system (its 

elements or context) with the results of those interactions in the system as a whole.

5. Demonstrate that incorporating hierarchical complexity into the model can provide an 

improvement in the understanding of the modelled phenomena, by finding novel 

observations that could not be made in a non hierarchical or less hierarchical model.

6. Demonstrate that the model can be used to support or refute existing and novel 

computational and biological hypotheses that cover some or all levels of the model 

including:

The usage of different types of structural mutations will affect the evolvability of 

neural network agents.

Like biological visual systems, physical similarity or behavioural similarity of 

resources will affect the visual system of evolving virtual agents.

Like biological visual systems, increased physical similarity of resources will affect 

the visual system of evolving virtual agents.

The need to deal with ambiguous environments is a possible reason for the evolution 

of colour vision in nature.
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Evolving virtual agents in environments of various levels of difficulty will result in 

behaviours that are similar to those encountered in nature under equivalent 

conditions.

Virtual agents that are controlled by modular neural networks (specifically, a 

mixture-of-experts architecture) will be fitter than agents that use non-modular neural 

networks.

Predation is sufficient to cause the emergence of multicellularity.

Accidental aggregation, without any explicit immediate advantages, is sufficient to 

cause the emergence of multicellularity.

Significant environmental variation can affect the evolution of morphogenesis.

1.2 Thesis overview
Chapter 2 reviews several topics that are required in order to recognise the problem that is 

presented in this thesis and the methods used to address this problem. In addition, a useful 

methodology for creation of models of biological phenomena is provided (and its source 

cited), which will be used throughout the thesis to justify the design decisions that are made.

Chapter 3 presents Mosaic World, the model which is used for all work in this thesis; this 

includes a thorough description of the system’s components and operation, and also includes 

a conceptual analysis of the complex interactions that take place within the model.

Chapter 4 begins the investigation of complex interactions by presenting the first challenge to 

Mosaic World: evolvability. This challenge explores the relationship between agent 

evolvability and various types of genes—>genes interactions by using five different types of 

structural mutations in the process of evolution.

Chapter 5 presents the colour vision challenge to Mosaic World. This challenge examines the 

effect of different environments (specifically, environments with various visual 

characteristics) on the visual evolution of agents that inhabit them (environment—>receptor 

interactions).

Chapter 6 presents the behaviour challenge to Mosaic World. This challenge examines the 

effect of different environments (specifically, environments of various levels of difficulty) on 

the evolved behaviours of agents that inhabit them (environment—>critter).
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Chapter 7 expands the hierarchical nature of Mosaic World by replacing the standard 

networks used to control agents with modular neural networks. The challenge in this chapter 

is modular specialisation: by examining in detail the interactions that take place within the 

new mechanism (control network—►module interactions), the effect of utilisation of 

modularity on agents in terms of fitness and functionality is assessed.

Chapter 8 further expands the hierarchical nature of Mosaic World by creating mechanisms 

that allow agents to aggregate. In this chapter, the aggregation challenge is presented to 

Mosaic World: by examining in detail the conditions that are required in order for agents to 

successfully utilise this mechanism (in terms of the interactions between agents, 

critter—►critter, and the interactions between aggregates and agents, critter—►aggregate), 

insights about the conditions in primordial Earth that triggered the original emergence of 

multicellularity are gained. In the second part of the chapter, the aggregation challenge is 

extended by examining whether a new ability of aggregates to change their shape and grow 

protective shells is utilised when a new environment is added to Mosaic World that provides 

new benefits but incurs new costs.

Chapter 9 concludes the thesis by summarising the results and describing four observations 

that can be obtained using this work. In addition, the chapter provides an evaluation of the 

model and revisits the objectives that were set for the thesis. The chapter concludes by 

reviewing several possible ways to extend the work described in this thesis.

1.3 Publications
Some of the work in this thesis has been published in the following papers:

Schlessinger, E., Bentley, P. J., and Lotto, R. B. (2006) Investigating the Emergence of 

Multicellularity Using a Population of Neural Network Agents. In Proc. o f  Parallel Problem 

Solving from Nature (PPSNIX), September 9-13, 2006, Reykjavik, Iceland

Schlessinger, E., Bentley, P. J., and Lotto, R. B. (2006) Modular Thinking: Evolving Modular 

Neural Networks for Visual Guidance of Agents. In Proc. o f Genetic and Evolutionary 

Computation Conference (GECCO 2006), July 8-12, 2006, Seattle, WA

Schlessinger, E., Bentley, P. J., and Lotto, R. B. (2005) Analysing the Evolvability of Neural 

Network Agents through Structural Mutations. In Proc. o f European Conference on Artificial 

Life (ECAL 2005), September 5-9, 2005, Canterbury, UK
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Schlessinger, E., Bentley, P. J., and Lotto, R. B. (2005) Evolving Visually Guided Agents in 

an Ambiguous Virtual World. In Proc. o f Genetic and Evolutionary Computation Conference 

(GECCO 2005), June 25-29, 2005, Washington, DC.

The following papers are in preparation:

Schlessinger, E. and Lotto, R. B. Is Ambiguity One of the Reasons for the Evolution of 

Colour Vision?

Schlessinger, E. and Lotto, R. B. Examining the Effects of Increased Resource Similarity on 

the Visual Evolution of Virtual Agents.

Schlessinger, E. and Lotto, R. B. A Study of the Foraging Behaviour of Virtual Agents Under 

Several Different Levels of Difficulty and Hunger.

Schlessinger, E., Bentley, P. J., and Lotto, R. B. The evolution of morphology for aggregates 

of agents.
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Chapter 2 

Background
In order to investigate complex interactions, a computational multi-agent, hierarchical 

complex system model has been developed. This chapter provides the relevant background 

for this work.

In this chapter, the field of complex systems, which is the context for this work, is reviewed, 

and several examples of work that qualify as investigations of complex interactions are given. 

In addition, the field of artificial life is presented together with some useful guidelines for 

building biological models. Since the model described in this thesis focuses on the evolution 

of neural network agents, relevant background on artificial neural networks, evolutionary 

computation, and the evolution of artificial neural networks is provided as well.

2.1 Complex Systems
Complex systems can be found everywhere: biological systems (living organisms [14], brains 

[14], protein folding [14], ant colonies [71, 148], ecosystems [6, 14]), manmade systems (the 

economy [8], human civilisation [14], traffic jams [128, 187], the internet [6]), natural 

systems (weather patterns [14]).

Complex systems are systems with many interacting components that display self 

organisation without any central organiser [6, 29, 148, 149, 166, 167]. Adaptability and 

robustness are two characteristics that can be used to describe most complex systems: 

adaptability -  some complex systems will continue functioning even if their environment 

changes [6, 166, 167], and robustness -  they may operate even if partially damaged [6, 166].

Complex systems are difficult to understand because they often display emergent global 

behaviour [148, 167], and thus, are difficult to understand using a reductionist approach -  by 

examining every part in isolation [148, 166, 170]. It has been claimed that the only way to 

understand a complex system is by examining it as a whole, since the global behaviour of the 

system is a result of all its components and their interactions [166].

The components of complex systems can have a range of diverse attributes. They may be 

identical or different; for example, individual cars in a traffic jams are (conceptually) 

identical, whereas the components of the global economy are diverse and varied. They may 

be simple building blocks or be complex systems as well; for example, individual air and
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water molecules in a tornado are simple systems, unlike individual animals in an ecosystem 

which are complex systems. They may interact with close components or only with distant 

components; for example, in the economy, two very distant companies -  geographically and 

economically -  may trade, whereas in neural networks there has to be a direct connection 

between neurons for them to interact. They may have a specific role in the system or be 

interchangeable with other components; if they do have a role, it may be static or dynamic 

[6]. For example, in a flock of migrating geese, any member of the flock may act as the 

‘leader’, however, individual worker ants in an anthill can never replace their queen.

The interactions that occur within a complex system typically form a complex network [6]. 

There are numerous possible types of interactions between components in a complex system 

[149]. These interactions have the potential of being highly nonlinear: a small change to one 

component may affect the entire system [148, 191]. The connectivity between components is 

not static and may change: interactions can be added or removed from the system. A pair of 

interactions may be symmetric (for example, competition among agents on resources in an 

ecosystem) or asymmetric (such as the interactions that take place between predator and prey) 

[149]. An interaction may have a cost/limited capacity associated with it (for example, an 

airport must limit the number of departures/landings per hour for space and time constraints), 

or an ‘age’ which sets its removal time (for example, individuals cannot stay in an 

organisation forever). Finally, there is often a random element affecting the interactions: 

noise within the system [6].

The field of complex systems aims to discover rules that govern the behaviour of different 

emergent, self-organising complex systems [6, 148, 167]. So far, it has contributed to 

evolutionary theory by taking ideas and results from other complex systems in order to better 

explain evolution (e.g. the concept of “energy landscape” which builds on fitness landscapes) 

[149]. In addition, the study of complex networks is a prominent subfield of complex systems 

that has recently discovered certain fundamental laws and organising principles that appear in 

real world complex networks [15] (for example, the fact that several distinct types of 

networks, including small world networks and scale free networks, frequently describe the 

connectivity of real world complex systems; all of which share certain commonalities [6]).

2.1.1 Hierarchical complexity
Real world complex systems frequently exhibit hierarchical complexity: a basic component 

in one level is often a complex system -  an emergent whole [83] -  at a lower level. Complex 

systems may consist of numerous such levels [75, 83, 100, 170, 181]. These levels may have 

different temporal and spatial scales [181]; for example, behaviours at the higher levels, i.e.
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the ecosystem level, take place over larger spatial areas and also happen over larger periods 

of time than behaviours at lower levels, i.e. the brain of an animal which is a component of 

the ecosystem. Fig. 2.1 demonstrates a hierarchical complex system within a greater 

hierarchical complex system; there are a total of four levels in the greater system.

Fig. 2.1: A hierarchical complex system that is characterised by four distinct levels. The 

basic components of the greater hierarchical complex system (level 4: the entire figure) 

are the purple circles. Each of the purple circles is a hierarchical complex system in its 

own right (level 3) which comprises several smaller complex systems (level 2: blue and 

green circles), which are made up of basic elements (level 1: small circles and squares).

As briefly mentioned in the introduction chapter, a consistent limitation of the majority of 

investigations of real world complex systems is their focus on a limited range of levels of the 

model, mostly one, which are assumed to be separate from the other levels [100, 125, 127, 

170]; this is obviously an unrealistic assumption, as it is clear that interactions that are 

initiated by a component at one level may affect the behaviour at other levels [100, 170] 

(presumably, this approach was taken in order to make the study more feasible [170]). In fact, 

it is increasingly demonstrated that the behaviour of a hierarchical complex system is a result 

of numerous nonlinear interactions that take place among components at different levels of 

the system [170]; this has already resulted in a large number of global ecological phenomena 

to be reinterpreted as events that are a result of interactions that take place between 

components at different levels -  such as the colonisation within groups in a species [11] and 

the tendency of organisms within a population to be distributed in a log-normal manner over
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a terrain [222]. Those interactions that occur within a hierarchical complex system between 

components at different levels are included in the concept of ‘complex interactions’ which is 

introduced in this thesis (and also includes interactions that take place between components at 

the same level).

The field of complex systems has been instrumental in beginning to change this outlook. 

Incorporating complex interactions and their effects into models of real world systems has 

greatly influenced the way ecological dynamics are explained [170].

This approach is still only infrequently adopted; only some ecological models, and a few 

other models from different fields, have modelled real world systems hierarchically. In this 

thesis, the aim is not to investigate the phenomena of one field using a hierarchical complex 

system, as is normally the case, but instead to use this type of system to investigate complex 

interactions from a complex systems perspective.

Dynamical hierarchies

A new subfield of complex systems known as dynamical hierarchies has recently emerged, 

which aims to create systems capable of spontaneously self-organising into hierarchies; a 

specific goal is the demonstration that simulations are capable of exhibiting more than one 

hierarchical level of emergent structure [21, 75, 124]. However, to this date, models that 

exhibited more than a single level of emergent structure are rare [124].

According to researchers in this area, in order for a dynamic structure to be considered a new 

emergent level, it must be demonstrated that new functionalities emerge as a result of the 

interactions between simpler building blocks (which can be dynamical structures as well) [21, 

75]. For example, Prokopenko et al [180] demonstrated a system where a collection of simple 

sensor cells can form multicellular structures -  impact boundaries -  which have two new 

properties: they can be closed and continuous, thus, can be considered to be second level 

emergent structures. Additionally, these structures can combine in order to enclose spaces, 

and so, effectively form impact networks which have a new property -  a spanning tree 

topology -  thus, can be considered third level emergent structures.

In contrast to the subfield of dynamical hierarchies, where the goal is the dynamical creation 

of multiple emergent hierarchies, this work focuses on the usage of a hierarchical complex 

system, which can be emergent, predefined or a mixture of both, in order to investigate 

complex interactions. Obviously, it is impractical to wait until a model that exhibits multiple 

dynamical hierarchies is created for the purpose of investigating complex interactions, as this
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may take quite some time. Therefore, the subfield of dynamical hierarchies is only of limited 

relevance to the work in this thesis.

2.1.2 Emergence
Emergence is a fundamental concept in complex systems and artificial life research. There 

are many different definitions of the term, and yet, there does not seem to be one that is 

universally accepted. A popular definition states that an emergent phenomenon is one that 

arises from the behaviour of low level components, but is difficult/impossible to predict or to 

reduce to the properties of those components [29, 148, 149, 157], or similarly, its behaviour 

cannot be derived by analysing a model of the system [31]. One criticism of these definitions 

is that the unpredictability may simply be a result of lack of information of the system, and 

so, it is not an appropriate criterion for determining emergence [29, 59]. Interestingly, this 

definition implies that an observer is required in order to form expectations about the result: 

if his expectations are correct, there is no emergence. However, if he is ‘surprised’, 

emergence occurs [30, 51, 191].

An alternative definition, which does not change based on the amount of information 

possessed or availability of an observer, states that emergence occurs when the interactions 

between many components generate a new behaviour providing that (i) the underlying 

components are not aware of this new behaviour, and (ii) a new vocabulary is required in 

order to describe the new behaviour but is not needed to describe the components [218].

Another alternative definition is weaker: emergence is defined as the collective behaviour of 

many elements that cannot be attributed to a single element [48].

To some extent, all the above definitions attempt to capture a notion that we grasp intuitively, 

thus, are precise only to a limited degree; consequently, some researchers have pursued more 

formal definitions of emergence that do not depend on any human descriptions. That said, 

there is no universal agreement on one formal definition as well.

One approach by Polani, which is based on information-theoretic criteria, attempts to 

characterise emergence in a way that naturally arises from the inherent structure of the 

dynamical system, thus, emergent descriptions are defined as a “complete decomposition of 

the system into independent subsystems which are individually predictable"; these 

subsystems are seen as “‘emerging’ from the global system dynamics.” [177]. Another 

approach by Kubik is based on language-theoretic and grammar systems, and defines an 

emergent property as a one that is generated when a “multiagent system as a whole can
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generate a language (behaviour) that cannot be generated by the superimposition (summation) 

of individual agents’ languages (behaviors)” [114]. Shalizi argues that emergence has nothing 

to do with external observers and is an intrinsic and objective quality; thus, he defines 

emergent processes as processes that have a greater predictive efficiency than the process 

they are derived from [205], that is, "each bit of macroscopic information delivers more 

predictive information at the higher levels than the lower ones" [206].

The lack of agreement for the definition of emergence makes any definition arguable. For this 

thesis, the popular definition is seen as most appropriate:

An emergent phenomenon is one that arises from the behaviour of low level 

components, but is difficult/impossible to predict or to reduce to the properties of those 

components [29, 148, 149, 157].
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Fig. 2.2: An emergent Glider from Conway’s game of life. Using a few simple rules, the 

object that appears in (1) ‘glides’ to the lower right in (5) and (9).

Examples of emergence include:

• The coordinated behaviour of a flock of birds emerges from the behaviour of 

individual birds [19].

• The ability of individual ants to find the shortest path to food sources is an emergent 

property of the interactions between searching ants [166].

• The fact there are many competing species and not just one is an emergent property 

of an ecosystem [149].

• The associative memory of the artificial neural network known as the Hopfield 

network is an emergent property [14].
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• Conway’s game of life [64] is a famous example of a cellular automata that exhibits 

emergent life-life behaviours (see fig. 2.2 for an illustration of the Glider object).

2.1.3 Complex interactions
Complex interactions are interactions that take place within a hierarchical complex system 

between elements at the same or different levels. In hierarchical complex systems, the 

emergent results of a lower level can serve as components for a higher level.

Since there are virtually no studies that explicitly focus on this area of research, in this 

section a review of related research that deals with complex interactions is given; 

unsurprisingly, most of the described work was not conducted within the context of complex 

systems. Interestingly, as the real world is characterised by an abundance of hierarchical 

complex systems, this type of research is very diverse and spans many scientific disciplines.

The following studies further confirm that the study of complex interactions is crucial 

towards gaining a more complete understanding of the investigated phenomena, and in fact, 

unless viewed with a hierarchical complex system point of view, many times it cannot be 

correctly understood at all. Therefore, in order to gain a comprehensive understanding of 

many types of real world phenomena, their hierarchical nature needs to be incorporated into 

relevant computer models.

Computer modelling: investigating the effect of component integration

Malkin and Lotto [135] created a hierarchical complex system in order to investigate the 

effect of the level of component integration on fitness and evolvability. In their study, a 

population of modular agents was required to evolve movement strategies, where the motion 

of each agent depends on the motion of its components, in order to reach energy sources; the 

fitter the agent, the more energy it collected. One of the evolvable traits every agent 

possessed controlled the level of component integration between the modular components, 

i.e., the degree to which each component affected the behaviour of the overall agent which 

was comprised by many components.

It was discovered that integrated agents are fitter but less evolvable, whereas unintegrated 

agents are less fit but more evolvable. This was the result of the interactions between the 

components of every agent given that the motion of each agent is an emergent behaviour 

resulting from the collective behaviours of its components. In an integrated agent, it is much 

easier for the components to evolve a coordinated collective behaviour which results in high 

fitness. In an unintegrated agent, it is virtually impossible to evolve a coordinate collective
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behaviour which results in low fitness. In turn, unintegrated agents are more evolvable as 

they enable smaller changes on the phenotype, whereas integrated agents are less evolvable 

as a result o f the disruptive effect of changes. The results clearly show how interactions at 

low levels of a hierarchy affect the behaviour of a system at higher levels: the interactions of 

components making up agents affected the agents’ behaviours, which in turn affected their 

fitnesses, which affected the evolution of populations of agents. In order to improve 

evolution, it was necessary to alter the interactions of the low-level components.

Computer modelling: a large scale traffic simulation

The Nagel group has created a traffic simulation tool for the purpose of analysing large scale 

traffic dynamics [13, 154, 155, 183]. This tool enables transportation planners, engineers and 

environmentalists to make better decisions regarding the effects of traffic. The system’s 

capabilities were demonstrated by running a simulation of the transportation dynamics of 

Switzerland, which comprise a very large hierarchical complex system. The simulation 

divided Switzerland’s street map to 3,066 distinct zones (local authorities). Using census 

information, 7.2 million inhabitants were simulated as agents, and a travel plan (3 trips per 

day) was assigned for each: leaving times, a destination and a route. Traffic flow was 

simulated using a realistic cellular-automata method, simulating details such as number of 

lanes, turn and merge lanes and traffic signal phases.

Using the aggregated interactions of millions of individual trips, detailed transportation 

dynamics were generated: the connectivity information of every simulated road as well as the 

congestion map and the location of grid-locks (and also the resulting air quality). Many 

interactions take place in this simulation; demand that is higher than the road’s capacity 

causes congestion. Congestion affects travel time and causes grid-locks. In turn, these 

emergent behaviours may cause individual drivers to change their travel plans, and utilise less 

congested roads. Consequently, many of the possible routes for every destination are actually 

utilised, including some that would not normally be used. Interestingly, although utilisation 

of a traffic management system makes traffic more efficient by moving traffic from 

congested roads to less congested roads, it results in traffic predictions becoming less 

predictable, as the system is pushed closer to its maximum capacity, where even small 

fluctuations can have a large effect. Finally, the higher utilisation of the system also generates 

more air pollution.

Ecology: the roles of competition, predation and desiccation

Wilbur investigated the role that that competition, predation and desiccation (caused by 

ponds that dry at different rates) have in regulating the structure of a controlled ecology,
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specifically, the distribution and abundance of species [240]. He conducted a series of 

experiments using 36 small artificial ponds which were populated by 4 frog species and their 

predators, a species of newts.

The experiments demonstrated that species that live in high-density communities, which are 

characterised by limited food, are more resistant to competition than species that live in low- 

density communities. The same species are also more resistant to predation than species that 

live in low-density communities. However, species that live in high-density communities are 

more susceptible to desiccation than species that live in low-density communities. Based on 

these results, it was possible to conclude that predation only weakly affects the biomass of all 

frogs; however, it greatly affects the species composition since some species (low-density 

communities) are more sensitive to predators than others. Thus, predation reduces 

competition, consequently, survivors are able to grow rapidly enough to leave the ponds 

before they dried and so, avoided desiccation. When predation is not present, competition 

slows growth, and as a result, death by desiccation is more likely. This study concludes by 

stating that there is no one crucial force, such as predation or competition, that determines the 

structure of the ecology, but instead it is determined by the interaction of all forces.

These results show how interactions at one level of a hierarchy affect the behaviour of a 

system at higher levels, and vice versa: for example, by introducing or removing individual 

predators, the structure of the ecosystem -  its biomass and species composition -  changes, 

which in turn affects the survival and final body size of individual tadpoles. These changes 

are a result of the interactions between the different levels of this hierarchical complex 

system: organisms (tadpoles and newts), species and the ecosystem -  together with the 

environment -  which is what the original paper referred to as the forces of predation, 

competition and desiccation.

Metropolitan development

Innes and Booher [89] argue that the reason metropolitan development fails to achieve its 

goals, namely, economical development and environmental protection, is because it attempts 

to impose high level rules, through laws and regulations, on the system; although these may 

temporarily help, their consequences are unpredictable and generally are unable to solve the 

problem. They argue that once the social, political, and economic world are viewed as a 

complex system, and one understands the interactions between fiscal policy, governance 

structure, and infrastructure policy, it is possible to pursue both economical development and 

environmental goals, and not just one of the two. This can be achieved by treating
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metropolitan development like an adaptive self-organising system and allowing its 

components to interact and change in response to external conditions.

In order to achieve this goal: first, the components of the system must have full knowledge of 

its state and must be allowed to interact with each other -  this will enable better coordination 

of activities. Currently, the system’s components have only limited knowledge of its state and 

the environment, and so, cannot operate in its best interests and frequently only pursue their 

own limited goals. These components come from all levels of the system, including planners 

and policy makers as well as residents, businesses, community groups and public agencies. 

Of particular importance is that components are provided with feedback regarding the results 

of decisions made. Second, groups that include members from various agencies and 

jurisdictions should be created for the purpose of addressing problematic aspects of the 

system (e.g. air quality). Group members will come from all areas relevant to the problem, 

and will have the mandate to decide how to monitor the problem and how and when to act.

To summarise, in order for metropolitan development to succeed -  enable both economical 

development and environmental protection -  interactions between the system components 

must be increased, and new interactions between the system’s components and the 

environment must be formed.

Design of distributed systems

Gribble designed a scalable, fault-tolerant storage system called a distributed data structure 

(DDS) [73]. A DDS is intended to be used as a virtual hash-table that is replicated across 

many storage units; it consists of many components that are located on different machines. 

Numerous software clients (such as web servers) can connect to the DDS and use it 

concurrently. A DDS relies on timeouts to detect failures of components (a component has 

failed if it does not respond within a given amount of time). Every component relies on a 

garbage collector (an automatic memory release mechanism) whose performance depends on 

the local machine’s load.

A flaw in the DDS design caused a cascading reaction across all levels of the system: when 

many clients interact with the DDS it occasionally reaches near-maximum capacity; in this 

state, random fluctuations in the load placed on individual garbage collectors cause the 

component’s throughput to decrease, thus, to ‘fall back’ on its load. In turn, this causes the 

DDS to reassign work to other components which results in further performance degradation. 

Once a component responds slower than the timeout period, the system assumes it has failed. 

Eventually, the entire system fails. Although the system was designed with robustness in
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mind, cascading interactions occasionally resulted in total failure.

One solution suggests that the system adapt its behaviour according to its dynamics: by 

monitoring the ongoing interactions, the system could determine it is in danger, and behave in 

a way that guarantees stable performance (e.g. reject some client requests). Interestingly, this 

conclusion is very similar to conclusions reached by the Nagel group regarding the usage of 

their traffic simulation tool to optimise traffic.

In addition to these diverse studies of complex interactions in various systems, there are 

many others in areas such as medicine and finance, as briefly summarised below:

Medicine

Seely and Christou [201] demonstrated that patients with the multiple organ dysfunction 

syndrome (MODS) can be better treated and monitored by evaluating the patient’s response 

to trauma or shock as a hierarchical complex system (“a complex nonlinear system involving 

a great number of variables and systems of variables”) that is characterised by numerous 

complex interactions between the metabolic, neural, endocrine, immune and inflammatory 

systems.

Financial Valuations

Limburg et al [130] argued that when performing valuations, the financial estimation of 

ecological processes (“ecosystem services”) must take into account the possibility that the 

interactions between the financial processes and ecological processes may cause aspects of 

the ecology to irreversibly destabilise (for example, by over fishing, a species of fish may be 

driven to extinction), in order to be able to determine whether the result of a financial process 

is ecologically safe or not.

Whether in computer modelling, ecology, metropolitan development, distributed systems, 

medicine or finance, researchers have all shown that the overall behaviour of hierarchical 

complex systems is dependent on complex interactions between many levels of the 

components that make up those systems. Often seemingly inconsequential interactions at a 

low level of a hierarchy can have significant effects on resulting behaviours at higher levels. 

The work in this thesis is one of the first attempts to explicitly study such interactions and 

their effects in a complex Artificial Life system.
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2.2 Artificial life
Artificial Life, or ALife, as it is commonly called, is a field that deals with investigating 

simulation models of living systems for the purpose of increasing our understanding of 

biological and other natural types of phenomena [157, 221]; ALife studies not only biological 

systems, but also social groups and economic populations [19]. Some view ALife as a branch 

of complex systems [19, 170]. ALife is thought to supplement traditional types of biological 

research by synthesising life-like behaviours within computers [120]. It is hoped that by 

studying various models of many different natural systems, fundamental principles that 

govern numerous classes of complex systems across fields can be discovered [19, 20, 158].

The field of ALife is still in its infancy, and even now, nearly two decades since the first 

workshop on the subject, there is still no agreement on major issues, such as whether ALife is 

a true discipline or merely a novel and useful collection of methods [158], as well as no 

established metrics for the main phenomena researched by its practitioners [158]. Indeed, 

even the main direction of the field is unresolved, such as whether it should only focus on 

investigating biological questions that are grounded in our reality, or also investigate 

theoretical questions that do not relate to life on earth as we know it (arguments supporting 

one view or another are in [41, 157, 237]).

Research in ALife is conducted by construction of easy to manipulate models that are 

powerful enough to capture much of the complexity of biological systems [221]. These types 

of models often involve some form of artificial evolution (using a type of evolutionary 

algorithm such as genetic algorithms [157]), but may not use evolution and still ‘qualify’ as 

ALife work. Evolution is fundamental to many ALife models because it can be used as a way 

to search a large space of possible solutions for a specific problem (see section 2.4); ideally, 

the discovered solution will mirror natural strategies that are utilised by biological organisms 

and gained through natural selection [157]. The overall aim is that by understanding how the 

models behave, and how this behaviour is affected by altering aspects of the model 

(parameters, initial conditions, etc), insight can be gained with regards the modelled 

phenomena [237].

ALife simulations are mostly agent-based, and normally take a bottom-up approach, where 

many simple elements (e.g. molecules, cells, organisms) are allowed to interact with the 

intention that global, life-like, patterns, which are normally the object of study, will emerge at 

a higher level as a result [19, 31, 100, 147, 157, 170, 184, 223]; in this type of simulation, the 

investigated property is not explicitly coded in the model, but is supposed to emerge [100,
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170, 184]. A fundamental assumption behind the approach taken by ALife is that the essence 

of biological complex systems can be captured using (relatively) simple models [19, 20].

Compared to mathematical models, ALife models typically enable a finer-grained description 

of the systems being modelled. Thus, for the purpose of this thesis, ALife models are likely to 

be better suited to the investigation of interactions between multiple levels within a 

hierarchical complex system [100].

2.2.1 Why should artificial life models be used?
If life could be restarted from the beginning, it is possible many characteristics would evolve 

differently; for example, it is conceivable we might have a number of digits in our hands and 

feet which is not five. Yet it is also possible many characteristics would evolve as before; for 

example, there may always be animals that can swim, fly or walk. Even though these are 

among the most fascinating questions, traditional science generally cannot resolve whether 

certain aspects are present because they are necessary or are merely the result of a particular 

historical development. There are many such open questions in biology that are unlikely to 

ever be answered using traditional methods. Some of these questions require creating 

conditions that cannot be made empirically; others require experiments that would take time 

scales too vast for scientists to perform [147] or involve biological data that is too complex 

and incomprehensible to be used [19, 147].

The primary advantage of Artificial Life models is that they enable investigating hypotheses 

that would be difficult or even impossible to test in other ways [19, 54, 100, 147, 157]. In 

addition, ALife models can be used to test the coherence of existing theories: examine the 

underlying assumptions of existing models [54, 100, 147, 158], as well as the consequences 

of altering these assumptions [100]. Perhaps the most novel usage of ALife models is that 

they can be used to examine fundamental concepts of life such as self-organisation, natural 

selection, the theory of complexity [100]; ALife enables exploring not just models of 

biological life as we know it, but can also explore life-like systems that only exist in theory 

[237]. In fact, as mentioned in the previous section, one of the goals of ALife is to look for 

unifying principles that can govern living systems [19, 100, 237] (though some doubt 

whether this can be achieved [219]). Even if none of ALife’s achievements are considered, at 

the very least the tools and methods created by its practitioners can be used by other fields 

[237].

Unlike biological experiments, every aspect of ALife experiments has the potential of being 

fully controllable [41]. The scientist can also have complete access to every component of the
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simulation and its behaviour over time (i.e. dynamics of evolution) -  yet he need not fear that 

gaining these observations affect the results of the simulation [41, 170]. Every experiment 

can be repeated as many times as the researcher wants [147], and he is at liberty to alter the 

starting conditions, and restart the experiment to see how these affect the system’s behaviour 

[147]. Furthermore, by explicitly modelling evolution using a computer simulation, it is 

possible to view evolution as a computational process, specifically, analyse it from a novel, 

computational perspective, e.g. measure the ‘information’ contained in a population and 

understand how this information eventually is used to increase fitness [147] (in one such 

study by Bergstrom and Lachmann, the fitness value of information of the environmental 

state within the model was calculated [28]. In another study by Chu and Adami, the 

relationship between fitness and mutation rate and the propagation of information within an 

ALife simulation was examined [47]).

Although ALife models often cannot be used to make precise predictions of real world data 

[147, 170], they are very good at displaying a system’s dynamics, and observing the 

conditions and mechanisms that result in unexpected behaviours; thus, can be used to provide 

users with an intuition of the system: which events are normal and which are not [147, 170].

2.2.2 Criticisms of artificial life
Even though ALife is a promising field, it certainly has its share of problems. It is hoped that 

as the field matures, its problems will be resolved.

A common criticism of ALife researchers is that they have been running experiments without 

any clear hypothesis and lacking theoretical frameworks [41]. Indeed, its practitioners have 

been generally accused of not always being very rigorous when it comes to methodology [54, 

223]. This is certainly not made easier by the fact that, as all computational models, ALife 

models are difficult to verify; it is not easy to identify the extent that each of the rules of the 

model contributes to the global behaviour of the system, and whether these rules are based on 

valid assumptions [100, 170]. At times it can also be difficult to explain a system’s 

behaviour: decide whether its behaviour is a result of the model or is caused by unknown and 

irrelevant elements, such as conceptual or programmatic errors [41, 100, 170].

With regards to practical problems, ALife models frequently have to be simplified in order to 

be computationally feasible and for their results to be comprehensible [147]. Furthermore, 

because they are often too abstract, it is difficult to relate their dynamics to the behaviour of 

the real world phenomena they simulate [147, 219].
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In order to do good research in ALife, it may be advisable to follow guidelines on building 

good models (next section). In addition, it has been suggested that cooperation between 

ALife researchers and biologists be made for the work to be biologically significant [100]. 

Finally, whenever possible ALife models should incorporate real world data [100, 170] -  it is 

particularly important to incorporate real world empirical constraints into the model [31].

2.3 Modelling biological systems
2.3.1 Agent-based modelling or equation-based modelling
As briefly mentioned in the introduction chapter, there are two main ways in which 

researchers model complex systems: agent based models (ABMs) and equation-based models 

(EBMs). ABMs comprise many individual agents that encapsulate the behaviours of the 

various components of the system. EBMs consist of a set of equations that are evaluated 

when the model is executed [171]. Although each type of model has its advantages and 

disadvantages, and it cannot be said that one type is superior to the other [41], it seems that 

ABMs are more suitable to modelling systems of the type this thesis is focusing on.

Equation-based models consist of a set of equations that describe the relationship between 

system variables [171]. EBMs capture only the global dynamics of the system, the collective 

behaviour of many elements, and cannot be used to look at individual components of the 

system and their interactions [147, 149, 156, 169, 171]. In order to be solvable, this type of 

model often has to be greatly simplified -  at times, enough that the model becomes 

unrealistic and does not provide any useful insights about its target [147]. EBMs are 

particularly unsuitable when modelling systems which have different hierarchical levels 

[100], spatially distributed phenotypes [41], small populations [221], as well as when there 

are complex, non-linear interactions between components [41]. In fact, according to Taylor 

and Jefferson [221], modelling biological systems using EBMs is completely impractical, as 

even simple models of an organism’s behaviour require hundreds of equations -  a feat 

modem mathematics cannot perform. That being said, an advantage of EBMs is the maturity 

of the supporting mathematical sciences (statistics, dynamical systems theory, etc) [41] as 

well as the availability of several popular tools for constmction and analysis of system 

dynamics models [171].

Agent-based models consist of many individual agents, each encapsulating the behaviours 

that make up the various elements of the system. ABMs enable access to all the components 

and processes of the system: these can be analysed at any given moment [170]. However, like 

EBMs, ABMs also capture the global variables of the system -  these simply emerge from the
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interactions of all components and are not simply calculated; this also makes verification of 

ABMs easier, as there are is more than one level of variables that can be compared [171]. In 

addition, ABMs are not susceptible to the limitations of EBMs mentioned above, and so, can 

be used for a wider range of problems [100].

Construction of ABMs is easier, their usage tends to be more intuitive, and comparing their 

results with their targets is easier [171]. That said, like EBMs, ABMs frequently have to be 

simplified in order to be computationally tractable and for the results to be understandable -  

thus, run the risk of modelling the target incorrectly, and not being able to provide any usefiil 

insights about it [147]. One disadvantage of ABMs is the lack of universal tools for creation 

and analysis, which usually must be developed by researchers independently [157].

ABMs are particularly appropriate for usage in ALife simulations for two reasons. First, since 

ALife experiments attempt to recreate a desired phenomena through the collective 

interactions of many components, ABMs are the perfect match [157]. Second, being able to 

analyse the components and behaviour of the simulation is a primary concern in ALife 

simulations.

2.3.2 On the design of models of biological phenomena
Even though computational models are built and used in many different fields, there does not 

seem to be one methodology which is agreed by all on being the ideal one [233], nor is there 

an agreement on the proper role of models [185]. In fact, there is even no agreement on what 

is meant by the word ‘model’ in science [122]. In her excellent review, Webb [233] surveyed 

seven dimensions which simulation models can vary in and provides a comprehensive 

framework that can be used. This thesis supplements this framework with definitions made 

by other authors. Throughout the thesis, every expansion to the model is thoroughly analysed 

using this methodology. Note that only six dimensions -  those relevant to this thesis -  are 

mentioned; the seventh dimension, ‘medium’, which deals with the physical material used for 

implementation of the model, is clearly only relevant for models that are implemented in 

hardware and not the software models used in this thesis.

Definitions

A model is the representation of a hypothesis underlying an explicit real world phenomenon 

[223, 233]. The model’s hypothesis clearly specifies the components and interactions thought 

to be sufficient to generate the desired behaviour [233]. Thus, by implementing the model, 

the researcher is able to view the consequences of the assumptions underlying the hypothesis
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[41, 233]. If the behaviour of the model is similar to that of the target, then it is reasonable to 

assume that the model’s assumptions are in fact true [157, 233].

Ideally, the model implements the hypothesis and nothing besides, so that the generated 

behaviours can in fact only be attributed to the hypothesis [223, 233]. However, the process 

of implementation normally requires elaborations or simplifications of the hypothesis for it to 

be tractable, and these may not have an underlying theoretical justification, and so, the actual 

model is likely to contain some elements that are not a part of the hypothesis [233].

If the model does not generate the target behaviour, then it is assumed that the underlying 

assumptions are not enough to generate the target; it is possible to alter the assumptions and 

try again [223]. It is important to remember that a model that correctly generates the desired 

behaviour may still erroneously explain the target behaviour for one reason or another -  the 

correctness of the assumptions is not guaranteed [233].

Dimension 1: Biological relevance

This dimension defines the degree in which a model is biologically relevant, meaning, it is a 

model that is useful towards improving our understanding of the modelled biological 

phenomena. These type of models can be used to test hypothesis that are relevant to a 

biological system; however, the extent of which these models can be used to ask questions 

varies: some models aim to represent biological phenomena more or less closely than other 

models, for example, one model makes specific empirical claims about a biological system 

while the other only generally describes its dynamics.

Dimension 2: Level

This dimension describes the hierarchy of processing levels -  the levels of organisation -  that 

the model represents, specifically, the rudimentary elements. Deciding the appropriate levels 

to represent is problem specific -  there is no one ‘correct’ level: levels that provide relevant 

details towards gaining an understanding of the system should be included. However, for the 

purpose of this dimension, it is not crucial that every level is ‘anatomically’ accurate, as long 

as its functionality and behaviour are correctly replicated [208, 233].

Dimension 3: Generality

This dimension describes the generality of the model: the more general a model is the more 

real systems it applies to.
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Dimension 4: Abstraction

This dimension describes the level of abstractness of the model: the degree of which the 

modelled phenomenon’s components and processes are described. A detailed model is less 

abstract. There are advantages and disadvantages for both complex and abstract types of 

models. Complex models are more difficult to implement, understand and verify. However, 

abstract models are in danger of ignoring aspects that are crucial towards understanding the 

system. Segev suggests that complex models are required at first to discover what the 

appropriate simplifications are [202]; it is possible to ‘simplify’ in the ‘wrong way’, 

particularly when the system is not well understood.

Dimension 5: Accuracy

This dimension describes the level of accuracy of the model: whether the mechanisms and 

process of the model mirror those in the real system. When the accuracy dimension of the 

model is high, it can be said the scientific content of the model is justified. Even models with 

some inaccuracies can be biologically relevant, that is, useful towards increasing our 

understanding of the system as long as the erroneous assumptions are well understood. Some 

models that are very inaccurate can still be very biologically relevant [233].

Dimension 6: Match

This dimension describes the degree which the model behaves like the target phenomenon; 

only the behaviour is considered (and not the mechanisms). There are many different ways in 

which a model can behave like its target ranging from being able to produce roughly similar 

dynamics to being able to provide precise predictions. If the target behaviour does not match 

the model’s behaviour then the hypothesis can be rejected or possibly altered; otherwise, the 

underlying hypothesis is strengthened to an extent that depends on the model’s mechanisms 

matching the target’s [233].

2.4 Evolutionary computation
The field of Evolutionary computation (EC) deals with algorithms for solving computational 

problems using principles from evolutionary biology and genetics. Evolutionary algorithms 

(EAs), as these types of algorithms are called, include Genetic Algorithms, Evolutionary 

Programming, Evolutionary Strategies and Genetic Programming [27]. EAs have been shown 

to be among the most flexible, efficient and robust of all search algorithms [68], thus, are 

now used to solve a wide range of different problems [27]. EAs are particularly suitable for 

problems that require programs are adaptive: continue operating even when the environment 

changes (e.g. controlling a robot in a dynamic environment). EAs are also useful for 

researching aspects of evolution and nature [27, 147]. A computational and conceptual



2.4 Evolutionary computation 42

advantage of EAs is their simplicity: incorporating the principles of random variation 

(mutation, recombination) and selection (survival of the fittest) together with reproduction 

effectively defines an EA [147].

There are several principles which are true for all EAs. All EAs primarily deal with search: 

they enable finding a useful solution for a problem within a huge collection of potential 

solutions (called the ‘search space’) [27]; this is accomplished by evolving a population of 

candidate solutions to a given problem using operators inspired by the principles of genetic 

variation and natural selection [12]. The fact that EAs use a population of solutions grants 

them the benefits of parallelism: they effectively search many different parts of the search 

space simultaneously and do not focus on a single point [147]. However, even though they 

are good at global search, EAs are relatively inefficient in fine-tuned local search [238, 245]. 

EAs aim to find a good solution in a reasonable amount of time, but not necessarily the 

optimal solution [147].

2.4.1 When should an evolutionary algorithm be used?
There are many types of search algorithms. Good search algorithms operate by using an 

intelligent strategy in order to pick the next area of the search space to examine [147]. 

According to the no-free-lunch theorem, there is no single algorithm which is on average 

superior to any other algorithm [241]. Consequently, EAs are better for some types of 

problems and worse for others.

There are several situations where EAs are particularly appropriate:

When the search space is large and is not perfectly smooth or is not well understood. In 

such situations, EAs are appropriate since they do not need additional information -  

unlike other types of search algorithms which require a lot of additional information to 

work properly (e.g. gradient techniques need derivates) that may not be available or is 

difficult to obtain [68, 238, 245]. In other situations, EAs may not do as well as other 

search algorithms.

When the fitness function is noisy.

When the global optima is not required, and a good solution will be sufficient [147].

When it is less crucial to understand the way which the evolved solution works. Evolved 

solutions often have a lot of irrelevant components [147]; consequently, it may be very 

hard to understand how they work. When it is crucial to understand the operation of the 

solution (e.g. for medical applications), EAs are probably not the best choice.
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2.5 Genetic algorithms
Genetic algorithms (GAs), which were invented by John Holland in the 1960s and 1970s 

[86], are search algorithms based on the principles of natural selection and natural genetics 

[68]. GAs operate by balancing exploration (discovering new components of solutions) and 

exploitation (usage and incorporation of the known components) [147]. GAs are probably the 

most widely used of all of the evolution based search algorithms [27], and are known for their 

ability to deal with many types of optimisation problems and produce excellent results [27, 

68, 86].

GAs, like other evolutionary algorithms, require maintaining a population of candidate 

solutions. Each of the potential solutions has a genotype, which encodes all the traits of a 

phenotype in genes. Using a fitness function, every candidate solution is assigned a fitness 

value. This value assesses the quality of the phenotype for the purpose of the solving the 

problem; it is crucial that the fitness function accurately determines the quality of the 

phenotype [147].

The operation of the GA starts by generating an initial population of random candidate 

solutions. The candidate solutions are then evaluated using the fitness function: the fitter ones 

are kept, while the unfit ones are removed. The solutions that remain are allowed to 

reproduce, and using the genetic operators of mutation and crossover, create new offspring to 

maintain the population [147]. This process is called a generation, and is repeated a number 

of times, often between 50 and 500. As long as the selection criteria relate to actual fitness, 

there will be selection pressure towards areas in the search space with increasingly better 

solutions [27, 147].

A genetic algorithm is a type of a complex system; the genetic operators and the various 

parameters of the system interact nonlinearly to generate the global behaviour of the GA. 

Although GAs are conceptually simple, their behaviour is complicated, and understanding 

how they work, and what type of problems are appropriate is still unresolved [147].

2.5.1 Encoding a candidate solution
A candidate solution is frequently implemented using bit strings, but other encodings, such as 

real numbers or characters, can also be used when more appropriate (e.g. when evolving the 

weights of neural networks) [147]. Fixed-length, fixed-order, binary encodings are the most 

common encodings for GAs. This has mainly been the case for historical reasons: a large 

portion of GA theory, such as the Schema theorem, is based on the assumption of using these 

encodings [147] (however, Schema theorem has been extended later on to include real
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numbers encoding as well [243]). The way in which candidate solutions are encoded is 

extremely important and may in fact be the most important element that affects the success of 

the GA [147].

It is also possible to adapt the encoding: instead of using a fixed size genome, its size can 

grow or shrink as needed. This approach has a lot of potential, since it enables evolution to 

find the ideal size for the genome. However, there are also some disadvantages: the genome 

may grow extremely large [147].

2.5.2 Fitness landscapes
It is possible to create a visual representation of the entire space of genotypes with their 

corresponding fitnesses: this is called a fitness landscape. It can be said that a GA is a method 

for searching fitness landscapes for highly fit strings [147]. For problems with very ‘hilly’ 

fitness landscapes, finding the globally optimal solution (the highest peak) can be very 

difficult [27] since it is possible to be trapped in a local optima -  a candidate solution whose 

immediate neighbours are all worse than it is -  and thus, not be able to find the global optima. 

However, the fact that GAs (and other EAs) use a population of solutions decreases the 

likelihood of this occurring [68].

For most types of problems GA deal with, the fitness landscape is static; this is biologically 

unrealistic -  in the real world, the fitness landscape cannot be separated from the organisms 

that inhabit it [147]. That said, for some problems, particularly for those where the quality of 

one solution affects the fitness of the others (such as ecological simulations), the fitness 

landscape constantly changes.

2.5.3 Genetic operators
The simplest form of a genetic algorithm has at least three operators: selection, crossover and 

mutation. However, some problems require creating custom operators. Deciding which 

genetic operators to use and how to implement them greatly depends on the encoding of the 

problem [147].

It is very important that the effect of genetic operators is not too disruptive: the phenotypes of 

generated offspring should not be too dissimilar from their parents’ phenotype [27]. In 

addition, enabling the GA to adapt its own rates of mutation and crossover, as well as other 

parameters and aspects of selection (such as the population size) during a run has the 

potential of improving its effectiveness [147]. See section 4.2 for a more thorough discussion 

of these issues.
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Selection

Selection determines which candidate solutions in the population are selected to reproduce -  

create offspring for the next generation -  and the number of offspring created. The purpose of 

selection is to allow the fit solutions to survive; the fitter the solution, the more likely it is to 

be selected. Selection has to be carefully balanced: too strong a selection will result in a loss 

of diversity and convergence on a local optima, too weak a selection will result in slow 

evolution. Selection works on the phenotypes and not on the genotypes -  it does not ‘care’ 

how a trait is encoded [147].

There are many types of selection methods, including but not limited to:

Tournament selection: two individuals are randomly chosen from the population, and at a 

predefined probability, one of them is selected to reproduce. This is repeated until the 

number of necessary offspring is created [69].

Rank selection: the fitnesses of the candidate solutions are sorted, and each is given a 

rank. The rank effectively becomes its new fitness. The advantage of this method is that it 

prevents premature convergence. Its disadvantage is that it eliminates the relative 

differences in fitness, which may be large [147].

Elitism: in every generation, some of the best individuals are kept [53]. 

Fitness-proportionate selection: every candidate solution is given a probability of being 

selected to reproduce directly related to its fitness. This method is very popular, but can 

decrease variability and as a result can often result in premature convergence [86].

I

Parent 1 0 1 0 1 0 1 I 0 1 0 1 0
1

Parent 2 0 0 0 1 1 1 1 1 0 0 0 0
1
1

Offspring 0 1 0 1 0 1 1 0 0 0 0
(after one point

crossover)

Fig. 2.3: Example of one-point crossover.

Crossover

Crossover causes the exchange of genetic material between the two parents. The conventional 

theory of GAs states that the power of GAs is derived by recombining good ‘building blocks’
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of solutions to form better solutions, thus, it is believed that crossover is a primary reason 

why GAs are successful [147]. Single point crossover is implemented by selecting a random 

crossover point, and the before and after parts of the two parents are exchanged and form two 

new offspring. Two point crossover works in a similar way, except two crossover points are 

selected. See fig. 2.3 for an example of crossover.

Mutation

Mutation randomly changes the value of some of the genes of a solution; every gene has a 

probability, normally very small, of being mutated. When genes are represented using bit 

strings, mutation is normally done by flipping a bit (see fig. 2.4 for an example). When genes 

are real numbers, a Gaussian function changes the value of the number or a new value is 

randomly created. Holland suggested that the role of mutation is to prevent diversity loss for 

a given gene, thus, it is significantly less important than crossover [86]. However, other EC 

methods, such as evolutionary programming use mutation without crossover [147], and so, 

evidently for some systems the role and importance of the mutation operator are different.

Parent 0 1 0 1 0 1 0 1 0 1 0

I
Offspring 0 1 0 1 0 1 1 1 1 0 1 0
(after m utation)

Fig. 2.4: Example of mutation

2.6 Artificial neural networks
Artificial neural networks (ANNs) are distributed computational models with the ability to 

learn or adapt, whose operation is based on parallel processing [113]. Neural networks are 

particularly useful in areas where conventional programming fails since it requires possessing 

a complete understanding of the problem which many times is unavailable [2]. Neural 

networks have been useful in many areas, including vision, speech recognition, neurocontrol, 

classification, handwriting analysis and more. A particular advantage of neural networks is 

their ability to generalise -  produce reasonable outputs for inputs that were never encountered 

during training [77]. Neural networks were partially inspired by the ability of the brain to 

make complex decisions quickly despite the slow speeds of biological neurons [151]. That 

said, neural networks are only loosely based on biological nervous systems; there are many 

biological complexities which are ignored [151].



2.6 Artificial neural networks 47

Input Layer

Hidden Layer

Output Layer

Fig. 2.5: A sample neural network with 6 input units, 3 hidden units and 2 output units.

An artificial neural network consists of many simple, interconnected, processing units [77], 

which communicate by sending signals to each other through numerous weighted 

connections [113]. A neural network can be viewed as a layered network. It has an input 

layer, which contains input units that receive signals from outside the network. It has an 

output layer, which contains output units that send signals out of the network. In between, it 

has one or more hidden layers that contain hidden units whose input and output signals stay 

within the network (see fig. 2.5 for a sample neural network). It has been shown that a single 

hidden layer suffices to approximate any function with many discontinuities to arbitrary 

precision as long as the activation functions of the hidden units are non-linear [76].

Feed-forward networks are neural networks with no closed loops [2], meaning, the data flow 

is one directional: units receive their input from the immediately preceding layer and send 

their output to units in the immediately succeeding layer. In such networks there are no 

connections within the same layer [113]. This type of network can be fully connected; in this 

case, every input unit is connected to every output unit [2], or they can be partially connected 

-  some connections are missing [77]. A recurrent neural network is similar to a feed-forward 

network, but the flow of the data is bidirectional: it may have at least one feedback loop, 

meaning, it may have at least one unit whose output connects to input of a unit from the same 

or a preceding layer -  or even itself [2, 77].
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This process of learning in neural networks, which is normally called ‘training’, requires that 

the weights of a network, which is where the knowledge is stored, are altered in order to 

achieve a particular function [2, 77]. There are three paradigms of learning: In supervised 

learning, the network is trained by a ‘teacher’, which provides it with a set of inputs and 

matching outputs in order for it to learn to associate patterns of the inputs with patterns from 

the outputs [2]. In unsupervised learning, the network discovers complex, yet statistically 

persistent, features in the input data which it has been trained on without requiring a teacher 

[2, 77]. In reinforcement learning, the network learns to associate a set of inputs with the 

appropriate set of outputs without requiring a teacher; this task is accomplished through 

continued interaction with the environment in order to minimise a measure of the 

performance of the network [77].

Back-propagation is a popular training algorithm for supervised learning [194]. When using 

this method, the neural network is presented with a set of input data and the corresponding 

desired responses. The weights of the network are altered in such a way as to minimise the 

differences between the desired response and the actual response produced by the network. 

This procedure is repeated many times, until there are no further significant changes in the 

weight values. This way, the network learns by creating an input-output mapping for the 

presented problem [77]. Although back-propagation is a very powerful technique, at times it 

does not always work. For instance, when the network is trapped in local optima and is never 

able to escape and find the global optima (this can happen if the error function is multimodal 

or non-differentiable) [147, 245]. An additional limitation of this algorithm is the necessity of 

having a teacher [147].

A neural network can also be trained by evolution. Using evolutionary algorithms, the 

network weights and topology can be evolved [147]. This type of training has its own set of 

advantages and disadvantages (see next section).

2.7 Evolving artificial neural networks
Standard training algorithms for neural networks, such as back-propagation, have many 

limitations; using evolutionary algorithms, such as genetic algorithms, it is possible to 

overcome many of these. It is, therefore, unsurprising that there has been a lot of work on 

using evolutionary algorithms to evolve neural networks. The evolution of neural networks 

using genetic algorithms (also called Neuroevolution [70] and Evolutionary Artificial Neural 

Networks [245]) is a useful method of combining the benefits of evolution with learning.
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2.7.1 Aspects of neural networks that can be evolved
There are several ways in which genetic algorithms can be used to evolve aspects of neural 

networks.

Evolving the connection weights

It is possible to evolve the values of the connection weights of a neural network [147, 238, 

245]. One benefit of this process is that it enables training of neural networks without 

requiring differentiable or continuous error functions -  or even that there is an error function 

at all; therefore, it is less likely to become stuck at local optimas and more likely to find a 

good global solution [245]. Additionally, the network does not require a ‘teacher’ to supply it 

with pairs of inputs and matching outputs.

Evolving the network’s architecture/topology

It has been shown that altering the structure of a neural network affects its functionality, 

particularly its speed and accuracy of learning; however, it is difficult to determine the ideal 

architecture of a neural network for the problem at hand, and there is no systematic way to 

find it [147, 215, 245]. This can be solved by evolving the network’s topology; it is possible 

to evolve any parameter related to the structure of the network, including: number of units 

(hidden, input), number of layers, connectivity of the network (number and location of 

connections, and whether to include recurrent connections), as well as the activation function 

of potentially every hidden and output unit in the network [147, 238, 245]. See fig. 2.6 for an 

example of an encoding of a network’s topology.

Many methods are limited to evolving only the connection weights and the connectivity of 

the network and do not evolve other aspects (such as the number of units or layers) [214, 238, 

245], Other methods enable the evolution of most or all aspects. It has been shown that 

evolving both structure and weights greatly improves performance since finding a suitable 

structure decreases the dimensionality of the search space of connection weights [215].

Evolving input features

The possible inputs a neural network receives can be potentially very large. However, it is 

possible some are redundant or unimportant. By determining through evolution which inputs 

to consider, performance can be improved and the network size reduced. An interesting 

benefit is that the researcher also discovers which input features are important and which are 

not [238, 245].
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B
start unit

aid unit' 1 2 3 4 5 6 7 8

1 0 0 0 0 1 1 0 0
2 0 0 0 0 0 1 0 0
3 0 0 0 0 1 0 0 0
4 0 0 0 0 1 1 0 0
5 0 0 0 0 0 0 1 0
6 0 0 0 0 0 0 1 1
7 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0

G enom e: 00001100 00000100 00001000 00001100 00000010 00000011 00000000  00000000

Fig. 2.6: An example of an encoding of a network’s topology. (A) The network’s 

structure and connectivity. (B) The connectivity matrix (1 indicates units are connected) 

(C) The final genome.

Evolving learning rules

Traditional neural network training algorithms use a learning rule that determines how the 

weight updating takes place. There are many possible weight updating rules with many 

variations (different value for the rate of learning parameter, using momentum, etc). 

Choosing the right rule can greatly improve the learning ability of the network. Instead of 

empirically searching for the ideal value, it is possible to use a genetic algorithm and evolve 

the learning rules; this can greatly facilitate the process [147, 245].

In addition, modular neural networks/ensembles can be evolved (see section 7.1).

2.7.2 Additional considerations
There are several additional issues relevant to the decision whether the evolution of neural 

networks should be used or not.

Generality

One advantage of using genetic algorithms is that it is possible to evolve different types of 

networks (recurrent, feed-forward) using the same algorithm [245].

Special elements

It may be desirable that the training of the network includes additional elements. By
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incorporating special elements into the fitness function, it is possible to affect their training in 

a way that takes these elements into account [245]. For example, by including the size or 

complexity of the network in the fitness function, it is possible to bias the search so that it 

will look for particularly small networks.

Initial conditions

Evolutionary algorithms are less sensitive to initial conditions than standard training 

algorithms [245].

Speed

Several studies show contradictory results whether evolving networks is faster than standard 

training methods, it seems there is no clear winner in terms of the best training method, and 

that the best method is always problem dependent [245] (an unsurprising conclusion 

according to the no-free-lunch theorem [241]). That said, since evolutionary algorithms are 

relatively inefficient in fine-tuned local search but are good at global search [238, 245], and 

traditional training methods are not ideal at finding global solutions, hybrid methods that 

combine the advantages of both appear to be ideal [238, 245]: the GA is used for global 

search, and a standard method is initialised with the results found and performs the local 

search [245].

2.7.3 Encoding and genetic operators
There are several issues regarding the encoding and genetic operators to consider when 

evolving neural networks, in addition to those mentioned in section 2.5.1 on encoding a GA.

Encoding: when evolving topology

When a network’s structure is evolved, the decision how to encode the network’s genome 

becomes significant. There are two different ways in which a network can be encoded:

(a) Direct encoding: using this encoding, every aspect of the network is specified in the 

genome. One disadvantage of this encoding is its scalability: when evolving very large 

networks, the genome becomes very large, and consequently, the search space is likely to 

be intractable [216]. An additional disadvantage is that repeated structures cannot 

normally be reused, thus, they effectively have to be continuously rediscovered by 

evolution [147]; for example, attempting to evolve the shape of a hand with five digits 

would be very challenging using direct encoding as each digit would have to be evolved 

separately -  a far more sensible approach would be to evolve the design for one digit and 

allow evolution to reuse it (see next item). Note that using custom operators, it is possible 

to enable some reuse of structures -  this is demonstrated in chapter 7.
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(b) Indirect/developmental encoding: using this encoding, the network is generated using 

developmental rules which can be evolved. Unlike direct encoding, the information that 

is encoded does not specify every trait in the network explicitly but rather specifies the 

information required in order to construct the network. The advantage is that the genome 

can be very compact because not every unit and every connection are described [215, 

245]; this is also more biologically plausible [216, 245]. Additionally, this method 

enables structures to be reused [147]. There are several disadvantages: the connectivity 

patterns generated by this method are not very accurate [245] (because the genome only 

describes the manner in which the phenotype is created, unlike direct encoding where a 

complete and precise description of the phenotype is encoded in the genome), and 

because the generated phenotypes do not map directly to genotypes, they can affect the 

search in unpredictable ways [215].

It was shown that direct encoding is at least as good as indirect encoding with regards to the 

creation of smaller neural networks [209].

Genetic operators

Deciding how to implement the search operators (mutation, crossover), and whether to add 

custom operators, can have a very large effect on network training [245], and the evolvability 

of the phenotype [196]. The choice of search operators greatly depends on the representation 

used and on the aspects of the network that can be evolved; certain search operators are more 

suitable than others for some representations [215]. See section 4.2 on evolvability.

Crossover problem: competing conventions

One consistent problem when evolving neural networks is the competing conventions 

problem, also called the permutations problem: during the evolution of neural networks, 

when two genomes that represent identical networks (in terms of solution) that are encoded 

differently cross over, the offspring is likely to be unfit [215, 238]. This problem occurs 

because the networks represent the solution differently: the same genes (same position in the 

genome) may express different traits, and the same traits may be in different locations of the 

parent genomes. Thus, crossover would disrupt the functionality of the offspring: its structure 

may have duplicated traits or omitted traits -  with both variants being unfit [215, 238].

In order for crossover to work, it is crucial that the right genes are crossed over with their 

counterparts [215, 238]. Some methods solve this problem by eliminating crossover 

completely, and only using mutation [238], others use historical information that keep track 

of related genes, and so, know which genes to pair together during crossover [215], and
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others identify functional aspects of units in order to be able to perform intelligent crossover 

[153]. Regardless of the mechanism, the important element remains the crossing over of 

related genes [238].

2.8 Summary of chapter
This chapter reviewed the field of complex systems, with a particular focus on hierarchical 

complexity. The result of this review indicated that although it is a well known fact that 

complex systems in the real world tend to be hierarchical, scientific models rarely incorporate 

this aspect, furthermore, a systematic investigation of the interactions that occur between 

different levels of a hierarchical complex system model has never been performed. Indeed, 

the importance of these interactions, which were labelled ‘complex interactions’, was further 

reaffirmed by a survey of work conducted in many different fields that has repeatedly shown 

that often the overall behaviour of hierarchical complex systems is dependent on complex 

interactions.

Since a systematic exploration of complex interactions has never been conducted, the work in 

this thesis introduces Mosaic World, a hierarchical complex system model that comprises a 

population of evolving neural network agents, for the investigation of complex interactions.

In order to understand the context and usefulness of such models, and be able to create one 

which correctly accomplishes its aims, a review of the field of artificial life, and a useful 

methodology for the design of models of biological phenomena, were presented. The rest of 

the chapter surveyed the practical matters involved in the creation of Mosaic World. Thus, a 

description of the usage of neural networks and genetic algorithms was given, and an 

evaluation of the issues -  advantages and disadvantages -  involved with the evolution of 

neural networks using genetic algorithms was provided.
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Chapter 3 

System: Mosaic World

3.1 Introduction
In order to explore complex interactions, a model that possesses the necessary characteristics 

must be created and investigated. This chapter introduces Mosaic World, a hierarchical 

complex system model that can be used for the investigation of complex interactions as well 

as for the exploration of other computational and biological hypotheses.

3.2 System overview: concept and goals
The investigation of complex interactions required that a hierarchical complex system model 

is created. This could be accomplished by selecting a hierarchical complex system seen in 

nature and systematically modelling its components across all levels. Although this approach 

would result in a model which possesses many complex interactions that could be 

investigated, it was determined that it would be too limiting in terms of the range of possible 

interactions and hypotheses that could be explored. Thus, in the early stages of the project it 

was decided to select several interesting biological systems and universal principles for 

modelling; in this type of model, every part is biologically plausible, however, the overall 

model is only partially accurate from a biological point of view. On the other hand, such a 

model enables investigating a much larger range of interactions and hypotheses, and so, its 

computational and biological relevance and overall usefulness is considerably greater. This is 

justified because the model is biologically relevant -  its results are plausible and realistic -  

consequently, it is mostly irrelevant that the model is not biologically accurate in its entirety 

(this viewpoint is supported in Webb’s review [233]). More importantly, since the ultimate 

goal is the detailed investigation of complex interactions in a hierarchical complex system, 

the precise nature of the overall system is of secondary importance.

As a result, several versions of Mosaic World have been used for the work described in this 

thesis. The initial version is described in this chapter. Additional versions are expanded and 

examined in later chapters. All versions of the model are hierarchical complex systems that 

enable the exploration of the interactions that occur between the various levels of the model 

and the examination of interesting hypotheses. That said, the more advanced versions are 

more hierarchical than their predecessors, and as a result, the study of complex interactions 

becomes more informative in the later versions (and later chapters) as the hierarchical 

complexity of the model is incrementally increased.
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The visual environment is a suitable environment for modelling. Although this may not be 

immediately obvious, the stimuli that the visual system receives are inherently ambiguous. 

This ambiguity is a result of the unknown contributions of the three elements that make up 

the visual stimuli: the reflectance of the viewed objects, the quality of the illumination and 

the effect on the passing light of the surrounding medium. Thus, because the visual system 

has no direct way to ascertain the source of the image, it can be argued that disambiguating 

the received stimulus is the most basic challenge of all visual systems [131, 132, 133, 182]. 

For this reason, a visually ambiguous environment is an appropriate context for the study of 

complex interactions, and also provides a useful model for exploring other interesting 

computational and biological hypotheses.

Therefore, the initial version of Mosaic World (which is equivalent to the system described in 

[197]) was created and is described in this chapter; note that this version is used for the 

studies described in chapters 4, 5 and 6 -  though each of these chapters required several 

additional minor features whose proper place is in the relevant chapter and not here. This 

version of Mosaic World consists of a two dimensional grid of coloured surfaces under one 

or more simulated light sources, and aims to emulate key characteristics of natural scenes. 

This environment is inhabited by virtual agents, ‘critters’, that survive by consuming positive 

resources and avoiding negative resources. Every surface’s value is determined from its 

reflectance -  its colour. Every critter starts out with a certain amount of energy and dies if it 

runs out of energy. The critter population is maintained by the critters themselves; critters can 

reproduce both sexually and asexually. Critter behaviour is determined using a modified 3D 

feed-forward neural network.

Mosaic World naturally comprises many levels of abstraction: genes, neurons, receptors, 

networks, critters, population and species; figure 3.1 illustrates the object model of the initial 

version of Mosaic World. The construction of Mosaic World enables the investigation of 

interactions between components at each level, and between levels, see figure 3.2. In 

subsequent chapters, the model will be expanded and interactions table updated accordingly. 

These interactions and their effects on the overall system are investigated by presenting a 

series of challenges to Mosaic World, each designed to affect key interactions within the 

system and enable their study. Note that the exploration of complex interactions includes not 

only these key interactions, but also the cascade of interactions that takes place in the system, 

across its various levels, following the original perturbation.

3.2.1 The methodology behind the initial version of Mosaic World
In this chapter, the methodology behind the initial version of Mosaic World is examined



3.2 System overview: concept and goals 56

using Webb’s methodology for the design of models of biological phenomena (which was 

introduced in section 2.3.2). Subsequent chapters will examine the additions to the model.

Recepti
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NetworkCritter

Environment

Neuron Neuron Neuron

Population

Fig. 3.1: Object model of the initial version of Mosaic World
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Fig. 3.2: Major interactions within the initial version of Mosaic World. For example, the 

critter—̂ environment interaction denotes the depletion of the environment whereas the 

environment—>critter interaction refers to the critter’s consumption of the environment.
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Before the methodology is examined, it is important to emphasise that Webb’s framework 

provides guidelines for the construction of good models rather than presents a list of 

statements that determines what a good model is and what is not; in fact, there is no single 

description of a model that is universally agreed to be ideal [233]. Furthermore, many of the 

criteria are subjective and so, cannot be objectively quantified and judged: how does one 

decide whether model X is more ‘accurate’ than model Y when their results are not numeric? 

Or more ‘biologically relevant’? Or whether the selection of ‘abstraction’ and ‘levels’ is 

indeed appropriate to the problem? Many times there is no way to determine whether the 

choice has been appropriate or not, the only thing one can do is provide good reasons for 

one’s choices and back these with real data when available.

Biological relevance: the initial version of Mosaic World utilises three main biological 

metaphors.

The primary biological metaphor used is a generic simple ecosystem. An ecosystem consists 

of a community of organisms together with its physical environment; thus, the community 

processes (reproduction, predation, etc) are strongly related to the physical environment [23]. 

In this case, the visual environment serves as the underlying context and as the resources 

available for the critters, the inhabitants of the ecosystem. In this ecosystem there are many 

types of resources, and one type of organism which has the potential of speciating into 

different species; however, all critters must be herbivores (at this stage). Therefore, the 

dynamics of the evolving ecosystem should resemble the dynamics of natural ecosystems.

In addition, the biological metaphor used for the environment is an abstract visual 

environment, and the critter visual system is based on biological cone photoreceptors. The 

usage of such an environment forces evolving critters to deal with one of the most 

fundamental challenges faced by all organisms which rely on vision, namely the inherent 

ambiguity of visual information. The usage of this visual system increases the likelihood of 

biologically relevant results (and this is indeed the case, as the ‘match’ section shows).

Therefore, this version of the model is biologically relevant because:

• it can be used to examine complex interactions. This claim is backed in all the data

chapters (ch. 4-8) where a complex interactions analysis is performed.

• it can be used to examine hypotheses that relate to visual evolution (shown in ch. 5).

• it can be used to gain insights about simple ecosystems (demonstrated in ch. 6),

• it can be used to examine other computational and biological hypotheses (in ch. 4 it is

used to explore evolvability).
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Level: in this version the model consists of several levels: genes (level 1), neurons and 

receptors (level 2), networks and critters (level 3), population and species (level 4). This 

selection of levels was chosen in order to provide a sufficient initial framework for exploring 

complex interactions while creating a realistic challenge for evolution that is not easy but not 

prohibitively difficult. Although even in this version the system is hierarchical and thus, 

useful for exploration of complex interactions, the study of complex interactions becomes 

increasingly more informative as the number of levels increases. Such an increase in 

hierarchical complexity occurs in chapters 7 and 8.

Generality: the main purpose of the model is the investigation of complex interactions which 

can be achieved using many types of hierarchical complex system models, and does not 

require modelling a specific biological system. Furthermore, as stated in section 3.2, the fact 

that the model was designed to enable the investigation of a large range of hypotheses, and 

does not focus on a single biological system, suggests that it is general and not specific. That 

said, the model can be used to examine many specific hypotheses.

Abstraction: the modelled ecosystem, visual environment and critter visual system can be 

said to be fairly abstract. Although many aspects of the real world have been modelled -  and 

as the accuracy section discusses, these features are based on real world mechanisms -  clearly 

many aspects have been omitted. The rest of the model can be said to be complex. Since this 

thesis deals with the investigation of complex interactions within a hierarchical complex 

system, the minimal hierarchical complexity of the model has to be relatively high (thus, in 

ch. 9 it is shown that a minimum of 6 levels was necessary in order to obtain all the insights 

discovered in this thesis).

Accuracy: although the model is relatively abstract and does not describe complete real 

world mechanisms, the aspects that are based on the real world are accurate. As stated at the 

beginning of this section, it is difficult to back this claim; the only way to do so is describe 

the model’s mechanisms that are used and show their similarity (and point out the 

differences) to the real world phenomenon that is modelled. This will be done in the 

following chapters as well. The following aspects are based on natural phenomena:

• the model’s ecosystem is based on real world ecosystems (as discussed in the 

‘biological relevance’ section).

• the abstract visual environment is strongly based on the visual characteristics of the 

natural environment, including: the usage of the human visual spectrum, the 

implementation of multiple illuminants, environment and perceived stimuli.

• The critter visual system is based on the biological cone photoreceptor.
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In addition, a caveat which applies to many computational models applies here as well: the 

algorithm for artificial neural networks used is based on a standard feed-forward artificial 

neural network and not on the biological neural network.

Match: in the next chapters, the behaviour of the model will be compared with the behaviour 

of the real world phenomena it aims to capture. That said, it can be said that the version of the 

model described in this chapter matches the real world behaviours that it aims to capture 

because its generated behaviours are similar to the behaviour of the target phenomena. 

Therefore:

• In chapter 5, it will be demonstrated that the evolved visual systems are not only 

similar to biological visual systems, but also utilise mechanisms reminiscent of those 

used in nature.

• In chapters 6, it will be shown that the model’s ecosystem greatly resembles many 

real world behaviours that are examined in the chapter.

3.3 Definitions
Three elementary concepts are frequently used in this thesis: reflectance, illumination and 

stimulus.

3.3.1 Reflectance
Real world objects have a reflectance: a physical constant which determines the percentage of 

light the object reflects for any given wavelength [225]. In Mosaic World, every object has a 

reflectance function: the percentage of reflected light in the human visual range (400nm to 

700nm [182]) that the object reflects. This is modelled using 31 real numbers between 0 and 

1, each representing the percentage of reflected light for a specific wavelength in increments 

of lOnm.

Although in some experiments the values of all wavelengths are randomly determined, in 

most experiments only 7 wavelengths are randomly created (referred to as the 7 major 

wavelengths: 400,450,500,550,600,650,700nm) -  all other wavelengths are linear 

combinations of the two major wavelengths around them (e.g. 460nm =

0.8*450nm+0.2*500nm). This was done in order to generate a set of possible reflectance 

values that is very large, yet is not too large to be computationally impractical. A sample 

reflectance is illustrated in figure 3.3.
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Fig. 3.3: a sample reflectance; a reflectance can be defined using 31 real numbers that 

describe every wavelength between 400 and 700nm in increments of lOnm.

3.3.2 Illumination
Illumination is the light that shines on a scene [182]. In Mosaic World, every object has an 

illumination function: the intensity of the light source (in the human visual range) that 

reaches the object. This is modelled using 31 real numbers between 0 and 1, each 

representing the intensity of the light for a specific wavelength in increments of lOnm. 

Essentially, this defines the colour of the light source.

The values of the illumination function are generated precisely the same way as the 

reflectance function -  in most experiments, only the 7 major wavelengths are randomly 

generated; however, an additional limitation is that illumination intensity values are normally 

limited to values between 0.2 and I (to avoid creating environments that are often too 'dark' 

for recognition).

3.3.3 Stimulus
As in natural environments, the perceived stimulus for every object is determined by the 

relative contribution of its reflectance and the shining illumination (in the human visual 

range). Note that, similarly to the real world, there is no direct way to discern the underlying 

reflectance and illumination. See fig. 3.4 for visual examples of the creation of stimulus using 

reflectance and illumination.
700

Sf(0 = Z Re©tf( 0  (3-D
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Where St(i) is the stimulus value of wavelength i, Re (i) is the reflectance value of 

wavelength i and Il(i) is the illumination value of wavelength i.
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Fig. 3.4: Three examples, each displaying a set of 3x3 reflectances that are illuminated 

by a 3x3 varied light source; the result is a set of 3x3 stimuli.

3.4 Environment
Mosaic World’s environment is a 2D grid that consists of a customisable number of surfaces, 

normally a 100x100 (empirically determined to be a sufficient size that is computationally 

feasible). One or more simulated light sources of various qualities and sizes illuminate the 

surface matrix. A number of holes are present in the world. Nothing exists beyond the edges 

of the world; a critter that attempts to move more than one surface away from the edges dies 

instantly.

3.4.1 Surfaces
Surfaces are the most fundamental element of Mosaic World. Every surface has a reflectance 

function which determines the way it reflects simulated light, and a resource value which 

determines its behavioural significance: the energy it grants or detracts from a critter that 

consumes it.

Surfaces are the critters’ source of nourishment. Critters ‘eat’ the constituent wavelengths of 

a surface’s reflectance function. When a critter takes a ‘bite’ out of a surface, every 

wavelength in the surface’s reflectance function is decreased by the bite size; if a bite reduces
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a wavelength to a negative value, it is instead set to zero. This implementation was chosen 

because it was reminiscent of natural consumption: a critter may only eat the wavelengths 

that are actually there.

A surface’s current resource value depends on the percentage of wavelengths that remains 

from its maximum value. As it is consumed, a surface’s resource value diminishes and it also 

becomes increasingly transparent, eventually becoming invisible. The value of a surface that 

has been completely consumed is zero. For example, if a surface that has a maximum 

resource value of 30 has 50% of its constituent wavelengths eaten, its current value is 15; if 

the surface’s maximum resource value is -30, after being consumed its value becomes -15.

Mosaic World uses two methods to determine a surface’s resource value: dynamic value 

function and predefined value function. Both are used in different types of experiments.

Dynamic Value Function

This value function operates by assigning a value for every wavelength in the visual 

spectrum; normally this is determined using a linear function (equation (3.2)); this essentially 

defines the behavioural ‘worth’ of a wavelength. The surface’s value is calculated by 

summing the multiplication of every one of the wavelengths that constitute its reflectance 

with its behavioural value (equation (3.3)). By altering the values of a and b in equation (3.2), 

different values can be assigned for equivalent surfaces. Note that using this type of value 

function, some wavelengths are worth significantly more than other wavelengths. In fig. 3.5, 

a sample value function is illustrated; using this value function, the value of the reflectance 

displayed in fig. 3.3 is -17.43, thus, when such a surface is consumed, it detracts energy.

)0

Fig. 3.5: A sample value function. In this example, a = -1.1666 and b = 17.5. The chart 

illustrates how much every wavelength contributes to the surface’s overall value
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In addition, complex value functions can be created by using different functions for 

describing individual wavelengths -  this means that equation (3.2) is replaced with other 

functions.

V(i) = a ( i ~ 400) +b (3.2)
10

Where V(i) is the behavioural value of wavelength i using the value function, and a and b are 

predefined constants.
700

S =  £R e(i)K («) (3.3)
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Where S is the surface’s value, Re(i) is the reflectance value of wavelength i, and V(i) is the 

behavioural value of the wavelength.

This type of value function has been adopted because it provides a useful model of natural 

phenomena: using this function, similar colours have similar values, and different colours 

normally have different values as well. Furthermore, it assigns different values to different 

wavelengths, and thus, may encourage critters to evolve strategies that require them to 

identify specific wavelengths, which is a desirable goal because it may enable comparison of 

evolved visual strategies with their natural counterparts. Last, another appealing advantage of 

this value function has been the fact that every surface is likely to possess both positive 

wavelengths and negative wavelengths, with the overall value dependent on the proportions 

of each; this enables creating surfaces with extremely diverse value structures: e.g. the 

following surfaces are all equivalent and are equal to zero: (i) a surface with few short 

wavelengths (400nm, highly positive) and many long wavelengths (600nm, mildly negative) 

(ii) a surface with many medium wavelengths (500nm, mildly positive) and few very long

wavelengths (700nm, highly negative) (iii) a surface with a uniform amount of all

wavelengths.

Predefined Value Function

This value function operates by simply assigning a predefined value for every type of surface 

(e.g., the value of red is 25, the value of blue is -25). The types of wavelengths have to be 

predefined and given a specific characteristic reflectance. A consumed surface’s current value 

is worth the percentage of wavelengths that remain, multiplied by the maximum surface 

value. For example, if 80% of a red surface’s wavelengths have been consumed, and its 

maximum value is 25, the surface’s current value is 5.

This value function is useful but only infrequently used (specifically, in the colour vision 

experiments -  chapter 5); even though it offers far greater control than the dynamic value
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function -  similar colours can have radically different values, and different colours can have 

identical values -  there is a serious limitation to this mechanism: all the possible colours have 

to be predefined and a specific value must be assigned. This is a serious constraint, since 

some of the environments used in experiments have thousands of randomly defined shades of 

colour. Thus, this value function is suitable for experiments that require only a small number 

of colours.

Fig. 3.6: A demonstration of surface regeneration: this image shows the trajectory of a 

critter that consumes all surfaces in its path. The coloured squares are surfaces, and the 

white square outlined by blue is a critter. The less that remains of a surface, the more 

transparent it is. As can be seen, the surfaces the critter recently consumed have not 

regenerated whereas the surfaces it consumed a while ago are almost fully restored.

Regeneration

A surface that has been consumed slowly regenerates; this is necessary -  otherwise, the 

environment will quickly run out positive resources and the population will become extinct. 

Two parameters affect regeneration: regeneration speed determines the amount of time steps 

between intervals of regeneration and regeneration rate determines the percentage of a 

wavelength’s maximum value that regenerate during an interval of regeneration. The value of 

the surface that regenerated depends on the wavelengths that actually grow. See fig. 3.6 for a 

visual demonstration of surface regeneration.

Surface display

There are two modes of surface display. The first accurately portrays the surface’s current 

status, meaning, a surface that has 11% of its reflectance’s wavelengths remaining will appear 

like a very weak shade of its full, unconsumed, colour. The second mode displays surfaces 

that have more than 10% of their maximum value as full (unconsumed surfaces) -  the rest are 

displayed as consumed surfaces (completely transparent). Unsurprisingly, the first mode 

presents a more difficult challenge than the second -  each is used in different experiments.
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Fig. 3.7: A sample hole: this hole is 7x7 surfaces across.

3.4.2 Light sources: illumination matrix
In order to emulate natural illumination conditions, an illumination matrix that shines on 

every surface has been created. This simulates the presence of one or more light sources 

which vary in terms of quality (spectral distribution) and size, and frequently change. The 

illumination does not affect the value of a surface, however, it affects the way the surface is 

perceived by critters.

Depending on the experiment, the illumination matrix changes every predefined amount of 

time, normally 50 time steps (this duration was empirically determined to be the most 

challenging; shorter durations are simply ignored, while longer durations cause critters to 

adapt to the specific illumination). This change occurs gradually: an incremental shift 

between the old and the new illumination matrices takes place. At any given moment, the 

current illumination matrix is a weighted average of both the new and the old illumination 

matrices. This attempts to emulate natural scenes, which rarely change completely in a short 

amount of time.

3.4.3 Perceived stimuli
As in natural environments, the stimuli -  the colour -  that is perceived by the critters and 

external viewers (us) depends on the relative contribution of the reflectance (the surface) and 

the shining illumination, as described in equation (3.1). It is this ambiguous stimulus that is 

presented to the critters, with the consequence that there is no direct way for a critter’s 

sensors to estimate a given surface’s type from the stimulus alone. Thus, a way must be found 

in order to correctly determine the type of resource -  discover whether a surface is ‘food’ or 

‘poison’.

3.4.4 Holes
In most experiments, a number of holes, normally 3-9, are present in the surface matrix. A
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hole’s size is customisable, but is often selected to be 7x7 surfaces across (these dimensions 

are usually a percentage of the dimensions of the surface matrix). Holes are equivalent to the 

world’s edges: they are completely black (thus, are not affected by illumination), and a critter 

that attempts to move more than one step into them, falls and dies immediately. Holes were 

added in order to increase the difficulty of the environment and force critters to evolve a 

strategy of dealing with edges. See fig. 3.7 for a screenshot demonstrating a hole.

3.4.5 Background colour
The surface matrix includes a background colour -  a reflectance that is not seen unless 

surfaces are consumed and consequently become transparent. Therefore, as less of a surface 

remains, it becomes increasingly similar to the background colour. The chosen background 

colour is normally grey; it is identical for all surfaces and it is static -  it never changes as a 

result of an action initiated by a critter.

The background colour was incorporated in order to increase the level of difficulty for 

critters. In early runs, before this feature has been implemented, it was discovered critters 

learned to recognise good surfaces by the fact they were frequently at least partially eaten. 

This behaviour was undesirable, as the intention was that critters learn to recognise specific 

surfaces and not only pursue surfaces that have been eaten. The solution was the creation of 

the background colour: as a surface gets eaten, it becomes increasingly similar to the 

background colour; however, since the background colour is grey, and so, similar to all 

colours, seeing it gives no clue whether a partially eaten surface is good or not. Therefore, the 

background colour feature increases the difficulty for critters as they are forced to evolve 

mechanisms for surface recognition and cannot rely on other information to determine 

whether a surface should be eaten or not. In theory, critters could still use the status of a 

surface -  i.e. whether it is eaten or not -  to determine whether it should be consumed; 

however, because an eaten surface is transparent, and thus, appears like the background 

colour which is similar to all surfaces, this becomes a very challenging task in its own right.

3.5 Environment creation
In nature, because objects and illuminants are extended in space, two neighbouring points in 

any image are more likely to have the same physical characteristics than are two points 

further away from each other. To model this statistical relationship in Mosaic World, an 

algorithm was created that enables complete control over such clustering across the surface 

and illumination matrices, as well as the relative proportion of negative and positive 

wavelength resources in the world. Thus, the generated matrix can be customised in terms of
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surface/illumination cluster size, which can vary from one surface to the entire surface 

matrix, as well as each clusters’ shading, which can be gradual changes to random transitions.

Specifically, the algorithm must be able to create random surface and illumination matrices, 

where certain fundamental parameters can determined in advance, including: the number of 

clusters and their size (very small -  one surface across to very big -  entire surface matrix), 

the degree of shading (very gradual changes between clusters to random transitions), the 

average value of surfaces and the distribution of positive and negative clusters -  the last three 

are only applicable to the creation of the surface matrix.

The algorithm is described in figure 3.8 and four sample environments are displayed in figure 

3.9. In addition, in figure 3.10, a sample surface matrix is displayed four times: once with a 

uniform illumination and three times with different illumination matrices. Note that although 

the same algorithm is used for the creation of the surface and illumination matrices, different 

parameter values are used for each.
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Constants:
CLUST = the probability (0-100%) of new surfaces being identical to neighbouring 
surfaces.
SHADE -  similarity factor (0-100%) of non-identical surfaces to neighbour surfaces. 
POSRES = the probability (0-100%) of generating a positive surface/resource.
NEG JRES = die probability (0-100%) of generating a negative surface/resource.
SEEDS = the number of random seeds used to initialise the matrix.

(1) An empty surface matrix is created.

(2) A number of surface seeds (SEEDS) are generated. Every seed is placed in a random 
location in die matrix and is initialised in one of die following two ways (predefined):

(a) The reflectance function is randomly generated (described in 3.3.1,3.3.2).

(b) Using POS RES and NEGRES, the surface’s type is determined: whether the 
surface is positive (desired value greater than 3), negative (desired value less 
diaa -3) or neutral (desired value is between -3 and 3).

i. A reflectance function is randomly generated and its value is calculated 
using the value function (3.4.1).

ii. If the reflectance function’s value is of the correct type, proceed. 
Otherwise, repeat step (i).

(3) A new surface is generated at a random location in the matrix. If there are no adjacent 
surfaces near this surface, it is removed from the matrix and this step is repeated.

(4) If there are one or more adjacent surfaces, a reflectance function is generated for the 
surface; this reflectance function is based on a randomly selected neighbouring 
surface. Using CLUST it is determined whether the new surface is identical or not to 
the selected neighbour, i.e. with a CLUST value of 0, there is 0% chance it will be 
identical to one of its neighbours, and 100% it will be different.

(a) If the new surface is determined to be identical to its neighbour, the 
neighbour’s reflectance function is copied and used.

(b) If the new surface is determined to be different from its neighbour, using 
SHADE it is determined how similar it would be; this parameter randomly 
changes all the major wavelengths of the reflectance function, i.e. a SHADE 
value of 0 causes every major wavelength in the reflectance function to be 
copied and randomly changed by 0 (so it will be identical to its neighbour), a 
value of 1 causes major wavelengths to be randomly changed by -1 to +1 (so it 
will be very different from its neighbour).

(5) Steps (3) and (4) are repeated until all surface positions have been filled.

(6) This step is used only for surface matrix creation. Measure world statistics: unless the 
average surface value and the distribution of positive and negative clusters are within 
predefined ranges, go back to step (1).

Fig 3.8: the algorithm for environment creation
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Fig. 3.9: the two top matrices: CLUST set to 0.7, SHADE to 0.2. Lower left matrix: 

CLUST set to 0, SHADE to 0. Lower right matrix: CLUST set to 0.99, SHADE to 0. 

Note that certain settings of CLUST may cause the SHADE parameter to have no effect 

on the surface matrix (e.g., in the lower left image, the fact CLUST is set to 0, defining 

all surfaces to be different from their neighbours, causes SHADE’S setting of 0, which 

determines the similarity of neighbouring surfaces, to have no effect)

3.6 Critters
Critters are the inhabitants of Mosaic World. Every critter has field of view which is the area 

it receives stimuli from the environment, and an orientation - a direction it is facing. All 

critters are created with a certain amount of energy, which decreases in time; this models the 

flow of resources in and out of biological organisms. If a critter runs out of energy, it dies, 

giving it a strong incentive to gain energy by consuming surfaces. The amount of energy lost 

every time step is also dependent on the actions the critter performs (see section 3.6.1). 

Finally, critters have a limited life span -  a critter that manages to survive longer than 15,000 

time steps dies immediately; this feature prevents particularly fit critters from taking over the
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environment and gives new critters with novel behaviours an opportunity to thrive. Figure 

3.11 displays a snapshot of Mosaic World with multiple critters.

: s : r :  i ; s :

Fig. 3.10: Top left: a surface matrix (without a light source). Top right and the two 

lower images: the same surface matrix lighted by with different illumination matrices.
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Fig. 3.11: A close-up on a section of Mosaic World with many critters. The critters are 

the squares surrounded by a blue frame; the white line indicates the direction they are 

facing.
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The critter population is maintained in Mosaic World through sexual and asexual 

reproduction. Depending on the mode of reproduction, an offspring’s genome will either be a 

mutated version of its parent (asexual reproduction), or will be a mutated and recombined 

version of its parents’ genomes (sexual reproduction).

Although the environment is two dimensional, it can be said that critters hover above the 

surface matrix and underneath the illumination matrix.

3.6.1 Energy
Upon instantiation, all critters are given a certain amount of energy which decreases in time. 

If a critter’s energy level drops to zero, it dies immediately. This feature models an 

organism’s metabolism, specifically, the fact that some required internal processes cost 

energy. Furthermore, the addition of this feature prevents critters from simply standing and 

forces them to forage (and indirectly, to find a way of finding positive resources).

Gaining energy

A critter can gain energy by consuming a surface. For consumption to occur, a critter needs to 

be in contact with the surface for a predefined amount of time (2 time steps). The critter 

determines on its own the size of its bite (using the ‘bite’ output unit in its artificial neural 

network). A critter’s bite decreases the surface’s reflectance function by the bite size and the 

critter gains/loses energy depending on the amount and value of the wavelengths consumed. 

A critter may only consume wavelengths that are actually present (i.e. it cannot cause a 

reflectance's wavelengths to become negative through repeated biting). Biting costs an 

amount of energy that is relative to the bite size; however, there is a fixed component to this 

cost as well (meaning, biting costs energy even if its size is infinitesimal).

The bite size feature was implemented in order to encourage critters to evolve biting 

strategies, thus, the cost relative to the bite size was determined to be appropriate. However, 

in order to prevent situations where critters take infinitesimal bites to sample surfaces and 

thus, avoid the need to recognise surfaces, an additional fixed component was added to the 

cost.

Losing energy

Even a critter that does not perform any action loses a certain amount of energy every time 

step. In addition, the amount of energy lost also depends on the following:

• Rate of motion

• Turning
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• Surface consumption

• Reproduction: sexual and asexual

• Failed attempts of reproduction (sexual and asexual)

3.6.2 Movement and turning
A critter may move between 0 and 4 surfaces every time step; similar to the real world, 

moving faster costs considerably more energy in terms of energy per surface moved. A critter 

may only move forward. The critter’s movement depends on its orientation, which is the 

direction it is facing. By activating the ‘move’ output unit in its artificial neural network, the 

critter determines whether it wants to move, and if it does, the speed of movement.

A critter can turn in increments of 90 degrees. When a critter turns, its orientation and field of 

view turn with it. A critter turns by activating two output units: ‘left’ and ‘right’. If the 

difference in activations between ‘left’ and ‘right’ is greater than a given value (0.25), the 

critter turns right; if it is lesser than a negative value (-0.25), the critter turns left; if in 

between these values, the critter does not turn. In early runs, movement was controlled by a 

single output unit, however, there was a noticeable bias towards turning in one direction; this 

bias was eliminated by using two output units.

3.6.3 Genome
Every critter has a genome which defines all its traits: its brain (visual layer/receptors: 

position, sensitivity, peak and state), brain structure (number and position of hidden units), 

brain contents (all information regarding the connection weights: weight values, starting 

coordinate, ending coordinate and state, and all the information regarding partial connections: 

weight values, ending coordinates) and the critter’s transmittance. There is a one to one 

relationship between the genes in the genome and a critter’s phenotype. Similar to natural 

evolution, when critters reproduce their offspring inherits traits from them using the genetic 

operators of mutation and crossover.

Each physical attribute of the critter is treated as an object, and each object can either mutate, 

or parts of it can be recombined with comparable objects from other critters during sexual 

reproduction. Thus, the only time the genome is explicitly displayed is when a critter is saved 

for analysis and is stored in a text file (see summarised genome in Figure 3.12).

This specific representation for the genome was selected because it is easy for a human to 

read and modify it, and also because it is unambiguous: only one possible phenotype can be 

constructed using this genome.
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Transmittance: 0.33, 0.35, 0.37, 0.40, 0.42, 0.44, 0.45, 0.46, 0.46, 0.47, 0.48, 0.50, 0.52,
0.54, 0.56, 0.58, 0.57, 0.5, 0.53, 0.51, 0.49, 0.51, 0.52, 0.54, 0.55, 0.57, 0.58, 0.58, 0.59,
0.60,0.61

3D Neural network (partially connected):

Visual layer: 3 units:
- Health unit

Receptor 1: coordinate: [0,-1], peak: 680nm, tuning: 0.01226, active.
Receptor 2: coordinate: [0,0], peak: 400nm, tuning: 0.02868, active.

Hidden layer: 4 units:
- Hidden unit 1: coordinate [-1,-1]
- Hidden unit 2: coordinate [0,0]
- Hidden unit 3: coordinate [2,0]

Hidden unit 4: coordinate [-1,1]

Output layer: 7 units

Active Connections: 33

Partial connections: 1

Fig. 3.12: Summarised sample of a critter genome.

3.6.4 Reproduction
Critters can reproduce both sexually and asexually. In both types of reproduction, the 

parent(s) must have at least a minimum amount of energy (20% of maximum energy), 

otherwise reproduction fails. In addition, the parent(s) must not move for a predefined 

amount of time (3 time steps). The created offspring is spawned in the vicinity of its 

parent(s), with decreasing probability of spawning farther away.

Sexual reproduction was implemented to be able to examine the strategies critters evolve in 

order to recognise and attract mates; however, early runs demonstrated that using only sexual 

reproduction is simply too difficult for an untrained critter -  learning how and when to 

reproduce is hard enough even when there is no need to also identify a potential mate. Thus, 

asexual reproduction was created in addition.

Sexual reproduction

In order to sexually reproduce, two critters need to be in contact -  they must be on the same 

surface. At least one of the critters involved must ‘want’ to reproduce sexually: the ‘sexual 

reproduction’ output unit in its artificial neural network must be activated; this enables 

critters to determine when may be a good time to reproduce (e.g. currently have a lot of 

energy resources).
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Once sexual reproduction occurs, an offspring spawns. The offspring’s initial energy is 

transferred from both its parents: 25% of a critter’s maximum energy is transferred from each 

parent. If the partner (the critter that did not initiate the reproduction) does not have this 

amount of energy, mating fails. If as a result of mating, the initiating critter’s energy level 

drops below zero, reproduction is still successful; however, the offspring only gets the 

initiating critter’s available energy, and the initiating critter dies at the end of this process.

If a critter tries reproducing sexually but fails because there’s no other critter next to it, or it 

has not waited the required number of time steps, it pays an energy penalty: this was done to 

discourage critters from constantly trying to reproduce sexually.

Asexual reproduction

A critter can reproduce asexually without requiring a partner. The critter must ‘want’ to 

reproduce asexually (the ‘asexual reproduction’ output unit in its artificial neural network 

must be activated). Once asexual reproduction occurs, an offspring is created. The offspring’s 

initial energy, 40% of a critter’s maximum energy, is transferred from its parent. If the parent 

does not have this amount of energy, whatever energy it possesses is transferred to the 

offspring, and afterwards, the parent dies.

If a critter tries reproducing asexually but fails because it has not waited the required number 

of time steps, it pays an energy penalty: this was done to discourage critters from constantly 

activating the ‘asexual reproduction’ output unit and effectively using the ‘movement’ output 

unit to initiate reproduction.

The offspring’s genome

There is a predefined probability (70%, determined using [147]) that an offspring’s genome 

that is created through sexual reproduction will be a recombined version of both its parents’ 

genomes, using the custom crossover operator described in 3.7.3 (note that the actual 

percentage of crossover is lower since asexual reproduction does not utilise crossover). As 

part of the process, the offspring’s genome is also mutated. If crossover does not occur, the 

offspring’s genome is cloned from one of its parents (randomly determined) and mutated in 

the process.

An offspring’s genome that is created through asexual reproduction is cloned from its parent 

and mutated in the process.
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3.6.5 Transmittance
Transmittance describes the percentage of light that passes through an object [182]. Every 

critter possesses a transmittance; this property defines the percentage of light for every 

wavelength in the human visual range that passes through the critter, and effectively defines 

the critter’s colour. The critter's transmittance is defined in the critter’s genome and is 

evolvable -  thus, critters have the potential of using transmittance as a way of recognising 

conspecifics or as camouflage; this is the reason this feature has been added.

The critter’s transmittance affects the stimulus that is perceived by other critters and external

viewers -  a critter cannot see itself. Therefore, when critters hover above a surface, equation

(3.4) should be used instead of equation (3.1). There are two elements to this change:

(i) Some of the light source passes through the critter, which acts as a filter. The 

resulting light reaches the surface and gets reflected.

(ii) The rest of the light source is reflected of the critter and thus never reaches the 

surface.

The resulting stimulus is a sum of (i) and (ii).

For the sake of simplicity, when more than one critter is present in the same physical 

location, the transmittance of the critter that arrived first dominates the transmittances of the 

other critters.

700 700

Si ( i )=  XRe(/)//(i)7-K0+ X « (0 0 -M /) )  (3.4)
(=400 (=400

Where St(i) is the stimulus value of wavelength /, Re(i) is the reflectance value of wavelength 

i, Il(i) is the illumination value of wavelength i and Tr(i) is the critter’s transmittance value of 

wavelength i. The left side of the equation, which characterises the light that passes through 

the critter, is described by item (i) above. The right side of the equation, which characterises 

the light that is reflected of the critter, is described by item (ii) above.

3.7 Critter Brain
Every critter possesses a brain that determines its actions according to the stimuli received 

from the environment. The brain comprises a 3D neural network, which is essentially a 

modified feed-forward artificial neural network. See figure 3.13 for a sample critter brain.

The 3D network is composed of multiple 2D layers. The visual layer is equivalent to a 

standard input layer and contains receptors (which are effectively modified input units). The 

hidden layer contains standard hidden units. The output layer contains output units, which
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determine the critter’s behaviour: turn left or right, move forward or stay in the same 

position, sexually reproduce with a nearby critter, asexually reproduce and bite surface.

Every unit in the network has an [x,y] coordinate relative to the critter’s centre, which defines 

its location in the layer it is placed in -  only a single unit can be placed at any given location. 

Thus, networks of vastly different architectures can be crossed over during sexual 

reproduction, as each network possesses the same virtual coordinate reference frame; this 

deals with the competing conventions problem in crossover of neural network (described in

2.7.3), and is the reason why this structure has been selected.

Fig. 3.13: Sample critter brain which has three layers. The visual layer contains three 

receptors (one highly tuned, the other two possess lower tuning values). The visual layer 

is connected to the hidden layer, specifically to five hidden units and two empty 

coordinates (partial connections). The hidden layer is connected to the output layer.

The units of the network communicate through connection weights that extend between units 

from higher layers to lower layers. Connections can be active, inactive, or completely 

nonexistent. In addition, partial connections may be present in the network; these connections 

extend from a unit to a coordinate instead of terminating at a unit. Inactive or partial 

connections do not participate in the feed-forward process; however, they are passed on to a 

critter’s offspring where they may be reactivated or reconnected as a result of crossover -  this 

offers the potential of creating novel patterns of connectivity that existed in neither parent. 

Connections are discarded if inactive or partial for long periods of evolutionary time (this was
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implemented to prevent bloat: without this feature a large number of inactive connections 

quickly accumulate).

3.7.1 Visual Layer
The visual layer, which contains receptors, is equivalent to the input layer in a standard neural 

network. Like all units in the network, every receptor has a spatial position, an [x,y] 

coordinate in the visual layer. In some experiments, the receptor’s position in the visual layer 

also determines the location -  relative to the critter’s centre -  where it detects light from 

Mosaic World (i.e., its visual ‘receptive field’). For example, a receptor located in [-1,0] 

receives stimuli from a surface that is to the left of the critter. In other experiments, a receptor 

has another [x,y] coordinate in addition to the position, which specifies the critter’s receptive 

field  instead of the location coordinate. Viewing an area outside of Mosaic World returns 

nothing but darkness (as there is no light outside the world). This enables evolution to select 

what the critter sees and also enables the researcher to see what locations (relative to the 

critter’s centre) are considered important.

The manner in which a receptor responds to the received light is determined by its peak and 

tuning. The receptor’s peak sensitivity can be for any wavelength within the human visual 

range (400-700nm at increments of lOnm); this determines where the receptor’s sensitivity is 

greatest, and effectively, what colours this receptor is particularly sensitive to. The receptor’s 

tuning defines the number of wavelengths to which it will respond around its peak (its ‘half 

bandwidth’). A receptor can be very narrow -  span just a few nm -  or it can span the entire 

visible spectrum. The peak and tuning can be viewed as a Gaussian function. This particular 

design was strongly inspired by the cone type used in the retinas of biological eyes [182, 225] 

and attempts to emulate this mechanism -  the goal was to discover whether evolved 

structures (peak and sensitivity) bear any resemblance to their biological counterparts.

A receptor can be either active or inactive. Inactive receptors do not participate in subsequent 

processing, but are nonetheless inherited by offspring; these are discarded if inactive for a 

long period of evolutionary time (and so are all connections leading out of this receptor) -  

this was implemented in order to avoid bloat -  many inactive receptors for every critter.

In addition to receptors, every critter also has a health monitor unit, a special type of input 

unit which is located in the visual layer; this unit receives the percentage of the critter’s 

remaining health. This unit cannot be removed or disabled through evolution; however, 

leading connections can be disabled. This feature was implemented in order to enable critters



3.7 Critter Brain 78

to evolve behavioural strategies that depend on their current level of health (see chapter 6, 

challenge: behaviour).

3.7.2 Genetic operator: mutation
Mutation takes place during sexual and asexual reproduction. There are several types of 

mutations.

Value Mutation affects the values of the connection weights through a Gaussian function: 

small changes are much more likely to occur than large changes.

Structural Mutations are mutations which alter the brain’s topology.

• Add unit mutation enables addition of units (receptors, hidden) (2%). When a 

receptor is added, it is randomly placed in the visual layer with a bias towards the 

centre; this receptor’s design is based on an existing receptor (randomly picked): its 

peak and connectivity, as well as its outgoing connections are copied. When a hidden 

unit is added, it is randomly placed in the hidden layer with a bias towards the centre 

and forms connections with units in the adjacent layers -  it is fully connected; all new 

connections are initialised with random values.

• Delete unit mutation enables deletion of units (receptors, hidden) (0.5% per unit). 

When any type of unit is removed, all its outgoing connections are deleted. If as a 

result of a unit being deleted a connection now has no end destination, it remains in 

the network as a partial connection.

• Add connection mutation enables addition of connections (1%). Connections can only 

be added between units that do not already have an existing connection. New 

connections are initialised with random values

• Delete connection mutation enables deletion of connection weights (0.1% per 

connection).

Receptor mutations are mutations that change properties of receptors.

• Drift Receptor mutation (0.3% per receptor) changes a receptor’s location in the 

visual layer; all its outgoing connections move with it. The receptor’s new position is 

random yet biased: it is more likely to be closer to the critter’s centre than farther 

away.

• Drift Receptive Field mutation (0.3% per receptor) changes the location of the 

receptor’s receptive field (the area it receives stimulus from). The new receptive field 

is random yet biased -  it is more likely to be closer to the critter’s centre than farther
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away. In experiments where the receptive field is dependent on the receptor’s 

position, this mutation does not exist.

• Alter Peak mutation (2% per receptor) randomly changes the receptor’s peak to 

another wavelength (400 to 700nm, in increments of lOnm)

• Alter Tuning mutation affects the receptor’s tuning value through a Gaussian 

function: small changes are much more likely to occur than large changes.

State mutation has a given probability of activating or deactivating a connection (0.3% per 

connection) or a receptor (0.3% per receptor). If a connection or a receptor has been inactive 

for a large period of evolutionary time (15,000 time steps), it gets discarded.

Transmittance mutations alter the critter’s transmittance (10% for each of the seven major 

wavelengths). The wavelength’s value changes by up to ±0.05, however, it cannot increase 

above 1 or below 0.2. The minor wavelengths are automatically adjusted.

The initial values of the parameters were determined using available literature on genetic 

algorithms [147] and the evolution of neural networks (particularly [215]). Afterwards, a 

considerable amount of preliminary experiments was conducted in order to discover useful 

values for the used parameters. Since the number of possible permutations and the amount of 

interactions going on between some of the parameters is quite large, it is possible that some 

of these values are not ideal.

3.7.3 Genetic operator: crossover
Crossover takes place during sexual reproduction at a predefined probability (70%). During 

crossover, a random point is selected on each network layer of both mating critters. All 3D 

layers of each critter brain are ‘sliced’ at this point. These two parts are copied, and the result 

is combined to form the offspring’s genome. This process may cause partial connections to 

reconnect, for instance, if a partial connection is obtained from one parent, and a hidden node 

at the corresponding coordinate that previously lacked a connection is obtained from the other 

parent, the partial connection is converted to a standard connection.

This method of crossover has been selected because it has the potential of overcoming the 

competing conventions problem encountered in crossover of neural network (described in

2.7.3).

Crossover also recombines the transmittances of both mating critters; a random major 

wavelength is randomly picked and divides the transmittance to two parts: a part is copied
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from every parent. Thus, the offspring critter’s colour is similar to both its parents’ colours.

3.8 Evolution
To maintain an open-ended system, Mosaic World’s evolution utilises a genetic algorithm 

with no fixed population size and no explicit fitness function. The critters themselves decide 

when to reproduce (sexually or asexually) by activating the appropriate output neurons. 

Critters survive if they can eat good resources and stay on the world. Thus, there’s an implicit 

evolutionary selection pressure to improve all traits that increase such skills. For the 

population to survive, the critters must balance reproduction with resource consumption. 

Otherwise, there may be too many critters for the world to sustain, or too few critters to 

maintain the population. This implicit version of selection has been implemented because it is 

closer to biology than the explicit selection algorithms used in standard genetic algorithms. 

Note that there is no maximum population size; however, the environment can only sustain 

more than a certain number of critters (around 700 critters) for short periods of time.

Because at time-step 0 all critters are randomly instantiated, a statistical consequence of this 

is that the initial population sometimes dies. When this happens, a new population of random 

critters is instantiated, with the caveat that 20% are mutated clones of critters that showed 

general promising surviving skills (a combination of survival age and mating amount).

3.9 Technical Aspects
• Programming language used: Mosaic World was written in C++ under the Windows 

environment (Visual C++).

• Computational requirements: the vast majority of experiments were designed to run 

approximately 15 hours (overnight experiments). However, several difficult 

experiments (most notably, those in chapter 5 part 1) were designed to run over 

longer periods of time (approximately 2 days).

3.10 Chapter Summary
This chapter introduced Mosaic World, the model used in this thesis for the investigation of 

complex interactions and other computational and biological hypotheses. Because an abstract 

visual environment was picked as the underlying context of the model, the chapter began by 

outlining the essential fundamental concepts of reflectance, illumination and stimulus.

Afterwards, a detailed description of the environment was given: the resources it provides 

(surfaces), the dangers that are present (holes and edges) and the inherent ambiguity that is 

incorporated into the environment (the light sources that illuminate the environment). In



3.10 Chapter Summary 81

addition, the algorithm used for environment creation (surface and illumination matrices) was 

given.

The chapter concluded by giving a thorough description of the inhabitants of Mosaic World: 

the critters. This included a description of critter capabilities and behaviour (movement, 

reproduction and consumption), critter operation (brain and genome), and the evolutionary 

process that takes place.
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Chapter 4 

Challenge: evolvability

4.1 Introduction
Evolvability is the ability of a population to continually produce offspring fitter than any 

currently in existence. Since genes directly determine the organism's phenotype, it can be said 

that that the way in which the genome is altered through the course of evolution by way of 

mutation and recombination, in addition to epistasis, the effect that some genes have on the 

operation of others, is essentially the cause of higher or lower evolvability. Therefore, it can 

be said that evolvability is the ability of genes in the population to change in a way that 

produces fitter offspring. Consequently, the study of evolvability involves interactions that 

occur between genes (genes—>genes interactions).

There are several ways in which the interaction of genes can affect the fitness of the 

phenotype. When a gene gets altered, the value of the trait it encodes is changed. In Mosaic 

World, this means that a neuron, a receptor or a trait gene is expressed differently the next 

time the phenotype is created from the genome, and consequently, the network controlling 

the critter (and possibly even the population the critter is a member of) is affected by this 

change. This change to the phenotype may have an indirect effect on traits encoded by other 

genes; for example, in Mosaic World, consumption of a resource requires standing still for a 

period of time, thus, a gene that makes a critter constantly move would indirectly affect the 

gene that controls consumption, effectively neutralising it. In addition, a gene may affect 

other genes in a more straightforward manner: when a gene that controls the peak or tuning of 

a receptor is altered, the stimulus that is perceived by the network may be very different, and 

thus, the network’s behaviour -  which depends on many other genes -  may be completely 

changed. A gene may also affect other genes during the process of reproduction: for example, 

the gene controlling the distance parameter, explained later in this chapter, would affect the 

number and identities of units that connect to a newly added hidden unit.

Later chapters investigate the effect of evolving genes on the major aspects of critters (e.g., 

receptors, neural networks, population-level behaviours). However, it can be argued that the 

most fundamental effect of genes on other genes is during reproduction: children inherit their 

parents’ genes with some mutation, and so it is the interaction of parent genes, and parent and 

child genes, that produces a new and potentially better solution. A useful interaction between 

parent and child genes implies an evolvable population, so an understanding of the
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evolvability of a population provides knowledge on useful parent and child gene interactions. 

It is this evolutionary genes—>genes interaction that forms the focus of this chapter. 

Therefore, the experiments described in this chapter investigate the resultant effect on 

evolvability as a consequence of the process used to evolve the neural networks used in critter 

control. The challenge posed for Mosaic World in this chapter is:

Can appropriate genes—̂ genes interactions occur that improve the effective and resilient 

evolution o f critters that adapt to an environment which becomes increasingly more difficult 

through time?

To enable Mosaic World to address this challenge, several different ways of transferring 

parent genes to child genes (focusing on the genes responsible for the topology of the critters’ 

neural networks) will be examined, allowing the investigation of the way different forms of 

genes—>genes interactions affect the evolvability of neural network agents.

4.2 Investigating evolvability
Evolvability is generally defined as the capacity to evolve [136], or more specifically, as the 

ability of a population to produce offspring fitter than any yet in existence [4], and not to 

produce less fit variants [212]. Evolvability is also known as evolutionary adaptability [107] 

and as such, a major element of evolvability is the capacity to adapt to changing 

environments by learning to exploit commonalities over time in those environments. Thus, by 

understanding evolvability and how to promote it, not only will it be possible to solve 

increasingly complex problems, but one may also better understand the process of evolution 

generally.

Evolvability should not be confused with fitness. It is possible to have two populations of 

solutions, both with identical levels of fitness. However, if one is more evolvable than the 

other, then its offspring are more likely to be fitter in relation to those in the less evolvable 

population in subsequent generations [227]. This can prove to be crucial when the 

environment is dynamic.

The key properties required to generate systems exhibiting high evolvability are still not 

completely understood, particularly in the context of artificial life simulations. The 

evolvability of a system appears to be strongly linked to the representation of the problem -  

the way genetic variation is mapped onto the phenotype [22, 228], as well as the choice of 

search operators [4]; these parameters determine the distribution of local optima in the search 

space, and as a result affect the difficulty in finding fitter offspring [67]. It was shown that for
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the search to be successful, the mapping should put similar phenotypes close to each other in 

solution space [116], or in other words, the search operators’ effect should be gradual [5].

A necessary precondition for high evolvability would involve a many-to-one genotype-to- 

phenotype mapping. This redundant mapping would enable many mutations to have no effect 

on the phenotype, and as a result, better explore the search space through neutral networks 

[58]. It can be argued that evolution of neural networks, particularly those that are used for 

control and classification, qualifies for the complex mapping condition; Fogel [61] defined an 

evolved neural network’s phenotype as its behaviour, and not its constituent weights. Using 

this definition, changing many aspects of a neural network would not necessarily change its 

phenotype (behaviour).

Modularity has been recognised as an element that increases evolvability [228]. It has been 

suggested that the ability to reuse structures in neural networks should increase evolvability 

as well [160]. It has also been proposed that adaptive evolution, the ability of evolution 

adapting elements of itself, promotes evolvability [22, 67]; this was theorised to enable 

evolution to tune search operators as needed during various evolutionary stages.

Even though there are many issues to consider when evolving solutions using standard 

genetic algorithms, there are many more challenging issues one must consider when it comes 

to the evolution of neural networks, for example, evolving network topology requires adding 

and removing elements from the network. This does not sound like a terribly complicated 

procedure, but then, how are these network elements added? Are new units fully connected? 

Are they connected at all? Can we allow evolution itself to make this decision? Each of these 

decisions may have a huge impact on the evolution process by affecting the genes that 

determine the network structure and the interactions that occur between them. Inevitably, 

these changes to the genome affect the entire hierarchy of the phenotype -  which influences 

many additional parameters including likelihood of runs being successful as well as the 

variability and quality of evolved solutions; consequently, it is crucial to pick a good method.

While a lot of research focused on evolution of neural networks, including topology, it is 

difficult to predict whether a method will be superior to others and understand why that is the 

case. The problem is there are no clear guiding principles as to what will work better, and this 

becomes more complicated when trying to evolve neural networks in artificial life models, 

where even measuring the quality of the evolved solution becomes problematic. The answer 

to this problem largely depends on the system’s evolvability, which in turn depends on 

numerous parameters -  all essentially relating to the interactions that go on between genes.
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In this chapter, the question of the process by which network elements are to be added (and 

removed) is addressed by focusing, not on the evolved solutions as such, but on the 

evolvability of the critters themselves. (The work described here has been published in 

[196]). This investigation of evolvability is conducted using several different types of 

structural mutations which affect the interactions between genes in different ways. For a 

mutation type to be useable, it must have the ability to completely alter a neural network’s 

structure by adding and deleting elements. In order to be able to test the effects of the

suggested principles thought to increase evolvability, every mutation type used in the

experiments incorporated some of these principles. The three principles tested are:

Incremental changes to network topology, where every change made to the network 

structure is very small.

Adaptive evolution, where evolution can modify some aspects of itself.

Structural duplication, where existing substructures of the network are copied and 

can be reused.

4.3 Additions to Mosaic World
The investigations described in this chapter required that initial version of Mosaic World be 

expanded in several minor ways.

4.3.1 New types of structural mutations
The investigations of evolvability were performed using several different types of structural

mutations in order to evolve the topology of the neural networks that form the critter brain. 

Therefore, the following five types of structural mutations are added to the model and replace 

the relevant types described in section 3.7.2 (see fig. 4.1 for an illustration). All structural 

mutations must be able to add and remove units and connections from the networks; the only 

difference is the manner in which this change is accomplished -  the way the genes interact. 

All new connections to the network are initialised with random values. The probabilities of 

occurrence of these mutations are identical for all types. The tested principle appears in 

parenthesis.

Structural mutation type 1 -  fully connected (non-gradual changes): when using this 

mechanism, new receptors and hidden units that are added to the network connect to all units 

in adjacent layers. Using this method, every mutation makes a potentially large change to the 

networks.

Structural mutation type 2 - single connection (gradual changes): when using this 

mechanism, new receptors and hidden units connect to a single, randomly chosen, unit in
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every adjacent layer -  exactly two new connections are added to the network in case of a 

hidden unit addition, and one new connection for the addition of a receptor. In addition, the 

Delete Unit mechanism is disabled -  units are automatically removed when they have no 

outgoing or incoming connections. Using this method, every mutation makes a small change 

to the network.

Fig 4.1. A visual illustration of addition of a hidden unit using the five types of 

structural mutations. [A] The original neural network with 1 receptor, 3 hidden units, 

and 2 output units. [BJ Using mutation type (i), new unit (H5,6) is fully connected 

through 3 random connections. [C] Using mutation type (ii), new unit (H5,6) connects to 

(R l,l) and (02,2). [Dj Using mutation type (iii), new unit (H5,6) is a clone of (H l,l). [E] 

Using mutation type (iv) new unit (H12,8) only connects to (02,2) as the distance 

parameter is very high. [F] Using mutation type (v) new unit (H12,8) connects to the 

closest receptor (R l,l) and closest output unit (02,2).

Structural mutation type 3 -  reuse of structures (structural duplication): When using 

this mechanism, added receptors and hidden units are cloned from a random unit in the same 

layer. The new unit possesses a copy of every incoming and outgoing connection o f the 

original.

Structural mutation type 4 -  distance dependent (adaptive evolution, gradual changes):

When using this mechanism, added receptors and hidden units connect to all units in adjacent
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layers within a given distance (which is calculated using the coordinate scheme described in 

section 3.7). The distance parameter is an evolvable gene of a critter. By evolving a low 

distance parameter, the change to the network can be very small or very large.

Structural mutation type 5 -  shortest connection (adaptive evolution, gradual changes):

when using this mechanism, added receptors and hidden units connect to the closest unit in 

every adjacent layer. The Delete Unit mechanism is disabled -  units are automatically 

removed when they have no outgoing or incoming connections. Using this method, every 

mutation makes a small change to the network -  exactly two connections are added to the 

network for a hidden unit addition, and one connection is added for a receptor addition. 

Additionally, evolution can now utilise the 3D coordinate system to create modules, which 

adds an adaptive element (albeit weaker than type 2).

4.3.2 Slowing regeneration rate
The experiments described in this chapter required that the environment become more 

challenging over time. This was implemented using a slowing regeneration rate; in the 

beginning of every run, the regeneration rate of consumed surfaces operates at a predefined 

rate. During the course of the run, every predefined amount of time, the regeneration rate 

slows down by one unit until a predefined minimum regeneration rate is achieved. This 

means that consumed surfaces regenerate at a much faster rate at the beginning of a run than 

at its end.

4.3.3 The methodology behind these additions
Biological relevance: the changes to the model enable to directly examine the effects of 

structural mutations (which operate by changing the underlying genes) on the evolvability of 

the agents. The five types of structural mutations that are examined incorporate three 

principles believed to affect evolvability in nature: adaptive evolution, the ability of evolution 

of altering elements of itself, incremental changes, the size of the changes caused by genetic 

operators and structural duplication, the ability of evolution to reuse existing genetic 

structures. Thus, these changes to the model are both computationally relevant (as indicated 

by various computational literature on the subject [4, 136, 212, 227]) and biologically 

relevant (as indicated by various biological literature on the subject [42, 87, 107, 228]).

Level: the changes to the model do not affect this parameter.

Generality: the changes to the model do not affect this parameter: the model can still be said 

to be a general model despite the fact it is used in this chapter to examine specific hypotheses.
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Abstraction: the examined principles which are believed to affect evolvability are fully 

implemented using the five types of structural mutations; however, even though these 

changes are relatively simple and do not require significant alterations to the model they are 

detailed enough to completely capture the modelled phenomenon.

Accuracy: the additions to the model implement the examined real world principles 

concisely (without a lot of overhead) and accurately:

• Incremental changes: this is implemented directly, e.g. in the case of mutation type 2, 

by forcing the search operators to make minimal changes to the phenotype.

• Adaptive evolution: this is implemented directly, e.g. in the case of mutation type 4, by 

allowing evolution to evolve elements (the distance parameter) that affect the process 

of evolution.

• Modularity: this is implemented directly, e.g. in the case of mutation type 3, by 

allowing the mutation operator to duplicate existing network structures. Albeit, this is 

only one form of modularity, whereas modularity in nature can span structures of many 

different scales.

Match: the changes to the model that are believed to affect evolvability in nature are shown 

to in fact affect it within the model as well. As the results section in this chapter shows, 

incremental changes are shown to increase evolvability (expected from [5, 116]) and so does 

adaptive evolution (expected from [22, 67]). Modularity is shown to indeed affect 

evolvability (expected from [160, 228]), but at least in the way it has been implemented here, 

it decreases evolvability rather than increase it which is an interesting observation by itself. 

This is elaborated more broadly in section 4.2 of this chapter.

4.4 Measuring evolvability in Mosaic World
Mosaic World is more than just a population of individual critters -  it is a dynamic ecosystem 

in which critters survive if their genomes enable them to interact with each other and their 

current environment effectively enough to gather resources.

Previously suggested measurements of evolvability (for example, Altenberg’s evolvability 

measure using Price’s theorem [4] and Smith et al’s evolvability metrics [212]) do not take 

into account conditions specific to the ecologically relevant conditions of Mosaic World (and 

potentially other artificial life systems), and as a result they could not be used. These methods 

require accurately measuring fitness, which is not feasible for three reasons: first, no one 

statistic encapsulates all the required behaviours a critter must possess to be termed fit, and 

there is no universal method of combining all statistics to create a true fitness measure.
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Second, the fitness of all critters is linked, as critters compete against each other on resources; 

a fit critter, effectively, decreases the fitness of other critters; this effect is difficult to 

measure. Third, although reproduction does not directly contribute to a critter’s fitness, 

controlling reproduction is crucial to the species’ collective fitness: the population, as a 

whole, must replenish itself at a rate that is sustainable by the available resources of the 

world. Thus, a critter must share some of this collective fitness.

Therefore, the evolvability measurement used in this chapter is based on the evolvability 

measure used in the Avida ALife environment [162]. This measurement was expanded by 

factoring in the environment difficulty. It can be argued that evolvability can either be 

expressed by demonstrating that a population gradually improves over time, or alternatively, 

by showing a population adapting to an environment that gradually becomes more 

challenging. By quantifying these aspects, it is possible to define the total evolvability 

indicator in Mosaic World, E totau using equation (4.2) -  its range of possible values is 0 to 1, 

and the evolvability function through time, using equation (4.1). Both measures incorporate 

four different elements: survivability, population success, environment difficulty and time 

variance. Note that a similar definition of evolvability appeared in [204] a year after the 

original paper describing this work was published [196].

Survivability: the critter’s survival ability is the closest thing to fitness, and is best expressed 

by its age. A critter that can survive for long obviously managed to learn important skills 

required to survive in the world and managed to overcome many of the difficulties (e.g. it is 

able to recognise positive resources and negative resources, it managed to avoid falling from 

the edges or into the world’s holes). Furthermore, by surviving longer, a critter may get more 

opportunities to reproduce and as a result spread fit genetic material to its offspring.

Population success: a population’s ‘fitness’ is best expressed by its size at a given time. A 

population that managed to maintain itself through time, collectively learned how to balance 

resource consumption and reproduction through its constituent critters. Also, a larger 

population has more individuals that pass on traits to offspring, and is more likely to survive 

a ‘catastrophe’ purely because of its greater size.

World difficulty: in certain Mosaic World experiments the environment is altered over time 

to make it more challenging for a critter to survive. A population that manages to survive 

under conditions in which the selection pressure continuously grows shows an indication of 

adaptability, and thus, evolvability. This aspect of the equation is controllable by the 

researcher and must be directly tied in, from a numerical point of view, to the difficulty of the
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world in order to measure evolvability, i.e. if survival in the world at time t is twice as hard as 

the initial conditions, the difficulty factor at time t is 2.

Time: only by looking at the relative changes of survivability, population success and world 

difficulty over time, it is possible to precisely obtain the total evolvability measure.

population to evolve. A population that maintains large numbers, where each agent survives 

for long periods of time, despite an increasingly difficult environment, consistently through 

time -  can be said to be a population with a great capacity to evolve. Therefore, this function 

can be said to measure the capacity of a population to generate fit offspring through time.

Where: Etota/ is a population’s evolvability indicator, E(t) is the evolvability at time t, D(t) is 

the difficulty factor at time t, Dmax is the maximal difficulty o f  D(t), Pt is the size o f the 

population at time t, Alp is the age o f a member o f population p  at time t, Amax is the critter 

maximum life span, Pmax is the maximal population the environment can support, tmax is the 

total length o f time o f the experiment, n is the number o f data values available.

Explanation for both equations: The top right part of equation (4.1) calculates the average 

survivability for all critters, the bottom right part factors in the population success, and the 

left part of the equation incorporates the world difficulty. Thus, this characterises the 

evolvability function through time. Equation (4.2), which calculates the evolvability 

indicator, simply averages the total evolvability (as measured using eq. (4.1)) per time unit.

In conclusion, these four elements provide useful measures of the capacity of Mosaic World’s

max J

A A
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max max

^  total
7=0 (4.2)
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Resilience = (4.3)

Stamina  = E(t)  -  (Resilience x t (4.4)
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Example: With a population size P of 400 at time 10000, all critter ages A are 1500, the 

difficulty factor D at time 10000 is 100, using maximum difficulty Dmax of 350, maximum 

population size Pmax of 10000, and maximum age Amax of 15000, evolvability at time 10000 is 

E( 10000)= 100/350 * (400* 1500/15000)/10000 = 0.00114.

In addition, figure 4.2 demonstrates the evolvability function through time, Resilience and 

Stamina values for a sample population.

By extracting the height and the slope of a linear trendline of the evolvability function 

through time (using equations (4.3) and (4.4)), two extra indicators can be gained:

(i) Resilience (slope)', this indicator defines the resilience of the population to change. 

Lower values indicate populations more tolerant to change.

(ii) Stamina (height): this indicator defines the population’s ability to thrive when 

conditions are easy.

Evolvability function through time
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Fig 4.2. The evolvability function through time for a sample population. Using a linear 

trendline of the evolvability function through time, the Resilience and Stamina values 

for the population can be calculated: Resilience = -0.00000089, Stamina = 0.13322675.

4.5 Experiments
The main objective of the experiments was to investigate the conditions necessary to 

overcome the challenge. This required measuring the evolvability function through time, E(t), 

and the total evolvability, Etota|. A secondary objective was to obtain additional statistics 

examining effects other than evolvability of the structural mutations used: variability of 

evolved forms (average structure), quality of critter solutions and the percentage of successful 

runs (a run is considered to have failed when no population of critters successfully evolved 

without the need for a restart).
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To this end, two sets of experiments were performed. Each of the experiments required 

multiple populations that were evolved using the five structural mutations. Therefore, at least 

eight successfully evolved populations were collected for each of the mutation types (using 

the same randomly generated world). Each run started with identical population 

characteristics (all critters possessing fully connected networks: 3 receptors, 3 hidden units 

and 8 output units, 33 connections), and was stopped after 550,000 time steps. During each 

run, the regeneration rate of consumed surfaces was slowly reduced to increase challenge and 

force critter populations to adapt. Initially, consumed surfaces regenerated every 13 time 

steps 3% of their maximal value. Every 3,500 time steps regeneration slowed down by one 

unit, until the regeneration rate of 99 was reached. To analyse the effects of the mutation 

operators only, crossover was disabled during all runs and experiments.

4.5.1 Experiment 1: measuring evolvability through adaptation
This experiment aimed to test the maximum difficulty that a population can adapt to. Using 

the collected data and equations (4.1) and (4.2), E (t) was charted and E totai was calculated. 

Since the regeneration rate has a direct (and numeric) effect on the difficulty of the world, the 

rate was used as the difficulty factor in equation (4.1). Therefore, five copies of the five 

longest-lived critters of every evolved population were placed in an identical test world. The 

starting regeneration rate was set to 99, and every 1,000 time steps the it slowed down by one 

unit, indefinitely. A run was considered to have finished when all critters died. Note that in 

this experiment, critters are allowed to reproduce (unlike the next experiment).

4.5.2 Experiment 2: measuring the quality of evolved solutions
This experiment aimed to measure the quality of evolved solutions, the critters. The criterion 

used was critter survivability, which was measured by averaging the critter survival ages 

across runs. To do this accurately, the effect of the critters on each other was negated by 

prohibiting reproduction, and by placing a very small number of critters in every world. 

Furthermore, the difficulty of the world was made static by fixing the regeneration rate (to 

99). Therefore, five copies of the five longest lived critters of every run were placed in an 

identical test world. Critters were left to survive as long as they could. All runs were stopped 

after 10,000 time steps, and were each repeated 3 times. Critters that survived until the end of 

the run were 'killed': marked as if they had died then (a necessary assumption, otherwise long 

lived critters might have a non proportional effect on the average survival age).

4.6 Results
In table 4.1, the Etotai for each type is shown (as a percentage of the maximum Etotai of type 4), 

as well as the resilience and stamina for each type (using equations (4.3) and (4.4) and 

divided by type 4’s resilience for comparison purposes). In fig. 4.3, the evolvability function
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(weighted average) through time is shown with Etotai appearing in the legends for every type. 

Table 4.2 shows the minimum, maximum and average of the maximum regeneration rate a 

population could adapt to and of critter average survival age, as well as the percentage of 

successful runs and the average critter structure per type.

When comparing the Etotai of all types, it is clear that adaptive evolution and gradual changes 

to networks increase Etotai, whereas non-gradual changes, and structural duplication decrease 

it. Types 4 and 5, both utilising adaptive evolution and gradual changes, had the highest Etotai 

with type 4 the higher of the two. Their evolvability functions were, however, very different: 

Type 5 had -  on average -  a higher stamina, but it was less resilient than type 4, and its 

populations quickly weakened as difficulty increases. Type 4 was more resilient, as evident in 

its average adaptation rate. Overall, the data suggests that the type 4 structural mutation is 

slightly more evolvable [note that type 4's average survival age was also the best of all runs; 

type 5's was lower, but still very good]. It could be said, however, that type 5, having a higher 

stamina, and lasting the longest in the adaptation experiment, is the most evolvable type. 

However, it can be argued that the total area under the curve is the best indication of 

evolvability, since this measure takes into account both stamina and resilience.

Type 2 , which operates by making only gradual changes to the network, had a higher Etotai 

than type l's. It also had a better average survival age and the best rates of success. Despite its 

populations’ decent performance, once the difficulty of the environment becomes too great, 

its evolvability decreases considerably which results in its populations becoming extinct.

Type 1, which operates by making only large (non-gradual) changes to the network, had low 

(and second worst) average adaptation rate and average survival ages, as well as a low Etotai- 

Generally, it seemed unable to utilise the structural mutations to alter the network’s size: on 

average, only one receptor, and no hidden units, were added at all. This appears to be another 

indication of its low evolvability.

Table 4.1. The evolvability elements incorporated, the obtained Etotai as a percentage of 

Etotai of type 4 and the extracted resilience and stamina values using a linear trendline of 

E(t) for every type (divided by type 4’s resilience for comparison purposes)

Mutation type Element incorporated Etotai (%) Resilience Stamina
4 Adaptive evolution, Gradual changes 100.00% -1.00 5.68
5 Adaptive evolution, Gradual changes 98.12% -1.13 6.39
2 Gradual changes 78.50% -0.98 5.53
1 Non-gradual changes 71.47% -0.94 5.29
3 Structural duplication 41.58% -0.41 2.34
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Fig. 4.3. The evolvability function (weighted average) through time for the five types of 

structural mutations and their relative evolvability indicator (of the Etotai for type 4)

Table 4.2. Several statistics (average, minimum, maximum) describing the maximum 

regeneration rates the tested populations adapted to and the critter survivability, in 

addition to the average critter structure, and percentage of successful runs; broken 

down according to mutation types

Mutation
type

Maximum adapted 
regeneration rate: 
Ave. (M in.-M ax)

Survival age: 
Ave. (Min.-Max.)

Ave. critter structure: 
Receptors, Hidden 

(Connections)

Successful 
runs (%)

Random
critter 57.36 (56.08-59.48)

1 191.14(119-222) 3182.37(1277.23-4600.12) 4.03, 3.13 (29.47) 64%
2 197.12(159-237) 3733.34 (2781.13-4801.6) 8.32, 10.74(108.70) 73%
3 163.87(109-277) 2388.49 (893.44-5339.6) 4.86,4.51 (41.45) 50%
4 224.36(171-272) 3905.31 (1625.16-5021.96) 4.98, 6.26 (55.48) 69%
5 202.62(167-305) 3651.06 (2613.92-5321.28) 10.39, 12.21 (144.25) 62%

Type 3, utilising structural duplication, had the lowest E,0tai as well as the lowest scores on all 

other tests. It would be easy to dismiss this method of evolution as completely non-evolvable, 

except for the fact that, despite having the low results of the vast majority of type 3 runs, 

some of its individual runs scored the highest average survival age and the near highest 

adaptation rates. The weakness of this approach is that cloning a fully connected hidden unit 

usually results in very large changes to the network (in some instances, 10+ connections 

being added at once), so it is possible this negative evolvability promoter far outweighs the 

positive evolvability gained by the structural duplication aspect. Thus, it can be deduced that 

this method has potential, but its weakness often far outweighs its strength.

Looking at the evolved forms, it is obvious that all types utilised the structural mutations to
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increase their network’s complexity, with some more than others. Some types in particular 

(types 2, 5) resulted in networks significantly larger than the starting networks. However, it 

does not seem as if the larger networks were inherently better or worse than the smaller ones. 

Interestingly, it seems as if these larger networks tended to provide the most consistent 

critters in terms of average survival age.

A possible criticism would suggest that highly evolvable populations would continue 

evolving forever, with E (t) values always above zero and Etotai tending to infinity. However, 

in this system this is impossible. At the slowest rates of regeneration tested in the 

experiments, there are not enough resources left to support individuals, regardless of their 

genomes. Inevitably, evolvability must drop to zero at some point, for there will be no critters 

left in the population to evolve. Such eventual resource limitation leading to extinction is 

inevitable in all real and modelled systems (time will always be limited, if nothing else), so 

an infinite Etotai may be impossible to achieve.

4.7 Complex interactions analysis
The work described in this chapter primarily deals with genes—»genes interactions and their 

effect on evolvability. The required expansions to the model consist of five types of structural 

mutations; each of the mutations incorporates principles believed to affect evolvability 

positively or negatively. These effects on evolvability occur through genes—>genes 

interactions and essentially determine the likelihood that the offspring created during 

reproduction would be fitter or not. Therefore, these interactions are crucial towards 

accomplishing the challenge set for this chapter. It is interesting to note that although these 

changes take place at the lowest level of the hierarchy, the level of genes, their effects reach 

all levels in the critter phenotype (receptor, neuron, network), and because the critters interact 

(through competition on resources and reproduction), these affect the population level as well 

(population, species):

The interaction(s) that takes place are in parenthesis at the end of each sentence.

1) Every critter attempts to survive -  this requires several different behaviours:

(a) Perception: stimuli are perceived by the critter’s receptors 

(environment—̂ receptor) . Naturally, the ability to perceive the environment may 

be affected by the underlying changes to the genes.

(b) Communication: the receptors relay this information to the network through 

neurons (receptor-^neuron, neuron-^network). The ability to relay the 

information may be affected by the changes to the genes as well.

(c) Control: the networks control the critter’s behaviour (network—̂ critter).
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(d) Consumption: the critter may consume surfaces (critter—̂ environment)', and in 

this case, positive or negative energy is transferred from the environment to the 

consuming critters (environment^critter). This decision may be affected by the 

underlying changes to the genes.

(e) Movement: the critter may choose to move (forage for food, avoid the world’s 

edges and holes) (environment—̂ critter). This behaviour may be affected by the 

underlying changes to the genes.

(f) Reproduction: the critter may choose to reproduce (critter^critter). This 

decision may be affected by the underlying changes to the genes.

2) Selection (to evolve appropriate behaviour): many critters die during stages 1-d to 1-f, 

either by consuming negative surfaces, or by falling from the edges/into a hole, or by 

moving too quickly (and running out of energy), or by reproducing when not possessing 

enough energy. Because critters that possess appropriate behaviours are more likely to 

survive, and thus, pass on genes that define them, the advantages these behaviours confer 

directly affect the selection of these genes (network—>genes).

3) Selection (to better compete): the critters that survive compete on resources 

(critter—►critter). Consequently, critters that are fitter are more likely to win in such a 

competition, thus, features which increase fitness (this includes both evolved behaviours 

and other aspects of the critter such as transmittance) affect the selection of genes which 

define these features {network—̂ genes, critter—>genes).

4) Selection (to survive in a more difficult environment): the surface regeneration rate 

slows down, thus, the environment effectively becomes more difficult, as per the 

conditions of the experiment. Therefore, features which increase a critter’s fitness in any 

way (including behaviours and structures) affect the selection of genes which define these 

features {network-^genes, critter-+genes) .

5) Reproduction: continuing (1-f), the critters that survive past steps (2) to (4) and are now 

able to reproduce are fitter and more adaptable than those that died (genes—►genes). 

Because the selection pressure is becoming increasingly stronger, in the long run the only 

offspring that survive are those that are more evolvable and so, more adaptable. As the 

results show, the different structural mutations affect evolvability, thus, affect the fitness 

of the resulting offspring. Therefore, the resulting changes to genes affect the phenotype 

of the critters across all levels (genes-^receptor, genes—>neuron, genes—̂ network, 

genes^critter) and eventually the population (genes^population) .

6) Steps (1) to (5) are repeated until the run ends. As was shown, the five structural 

mutations result in critters and populations with different characteristics. As elaborated in 

section 4.2, evolvability is the ability of genes in the population to change in a way that 

produces fitter offspring across generations. This occurs by changing the offspring's
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genome which affects existing genes—>genes interactions or creates new ones in certain 

ways that are more likely to create fit offspring; these differences in offspring fitness are 

a result of the various principles that are incorporated into each structural mutation, each 

affecting evolvability in a different way. For example, when making a large (non- 

gradual) change to the offspring's genome using mutation type 1, which has been shown 

to decrease evolvability, the change is prone to creating unfit offspring because the large 

change is more likely to damage structures in the genotype than to create useful ones. The 

changes to the genes affect the entire hierarchy of objects in Mosaic World: genes affect 

neurons and receptors, which affect the networks and critters, which affect population 

and species, and of course, this effect goes downward as well -  the critter’s altered 

behaviour affects receptors and neurons, and eventually genes, through selection 

pressure. According to the results:

(a) Non-gradual changes to network decrease evolvability: during reproduction, the 

offspring inherits its parent(s)'s genes with some mutations (genes—>genes). For 

populations that use the mutation types that incorporate this principle, this 

interaction between parent and child genes results in a new genome that differs 

by a large amount from the parent genome. These changes are more likely to 

disrupt existing structures than they are to increase innovation and produce useful 

structures in the genome, thus, the offspring's fitness is likely to be lower and the 

population's evolvability decreases when incorporating this principle 

(genes—>genes).

(b) Gradual changes to network increase evolvability: during reproduction, the 

offspring inherits its parent(s)'s genes with some mutations (genes—>genes). For 

populations that use the mutation types that incorporate this principle, this 

interaction between parent and child genes results in a new genome that only 

differs by a small amount from the parent genome. These changes are more likely 

to increase innovation and produce useful structures than they are to disrupt 

existing structures in the genome, thus, the offspring's fitness is likely to be 

higher and the population's evolvability increases when incorporating this 

principle (genes—>genes).

(c) Usage o f modular elements decrease evolvability. during reproduction, the 

offspring inherits its parent(s)'s genes with some mutations (genes—>genes). For 

populations that use the mutation types that incorporate this principle, this 

interaction between parent and child genes results in a new genome that contains 

one extra copy of an existing structure from the parent's genome. Because an 

entire structure is copied, these changes are likely to be large, and the new 

genome will differ by a non-trivial amount from the parent genome. Thus, (in
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Mosaic World) these changes are more likely to disrupt existing structures than 

they are to add useful structures in the genome. Consequently, the offspring's 

fitness is likely to be lower and the population's evolvability decreases when 

incorporating this principle (genes—►genes).

(d) Adaptive evolution increases evolvability. during reproduction, the offspring 

inherits its parent(s)'s genes with some mutations (genes—>genes). For 

populations that use the mutation types that incorporate this principle, this 

interaction between parent and child genes results in a new genome that only 

differs by an amount whose size depends on a gene in the parent genome. 

Consequently, during stages of evolution where large changes are appropriate 

(exploration), a large change may be performed, and vice versa, when small 

changes are appropriate (exploitation), a small change may be performed. 

Therefore, these changes are more likely to increase innovation and produce 

useful structures than they are to disrupt existing structures in the genome, thus, 

the offspring's fitness is likely to be higher and the population's evolvability 

increases when incorporating this principle (genes—>genes).

Consequently:

(i) Mutation type 1, which only comprises element (a), results in populations that are 

not very adaptable and perish quickly when the environment changes. In these 

populations, the changes to genes tend to result in critters that are not fit to 

survive in an increasingly more difficult environment. In fact, considering the 

small network structure, it appears that most additions to the network result in 

unfit critters.

(ii) Mutation type 2, which only comprises element (b), results in populations that 

are not very adaptable and perish quickly when the environment changes. In 

these populations, the changes to the genes tend to result in critters that are not fit 

to survive in an increasingly more difficult environment. However, considering 

the large network structure, the additions caused by the structural mutations are 

likely to be neutral.

(iii) Mutation type 3, which comprises elements (c) and (a), results in populations that 

are not very adaptable, and perish quickly when the environment changes. In 

these populations, the changes to the genes tend to result in critters that are not fit 

even in unchanging environments.
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(iv) Mutation type 4, which comprises elements (b) and (d), results in populations 

that are adaptable and are resistant to environmental change. In these 

populations, the changes to the genes tend to result in critters that are fit to 

survive in an increasingly more difficult environment. Considering the medium 

network structure, these changes are relatively small.

(v) Mutation type 5, which comprises elements (b) and (d), results in populations 

that are adaptable and are resistant to environmental change. In these 

populations, the changes to the genes tend to result in critters that are fit to 

survive in an increasingly more difficult environment.

4.8 Conclusions
The aim of this study was to investigate the genes—>genes interactions taking place in the 

system by setting a challenge to Mosaic World that necessitated useful parent-to-child gene 

interaction. Since useful evolutionary interactions imply evolvability, these genes—̂genes 

interactions were investigated by exploring the evolvability of neural networks within an 

artificial life simulation. In the described experiments, the effectiveness of five different types 

of structural mutations, which incorporate different general principles thought to be important 

for network evolvability, was tested. Two experiments were performed, and the resulting E totai 

and evolvability function over time were calculated and compared.

The experiments conducted indicate that certain principles increase evolvability when used to 

evolve neural network artificial agents. The inheritance of genes through the process of 

gradual changes to networks appeared to promote evolvability. Another promoter of 

evolvability was the presence of genes that enabled evolution to adapt elements of itself, by 

actively affecting the process of genome copying from parent to child. However, when the 

inheritance of genes occurred through the duplication of network structures from parent to 

child, evolvability appeared to be hindered; that being said, despite exhibiting on average 

very low evolvability, this process showed some potential by evolving some of the best 

individual runs. Finally, when the inheritance of genes occurred through the process of non- 

gradual changes to the networks, evolvability appeared to be inhibited as well (or at least, did 

not seem to be promoted).

To conclude: this chapter has demonstrated that the method used in the evolution of neural 

networks for artificial life simulations plays a significant factor in all elements of the evolved 

runs.
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Given that the results of the experiments indicated that usage of structural mutation type 4 

results in the most evolvable populations, it was decided that subsequent experiments will use 

this type instead of the equivalent mechanisms which were described in chapter 3.
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Challenge: colour vision
The previous chapter explored the lowest level -  the gene level -  of the Mosaic World model, 

by investigating genes—>genes interactions and their effect on evolvability. This chapter 

continues this narrative, and moves to the next level in the model: receptors. For that reason, 

this chapter describes a set of experiments that were conducted in order to further investigate 

the complex interactions that occur in Mosaic World, specifically, those interactions that 

occur between receptors and the environment. The challenge posed for Mosaic World in this 

chapter is:

Can receptors suitable for specific environments evolve in a population o f  critters, and how 

do the characteristics o f visually different environments affect the resulting visual systems? 

(i.e., can critters evolve colour vision?)

In order to achieve this, two separate studies were conducted. The first examined the effect of 

physical and behavioural similarity and dissimilarity on the evolution of visual systems in 

abstract environments. The second explored the hypothesis that the need to survive in 

ambiguous environments is a possible reason for evolving visual systems that possess colour 

vision.

5.1 Introduction
Colour vision is the capacity of a visual system to distinguish between light of different 

wavelengths. The perceived colour is a subjective feeling generated by the brain -  it is not an 

aspect of the physical world.

Vision requires three stages. In the first, light from the image is projected onto the retina. The 

second requires light-sensitive visual cells to absorb photons and generate electrical signals. 

In the third, these signals are analysed in the brain [134]. Although there is a great diversity 

in the design of eyes between different species, there is also a great convergence in the ability 

of these eyes to extract crucial aspects from light such as contrast, colour, shape and motion 

[176].

Many species have two different visual systems that are used in different conditions: one 

enables dim light vision, and another enables daylight and colour vision. In vertebrates, these 

two systems are represented by the two types of photoreceptors: rods and cones [176]; both
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are light sensitive receptor cells in the retina that transform the received pattern of light into a 

pattern of neural activity that represents the image [225].

Rods are particularly sensitive to light, thus, are mostly effective at night or other situations 

where there is a minimal light level. Rods enable only low-acuity monochrome vision, so 

cannot be used to tell colours apart. During the day the rods are ineffective as they become 

saturated.

Cones are more suited for use during the day, as they are less sensitive than rods to low light 

levels. Cones can differentiate between different spectral distributions, so are mainly used for 

colour vision. At night, or other situations where there is a minimal light level, colour vision 

generally cannot be used [82]. At intermediate light levels, both rods and cones contribute to 

vision [172].

There are three cone types used by humans and Old World primates [225], thus, these species 

have the potential to possess trichromatic colour vision. Each of the cone types has different 

spectral sensitivities; the short wavelength photoreceptor peaks at 420nm (‘bluish’ light). The 

medium wavelength photoreceptor peaks at 530nm (‘greenish’ light). The long wavelength 

photoreceptor peaks at 565nm (‘reddish’ light) [225]. Many reptiles and birds possess four 

cone types; thus, have the potential for tetrachromatic colour vision. Most mammals possess 

two cone types, and so have the potential to possess dichromatic colour vision [172].

A photoreceptor’s sensitivity only defines the region of the spectrum that it is activated by, 

i.e. the rate at which photons are caught [65]. Using only a single photoreceptor gives no 

information about the spectral distribution of the light, its direction or its intensity. A single 

photoreceptor cannot differentiate between changes in wavelength and changes in the 

intensity of light [225]. A weak light at a wavelength it is sensitive to may cause an identical 

activation to a strong light at a wavelength it is less sensitive to [134]. In order to support 

colour vision, a comparison of activations from at least two photoreceptors that differ in 

spectral sensitivity is required [134, 225]; this comparison -  or opponent interaction [232] -  

can take place in the eye or more centrally [91, 93]. The signal coming from the 

photoreceptors must be kept segregated for the postreceptoral circuitry, so that they could be 

compared [172].

Some computational models that investigate vision

Liese et al created an ALife simulation in which a population of visual agents evolved 

sensors to survive. In their system, survival required that the agents' sensors become sensitive
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to the spectral characteristics of lamps, energy giving elements present in the environment. 

To avoid collision with other agents, additional sensors sensitive to agent emitters were 

evolved as well [129].

In another ALife model, Menczer and Belew evolved a population of agents to study the 

evolution of sensory systems. In their system, recognising and consuming a specific 

combination of resources was required to survive; however, recognition required evolving 

two types of sensors: a type to perceive the external environment, and a type for the internal 

environment [141]. Kortmann et al evolved a population of visuo-motor systems to 

investigate the trade-off between spatial and temporal resolution that occur in biological 

systems [109]. Aleksander and Morton have created a model that investigates the cause of 

certain visual deficits in patients of Parkinson's disease [3]. Olsson et al investigated a 

developmental control system for a robot that creates on its own a model of its sensors and 

actuators. By learning to associate sensor readings with possible actions, the robot is able to 

perform motion tracking and simple imitation [165].

In this chapter, the interactions between the environment and receptors, as expressed in visual 

evolution, are examined. In the first part of the chapter, two sets of experiments are 

conducted; in these experiments, a population of critters is evolved in simple, conceptually 

abstract, environments. These experiments examine the effect physical similarity, the 

similarity of the wavelengths that describe an object, and behavioural similarity, the 

similarity of the behavioural significance of the object, have on visual evolution and also 

explore how varying degrees of similarity differently affect the evolution of the visual 

system. In the second part of the chapter, another set of experiments is conducted; these 

experiments examine the hypothesis that environmental ambiguity -  the one-to-many 

relationship between perceived stimulus and its behavioural significance -  is a possible 

reason for the evolution of colour vision in nature. The chapter is concluded with a complex 

interactions analysis of the experiments.

5.2 Additions to Mosaic World
The experiments that were conducted in this chapter required that the model is expanded in 

several minor ways.

5.2.1 Simple environments
The ability to create simple, conceptually abstract, environments was added to Mosaic World. 

These simple environments enable precise control of many environmental aspects (i.e. 

number of colours and their distribution, environmental statistics). In these environments,
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normally up to 4 colours are used and each is assigned a specific value using the predefined 

value function (see section 3.4.1). The colours are distributed in grids, and the size of each 

region is customisable (e.g. each region can be 3x3, 4x4, 5x5 surfaces across). See fig. 5.1 for 

two sample environments.

Fig. 5.1. Two simple environments. The left environment contains two types of resources 

divided into regions that are 3x3 surfaces across. The right environment contains three 

types of resources divided into regions that are 5x5 surfaces across.

5.2.2 Ambiguous value function
A new ambiguous value function is created by expanding the dynamic value function which 

is described in section 3.4.1. This value function creates a one-to-many relationship between 

stimuli and their behavioural value, as every stimulus may have different values (and 

therefore, different behavioural meanings) at different time steps. Thus, the stimuli can be 

said to be ambiguous.

Similarly to the dynamic value function, this value function operates by assigning a value for 

every wavelength in the 400-700nm range which is determined using a linear function and 

essentially defines the behavioural ‘worth’ of a wavelength. However, in each time step, 

every element in the function is altered by adding or subtracting a random value in a 

predefined range (see equation (5.1)). The surface’s value is calculated by summing the 

multiplication of every one of the wavelengths that constitute its reflectance with its 

behavioural value (equation (5.2)). Note that using this value function, the value of every 

wavelength may change in every time step. However, on average, the wavelengths that 

provide the best nourishment continue doing so despite the random element; this particular 

aspect is crucial, as evolution may be able to exploit this statistical regularity in order to 

enable critters to survive. In figure 5.2, two sample value functions are illustrated.
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V(i) =a(‘ i ^ ° ° ) +6 + (RAND(2r +1) -  (5.1)

Where V(i) is the behavioural value of wavelength i using the value function, RAND() is a

random number generator function, and a, b and r are predefined constants; a, b are constants

in a linear function and r is the range constant for the random number generator.

7 0 0

5 =  ^R e(« )K (i) (5.2)
» = 4 0 0

Where S is the surface’s value, Re(i) is the reflectance value of wavelength i for the surface, 

and V(i) is the behavioural value of the wavelength.
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Fig 5.2. Two examples of the ambiguous value function and the dynamic value function 

they are based on (from fig. 3.5). In this example, a = -1.1666, b = 17.5 and r = 25. The 

figure demonstrates that in two different time steps the value function can be very 

different.

5.2.3 Ambiguous perceived stimuli
In section 3.4.3, it was described that the stimuli that is perceived by the critters depends on 

the relative contributions of reflectance and illumination. In this section, a new ambiguity 

mode, ambiguous perceived stimuli is added. When this mode is active, the standard dynamic 

value function is used (defined in section 3.4.1); however, in each time step, a random value 

is added to or subtracted from the constituent wavelengths of the stimuli. An individual 

wavelength cannot be set above the maximum intensity (1) or below the minimum intensity 

(0). This effectively creates a one-to-many relationship between stimuli and their source, as 

every stimulus can be generated by many different types of surfaces. Thus, the stimuli can be 

said to be ambiguous.

5.2.4 The methodology behind these additions
Biological relevance: all additions to the model are conceptually very simple and are meant
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to represent abstract principles; nonetheless, they enable running experiments that are useful 

towards improving our understanding of biological phenomena:

• The simple environments feature enables examining abstract principles such as the effect 

of physical similarity on visual evolution. Although the environments are extremely 

simple, the results of the experiments (sections 5.3.4 and 5.3.5) are biologically relevant 

as indicated by the literature which is referenced in sections 5.3.1 and 5.3.2.

• The ambiguous value function and the ambiguous perceived stimuli features are 

particularly abstract. Although these do not have corresponding biological phenomena, 

the results of the experiments (sections 5.3.3, 5.3.4, 5.3.5) are biologically relevant as 

indicated by the literature which is referenced in section 5.4.1.

Level: the additions to the model do not affect this parameter.

Generality: the additions to the model do not affect this parameter: the model can still be 

said to be a general model. That said, in this chapter it is used to examine very specific 

hypotheses, as the environment and critter visual system are particularly suitable towards 

examining hypotheses that relate to the evolution of visual systems. In fact, the usage of the 

model here is more specific than in any other chapter.

Abstraction: all additions to the model can be said to be very abstract and do not emulate 

any specific feature of a real world phenomenon except for the overall concept.

Accuracy: In this chapter, the additions to the model emulate two overall principles:

• Abstract concepts, such as the effects of physical similarity and behavioural similarity: 

this is implemented using the simple environments feature.

• Ambiguity: this is implemented using the ambiguous value function and the ambiguous 

perceived stimuli features.

Both types of additions capture well the overall concept, but are abstract enough that the 

question of ‘accuracy’ does really not apply here.

Match: as both results sections of the chapter show, the additions to the model result in 

behaviours that are very similar to their real world counterparts.

• In part 1, it is shown that evolved visual systems evolve to perform tasks similar to their 

biological counterparts (specifically, detect the presence of positive resources: food). 

Another biological parallel is the exhibited increase in sensitivity and specialisation as a 

result of challenging visual conditions.
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• In part 2, it is shown that when exposed to ambiguity, critters evolve visual systems that 

can be characterised as colour vision, and utilise mechanisms that are similar -  in 

principle -  to their biological counterparts.

5.3 Part I: similarity and visual evolution
Two sets of experiments were conducted in order to investigate the relationship between the 

similarity of the environment and visual evolution. In both experiments, it is anticipated that 

environment—̂ receptor interactions that take place will result in the visual system of the 

critters becoming better adapted to the environment in the course of evolution; the 

experiments are conducted in order to confirm this and investigate the precise nature of the 

adaptations.

5.3.1 Visual systems and environments
In order for vision to be beneficial to an organism that possesses it, it must be able to perceive 

relevant and useful information that is present in the environment. That being said, many 

environments -  such as dim environments with very low levels of light -  offer a considerable 

challenge for the visual system. In fact, it can be said that the greatest challenge of visual 

systems in dim areas is capturing enough light to be able to reliably see [121]. Many species 

have evolved special visual adaptations that enable them to thrive in challenging 

environments.

The intensity of the illumination during a full moon night is roughly a million times dimmer 

than illumination during the day [232]; in moonless nights, the light is further 100 times 

dimmer [134]. Consequently, nocturnal animals that wish to rely on vision must evolve visual 

mechanisms that enable them to overcome these difficulties. Similar difficulties are faced by 

animals that reside in the ocean, where light levels drop very quickly with depth: after 600- 

700m the level of illumination drops to starlight levels. However, the ocean creates additional 

difficulties, such as a limited spectrum of light in deeper water, e.g. in the first 100m of the 

ocean, virtually all of the orange-red part of the spectrum (>550nm) is absorbed, as well as 

the direction of the light source: in the depths of sea, virtually all the light comes from above 

[232].

There are numerous kinds of adaptations evolved by nocturnal animals or animals that live in 

deep-sea that enable them to detect the light in such challenging environments. One way to 

adapt is to evolve very sensitive eyes; the eyes of invertebrates in the deep sea are considered 

to be some of the most sensitive eyes found in the animal kingdom [142]. Eyes can be made 

sensitive by being very large, thus, they can capture as many photons that are available -  e.g.
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the eyes of a giant deep-sea squid were reported to be 37cm in diameter [232]. Alternatively, 

the visual signal can be summed in space and time by neurally integrating signals in the 

visual system; this has the potential of drastically improving vision in dim light at the cost of 

a decrease in spatial resolution (when using spatial summation) or a decrease in visual 

response time (when using temporal summation) [232]. Another adaptation is used by 

superposition eyes, a type of compound eyes that are known for their high sensitivity; this 

type of eye -  possessed by nocturnal insects and deep-sea crustaceans -  enables light from a 

narrow area of space to be collected by a large number of lenses and be focused onto a single 

photoreceptor [232]. Finally, some arthropods adapt to the dark by widening the receptive 

fields of their photoreceptors at night and narrowing them during the day [118].

Low levels of light are not the only issue that requires specific adaptations: organisms can 

evolve visual specialisations for specific purposes. For example, some organisms need to 

detect the presence of a bright point source of light. A point source of light could be a star in 

a clear night sky, the occasional flash of bioluminescence in deep sea or a bioluminescent 

signal that is used by fireflies to attract potential mates [232]. Many deep sea organisms that 

are faced with this challenge, for survival and reproduction, have large pupils and long 

photoreceptors that are very sensitive [230, 231], thus, can recognise whether a point source 

of light is present. Of course, if this light source must be located (rather than just identified) 

then more adaptations are necessary.

Rather than solve a general problem, some visual systems resort to simply solving a specific 

problem that is faced; this can be said to be analogous to the engineer term known as 

'matched filters' (a matched filter is a filter that maximises the signal-to-noise ratio for a 

known signal when noise is present [78]). Normally this is enabled by limiting the amount of 

information that is perceived from the environment and looking for a specific visual signal 

which serves a cue to perform a specific task. Naturally, this severely limits the general 

usefulness of the system, but it relieves the visual system and brain from the need to do 

considerably more complicated work [234]. For example, Ocypode crabs overcome the 

problem of size constancy (the ability to reliably estimate an object's size regardless of its 

distance) without estimating the distance and size of objects; instead, these crabs treat objects 

that stimulate a certain number of vertical rows in the equator of their eyes as if they are in 

the correct size; whereas in humans, this is done in a much more complicated way, by 

measuring the absolute distance to the object and using the retinal image size. The crab's 

visual strategy works -  but only when its visual environment is very predictable, as is 

normally the case in its flat environment [247]. A somewhat similar strategy is used by the 

toad; toads stick their tongues out and snap at any small, dark, moving object that is nearby,
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even if it is a piece of small dark paper that is thrown at it [188]. Although the toad’s ability 

to perceive its prey is very limited, in its environment it is sufficient for its purposes: in 

nature, any small, dark, moving object is essentially prey for the toad.

5.3.2 The usefulness of colour vision
Colour vision is a commonly evolved mechanism for perceiving useful information that is 

present in the environment. Animals use colour to detect, identify and distinguish between 

objects, and normally possess visual systems that are adapted to the colour of objects of 

importance, such as conspecifics, predators and food sources (prey, fruits, leaves, etc) [232].

The benefits colour vision provides are numerous; most often, colour vision has been 

considered a specialisation for finding food [92, 213]. In the context of primates, who include 

some fruit in their diets, trichromatic colour vision may grant a distinct advantage in 

detection of yellow and orange fruits in green foliage [152, 213]; it certainly becomes very 

difficult to detect fruit without colour vision against mottled foliage when the light source 

varies randomly, a situation which may occur when the illuminant is interrupted by foliage 

[152]. This hypothesis is strengthened by the observation that primates tend to forage on 

colourful fruit, unlike non-primate diurnal mammals (e.g., squirrels eat brown and grey nuts) 

[137]. Interestingly, it has been suggested that yellow and orange tropical fruit have 

coevolved with the trichromatic colour vision of Old World monkeys [152]. Trichromacy 

also evolved in several species that only eat leaves, and can be used in this case to 

differentiate between different types of leaves [55]. Similarly, bee, wasp and moth colour 

vision has been demonstrated to be ideal for the task of flower discrimination [46].

Some animals use colour as a cue for orientation. For example, honey bees and ants use a 

chromatic signal as a compass [235]. Similarly, in water environments, the colour of the 

illumination can serve as an indication of the current depth and the orientation [97]. Although 

it is likely that colour vision is used for mate recognition, no conclusive proof has been found 

so far; however, with many types of animals, existing evidence strongly suggests that colour 

vision is used for this purpose, for example, jumping spiders, dragonflies and firefly squids 

[232].

As described in previous section, dim environments require specific adaptations. In the case 

of colour vision, colour discrimination is limited because of the inherent photon noise [232]. 

Until recently, it was believed that true colour vision has not been evolved under starlight 

conditions; however, Kelber et al have shown that a type of nocturnal hawkmoth possesses 

trichromatic colour vision at light levels a 100 times dimmer than the dimmest which can be
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perceived by humans [101]; this is believed to be possible using temporal and spatial 

summation [101, 119].

5.3.3 Experiments
Two sets of experiments were conducted. In the first set, it is examined how ‘physically’ 

similar/dissimilar environments that are behaviourally similar/dissimilar affect visual 

evolution. The aim is to discover whether there are common recurring characteristics to the 

evolved visual systems and whether there are similarities between these and the 

corresponding natural analogies. In the second set, it is examined how increased similarity of 

environments affects visual evolution. The aim here is to discover whether any particular 

visual strategy is required to deal with the increased similarity (and consequently, increased 

difficulty of the environment), and whether this strategy bears any resemblance to the visual 

strategies evolved by natural organisms.

In all experiments simple environments with four colours were utilised. The colours used are: 

red, green, blue and grey (see fig. 5.3 for their reflectance functions); however, different 

predefined values were assigned for every colour in the various experiments. The used 

environments consist of regions that are 3x3 surfaces across and all surfaces within a region 

are of the same colour. Although the regions were placed randomly, a predefined distribution 

of resources was used. In all experiments a random population of 2,200 evolving individual 

critters was placed in the environment for 1,100,000 time steps (roughly 40-45 hours). 

Afterwards, the critter population was stored and analysed. Each experiment was repeated at 

least 3 times -  reported results were averaged across runs. In every set of runs, the same 

randomly generated environment was used. In these experiments, a receptor’s position also 

specified its receptive field, that is, the area it is sensitive to (see section 3.7.1). Therefore, 

only a single receptor may detect any given surface relative to the critter’s centre.

Experiment 1: the effect of physical and behavioural resource similarity on visual 

evolution

The purpose of this experiment was to see how physical similarity, which is the similarity of 

the wavelengths that describe each surface (e.g. blue is different from green because blue has 

a reflectance function that peaks at 470nm and green peaks at 550nm) and behavioural 

similarity, the similarity of the meaning of a surface from the critter’s perspective, affect the 

evolution of the critter visual system. The surface matrix was illuminated by a static uniform 

illumination source. Four different categories of experiments were run (see table 5.1).
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Table 5.1. The four types of run in experiment 1.

Experiment
#

Surface
type

Value of blue 
surface

Value of red 
surface

Value of green 
surface

1.1 Saturated 25 -25 0
1.2 Saturated -25 25 0
1.3 Saturated -12.5 -12.5 25
1.4 Saturated 12.5 12.5 -25

Note: the purpose of the grey surface is to provide additional difficulty for critters because a 

critter that examines a grey surface cannot tell whether this is a grey surface or a consumed 

positive surface (which becomes transparent when consumed and shows the grey background 

colour). Additionally, the values of ±25 were picked because consuming a full surface with a 

value of 25 brings a starved critter roughly to 80% of its maximum health, and consuming a 

full surface with a value of -25 will bring a healthy critter to roughly 20% of its health.

Table 5.2. The four types of run in experiment 2.

Experiment # Surface type Value of blue 
surface

Value of red 
surface

Value of green 
surface

2.1
(identical to 1.1 — 
same results used)

Saturated (level 3) 25 -25 0

2.2 Saturated (level 2) 25 -25 0
2.3 Saturated (level 1) 25 -25 0
2.4 Unsaturated 25 -25 0

Experiment 2: the effect of increased resource similarity on visual evolution

The purpose of this experiment was to discover the effect of greater physical similarity on the 

evolution of visual systems. These experiments utilised the concept of saturation. Saturated 

colours are closer to pure colours whereas unsaturated colours look like pure colours mixed 

with neutral grey. The significance of saturation lies with the fact that unsaturated colours are 

harder to tell apart: the more unsaturated a surface is, the flatter its reflectance function. A 

saturated red and a saturated blue can be very easy to distinguish as their reflectance 

functions might not even overlap. However, an unsaturated red and an unsaturated blue might 

have significant overlaps, making the recognition of both a more difficult task. Thus, the 

effects of decreasing levels of saturation on the visual system, which result in recognition of 

resources becoming increasingly difficult, are examined in this set of experiments.

In this set of experiments, three additional versions of experiment 1.1 were performed (see 

table 5.2); in each subsequent run type, the used colours were less saturated than the previous 

run type. See figure 5.3 for an illustration of the reflectance functions of used colours and 

figure 5.4 for screenshots of the four types of saturated environments. Note that an additional
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(and intentional) difficulty for critters evolving in the later experiments is caused by the 

increased similarity of the colours used to the grey background colour.

 Blue sat 3
 Blue sat 2
 Blue sat 1
 Blue unsat
 Red sat 3
 Red sat 2
 Red sat 1
 Red unsat
 Green sat 3
 Green sat 2
 Green sat 1

Green unsat 
 Background

400 450 500 550 600 650 700

Wavelength

Fig. 5.3. The reflectance functions of the four colours in four different levels of 

saturation that were used in the experiments. There is a greater overlap of reflectance 

functions of unsaturated colours, thus, they are harder to tell apart. Note that the most 

unsaturated colours are also the most similar to the grey background colour.

Fig 5.4. The four levels of saturation in clockwise order (from top left).
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5.3.4 Results of experiment 1
The results of exp. 1 are shown in fig. 5.5 and 5.6, and in table 5.3. After analysing these 

results, several conclusions are immediately obvious. First, as fig. 5.5 and 5.6 show, in all run 

types of the experiment most of the critters evolved receptors that peak in the vicinity of the 

positive resource’s peak (see fig. 5.3 for the reflectance functions of all resources) -  that is, 

these receptors are most sensitive where the positive resource’s intensity is maximised, and 

thus, it is easiest to detect; in exp. 1.1, 68.11% peaked at 470-480nm, in exp. 1.2, 83.65% 

peaked at 620-640nm, in exp. 1.3, 83.33% peaked at 540-560nm. When there are two 

positive resources (exp. 1.4), some of the critters evolve to detect one positive resource 

(39.33% peaked at 450-480nm) and the rest of the critters detect the other (50.76% peaked at 

620-63Onm); this is apparent in two different peaks in the receptor distribution. Furthermore, 

as the receptor distribution shows, there appears to be relatively little diversity: the majority 

of receptors that were evolved peaked either directly on the positive wavelength’s peak or in 

its close vicinity.

In addition, it appears that, on average, between 1 and 2 receptors were evolved in all types of 

run (see table 5.3). When analysing where these receptors are placed, it appears one structure 

is consistently evolved: there is always a receptor placed to detect stimulus from the critter’s 

current location (distance = 0); this receptor’s peak is always very close to the peak of the 

positive resource of the environment (in exp. 1.4, the average peak is actually close to the 

average of the two positive resources; this demonstrates that some critters detect one of the 

positive resources and the rest detect the other). Interestingly, this evolved receptor is 

primarily very highly tuned, that is, it is very sensitive and covers a small area of the 

spectrum; the average and median coverage show that it covers between 26-34nm. Note that 

the median statistic was obtained and used in table 5.3 as well, because an exceptionally high 

coverage caused by a very wide tuning function can skew the average of the entire 

experiment and the median statistic thus may be more appropriately used for this type of data.

In those runs where multiple receptors were evolved, the extra receptor still primarily peaked 

around the positive resource; however, the tuning function of these receptors is much wider, 

that is, their coverage was significantly higher -  these receptors predominantly cover the 

entire visual spectrum. The extra receptors were not placed in a consistent location across 

runs, so distance > 0 was picked to describe their location (e.g., in some runs these receptors 

detect stimuli from one surface to the left and one surface above the critter’s location, and in 

other these receptors detect stimuli from one surface to the right of the critter’s location).
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Fig. 5.5. The receptor distribution of evolved critters in all runs of experiment 1
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The purpose of the first receptor (distance = 0) is clear: this is the receptor that enables the 

recognition of surfaces to be consumed. However, the purpose of other receptors, when 

present, is less obvious: these are not always evolved, and when they are evolved, they do not 

seem to detect anything novel -  they peak around the same area of the first receptor, but are 

considerably wider. The results of the next experiment shed some light on the usefulness of 

these receptors.

To conclude, the answer to the question ‘how do physical and behavioural similarity affect 

visual evolution?’ is perhaps unsurprising: evolution does not ‘care’ about physical similarity. 

Indeed, the only aspect that seems to matter is behavioural similarity. Surfaces that are 

physically different but behaviourally similar result in similar visual strategies being evolved. 

Surfaces that are physically identical but behaviourally different are treated differently by 

evolution.

50.00%

40.00%

30.00%

20.00%

10.00%

0.00% J
400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700

Exp. 1 .1  Exp. 1.2 Exp. 1.3 Exp. 1.4

Fig. 5.6. The receptor distribution of evolved critters in all runs of experiment 1, shown 

together in order to enable comparison.

Table 5.3. Average number of receptors, average peak, average coverage and median 

coverage for receptor (distance = 0) and receptor (distance > 0) for experiment 1; 

broken down according to category of experiment

Experiment
Average 
num. of 

Receptors

Average peak 
for receptor 

(distance = 0)

Average / median 
coverage for 

receptor 
(distance = 0)

Average peak 
for receptor 

(distance > 0)

Average / median 
coverage for 

receptor 
(distance > 0)

1.1 2.00 476.66 nm 2 6 /2 8  nm 491.50 nm 300 / 300 nm
1.2 2.00 625.00 nm 30 / 34 nm 622.00 nm 250 / 250 nm
1.3 1.34 552.66 nm 3 0 /3 0  nm N/A N/A
1.4 1.61 559.00 nm 3 2 /3 4  nm 490.00 nm 300 / 300 nm



5.3 Part I: similarity and visual evolution 116

5.3.5 Results of experiment 2
As can be seen in fig. 5.7 and 5.8 which show the receptor distribution in experiment 2, 

evolved receptors peak around the positive’s resource peak as they did in experiment 1. 

However, the more difficult the run is, the less diverse the receptor distribution; in fact, in the 

most difficult environment (exp. 2.4), 99.3% of all receptors in all runs peaked at 470nm -  

receptor diversity was negligible. Additionally, table 5.4 indicates that the average number of 

receptors drops when the environment becomes harder. These observations can be explained 

in the following way: one receptor, which detects stimuli in the critter’s immediate location 

(distance = 0), is sufficient and provides all the required information for survival in this type 

of environment. The additional information provided by extra receptors is simply not needed 

-  it is possible that in the easier environment, the selection pressure is simply not strong 

enough to remove this extra receptor. In fact, because the extra receptor is not kept in the 

more difficult environments, it is likely that the computational overhead of managing the 

inputs from more than one receptor is detrimental to the critter’s survival chances -  thus, in 

the most difficult run only a single receptor is evolved.

In addition, the peak seems to be shifting towards 470nm; although in the easier 

environments the average peak is already very close to the peak of the positive resource 

(470nm), in the more difficult runs the average peak becomes even closer. Finally, the tuning 

function, which determine the coverage of the receptors becomes smaller as the run becomes 

more difficult (in some runs receptors which covered as little as 6nm were evolved); these 

observations can be explained by the greater need to tell apart the overlapping reflectance 

functions, which becomes an easier task when receptors are more accurate and are 

exceptionally sensitive (the more sensitive the receptor, the greater the differences in 

activations as a result of perceiving different resources). Interestingly, the more difficult the 

run type, the harder it was to evolve: in the hardest environment the population repeatedly 

perished and many attempts were required in order to obtain a number of successful runs.

To conclude, the answer to the question ‘how does increased similarity affect receptor 

evolution’ is straightforward: increased similarity requires greater visual specialisation in 

order to be able to correctly recognise the various types of resources; this is evident by the 

smaller coverage of receptors and the average peak drifting closer to the good resource’s 

peak. Furthermore, because the increased similarity of resources makes the environment more 

challenging, in order to survive, the margin of error becomes smaller, thus, virtually all 

evolved receptors in the difficult runs have the same characteristics -  both in terms of the 

visual structure (peak and coverage) and also by the fact that only a single receptor is used in 

the most difficult environment.
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Fig. 5.7. The receptor distribution of evolved critters in all runs of experiment 2
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Fig 5.8. The receptor distribution of evolved critters in all runs of experiment 2, shown 

together in order to enable comparison.

Table 5.4. Average number of receptors, average peak, average coverage and median 

coverage for receptor (distance = 0) and receptor (distance > 0) for experiment 2; 

broken down according to category of experiment

Experiment
Average 
num. of 

Receptors

Average peak 
for receptor 

(distance = 0)

Average / median 
coverage for 

receptor 
(distance = 0)

Average peak  
for receptor 

(distance > 0)

Average / median 
coverage for 

receptor 
(distance > 0)

2.1 2.00 476.66 nm 26 / 28 nm 491.50 nm 300 / 300 nm
2.2 1.25 474.50 nm 2 8 /2 6  nm N/A N/A
2.3 1.33 473.33 nm 20 / 22 nm N/A N/A
2.4 1.01 469.66 nm 1 8 / 2 0 nm N/A N/A

5.3.6 Discussion of experiments
It is clear that the more challenging the environment is, fewer mistakes can be made or the 

critters will not survive and as a consequence, the evolved receptors virtually always evolve 

to peak in the ideal region -  whereas in the easier environments, receptors mostly peak in the 

close vicinity of the ideal region but occasionally peak even farther way. Moreover, as was 

seen, the harder the environment, the average number of receptors seems to be going down; 

in fact, all runs in the most difficult environment evolved a single receptor. This has a simple 

explanation: examining a single and specific range of the spectrum is enough to give a critter 

all the information it requires in order to survive, there really is no need for other receptors 

(this can be demonstrated by looking at the reflectance functions of fig. 5.3: certain intensities 

at some peaks can indicate exactly one type of resource, e.g., intensity of 1 at 470nm has to 

be ‘blue’). Thus, even if the evolved extra receptor provides some usefulness (a conclusion 

which has not been demonstrated so far), it can be said that in the more difficult
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environments it is likely to cause more harm than good, otherwise it would have been 

retained.

Perhaps the most interesting result is the similarity of the evolved receptors’ purpose to the 

primary task of vision in many biological organisms. First, the evolved receptors primarily 

learn to recognise resources that provide nourishment. Second, when the environment 

becomes more challenging, the evolved visual mechanisms of critters become specialised: 

these receptors detect a very narrow and specific region of the spectrum -  the critter sees 

nothing besides. Finally, the evolved visual systems in part 1 can be said to be ’matched 

filters' systems; the critters are looking for a specific cue -  once given, the critters consume 

the perceived resources; as demonstrated in section 5.3.1, this is similar to many visual 

strategies seen in nature.

These results indicate that certain universal guiding principles shape the evolution of visual 

systems, both in nature and in artificial systems. These principles work through the 

interaction of the environment and the visual system, which in Mosaic World are 

environment—̂ receptor interactions, and result in the visual system becoming increasingly 

better adapted to performing its task: to provide useful information that assists the organism's 

survival, and not to create a full portrayal of the environment. In the experiments described 

here, these interactions resulted in the evolution of simple 'matched filters' visual systems of 

various levels of specialisation.

5.4 Part II: ambiguity and visual evolution
In this part, the hypothesis that the need to deal with ambiguous environments is a possible 

reason for the evolution of colour vision is examined. Therefore, a set of experiments is 

conducted in which a population of critters is exposed to environments of various types of 

ambiguity. It is anticipated that the environment—̂ receptor interactions that take place will 

result in the visual system of the critters becoming better adapted to the environment in the 

course of evolution; the experiments are conducted in order to confirm this and assess 

whether these adaptations can be referred to as 'colour vision'.

5.4.1 The evolution of colour vision
The selection pressures underlying the origins of colour vision are still unknown [50], 

however, it is known that colour vision evolved several distinct times during evolution [232]. 

One theory suggests that the original appearance of colour vision in vertebrates was a result 

of the need to maintain lightness constancy [44, 137] -  the ability to filter the differences 

between sunny and shaded regions. In other words, colour vision originally evolved in order
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to deal with ambiguity of the visual environment, and not necessarily to tell different colours 

apart. This could have been the case in shallow water environments, where illumination 

flickers pose a serious constraint on visual processing [137].

Ecological forces have been shown to be a major element in directing the evolution of visual 

systems [90, 134]. There is a great diversity in the number and the spectral sensitivities of the 

cone types in different mammals. This is not only the case for mammals; for example, insects 

that occupy entirely different ecological niches occasionally possess very similar sets of 

receptor cone types [37]. It is widely assumed that these variations represent adaptations for 

specific visual needs that are linked to specific habitats or lifestyles; however, in many cases 

the adaptive usefulness of the examined system is not identified [172]. A possible explanation 

is that these organisms have inherited these systems from a common ancestor, and constraints 

(e.g. molecular) have kept them from optimally adapting to their environment [37]. Other 

constraints, such as those imposed on the processing of receptor signals, may explain why 

some animals (e.g. non-primate mammals) have not evolved trichromacy [137].

5.4.2 Experiments
In order to examine the relationship between ambiguous environments and the evolution of 

colour vision, a set of experiments was conducted. All experiments required a random 

population of 2,200 evolving individual critters to be placed in a test world and ended after 

550,000 time steps (roughly 20-24 hours). Once finished, the critter population was stored 

and analysed. Each experiment was repeated at least 8 times -  reported results were averaged 

across runs. All runs used the same randomly generated environment.

This set of experiments consisted of four types of runs. The dynamic value function (see 

section 3.4.1) was used in all runs except where stated otherwise; the parameters of the value 

function assigned positive value to the short wavelength and negative value to the long 

wavelength. Consequently, surfaces which are rich in short wavelength (and tend to look 

‘bluish’) provide the most potent nourishment and surfaces that are rich in long wavelength 

(and tend to look ‘reddish’) provide the most damaging ‘poison’ (green, grey, and purple 

surfaces would -  on average -  offer no reward as they would add as much to the health of a 

critter as they take away).

(1) No ambiguity: uniform illumination. In this run type, a uniform static illuminant 

illuminates the surface matrix (a constant 0.6 across all wavelengths). Consequently, 

there is a one-to-one relationship between stimuli and their behavioural significance, 

meaning, a perceived surface may only have one behavioural meaning: it could
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potentially be generated by only one reflectance (which would have a value that could be 

reliably predicted).

(2) Ambiguity type I: multiple illuminants. In this run type, multiple light sources illuminate 

the surface matrix (see sections 3.4.2 and 3.5). Thus, there is a one-to-many relationship 

between stimuli and their behavioural significance; meaning, a perceived surface may 

have many different behavioural meanings because it could have been potentially created 

by a lot of different reflectances (thus, its perceived value is ambiguous -  more difficult 

to predict).

(3) Ambiguity type II: ambiguous value function. In this run type, a uniform static illuminant 

illuminates the surface matrix, and the ambiguous value function (section 5.2.2) is used. 

As a result, there is a one-to-many relationship between stimuli and their behavioural 

significance -  thus, a perceived surface may have different underlying values at different 

points in time.

(4) Ambiguity type III: ambiguous perceived stimuli. In this run type, a uniform static 

illuminant illuminates the surface matrix, yet the perceived stimuli are ambiguous as 

described in section 5.2.3. As a result, there is a one-to-many relationship between 

stimuli and their behavioural significance. Potentially, the same surface could have been 

generated by many different reflectances (thus, its perceived value is ambiguous -  more 

difficult to predict).

Note that some of these ambiguities are quite different from each other, in particular 

ambiguity type II which differs from the rest. The aim behind incorporating such diverse 

ambiguities was to see whether the type of ambiguity makes a difference with regards to the 

evolved results, and if so, what sort of difference.

5.4.3 Results
An analysis of results for the different run types (see table 5.5) clearly shows that ambiguous 

environments, regardless of the way the ambiguity is generated, result in a greater average 

number of receptors evolving per critter (see fig. 5.9 for an illustration of the receptors of 

three evolved critters). When compared with the control (the ‘no ambiguity’ runs), it appears 

these results are statistically significant (a t-Test with a one-tailed distribution was used). A 

more detailed analysis of the results shows that when there is no ambiguity in the 

environment, the vast majority of critters (92.41%) possess only a single receptor. However, 

when there is any type of ambiguity in the environment, there is a definite effect on the
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evolution of multiple receptors: for some types of ambiguity, most critters evolve multiple 

receptors (e.g. in ambiguity type III, 99.01% of the critters evolved multiple receptors), for 

others the effect is weaker (e.g., in ambiguity type II, 35.19% of the critters evolved multiple 

receptors); regardless, the percentage of critters that evolve multiple receptors is considerably 

higher in all of these than when there is no ambiguity present (only 7.52% of the critters 

evolved multiple receptors).

Yet the presence of multiple receptors does not mean that an organism possesses colour 

vision -  to truly possess colour vision, an organism must (i) perform a comparison of 

activations from two receptors (or more) that (ii) differ in spectral sensitivity [134, 225]. 

Without integrating receptor activation in post-receptor processing, it is impossible to 

differentiate a change in colour from a change in stimulus intensity.

Since it is now known that in the run types with ambiguous environments, the critters 

frequently, and in some run types mostly, possess two receptors or more, an additional 

analysis was performed in order to discover the kind of spectral sensitivities the receptors 

possess. This analysis will enable the determination of whether the receptors the critters 

evolved possess different spectral sensitivities which is a requirement for colour vision. The 

results of this analysis (see table 5.6) show the percentage of critters that have certain 

receptor types and receptor combinations. Receptors were broken to three categories: short 

wavelengths (peaking between 400-490nm), medium wavelengths (peaking between 500- 

600nm) and long wavelengths (peaking between 610-700nm).

Table 5.5. The average number of receptors in the population and the statistical 

significance in comparison to the control (no ambiguity), the percentage of critters in all 

runs that evolved a single receptor and multiple receptors (2 or more); broken down 

according to the type of runs. Note: a very small number of critters in the 'no 

ambiguity' category have no receptors, thus, the total percentage of critters in the row is 

less than 100%)

Run type
Average 

number of 
receptors

I* value
(Comparison with 

'No ambiguity' runs)

%  of critters 
with a single 

receptor

% of critters 
with multiple 
(2+) receptors

No ambiguity 1.31 - 92.41% 7.52%
Ambiguity type I 2.11 0.0045 29.44% 70.56%
Ambiguity type II 2.29 0.028 64.81% 35.19%
Ambiguity type III 2.87 0.000095 0.99% 99.01%
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Fig. 5.9. Evolved receptors for three sample critters: (A) evolved in the unambiguous 

environment, has a single receptor (B) evolved in ambiguous environment I, has two 

receptors (C) evolved in ambiguous environment III, has four receptors.

It appears that the vast majority of critters in all run types evolved a receptor tuned to the 

short wavelengths -  thus, it may be assumed that a short receptor is mandatory for survival, 

as this short receptor can detect the presence of wavelengths that provide positive resources 

(according to the dynamic value function which was used). An additional receptor, tuned to
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the long wavelengths, was also frequently evolved in the ambiguous run types to various 

degrees. In fact, in all ambiguous environments, the combination of a receptor tuned to the 

short wavelengths and a receptor tuned to the long wavelengths seemed to be the most 

commonly evolved combination by far among the various permutations (short + medium, 

short + long, medium + long).

Table 5.6. The percentage of critters in all runs that evolved: a short wavelength 

receptor, a medium wavelength receptor, a long wavelength receptor, a short and a 

medium receptor, a short and a long receptor, a medium and a long receptor; broken 

down according to type of run.

Category Short Medium Long Short + 
Medium

Short + 
Long

Medium + 
Long

No ambiguity 99.59% 3.34% 4.59% 3.06% 4.54% 0.08%
Ambiguity type I 99.52% 17.98% 53.88% 17.72% 53.43% 2.56%
Ambiguity type II 97.30% 21.33% 22.45% 19.24% 20.99% 7.09%
Ambiguity type III 99.51% 33.84% 87.71% 33.51% 87.30% 22.88%

An additional analysis was performed in order to find the exact average peak of the evolved 

receptors. Performing an average for the peak of all receptors resulted in confusing data; 

however, when the average peak was obtained and broken down according to the receptor's 

distance from the critter's location, interesting results were gained. Additional statistics 

obtained in this analysis are the average and median coverage (based on the tuning function) 

for these receptors. Since this analysis resulted in a large volume of data, the only results that 

are given are receptor categories which appeared in at least a third of all the runs in the 

category, where 'appeared' means that at least 10% of the critters of the run evolved this type 

of receptor. Tables 5.7, 5.8, 5.9 and 5.10 show the results of this analysis for every run type.

Interestingly, the results are very consistent: a short wavelength receptor between 435 and 

451nm was evolved in all run types, and was always positioned so it could detect stimuli 

from the critter’s current position. In addition, in the ambiguous run types, an additional 

receptor was frequently evolved; in ambiguity type I and III runs this receptor detects light 

from one surface away from the critter's centre, and is sensitive to long wavelengths: between 

628nm and 657nm. Intriguingly, the extra receptor for ambiguity type II was sensitive to 

medium wavelengths (peaks in 545nm), and was also consistently placed to perceive stimuli 

farther away from the critter's centre (distance = 4). This receptor is also considerably less 

sensitive than all other receptors, according to the median statistic, normally covering most or 

all of the modelled spectrum, unlike the 74 to 118nm, far more sensitive receptors utilised by 

all other run types.
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Table 5.7. The percentage of runs, average peak, and average and median coverage for 

the 'no ambiguity' runs.

Category of run Receptors of 
distance % of runs Average

peak
Median
coverage

Average
coverage

No ambiguity 0 100.00% 444.67nm 74nm 76nm

Table 5.8. The percentage of runs, average peak, and average and median coverage for 

the 'ambiguity type I' runs; broken according to the distance of receptors from critter 

centre.

Category of run Receptors of 
distance % of runs Average

peak
Median
coverage

Average
coverage

Ambiguity type I 0 100.00% 451nm 102nm 104nm
Ambiguity type I 1 54.54% 628.27nm 106nm 300nm

Table 5.9. The percentage of runs, average peak, and average and median coverage for 

the 'ambiguity type II' runs; broken according to the distance of receptors from critter 

centre.

Category of run Receptors of 
distance % of runs Average

peak
Median
coverage

Average
coverage

Ambiguity type II 0 100.00% 435.77nm 130nm 118nm
Ambiguity type II 4 46.15% 545.67nm 272nm 300nm

Table 5.10. The percentage of runs, average peak, and average and median coverage for 

the 'ambiguity type III' runs; broken according to the distance of receptors from critter 

centre.

Category of run Receptors of 
distance % of runs Average

peak
Median

coverage
Average
coverage

Ambiguity type III 0 100.00% 441.5nm 118nm 212nm
Ambiguity type III 1 62.50% 657.8nm 102nm 98nm
Ambiguity type III 2 37.50% 604.33nm 118nm 300nm

The results of this analysis show that the evolved critters for all ambiguous environments 

possess two or more receptors, where one is sensitive to the short wavelengths and the other 

is sensitive to the long wavelengths (or much less frequently, the medium wavelengths), thus, 

they fulfil the 'different spectral sensitivities' criteria required for true colour vision.

The last remaining requirement for colour vision is the comparison of activations from 

different receptors. In Mosaic World critters, this type of comparison may occur when a 

hidden unit receives stimulus from one receptor and subtracts it from the stimulus received 

from another receptor (R1 -  R2 or R2 -  Rl), and both receptors differ in spectral sensitivities. 

A network examination showed that the networks that comprise the critter brains often
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contain many such connections. However, since statistically it is likely to frequently get such 

connections randomly, an analysis was performed in order to determine which of these 

connections were functional, that is, discover whether their presence makes any difference 

with regards to critter behaviour. Interestingly, these types of connections are somewhat 

reminiscent of colour opponent processing in mammals that are used for comparing 

activations from different photoreceptors [182].
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Therefore, a selection of 25 representative critters that possess two or more receptors from all 

runs was presented with 71 hand-made stimuli (see fig. 5.10 for three sample stimuli) and the 

behaviour of every critter -  specifically, the amount of positive and negative resources 

consumed -  was recorded. These stimuli were created to be challenging for the critters that 

evolved in Mosaic World, e.g. stimulus 3 in fig. 5.10, which is a negative resource, would 

look like a positive resource to any critter which possesses only a single receptor in the short 

wavelengths.

Afterwards, this analysis was repeated multiple times for every critter: in each repetition, a 

different connection between a receptor and hidden unit was lesioned (disabled); the purpose 

of this analysis was to discover which ‘opponent’ connections have an effect on critter 

consumption. The opponent connections that altered behaviour were termed ‘true opponent’ 

connections. An additional goal was to examine whether the presence of true opponent 

connections was conductive towards more successful behaviour of the critter, that is, whether 

these types of critters tended to consume more positive resources and less negative resources.
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The results of the analysis showed that the number of true opponent connections varied from 

0 to 4 per network (with 27.3% of critters have 0 connections, 63.7% with 2, and 9% with 4; 

the number of connections is even since every comparison requires exactly two connections, 

one from each receptor). Furthermore, the more ‘true opponent’ connections a critter 

possessed, the more efficient was its behaviour towards consuming positive resources and 

avoiding negative resources, which is shown in figure 5.11. Thus, critters with a maximum 

number of ‘true opponent’ connections consumed the highest amount of positive resources 

and were able to avoid consuming negative resources altogether.

The Effect o f  Colour Opponeney on Consumption

500 -------------------------------------------------------------------------------------------

Single receptor, 0 Multiple receptors, 0 Multiple receptors, 2 Multiple receptors, 4 
'true opponent' 'true opponent' 'true opponent' 'true opponent'
connections connections connections connections

Category

■ Posithe 
Resources 
Consumed

■ Negttive 
Resources 
Consumed

Fig. 5.11. The average consumption of positive and negative resources per critter; 

broken down according to number of 'true opponent' connections.

Three additional questions remain: first, why do critters that evolve in ambiguous 

environments require two receptors and not a single receptor? Second, why is the most 

common combination a short and a long receptor rather than another combination, such as a 

short and a medium receptor? Finally, why does the short wavelength receptor peak around 

430-450nm and not at 400nm, where the value of every wavelength is at maximum value?

It is possible to answer the first question by considering the criteria for colour vision. By 

having at least two receptors, each sensitive to different regions of the spectrum, and 

comparing their activations, it is possible to discern the overall value of the resources; using a 

single receptor would not give enough information to determine the quality of the resource. 

For example, fig. 5.12 demonstrates this principle by taking a test critter with two receptors 

(the first peaks at 450nm and the second peaks at 650nm) and displaying three test stimuli to
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it: a positive resource (rich in short wavelengths), a neutral resource and a negative resource 

(rich in long wavelengths). By comparing the activations for each resource, it is possible to 

estimate whether the resource should be consumed or not, specifically, the resource should be 

consumed when the activation for the short wavelength receptor is stronger than the 

activation for the long wavelength receptor.
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Fig. 5.12. Three sample stimuli and the activations they elicit from a sample critter: the 

first column is the stimuli, the second is the critter (the same always), and the last 

column is the activation



5.4 Part II: ambiguity and visual evolution 129

The answers to the second and third questions can be gained by looking at fig. 5.13, which 

explains why -  in statistical terms -  the majority of critters evolved receptors tuned to the 

short and long wavelengths, specifically, the values that were evolved. The figure describes 

the correlation coefficient value of every individual wavelength with the surface value; for 

example, 440nm is highly positively correlated with the surface value, and so, by looking 

specifically at the value of 440nm only, it is possible to predict with some reliability the value 

the surface will have. Therefore, by evolving a receptor that examines a wavelength that is 

highly correlated with the overall surface value, a critter may be able to evolve a useful visual 

strategy that would lead for survival. Furthermore, the wavelengths in the long wavelengths 

range are highly negatively correlated with the overall surface value, thus, by possessing both 

types of receptor, a critter significantly increases its ability to predict the overall surface value 

(see fig. 5.14 for an example). In addition, the wavelengths in the medium range have very 

low correlation values with the overall value, thus, a critter that evolves a receptor that detects 

these wavelengths will gain very little information towards predicting the overall surface 

value. Finally, although 400nm provides the most potent positive wavelengths, it is not as 

correlated with the overall surface value as 430 and 440nm, thus, it is less useful to a critter 

relying on its state for prediction of the overall surface value -  that is why most receptors do 

not evolve to detect wavelengths at 400nm.
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Fig. 5.13. The correlation coefficient of individual wavelengths in the test environment 

with the surface value (using the dynamic value function). Certain wavelengths are 

highly correlated (positively or negatively) with the overall surface value, thus, are the 

best predictors of the overall surface value.

Note that the 'bumpy' shape of the graph in fig. 5.13, where 430nm and 670nm are the 

wavelengths most highly correlated with the overall surface value is a result of the way 

reflectance functions are generated in the system, specifically, the use of 7 major wavelengths
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(described in section 3.3.1). Although this resulted in very interesting (and surprising) effects, 

this particular element is unique to this system and does not correspond to anything specific 

in nature.

Critter 1 1ms a single receptor which peaks at 450nm and covers 420-480nm.
Uses: 420,430,440,450,460,470,480nm as predictors.
R «  0.537

Critter 2 has two receptors; receptor 1 peaks at 650nm and covers 630-670nm, receptor 
2 peaks at 430nm and covers 400-470nm
Uses: 400,410,420,430,440,450,460,470, 630, 640,650, 660,670nm as predictors. 
R = 1

Fig. 5.14. Two sample critters and the correlation coefficient of their receptors with the 

overall surface value (calculated using multiple correlation for all the wavelengths the 

receptors span)

5.4.4 Discussion of experiments
The experiments and analysis described in this part of the chapter provide evidence 

supporting the hypothesis that colour vision is the result of ambiguous environments. These 

experiments demonstrated that ambiguous environments result in the evolution of multiple 

receptors. In addition, it was shown that these receptors consistently evolve to detect two 

different parts of the spectrum: the short wavelength range and the long wavelength range. 

Finally, it was shown that critters often have 'opponent' connections between two receptors 

with different spectral sensitivities which are reminiscent of biological opponency channels; 

the more of these a critter possesses, the better it is at consuming positive resources and 

avoiding negative resources.

It is clear that adding ambiguity to the system resulted in the evolution of colour vision. Not 

only do the evolved critters satisfy the colour vision criteria, but they use their evolved colour 

vision the same way living organisms use their natural colour vision, specifically, to 

differentiate between resources. It is interesting to note that it does not seem to make a 

difference whether the ambiguity is a result of the value function having a random 

component, perceived stimuli having an ambiguous component or simulated multiple 

illuminants -  all these result in evolved colour vision. However, runs involving ambiguity 

type II seemed to possess different characteristics; this may be a result of the different type of 

ambiguity involved: where the random component is affects the resource value, and not the 

perceived stimuli (like the other two types of ambiguity).

One possible criticism of the evolved vision may be that the two different receptors do not 

detect stimuli from the same surface, but instead detect neighbouring surfaces. Although
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technically correct, one of the premises of environments used in Mosaic World is that 

neighbouring surfaces are likely to be identical or very similar (see section 3.5) -  which is the 

reason the environment evolves various types of clusters of colour. Thus, it can be reliably 

stated that although these receptors detect neighbouring surfaces, the comparison of signals 

that takes place would frequently be identical to the one that took place if the detection took 

place from the same surface. However, in this case, what is the advantage of ‘looking ahead’ 

using receptors that do not perceive the current location of the critter? There are two possible 

answers. The first possibility is that the ‘look ahead’ mechanism is indeed unutilised most of 

the time, however, the few instances it is used -  for example, for edge and hole detection 

(only occasionally perceiving the darkness as a cue to turn around) -  are important enough 

for evolving this mechanism. The second possibility is that looking ahead does not confer any 

compelling advantages but is used in the process of colour vision simply because it is 

impossible to evolve two receptors that view the same location, thus, viewing a nearby 

surface is as close as the critter can get to viewing the same surface.

It is also interesting to note the visual structures used by evolution; although some critters 

survived in the ambiguous environments with a single receptor, possessing multiple receptors 

appears to be a major advantage (and in fact, were occasionally -  but not often -  evolved in 

the unambiguous environment as well). The receptor tuned to the short wavelengths is used 

to detect the presence of short wavelengths in the resource (positive components), and the 

receptor tuned to the long wavelengths is used to detect the presence of long wavelengths in 

the resource (negative components). By comparing the activations of these two types of 

sensors, a critter can determine quite reliably whether the resource is likely to be positive or 

not, thus, whether it should be consumed or avoided. This is also shown to be the case from a 

statistical point of view.

To conclude, colour vision is evolved in Mosaic World in order to gain a more reliable way 

of discerning the value of a resource, which becomes particularly important in ambiguous 

environments. Critters that evolved in an unambiguous environment tend to 'settle' for a 

single receptor simply because the perceived stimuli are more reliable and multiple receptors 

require a greater computational overhead, whereas in the ambiguous environment, multiple 

receptors were evolved more often because the perceived stimuli is less reliable, thus, the 

increase in overhead is deemed to be worthwhile. This illustrates very well how the 

interactions between the environment and the visual system (environment—̂ receptor 

interactions) cause the visual system to become increasingly more adapted to the 

environment. This is a recurring process: the ability of the receptors to perceive the 

environment influences the critter’s overall behaviour and likelihood of survival and this
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enables such critters to be selected for reproduction. Finally, these experiments support the 

hypothesis that the original evolution of colour vision in nature occurred as a result of 

ambiguous changing light sources [40, 189].

5.5 Complex interactions analysis
The work described in this chapter primarily deals with the interaction of the visual system 

and the environment through environment—►receptor interactions. In both parts of the chapter, 

a population of critters is presented with different environments which incorporate several 

different principles and the effect on the evolved visual systems is examined:

• In part 1, experiment 1: several combinations of physical similarity/dissimilarity and 

behavioural similarity/dissimilarity are incorporated into the design of the environment.

• In part 1, experiment 2: increasing levels of physical similarity are incorporated into the 

design of the environment.

• In part 2: an unambiguous environment and three types of ambiguous environments are 

used.

These environments present various types of challenges for the critters; the primary way 

which the critters overcome these challenges occurs through alterations to the visual system, 

by evolving specific adaptations that enable perceiving elements of the environment that are 

crucial towards survival and disregarding elements that are not. Therefore, the 

environment—>receptor interactions are crucial towards accomplishing the challenge. It is 

important to emphasise that although these specific interactions take place in one level of the 

system, the level of the receptors, their effects reach all levels in the critter phenotype: both 

higher (neuron, network) and lower (genes), and because the critters interact, through 

competition on resources and reproduction, these affect the population level as well 

(population, species):

The interaction(s) that takes place are in parenthesis at the end of each sentence.

1) Every critter attempts to survive -  several different behaviours are required:

(a) Perception: the environment is perceived by the critter’s receptors

(environment—►receptor), thus, the receptors are in charge of filtering the 

information that reaches them and relaying the 'right' information to the network. 

The more adapted to the environment the visual system of the critter is, the better 

it will be at extracting the relevant and useful information from the environment 

and passing it on and disregarding information that is of no use. Thus, the 

difficulty of this task depends on the nature of environment.
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• Although the environments used in exp. 1, part 1, are different from each 

other, the visual systems required for each follow similar principles, 

specifically, the need to perceive the peak of a positive resource within the 

environment; all 4 environments are quite simple and are roughly the same 

level of difficulty.

• Several environments of varying levels of difficulty are used in exp. 2, part 1. 

The more unsaturated the resource types, the more challenging the task faced 

by the visual system of the critters, and the greater the difficulty in adapting 

the receptors so that they relay useful information from the environment.

• All environments used in part 2 are complex, and so, the visual systems of 

critters must labour to determine which information is relevant and which is 

not. That said, the three ambiguous environments all have one-to-many 

relationship between stimuli and their behavioural significance, thus, offer a 

considerable challenge to the visual systems of the critters by requiring them 

to compare activations from multiple receptors in order to reliably determine 

the nature of the perceived stimuli. These environments are more challenging 

than the unambiguous environment.

(b) Communication: the receptors relay this information to the network through 

neurons (receptor—meuron, neuron—̂ network).

(c) Control: the networks control the critter’s behaviour (network—>critter).

(d) Consumption: the critter may consume surfaces (critter—♦environment); and in 

this case, positive or negative energy is transferred from the environment to the 

consuming critters (environment—►critter). The ability to recognise positive and 

negative resources is directly affected by the receptors’ ability of 

perceiving/interacting with the environment.

(e) Movement: the critter may choose to move (forage for good, avoid edges and 

holes) (environment—>critter). This behaviour is also affected by the receptors’ 

ability of perceiving the environment.

(f) Reproduction: the critter may choose to reproduce (critter—♦critter). This 

decision, in case of sexual reproduction, may be affected by the receptors’ ability 

of perceiving other critters.

2) Selection (to evolve appropriate visual system and behaviour): many critters die 

during stages 1-d to 1-f, either by consuming negative surfaces, or by falling from the 

edges/into a hole, or by running out of energy, or by reproducing when not possessing 

enough energy. Because critters that possess appropriate behaviours are more likely to 

survive, and thus, pass on genes that define them, the advantages these behaviours confer 

directly affect the selection of these genes (network—>genes). Furthermore, because
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critters that have a visual system that is better adapted to the environment are more likely 

to identify good resources for consumption and avoid consuming bad resources, they are 

more likely to survive, thus, the advantages these visual systems confer directly affect the 

selection of the genes that define them (receptor—►genes).

3) Selection (to better compete): the critters that survive compete on resources 

(critter—►critter). Consequently, critters that are fitter are more likely to out-compete 

others, thus, features which increase fitness (both evolved behaviours and other aspects of 

the critter) affect the selection of genes which define these features (network—►genes, 

critter—►genes). Critters that have a visual system that is better adapted to the 

environment are more likely to out-compete other critters on resources (receptor—►genes).

4) Reproduction: continuing (1-f), the critters that survive past steps (2)-(3) and are now 

able to reproduce are fitter than those that died (genes—►genes). Their offspring’s 

phenotype is likely to be fit as well, as affected by the selection pressure in (2) and (3). 

These changes to genes affect the phenotype of the critters across all levels 

(genes—►receptor, genes—►neuron, genes—►network, genes—►critter) and eventually the 

overall population (genes—►population).

5) Steps (1) to (4) are repeated until the run ends. The critters with visual systems that are 

better adapted to the environment are those that survive. Depending on the experiment, 

the critters that survive at the end of the runs have these types of visual systems:

o In exp. 1, part 1, critters that survive have a single receptor that receives stimuli from

the critter’s current location (distance = 0) and peaks in the vicinity of the positive 

resource’s peak. Occasionally these critters evolve more receptors that perceive 

stimuli from various distances from the critter’s current location (distance > 0) whose 

function is not clear -  but appear not to be crucial for survival, 

o In exp. 2, part 1, critters that survive have a single receptor at (distance = 0) that

peaks on the positive resource’s peak or very close, and is extremely sensitive, 

o In the experiments of part 2:

■ In the unambiguous environment, critters mostly evolve a single receptor at 

(distance = 0) that peaks around 440nm (a wavelength likely to enable good 

prediction of the surface value).

■ In all ambiguous environments, most critters evolve one receptor that receives 

stimuli from the critter’s location and peaks between 435 and 451nm 

(wavelengths that enable very good prediction of the surface value). In 

ambiguous environment I, most critters evolve an extra receptor that peaks 

around 630nm and receives stimuli from one surface away from the critter's 

location. In ambiguous environment II many critters (46%) evolve an extra 

receptor that peaks around 550nm and receives stimuli from 4 surfaces away
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from the critter's location. In ambiguous environment III most critters evolve an 

extra receptor that peaks around 650nm and receives stimuli from one surface 

away from the critter's location, and about a third of the critters evolve a receptor 

that peaks around 600nm and receive stimuli from two surfaces away from the 

critter's location. The long wavelengths enable very good prediction of the 

surface value (through negative correlation).

As indicated, the evolved visual systems assist survival by:

(a) In part 1, the evolved visual system enables the critter to survive by identifying 

only what it should eat (and of course, how to avoid other pitfalls of Mosaic 

World, such as the holes and edges). Only a single receptor is necessary and is 

used to detect a specific region of the spectrum which indicates whether the 

resource is good or not. This information flows from the receptor to the critter’s 

network, and leads to the critter behaving in the appropriate manner.

(b) In part 2, the evolved visual system enables the critter to survive by identifying 

resources that are most likely to increase the critter’s health (and avoid the other 

pitfalls of Mosaic World). In both unambiguous and ambiguous environments, 

two (or more) receptors are useful: by comparing activations from a receptor 

which detects short wavelengths in the resource and a receptor that detects long 

wavelengths, it is possible for the critter to compare the activations and quite 

reliably determine the quality of the resource it perceives. However, in the 

ambiguous environments possessing such a visual system is more crucial because 

the perceived visual stimuli is less reliable, so critters are more likely to evolve 

this type of visual mechanisms there than they are in unambiguous environments.

5.6 Conclusions
The aim of the work presented in this chapter was to investigate the environment—̂ receptor 

interactions that take place in the system by setting a challenge to Mosaic World that required 

potentially several different types of visual adaptations to be evolved. By picking different 

environments, it was interesting to see the similarities and the differences between various 

adaptations that were evolved in the two parts of the chapter.

On one hand, very similar mechanisms were evolved by critters in both parts: one receptor is 

evolved, which is positioned to detect stimuli from the surface the critter is currently above, 

and tuned towards the peak of the positive resource of the environment. On the other hand, 

some differences were apparent as well: first, it appears that the first receptor is used in 

different ways; in part 1, it is used as a 'matched filter' -  as a cue to be used when a resource
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can be reliably determined to be positive or not, thus, should be consumed, whereas in part 2, 

it is often used as a part of a colour vision system -  comparing its activation with another 

activation is crucial. Consequently, it appears that the nature of the extra receptor that is 

evolved in both types of environments is very different. In part 1, the extra receptors are not 

very different from the first receptor (except for location), whereas in part 2, the extra 

receptors are mostly tuned to detect long wavelengths in order to accomplish their role in the 

colour vision mechanism; thus, the extra receptors are very different from the first receptor.

Another difference is that in part 1, multiple receptors were a liability that should be 

optimised when dealing with difficult environments, whereas in the part 2, multiple receptors 

were a significant advantage when dealing with difficult environments. The reason for this 

potentially conflicting information is fairly straightforward. In the environments used in part 

1, there is nothing to be gained by possessing multiple receptors: the environment is simple 

enough that all the necessary information can be obtained using a single receptor, for 

example, a perceived intensity of 1 at 470nm can mean only one thing: the viewed resource is 

blue. However, as demonstrated by fig. 5.13, in part 2, multiple receptors of certain types 

provide useful information that can considerably increase a critter's likelihood of recognition 

of the surface type.

Why, then, were two receptors occasionally evolved in part 1? The usefulness of these 

receptors was never established, however, it is possible that these extra receptors help create 

neutral networks -  allowing the phenotype of the critter to be changed without affecting its 

fitness (see section 4.2). If this is the case, then these extra receptors could have been used as 

a way to make the critters more evolvable, and would have been discarded when the critter 

reached its optimal state. In order to test this hypothesis, further work would have to be done.

Interestingly, the fact that at times the critters’ receptors aimed to extract as much information 

as possible from the environment, and other times aimed to extract only a limited amount of 

information from the environment is suggested by Polani et al to depend on the information 

that is relevant -  in the sense that it is useful -  in the environment to the agent; in their work, 

they attempt to provide a framework for quantification of this relevant information [178].

To conclude: all experiments indicate that visual systems adapt to the environment they are 

placed in through their interaction with it. When it is useful to extract more information from 

the environment for survival, a visual mechanism evolves that achieves this. When it is useful 

to filter existing information and only use some of it, the evolved visual systems will do that 

instead.
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Challenge: behaviour
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In the previous chapter, the interactions that occur between the receptors and the environment 

were investigated, as expressed by the evolution of structural adaptations to the visual system 

that facilitated survival in various environments. This chapter continues the investigation of 

Mosaic World and moves to a higher level in the model: the network level. In order to 

achieve this, a set of experiments was conducted to investigate the complex interactions that 

occur between the behaviour of the critter and the environment it is situated in: whereas 

previously the environment's effect on structural adaptations was examined, in this chapter, 

the environment's effect on behavioural adaptations is examined. The challenge posed for 

Mosaic World in this chapter is:

Can behaviours suitable for specific environments evolve in a population o f critters, and i f  

so, how do the characteristics o f  environments o f various levels o f difficulty affect the 

resultant behaviour?

In Order to achieve this, a set of experiments was conducted to study the effect of three 

different types of environment on the behaviour of evolved critters under seven different 

health levels.

6.1 Introduction
Even though some of the Earth's environments are characterised by extreme conditions -  for 

example, the cold at the icy shelves of Antarctica or the heat at the Saharan desert during 

midday -  these are the habitats of many animals [23]. A species that wishes to survive in such 

environments -  or any environment -  must obtain a way of adapting to its conditions. A 

species can adapt to an environment by evolving certain structural adaptations. In addition, a 

species can adapt to an environment by evolving behavioural adaptations [139]. For this 

purpose, the behaviour of an entity, both natural (such as an animal) and artificial (such as a 

robot), can be defined as the dynamic interaction that takes place between itself and the 

environment it is situated in [143]. If a behaviour is genetically based rather one that has been 

learned in an individual animal's lifetime then it can be referred to an evolutionary strategy 

[139].

Even with appropriate structural adaptations, an animal's survival is critically dependent on 

its behaviour [139]. For example, in nature, dark moths are more difficult to spot when placed
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on a dark background and light moths are more difficult to spot when placed on a light 

background. However, to benefit from this type of camouflage, a moth must behave in an 

appropriate manner, by actively seeking backgrounds that are better suited for its colouring 

[103]. Consequently, the process of evolution results in animals that are very efficient at 

survival; this includes behaviours such as foraging, reproduction, hunting prey and avoidance 

of predators [139].

All behaviours an animal may perform cost energy; this energy must be replaced by the 

animal in various ways, all of which may be referred to as foraging. Yet the rate at which an 

animal is able to restore its lost energy also depends on the availability and accessibility of 

food. Furthermore, there may be occasions where an animal has only a limited amount of 

energy or time it can spend on foraging; this constrains the behaviour of the foraging animal. 

An animal can prepare for such a situation by saving energy (e.g. storing fat). Under natural 

selection, efficient foragers have an advantage; thus, most animals are very efficient at 

searching and obtaining food [139].

The best way to search for food depends on numerous factors, including the distribution of 

food (or prey) and whether it is static or moves [188]. Naturally, the physical structure of the 

habitat (e.g. the structure of the vegetation) also plays an important part at determining the 

search methods that can be used [189]. Different species possess different foraging methods; 

some actively search for their food while others lie and wait for food. Consequently, some 

spend a lot of energy while foraging but forage only a short amount of time, while other 

spend little energy while foraging but forage for long amounts of time [139]. In general, the 

more actively a forager looks for food -  by moving faster or dedicating more time to the 

process -  the faster it will find it; however, the more active the search, the higher the energy 

cost the forager pays [9, 161, 189].

In nature, food is frequently distributed in patches (e.g. different bushes, different leaves); 

when this is the case, the forager has to determine which patch to pick and how much time to 

spend in it. The forager may be able to determine which patch is likely to have food based on 

perceptual cues or memory [79, 99]. Once a patch has been picked, the forager needs to do an 

'area-restricted search' within it (also called 'local search' [79]) to locate the food source [23]. 

There are many recurring foraging strategies which are used by animals when food is 

distributed in patches. For example, after a food item has been obtained, some animals 

perform a local search which is characterised by a decreased rate of movement and an 

increased rate of turning -  this appears as spiralling movement patterns; clearly, this



6.1 Introduction 139

behaviour is useful when food/prey is distributed in clumps/groups, and such movements 

increase the likelihood of finding more food items [23, 25].

The study of foraging in insects, animals and humans relates to several areas of research in 

biology, psychology, behavioural ecology and anthropology with a very large body of work.

Food abundance (spatial distribution) and foraging behaviour

One topic of study is the effect of the food abundance (or prey) within a patch, specifically 

the spatial distribution of the food within the region, on the foraging strategies of the forager. 

Often the animal's behaviour aims to increase its chances of obtaining food which may be 

affected by the food's distribution; thus, the abundance of food tends to be negatively 

correlated with the length of time or speed the forager pursues it [60]. In a study of the 

environment's effect on the movement patterns of Chacma baboons that live in two different 

areas: the slopes and the belt [81], it was discovered that the slopes baboons foraged in longer 

journeys while moving faster than the belt baboons because of the lower food availability 

present on the slopes. However, when food availability increased, the length of the journeys 

decreased. In another study, on Rana catesbeiana tadpoles, it was reported that when food 

levels were low, the tadpoles increased their foraging efforts by moving more frequently and 

faster [9]. A study on bumblebees demonstrated that a change in foraging strategy takes place 

as a result of nectar abundance; when there is more nectar per flower, the bumblebees search 

more for flowers in the area; thus, the bumblebees clearly aim to forage mainly in more 

rewarding areas [139]. Finally, it was shown that the foraging strategy of thrushes depends on 

the distribution of food; when food is placed in small clamps, the best foraging strategy is to 

move straight and turn once a food item has been obtained in order to find the rest of the 

nearby food, however, when the food is spaced out, after a food item has been obtained it is 

best to continue moving [210, 211].

Food abundance (availability of food) and food preferences

Similar research investigates the effect of the availability of different types of food or prey 

within a patch on the food preferences of the forager [23]. Normally, when food is abundant, 

animals prefer the higher quality food -  but when food is scarce, animals are less choosy. It 

was shown that foraging bluegill sunfish show no preferences with regards to capturing 

small, medium or large water fleas when these were available at low densities; however, 

when there were plenty of fleas, the fish preferred to capture the largest fleas and ignored the 

rest [236]. Similarly, it was shown that the redshank, a type of bird that feeds on worms, 

tends to ignore smaller worms and catch only worms that are above a certain size; however, 

its size preference depends on the rate of encounter of larger worms [72]. Another study
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examined the effect of seasonality on Tai Chimpanzees and showed that in dry season -  when 

food resources are scarce, the chimpanzees spend more time feeding and eat more frequently 

lower quality food items than when food resources are abundant [56].

Temperatures and foraging behaviour

Temperatures may also affect the foraging behaviour of animals which require 

thermoregulation [161]; for example, a bumblebee must spend energy to keep its flight 

mechanisms warm when it is cold, and increasingly more as it gets colder [139]. It was 

shown that bumblebees forage on rhododendron flowers, very rewarding flowers in terms of 

energy in a wide range of temperatures -  but they do not forage on wild cherry at low 

temperatures because the energy gained from these flowers is less than the energy costs of 

keeping warm and foraging [80].

Starvation and foraging behaviour

Foraging behaviour has also been found to be dependent on parameters that are internal to the 

organism such as the presence of hunger; these studies are linked to the previously described 

studies on the effect of resource abundance, i.e. when resource levels are low, an animal may 

be hungry. Generally, when an organism is hungry, it increases its efforts of locating food in 

several ways. In a study of Rhynocoris marginatus, a type of predatory insect, it was shown 

that the hungrier the insect, the shorter the distance it travels in search of prey; on the other 

hand, the hungrier it gets, the faster its movement rate and the more turns it makes during this 

search [49]. Another study, on wolf spiders [229], demonstrated that Hogna helluo changes 

its movement patterns when starved: it travels farther, more frequently, and its maximum 

speed is higher than the satiated spider. This is believed to be the case because Hogna seeks 

new areas with better chances of finding prey; it 'assumes' it is hungry because its current area 

has low prey availability. A study of Drosophila flies reported that hungry flies are more 

active than satiated flies -  their level of locomotion increases [108]; the authors suggested 

that the increase in speed is a part of altered search behaviour, and argued that if food had 

already been found during the experiment, the speed would not have increased despite the 

fly's hunger. Conversely, in a study of darkling beetles [140], it was shown that hungry 

beetles move slower and cover less ground than satiated beetles. Although this behaviour 

appears to contradict the previously described work, its purpose appears to be the same: the 

authors argue that hungry beetles move slower in order to do a more thorough search (area- 

restricted foraging). A different study reported similar effects of hunger on the behaviour of 

Coccinellid Larvae [45]; the hungrier the larva, the slower it searches for food and the more 

turns it makes. Here, too, the change in speed aims to achieve a more thorough search within 

a patch.
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Risk sensitivity and foraging behaviour

A related area of research is risk-sensitive foraging, the study of the effect of uncertainty on 

foraging decisions [17]. Several theoretical models, and numerous studies suggest that 

animals tend to be risk-averse when the amount of reward is variable and unpredictable, that 

is, they will always prefer the constant alternative, and are mostly risk-prone when the 

variability is related to delay, that is, they will prefer the uncertain alternative when reward is 

delayed in a random amount of time [16, 17]. In addition, it was reported that positive and 

negative energy-budgets -  defined according to whether the animal receives enough food to 

satisfy its energy needs including elements such as thermoregulation [16] -  occasionally 

cause an animal to switch from one behaviour to the other (risk-averse to risk-prone and vice 

versa). It is important to emphasise that a lot of contradictory results have been reported in 

multiple studies, thus, many research questions are still unresolved. It appears that foraging 

decisions are very complex and may be affected by what appear to be trivial elements in the 

conducted experiment -  no one theory explains all the reported behaviour [17].

Computational models that investigate foraging

There are numerous computational models that simulate the behaviour of real world animals 

(e.g. one simulation was used in order to investigate the movement patterns of confined pigs 

[220]). However, there are fewer models that attempt to investigate the foraging behaviour of 

animals. In an agent-based simulation model, the foraging strategies of the common 

Hippopotamus were investigated and compared with field results from wild Hippopotami 

[126]. In another model, four foraging strategies of animals harvesting renewable resources 

from isolated patches in competitive situations were investigated and compared using a 

simulation model [163]. In another agent-based simulation, a predictive model attempted to 

determine the patch choice of animals for simulated landscapes characterised by various 

spatially distributed resources [150]. Finally, in her PhD thesis, Favreau used an agent-based 

simulation to investigate the effects of food availability on animal movement [60].

It is commonly accepted that the evolutionary persistence of a trait an animal possesses is 

linked to its contribution towards its survival and reproduction in its natural environment; 

therefore, when an animal behaves in a certain way, it is possible to ask how every behaviour 

contributes to its survival in its natural environment [139]. Since it is difficult to determine 

the quality of the animal's adaptation to its environment, similar species that reside in 

different environments are compared instead. Thus, this can illustrate the aspects of 

behaviour that are important in the animal’s adaptation to its environment [139]. This refers 

to both the behaviours that an animal exhibits in its natural environment (e.g. the behavioural 

strategies of an animal that resides in a tough environment with little food) as well as the



6.2 Additions to Mosaic World 142

adaptive behaviours the animal expresses when its environment changes (e.g. the behavioural 

strategies that an animal displays when food becomes scarce in its environment).

In this chapter, the foraging behaviour of evolved critters is analysed (including movement, 

turning, movement speed, type of consumed food) under several different types of 

environments (easy, standard, difficult) and internal conditions (7 different levels of 

starvation). It is examined whether certain environmental conditions result in different 

behavioural strategies, and more so, whether these behavioural strategies are sensible 

strategies in light of the challenges the critters face. Finally, the evolved behavioural 

strategies are compared with the foraging strategies of natural organisms that face 

comparable conditions.

6.2 Additions to Mosaic World
The experiments that were conducted in this chapter required no additions to the model. The 

version of the model that is used is the one described in chapter 3, with the exception that it 

uses the most evolvable structural mutation discovered in chapter 4 (mutation type 4).

6.2.1 The methodology behind the model
Although no additions were made to the model, it is used in a way that differs from the way it 

was used in the previous two chapters: the behaviour of the critters is now compared with the 

behaviour of animals or insects, thus, further justification for its design is provided here.

Biological relevance: the model is used to compare the foraging behaviour of evolved 

critters in an ecosystem with the behaviour of animals and insects. As the result and 

discussion sections show, the results are clearly similar and the evolved strategies are 

sensible. Thus, this usage of the model is biologically relevant.

Level: there is no change to this parameter.

Generality: the fact no additions were made to the model, yet it can still be used to ask 

general biological questions, further supports the notion that the model is general.

Abstraction: this usage of the model can be said to be abstract and does not emulate any 

specific feature of a real world phenomenon except for the overall concepts of food 

distribution, food availability, distance, movement and foraging in an ecosystem.

Accuracy: in the experiments, environments with various amounts and distributions of food
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are presented to the critter. This can be said to be directly comparable to biological 

experiments that examine the effect of varying distribution of food and varying availability of 

food sources on animal behaviour (for example, [9, 49, 56, 140]) both because there is less 

food in the environment and also because there is a greater distance between food sources. In 

addition, by setting predefined values to the health monitor unit, the critters are 'misled' to 

believe that they have different health levels: this can be compared to the biological notion of 

positive or negative energy budgets. Both these usages of the model can be said to be 

accurate.

In addition, as will be shown in later sections, the behaviour of the critters can be described at 

times as risk-averse and other times as risk-prone. Although it is clear that these descriptions 

do in fact apply to the critters (who attempt to minimise and maximise energy/variability), 

this metaphor is only somewhat equivalent to the biological version which refers more to 

behaviour towards uncertainty. However, with this caveat in mind, this comparison is still 

very interesting and only applies to the analysed results and does not apply to the validity of 

the experiments.

Match: as the results and discussion sections show, most of the evolved behaviours -  but not 

all -r are strikingly similar to the foraging behaviour expressed by animals and insects under 

comparable conditions.

6.3 Experiments
The experiments described in this chapter were conducted in order to examine the behaviour 

of critters under three different types of environments: easy (plenty of resources, relatively 

close to each other), standard, and difficult (few resources, far apart). Furthermore, the effects 

of starvation and satiation on the critters' behaviour were examined as well. It is anticipated 

that environment—̂ network interactions that take place in the experiments will result in the 

behavioural strategies of the critters becoming better adapted to the environment in the course 

of evolution; these experiments are conducted to confirm that this is indeed the case, and 

examine the precise nature of the evolved adaptations.

A simple way of increasing the difficulty of the environment is to alter the value function 

used (section 3.4.1). By altering the numerical rewards that certain wavelengths provide to 

the critters, the overall worth of all surfaces can be made to increase or decrease. Thus, the 

overall environment can be made easier for the critters by making the wavelengths that 

provide positive rewards (400-540nm) more rewarding -  or alternatively, it can be made 

harder by making the wavelengths that provide negative rewards (560-700nm) more
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damaging. These changes not only affect the availability of food, but also affect its 

distribution in the environment, as there would be more or less resources, thus, the distance 

between good resources would decrease or increase. For example, increasing the numerical 

worth of all the wavelengths between 400-450nm would cause all surfaces that have 

reflectance functions that include these wavelengths to be more positive; this would make 

some positive surfaces even more positive, some negative surfaces less negative, and some 

weak negative surfaces could become weak positive; however, the overall environment 

would unquestionably become more positive, and the average distance between positive 

resources would unquestionably decrease (as there would be more positive resources in the 

environment). Note that 550nm is ignored because in this type of value function it provides 

zero reward. Figure 6.1 demonstrates the three value functions used, which were picked after 

a period of experimentation with various values functions; even though the differences in the 

functions used are relatively small, they makes a big effect with regards to the difficulty of 

the environment.

Value functions used for the easy and difficult environments

13.5

10.5
9

7.5

4.5

450 500 550 600 650 7)0

-7.5

-10.5
-12

-13.5

DifficultEasy

Fig. 6.1. The value functions used to describe the easy and the difficult environments. 

Note that the function for the standard environment overlaps with the difficult 

environment when wavelength<550 and overlaps with the easy environment when 

wavelength>550, so it is omitted for clarity.

Equations (6.1) and (6.2) are used as value functions (instead of equation (3.2)) as specified
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V(i) = - — * ('1 400) +13.125 (6.2)
24 10

Where V(i) is the behavioural value of wavelength i using the value function.

Table 6.1. The three types of runs used in the experiment

Exp.# Environment
type

Value function for wavelengths 
between 400-540nm

Value function for wavelengths 
between 560-700nm

1.1 Easy equation (6.2) equation (6.1)
1.2 Standard equation (6.1) equation (6.1)
1.3 Difficult equation (6.1) equation (6.2)

As the three types of environments result in environments that have various amounts and 

distributions of resources, the results of these experiments can be compared to:

Biological studies that examine the effect of the spatial distribution of food on the 

foraging behaviour of the animal (such as [9, 60, 81, 210, 211]).

Biological studies that examine the effect of the availability of food on the food 

preferences of the animal (such as [56, 72, 111, 236]).

Biological studies that examine the effect of starvation on the foraging behaviour and the 

food preferences of the animal (such as [45, 49, 108, 140, 229]).

All runs required a random population of 2,200 individual critters to be placed in the 

environment and ended after 550,000 time steps. Once finished, the critter population was 

stored. Each experiment was repeated at least 5 times. The same randomly generated 

environment was used for all run types; this environment was created using the standard 

mechanism for environment creation (section 3.5). Although the environments are identical 

for the three environment types in terms of visual statistics, they differ in terms of value and 

behavioural significance, e.g. a positive resource in the easy environment may be negative in 

the difficult environment. Consequently, it is possible that the critters will evolve some 

structural adaptations (through receptors, for example) to improve their survival. In order to 

minimise the likelihood of this occurrence, the same environment was used for all run types, 

thus, it is possible this will be a minor, if not negligible, element of these experiments. Only 

the behavioural adaptations are compared in this chapter.

In order to examine the behaviour of the evolved critters, five representative critters (the five 

longest lived critters of every run) were cloned five times and placed in a test world identical 

to the one they evolved in (in terms of environmental conditions) for 10,000 time steps. 

During this time, the behaviour of the critters was closely monitored including (among other 

statistics): the average number of accumulated bites per critter (the bite mechanism is 

explained in section 3.6.1) for a given interval defined as 100 time steps, the average value of
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resources consumed for the given interval, the number of positive and negative bites 

(meaning, the number of bites taken from positive resources and the number of bites taken 

from negative resources), average number of steps taken for the given interval, the average 

number of times a critter stood without moving for the given interval, and the average 

number of turns a critter made in the interval. In addition, after the run ended, the average 

survival age was measured. To be able to accurately quantify these behaviours and also 

reduce the effects of critters on each other, only a small number of critters was used in every 

run and these were prevented from reproducing (e.g. to avoid a situation where one critter 

reproduces very quickly and its offspring distort the results). Critters that survived until the 

end of the run were assumed to have died then.

Every test run was repeated 7 times with a small yet significant difference: in each test run, 

the critters' "perceived health" was fixed: the critters were instructed to believe that their 

health was at a predefined level regardless of its real value; this was accomplished by setting 

the value of the health monitor unit to a predefined value (0%, 10%, 30%, 50%, 70%, 90% 

and 100%). These runs enable comparing the behaviours of the same critters for different 

levels of health. After the test runs were complete, results were averaged across categories for 

every health level.

Because the test runs cannot give any information on the critters' reproduction, an additional 

analysis was performed. This required taking 500 random surfaces from the environment. 

Every chosen surface was taken twice in two levels of consumption (9%, 25% left of the 

surface -  these values represent the two states of the surface: ‘eaten’ and ‘full’), and fed to 

the five critters which were used in the test runs. By analysing the activations of the critter 

brain, it was possible to determine when the ‘reproduction’ output unit was active. This 

analysis was performed 7 times; in each, the value of the health monitor is set to the same 

values used in the test runs (0%, 10%, 30%, 50%, 70%, 90% and 100%). By averaging the 

results for all critters in the same environment type, it was possible to determine the average 

number of times that the random stimuli caused the critter to reproduce for every health level.

6.4 Results
Although the three types of environments that were used have the same visual characteristics, 

the different value functions which were used affect the percentage of positive and negative 

resources in each environment. An analysis was performed in order to quantify these 

differences. Table 6.2 shows the percentage of positive, negative and hole surfaces for every 

environment type (hole surfaces are surfaces that are a part of a hole). As can be seen, in the 

easy environment there are almost twice as many positive surfaces as there are negative
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surfaces, in the standard environment the number of positive surfaces is roughly equivalent to 

the number of negative surfaces, and in the difficult environment there are almost twice as 

many negative surfaces as there are positive surfaces. Logically, the fewer positive resources 

that are present in the environment, the greater on average the distance between positive 

resources.

Table 6.2. The percentage of positive, negative and hole surfaces in every environment 

type

Environment Type Positive Negative Hole
Easy 64.45% 34.05% 1.50%

Standard 49.41% 49.09% 1.50%
Difficult 34.03% 64.47% 1.50%
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Fig. 6.2. Average survival age per health level for every run type

As can be seen in fig. 6.2 which shows the average survival age for every examined level of 

perceived health, broken down according to run type, critters appear to be best at survival 

when their perceived level of health is between 10% and 70%, and worst when their 

perceived level of health is 0% or 100% (depending on the run type). This is true for all 

environment types, but most noticeable -  the differences in survival age are the largest -  for 

critters that evolved in the difficult environment where these differences are very large (5734 

time steps in 30% compared with 3435 in 100%). In addition, it appears that on average, 

critters that evolve in difficult environment tend to survive less than critters that evolved in 

easy or standard environments; this result is unsurprising considering the lower amount of 

resources. However, it also appears that critters that evolved in the standard environment tend 

to survive more than critters that survived in the easy environment; this result is surprising, 

but may be within statistical errors as the differences are quite small.
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Fig. 6.3. Average number of accumulated bites per health level for every run type

Fig. 6.3 shows the average number of accumulated bites for every examined level of 

perceived health, broken down according to run type; the accumulated bites statistic does not 

refer to the discrete number of bites but rather refers to the total amount of bite sizes 

(therefore, small and large bites are not treated as identical). As can be seen, in the difficult 

environment, the number of accumulated bites increases when the perceived health level 

increases, so a critter that perceives its health to be at maximum levels bites a lot more than 

critter that perceives its health to be 0%. This trend appears to be true for critters that evolved 

in standard environments as well, although the differences are much smaller. In the easy 

environments this trend appears to be somewhat opposite -  critters with perceived health 

levels of 0% have the highest amount of accumulated bites, which decreases when the health 

level drops to 10% and stabilises afterwards.

Fig. 6.4 and 6.5 which describe the average number of positive and negative bites 

respectively, indicate that for critters that evolved in difficult environments, as the perceived 

level of health goes up, so do the number of positive and negative bites. A similar, but much 

weakened, trend occurs for critters that evolve in the standard environments: the number of 

negative bites goes up with perceived health, and the number of positive bites goes up by a 

bit as well. In the easy environments this trend is partially opposite: as the critter’s health 

goes up, its number of positive bites goes down, but its number of negative bites goes up by a 

very small amount. It is difficult to explain the differences in behaviour in the three types of 

environments -  additional statistics below help shed light.

In terms of absolute values, in the easy environment on average, more positive bites were 

taken than in the standard environment, and more positive bites were taken in the standard 

environment than in the difficult environment, for all health levels. These results are
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unsurprising, considering table 6.2; after all, the easy environment has more positive 

resources than the standard environment, which has more resource than the difficult 

environment. As for the absolute average number of negative bites, it is surprising that the 

standard environment has the highest amount for health levels between 0% and 70%, and in 

fact, the difficult and the easy environments have a comparable amount on health levels 

between 0% and 30%. It is possible that the easy environment has a low number of negative 

bites because it has fewer negative resources than the other two environments -  but why does 

the standard environment have more negative bites than the difficult environment? A possible 

explanation is that the strong selection pressure in the difficult environment causes evolved 

critters to be very discriminating in the resources they consume, and in the standard 

environment the selection pressure is not strong enough to cause this behaviour, but there are 

enough negative resources for the critters to consume.

Average Number o f Positive Bites
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Fig. 6.4. Average number of positive bites per health level for every run type
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Fig. 6.5. Average number of negative bites per health level for every run type
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Fig. 6.6. Average value of consumed resources per health level for every run type

Fig. 6.6, which shows the average value of consumed resources, raises more questions; in the 

difficult environments, the average value of consumed resources goes down as the perceived 

level of health goes up: this complements the observations from the previous paragraphs. In 

the standard environments, the average value of consumed resources also appears to slightly 

go down as the perceived level of health goes up (although there is a small increase in the 

average value between health levels 0% and 10%). However, in the easy environments, the 

average value of consumed resources increases between health levels 0% and 10%, but then 

appears to stabilise at its current value). With regards to the absolute values, an interesting 

observation is that in the difficult environment, the average value is actually higher than the 

standard environment at health levels between 0% and 70%, which is higher than in the easy 

environment; this is surprising consider the fact that the easy environment is the most positive 

environment of the three, followed by the standard environment.

Fig. 6.7 and 6.8 show the average number of steps taken and the number of times the critter 

stood still, respectively. The data shows that in difficult environments, the lower the 

perceived level of health, the faster the critter runs and the fewer times it stands still. In 

standard environments, a similar but weakened trend is apparent. In the easy environments, 

the average number of steps taken actually goes up with health between 0% and 10%, but 

then it stabilises on a consistent level -  and the opposite reaction happens to the number of 

times the critter stands still: it goes down between 0% and 10%, and then stabilises. In terms 

of absolute value, in the difficult environments on average, the critters run almost 2 to 3 times 

as fast as critters in the easy environments -  the differences shrink as the perceived health 

increases.
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Fig. 6.7. Average number of steps taken per health level for every run type.
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Fig. 6.8. Average number of times a critter stands still per health level for every run 

type

Fig. 6.9 shows the results of the analysis performed to discover when the critters reproduce, 

and shows the percentage of stimuli that causes the critters to reproduce at every health level 

for every run type. Although the reproductive behaviour of the critters was sampled only at 7 

discrete different health intervals, it appears -  as was also expected -  that the behaviour of 

the critters in other health levels follows the same trends as the obtained values (e.g., the 

value at health level of 80% would be somewhere between 70% and 90%).

Interestingly, it appears that critters in all environments mainly reproduce when their health 

levels are over 70%. However, critters in the difficult environment tend to reproduce 

considerably more than critters in the easy and standard environments (1.47%, 16.05% and 

38.28% of stimuli cause reproduction in health levels of 70%, 90% and 100% respectively in 

the difficult environment in comparison with 0.3%, 3.30% and 25.94% in the standard 

environment and 1.01%, 3.10% and 21.15% in the easy environment). Essentially, this means
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that critters in the difficult environment mainly reproduce when their health levels are over 

70%, whereas critters in the standard and easy environments mainly reproduce when their 

health levels are over 90%).

Critter reproduction
4 5 %  - -  

4 0 %  

a  3 5 %

B 3 0 %

2 5 %

O 20%

0% 1 0 %  2 0 %  3 0 %  4 0 %  5 0 %  6 0 %  7 0 %  8 0 %  9 0 %  1 0 0 %

Health Percentage
Easy Medium

Fig. 6.9. Percentage of stimuli that causes critters to reproduce per health level for every 

run type.
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Fig. 6.10. The turning behaviour of two critters: one that exhibits turning behaviour, 

and one that does not.

Finally, fig. 6.10 shows an observation that occurs occasionally in evolved critters; increased 

turning at 0% health, which decreases as health goes up. This behaviour is clearly involved in 

the area-restricted search: once a critter finds a positive resource, it makes more turns with 

the hope that more positive resources will be found.

6.5 Discussion
Taking all the above results into consideration, it is possible to come up with several 

conclusions.
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First, it is possible to state that in the difficult environments, a behavioural strategy is

repeatedly evolved:

• 0%-10% health: When the health levels are low, the critter runs very quickly, only 

rarely stopping to stand still; the critter does this because it looks for specific types of 

food. This is apparent in the fact the critter does not bite a lot, but when it does bite a 

resource, it makes as few mistakes as it possibly can, and also in the fact that the average 

value of consumed resources in this case is the highest, meaning, the critter is very 

selective. Thus, in this perceived level of health, the critter is in ‘emergency’ mode. This 

strategy allows the critter to maximise the value of resources it consumes, and it may be 

most appropriate when having such a low amount of health when it ‘knows’ eating the 

wrong type of food may kill it immediately, and so, it should be extremely careful; but in 

the long run, this is not the optimal strategy. This is evident by the fact that the average 

survival age is relatively low for this perceived level of health -  probably because the 

costs for looking for specific resources are too high, both in terms of movement costs and 

also in terms of having a small selection of possible resources to consume. This 

behaviour is analogous to the biological behaviour reported in the beginning of the 

chapter in two different ways.

(i) This behaviour can be said to be ‘risk-averse behaviour’, as the critter minimises 

its risk by being selective with what it eats.

(ii) This behaviour is clearly ‘area-restricted search’, as the hungry critter performs 

an exhaustive search to find good resources: this is apparent in the critter running 

very quickly while consuming a few types of resource. This behaviour bears a 

strong similarity to all the biological examples described in the hunger 

experiments in the introduction, but particularly resembles the behaviour of the 

wolf spiders.

• 10%-70% health: once the levels of health rises, the critter starts running less quickly 

and becomes less cautious with regards to what resources it consumes (and so, the 

average value of consumed resource decreases as well). It can be said that the critter’s 

behaviour is balanced when the critter’s health is between 10% and 70%. Afterwards, its 

number of negative bites skyrockets and its average survival plummets.

• 70%-100% health: at these levels of health, the critter’s behaviour can be said to be 

‘reckless’ -  it consumes plenty of negative resources and eats much of what it 

encounters: this is apparent in the high amount of standing still it does, in the lower 

average value of consumed resource, and in the low average survival ages. This 

behaviour does not seem to make any sense, until one looks at the reproduction analysis: 

since a large number of stimuli triggers reproduction, it appears the critter does not ‘plan’ 

on staying at this level of health: a successful asexual reproduction would remove 40% of
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its maximum health (see section 3.6.4), so even in an ideal state, its health would be 60% 

-  which is within the range of reasonable behaviour. This behaviour can be said to be 

‘risk-prone behaviour’, as the critter maximises its risk (and number of resources 

consumed) by being unselective in what it eats.

Second, it appears that in the standard environments, a similar -  but much weakened -  

behavioural strategy is seen. However, this behavioural strategy does not appear to be utilised 

in the easy environments, even though some behaviours are reminiscent of it (most notably, 

the behaviours at perceived level of 0%, and the identical shape of the average survival 

curve).

It is not obvious why there are such great differences between critters that evolve in the three 

environments: there appears to be a progression between the difficult and medium 

environments -  a weakening of the same behavioural strategy -  and a further progression 

between the medium and easy environments -  a possible weakening to the point of non­

existence of the same behavioural strategy. It is possible that in the difficult environment, the 

selection pressure is so strong that specialised behaviours are required, whereas in the easy 

environment it is very easy to survive, thus, no specialised behaviour is required; the standard 

environment is somewhere in between in terms of ideal behaviours.

There are also several interesting parallels with behaviours seen in nature:

Scarcity of resources (spatial distribution)

Scarcity of resources in terms of greater spatial distribution of resources causes critters to 

move faster while foraging. Clearly some of this behaviour occurs, both in Mosaic World and 

in nature, because the organism needs to look for food more actively because there are greater 

distances between the food sources. Therefore, in the difficult environments it is harder to 

find a good resource, so more running is required -  whereas in the easy environments, a good 

resource is likely to be found closely at any given point, so less running is required. It is 

important to emphasise that this is not the only reason for running, as indicated by the higher 

average consumed resource in the difficult environments; this is explained in the next item.

Scarcity of resources (availability of food)

Fig. 6.6 revealed an interesting observation: the average value of consumed resources is 

actually higher for critters in the difficult environments than the other environments, despite 

the fact these environments contain the fewest amount of positive resources. Interestingly, 

these critters also bite the lowest number of positive and negative bites. Although the critters
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bite fewer negative and positive resources, the overall value of what they consume is higher -  

this means that either the positive resources they eat are very potent and/or the negative 

resources they eat are relatively mild. Most importantly, it is clear that these critters are far 

more efficient in their consumption habits -  and that they attempt to minimise the risk and the 

bite cost. Thus, it can be said that scarcity of resources in terms of a lesser availability of 

positive resources causes critters to become choosier in what they eat by consuming more 

positive surfaces and/or less negative surface than they normally would.

Interestingly, this behaviour at first appears to conflict with behaviours normally seen in 

nature: as described in the introduction, when resources are scarce, animals tend to be less 

choosy in what they eat, which is not the result obtained here. Yet a simple explanation can 

resolve this mystery. In the real world, when food is scarce, animals become less choosy for a 

straightforward reason: the best resources, those resources they would prefer to eat are simply 

not available in the quantity they desire; otherwise they would continue only eating them. 

Thus, foraging bluegill sunfish eat whatever water fleas they find when food is scarce, but 

prefer to eat the largest fleas when food is abundant [236]. However, in Mosaic World, 

because the same environment is used both for the easy and the difficult environments with 

the only difference being the value function used to characterise the resources, the result is 

that resources that are the most positive in the easy environment continue being the most 

positive in the difficult environment -  the only difference would be the absolute value of the 

resource. Therefore, the availability of food analogy is not mirrored here: the best food is 

available in all types of environments, in a suitable amount (the fact the critters survive is 

evidence of that), so there is no need to consume lesser alternatives; the positive food that is 

no longer positive is food that previously could be classified as ‘mild’. But this only explains 

why the critters do not become less choosy and does not explain why the critters become 

more choosy. The critters become more choosy for the obvious reason: there is a greater 

selection pressure present because of the harsher conditions that forces them to become better 

foragers, thus, leam to recognise better food; this is equivalent to the increasing specialisation 

of the visual systems of critters in challenging environments in chapter 5.

That being said, this evolved behaviour is reminiscent of the bumblebee behaviour described 

in the introduction -  in cold environment, bumblebees only forage from flowers they know 

will restore the energy costs for both foraging and thermoregulation -  here the critters only 

consume resources that they 'know' will sustain their survival.

Starvation

Starvation causes critters to increase their search effort by moving faster. Clearly this
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behaviour occurs, both in Mosaic World and in nature, because the hungry organism 

increases its search efforts to find nourishment before it weakens and eventually dies.

Area restricted search

Occasionally, critters evolved a search strategy that is comparable to biological search 

strategies that require many turns once a resource has been found.

Risk sensitivity

The fact that the behaviour seen in the difficult environment at 0% health is risk-averse 

behaviour which gradually changes to risk-prone behaviour at 100% is very interesting, 

specifically because the ‘switch’ from these two extreme behaviours is also seen in biological 

organisms, as described in the introduction.

These results further support the results from the previous chapter that indicate that certain 

universal guiding principles affect the behaviour of both biological and artificial organisms. 

These principles operate through the interaction of the environment and the critter, and result 

in the critter's behaviour becoming better adapted to the environment it is placed in. Similar 

to natural organisms, the critter's survival is directly dependent on its behaviour: its ability to 

determine what resources it should and should not consume, when it should invest the extra 

energy in moving faster, and when it should reproduce. This conclusion is supported by the 

fact that most behavioural strategies that were evolved in this chapter bear a striking 

resemblance to behavioural strategies seen in nature.

6.6 Complex interactions analysis
The work described in this chapter primarily deals with the interaction of the environment 

and the critter through its behaviour (environment—̂critter interactions, e.g. consumption of a 

resource). In the described experiments, a population of critters was presented with three 

different types of environments that possess different amounts and distributions of resources, 

and their effect on the evolved behaviour was examined. By setting the critters' health 

monitor unit to 7 different values, it became possible to examine the range of different 

behaviours that critters exhibit at the various health levels.

The environments presented various types of challenges to the critters: the primary way 

which the critters overcame these challenges occurred through behavioural strategies, by 

evolving behaviours that are appropriate for the prevailing conditions in the environment, and 

passing them on to future generations. Therefore, the critter—►environment and 

environment—►critter interactions are critical towards accomplishing the challenge that was
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set in this chapter. Although these specific interactions take place in one level of the system, 

their effect reaches every other level: network, neuron, receptor and gene; these are essential 

in order to enable behavioural changes, and to enable that these are passed on to the critter's 

offspring. Furthermore, because the critters interact through competition on resources and 

reproduction, the interactions between the critter and the environment reach and affect the 

population and species levels as well.

The interaction(s) that takes place are in parenthesis at the end of each sentence.

1) Every critter attempts to survive -  this requires several different behaviours:

(a) Perception: the environment is perceived by the critter’s receptors 

(environment—►receptor). Obviously, it is important that the receptors relay 

useful and relevant information to the controlling network. Furthermore, 

although the visual environments are identical in all run types, there are 

behavioural differences between the run types: a resource that is positive in the 

easy environment may be negative in the difficult environment; thus, it is 

possible that some visual adaptations are evolved. However, these are 

disregarded in this analysis.

(b) Communication: the receptors relay this information to the network through 

neurons (receptor—>neuron, neuron—>network).

(c) Control: the networks control the critter’s behaviour (network—►critter). 

Obviously, this interaction is very important as it enables the effect of the 

environment to eventually reach and affect the critter's behaviour.

(d) Consumption: the critter may consume surfaces (critter—►environment); and in 

this case, positive or negative energy is transferred from the environment to the 

consuming critters (environment—►critter). This critter—►environment interaction 

is one of the critical interactions, as the critter's behaviour and likelihood of 

survival directly depend on its ability to consume resources selectively. 

Nonetheless, this interaction matters more in some environments than other:

• Difficult environment: in this environment this interaction is most important, 

as the critter exhibits different consumption patterns under different health 

levels. Presumably, were the critter to be less selective, they would not 

survive (or could not survive as well) in such an environment. As was 

explained in the results section, as the critter's health becomes lower, it 

becomes increasingly more selective with regards to the resources it 

consumes: both positive and negative resources. Because of this 

selectiveness, the average consumed value of what it eats becomes 

increasingly higher, thus, enabling survival.
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• Standard environment: in this environment this interaction is important, but 

less so than the difficult environment for the same reason described in the 

last item.

• Easy environment: it appears that because there are abundant resources in the 

environment, the critter can survive without evolving a specific behavioural 

strategy of consumption. However, just like in any other environment, in this 

environment, the critter’s consumption is critical: obviously, if the critter did 

not consume anything, it would perish quickly.

(e) Movement: the critter may choose to move (forage for food, avoid the edges and 

holes) (environment—>critter). Similar to the previous interaction, this 

environment—>critter interaction is one of the critical interactions as the critter's 

behaviour and ability to survive directly depend on its ability to move 

appropriately. As before, in some environments this interaction matters more 

than others:

• Difficult environment: in this environment this interaction is most important, 

as the critter displays different movement patterns under different health 

levels. Clearly, in order for the critter to be selective in what it consumes, it 

must be able to find  these resources. For this purpose, as the critter's health 

becomes lower and it becomes more selective in what it eats, it also moves 

increasingly faster in search of nourishment. If the critter did not have this 

ability to vary its movement rates, it would not be able to consume the 

resource of its choice, and as a result, would not be able to survive in such an 

environment.

• Standard environment: this interaction is less important than in the difficult 

environment, but still vital for the same reasons described in the last item.

• Easy environment: because there are abundant resources in the environment, 

the critter can survive without evolving a specific movement strategy. 

However, just like in any other environment, here too the critter's movement 

is critical: obviously, if the critter could not move, it would die.

• All environments: as indicated, occasionally the critters evolve the Mosaic 

World equivalent of restricted-area searching, by making many turns once a 

resource has been located. Just like in nature, this strategy is likely to convey 

advantages on critters that possess it, although it does not appear to be crucial 

for survival (otherwise it would appear on most or all critters).

(f) Reproduction: the critter may choose to reproduce (critter—>critter). This 

decision also appears to be related to the critter's health (as fig. 6.9 indicates),
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thus, it can be assumed that the decision to reproduce in certain health levels, and 

in certain amounts, is necessary for the critter's survival, particularly in the 

difficult environment. Presumably, if the critter were less cautious with this 

strategy (e.g. reproduce when its health is low), it would not survive (or not 

survive as well).

2) Selection (to evolve appropriate behaviours): many critters die during stages 1-d to 1-f, 

either by consuming negative surfaces, or by falling from the edges/into a hole, or by 

moving too quickly (and running out of energy), or by reproducing when not possessing 

enough energy. Critters that behave appropriately are better adapted to their environment, 

and consequently, are more likely to overcome its challenges and survive. Therefore, the 

advantages these genetically encoded behaviours confer directly affect the selection of 

the genes that define them (network—►genes).

3) Selection (to better compete): the critters that survive compete on resources. Critters 

that have evolved behavioural strategies appropriate for their environment are more likely 

to out-compete critters that did not evolve any behavioural strategies on resources, thus, 

are more likely to survive and pass on their genes (network—►genes). Similarly, additional 

aspects (e.g. critter transmittance) that enable critters to out-compete other critters also 

affect the selection of genes that define them (critter—►genes).

4) Reproduction: continuing (1-f), the critters that survive past steps (2)-(3) and are now 

able to reproduce are fitter than those that died (genes-^genes). Their offspring’s 

phenotype is likely to be fit as well, as affected by the selection pressure in (2) and (3). 

These changes to genes affect the critter's behaviour, which affects its genes at all levels 

(genes—►receptor, genes—>neuron, genes—►network, genes—►critter) and the population 

(genes—►population). Because of the nature of experiments in this chapter, this selection 

pressure is likely to be expressed in the evolved behavioural strategies which result in the 

critter becoming better adapted to its environment (although, admittedly, it is possible 

that some structural adaptations have occurred as well as the previous item indicated).

5) Steps (1) to (4) are repeated until the run ends. The critters that evolved appropriate 

genetically encoded behavioural strategies are better adapted to the environment and are 

those that survive.

6.7 Conclusions
It is very interesting to note the parallels between behaviours seen in the real world and

behaviours evolved in the experiments in this chapter, particularly in the difficult

environment. It can be said that within this environment:
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• Scarcity of resources in terms of greater spatial distribution causes critters to move faster 

and forage in longer trips. This is very similar to the behaviour of Chacma baboons [81] 

and Rana catesbeiana tadpoles [9].

• Starvation causes critters to increase their search effort by moving faster. This is very 

similar to the behaviour of Rhynocoris marginatus (a predatory insect) [49], wolf spiders 

[229] and Drosophila flies [108]. Additionally, although other animals move more slowly 

when hungry, their behaviour is also explained by an increase in search effectiveness, 

thus, this too resembles -  in intent -  the evolved behaviour.

• Some critters evolved a search strategy that mirror their biological counterparts in the fact 

that many turns are taken once a food has been located. This is very similar to the 

behaviour of thrushes [210,211].

• The critter's evolved behaviour is risk sensitive (rather than risk indifferent). At times the 

critters behave in a risk-averse manner, and other times they behave in a risk-prone 

manner. The fact that these behaviours depend on the critter's hunger level is also 

significant and has been reported to occur in some animals as well [16, 17].

To conclude, critters in Mosaic World evolve behavioural strategies that vary when the 

environment varies. This indicates that the interaction of the environment and critter has an 

enormous effect on the evolved behaviour: as anticipated, the environment acts as a selective 

force that determines the behaviour of the critter. In addition, the evolved behaviours are 

sensible -  there is a sound reason underlying their usage. Finally, most of the evolved 

behaviours strongly resemble behaviours used by animals and insects in comparable natural 

situations; this further supports the conclusion from ch. 5 that certain universal guiding 

principles similarly affect the evolution -  in this case, the evolution of behaviour -  of both 

biological and artificial organisms.
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Chapter 7 

Challenge: modular specialisation
In this chapter, the hierarchical nature of the system is expanded through the addition of a 

new level to the model, by replacing the standard network used to control a critter’s 

behaviour with a new control mechanism: the modular neural network. The modular neural 

network encompasses a control network and up to eight modules. This new level is the focus 

of this chapter’s investigation of complex interactions.

Similarly to chapter 4 where the interactions that occur between genes that could lead to more 

effective evolution of the critter brain were investigated, in this chapter, the interactions 

within a modular network, in particular, the interactions between the control network and its 

subordinate modules are investigated for the purpose of improving critter fitness and 

exploration of modular specialisation. The challenge posed for Mosaic World in this chapter 

is:

Can appropriate control network-^module interactions occur that improve the fitness o f  

critters that adapt to an environment which changes in time? I f  so, will modular 

specialisation be responsible for this improvement?

In order to achieve this, a set of experiments that presents several populations of critters with 

modular brains and non-modular brains to a changing environment was conducted and 

additional behavioural analyses were performed.

7.1 Introduction
It is commonly believed that solving multiple simple subtasks is easier than solving a single 

complex task. For this reason, decomposing a complex problem into several simpler 

problems may be a potent way to approach a problem. Unsurprisingly, this seems to be a 

frequently used strategy in nature as well; it is a well known fact that the human brain works 

in a modular manner [207]. A neural network that exploits this principle by utilising multiple 

specialised modules, each trained to solve a specific subtask, should be better than a single 

large network. Another advantage attributed to this architecture is that it reduces the presence 

of crosstalk (conflicting training messages that occur as a result of a network trying to learn 

two tasks [95]).

Several approaches have been taken to achieve this goal. One computational approach
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literally decomposes the task to several subtasks. This method is referred to as a ‘mixtures-of- 

experts’ architecture, and is mostly used for supervised learning tasks [96]. Under this 

scheme, a gating network is connected to several expert networks. Both the gating network 

and the expert networks are concurrently trained. By the time that the process is complete, the 

gating network learns to break the task into useful subtasks enabling each expert network to 

solve an aspect of the larger task. It has been shown that this approach is faster than using a 

single network [95]. Interestingly, the way the task is decomposed matters greatly; it has been 

shown that different ways of decomposing a task affect the quality of the result -  some ways 

are superior to others [7]. Therefore, by understanding how the gating network decomposes 

the task, interesting insights about the nature of the problem faced can be gained.

The principles behind ‘mixtures-of-experts’ can be utilised in many ways. Koza added 

architecture-altering operators to a genetic programming simulation that were inspired by 

gene duplication and gene deletion mechanisms [110]. These additions enabled a main 

program to create subprograms to deal with subtasks dynamically, effectively decomposing a 

larger problem into smaller subproblems. The effect of adding these operators was an 

improvement in the performance of the system. The parallels are clear: the main program is 

equivalent to the gating network, and the subprograms are equivalent to the modules.

Similar principles underlie Brooks’ subsumption architecture, which is used for controlling 

robots [38]. This architecture decomposes the overall robot control task into several simpler 

behaviourally oriented subtasks (e.g. avoiding objects, moving, exploring). Each of the 

subtasks is explicitly solved; combining these solutions enables successful robot control.

Modular neural networks are another type of methods that exploit the same principles. Using 

this approach, a network that is comprised of several subcomponents is used to solve a task. 

The structures of these subcomponents can vary greatly, and their number can be dynamic 

(grow or shrink as needed). Consequently, every component of the neural network has the 

potential of specialising in a subtask; thus, this architecture is more powerful than a 

‘standard’ architecture. In support of this notion, Rueckl et al demonstrated that a neural 

network with a modular architecture is better at solving the “what” and “where” vision tasks 

than a non-modular neural network [193]. In another study, five different architectures were 

used to control a robot for a garbage collection task [159]. The one that performed best was 

named ‘emergent modular architecture’ and had modules competing for control of output 

units in a control network.
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Ensembles are another category of methods. Normally, when evolving neural networks, the 

best individual is picked from the population. However, there is a lot of information in other 

members of the population that is not used; ensembles try to use this extra information. An 

ensemble works by combining outputs of several individuals from the population (using a 

few different mechanisms), and ideally generalises better than any individual network [246]. 

A good ensemble is likely to comprise individuals that specialise in different aspects of the 

overall problem, and thus, it can be argued that this method is related to the other previously 

mentioned approaches.

In addition, hybrids of the various approaches mentioned have been created, e.g. a method of 

evolving a population of modules, which are synthesised into modular neural networks [104].

A study of the interactions that take place within a modular neural network used to control 

critters is useful for two reasons. First, according to the relevant literature, it is likely that 

incorporating modularity into the critter brains will result in an improvement in the efficacy 

of evolution in the system, which is naturally a very desirable goal. Second, by understanding 

how and when modular specialisation occurs in the system, valuable insights into critter 

functionality and dynamics in general may be obtained. This is accomplished by expanding 

the existing framework to include a unique hybrid of the approaches described.

In the version of the model described in this chapter, the critters start with a control network 

that is linked to one module. The number of modules may grow up to eight, and individual 

modules as well as the control network itself, are concurrently evolved. As was previously 

described, every aspect of these networks is subject to evolution: number, attributes, 

topology, weights; allowing the system to evolve both the number and the structure of the 

modules is a big advantage which most existing systems do not have. This allows evolution 

to fit the appropriate structure to the subtask, which increases the likelihood it will work well 

with the overall task [94]. Furthermore, allowing modularity to work at the level of the 

network is said to have significant advantages [95]. In this sense, it can be said that the new 

mechanism described here is a hybrid between ‘mixture-of-experts’ and modular neural 

networks. The work described here has been published in [199].

7.2 Additions to Mosaic World
The investigations described in this chapter required that Mosaic World be expanded in 

several ways. The most significant change is the addition of a new level to the model, which 

now comprises the following levels of abstraction: genes, neurons, receptors, modules, 

control networks, critters, population and species; figure 7.1 illustrates the differences
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between the object models of the standard and the modular critter brains. Figure 7.2, which is 

an expansion of fig. 3.2, shows the interactions map for all objects in Mosaic World.

Module |

Critter Critter
(with modular brain) (with standard brain)

Fig. 7.1: The object model of the standard and the modular critter brains: the network 

object is replaced by a control network that activates modules. Note that both critters 

are the same size within the environment.

7.2.1 Neighbour indicator unit
The standard critter brain was expanded by adding a neighbour indicator unit in addition to 

the existing health monitor unit. The neighbour indicator unit receives a signal if another 

critter is present at the critter’s location. Neighbour recognition is important because in order 

for a critter to reproduce sexually, it must have a neighbour in its present location -  more 

importantly, if no critter is present its current location, the critter pays an energy penalty (this 

was added to encourage critter recognition, as explained in section 3.6.4). This feature was 

added to decrease the difficulty of recognition of other critters, as recognition that is purely 

based on transmittance, that is, being able to extract the critter’s transmittance from the 

perceived stimuli (see section 3.6.5 for the full explanation), appeared to be too difficult to 

evolve.
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Fig. 7.3: An illustration of a modular critter brain comprised of a control network (2 

receptors, 3 hidden units), that connects to 3 modules. The first module has 2 receptors, 

3 hidden units. The module has 1 receptor, 2 hidden units. The third module has 3 

receptors, § hidden units. All modules possess the neighbour indicator and health units. 

This figure disregards the 3D coordinate scheme

7.2.2 M odular brains
The modular visual brain is comprised of a control (gating) network and one to eight 

modules; see fig. 7.3 for an illustration. The control network is roughly identical to a standard 

non-modular critter brain described in section 3.7 with two exceptions; the first is that it does 

not have a health monitor unit or a neighbour indicator unit. The second is that it has eight 

output units. The control network is evolvable in the same way a standard non-modular brain 

is (topology, weights, attributes); it receives stimuli from the environment and determines 

which module to activate at any given time step. The module activated is the one that 

connects to the output unit that returns the highest activation. When there is only one module, 

it is automatically active all the time.

The number of modules is evolvable; a critter starts with one module connected to its control 

network and new modules can be added and removed up to a total of eight modules. Each 

module is identical to a standard non-modular critter brain in all respects. With this scheme, 

every action requires two layers of decisions: first, the control network has to decide which 

module to activate; then, the activated module determines what action the critter should 

perform.

It is important to emphasise that only one module can be active at any given moment. Some
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decisions simply cannot be made by several module simultaneously: e.g. if there are eight 

modules and at one point, two modules determine that the critter turn left, two determine that 

the critter turn right, two determine that the critter move forward, and two determine that the 

critter stand still - there is no simple way to reach a decision using all these choices.

7.2.3 Genetic operators
As stated in section 3.7.2, mutation takes place during both sexual and asexual reproduction 

and crossover takes place during sexual reproduction. Modular brains use all the genetic 

operators mechanisms previously described in sections 3.7.2 and 3.7.3 with the control 

network and modules, but have a few more types of mutation operators that are activated 

during reproduction.

Crossover of Modular Brains

The control network undergoes crossover the same way a standard non-modular brain does. 

In addition, a number between 1 and 8 is randomly picked. All modules from 1 to the picked 

number are cloned from one parent, and the remainder are cloned from the other parent. If as 

a result of this process a brain is created with no modules, the process is repeated.

Mutation of Modular Brains

The control network undergoes mutation the same way a non-modular brain does. The 

currently active module (the last module that has been active) is mutated normally. The other 

modules are not mutated (otherwise very quickly they will not be usable at all). In addition, 

there are four new types of mutations:

• ‘Add Module ’: the currently active module is cloned at a given probability (2%). The new 

module is randomly placed in an empty slot. If there are already eight modules, this 

mutation is disabled.

• ‘Delete Module ’: one module is randomly deleted (2%). This module cannot be currently 

active. If only one module is left, this mutation is disabled.

• ‘Duplicate M odule’: the active module is randomly (2% to 35%) duplicated and 

overwrites the least used module.

• ‘Discard Module ’: if a module has not been active for a given amount of time steps, it is 

deleted. The exact number is evolvable.

All percentages were determined empirically and were modified in experiments described 

below.

7.2.4 Modular duplication
In the experiments described below, a ‘Duplicate Module’ operator was utilised that acts
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similarly to gene duplication in nature. Multiple experiments were performed with various 

probabilities assigned to this operator since the literature stated that this makes a big 

difference with regards to functional specialisation. One theory suggests that gene duplication 

facilitates modular specialisation by first relaxing the selection pressure (as the same module 

exists twice) and then altering the regulation of this module which causes it to be utilised in a 

different functional context [43], This allows the new module to accumulate mutations and 

specialise [164, 248]. An alternative theory suggests that in nature, the gene being duplicated 

mostly already has two functions and that gene duplication simply allows the two daughter 

genes to specialise in one of the original tasks [88]. Indeed, Nolfi demonstrated how 

hardwired modularity without gene duplication resulted in unspecialised modules in his 

system [159]. In addition, Calabretta et al [43] showed that the duplication rate linearly 

affects performance, with greater values leading to better performance in a robot control task.

7.2.5 Changing environments
When this setting is active, every predefined amount of time a new environment is generated 

using the same algorithm and the same environmental statistics. The current environment is 

continually and gradually replaced with the new environment -  this change can be made to 

occur instantaneously, or it can be made to occur extremely slowly.

This setting presents a challenge to the critters not only because they cannot memorise the 

location of resources, but also because the actual process of changing is greatly ‘confusing’; 

during a significant percentage of the time, there are effectively no good resources as all 

surfaces constantly shift. A critter may start consuming a positive resource (a process which 

takes time), only to find out that the resource became a negative resource by the time it 

finished.

7.2.6 The methodology behind these additions
Biological relevance: the additions to the model presented in this chapter, which explicitly 

incorporate modularity into the design of neural networks (though evolution can choose to 

ignore these modular aspects), represent conceptual principles rather than specific biological 

metaphors. Specifically, the modular brain feature does not aim to correctly represent 

biological brains but rather to investigate the effect of modularity on agent fitness and 

behaviour. That said, as the next few sections show the results are biologically relevant as 

they increase our understanding of biology (in terms of the effect of gene duplication and the 

usefulness of modular specialisation), and are computationally relevant because they 

demonstrate how useful modular designs are, both in terms of capabilities (indicated by 

critter fitness) and in terms of analysis of the problem (indicated by the strategies evolved by
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the control network which are shown to be appropriate for this setting).

Level: the version of the model described in this chapter contains of a new level and consists 

now of: genes (level 1), neurons and receptors (level 2), modules (level 3), control networks 

and critters (level 4), population and species (level 5). Because the model now comprises a 

larger hierarchical complex system, this addition increases the range of complex interactions 

that can be explored. In addition, the expanded model enables to demonstrate that 

incorporating hierarchical complexity into the model can provide an improvement in the 

understanding of the modelled phenomena. For example, in this chapter:

• The effects of internal interactions within a modular brain on critter fitness are examined.

• The effect of environment on modular specialisation is examined:

o in terms of the number of modules and the behavioural strategies evolved, 

o in terms of visual structures and strategies evolved for each module within the 

modular brain and type of task it is allocated for.

Generality: the changes to the model do not affect this parameter: the model can still be said 

to be a general model despite the fact it is used in this chapter to examine specific hypotheses.

Abstraction: all the additions to the model can be said to be very abstract -  the notion of 

modular complex brains has been abstracted to the approach used in this chapter.

Accuracy: the additions to the model implement modular designs accurately; however, 

unlike modular designs in nature, the usage of modularity here is limited -  only up to 8 

modules can be evolved, and creation of explicit sub-modules is not possible. Thus, these

additions do not mirror the real world principle completely. That said, this level of accuracy

is sufficient to enable the investigations conducted in this chapter.

Match: as the results sections of the chapter show, the additions to the model produce 

behaviours that are very similar to their real world counterparts, specifically:

• Modular specialisation occurs in terms of behaviours.

• Modular specialisation occurs in terms of visual systems.

• Control networks learn to break a task in a meaningful way.

• 'Module duplication', the model’s genetic operator that is equivalent to biological gene

duplication, is shown to affect the fitness of evolved critters since the utilisation of 

modularity in the critter brains appears to be linked to the probability of mutation -  which 

is what theory suggests gene duplication does in nature.
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Therefore, it can be said that the model matches the real world behaviours that it aims to 

capture because its generated behaviours are similar to the real world behaviour of the target 

phenomena.

7.3 Experiments
In order to investigate the interactions within a modular network, specifically, discover 

whether appropriate control network—>module interactions can occur that lead to an increase 

in the critter fitness, and understand the nature of these interactions, two sets of experiments 

were performed. In setting the experiments, the goals were threefold. First, it was aimed to 

determine whether the novel mechanism introduced in this chapter would enable critters with 

modular brains to perform better than critters with the standard, non-modular brains. Second, 

if this proved to be the case, it was aimed to discover how modularity improved the fitness of 

the critters: does specialisation take place, and if so, what sort of specialisation it is. Finally, it 

was aimed to discover how the control network operated: by discovering when modules were 

activated, it was hoped interesting insights about critter behaviour and the conducted 

experiments would be gained.

To be able to answer these questions, a task was chosen that critters with non-modular brains 

had difficulties with: survival in a changing environment. It was anticipated that critters with 

modular brains would perform better in this task, and that the predicted improvement in 

fitness would be the result of control network—̂ module interactions within the modular brain. 

However, in order to be certain that the results do not depend on the task itself, a limited set 

of runs were performed when the environment is static (non-changing).

The purpose of both experiments was comparing the fitness and functionality of critters with 

modular brains and critters with non-modular brains. Both experiments required a population 

of evolving critters to be placed in a training world, and ended after 550,000 time steps. Once 

finished, the critter population was stored and analysed.

The criterion used to measure the fitness of the evolved critters was survivability: the average 

survival ages of critters across runs. Though somewhat arbitrary, this criterion is strongly 

correlated with fitness as survival requires possessing many important skills (see section 4.4 

for a more thorough discussion of critter fitness). This was done by placing 15 copies of the 5 

oldest critters of every run in a survival test world (the attributes of which varied depending 

on the experiment); the critters were expected to survive as long as they could -  reproduction 

was disabled during these runs. The test runs were stopped after 10,000 time steps.
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7.3.1 Experiment 1: changing environments
The goal of this experiment was to measure the fitness of evolved critters in a changing 

environment. In this experiment, the changing environment operated as follows: after a run 

started, every 1300 time steps the world changed randomly, a process which took 300 time 

steps (meaning, at time step 1000 the world gradually started ‘morphing’ to its new 

configuration, a process which completed at time step 1300). This process was repeated until 

the run ended. Fitness was measured using the survival test world, however, unlike training 

conditions, this environment changed at a faster rate: every 800 time steps there was a 300 

time step period of changing. This was done to increase the selection pressure on critters that 

are not good at dealing with the change period. Six types of runs were conducted; each was 

repeated at least 16 times. As stated, different mutation probabilities were picked for 

‘Duplicate Module’ in order to probe the influence this has on the fitness of evolved critters 

and the specialisations that emerge.

(1) Critters with non-modular brains: all critters started with the same characteristics (3 

receptors, 3 hidden units, fully connected).

(2) Critters with modular brains: all critters started with one control network (3 receptors, 

1 hidden unit, fully connected) and a single module (same structure as the non-modular 

critters). The probability of the ‘Duplicate Module’ mutation is 2%.

(3) Same as (2), but the probability o f ‘Duplicate Module’ is 12%.

(4) Same as (2), but the probability of ‘Duplicate Module’ is 18%.

(5) Same as (2), but the probability of ‘Duplicate Module’ is 25%.

(6) Same as (2), but the probability of ‘Duplicate Module’ is 35%.

7.3.2 Experiment 2: static environments
The goal behind this experiment was to measure the fitness of evolved critters in a static 

environment. This experiment investigated whether the results of exp. 1 are different for an 

easier problem: a static environment. This experiment effectively repeated exp. 1, run type 1 

(non-modular brains) and run type 5 (modular brains, ‘Duplicate Module’ value is 25%), but 

the environment is static -  it does not change (note: the ‘Duplicate Module’ value of 25% 

was used because it was found to produce the most effective results in exp. 1, see section 

7.5). Fitness was measured using the test world. The test world environment does not change.

7.4 Results
Table 7.1, columns 1-2, shows the results of experiment 1: the average survival ages of the 

critters, broken down according to category of run. As can be seen, the average survival age 

for the critters with non-modular brains was lower than the average survival age of most
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critters with modular brains. Furthermore, the value of the ‘Duplicate Module’ mutation 

strongly affected the average survival age: when ‘Duplicate Module’ was set to 25%, the 

average survival age was highest (3831.23 -  63% higher than the average survival age of 

critters with non-modular brains, 2341.13), when set to 35%, the average survival age was 

lowest (2051.44), in fact, even lower than the average survival age of critters with non- 

modular brains.

Table 7.1. Average survival age, average number of total modules, average number of 

functional modules and percentage of modular critter brains for critters in test worlds; 

broken down according to category (critters with non-modular brains, critters with 

modular brains with 2%, 12%, 18%, 25%, 35% probability of ‘Duplicate Module’)

Category of Critter Brain
Average
Survival

Age

Average # 
of Modules

Average # of 
Functional 
Modules

% of
Modules

Non-modular 2341.13 1 1 N/A
Modular (Duplicate Module 2%) 2375.70 3.52 1.58 50.00%
Modular (Duplicate Module 12%) 3021.41 3.98 1.85 68.75%
Modular (Duplicate Module 18%) 2513.76 4.81 1.46 43.75%
Modular (Duplicate Module 25%) 3831.23 4.02 1.78 66.67%
Modular (Duplicate Module 35%) 2051.44 4.85 1.56 38.89%

Table 7.2, rows 1-2, shows the results of experiment 2, the average survival age for critters 

with modular and non-modular brains in a static environment. Evidently, in this setting too 

the critters with modular brains survived longer on average than critters with non-modular 

brains, although the differences were not as extreme.

Table 7.2. Average survival age for critters with modular and non-modular brains in a 

static (non-changing) environment

Category of Critter Brain Average Survival Age
Static environment, non-modular 4279.77
Static environment, modular (all) 5472.04
Static environment, modular (most critters utilised modularity) 5537.19
Static environment, modular (most critters did not utilise modularity) 5363.45

7.5 Analysis
It is clear, then, that incorporating modularity into the brains increased fitness as indicated by 

critter survivability. However, it is still unknown why this was the case. In addition, it is still 

unknown whether functional specialisation took place, and if it did, what was the manner of 

specialisation. To obtain this information, two types of analyses were performed.

For this purpose, it is necessary to know the number of modules: the number of evolved
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modules is readily available; however, the number of functional modules, modules that are 

actually used is unknown. Thus, the first type of analysis studies the control network and 

attempts to discover the number of functional modules and what causes the control network 

to activate them. This is obtained using an analysis similar to the one used in chapter 6, by 

creating five sample environments and taking 500 random surfaces from each. Every chosen 

surface is taken five times, in two levels of consumption (9%, 25% left of the surface -  these 

values represent the two states of the surface: ‘eaten’ and ‘full’), and fed to the five oldest 

critters of all runs. By analysing the activation of the control network, it is possible to 

discover the modules that are actually used. Moreover, by examining the stimulus that 

activated every module, it is possible to understand when the control network activates the 

various modules.

Table 7.1, columns 3-5, show the average number of modules and functional modules 

evolved, as well as the percentage of critters with functional modularity (defined as the 

percentage of runs where most critters utilised modularity) for critters in the test world in 

every category of run. In general, the greater the value of the ‘Duplicate Module’ mutation, 

the more modules were evolved, though this number does not seem to correlate with the 

average survival age. However, the number of functional modules was correlated with the 

ability to survive; the longest surviving runs (12%, 25%) had the most functional modules. 

Interestingly, the percentage and number of functional modules appeared to be influenced by 

the mutation value: a higher percentage of functional modules was evolved when the 

mutation value was in a certain range (12% to 25%). This may be the cause of the higher 

survival age.

By breaking down the results of exp. 1 according to category and according to whether 

functional modularity evolved, a new average survival age figure was created (fig. 7.4). 

Evidently, critters with modular brains that utilised modularity were always better than 

critters with modular brains that did not utilise modularity (and used a single module). 

Interestingly, when evolution had the ability of evolving modular brains, and yet did not 

utilise this mechanism, the results tended to be worse on average than when evolution could 

not evolve modular brains. Table 7.2, rows 3-4, shows the results of the same analysis for 

critters evolved in a static environment. Under a static environment modularity played a role 

as well, albeit smaller than under changing environments.

To understand the differences between critters of varying qualities, several representative 

critters were picked for the next analyses. Each selected critter was the oldest critter in a run 

with modular brains where most critters utilised modularity, thus, the critters used were: 9



7.5 Analysis 174

very good critters (survived more than 5,100 time steps on average), 6 good critters (survived 

between 2,100 and 3,300 time steps), and 5 poor critters (survived less than 1,100 time steps).

Table 7.3 shows the results of the analysis of the control network activations for the selected 

critters. First, all critters evolved two functional modules (occasionally there were more, but 

modules that were utilised less than 2% of the time were disregarded). Second, the operation 

of the control network was very consistent: one module was activated under all conditions 

(surfaces appeared as full or empty), and the second module was only activated when the 

surface appeared as full. Thus, it appears that one module acts as the primary module 

(appropriate for all stimuli) and the other acts as the secondary module (used only in some 

situations).

5 0 0 0

4 5 0 0

4 0 0 0

3 5 0 0

3 0 0 0
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■  Runs where most critters did not utilise modularity ■  Runs where most critters utilised modularity

Average Survival Age

2812

Non-Modular 2% 12% 18% 25% 35%
C ategory

Fig. 7.4. Average survival age for critters; breakdown according to category (non- 

modular critters, percentage of ‘Duplicate Module’), and according to whether 

modularity was utilised by most critters in run.

Table 7.3. Control network activation for the tested critters; break down according to 

critter quality

Critter Quality Average Active 
Modules

Module 1 active 
under all conditions

M odule 2 active 
under all conditions

Very Good 2 33.33% 66.66%
Good 2 33.33% 66.66%
Poor 2 60.00% 40.00%
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Average Number of Modules per Action
1.83

1.70 Modules

AH (average) Consumption Reproduction Turning Standing Still Slow Fast
Movement Movement

Category

■  Very Good ■  Good ■  Poor

Fig. 7.5. Average number of modules dealing with every type of action; breakdown 

according to critter category.

Although by now it was understood when the modules were activated, their manner of usage 

was still unknown. To obtain this information, every representative critter was cloned 75 

times and placed in the survival test scenario of exp. 1 for 3,000 time steps. During this time, 

whenever an action was taken, the identity of the module that activated it was recorded. The 

actions analysed were: consumption, standing still, slow movement, fast movement, sexual 

reproduction, asexual reproduction, turn left, turn right (some actions were grouped based on 

their common properties, e.g. ‘turning’ refers to both turning left and turning right). In 

addition, during times the world was changing, it was recorded which modules were active.

According to the average number of modules assigned to control a given action for every 

category (fig. 7.5), the better the critter, the more specialised it was: on average, fewer 

modules controlled any given action. When looking at the module analysis of the individual 

critters, specifically, the division of tasks between the primary and secondary modules (table 

7.4), more conclusions are apparent. First, it is clear that the fitter the critter, the more 

specialised it tended to be: 33.33% of the very good critters were fully specialised, where 

every action was controlled by a single module, contrary to 16.66% of the good critters and 

none of the poor critters. As for the other critters, almost all were partially specialised, 

meaning, most actions were controlled by a single module but there were one or more actions 

which were controlled by both modules; this overlap was often in reproduction or slow 

movement. Finally, 20% of the poor critters (and no critters in the other categories) had no 

specialisation at all -  both modules controlled all actions.
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Table 7.4. The division of tasks between primary and secondary modules for tested 

critters. The specialisation column characterises the division of tasks. The two other 

columns describe which actions are controlled by which module. ‘***’ defines an action 

that is exclusively controlled by the module. ‘++’ defines an action that is controlled 

most of the time by the module. ‘+’ defines an action that is only occasionally controlled 

by the module. An empty space defines an action that the module has no control over
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Very good 1 Full *** *** *** *** *** ***

Very good 2 Full *** *** *** ***
Very good 3 Full *** *** *** ***
Very good 4 Partial: overlap in reproduction + *** * * * *** ++ ***
Very good 5 Partial: overlap in reproduction + *** *** *** ++ ***

Very good 6 Partial: overlap in slow movement *** *** + ++
Very good 7 Partial: overlap in slow movement *** *♦* *** *** + +
Very good 8 Partial: overlap in slow movement *** *** $$$ $$$ ++ + * * *

Very good 9 Partial: overlap in slow movement *** *** 3|C1|CJ|G $3|C»|C + ++ * * *

Good 1 Partial: overlap in slow & fast *** *♦* *** + + *** ++ ++
movements

Good 2 Partial: overlap in slow movement *** 3|C)|Ci|e ++ +
Good 3 Partial: overlap in slow movement *** *** *** ++ *** + ***

Good 4 Full *** $$$ $3|ej|e *** *** ***
Good 5 Partial: overlap in slow & fast *** *** *** ++ + + + ++

movements
Good 6 Partial: overlap in slow movement *** *** $9|C3|C $$$ + ++
Poor 1 Partial: overlap in slow movement *** *** *** + *** ++ ***
Poor 2 No specialisation - complete overlap + + + + ++ *** ++ ++ ++
Poor 3 Partial: overlap in slow movement *** *** *** + *** + ***
Poor 4 Partial: overlap in turning and slow *** *** + ++ ++

movement
Poor 5 Partial: overlap in turning *** *** + ***

Interestingly, when examining the ‘Duplicate Module’ value of the runs the critters were 

taken from, it appears it had no effect on module specialisation. Another surprising discovery 

was that no specific module was allocated for the times the world was changing -  both 

modules were used regularly during these times.

7.6 Discussion
The results lead to several interesting conclusions. First, enabling the ability to evolve 

modular brains increased the fitness of the evolved critters on average, a difference that is 

exaggerated further when only critters that used more than one module are considered. This 

finding was true for both static and changing environments, though bigger differences were
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observed in changing environments. Interestingly, critters that did not utilise modularity 

despite having structurally modular brains occasionally performed worse than critters with 

non-modular brains -  this seemed to be linked to the utilised probability of ‘Duplicate 

Module’.

The value of the ‘Duplicate Module’ mutation had a large effect on evolution of critters with 

modular brains: too low (2%) or too high (35%), and the overall average survival age was 

equivalent or worse than the average survival age for critters with non-modular brains. 

According to the analysis, the modular critters that utilised modularity still did better than the 

modular critters that did not, however, there appeared to be fewer of the former. In other 

words, the value of ‘Duplicate Module’ affected the emergence of functional modules, and 

consequently, affected overall critter fitness. Interestingly, once functional specialisation does 

occur (regardless of the mutation value), it occurs normally -  modular specialisation patterns 

are very consistent. Therefore, it can be argued that when the value of ‘Duplicate Module’ is 

too low, evolution is unable to successfully utilise the modules for specialisation (as indicated 

by the gene duplication literature). When it is too high, it becomes disruptive to the 

evolutionary process. The ideal value is somewhere in between.

Specialisation played a key factor in critter fitness; the more specialised the critters’ modules, 

the fitter the critters were. The very good critters tended to be more specialised, whereas the 

poor critters often had a large overlap in specialisations, and at times no specialisation at all 

(complete overlap). As table 7.4 shows, the specialisations became less distinct the worse the 

critters were, and the division of tasks became less logical (e.g. a ‘poor’ critter #4 divided 

control of ‘turning’ and ‘slow movement’ and as a result did not do very well: if a critter 

turns while consuming a resource or attempting to reproduce, the action is negated. 

Therefore, limiting the number of modules that can control this activity appears to be a smart 

strategy).

Looking at the analysis of the control network, it is clear the network uses the state of a 

viewed surface as a cue for switching between modules. Thus, it always breaks the stimuli 

into two groups (‘full surface’ and ‘eaten surface’), and assigns one module to deal with all 

surfaces (the primary module) and another to deal with only the eaten surfaces (the secondary 

module). This breakdown is probably why two modules were mostly used -  it is possible that 

a different problem may require a different number of modules. When correlating this with 

the analysis of the modules, two dominant behavioural strategies emerge:
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• Strategy one: use the primary module for most actions. When reaching an eaten surface, 

activate secondary module which specialises in movement and occasionally in turning as 

well. This strategy works by minimising the danger of consuming a negative resource; if 

a surface is already eaten, better to assign a module that can never eat. Furthermore, in 

some critters this module specialised in fast movement, which can be a very appropriate 

behaviour when running out of energy and scanning quickly for a good surface (as seen 

in the previous chapter). This strategy is very common, and was utilised by most critters.

• Strategy two: use the primary module for movement and turning. When reaching a full 

surface, activate secondary module which specialises in consumption and reproduction. 

This strategy works by allowing one module to specialise in tasks that require standing 

still (consumption and reproduction). Given that identifying the right surface is the most 

difficult task in Mosaic World, creating a specialised module for consumption appears to 

be a good strategy. This strategy was less frequently used and only a third of the very 

good critters utilised it (‘very good’ critters #2, #4 and #5 in fig. 6).

The above conclusions are consistent with the findings of Calabretta et al [43] which reported 

that modular networks performed better than non-modular networks. However, in the system 

described in this chapter, specialisation is the reason behind the increased fitness, whereas in 

their system specialised modules were not fitter than non-specialised ones. Conversely, in a 

study by Anderson and Hong [7], modular networks were not fitter than non-modular ones. It 

is possible that the differences are a result of the nature of the problems that were addressed.

To conclude, the results described in this chapter indicate that modularity does indeed 

improve the fitness of critters that utilise it. This is a direct result of the interactions between 

the control network and the subordinate modules. The reason fitness is improved is (a) 

because the control network learns to break down the task in a meaningful way and (b) 

because each module specialises in some tasks. Thus, this type of network is frequently 

superior to a standard, non-modular network in solving the tasks described in this chapter 

(and probably others as well). Consequently, it is unsurprising modular designs are frequently 

seen in nature.

7.7 Modularity and the visual system
In this chapter it was shown that critters with modular brains improved their fitness by 

dividing tasks between modules and by learning to activate the appropriate module in every 

situation. It is logical to assume that the visual systems of every module and the control 

network are similarly affected -  the only question is: in what way? For this purpose, two
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different critters (described in table 7.5) which were used in the previous analysis were 

picked, their control network was analysed to discover which modules are used and when are 

they active, and most importantly, the visual systems of these modules and the control 

network were studied.

Table 7.5. Description of the two critters used in the analysis: the number of modules 

and functional modules, the conditions which cause modules 1 and 2 to activate, and the 

task breakdown for modules 1 and 2

Critter
#

# of 
modules

#of
functional
modules

Module 1 
active 
for:

Module 2 
active 
for:

Tasks performed 
by module 1

Tasks performed by 
module 2

1 8 2 All
surfaces

Only full 
surfaces

Consumption, 
reproduction, some 
movement, turning

Most movement

2 3 2 All
surfaces

Only full 
surfaces Most movement

Consumption, 
reproduction, some 
movement, turning

Figures 7.6 and 7.7 illustrate the evolved visual system for the control network and the two 

functional modules of critters 1 and 2 respectively. An analysis of the two critters suggests 

that there are many similarities between their evolved visual systems. Both critters have a 

module which is exclusively used for consumption and reproduction, and in both this module 

utilises a sophisticated visual system, clearly very useful for the recognition of surfaces. In 

addition, both critters have a module which is primarily responsible for movement, and in 

both this module utilises a simple visual system that is colour blind (indicated by the presence 

of a single receptor which is insufficient for colour vision); these visual systems appear to be 

indifferent to useful wavelengths, evident by the fact that critter l's single receptor is very 

insensitive and critter 2's receptor is attuned to a rather useless wavelength. A possible 

explanation is that in both critters, the module only 'cares' about moving properly: avoiding 

the holes and edges. Since these are dark, a visual system that only detects brightness is 

sufficient, and colour vision is not necessary.

Interestingly, the visual systems of the control networks of both critters are somewhat similar 

as well. Both systems are relatively sophisticated and have the potential for possessing colour 

vision (2+ receptors). In fact, critter l's control network's visual system has two receptors of 

nearly ideal peaks and tuning for colour vision in Mosaic World (one in the short 

wavelengths and one in the long wavelengths). It is possible -  even likely -  that these 

sophisticated visual systems of the control networks improve the critters' capabilities by 

operating in sync with the two modules' visual systems. This can be accomplished, for 

example, by using the visual system of the control network to redirect potentially dangerous
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surfaces to a module which cannot consume surfaces, or alternatively, to a module which 

possesses a superior visual system that can reliably determine whether the surface should be 

consumed.

Control N<

Wavelength
R/410) Finof r ,

Module 1: everything, little m o vem en t| Module 2: m o st m ovem ent

W avelengthWavelength
Rj;420)Rj(450-1) R(450-II) R<590)

Fig. 7.6. The visual system of the control network, modules 1 and 2 of critter 1. The 

control network has 2 receptors. Module 1 has 3 receptors. Module 2 has 1 receptor.

In order to obtain a conclusive answer for this puzzle -  discover whether the visual systems 

of the control network and the modules work in sync -  an additional analysis was performed. 

Thus, each critter was exposed to 500 different surfaces under three different conditions and 

the behaviour of its control network and activated modules was noted. The conditions were:

(i) full (uneaten) surfaces, randomly picked from the test world (ii) very positive surfaces, 

randomly picked from the available potent surfaces in the test world (resource value>30) (iii) 

very negative surfaces, randomly picked from the available lethal surfaces in the test world 

(resource value<-30).
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0.8
0.6
0 .4

0.2

4 0 0

Wavelength
 R<490) — R<590)------ R<700)

5 0 0 6 0 0 7 0 0

, / 9 9
|  Module 1: m ost m ovem ent Module 2: reproduction , consum ption, 

little  m o v em en t/tu rn ing_____________

0.80.8
0.6
0.4
02 0 .2 H

7 0 04 0 0 5 0 0  
W avelength

6 0 0
4 0 0 5 0 0  

Wavelength
 Rj(560)

6 0 0 7 0 0

 ft(420) —  Rj(570) •R(620) —  R(660)

Fig. 7.7. The visual system of the control network, modules 1 and 2 of critter 2. The 

control network has 3 receptors. Module 1 has 1 receptor. Module 2 has 4 receptors.

Tables 7.6 and 7.7 show the results of this analysis, specifically, the percentage of stimuli of 

every type that activates every module for critters 1 and 2 respectively. It appears that when 

the surfaces are very positive, module 1 of critter 1 -  which controls consumption -  is always 

activated, whereas when the surfaces are very negative, module 2 -  which only controls 

movement -  is always activated. Critter 2 behaves in a similar way: when surfaces are very 

positive, module 2, which controls consumption, is (almost) always activated, and when 

surfaces are very negative, module 1 is activated.

Therefore, it appears that in both cases, the visual system of the control network improves 

fitness by acting as an additional filter: when it estimates the surfaces are likely to be 

negative, it activates a module which cannot consume (and possesses a simple visual system); 

however, when it estimates the surfaces might be positive, it activates a module with a
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sophisticated visual system which further estimates whether the surface should be consumed 

or not. Bearing this in mind, when one examines critter l's visual systems, an improved 

understanding of this behaviour is gained: critter l's control network's visual system 

examines surfaces that possess very negative wavelengths (600-700nm). If these surfaces do 

not possess many of these, thus, are more likely to be positive, module 1 is activated. This 

enables module l's visual system to examine a different part of the surface's spectrum (~540 

to 600nm) for the presence of weaker negative wavelengths. If there are few of these, the 

surface is likely to be positive, and thus the module instructs the critter to consume the 

surface.

Table 7.6. Percentage of stimuli (of every type) that activates each module of critter 1

Stimuli types Percentage of stimuli that cause 
activation of primary module

Percentage of stimuli that cause 
activation of secondary module

Positive 100.00% 0.00%
Random 35.60% 64.50%
Negative 0.00% 100.00%

Table 7.7. Percentage of stimuli (of every type) that activates each module of critter 2

Stimuli types Percentage of stimuli that cause 
activation of primary module

Percentage of stimuli that cause 
activation of secondary module

Positive 1.00% 99.00%
Random 73.40% 26.60%
Negative 100.00% 0.00%

To conclude: it is interesting to note that the structural specialisation also occurs in other 

areas of the critter brain, such as the visual system within every module. In particular, the fact 

that different parts of the modular critter brain respond to different aspects of the visual 

stimuli bears a resemblance to biological visual systems. In both analysed critters, one 

module reacts to the colour information in the visual stimulus and thus is in charge of the 

critter's consumption and reproduction behaviours, and another reacts to the brightness 

information in the stimuli and thus is in charge of the critter's movement behaviours. This is 

analogous to many visual strategies which can be seen in nature, for example, in monkeys, 

different aspect of the perceived stimuli are analysed in different pathways of the brain [225]; 

these can normally be classified into two general categories: 'what' and 'where'. The 'what' 

pathways process the features of stimuli (e.g. shape, colour), whereas the 'where' pathways 

process the spatial elements of the stimuli (e.g. motion, form).

An interesting additional observation is the fact that the visual systems of certain modules 

filter some of the visual information. For example, a module which only controls movement 

is colour blind. This further supports the observation reported in chapter 5, that when
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appropriate, the visual system only relays relevant information to the brain and disregards 

information that is unnecessary.

The analysis described in this section, which examined the effect of incorporating modularity 

on the evolved visual systems, is particularly important because it supports part of the 

premise underlying this thesis, specifically, that incorporating hierarchical complexity into 

models is necessary in order to gain a more comprehensive understanding of the modelled 

phenomena. Indeed, the greater number of levels of this model enabled discovering that:

(1) Specialisation takes place at more than one level of the model. Not only modular 

specialisation took place within the critter brain, but each module had specialised visual 

systems as well. This specialisation is directly linked to the environment.

(2) Visual specialisation for artificial agents can occur for a specific task (like movement) 

and not just for the general survival task.

(3) The evolved visual strategies for subtasks are consistent with known visual principles, for 

instance, that filtering irrelevant information is at times beneficial.

In a simpler, non hierarchical (or less hierarchical) model, these observations are likely not to 

be available.

7.8 Complex interactions analysis
The work described in this chapter primarily deals with the interaction of the control network 

with its subordinate modules (control network—̂ module interactions) as a way of increasing 

critter fitness through modular specialisation. In order to be able to examine these 

interactions, a set of experiments which presented two types of critter populations (critters 

with modular brains, and critters with non-modular brains) to two different types of 

environments (changing environment and static environment) was conducted.

The results of the experiments showed that critter fitness is indeed higher for critters with 

modular brains, and this was determined to be the result of the interactions within the 

modular brain: the control network specialised in breaking the task to two (or more) different 

subtasks, and several modules specialised in performing their assigned subtasks. Therefore, 

the control network—►module interactions were critical towards accomplishing the challenge 

that was set in this chapter. These interactions took place within the modular brain, however, 

their effect reached lower levels: neuron, gene, and as was demonstrated, receptor. And also 

higher levels: critter (as it is controlled by the network), population and species, (through the 

behavioural effects on competition and reproduction).
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The interaction(s) that takes place are in parenthesis at the end of each sentence.

1) Every critter attempts to survive -  this requires several different behaviours:

(a) Perception: the environment is perceived by the critter’s control network’s 

receptors (environment—►receptor). It is crucial that these receptors relay the 

relevant information to the control network: specifically, information that will 

enable it to do an appropriate breakdown of the task. The two critters analysed in 

section 7.7 possessed visual systems that were sophisticated enough for the 

purpose of assisting modules in the survival task; that said, it is possible that 

other types of control strategies may require different types of visual systems. In 

addition, it does not appear that the changing environment problem required any 

specialised visual adaptations (as none were found).

(b) Communication: the receptors relay this information to the control network 

through neurons (receptor—►neuron, neuron—►control network).

(c) Activation: the control network determines, based on the stimuli it receives, 

which module to activate (control network—►module). This is possibly the most 

important interaction, as the control network must be able to properly break 

down the stimuli into meaningful tasks. For critters that evolved in the conducted 

experiments, it appears that the control network needs to be able to break the task 

to at least two distinct parts: the primary part includes -  potentially -  all visual 

stimuli, and the secondary part includes only stimuli that come from eaten 

surfaces. This interaction is also important because through the interaction of the 

control network and the module, the critter brain may be able to achieve 

additional capabilities (for example, as exhibited by the critters in section 7.7).

(d) Perception: the environment is perceived by the activated module's receptors 

(environment—►receptor). It is crucial that the receptors relay the relevant 

information to the activated module: the better adapted the visual system of the 

module to the task it is supposed to perform, the better the critter will be. As was 

shown, different modules have specialised visual systems according to the task 

they are supposed to perform. It is possible that different critters have different 

specialisations; however, according to the analyses performed:

Consumption: it appears that tasks that demand colour perception 

(such as consumption) require the visual system to be able to 

differentiate between visual stimuli, presumably using colour vision. 

Movement, turning: tasks that only demand brightness perception 

require the visual system be able to differentiate only between light and 

dark stimuli. In this case, a simple visual system is sufficient.

(e) Control: the activated module controls the critter’s behaviour (module—►critter).
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Clearly, this interaction is important as it enables the environment to exert 

selection pressure and eventually determine the task breakdown (of the control 

network) and specialisations of every module.

(f) Consumption: the critter may consume surfaces (critter—►environment); and in 

this case, positive or negative energy is transferred from the environment to the 

consuming critters (environment—►critter). This behaviour appears to be linked to 

the evolutionary strategy evolved. There are two strategies; in the first, 

consumption is controlled by the primary module (deals with all surfaces). In the 

second, consumption is controlled by the secondary module (deals only with full 

surfaces). In both cases, the module specialises in recognition of positive 

surfaces. Obviously, it is also possible that the evolved critter does not have 

specialised modules, and in this case, all modules may attempt to control 

consumption (the critter fitness is likely to be mediocre at best).

(g) Movement: the critter may choose to move (forage for food, avoid edges and 

holes) (environment—►critter). Similarly to the previous item, the identity/task of 

the controlling module appears to be dependent on the strategy taken: according 

to one strategy, movement and turning are performed by the primary module and 

in the other, movement and turning are performed by the secondary module, 

which is activated when the critter reaches eaten surfaces.

(h) Reproduction: the critter may choose to reproduce (critter—►critter). This 

decision is also dependent on the evolutionary strategy taken: in one scenario, the 

primary module controls reproduction, and in the other, the secondary module 

controls reproduction, and is activated when the critter reaches a full surface.

2) Selection (to better break down the task): many critters die during stages 1-f to 1-h, 

either by consuming negative surfaces, or by falling from the edges/into a hole, running 

out of energy, or by reproducing when not possessing enough energy. Critters whose 

control networks have learned to break the task ideally (for these experiments, breaking 

the task to two subtasks appears to be ideal) are far more likely to survive than critters 

whose control networks break the task incorrectly or do not break the task at all, and only 

utilise a single module. Therefore, the advantages these control networks grant directly 

affect the selection of the genes that define them (control network—►genes).

3) Selection (to evolve appropriate behaviours and structures): the critters that survive 

are likely to have appropriate structures for their modules, and are more likely to exhibit 

the appropriate behaviour in every situation. Therefore, the advantage of possessing 

appropriate behaviours and structures (which are now expressed in individual modules) 

affects the selection of genes that define them (module—►genes).

4) Selection (to better compete): the critters that survive compete on resources



7.9 Conclusions 186

(critter—►critter). Critters that evolved a good breakdown of tasks, and have evolved 

specialised modules (suitable structures and behaviours) are more likely to out-compete 

critters that have not evolved either, thus, are more likely to survive and pass on their 

genes (control network—►genes, module—►genes). Other aspects that enhance the critters’ 

ability to compete also affect the selection of the genes that define them (critter—►genes).

5) Reproduction: continuing (1-h), the critters that survive past steps (2)-(4) and are now 

able to reproduce are fitter than those that died (genes—►genes). Their offspring’s 

phenotype is likely to be fit as well, as affected by the selection pressures in (2), (3) and

(4). These changes to genes affect the critter's task breakdown to modules, modular 

specialisation and overall behaviour which affects it across all levels (genes—►receptor, 

genes—►neuron, genes—►module, genes—►control network, genes—►critter) and eventually 

the population as well (genes—►population). As was shown in this chapter, the critters do 

not exhibit any specific strategy in order to deal with changing environments, but instead 

simply become better at all tasks, thanks to modular specialisation.

6) Steps (1) to (5) are repeated until the run ends. The critters that evolved a good task 

breakdown between modules, appropriate structures for every task, and consequently, 

appropriate behaviours for every situation are those that survive.

7.9 Conclusions
The aim of the work presented in this chapter was to investigate the premise that control 

network—►module interactions can enable critter fitness to increase through modular 

specialisation by setting a challenge to Mosaic World that seemed to be very demanding, 

thus, will require specialised adaptations or behaviours. The results confirm this hypothesis: 

incorporating modularity into brains used for critter control can greatly improve their 

capabilities, as critters that evolved modular brains survived much longer on average than 

critters with non-modular brains. Although critters faced a challenging problem (changing 

environments), the enhanced survival ability appeared to be derived from the improved 

capabilities of the modular brains, rather than any specific adaptation to this problem. This 

improvement in fitness was achieved by dividing the tasks between two modules. 

Furthermore, the way the tasks were divided was important, the more distinct the division of 

tasks, the better the overall result.

To conclude: this chapter demonstrated the way in which modular specialisation can greatly 

improve fitness. Furthermore, and perhaps, more interestingly, it showed that when the 

evolving structure is hierarchical, this improvement occurs by evolving appropriate 

specialisations for the various levels of the structure (i.e. each of the specialised modules 

evolved visual systems appropriate for the module's role).
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Chapter 8 

Challenge: aggregation
In this chapter, the hierarchical structure of the system is expanded once again through the 

addition of a new level to the model, by enabling individual critters to aggregate and form 

Mosaic World’s equivalent of multicellular organisms. An aggregate may consist of up to 25 

critters, and is controlled by its constituent members. This new level is the focus of this 

chapter’s investigation of complex interactions. Specifically, this chapter focuses on the 

interactions that take place between individual critters and aggregates, as well as interactions 

that take place within an aggregate. These interactions include aggregation: the forces that 

cause individual critters to interact and form new aggregates, differentiation: the interactions 

of critters within an aggregate that enable it become an appealing evolutionary alternative to 

critters, and predation: the effects of predation by aggregates on critters and smaller 

aggregates.

Naturally, the study of theses types of interactions bears a strong similarity to investigations 

conducted by biologists in the attempt to understand the evolutionary transition from single 

cells to multicellular organisms. This chapter complements these studies by exploring the 

factors that may have provided an advantage for multicellular life when it first appeared in 

nature. The challenge posed for Mosaic World in this chapter is:

Can stable species o f aggregates evolve in Mosaic World, and i f  so, what is the nature o f the 

critter-^aggregate and critter^critter interactions that are necessary fo r this to occur?

In order to investigate this challenge, a set of experiments examines the effect of several 

different conditions on the formation of aggregates within a population, and these are 

compared with biological equivalents.

A second study described in this chapter examines the effect of environmental change on 

aggregates capable of altering their shape and growing protective structures around 

themselves, by adding a new type of environment to Mosaic World that offers new benefits 

but new dangers as well. This study also investigates the origin of development, specifically, 

morphogenesis, as exhibited by aggregates that evolve specific shapes and shell structures 

that increase their chances of survival.
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Finally, as this chapter presents the full version of Mosaic World, a thorough analysis of one 

evolved aggregate is provided and demonstrates how complex interactions across all levels 

are integral for a broader understanding of the modelled phenomenon.

The work described in the first part of the chapter has been published in [198].

8.1 Part I: the transition to multicellularity
Explaining the transition from single cells to multicellular organisms is one of the key 

challenges faced by evolutionary theory [145]. A multicellular organism is comprised of 

more than one cell that are in physical contact; these cells are specialised (or differentiated) to 

perform specialised tasks -  and their activities are coordinated, at least with regards to some 

key functions. Multicellular life, which is believed to have independently arisen multiple 

times in the different kingdoms [33], is evident even in the most ancient fossils dating some 

3.5 billion years (these microfossils are of filamentous cyanobacteria, which are considered 

the Earth’s oldest known multicellular organisms) [98, 200]. Multicellularity can be achieved 

in two ways: through aggregation and through cell division accompanied by adhesion [242].

Although it is accepted that for this transition to repeatedly take place it must offer some 

advantages, no one knows for certain the conditions that led to the original emergence of 

multicellularity, nor how it emerged. One view is that the transition to multicellularity 

occurred by accident, caused by a mutation that prevented offspring cells from separating 

[33], and that at first there were no advantages [173]. In this scenario, the benefits came later, 

thus causing the selection of the organism. Another theory suggests that predation pressure 

was one of the causes leading to the emergence of multicellularity, as multicellular organisms 

would be more resistant to phagotrophy (ingestion of whole prey) [217]. This theory was 

tested by exposing a unicellular organism, Chlorela vylgas, to a predator. Within few 

generations the multicellular version of the organism, a rare mutant, evolved and was nearly 

immune to predation [35].

The possible advantages associated with multicellularity are numerous. One is the enhanced 

efficiency of dividing labour between cells [138]. This can provide advantages in feeding 

(e.g. efficient feeding through cooperation) and dispersion (e.g. a larger fruiting body 

improves spore dispersion) [33]. The larger size may improve protection from environmental 

disturbances [24] and enable greater storage capacity of inorganic nutrients [105]. It also 

enables a greater division of labour -  more cell types that offer greater specialisation [34]. 

Perhaps, most importantly, sheer size itself can be advantageous with regards to predation: 

the prey may be too large for the predators to eat and organisms may be able to move faster
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so could better catch prey or escape predation (e.g., in water environments [32]).

It is important to emphasise that a group of individual cells is not a multicellular organism. 

The first necessary step for this transition is that the individual cells stop competing and start 

cooperating; in other words, the individual cells start sacrificing their fitness for the fitness of 

the group [144]. Only then can cell differentiation begin and the organism becomes 

multicellular [106]. It is crucial that functions that limit internal conflict emerge [146]. 

According to some, successful complex multicellular organisms must be comprised of 

genetically identical members [242].

Computational models that investigate the transition to multiceUularity

It is difficult to study events such as the emergence of multicellularity for obvious practical 

reasons. This is where artificial life models can greatly help. Indeed, several researchers have 

modelled aspects of the emergence of multicellular life: for example, Rothermich and Miller 

investigated the emergence of multicellularity by modelling cells using Cartesian genetic 

programming [192]. Bull used versions of the abstract NKC model to examine the conditions 

under which multicellularity is likely to occur [40]. Furusawa and Kaneko studied the origin 

of multicellularity using artificial chemistry [63]. Bryden modelled the macrocyst stage in 

slime mould in order to understand why an organism might decide to aggregate [39].

8.2 Additions to Mosaic World
The investigations described in this chapter required that Mosaic World be expanded in 

several ways. The most significant change is the addition of a new level to the model, which 

now comprises the following levels of abstraction: genes, neurons, receptors, modules, 

control networks, critters, aggregates, population and species; figure 8.1 illustrates a sample 

model of an aggregate which comprises 4 critters (each possessing a modular brain, described 

in the previous chapter). Figure 8.2, which is an expansion of fig. 3.2, shows the interactions 

map for all objects in Mosaic World.

8.2.1 Action capacities and metabolism
In all versions of Mosaic World used until this chapter, a critter loses a certain amount of 

energy every time step (explained in 3.6.1). The critter can also perform all actions: 

reproduction, consumption, movement, turning. In this version of Mosaic World, these two 

elements are linked: the aim is to model the notion that in nature, different types of cells have 

different energy costs (e.g. [190]). Thus, every critter has a metabolic rate which determines 

the rate of energy it loses over time.
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Capacities:
Movement
Turning

Capacities:
Predation
Consumption

Capacities:
None
("fat cell")

Reproduction
Consumption

A g g r e g a te
(co m p rise d  of fo u r c ritte rs )

Fig. 8.1: The object model of the aggregate. The aggregate described here comprises 4 

critters, each possessing its own structure and capacities (described later in the 

chapter).
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Fig. 8.2: Major interactions within the final version of Mosaic World

The metabolic rate is determined according to the actions the critter has the capacity of
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performing. Accordingly, a critter that can perform more actions will have a faster 

metabolism, and consequently, lose more energy every time step, whereas a critter that can 

perform no actions at all will lose a very low amount of energy every time step. Although the 

costs used do not capture the mechanisms of biology in detail, it can be argued that the model 

presents the critters with challenges similar to those faced by living organisms.

All critters are created with the capacity of performing all basic actions: the capacity to 

consume surfaces, the capacity to move/turn, and the capacity to reproduce (predation, which 

is a new feature that is shortly explained, is enabled by the capacity to prey and is not 

included in the critter's basic repertoire). By losing some of these capacities through 

evolution, the critters can decrease their metabolic rate. Critters that lose the capacity to 

perform a certain action cannot perform it; however, through evolution the critters' offspring 

can regain this capacity. Even a critter with no capacity to do any action still loses energy at a 

slow rate.

The basic metabolic rate for a critter is 10 units per time step, reproduction adds 30 units, 

consumption adds 30 units, moving/turning adds 30 units, and predation adds 30 units. E.g. a 

critter that can only reproduce and move, but not eat, loses 70 energy units per time step, 

which is 70% of the rate of a critter that can also eat.

8.2.2 Aggregates in Mosaic World
In order to investigate the transition to multicellularity, mechanisms for critter aggregation 

have been added (see fig. 8.3 for a screenshot of aggregates in Mosaic World). An aggregate 

can comprise up to 25 adjacent critters in any form within a 5x5 square, and is subject to all 

the costs and limitations that the critters sustain. Although the limitation of 25 critters per 

aggregate is biologically unrealistic, this design choice was necessary in order to enable 

running experiments in a realistic time frame; that said, this limitation did not appear to make 

any difference as aggregates rarely possess more than 10 members, and no aggregate was 

ever observed to possess 19 or more members.

The primary goal of adding this major feature was to discover the conditions that lead to 

aggregation rather than enforcing it: by making the aggregation methods optional, evolution 

is able to discover the utility (or not) of aggregation -  there is no bias towards multicellularity 

or differentiation and no requirement for critters to aggregate.

Actions

Aggregates can use all abilities of their constituent members: if no members have the
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capacity to perform certain actions, the aggregate cannot perform them. Some actions can 

only done by the aggregate as a whole: reproduction, predation and splitting; therefore, as 

such actions involve all members, these decisions are determined ‘democratically’ -  an 

aggregate performs these only if at least half its members wish to. Furthermore, because 

members that have lost the capacity to perform an action do not participate in the decision 

process, this may result in the effective specialisation of the aggregate’s members. Thus, 

evolution can assign certain decisions to a single member by devolving the capacities to make 

these decisions for most members; this is Mosaic World’s equivalent of a specialised organ.

■■■■■ I ■■an

Fig. 8.3: A close-up of Mosaic World, demonstrating aggregates and critters living side 

by side.

Health and metabolism

Aggregates pool the energy of their constituent members; an aggregate’s current and 

maximum health levels are the combined total o f its members’ current and maximum health 

levels. Similarly, an aggregate’s metabolism is the combined metabolic rates of its members. 

These changes reflect the fact that an aggregate is literally the sum of its parts, which were 

previously individual critters (e.g. Dictyostelium -  also known as slime mould -  is an 

multicellular organism formed through the aggregation of individual cells [39, 138], thus, it 

can be stated that its ‘health’ is the overall ‘health’ of all its constituent cells).

Sensing and consumption

Aggregates enjoy the combined sensing capabilities of all their comprising members: every 

individual critter senses the environment and can affect the behaviour of the aggregate. This
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models the sensing capabilities of some aggregating organisms, for example, the 

Dictyostelium amoeba which has receptors for cyclic AMP that instruct it to move in a 

specific direction in order to aggregate [1].

In addition, every member that has the capacity to consume can still decide whether to 

consume a surface or not, although it is still subject to the same limitations faced by critters 

(i.e. it cannot consume while moving, and this depends on other members of the aggregate as 

well). This models the ability of evolution to determine the size and shape of the feeding 

organ of organisms. The energy gained (or lost) is added to the aggregate’s energy pool.

Movement and turning

An aggregate’s movement is determined by its members, and is effectively their combined 

movements. Since aggregate members can turn inside an aggregate, an aggregate’s overall 

movement depends on its members’ individual orientations. Consequently, the movement of 

an aggregate is difficult to coordinate. The movement and turning energy costs are identical 

to those of an ordinary critter -  this models multicellular organisms using flagellates for 

swimming [32]. An aggregate does not fall from the world’s edges as long as its central 

member is still on the surface matrix.

Reproduction

Aggregates can only reproduce asexually. To reproduce, an aggregate must not move for a 

given number of time steps and must also transfer a percentage (40%) of its maximum health 

to its offspring. All reproduction attempts incur an energy cost relative to the aggregate’s size 

regardless of their success. When an aggregate reproduces, all its members are cloned and the 

outcome is mutated (i.e. every member undergoes the same mutations that a reproducing 

critter’s offspring experiences). The members’ spatial position is also copied, thus, the 

aggregate’s shape is cloned as well. This type of reproduction is equivalent to budding, which 

is one of the forms of asexual reproduction seen in nature. In budding, a new individual 

grows as a bud out of the body of its parent, eventually detaching and becoming a full 

individual which is genetically identical to its parent [85]. Many animals reproduce through 

budding, for example: hydras and calcareous sponges.

In addition to the ‘standard’ mutations, the offspring of an aggregate also undergoes the 

following three new types of mutations:

• 'Clone element': this mutation causes one of the offspring’s members (randomly picked) 

to be cloned twice at a given probability (4%). The new member is attached randomly to 

an existing member. This mutation also affects the aggregate's metabolic rate.
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• 'Delete element': this mutation causes an offspring’s member (randomly selected) not to 

be copied at a given probability (4%). The selected member must not be the only 

connection between two parts of the aggregate (i.e. it cannot split the aggregate in two). 

This mutation also affects the aggregate's metabolic rate.

• 'Shift element': this mutation causes an offspring’s member (randomly picked) to change 

position (altering the aggregate’s shape) at a given probability (4%).

Genome

When critters form an aggregate, their genomes combine and form the aggregate’s genome 

(see fig. 8.4). The aggregate genome also contains additional genes that indicate every 

member’s position and orientation in the aggregate. The genome defines all the traits of the 

aggregate, and by definition, of its comprising critters; thus, during reproduction this genome 

can be used to create the aggregate’s offspring -  and furthermore, if this aggregate splits, its 

members can be recreated as critters as well. Although in nature aggregating organisms do 

not combine their genomes, this mechanism was necessary in order to enable reproduction of 

aggregates; this has been the case because the mechanisms for true development are beyond 

the current capabilities of Mosaic World. Such mechanisms would enable a multicellular 

organism to grow from a single cell/critter that has a single genome; this cell/critter would 

divide multiple times with some of the offspring differentiating into different cell/critter 

types, and eventually form the multicellular organism.

Location in aggregate [3,2] Location in aggregate [2,3]
1 Etfmg capacity capacity Pi*d«uan capacity Rtprotocuo* capacity

tine true true false
Etfing capacity Ifovwntnt capacity Pi*d«uc*L capacity R*productun capacity

false false false false
-Begin control module
Receptor (location [0.0], peak [400nm], tuning [0 003], on) 
Receptor (location [0,1], peak [470nm], tuning [0 01], on) 
Receptor (location [-1,0], peak [550nm], tuning [0 02], on) 
Receptor (location [0,- lj, peak [630nm], tuning [0.09], on) 
Receptor (location [ 1,1], peak [690nm], tuning [0 5], on)

-Begm control module
Receptor (location [0,2], peak [430nm], tuning [0.25], on) 
Hidden (location [0,0])
Hidden (location [0, lj) j 
* Weight (RecftU], Htdp.O], val(D 83], on]

Fig. 8.4: Sample aggregate (size 2) genome; most genes for critters are not shown (see 

chapter 3)

8.2.3 Predation
The ability to prey on smaller aggregates and critters is added to this version of Mosaic 

World and requires evolving a capacity for predation. For this purpose, a new output unit is 

added to the critter's standard module; this unit must be activated in order to attempt 

predation. This feature was added because one of the investigated hypotheses in this chapter 

suggests that predation is one of the possible reasons multicellularity evolved [217].
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In Mosaic World, an organism may prey on another organism if it is larger than its prey; this 

means that effectively only aggregates can prey on other aggregates and critters. Even though 

critters can evolve the capacity for predation, in practice this will only increase their 

metabolic rates without bestowing any additional abilities, except if the critter forms an 

aggregate or joins an existing one.

In order to prey on another organism, an aggregate must physically overlap at least 75% of its 

prey. Preying may not kill the target: only some of its energy is transferred to the aggregate 

(80% of the prey's maximum energy). Preying also incurs an energy cost that depends on an 

aggregate’s size, regardless of whether it has actually successfully 'caught' a victim (i.e. the 

aggregate may attempt to prey on an aggregate that is larger than itself).

8.2.4 Aggregation
All critters have the ability to aggregate. For this purpose, a new output unit is added to the 

critter's standard module. There are two ways for critters to form an aggregate; each is used in 

different experiments.

Aggregation by choice enables critters to aggregate with other willing critters and aggregates 

that are in immediate contact with it. A critter may be in ‘join’ mode, where it adheres to any 

willing organism it is in contact with, ‘neutral’ mode where it does not initiate aggregation, 

but adheres to any other organism that attempts to adhere to it, and ‘split’ mode where it 

never aggregates.

Accidental aggregation causes a percentage (4%) of every reproduction to result in a small 

(size 2) aggregate -  this models an offspring that does not separate from its parent during 

reproduction. When this setting is active, aggregates cannot split or grow during their 

lifetime. Note that the vast majority of aggregates that form this way do not survive. 

Aggregates cannot increase their size by joining other organisms; however, a critter 

attempting to join an aggregate succeeds and adds its energy to the aggregate’s (with a 

corresponding increase in its metabolic rate).

8.2.5 Splitting
An aggregate can decide to split; this causes the aggregate to split to its individual members. 

There is no way for a single member of an aggregate to leave it: the only way for a member 

to regain its individuality is if the entire aggregate disbands. When an aggregate splits, every 

critter receives the appropriate part of the full genome. Although all members of the 

aggregate have the ability to split, some may choose to forego participating in the splitting
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decision (which, as previously described, occurs 'democratically'). This feature parallels the 

ability of the fruiting body of aggregated organisms such as Myxobacteria and Dictyostelium 

to differentiate into spores that can be released to the world [1, 138]. It is important to 

emphasise that the vast majority of new aggregates split immediately after forming (and most 

of those that do not, die not long afterwards). As the results later in this chapter show, critters 

are always preferable to aggregates unless there is an advantage to being in the aggregate 

state which critters cannot duplicate.

Individual members were not allowed to leave an aggregate because this could have a very 

negative effect on the aggregate's ability to survive (which may depend on all its members), 

particularly when the aggregate is larger in size, where a single mutation may cause a 

member to leave. This is less of an issue in biological multicellular organisms which 

normally share the same genes and thus, members are less likely to behave in a way that does 

not contribute to the greater organism's benefit, however, for aggregates such as 

Dictyostelium there is a definite need to 'police' members that do not act in the aggregate's 

best interests. In fact, it is believed that the presence of such elements may be a serious 

problem for even simple forms of cooperation unless mechanisms for controlling it exist 

[226].

8.2.6 New mutation: mutate capacity
In addition to the new mutations that were described in the aggregate reproduction section, 

another mutation type has been added and affects both critters and aggregates during 

reproduction.

'Mutate C a p a c ity this mutation switches the action capacity of the critter or aggregate: 6% 

per action (i.e. if a critter does not have the capacity for an action, this mutation restores it -  

and vice versa). This mutation also affects the critter's or aggregate’s metabolic rate.

8.2.7 Aggregate monitor unit
An additional sensor, the aggregate monitor unit, has been added to all critter modules (but 

not to the control network). This unit receives a signal if the critter is a part of an aggregate; 

the intensity of the signal is proportionate to the aggregate's size. Indeed, it is reasonable to 

assume that an individual cell must be able to tell whether it is within an aggregate and 

receive additional useful information for it to be able to function properly in this environment 

(for example, members of a Dictyostelium aggregate receive positional information in order 

to generate a prestalk-prespore pattern [112]).
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8.2.8 The methodology behind these additions
In the course of the various investigations that were conducted using Mosaic World, it 

became obvious that Mosaic World’s extensive model of evolutionary agents in a complex 

environment poses many challenges related to those faced by primitive unicellular organisms. 

Therefore, this version of the model aims to improve on the metaphor, and attempts to 

simulate the cellular environment: the critters represent unicellular organisms and the 

aggregates represent multicellular organisms. Accordingly, the controlling neural networks 

within each critter can be viewed more as abstractions of gene regulatory networks in a cell, 

and the receptors can be viewed as cells receptors (instead of biological cone photoreceptors 

in an eye). Indeed, as the rest of the chapter demonstrates, the behaviours that result from the 

interactions between critters, and the higher level they form, the aggregate, bears a strong 

similarity to behaviours seen in nature.

Certain environmental features (specifically, multiple illuminants) are unnecessary and are 

thus disregarded in this particular study. It is also important to separate the modelled 

phenomena from the algorithms used to model it; specifically, the controlling neural 

networks within each critter are used as a learning mechanism and are not intended to 

represent biology (as unicellular organisms do not contain neural networks).

Biological relevance: by emulating specific conditions theorised to have affected the 

emergence of multicellular life in nature, the expansion of the model enables to directly 

examine several biological theories. As the results section demonstrates, these additions to 

the model are clearly biologically relevant. In addition, by showing that simulated aggregates 

that are formed of several different critters, each specialised in certain functions, are a 

successful alternative to simulated critters, it can be argued that cooperative distributed 

specialised systems are a useful alternative to standard non-modular systems.

Level: the version of the model described in this chapter contains a new level and consists 

now of: genes (level 1), neurons and receptors (level 2), modules (level 3), control networks 

and critters (level 4), aggregates (level 5), population and species (level 6). The model 

presented in this chapter is the full version of Mosaic World, thus, it can be used to explore 

many different complex interactions. This type of model can be used to gain a better 

understanding of a modelled phenomenon. For example, in this chapter it will be shown how 

incorporating aggregation into the model affects all levels of the model, and more so, how 

these various effects provide insight into the nature of the modelled phenomena that normally 

may not be apparent.
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Generality: although the changes to the model were incorporated in order to address specific 

questions about aggregations, multicellular organisms and differentiation, the model can still 

be considered to be a general model.

Abstraction: all changes in this chapter are related to the critter model and aim to emulate 

the biological features of aggregation and differentiation. These changes can be said to 

abstract the target phenomena to a large degree. Some assumptions have been made, for 

example, in assigning specific metabolic rates for action capacities; primarily because 

modelling this at greater detail (and more accurately) would be impossible, as the critter 

model is vastly simpler than its biological counterpart.

Accuracy: generally, the changes to the model are biologically accurate. However, as 

mentioned in the previous item, the changes to the critter model simplify reality to some 

extent, thus, are inaccurate to a degree. Specifically:

• The aggregation feature generally captures the biological phenomenon of aggregation; 

however, clearly its implementation is greatly simplified.

• The accidental aggregation feature aims to model multicellular life that occurred through 

cell division accompanied by adhesion (specifically, the biological mutation that 

prevented offspring cells from separating [33]). The general concept is accurately 

modelled; however, the probabilities used in this work are not based on biology.

• The aggregation by choice feature aims to model the concept of multicellular life through 

aggregation. This feature correctly captures the general idea of aggregation, but is 

otherwise not biologically accurate.

• The relative metabolic costs assigned for each cell type are not based on biological 

constants which would have been impossible to apply in a model so different from 

biology. However, the general concept is correctly modelled.

Match: as the result section shows, all three hypotheses that have been suggested to affect 

the emergence of multicellularity, and the behaviours and characteristics of evolved 

aggregates and ecologies, bear a striking similarity to the real world. Therefore, it can be said 

that the model behaves like the target phenomena

8.3 Experiments
In order to be able to investigate the interactions between aggregates and critters, and the 

interactions between critters within a formed aggregate, it became necessary to discover the 

conditions that lead to aggregate formation. Interestingly, as briefly mentioned before, this



8.3 Experiments 200

study mirrors the biological search for the origins of multicellularity. Consequently, five 

experiments were run with the aims of:

(i) Obtaining relevant data regarding the interaction between individual critters that 

leads to the formation of aggregates, as well as the effect predator aggregates have on 

this process (which is another type of interaction between critters and aggregates). 

This data will directly test existing theories for the emergence of multicellularity in 

nature.

(ii) Examining the interactions within evolved aggregates that make aggregation feasible 

-  and determine whether the evolved aggregates share characteristics common to 

natural multicellular systems (i.e. differentiation).

(iii) Analysing the evolved ecosystems and discerning whether there is any consistent 

correspondence between the structure of the aggregate and its ecosystem.

In each experiment, the environmental conditions are set to emulate conditions suggested to 

have affected one of three different hypotheses regarding the emergence of multicellularity. 

The data collected measures the percentage of runs in which aggregation occurred. In 

addition, a representative aggregate is taken from all runs (where applicable) and its genome 

analysed; this data, together with the population statistics is used to characterise the type of 

ecosystem that was evolved. Behavioural analysis of aggregates is done by presenting the 

selected aggregates to 500 random surfaces at two levels of consumption ('full' and 'eaten') 

while recording their actions; this enables characterising the behaviour of members of the 

aggregate and understanding the task they perform.

All experiments require a random population of evolving individual critters to be placed in a 

test world, and end after 400,000 time steps. Once finished, the critter population is stored 

and analysed. Each experiment is repeated at least 10 times.

The examined hypotheses are:

• Hypothesis 1: predation is a sufficient condition to cause the emergence of 

multicellularity [217].

• Hypothesis 2: accidental aggregation, without any explicit immediate advantages, is a 

sufficient condition to cause the emergence of multicellularity [33].

• Hypothesis 3: member differentiation is important to multicellular organisms [173].

Experiments 1-3 examine hypothesis 1 by attempting to discern what aspect influences 

multicellularity: the ability to prey or the actual presence of predators. In all runs, the 

aggregation mode is ‘aggregation by choice’. Experiment 4 examines hypothesis 2 by
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attempting to determine whether random occurrence of aggregation without any immediate 

advantages is enough to initiate multicellularity without any guiding selection pressure. 

Experiment 5 examines hypothesis 3 by attempting to discover how crucial the presence of 

differentiation is for multicellularity to occur.

Experiment 1: ‘predation’ is disabled -  aggregates must be herbivores.

Experiment 2: ‘predation’ is disabled -  aggregates must be herbivores, however, every 1000 

time steps, 7 sterile predators are placed in the population. These predators cannot reproduce, 

split, or consume surfaces, and die unless they can catch prey. Furthermore, they are very 

small (size 2), and so can only eat critters but not other aggregates.

Experiment 3: ‘predation’ is enabled -  evolved aggregates may prey on organisms. 

Experiment 4: the aggregation mode is set to ‘accidental aggregation’. ‘Predation’ is 

disabled so it would not affect aggregation.

Experiment 5: the ability of aggregates to evolve the capacities for different behaviours is 

turned off; in other words, the aggregates’ differentiation is disabled -  they are always 

capable of performing all actions. A secondary effect of this condition is that evolved 

aggregates have multiple redundancies of all behavioural capacities, consequently, a very 

high metabolic rate. The aggregation mode is set to ‘aggregation by choice’, and ‘predation’ 

is enabled (to encourage multicellularity).

8.4 Results
Table 8.1 shows the percentage of runs that evolved aggregates for every experiment. As the 

data shows, preventing evolution of predators when critters ‘choose’ to aggregate, results in 

no aggregates evolving (exp. 1). However, the presence of predators is enough to encourage 

some aggregate formation (exp. 2). When predators can be evolved, aggregates form very 

frequently (exp. 3). Furthermore, accidental aggregation is sufficient to cause aggregation 

quite frequently even when predators cannot evolve and there is no immediate advantage of 

aggregation. Finally, although differentiation is disabled, multicellularity still occurred 

according to exp. 5, albeit less frequently than when differentiation is enabled (exp. 3).

Table 8.1. Percentage of runs that evolved aggregates for every experiment

# Experiment % of Runs with 
Aggregates

1 Aggregation by choice, predation disabled 0.00%
2 Aggregation by choice, predation disabled, sterile predators present 30.00%
3 Aggregation by choice, predation enabled 76.92%
4 Accidental aggregation, predation disabled 60.00%
5 Aggregation by choice, predation enabled, differentiation disabled 60.00%
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When the stored populations and representative aggregates are analysed, it becomes apparent 

that there are recurring patterns: Three types of aggregates and four types of ecosystems 

consistently appear. A description of these with details of a run that exemplified them is listed 

in fig. 8.5.

Types of aggregates:
• Herbivore: an aggregate that consumes surfaces and cannot prey.
• Carnivore: an aggregate that survives on prey (but may occasionally consume 

surfaces).
• ‘Coral’ Carnivore: a carnivore that cannot move and only eats prey that moves into 

its area.

Types of ecosystems:
• Herbivorous Aggregates: this ecosystem is dominated by herbivorous aggregates -  

there are few or no unaggregated critters. E.g. exp. 3, run 5: total of 248 herbivorous 
aggregates, 16 critters.

• Coexistence - Herbivorous Aggregates and Critters: this ecosystem contains stable 
amounts of herbivorous aggregates and unaggregated critters. E.g. exp. 4, run 4: total 
of 20 herbivorous aggregates, 227 critters.

• Predator/Prey: this ecosystem contains stable amounts of carnivorous aggregates and 
unaggregated critters. E.g. exp 3, run 11: total o f 45 carnivorous aggregates, 158 
critters.

• Predator (‘Corals’)/Prey: this ecosystem contains stable amounts of ‘coral’ 
carnivorous aggregates and unaggregated critters. E.g. exp 3, run 2: 280 ‘coral’ 
carnivorous aggregates, 149 critters.

Fig. 8.5: Types of aggregates and ecosystems that were repeatedly evolved during the 

experiments

Since the number of shapes and structures the aggregates evolved was large, 4 sample 

aggregates were picked for close analysis (fig. 8.6). Aggregates A,B,C were taken from exp. 

2-4. Aggregate D was taken from exp. 5, and was picked in order to demonstrate the effects 

o f limiting explicit differentiation.

Aggregate A: this aggregate was taken from a ‘predator/prey’ ecosystem. It consists of 6 

members and possesses a metabolic rate of 270 units. Member 3 performs all actions: it is 

able to consume surfaces, move/turn, and participate in decisions for reproduction, predation, 

splitting. Member 5 is able to consume surfaces and participates in decisions for 

reproduction and predation. Members 2 and 4 do not perform any task, but participate in 

decisions for splitting. Members 1 and 6 do not perform any task, and thus, can be considered 

as ‘fat cells’. Although this aggregate is also capable of consuming surfaces, based on its 

capability to act as a predator and its originating ecosystem, this aggregate can be defined as a 

carnivore with a relatively unoptimised division of tasks.
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Fig. 8.6: Four representative aggregates. Note: every member has an orientation (the 

white line).

Aggregate B: this aggregate was taken from an ‘herbivorous aggregates’ ecosystem. It 

consists of 6 members and possesses a metabolic rate of 210 units. Member 3 is able to 

consume surfaces, and move/turn. Member 5 is able to consume surfaces and participates in 

decisions for splitting. Member 6 is able to consume surfaces, participates in decisions for 

splitting, and controls reproduction (is the only decision maker). Members 1, 2 and 4 do not 

perform any task (‘fat cells’). Based on its behaviour and ecosystem, this aggregate can be 

defined as an herbivore with a relatively optimised division of tasks.

Aggregate C: this aggregate was taken from a ‘coral predator/prey’ ecosystem. It consists of 

3 members and possesses a metabolic rate of 90 units. Member 1 controls reproduction. 

Member 3 determines when to prey (actively try to catch prey). Member 2 does not perform 

any task (‘fat cell’). As this aggregate cannot move, has a perfect division of tasks, and a 

metabolic rate lower than an ordinary critter’s, it can be said to be a coral predator -  and one 

which is very well adapted to its environment (highly optimised).

Aggregate D: this aggregate evolved in an environment where explicit differentiation was
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disabled (exp. 5), and was taken from a ‘predator/prey’ ecosystem. It consists of 9 members 

and possesses a metabolic rate of 1170 units. Member 5 performs all actions: it is able to 

consume surfaces, move/turn, and participate in decisions for reproduction, predation, 

splitting. Member 1 is able to consume surfaces and turn (but not move), and participates in 

decisions for predation and reproduction. Members 2 and 6 can consume surfaces and 

participates in decisions for predation and reproduction. Members 3, 4, 7, 8 and 9 can 

consume surfaces and participate in decisions for predation.

Based on the aggregate’s capabilities and ecosystem, it can be defined as a carnivore -  and 

one which is, unsurprisingly, very inefficient in terms of metabolism; although some division 

of tasks has occurred, there is still a great deal of redundancy in the aggregate’s member 

behaviours. Interestingly, one member affects movement and turning and another can only 

affect turning: this would normally never take place, as the same action capacity controls both 

-  but apparently was able to evolve in this run because this division of labour occurred 

implicitly.

Table 8.2 shows the average size of aggregates per type of ecosystem using the definitions of 

fig. 8.5. It seems that the type of ecosystem greatly affects the size of the aggregate: 

carnivores are significantly larger than herbivores and ‘coral’ carnivores. In addition, 

herbivorous aggregates that coexist with critters are larger than herbivorous aggregates that 

reside in an ecosystem unpopulated with critters.

Table 8.2. Average size of aggregate per type of ecosystem (classified using fig. 8.5)

Type of Ecosystem Ave. Size of Aggregate
Herbivorous Aggregates 2.22
Coexistence: Herbivorous Aggregates and Critters 3.04
Predator/Prey 5.64
Predator/Prey (‘Corals’) 2.06

8.5 Discussion
After analysing the results, it is possible to draw several conclusions with regards to the three 

hypotheses. First, regarding hypothesis 1, it is clear that when there is no threat of predators 

and the aggregation mode is ‘aggregation by choice’, there is not enough selection pressure 

for critters to interact and form aggregates -  individual critters are more adequate as they 

need less energy and can more easily reproduce. However, the threat of predation is enough 

to cause critter aggregation, primarily in order to gain protection from predation, but possibly 

also to obtain a new energy source: prey.
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With regards to hypothesis 2, it is clear that leaving aggregation to random chance by 

enabling ‘accidental aggregation’ is sufficient to induce multicellularity: although at first 

aggregates are inefficient in comparison to critters as there are no advantages to this state, and 

furthermore, considerable challenges of member coordination must be overcome, eventually 

evolution learns to exploit the benefits multicellularity offers and overcome the difficulties.

Finally, with regards to hypothesis 3, in runs where the aggregates could not differentiate, the 

percentage of multicellularity was somewhat lower, supporting the notion that differentiation 

is important. More so, of particular interest is the fact that evolution found a way to implicitly 

differentiate: although the aggregated members had the capacity to perform all behaviours, 

and the aggregate ‘pa id’ the metabolic rate cost fo r  these capabilities, most members still 

chose not to perform certain tasks (e.g., members 3,4,7,8 and 9 in aggregate D in fig. 8.6 do 

not, rather than cannot, move, turn, and participate in decisions for reproduction and 

splitting). This result clearly supports the idea that differentiation is a major benefit for 

aggregation: both because a differentiated aggregate is more optimised, and also because it is 

much more difficult to coordinate members with multiple behaviours (e.g. movement, 

turning).

In addition, even from only viewing the 4 representative aggregates, it is possible to state that 

many shapes and specialisations were evolved, ranging from complete redundancy to a 

perfect division of labour. A common pattern was to evolve several ‘eater’ members (as each 

member eats independently), a single ‘mover’ member (to minimise coordination issues), and 

several prey/reproduce/split members (allows several critters to affect the overall behaviour 

of the aggregate - e.g. fig. 8.6, A, B). Also, members without any capabilities were often 

evolved and were apparently used as ‘fat cells’; their only purpose was to grant the aggregate 

a larger maximum health capacity.

Of particular relevance is that there was a consistency in the various types of evolved 

ecosystems. Furthermore, different types of aggregates appear to require different structures 

(indicated by the consistency in average size). This is unsurprising: herbivores eat often while 

carnivores have to catch their prey so are not likely to eat as frequently, thus, require larger 

energy storage. Another explanation is the predation ability: larger predators can eat more 

types of organisms, and are harder to eat. Likewise, the emergence of ‘coral’ carnivores was 

intriguing: in these ecosystems, there were enough critters that ‘corals’ would rarely starve 

and had no need to move. As ‘corals’ reproduced in the vicinity of their parent, reef-like 

structures consistently emerged.
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To conclude, the described results indicate that aggregation can occur from two different 

reasons: first, in order to avoid a potentially lethal interaction with a higher organism such as 

a hunting predator, critters will interact and form aggregates. Second, in order to benefit from 

a useful interaction between internal members, critters will interact and form a differentiated 

aggregate. Although not explicitly studied, the ability to benefit from a new food source, 

prey, may be another motivation for critters to interact and form aggregates.

The system described here has investigated perhaps the earliest, most primitive form of 

multicellularity using the notions of aggregation for growth and fission for reproduction. This 

can be seen as analogous to the hypothesised symbiosis that resulted in mitochondria 

becoming incorporated into modem cells [138]. Multicellular organisms comprising more 

complex cells are capable of developmental growth via mitosis and differentiation, and 

reproduction via a specialised gamete cell, resulting in all cells sharing identical genes and 

thus all genes benefiting from the collaboration. This work can be seen as the first 

evolutionary step towards this ultimate form of multicellularity.

8.6 Aggregation and the rest of the model
In this section it is demonstrated how the addition of aggregation affects all levels of the 

model, and how this effect provide insights into the modelled phenomenon and enables 

gaining a more complete understanding of it. For this purpose, a single aggregate has been 

picked and was analysed in brief from the perspective of every level. This aggregate was 

exposed to 500 different surfaces under several different conditions and its behaviour, 

specifically of its constituent members and their underlying control networks/activated 

modules, was noted down. The conditions were (i) full (uneaten) surfaces, randomly picked 

from the test world (ii) very positive surfaces, randomly picked from the available potent 

surfaces in the test world (resource value>30) (iii) very negative surfaces, randomly picked 

from the available lethal surfaces in the test world (resource value<-30) (iv) Only hole 

surfaces (v-xi) full surfaces, when health level is set to 0%, 10%, 30%, 50%, 70%, 90%, 

100%. In addition, the individual members of its population were analysed.

Table 8.3. Analysis of the population the selected aggregate

Type Number of individuals Percentage of population
Critters 28 19.31%
Aggregates (size 2) 1 0.6%
Aggregates (size 3) 74 51.03%
Aggregates (size 4) 6 4.13%
Aggregates (size 5) 27 18.62%
Aggregates (size 6) 10 6.89%
Aggregates (size 7) 1 0.6%



8.6 Aggregation and the rest o f the model 207

Species (level 6):

Speciation is the process by which two new species are formed from a single species [23]. 

Two organisms are recognised as being of the same species if they could, at least in principle, 

breed together in nature and this would produce a fertile offspring. That said, this definition is 

not really used by biologists as a way of recognising a species because it requires too much 

time and resources which are not available -  and it is also problematic when asexual 

reproduction is considered [23]. One of the ways in which species are classified is character 

based, that is, an organism is a member of a species if it possesses a specific observable 

characters or combination of characters regardless of the origin of these characters [18].

Using the above definition and picking ‘size of aggregate’ as a defining character, the 

population of the selected aggregate was analysed (table 8.3); the goal was to see whether 

speciation took place within this population as a result of the addition of aggregation.

This table does not state there are 7 different species within the population -  obviously 

individual aggregates do not qualify as species, but rather intended to demonstrate the natural 

variation within this evolving population. That said, it is also possible that more species are 

present in the population based on other parameters (such as number of modules of members, 

specific shape of aggregate, or the presence of certain genes). Furthermore, other characters 

for species’ classification that relate to aggregation are noticeable (e.g. ecological behaviour: 

carnivores and herbivores, ability to aggregate: aggregates and critters). Consequently, it is 

possible to argue that speciation took place within this population because of the 

incorporation of aggregation.

Aggregates (level 5)

After analysing the behaviours of each member under the conditions described in the 

analysis, it is possible to assign ‘roles’ for every member (see fig. 8.7). Member E is the brain 

of the aggregate and also is its reproductive unit: it controls reproduction, movement and 

turning, and controls behaviours for different health levels (see next item). Furthermore, by 

determining when to move, it effectively controls the decision of consumption for the entire 

aggregate (despite not eating anything itself). Member C is an eater/predator unit: it always 

attempts to consume surfaces and prey on critters. Member B is an eater unit as well. 

Members A, D and F are 'fat cells' -  they only store energy and do not fulfil any other 

function.

Control network and modules (levels 4 and 3)

An analysis of functional modules of all members discovered that only members E and C 

utilise more than a single functional module. Naturally, these two members also exhibit the
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most sophisticated behaviours. Both control networks of members E and C break the stimuli 

according to whether an empty (eaten) or a full (uneaten) surface is viewed: in exactly the 

same manner as the evolved critters in chapter 7.

Module 0 (a ll stimuli excep t holes and edges) 
Consumption 
Predation

None ( Fat Cell )

MpdMle 1 (all $l;imuli) 
Consumption 
Predation

None ( Fat Cell )Consumption

Module 0 (full surfaces, except holes and edges) 
Decision for consumption (through m ovem ent) 
Reproduction
Behavioural s tra teg ies for all levels of health

Modgle 1 (al[ stlmulL.Lnc!udin.q holes and edges) 
M ovem ent/turning

None ( Fat Cell )

Fig. 8.7: An analysis of the roles of every member of the selected aggregate, its control 

network and subordinate modules

Table 8.4. The percentage of stimuli that causes member E’s control network to activate 

module 0; broken down according to the stimuli type

Stimuli types Percentage of stimuli that cause activation of module 0
Positive 56.20%
Random 69.00%
Negative 88.60%

When evaluating how member E’s responsibilities are divided between its modules, it 

appears that member E’s module 0 determines when to consume surfaces and how to behave 

in various levels of health, whereas module 1 controls all aspects of movement and turning 

(and how to avoid edges and holes). Furthermore, as table 8.4 demonstrates, it appears that 

the control network of member E is much more likely to assign negative surfaces than 

positive surfaces to module 0. Based on this behaviour, it seems that the aim is to minimise 

consumption of negative surfaces by assigning them to the 'specialist' o f consumption, which 

is module 0 -  thus, its activation is much higher when there are more negative surfaces than 

when there are positive or random surfaces.



8.6 Aggregation and the rest o f the model 209

Table 8.5. Member E unit 0’s behaviour under various health levels, specifically, the 

number of times the reproduction and movement output units were activated in 

response to the test stimuli

Health level Number of stimuli that caused 
the module to move

Number of stimuli that caused 
the module to reproduce

0% 363 0
10% 354 0
30% 292 0
50% 107 0
70% 9 0
90% 0 23
100% 0 89

Both of member C’s modules appeared to display similar behaviours -  there did not seem to 

be any particular situation where the control network showed a preference to one module or 

the other; thus, it is possible the process of specialisation is still incomplete in this case.

Interestingly, neither member C nor E has the full repertoire of behaviours possessed by the 

evolved critters in chapter 7, presumably because each of these is only a member of an 

aggregate, and accordingly possesses only a subset of its behaviours.

Another interesting observation is the fact that none of the modules appeared to be sensitive 

to the aggregate’s health level except for member E’s module 0. According to this analysis, it 

appears that the same behavioural strategy that is described in chapter 6 is also exhibited by 

the selected aggregate and is controlled by member E, module 0. As table 8.5 indicates, when 

the aggregate’s health is low, the module never initiates reproduction, but many types of 

stimuli cause it to initiate movement. However, once the aggregate’s health increases, fewer 

types of stimuli cause it to initiate movement, and at one point (when the health is 70%) it 

stops the movement and begins to initiate reproduction. As the health further increases, so do 

the occurrences of reproduction. Thus, this behavioural strategy appears to be advantageous 

for aggregates as well as critters.

Receptors (level 2)

Since member E is the sole member which makes behavioural decisions for the aggregate, 

only its visual system is analysed (fig. 8.8). The control network of member E has 2 

receptors, both insensitive (wide) and peak at the long wavelengths. Module 0, which 

controls consumption decisions, has 5 very sensitive receptors (appropriate for surface 

classification), yet none of them peak in the long wavelengths (600nm+). However, this 

region of the spectrum appears to be well covered by the visual system of the control 

network. Thus, similarly to the analysed critters in section 7.7, the visual systems of the
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control network and module 0 appear to be working in sync; the control network evaluates 

the dangerous elements of the stimuli: if the surface is estimated to be dangerous (rich in very 

negative wavelengths), module 0 is activated -  this is evident by the fact that the control 

network is more likely to transfer stimuli to module 0 that are negative (see table 8.4). 

Because module 0 specialises in short and medium wavelengths, it can apparently estimate 

whether the surface possesses enough positive wavelengths to warrant consumption, thus, it 

is able to provide a better estimate of whether the surface should be consumed or not. Note 

that the behaviour here is comparable, yet different, to the behaviour exhibited by the critters 

in section 7.7, where the control network activates the module in charge of consumption 

when the surfaces are estimated to be positive rather than negative.

In addition, the fact that all the receptors module 1 possesses are very insensitive suggests 

that it is indifferent to the colour of stimuli (similarly to the modules in section 7.7 that 

control movement); however, since 3 receptors are certainly sufficient for colour vision, this 

may not necessarily be the case.

Control Module
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Fig. 8.8: The receptors of the control network and modules 0 and 1 of member E 

Genes (level 1)

Unsurprisingly, enabling aggregation makes a large difference with regards to the genes. The 

average genome size of critters is 4,794 bytes in the analysed population, whereas the average 

genome size of aggregates in the analysed population is 17,944 bytes.
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Although this specific example combines aspects of multiple domains (multicellularity with 

vision and behaviour), and is thus somewhat contrived, it serves to illustrate how both lower 

and higher levels of the model interact in a way that is useful towards gaining a 

comprehensive understanding of the studied phenomenon. In this specific example, the study 

of the visual layer (level 2) of all modules is necessary towards understanding the behaviour 

of the control network (level 4), and understanding its part in the critter and the overall 

aggregate. Additionally, this example further demonstrates the notion that 

differentiation/specialisation occurs across all levels. Therefore, to abstract away some of 

these details would be ill advised, as the complex interactions that occur in the target must be 

present in the model as well.

8.7 Part II: the evolution of form
The previous study investigated a primitive form of multicellularity that is formed through 

aggregation and reproduces through budding. It can be argued that Mosaic World’s 

aggregates parallel many characteristics of both dictyostelium and cyanobacteria (which were 

mentioned in sections 8.1, 8.2.2, 8.2.5 and 8.2.7). In the following section, this work is 

extended by allowing the aggregates to follow a similar evolutionary path that cyanobacteria 

followed on primordial Earth, and giving them the ability to alter their shape and grow 

protective shell structures.

Cyanobacteria, also known as blue-green algae, are photosynthetic bacteria that possess an 

evolutionary history of about 3,500 million years [239]; indeed, microfossils of filamentous 

cyanobacteria are considered the most ancient fossils [98, 200]. Cyanobacteria appear as 

unicellular organisms, as filaments or in colonies. The colonies of cyanobacteria take the 

form of microbial mats, dense communities of multilayered, entangled filamentous 

cyanobacteria, which can be found in many different environments [239], An essential 

property for microbial mats is that cyanobacteria are able to move internally: this is 

accomplished through gliding (“self-propulsion along a surface”); cyanobacteria continuously 

position themselves within the microbial mat in order to find optimal conditions, i.e. move 

towards or away from the light [239]. Some cyanobacterial float on water (e.g. in marshes); 

consequently, these mats are mobile [186].

In some conditions, microbial mats build rock-like structures. Stromatolites, which are widely 

researched, are formed through the accumulation of many layers, each created by the 

precipitation of minerals by the bacteria, primarily calcite, and/or through the trapping and 

binding of sediment grains [57, 239]. Additional structures are thrombolites which are created 

in a similar manner, however, unlike stromatolites, which have an internal laminated
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structure, thrombolites have an internal clotted structure and are primarily formed through 

calcification [102] and oncolites, which are like small mobile stromatolites: they grow around 

a part of a detached microbial mat and are moved by tidal action [52, 179].

Many stromatolites are formed through calcification [239], but stromatolites can also be 

formed through silica precipitation [174], silica and iron precipitation [175], dolomite or 

celestite minerals [195]. The process of lithification (turning into rock) is extremely rare and 

is not well understood [115, 239]; however, it is known to be mostly under biological control 

by the cyanobacteria [239]. The bacteria may enhance, inhibit or passively witness the 

lithification process [57]. The lithification process and the growth of stromatolites are 

dependent on certain environmental parameters [10]. For example, in order for the mats to 

precipitate iron, there need to be sufficient amounts of it in the environment [175]. 

Furthermore, the growth, shape and size of stromatolites depend on the interactions between 

the microbial mat and the environment [57, 115]. Environmental aspects that affect 

morphology are salinity, supply of nutrients, the turbulence of the environment, sediment 

grain size, and saturation of calcium carbonate [57]. Although it is argued by some that the 

environment is the only parameter that affects the crystal shape [62], others believe that 

certain types of cyanobacteria grow specific morphologies (e.g. cup shaped forms) and that 

these shapes are under direct biological control [57, 62].

Stromatolites have been mainly formed during Precambrian times; indeed, stromatolites that 

date 3,500 million years have been found [239]. Although very rare, there are also few places 

on modem Earth where stromatolites continue growing; some are very similar to fossil 

stromatolites [239]. It is believed that the lack of grazing organisms is the reason 

stromatolites were primarily formed in ancient times and not today, as the presence of grazing 

organisms (e.g. nematodes, crabs and fish) can affect the diversity of the microbial mats 

[115]. This is supported by the fact there was a sharp drop in their number in the beginning of 

the Cambrian believed to be linked to the rise of the metazoan (a group of multicellular 

organisms) which appeared at the same time [115], and also by the fact that contemporary 

stromatolites normally grow in environments which grazers cannot or rarely reach [239]. It is 

also believed that the greater alkalinity of the ancient marine environments is another reason 

for their greater numbers at the time, as cyanobacterial mats are very often found in hot 

springs or other areas with alkaline conditions [239].

The morphology of stromatolites may be potentially explained by several elements. It was 

suggested that the morphology of the microbial mat (and thus, of the formed stromatolites) is 

an attempt to optimise access to solar energy [57]. An additional explanation may be gaining
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protection from an environmental hazard: because in primordial times the ozone layer has not 

been formed yet, the environment was exposed to high intensity UV radiation [175]. This is 

very dangerous to bacteria in shallow water environments (such as cyanobacteria) as they are 

particularly vulnerable to the harmful UV radiation (which does not reach deep water) [174]. 

Interestingly, it was demonstrated that cyanobacteria that reside in contemporary 

stromatolites that were encrusted with silica are protected to a considerable degree from UV 

radiation [174]. Furthermore, it was shown that cyanobacteria that mineralise iron and silica 

have a high resistance to UV light in comparison to non-mineralised cyanobacteria; thus, by 

precipitating iron and silica, ancient bacteria gained an effective UV shield [175]. Finally, 

some cyanobacteria microbial mats that grow stromatolites are able to colonise areas which 

are normally inhospitable (such as gypsum crystals). Such mats precipitate dolomite or 

celestite minerals as a by product of the adaptation that enables them to survive in such 

environments [195].

Thrombolites appeared much later in time than stromatolites, in the early Cambrian period. It 

has been suggested that the appearance of heavily calcified cyanobacteria and thrombolites is 

an evolutionary adaptation meant to protect cyanobacteria against grazing and burrowing 

organisms which appeared at the same time [102].

This section describes the second study in this chapter, which was conducted in order to 

examine the effect of environmental change on aggregates capable of altering their shape and 

growing protective structures around themselves. By adding a new type of environment, one 

which offers new benefits but also creates new dangers, the aggregates gain an incentive to 

evolve adaptations that enable them to utilise the new environment while overcoming the 

dangers. It is believed that enabling aggregates to control their shape will allow them to 

evolve shapes advantageous for life in Mosaic World: this work will examine the nature of 

these adaptations. In addition, this work continues the previous investigation into the 

beginning of development: if the aggregates are able to evolve specific shapes and/or build 

protective structures of specific shapes for a specific purpose (in this case, gain protection 

from an environmental hazard while gaining benefits of this new environment), it can be said 

that this work achieves a third primary process of development: morphogenesis, the process 

which enables development to accurately control the form of an organism using cell 

movement for a specific purpose, in addition to two primary processes which were evolved in 

the previous work: differentiation and growth [117]. Finally, this work continues the 

investigation of complex interactions of the first part, by examining the effect of 

environmental change on the evolved shapes and strategies of shell growth of the aggregates. 

For these purposes, several new features have been added to Mosaic World.
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8.8 Additions to the model
The following changes introduce a new type of environment to Mosaic World, one that 

provides new benefits but also new dangers. In addition, new abilities are given to the 

aggregates; these mirror the ability of colonies of cyanobacteria to grow protective structures 

and determine their shape.

Two new interactions are added to the table in figure 8.2:

• critter—̂ aggregate: a member with the evolved capacity now has the ability to move 

within an aggregate. The result is that the aggregate’s shape is altered.

• critter—► aggregate: a member with the evolved capacity now has the ability to grow 

protective shells. The result is that the aggregate possesses new benefits but also new 

costs.

8.8.1 New environment
Until now, no assumptions were made regarding the nature of the surface matrix, other than 

the fact it is modelled after a natural visual environment. Therefore, there is no reason not to 

be able to expand the metaphor, and assume the critters and aggregates have always inhabited 

a type of aquatic environment: deep water. In this section, a new environment type is added: 

shallow water. Critters and aggregates may move between deep and shallow water as they 

please, however, unless they have some form of protection from UV radiation, they are very 

likely to perish quickly (this is analogous to the scenario described in [174]). Nonetheless, the 

risk is accompanied with advantages: as a new and unutilised environment, shallow water 

offers more potent nourishment than deep water. Consequently:

• In shallow water, positive surfaces provide 20% more energy than they would in deep 

water.

• In shallow water, the metabolic costs paid every time step by critters and aggregates are 

400% of the standard costs to reflect the damaging effect of UV, the new environmental 

hazard, on metabolism.

From a visual perspective, both deep and shallow water are identical -  this was done on 

purpose in order to prevent a case where one environment is preferred based on the ability to 

visually recognise resources within them; however, in order to tell apart between deep and 

shallow water, a new type of receptor was added (shortly explained).

8.8.2 Shells: protective structures
The capacity to grow shells which serve as protective structures has been added; critters may 

evolve this capacity, which increases the metabolic cost (by a rate identical to the other
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metabolic costs) to a critter/aggregate that evolves it. However, because of the shell weight, 

only aggregates may grow shells.

In adding this feature, several goals were aimed for:

• Shells may be used as a way of protection from predators, i.e. in a fashion similar to the 

way molluscs protect their soft bodies with protective shells [85]. In addition, as stated, it 

has been suggested that thrombolites were grown to act as a protective measure against 

grazing organisms for colonies of bacteria [102].

• Shells may be used as a way of protecting an organism from UV radiation, the new 

environmental hazard. As stated, cyanobacteria that precipitate iron or silica and use 

these to grow stromatolites gain considerable protection from UV radiation [174, 175]. 

Of course, aggregates may choose to remain in deep water, which are safe from UV 

radiation (and this is true in nature as well, as meters of water block UV light).

• The disadvantages of shells in Mosaic World mirror, to some extent, those in nature. For 

example, a marine mollusc that grows shells sustains an energy cost [168].

• Because certain floating microbial mats are mobile [186] and oncolites are mobile [52, 

179], aggregates who build shells are capable of moving in Mosaic World. Although in 

nature oncolites do not control their movement, enabling aggregates who build shells to 

move is a necessary compromise: preventing some aggregates from controlling their 

movement would be too destabilising to the Mosaic World ecology as it may prevent 

predators from evolving and may thus result in aggregates rarely evolving as well.

For the purpose of shell growth, two output units were added. The first unit determines 

whether a critter wants to grow a shell, and the second determines the grown shell's width 

(measured in shell segments, 1 to 3 surfaces across). Note that ‘shell segment’ refers to a 

shell element in a specific location, and ‘shell’ refers to the entire structure the aggregate has 

grown.

• A member may grow up to 3 shell segments simultaneously: the first shell segment 

occupies the space directly in front of it, the second occupies the space diagonally to its 

left, and the third occupies the space diagonally to its right. A member may grow a shell 

segment in a space only if another member of the aggregate does not occupy it. 

Obviously, if a member turns, it can grow more shell segments in the next time step if the 

space is open.

• The aggregate pays an immediate energy cost for every shell segment it grows.

• The shell of the aggregate increases its weight, thus, potentially decrease its speed. Every 

member of the aggregate may carry up to 4 shell segments (not necessarily grown by it)
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without any effect on the aggregate. However, every additional shell segment decreases 

the speed of the aggregate; the aggregate may continue moving at its previous speed but 

must pay an energy cost proportional to its extra weight.

• Shells enable aggregates to resist being preyed on by larger aggregates: the grown shell 

segments count towards the aggregate size when gauging whether a predator is larger 

than it is and the 75% required overlap. Similarly, the shell segments count towards the 

predator’s size when attempting to prey on other aggregates.

• Shells offer aggregates protection from UV radiation in shallow water. In Mosaic World, 

these dangers result in an increase of the metabolic costs paid by the aggregate. Adequate 

protection decreases the metabolic costs to levels lower than in deep water. An 

unprotected aggregate suffers the standard 400% metabolic costs, whereas a fully 

protected aggregate pays only 30% of the standard metabolic costs. Intermediate degrees 

of protection offer a proportionate decrease or increase in the metabolic costs (e.g., 50% 

protection would result in 215% metabolic costs).

• The offspring of an aggregate does not inherit the shell of its parent. However, it can 

grow a similar shell structure.

• A critter may not join an aggregate if a shell segment has been grown in that location.

8.8.3 New receptor types, and the shell indicator unit
Several types of receptors have been added:

• Environment detection receptor: this receptor receives a positive signal if it detects 

stimulus from a deep water surface, and no signal if it is a shallow water surface. This 

signal represents the different pressures encountered by critters and aggregates in the 

different environments (as the pressure of water is greater in deep water).

• Organism viewer receptor: this receptor does not receive signals from the surfaces, but 

instead views the transmittance of a critter if one is present in its receptive field. In 

addition, this receptor receives a signal if another aggregate’s shell is in its receptive field, 

and a different signal if its own shell is in its receptive field. This offers aggregates a 

simplified way of detecting the presence of other aggregates and shells, and was deemed 

necessary because the ability to extract the visual element of critters/aggregates and shells 

from the stimuli has proven to be too difficult to evolve in this context.

Additionally, there is a shell indicator unit for every critter and aggregate member that

receives a signal proportionate to the number of shells the member has grown.

8.8.4 Member migration
All members of an aggregate may migrate within it: this enables an aggregate to change its
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morphology. A member may move up, down, left or right as long as: (a) the space is 

unoccupied (b) it is still connected to the aggregate in its new location and (c) this move does 

not split the aggregate to two separate parts. This feature parallels the required ability of 

cyanobacteria to move within a microbial mat [239].

Member migration may cause shells to be left unattached: when a shell is attached to another 

shell, it stays with the aggregate -  otherwise, it is removed.

8.8.5 The methodology behind these additions
Biological relevance: the additions to the model described in this section grant aggregates 

the ability to alter their shape in real time and grow protective shells. As the results show, 

these additions are clearly biologically relevant as they enable investigating both the effect of 

environmental change on the evolved shape and function, and also an important 

developmental principle: morphogenesis, by examining what shapes the aggregates evolve 

and how these shapes are controlled.

Level: the additions to the model described in this section do not affect this parameter. 

Generality: the additions to the model do change the fact the model is general.

Abstraction: the added changes can be said to be abstract in nature.

• New environment/dangers: the addition of shallow water and UV radiation can definitely 

be said to be abstract and not specific as no specific biological aspects are modelled, 

except for the fact that advantages are bestowed (more potent nourishment in shallow 

water) and costs are incurred (increased metabolic costs that reflect UV radiation).

• Shell growth: this addition enables aggregates to grow protective shells that are abstract 

and do not specifically model any particular biological system. As such, they can be said 

to emulates the ability of multicellular colonies (such as cyanobacterial mats) to grow 

stromatolites as well as the ability of higher organisms to grow protective shells.

• Shape alteration: these changes enable the aggregate’s members to move to new 

locations, thus, enabling the aggregate to alter its shape. These changes are more specific 

than those described in the previous two items as they specifically grant every member 

the ability to decide whether to move for its ‘own’ purposes, which is similar in concept 

to cyanobacteria moving within a microbial mat (the bacteria move to find optimal 

conditions [239]).

Accuracy: generally, the changes to the model that emulate specific biological elements can
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be said to be biologically accurate. However, the fact that most additions are abstract makes 

this item less relevant. For example, the precise advantages and disadvantages associated 

with shallow water are reminiscent of some environments in nature but since no particular 

environment has been modelled, these changes are neither biologically correct nor incorrect.

• Shell alteration: these changes aim to model certain biological elements and can be said 

to be accurate to a degree.

Match: as the result section shows, the evolved behaviours certainly resemble those 

exhibited by microbial mats in nature in terms of shape alteration and shell growth. 

Furthermore, it can be argued that the growth of stromatolites by colonies of cyanobacteria is 

among the first examples of morphogenesis in nature; therefore, the behaviour of Mosaic 

World’s aggregates is particularly reminiscent of its natural equivalent.

8.9 Experiments
The hypothesis which was investigated in the course of the experiments is:

• Significant environmental variation can affect the evolution of morphogenesis.

Three sets of experiments were run with the aim of:

(i) Examining the form of aggregates that are capable of altering their shapes: do any

specific forms affect aggregates positively?

(ii) Examining the protective structures that aggregates grow: in what manner are these

shells used? How are these shells grown?

(iii) Examining the evolved ecosystems: are there new recurring types of behaviours and

organisms?

All experiments require a random population of evolving individual critters to be placed in 

the test environment and end after 250,000 time steps. In each experiment, certain conditions 

are different (see table 8.6); these conditions examine the effect of enabling aggregates to 

change their shapes with and without the ability to grow shells. Once finished, the population 

is stored and analysed. Each experiment is repeated until at least 9 successful runs are 

collected.

Table 8.6. The three types of experiments

Experiment Aggregates can change 
their shape?

Aggregate can grow 
protective shells?

1 Yes Yes
2 No Yes
3 Yes No
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8.10 Results
In all three experiments aggregates and critters were evolved. In these runs, the evolved 

aggregates often grew shells, and occasionally changed their shape in real time; however, 

most often a static shape was used. A study of several sample aggregates from every run was 

conducted, and the evolved shapes and grown shells were analysed.

It is important to stress that this study was exceptionally difficult to accomplish because three 

stages in evolution were required: first, critters must successfully establish a thriving 

population; second, a stable species of aggregates must emerge afterwards; and third, these 

aggregates must utilise these new mechanisms (in order for them to be studied).

Morphologies

Although the ability of aggregates to change their morphologies in real time was not often 

seen by observers, clearly it has been used through the course of evolution by aggregates as is 

evident by the fact that aggregates with this ability tended to have long and diagonal shapes 

whereas previously this was not a common trait; therefore, it appears that this ability was 

used in order to increase the aggregate’s chances of survival. These recurring shapes appear 

to be a useful morphology, as an aggregate can minimise its size (thus, the need for food) 

while still covering as large an area as possible, both in terms of ability to consume surfaces 

and the ability to catch prey. This is also an advantage for an aggregate that wishes to move 

in different directions, as an aggregate cannot change its orientation (only individual 

members can). Interestingly, there were no observed differences between aggregates that 

primarily evolved to live in deep water and aggregates that exploited both deep and shallow 

water. However, since the evolved shapes appeared to be sufficient for survival, it can only 

be concluded that specific shapes (regardless of the grown shells) were not necessary for 

survival in Mosaic World’s implementation of shallow water.

Figures 8.9 and 8.10 provide examples of aggregates which can alter their shape and 

aggregates that cannot. Each of these aggregates was picked from a different run where a 

majority of aggregates evolved the same or similar forms.

An analysis of the manner in which evolved shells were used by aggregates that evolved this 

capability was performed together with a real time analysis of the aggregate’s behaviour 

within its ecosystem, revealed that there appear to be two reasons for shells to be grown by 

aggregates:
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I) Surviving in shallow water: aggregates grow shells in order to be able to avoid UV 

radiation and exploit the new niche, shallow water. This is indicated by the fact that 

in the vast majority of runs aggregates grow shells and successfully manage to 

populate both deep and shallow water.

II) Predation: in many runs the aggregates evolved both the capacity to prey on other 

organisms and the capacity to grow shells, although no critters are present in the run. 

It is clear that the aggregates prey on each other, and clearly the shells are a 

mechanism for avoiding predators as well as a mechanism for overcoming this 

defence.

Fig. 8.9: Five examples of aggregates that could alter their morphology in real time.

Fig. 8.10: Three examples of aggregates that cannot alter their morphology in real time. 

Shell growth

Shells are grown in three different ways.

• Static growth: This method of growing shells occurs when one or more members evolve 

the capacity to grow shells and grows them around their immediate area. This was the 

most frequently used mechanism.
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• Dynamic growth: this method of growing shells occurs when one or more members 

evolves the capacity to grow shells and the capacity to turn; this enables the members to 

turn and coat a large part of the aggregate with shells. This mechanism was occasionally 

used by one or more members.

• Dynamic growth with cell migration: this method of growing shells occurs when one or 

more members evolves the ability to migrate within the aggregate (change its shape) in 

addition to the capacity to grow shells and the capacity to turn: by combining movement 

with turning and growing shells, this type of mechanism enables growing relatively 

sophisticated shells. This mechanism was rarely used, probably because of the 

coordination issues involved in using three different abilities for a single purpose, and 

because these mechanisms may increase the difficulty of evolving the aggregate, for 

example, if one member controls movement/turning and another member creates shells in 

this manner, the second member can affect the aggregate’s movement by default, and will 

have to evolve additional strategies to avoid this situation.

Fig. 8.11 demonstrates some of these mechanisms using two evolved aggregates. Within 

aggregate 1, member A is able to both turn and grow shells and is thus responsible for a large 

portion of the aggregate shell while members B, C and D grow shells in their immediate area. 

Similarly, within aggregate 2, member G is able to grow shells while turning, while member I 

is only capable of growing shells in its immediate area.

C D
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Fig. 8.11: A close-up of two sample aggregates with grown shells. Aggregate 1 consists of 

members that are denoted by the letters A,B,C,D,E,F, and marked in bright green. 

Aggregate 2 consists of members that are denoted by the letters G,H,I and are marked 

in purple. The thin yellow squares around both aggregates are grown shells.

Ecosystems

The addition of the ability to grow shells (experiments 1 & 2) appears to have influenced the 

types of ecosystems that can be evolved (table 8.7). These ecosystems are mostly variations

v-5 ■Q|Q
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of the ecosystems which appear in fig. 8.5, however, new types of ecosystems were evolved 

as well, including:

• Aggregate carnivores (unarmoured): aggregates that can both consume surfaces and 

prey on other aggregates; these aggregates evolved in runs where no critters were 

evolved.

• Armoured aggregate carnivores: an armoured version of the previous aggregates.

• Armoured herbivores: an armoured version of herbivorous aggregates ecosystem.

• Armoured predators/prey: an armoured version of the predator/prey ecosystem.

• Armoured corals: predator/prey: an armoured version of the coral predator/prey 

ecosystem.

In addition, in some of the runs the aggregates do not appear to grow shells. Interestingly, 

occasionally armoured aggregates showed a preference for deep or shallow water: but mostly 

they were capable in surviving in both types of environments. Finally, it appears that 

aggregates are generally larger than in the previous set of experiments (but not always). This 

can be explained by the greater need for size in order to be able to carry the weight of the 

shells.

Table 8.7. Average size of aggregate per type of ecosystem

Type of Ecosystem Ave. Size of Aggregate
Armoured Herbivorous Aggregates 4.38
Coexistence: Armoured Herbivorous Aggregates and Critters 2.00
Armoured Aggregate Carnivores 5.32
Armoured Predator/Prey 5.86
Armoured Corals: Predator/Prey 2.43
Aggregate Carnivores (Unarmoured) 4.75

8.11 Discussion
It is interesting to note the similarities and differences between the construction of protective 

structures by cyanobacteria and the growth of protective shells by Mosaic World’s 

aggregates.

First, it appears that when a new environmental niche is created, one which provides new 

rewards, an attempt to exploit it is made despite the fact that additional difficulties are 

involved in this process, specifically, the need to obtain protection from an environmental 

hazard (UV radiation). This is true for organisms that evolve both in Mosaic World and for 

cyanobacteria in nature. Second, this attempt requires aggregates to control their shapes and 

the shape of the grown shells -  this resembles the behaviour which the model aimed to 

capture. Third, although Mosaic World’s environment is very simple when compared to the
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natural environment, evolution discovered a way of utilising the ability to change an 

aggregate’s shape to better exploit this environment; that being said, there were no 

differences observed between the shapes of aggregates that were evolved primarily for deep 

water and the shape of aggregates that were evolved for deep and shallow water. Fourth, 

although aggregates frequently grew shells, more often they grew partial shells rather than 

complete shells -  this may be explained by the need to balance the trade-off between 

management of shell construction and the rewards the shallow water environment provides. 

Finally, even though only occasionally aggregates changed shapes in real time, and no 

elaborate movements were evolved (mostly a single member moved member back and forth 

in a way that was used to consume additional surfaces), this clearly mirrors the behaviour of 

moving cyanobacteria in microbial mats: to optimise access to resources (light).

To conclude: in this study, it was shown how the environment’s interaction with the 

aggregate affects both its shape and the shape of its grown shell. Clearly, the selection 

pressures involved with the addition of a new type of resource are significant enough that 

they provided an evolutionary incentive for aggregates to evolve the mechanisms required to 

benefit from these. Even more interesting is the fact that the aggregates were able to evolve 

mechanisms for precise control of their shape and the shape of their shell structure in order to 

benefit from shallow water; for that reason, it can be said that the aggregates were able to 

exhibit another primary process of development: morphogenesis, in addition to growth and 

differentiation. Thus, the examined hypothesis can be said to be true: significant 

environmental variation can indeed affect the evolution of morphogenesis.

8.12 Complex interactions analysis
The work described in the first part of this chapter primarily deals with the interactions that 

take place between aggregates and critters and the interaction between critters within an 

aggregate. In order to examine these interactions, five experiments that exposed a critter 

population to several types of evolutionary and environmental conditions were conducted.

The results of these experiments showed that the potential interaction between predator 

aggregates and critters is sufficient to cause critters to interact and form aggregates in order to 

avoid the threat of predation. Additionally, the interactions between critters within a formed 

aggregate, which occurs through differentiation, appears to be crucial towards the aggregate 

becoming an attractive alternative to critters: this is the true because differentiation makes the 

aggregate more efficient and also because reducing capabilities makes coordination of several 

behaviours an easier task. Therefore, both these types of interactions, critter—̂ critter and 

critter—► aggregate, are crucial towards accomplishing the challenge set in the beginning of
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this chapter. These interactions take place between two different levels of the model, 

however, their effects reach all other levels as well.

The interaction(s) that takes place are in parenthesis at the end of each sentence.

1) Every critter attempts to survive -  this requires several different behaviours:

(a) Perception: the environment is perceived by the critter’s control network's receptors 

(environment—►receptor). It is important that the receptors relay relevant information 

to the control network so it could activate the appropriate module.

(b) Communication: the receptors relay this information to the control network through 

neurons (receptor—̂ neuron, neuron—►control network).

(c) Activation: the control network determines using the received stimuli which module 

to activate (control network—>module).

(d) Perception: the environment is perceived by the activated module's receptors 

(environment—►receptor). It is essential that these receptors relay information that is 

relevant towards the task the module is in charge of. In the context of the chapter's 

experiments, it is crucial that the receptors relay information regarding the presence 

of predators in order for the critters to be able to avoid them (run away). In addition, 

the receptors should inform whenever other critters that can aggregate are nearby.

(e) Control: the activated module controls the critter’s behaviour (module—►critter).

(f) Consumption: the critter may consume surfaces (critter—►environment); in this 

case, energy is transferred from the environment to the critter 

(environment—>critter).

(g) Movement: the critter may choose to move (environment—►critter).

(h) Reproduction: the critter may choose to reproduce (critter—►critter). Under the 

'accidental aggregation' scenario, this action may result in the formation of a size 2 

aggregate. The vast majority of these aggregates do not survive, as no coordinated 

behaviour of both critters has been evolved yet (frequently such aggregates fall from 

the edges or into a hole).

(i) Aggregation: under the 'aggregation by choice' scenario, a critter may choose to 

aggregate with another critter or aggregate. Although this may occasionally happen, 

the choice to aggregate by no means guarantees the survival of the new (or 

extended) aggregate (critter—►critter, critter—►aggregate).

2) Selection (to better break down the task): many critters die during stages 1-f to 1-i, 

either by consuming negative surfaces, or by falling from the edges/into a hole, or by 

running out of energy, or by reproducing when not possessing enough energy. Critters 

whose control networks have learned to break the task ideally are far more likely to 

survive than critters whose control networks break the task incorrectly or do not break
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the task at all. Thus, the advantages such control networks grant directly affect the 

selection of the genes that define them (control network—►genes)

3) Selection (to evolve appropriate behaviours and structures): the critters that survive 

are likely to have appropriate structures for their modules and also exhibit appropriate 

behaviours in various situations; thus, the advantages gained as a result cause the 

selection of the genes that define these modules (module—►genes).

4) Selection (to better compete): the critters that survive compete on resources; critters 

that are fitter are more likely to out-compete others, thus, all features which increase 

fitness affect the selection of the genes that define them (critter—►genes).

5) Selection (to aggregate): as was shown, even when predators are only occasionally 

present, there is a strong selection pressure on critters to aggregate as a way of 

overcoming the threat of predation (aggregate—►critter, critter—►genes). Once 

aggregated, the fact that these newly formed aggregates are difficult to prey on, can now 

obtain a new energy source (prey), and can differentiate (and optimise their metabolic 

rates) causes the selection of genes that prevent the aggregates from splitting 

(aggregate—►genes).

6) Reproduction: continuing (1-i), the critters that survive past steps (2)-(5) and are now 

able to reproduce are fitter than those that died (genes—►genes). Their offspring’s 

phenotype is likely to be fit as well, as affected by the selection pressure in (2)-(4).

7) In the course of evolution a stable population of critter often emerges. It is very 

important to emphasise that it is only at this moment in time that stable species of 

aggregates can emerge. Although occasionally aggregates are formed before this 

moment, they never manage to survive and continuously reproduce; to achieve this goal, 

a stable base of fit critters must be present. However, if enough selection pressure is 

present (as indicated in (5)) or if 'accidental aggregation' is enabled, eventually a stable 

species of aggregates emerges.

8) Aggregate behaviour: the average aggregate attempts to survive and exhibits the 

following behaviours through its members. During every time step, all members of the 

aggregate generate behaviours depending on their capacities:

(a) Standard behaviours: Like an ordinary critter, the member's control network 

perceives the environment (environment—►receptor) and relays this information to 

the control network (receptor—̂ neuron, neuron—►control network). The control 

network determines which module to activate (control network—►module). The 

activated module perceives the environment (environment—►receptor), and controls 

the member's behaviour (module—►critter).

(b) Consumption: a member who has the capacity to consume surfaces can attempt to 

do so; if the aggregate does not move at the moment, it succeeds
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(aggregate—environment). In this case, positive or negative energy is transferred to 

the aggregate's energy pool (environment—►aggregate).

(c) Movement: a member who has the capacity to move or turn can do so 

(environment—►aggregate); since this behaviour affects the rest of the aggregate, 

coordination of behaviours must evolve. Otherwise, for example, two members may 

push in different directions and the aggregate will not move -  certainly the aggregate 

is unlikely to survive.

(d) Reproduction: a member who has the capacity to reproduce may attempt to do so. 

Since this ability is 'democratic', the aggregate only reproduces if the majority of 

members with this capacity wish to do so simultaneously (aggregate—►aggregate).

(e) Predation: a member who has the capacity to prey may instruct the aggregate to 

attempt catching prey which could be critters and other aggregates. Since this ability 

is 'democratic', the aggregate only performs this action only if the majority of 

members with this capacity activate it (aggregate—►aggregate, aggregate—►critter).

(f) Splitting: a member may attempt to initiate splitting. Although this ability is 

'democratic', only members who evolve the ability to participate in this decision 

affect the outcome. If the majority of members wish to split, the aggregate dissolves 

and every member becomes a standard critter (aggregate—►critter). Note that most of 

these critters will not survive if the aggregate is differentiated.

9) Selection ('standard' pressures): many aggregates die during stages 8-b to 8-e. Those 

that survive face the same selection pressures critters face in steps (2) to (5): selection 

for every member's control network to better break down the task, selection for every 

member to evolve appropriate structures and behaviours, selection to better compete -  

both with critters (aggregate—►critter) and with other aggregates (aggregate—►aggregate) 

-  (module—►genes, control network—►genes, critter—►genes). In addition, aggregates face 

several additional selection pressures.

10) Selection (to grow): because aggregates are also susceptible to predation, there is a 

constant pressure on them to become larger in order to escape the threat of larger 

predators. In addition, there is pressure on predator aggregates to become larger in order 

to become more effective predators (aggregate—►genes). This is evident in results of the 

experiments: aggregates that are predators are larger than aggregates that are herbivores.

11) Selection (to split or shrink): since it is much easier to find enough resources to survive 

as a critter or a smaller aggregate, there is constant selection pressure on aggregates to 

split or become smaller. This is evident in those runs that had 'aggregation by choice' 

enabled and no predators: in these runs, no aggregates were evolved at all 

(critter—►genes, aggregate—►genes).

12) Selection (to differentiate): an aggregate that is differentiated is more likely to survive,
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both because it is more efficient, and also because it is far more likely to be able to 

coordinate the various actions of its constituent members (aggregate—►aggregate). This is 

evident in all runs, but in particular in those runs where explicit differentiation was 

disabled; in this case, aggregates implicitly differentiated, by only utilised some of their 

abilities despite enormous metabolic costs. Thus, because differentiation increases an 

aggregate’s likelihood of survival, the advantages it confers directly affect the selection 

of genes that encode this trait (aggregate—►genes).

13) Steps (1)-(12) are repeated until the run ends. Depending on the evolutionary conditions, 

some runs only result in species of critters, other result in both critters and aggregates 

(predator/prey, coexistence), and yet others result in the extinction of critters and only 

aggregates remaining. The critters and aggregates that survive tend to be very fit, in 

terms of structure and behaviours, as well as in terms of internal differentiation.

8.12.1 Complex interactions analysis: part 2
The second part of the chapter continues investigating the challenge set for this chapter by 

adding a new type of environment to Mosaic World, shallow water, and by enabling the 

aggregates to alter their shapes and grow shells. These additions affect the interactions that 

take place in Mosaic World within aggregates and between critters and aggregates. Although 

these effects are (mostly) beneficial for aggregates, they are not crucial towards exploring the 

challenge; however, they do provide an opportunity to examine very interesting effects on the 

interactions in the system.

As the results show, aggregates increase their adaptation to the environment by evolving 

shapes that grant advantages, both in order to better utilise deep water and also to exploit the 

new environment, shallow water; by doing so, the aggregates exhibit morphogenesis. This is 

evident in the long and diagonal shapes that were frequently evolved by aggregates, and also 

in the shells that were grown to protect the aggregates from the environmental hazards (UV 

radiation) that are present in shallow water.

Because the work in part 2 extends the work in part 1, the vast majority of complex 

interactions are identical. Therefore, only the new interactions that take place within Mosaic 

World are described in this section.

1) Expanded aggregate behaviour: aggregates that can alter their shape and grow shells 

have all the behaviours described in (8) and are also subject to the same selection 

pressures described in (9) to (12); they do have additional behaviours and selection 

pressures:

(a) M ember migration: a member who has the capacity to migrate within the aggregate
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can attempt to do so. This works as long as the movement does not split the 

aggregate in two or causes a member to migrate to a location where a shell is present 

(critter—►aggregate). This ability enables the aggregate to change its overall shape 

through its members, and has the potential of increasing the aggregate's ability to 

survive.

(b) Shell growth: a member who has the capacity to grow shells may do so 

(critter—̂ aggregate). These shells provide benefits (protection from UV radiation) 

but also costs (additional weight, cost of growth) to the aggregate. As the results 

indicate, gaining protection from UV through shell growth is necessary in order to 

safely utilise shallow water. In addition, shells make aggregates better predators but 

also more efficient at avoiding predators as the shell count towards the aggregate’s 

size for predation purposes. However, an aggregate that carries too many shells may 

face additional -  at times significant -  energetic costs for movement.

2) Selection (to grow shells or not): aggregates face additional pressures in addition to the 

selection pressures described in the previous section. On one hand, growing shells 

certainly provides advantages as it enables the aggregate to safely exploit the new 

environment and also become a better predator and less of a prey; these issues certainly 

affect the aggregate, selecting traits that cause it to grow more shells. However, shells 

are not crucial: as many runs have shown, aggregates can certainly survive without the 

extra costs and weight of shells, and in fact, can also utilise shallow water, albeit, only to 

a limited degree. Thus, there is also pressure on aggregates for selecting traits that cause 

aggregates not to grow shells. Consequently, whether the aggregates grow shells, and 

how many, depends on the balance between the advantages and disadvantages of the 

shells in comparison to the benefits of shallow water (aggregate—►genes). Moreover, the 

fact that aggregates compete against other aggregates (through predation and 

competition on resources), affects selection of genes that cause growth of shells as well 

(aggregate—>genes). This is also affected by other parameters, e.g. if many aggregates 

choose to exploit shallow water then there would be pressure towards not growing shells 

and staying in the (now relatively empty) deep water, and vice versa.

3) Selection (to evolve an appropriate shape): since now aggregates are much more

capable of finding an advantageous shape at a very low cost (only the cost of the

immediate move), there are considerable pressures towards the selection of genes that 

encode shapes that are useful in Mosaic World (aggregate—>genes).

4) Selection (to differentiate): in addition to item (12) in the previous section, as there are

more capabilities for the aggregates to ‘divide’ between members, the benefits of

differentiation become greater, thus, the pressure towards genes that encode 

differentiation is greater than before as a result of competition (aggregate—►genes).
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5) Selection (to grow, to split or shrink): in addition to items (10) and (11) in the previous 

section. The fact that aggregates are in a sense ‘better’ than before, since only aggregates 

can grow shells and safely exploit shallow water, affects the selection of genes that cause 

critters to aggregate, grow, split or shrink. In addition, the fact that aggregates can now 

‘optimise’ their shapes confers additional advantages to aggregates in comparison to 

critters. Also, as shells affect both predators and prey, this affects the selection pressure 

leading for aggregation as well -  although it is difficult to estimate in what direction. 

Finally, as the previous item described, differentiation is now more advantageous; this is 

another benefit only aggregates can utilise. It is difficult to estimate the precise effect of 

these changes on selection pressures (as they were not explicitly measured), however, it 

is logical to assume that these additions increase the likelihood of aggregation, simply 

because aggregates gain more benefits than critters as a result (aggregate—>genes).

6) Steps (1)-(12) from the previous section and (l)-(4) in this section are repeated until the 

run ends. As the results section described, the evolved ecologies are more varied, 

showing multiple types of behaviours and ecologies. In addition, the aggregates have 

evolved appropriate morphologies and utilise the ability to grow shells to their advantage 

when exploiting the new environment, shallow water.

8.13 Conclusions
The goal of the work described in this chapter was to investigate several interesting 

interactions that take place between critters and aggregates and between members of an 

aggregate. This investigation also provided evidence that supports several biological theories 

regarding the emergence of multicellularity, namely that both the presence of predation and 

accidental aggregation are sufficient to initiate the transition to multicellularity, and also that 

differentiation is indeed a major benefit for aggregates and will occur even if an aggregate 

pays a large metabolic cost for it. In addition, the evolved results shared many parallels with 

natural systems, from the emergence of a division of labour within an aggregate, to the life­

like dynamics of the evolved ecosystems.

The second part of the chapter continued investigating these interactions, by examining the 

effect of environmental change on the behaviour of aggregates that are capable of altering 

their shape and growing protective structures around themselves. The results showed that 

despite the additional costs associated with the required changes, evolution utilises these new 

additions in order to exploit the new environment, by evolving mechanisms that enable 

aggregates to precisely control their shape and the shape of their grown shells; it is interesting 

to note that by doing so, the aggregates exhibited an additional primary process of 

development: morphogenesis.



230

Chapter 9 

Conclusions

9.1 Investigating complex interactions: an overview
As all model builders know, it is impossible to simulate every aspect of complicated real 

world phenomena. This is normally not an insurmountable challenge when simulating simple 

systems (non-complex systems) as it is generally possible to identify the important 

components in the target and only incorporate these into the model. However, because a 

complex system’s behaviour is generated by highly nonlinear interactions between many 

different components, building a model that successfully captures the emergent behaviours of 

the target phenomena can be challenging.

Consequently, there is a recurring flaw in most models of complex systems. Whereas natural 

complex systems are frequently hierarchical -  they are composed of hierarchies of nested 

complex systems -  in most models only a limited range of levels of the phenomena, mostly 

one, is incorporated into the model. This means that an aspect of the model that is modelled 

as a simple component is often in reality a complex system in its own right, capable of 

expressing emergent and unpredictable behaviours. This oversimplification introduces an 

element of inaccuracy into the model because the emergent behaviour of an elementary 

component is modelled too simply. In addition, this prevents the examination of the 

relationship between components that are placed in different levels of the modelled 

phenomena, since these levels do not exist in the model. Most importantly, this prevents the 

systematic exploration of multilevel interactions in a hierarchical complex system model.

The aim of this thesis was to create a hierarchical complex system model in order to 

systematically investigate complex interactions. The concept of complex interactions includes 

both multileveled interactions and interactions that take place between components of the 

same level. The construction of such an analysis was intended to provide new insights into 

complex systems in general. At the same time, this thesis aimed to demonstrate the 

importance of incorporating hierarchical complexity into model design, by demonstrating that 

a more comprehensive understanding of the target phenomena can be gained as a result. For 

this purpose, the Mosaic World model was created and systematically investigated in the 

course of the thesis.
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9.2 Summary of work
Chapter 1 provided an introduction to the problem that is addressed in this thesis, the fact that 

most models disregard the hierarchical nature of complex systems. Additionally, it described 

the underlying hypothesis behind this work, that creating a model that focuses on 

interactions, specifically complex interactions, may provide novel insights, and stated the 

aims and objectives of this thesis and the contributions that are expected to be created in 

solving this problem.

Chapter 2 provided the full background necessary to understand the context of the work this 

thesis addressed. This required providing a detailed description of complex systems with a 

focus on systems that exhibit hierarchical complexity. In addition, the concept of emergence, 

which is integral to many aspects of the thesis, was explained, and a definition of complex 

interactions was created and provided together with a critical review of related research that 

explores complex interactions. Because the work described in this thesis belongs to the 

artificial life field as well, a relevant review of this field was given.

The second part of the chapter supplied the essential background in order to create a model of 

a hierarchical complex system. For this purpose, two types of models were described, and a 

useful methodology [233] for the creation of models of biological phenomena was given. The 

creation of Mosaic World required creating a framework of evolving agents: hence, the field 

of evolutionary computation was introduced, and the usage of genetic algorithms was 

thoroughly explained. Because every agent is controlled by one or more neural networks, 

their operation was also described. Finally, some methods and considerations regarding the 

usage of genetic algorithms to evolve neural networks were provided.

Chapter 3 presented a detailed technical description of the initial version of Mosaic World 

which was used for this work (and was continuously expanded in the course of this thesis). 

This required elaborating on the concept and goals underlying the model, describing several 

basic terms which were frequently used, and providing a thorough overview of the model in 

terms of the complex interactions that take place within. In addition, the environment: the 

surface matrix and the illumination matrix were outlined, and a full description of the 

algorithm used to create each was provided. A complete description of the inhabitants of 

Mosaic World, the critters, was also given, including their behaviour (reproduction, 

movement, sensing), their genomes, their brains and the evolutionary process they undergo.

Chapter 4 described the first challenge presented to Mosaic World: evolvability. This
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challenge began the complex interactions investigation at the lowest level of the model, and 

so, focused on genes—>genes interactions. The goal was to discover the nature of 

genes—>genes interactions that improve the effective evolution of critters that adapt to an 

environment which becomes increasingly more difficult through time. This was 

accomplished through experiments that investigated the effect on evolvability as a 

consequence of the process used to evolve the neural networks used for critter control. It was 

discovered that when the process of evolution, as expressed in five different types of 

structural mutations, produces gradual changes to the neural networks and enables evolution 

to adapt elements of itself, the evolvability of the critters was promoted. Conversely, when 

the process enables duplication of existing network structures, the evolvability of the critters 

was inhibited.

Chapter 5 continued the complex interactions investigation at the next level of the model, 

thus, the focus was on receptor—̂ environment interactions and the challenge was colour 

vision. The goal of the chapter was to discover the effect of environments of various visual 

characteristics on the visual system of critters that evolved in them. It was discovered that the 

necessity of adapting to the environment exerts pressure on the visual systems of the critter to 

provide the relevant information to the network; when it is useful to filter information and 

only use a part of the available stimuli, the visual system adopts this strategy, however, the 

visual system adopts a different strategy when survival requires extracting a greater amount 

of information.

Chapter 6 explored the next level of the model by focusing on network—̂ environment 

interactions; therefore, the investigated challenge was behaviour. The aim in this chapter was 

to discover the effect of environments of various levels of difficulty on the behaviour of 

critters that evolved in these environments. Whereas the previous chapter demonstrated that 

by evolving specific structures (specifically, the structures of visual systems) the critter is 

able to adapt to its environment, this chapter continued this investigation by demonstrating 

another mechanism of adapting to the environment: behavioural changes. Thus, it was 

demonstrated that when the environment varies, the appropriate behaviour frequently changes 

as well, and so, a critter that wishes to survive must adapt its behaviour accordingly. This 

adaptation occurs through the interaction of the environment and the critter: the environment 

acts as a selective force that determines the behaviour an adapting critter will exhibit.

More importantly, by demonstrating that the evolved behavioural strategies strongly resemble 

those exhibited by natural organisms under equivalent conditions, this chapter has shown that 

there are universal behaviours that are appropriate for certain kinds of environments
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regardless of whether they are virtual or physical; these behaviours are used by the inhabiting 

organisms, which can be animals, insects or critters.

In chapter 7, the model's hierarchical nature was augmented by replacing the standard 

network used to control the critter’s behaviour with a new control mechanism: the modular 

neural network. The interactions that occur within this new level, specifically, the control 

network—»module interactions, were the focus of this level's investigation and the challenge 

was modular specialisation. The experiments that were set in the chapter examined the nature 

of the control network—̂ module interactions that occur in order to improve the fitness of 

critters that adapt to an environment which changes in time. It was demonstrated that this 

improvement occurs through modular specialisation: the control network learned to break the 

task it faced in a meaningful way and assign each of these subtasks to its subordinate 

modules, and each of the subordinate modules specialised in its assigned task. This modular 

specialisation is what enabled the modular networks to increase the fitness of the critters.

In chapter 8, the model's hierarchical nature was expanded again, by enabling individual 

critters to aggregate and become multicellular organisms. The interactions that are associated 

with the new level, specifically, the interactions that occur between critters and aggregates, 

critter—̂ aggregate, and the interactions that occur within aggregates, critter—»critter, were the 

focus of this chapter's investigation. Consequently, the challenge in this chapter is 

aggregation. Experiments were carried out in order to examine the conditions that lead to 

aggregation, and the results showed that aggregation occurs when the environment provides 

an advantage for being big (as in the case of predators) or when aggregation enables greater 

efficiency (which is caused by internal differentiation). This demonstrated again two 

principles that appeared in the previous chapters: that the selection pressures exerted by the 

environment determine the nature of the adaptation that is required, and that this adaptation 

(improvement in fitness) is enabled by internal interactions, in this case, differentiation.

The second part of the chapter reinforced these conclusions by showing that when a new type 

of environment is introduced which provides new rewards but incurs new costs, aggregates 

demonstrate precise control of their morphology, by evolving specific shapes and by growing 

specific forms of protective shells in order to benefit from this environment in relative safety; 

it is important to stress that by doing so, the aggregates exhibited morphogenesis. Thus, the 

differentiation process is further extended by enabling each member to carry a greater number 

of possible tasks.
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9.3 Evaluation and criticism of the model
To ensure that the design decisions of all aspects of Mosaic World are justified, Webb’s 

comprehensive framework [233] for the design of models of biological phenomena was used 

throughout this thesis. This framework used 6 different dimensions to examine the model and 

its extensions: biological relevance, level, generality, abstraction, accuracy and match.

The modelled biological systems

In section 3.2 it was discussed why several different biological systems were chosen to be 

modelled in various degrees of accuracy instead of a single large biological system which 

could have been modelled very accurately. The reason given was that to model precisely a 

single biological system would be too limiting in terms of the range of interactions and 

hypotheses that could be explored. In this section it is argued that this appears to have been a 

correct design decision.

On one hand, there was a loss of accuracy in the model which prevented very detailed 

biological hypotheses from being explored. However, many more biological hypotheses 

which did not require extremely precise models were investigated, and overall, this enabled 

investigating a far greater range of hypotheses which were still biologically relevant and 

useful: this was demonstrated to be the case in chapters 4 to 8 in the respective methodology 

sections. More importantly, exploring few very detailed biological hypotheses was not the 

goal of this work; the goal was the detailed analysis of interactions in a hierarchical complex 

system, in addition to a demonstration that implementation of hierarchical complexity is 

necessary: as section 9.4 shortly demonstrates, these objectives were satisfied.

Number of levels of the model

One criticism of this work could be that a smaller number of levels in the model would have 

been sufficient to obtain the insights that were obtained. However, this is untrue; the number 

of levels in the final version of the model (6) is the minimum number required to discover all 

four observations that are reported (see next section). A choice of 4 levels (equivalent to a 

‘standard’ model) could have discovered the first three observations (first: adaptation takes 

place, second: ’rate' of adaptation is determined by evolvability, third: adaptation occurs 

through differentiation/specialisation). A choice of 5 levels would have raised the possibility 

of the fourth observation (differentiation occurs across all levels), but examination of two 

levels (e.g. control network and modules) would not have been sufficient to prove that this 

occurs across all levels. However, a choice of 6 levels demonstrates that this consistently 

occurs across multiple levels. Even though it is possible to play devil’s advocate and say that
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a choice of 7 levels would demonstrate that only 6 levels are affected by this principle, this is 

unlikely to be the case.

In addition, it is possible that further insights would have been found if more levels were 

incorporated to the model. Although this may very well be true, for practical reasons related 

to the length of a PhD, this number of levels in the model was used.

Underlying context of the model: the visual environment

It is possible to argue that the choice of the underlying context for the model, a visual 

environment, was perhaps not the ideal choice. Although it is impossible to state with 

confidence that no other choice of environment would have been better, this choice of 

environment can be justified in three ways. First, using this environment enabled creating 

conceptually simple environments that are very challenging. Furthermore, by altering few 

parameters of the environment, it was possible to create many types of environments of 

various levels of difficulty. This capability was extremely useful. Second, this type of 

environment also enabled performing experiments with environments that are inherently 

different from each other: for example, the highly complex ambiguous environments and the 

simple environments that are used in chapter 5. Finally, the usage of this environment 

enabled examining interesting biological hypotheses that relate to the evolution of visual 

systems, which is a worthy goal in its own right.

In hindsight, the main disadvantage of this environment was the fact that it is computationally 

demanding. Simulating thousands of detailed reflectance functions for both the surface and 

the illumination matrices sources took its toll on the system, and certainly reduced the scope 

of possible experiments that could have realistically been conducted.

Usage of an artificial life model

A common criticism of artificial life is that the construction of models can occasionally force 

the desired result, even if unintentionally. Thus, the results of all artificial life models have to 

be taken with scepticism.

Although this is a valid concern, and as every model designer knows, the choice of 

parameters and design certainly affects the model’s behaviour, this is also the strength of the 

approach. When designing a model, while it is possible to enforce high-level behaviours on 

low level components, doing so would cause all conclusions that can be drawn from the 

model to become meaningless because the high level behaviours could not be explained by 

the behaviour of the components of the model. Conversely, because many artificial life
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models, Mosaic World included, examine the conditions that cause low level components to 

exhibit high level behaviours, when the hypothesised conditions cause these low level 

components to express the hypothesised high level behaviours, it is reasonable to assume that 

the model and its underlying assumptions are true. This is discussed at greater length in 

section 2.3.2.

It is important to state that this also makes certain artificial life models difficult to use. For 

example, it has proven to be remarkably difficult to find the conditions that cause aggregates 

to grow shells, since these also affect the conditions that cause critters to aggregate: altering 

some conditions often caused critters to never aggregate, thus, examining their shell growth 

was not possible. It is the view in this thesis that this difficulty demonstrates that once these 

conditions are found, they are meaningful.

Analysis of complex interactions

An additional criticism of this work could be that a mathematical analysis of complex 

interactions (e.g. measuring the precise flow of information between components of the 

model) might provide similar, yet more accurate, insights to those found by the process-level 

analysis used in this thesis. In response, it is argued that while this criticism is valid, and this 

type of analysis would in principle offer a more precise way of understanding the interaction 

dynamics within the system, in practice the challenges in performing such an analysis cause it 

to be beyond the scope of this thesis for several reasons.

First, even though the measurement of the precise flow of information in a system is possible, 

and this could potentially be used in order to achieve a more accurate quantification of the 

system's internal dynamics, in practice this may simply be too complicated to perform for an 

continuously evolving population of hierarchical agents within a complex system (such as 

Mosaic World).

Second, even though tracking the flow of information of some interactions in the system is 

likely to be feasible using this type of technique (e.g. measuring the flow of information from 

the environment to a receptor), tracking many other types of interactions is not a 

straightforward task at all; for example, how does one measure the selection pressure an 

environment exerts on a critter? or the selection pressures within a competing population that 

is exerted on its members? Furthermore, the fact that these interactions and many others are 

supposed to be tracked simultaneously lends an additional complication which must be 

overcome.
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Finally, while it is conceivable that some of these challenges may be overcome, doing so 

would be too time consuming and prevent performing the investigations that are the primary 

focus of this thesis, which are establishing the interactions that exist in the model and their 

system-wide effects rather than the precise quantification of these interactions. That being 

said, this type of investigation is inarguably promising and so, could be performed as future 

work.

Choice of challenges

In this thesis, 5 different challenges were presented to Mosaic World: evolvability, colour 

vision, behaviour, modular specialisation and aggregation. It can be argued that this choice of 

challenges is rather arbitrary. In response it can be said that these specific challenges were 

selected for two reasons: primarily because they enable examining every level of the model, 

and also because they present interesting challenges that parallel those encountered by real 

world organisms, e.g. real organisms must be evolvable, perceive their environment, find 

appropriate behaviours for survival. It is important to state that coming up with other 

challenges is probably possible, but their choice is not likely to be better justified than those 

that were used in this thesis.

9.4 Objectives revisited
The aim of this work was to demonstrate that evolving a population of hierarchical visually 

guided neural network agents for the purpose of investigating complex interactions is useful, 

in the sense that it enables the demonstration and investigation of behaviours that normally do 

not appear in simpler, non hierarchical or less hierarchical, models, and thus enable finding 

new insights into complex systems in general. This section reviews the objectives described 

in chapter 1 deemed necessary to test this hypothesis:

1. Explore biological systems and universal principles in nature that are suitable for 

investigation using a hierarchical complex system model.

In the course of this thesis, several biological systems and universal principles were 

investigated using Mosaic World:

• In chapter 3, a generic simple ecosystem was picked as the primary model of Mosaic 

World, and an abstract visual environment was chosen to be the underlying context. In 

addition, the biological cone photoreceptor was selected as inspiration for the critter 

visual system.

• In chapter 4, the concept of evolvability was investigated using different types of 

structural mutations.

• In chapter 5, the concept of ambiguity was incorporated into the visual model. In
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addition, the effect of various environments on visual evolution was investigated.

• In chapter 6, the behaviour of the Mosaic World ecosystem was likened to biological 

ecosystems, thus, the behaviour of the critters was compared to the behaviour of certain 

animals (e.g. Chacma baboons, Rana catesbeiana tadpoles) and insects (e.g. wolf spiders 

and drosophila flies).

• In chapter 7, the concept of modularity was incorporated to the brain model and enabled 

investigating the effect of modular brains and their operation. In addition, the effect of 

gene duplication, as expressed through the ‘duplicate module’ mutation was investigated.

• In chapter 8, the behaviour of the Mosaic World ecosystem was compared to the cellular 

environment; by enabling the ability of critters to aggregate, and as enabling the 

evolution action capacities, it was possible to investigate several hypotheses regarding the 

evolution of multicellularity. In this study, the behaviour of aggregates was compared to 

the behaviour of primitive multicellular organisms that are formed through the 

aggregation of individual cells, such as dictyostelium and cyanobacteria. In the second 

part of the chapter, a feature enabling aggregates to grow shells and alter their shape was 

added, and so it was possible to examine the effect of environmental variation on the 

evolution of morphogenesis. By adding these features, the similarity of aggregates to 

cyanobacteria was further extended since colonies of cyanobacteria in microbial mats are 

able to build rock-like structures such as stromatolites.

2. Develop a computational multi-agent, hierarchical complex system model, Mosaic 

World.

The initial version of the Mosaic World model was described in chapter 3. In chapters 4, 5, 7 

and 8 additional features were incorporated into the model.

The initial version of Mosaic World that was described in chapter 3 comprises four distinct 

levels: ‘genes’ (level 1), ‘neurons’ and ‘receptors’ (level 2), ‘networks’ and ‘critters’ (level

3), ‘population’ and ‘species’ (level 4). In chapter 7 an additional level was added by 

replacing ‘networks’ with ‘control networks’ and adding ‘modules’. In chapter 8 an addition 

level was added by inserting ‘aggregates’ between ‘critters’ and ‘population’. These additions 

were necessary in order to explore increasingly hierarchical systems and a greater range of 

complex interactions.

3. Identify key interactions in the model, and create accordingly a set of challenges 

that will focus on each one. Each challenge will consist of a small perturbation to the 

system or its context; the resulting effect on the interactions will be systematically 

investigated.
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A thorough analysis of the Mosaic World model and its behaviour showed that the following 

interactions are integral to many emergent behaviours exhibited by the model:

• Genes—►genes (investigated in chapter 4: the evolvability challenge:), 

receptor—►environment (investigated in chapter 5: the colour vision challenge), 

critter—►environment (investigated in chapter 6: the behaviour challenge), control 

network—►module (investigated in chapter 7: the modular specialisation challenge), 

critter—►aggregate (investigated in chapter 8: the aggregation challenge), and 

critter—►critter (investigated in chapter 8: the aggregation challenge).

• Since all changes are driven by selection pressure, the relevant interactions are integral. 

This thesis explored: genes—►genes, receptor—►genes, network—►genes, module—►genes, 

control network—►genes, critter—►genes, and aggregate—►genes.

4. Correlate and understand the behaviour of the perturbed aspects of the system (its 

elements or context) with the results of those interactions in the system as a whole.

In every chapter, an aspect of the system (its elements or context) was perturbed, resulting in 

an overall effect on the system; this effect was thoroughly analysed in every chapter in the 

complex interactions analysis section.

The following describes the perturbation done to the system, and the overall effect of this 

perturbation. In chapter 4, different types of structural mutations led to different evolvability 

of the critters. In chapter 5, different types of environments resulted in different types of 

visual systems. In chapter 6, different types of environments resulted in different behaviours. 

In chapter 7, different types of brains resulted in modular specialisation and increased fitness. 

In chapter 8, different environmental conditions and incorporation of the ability to aggregate 

affected whether aggregates would evolve or not, and a new type of environment and the 

ability to change shape and grow shells affected the aggregates’ morphology and their choice 

of habitat (deep water, shallow water, or both).

In devising the complex interactions analysis, the aim was that interesting properties of the 

system, which may not normally be easily detected in the data would become more apparent, 

and by becoming so, some general knowledge about complex systems (specifically, 

biological complex systems) would be obtained. This was found to be the case.

While performing the complex interactions analysis for the diverse challenges that were 

presented to Mosaic World, four major patterns were observed. These observations apply not 

only to Mosaic World, but also to real world biological systems. Note that the analysis of
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interactions, performed in a coherent and structured manner enabled the development of these 

insights.

First observation: adaptation takes place

The first observation is that an evolving virtual organism, just like its natural counterpart, has 

three ways of adapting to a difficulty that it faces. It may adapt its structure to better deal with 

the difficulty, as demonstrated by the visual adaptations in chapter 5. Alternatively, it may 

adapt its genetically encoded behaviour to better deal with the challenge, as demonstrated by 

the behavioural strategies in chapter 6. Or it may adapt both its structure and its genetically 

encoded behaviour to better deal with the challenge, as demonstrated by the aggregating 

critters in chapter 8: not only did the critters aggregate to avoid the threat of predation, but at 

times they also evolved different behaviours and began preying on other organisms. Note that 

in all cases, these adaptations were a result of the interactions between the environment and 

the organism which lead to a selection pressure that is exerted on the organism.

Although it can be argued that the reported behavioural changes are also a form of structural 

adaptation as these behaviours are genetically encoded, and this claim is certainly true, it is 

possible to view genetically encoded behaviour as a distinct subset of structure, thus, worthy 

of classification in its own right.

Second observation: the ‘rate’ of the adaptation is determined by evolvability

The second observation is that the ‘rate’ of the adaptations that take place in the course of 

evolution is determined by the organism’s evolvability. As was seen in chapter 4, the way the 

genes interact, as indicated by different types of structural mutations, determines the 

population’s ability to adapt to a changing environment, and that more evolvable populations 

are faster in their rate of adaptation (as those that were not fast enough perished because the 

changing environment became too challenging).

Third observation: adaptation occurs through differentiation

The third observation is that one significant and regularly exploited way for these structural 

and behavioural adaptations to occur is through internal specialisation (through interaction of 

internal components). In chapter 5, different environments caused critters to evolve 

specialised visual systems appropriate for these environments, thus enabling them to survive. 

In chapter 7, critters with modular brains increased their fitness through modular 

specialisation. This was achieved by breaking the survival task to subtasks, both 

behaviourally (different modules were activated in different types and performed different 

tasks) and structurally (different modules possessed different types of visual systems,
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appropriate for their tasks). In chapter 8, although new aggregates at first had no advantage, 

by differentiating the aggregate’s members, they were able to gain an advantage: for example, 

they could obtain a metabolic rate lower than a standard critter’s and still possess more 

capabilities. In the same chapter, section 8.6, it was also shown that the population speciated: 

multiple species were evolved to explore different niches; this is essentially the same 

principle, but on the scale of the ecosystem.

Fourth observation: the process of differentiation occurs across all levels of the 

hierarchy: each one specialises in its function.

The fourth observation is that the process of differentiation occurs across all levels of the 

hierarchy: in every level, the component specialises/differentiates in order to fulfil its task in 

an efficient (but not necessarily optimal) manner, and the nature of this differentiation is 

dependent on the differentiation that takes place at other levels. Since this finding is novel, 

this observation probably best demonstrates the validity of the hierarchical model.

In chapter 5 which deals with the initial version of Mosaic World, it is repeatedly shown that 

the visual system of evolving critters adapts to the environment by specialising.

In chapter 7, it is shown that the control network and its subordinate modules adapt to the 

environment by specialising: the control network specialises in breaking the survival task into 

meaningful subtasks and the subordinate modules specialise in their allocated subtasks. 

Furthermore, in section 7.7, the visual systems of the control network and subordinate 

modules are analysed, and it is demonstrated that both the visual systems of the control 

network and the visual systems of the subordinate modules become specialised as well; these 

adapt to the specific subtasks of the control network/module. For example, a module 

responsible for controlling movement contains a visual system that is colour-blind whereas a 

module responsible for consumption contains a sophisticated visual system. This interaction 

of the control network and the subordinate modules is what enables the improvement in 

fitness (e.g. as demonstrated by the visual systems of the control network and subordinate 

modules working together). It is important to emphasise that unless the model had these 

levels, these details would have been lost (the standard non-modular network would have a 

relatively generic visual system with some, but not all, of the capacities of the modular 

network).

In chapter 8, it is shown that members of an aggregate differentiate in order to increase the 

aggregate’s fitness (as indicated by a lower metabolic rate), that is, the aggregate divides 

certain of its capabilities between its members: each is controlled only a subset of the
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aggregate’s actions. Furthermore, in section 8.6, a thorough analysis of a representative 

aggregate demonstrated that this differentiation/specialisation takes places across all levels. 

Consequently, some of the aggregate’s differentiated members had specialised modules, and 

these specialised modules had specialised visual system, appropriate for performance of a 

specific subset of the module’s behaviours.

When one examines the speciation analysis (also in section 8.6), which demonstrates that 

multiple species of various sizes and behaviours (predators and non-predators) evolved in the 

ecosystem, it becomes apparent that differentiation truly occurs across all functional levels of 

the model: receptor (level 2), modules (level 3), control networks (level 4), aggregates (level 

5) and species (level 6), and that the specialisation of lower levels clearly depends on the 

specialisation of higher levels.

In conclusion of this objective, even though this thesis provided an interesting opportunity to 

witness these four patterns in process in several different variations, it cannot be said that all 

of them are surprising (or novel). Clearly, evolving organisms adapt to a changing 

environment, and this adaptation can take the form of a structural and/or a genetically 

encoded behavioural adaptation. That said, witnessing some of these observations in natural 

organisms in real time would be impossible, and so, the fact that Mosaic World enables 

exploring such hypotheses and witnessing their results in real time is noteworthy and 

interesting (for example, examining whether different ‘rates’ of adaptation to environmental 

change of natural organisms can be achieved using different evolutionary mechanisms is 

currently impossible as present-day science does not have the ability of changing such 

fundamental aspects of evolution).

Furthermore, the fact that differentiation occurs across all levels of a hierarchical complex 

system is a novel observation which was not expected. This particular insight is a finding 

shown in detail for the first time in this work and was enabled by implementing hierarchical 

complexity and discovered through the investigation of complex interactions. It is believed 

that by continuously using this type of analysis, additional insights can be gained of real 

world biological and non-biological complex systems; these insights may be used to better 

predict and affect such systems.

5. Demonstrate that incorporating hierarchical complexity into the model can provide 

an improvement in the understanding of the modelled phenomena, by finding novel 

observations that could not be made in a non hierarchical or less hierarchical 

model.
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As was demonstrated in the previous objective, had the model not incorporated hierarchical 

complexity, some interesting and novel observations would not have been apparent. A good 

example of such an observation is the fact that the process of differentiation/specialisation 

occurs across all levels of the hierarchical model; as was shown, in order to witness such a 

phenomenon, the model must possess at least six functional levels (this was discussed in 

section 9.3, 'number of levels of the model').

An interesting additional observation is the fact that some of the modules analysed in section 

7.7 take the same strategy demonstrated in chapter 5 and filter information that is irrelevant: 

e.g. a module which controls movement is colour blind -  it does not receive information 

about colour which is unnecessary. This demonstrates that evolved visual strategies for 

subtasks are consistent with known visual principles.

Clearly, for many types of studies, obtaining such observations can be very useful towards 

gaining a broader understanding of the modelled phenomena. It is also conceivable that at 

times such observations may be even necessary towards understanding the modelled 

phenomena. In addition, it is easy to imagine situations where disregarding hierarchical 

complexity has the potential of affecting the model’s overall behaviour, thus, this may affect 

its validity (e.g. when emergent behaviours that appear at lower levels of the model are 

modelled too simply). Consequently, it can be said that incorporating hierarchical complexity 

into a model is useful, and in some situations, crucial, towards understanding the modelled 

phenomena.

6. Demonstrate that the model can be used to support or refute existing and novel 

computational and biological hypotheses that cover some or all levels of the system 

including:

The usage of different types of structural mutations will affect the evolvability of 

neural network agents.

This hypothesis was explored in chapter 4. It was discovered that adaptive evolution and 

gradual changes promote evolvability, while structural duplication inhibited it in Mosaic 

World.

Like biological visual systems, physical similarity or behavioural similarity of 

resources will affect the visual system of evolving virtual agents.

This hypothesis was explored in chapter 5. It was shown that evolution does not ‘care’ about 

physical similarity; the only thing that matters is behavioural similarity. In Mosaic World, 

when resources are physically different but behaviourally similar, similar visual strategies are
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evolved. However, when resources are physically identical but behaviourally different, 

different visual strategies are evolved.

Like biological visual systems, increased physical similarity of resources will 

affect the visual system of evolving virtual agents.

This hypothesis was explored in chapter 5. It was shown that increased similarity requires 

greater specialisation of the visual system in order to correctly recognise the various types of 

resources; in other words, suitable adaptations are evolved so that the visual system can fulfil 

its role. This resembles visual adaptations evolved by organisms that live in visually 

challenging conditions.

The need to deal with ambiguous environments is a possible reason for the 

evolution of colour vision in nature [137].

This hypothesis was explored in chapter 5. It was shown that ambiguous environments result 

in critters that evolve visual systems that can be referred to as colour vision. Critters evolve 

this in order to gain a more reliable way of discerning the value of a resource, which becomes 

particularly useful in ambiguous environments.

Evolving virtual agents in environments of various levels of difficulty will result 

in behaviours that are similar to those encountered in nature under equivalent 

conditions.

This hypothesis was explored in chapter 6. It was shown that the type of environment (in 

terms of difficulty) has a large effect on the behaviour of the critters. Additionally, critters 

exhibit different behaviours when they have different levels of health. Interestingly, both 

these types of behaviours mirrored many real world behaviours exhibited by animals and 

insects.

Virtual agents that are controlled by modular neural networks (specifically, a 

mixture-of-experts architecture) will be fitter than critters that use non-modular 

neural networks [95, 96].

This hypothesis was explored in chapter 7. It was shown that utilising this type of architecture 

for critter control improved their fitness. This improvement resulted from modular 

specialisation: the control network found a useful strategy of breaking the overall task into 

smaller subtasks, and each one of the modules specialised in its assigned task.

Predation is sufficient to cause the emergence of multicellularity [217].

This hypothesis was explored in chapter 8, and was shown to be true for aggregating critters
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that evolve in Mosaic World in the presence of predators (and is true even when the 

aggregates themselves cannot become predators).

Accidental aggregation, without any explicit immediate advantages, is sufficient 

to cause the emergence of multicellularity [33].

This hypothesis was explored in chapter 8, and was shown to be true. When aggregation is 

involuntary, even though most new aggregates die, eventually enough survive and manage to 

obtain the advantages of multicellularity; this occurs despite the fact that aggregation does 

not provide any advantages at first.

Significant environmental variation can affect the evolution of morphogenesis.

This hypothesis was explored in chapter 8, and was shown to be true. When a new 

environment is added that requires protective structures, the aggregates exhibit 

morphogenesis by evolving mechanisms for growing shells in a precise manner.

After obtaining each of these objectives, it is possible to review the hypothesis of this thesis 

as well:

It is useful to evolve hierarchical visually guided neural network agents fo r the purpose o f 

investigating complex interactions.

In this thesis, a population of visually guided neural network agents was evolved in order to 

explore numerous hypotheses. In the course of the thesis, these agents became increasingly 

hierarchical as the model was expanded. In addition, in every chapter a complex interactions 

analysis was conducted for the experiments that took place.

By performing the complex interactions analysis, it was possible to discover new findings 

that relate to biological complex systems. At the same time, this investigation also enabled 

the demonstration that incorporating hierarchical complexity into model design increases the 

understanding of the modelled phenomena, and allowed the exploration of several 

computational and biological hypotheses (which resulted in multiple contributions). To 

conclude, this thesis has provided clear and unambiguous evidence that it is useful to evolve 

hierarchical visually guided neural network agents.
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9.5 Thesis contributions
This thesis makes a number of novel contributions to the fields of computer science

(evolutionary computation, artificial life), complex systems, neuroscience and evolutionary

biology.

Mechanisms and methods

1. Creation of Mosaic World, a hierarchical complex system model that can be used to 

investigate complex interactions and numerous additional computational and biological 

hypotheses.

2. Creation of the complex interactions analysis, a novel form of analysis of complex 

systems.

3. Creation of the visual brain, a 3D modular feed-forward artificial neural network for 

control of agents by visual guidance.

4. Definition of Etotai, a novel method for measurement of the evolvability of agents in 

artificial life simulations.

Analyses

5. Detailed analysis of multiple complex interactions that take place within a hierarchical

complex system model (Mosaic World), focusing on: Gene—>gene,

receptor—environment, critter—►environment, control network—►module,

critter—►aggregate and critter—►critter.

6. Analysis of agent evolvability as affected by the usage of five different types of structural 

mutations in the evolutionary process.

7. Demonstration that agents controlled by modular neural networks are fitter than agents 

that are controlled by non-modular neural networks and that the improvement in fitness 

occurred through specialisation of modules.

8. Demonstration that members of aggregates of artificial agents differentiate in order that 

the aggregate become more efficient.

9. Demonstration that usage of modularity encourages the formation of specialised modules
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that are assigned for different tasks.

Artificial life and biology

10. Demonstration that evolved computational visual systems resemble biological systems in 

the sense that both evolve in order to detect behaviourally significant visual elements 

regardless of the physical appearance of these elements (e.g. visual systems evolve to 

identify specific food items both in nature and in Mosaic World).

11. Demonstration that evolved computational visual systems resemble biological systems in 

the sense that both evolve specific visual adaptations in order to be able to successfully 

function in visually challenging environments.

12. Empirical support for a biological theory suggesting that colour vision evolved as a 

method of dealing with ambiguous stimuli.

13. Demonstration that artificial agents can evolve the computational equivalent of colour 

vision.

14. Demonstration that artificial agents evolve different behavioural strategies for 

environments of different levels of difficulty, and that the behavioural strategies of 

evolved artificial agents under harsh conditions (hunger, scarcity of resources) parallel 

the behavioural strategies of certain insects and animals in nature under equivalent 

conditions.

15. Empirical support for the theory suggesting that the mechanisms of gene duplication 

affect functional specialisation (specifically, in this case it is shown that such 

mechanisms affect the utilisation of specialised modules).

16. Empirical support for three biological theories regarding the emergence of multicellular 

life on primordial earth, specifically:

(a) Predation is a sufficient condition to cause the emergence of multicellularity.

(b) Accidental aggregation, without any explicit immediate advantages, is a 

sufficient condition to cause the emergence of multicellularity.

(c) Member differentiation is important to multicellular organisms.

17. Demonstration that environmental variation can affect the morphology of evolved 

aggregates.
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18. Demonstration that different types of life-like ecosystems can evolve in an artificial life 

environment.

9.6 Future work
Considering the fact that the work in this thesis spanned multiple fields and subfields, it is 

possible to extend this work in many different ways.

Modular brains

Although modular brains were demonstrated to exhibit superior performance in comparison 

to the standard non-modular brains, the implementation of modularity used is partial. This 

limitation not only prevented thoroughly examining the fitness increase that can be obtained 

through modularity, but is also likely to have limited the functional specialisation that was 

used by evolution.

It is possible to extend this model by (a) removing the 8 module limit and (b) extending the 

control hierarchy, that is, allow a module to act as a control network to its own subordinate 

modules (and these modules can also act as control networks).

It is quite likely to assume that this will increase the usefulness of this mechanism, and 

additional insights about the breakdown of the task and the specialisations of the subordinate 

modules may be found as well. It is particularly interesting to see whether further task 

breakdowns across modules and levels will be apparent when this mechanism is used.

The beginning of development

By chapter 8, Mosaic World exhibited some of the elements of development: growth, 

differentiation, and to some extent, morphogenesis. Originally it was aimed to implicitly 

evolve more developmental mechanisms. Initial steps were taken to achieving this goal, but 

the investigation required more time that was available, and the results were not of sufficient 

quality and interest to be included in this thesis. Two aspects of development were partially 

explored.

Pattern formation

Although the work in this thesis undeniably demonstrated that morphogenesis can be 

implicitly evolved, it would have been very interesting to see whether specific and precise 

morphologies can be induced to evolve implicitly as well. This can be of use to 

developmental biology, by examining the conditions that are necessary for pattern formation 

to take place, and to computer science, since it could enable the construction of precise 

structures.
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This can be accomplished by assigning explicit advantages to specific shapes that are evolved 

in several different ways:

(a) By providing energy advantages to aggregates of a specific form: e.g. cube-like 

aggregates are fitter, or aggregates that are very narrow and long. These energy 

advantages can decrease the cost of aggregate metabolic activities.

(b) By enabling sexual reproduction of aggregates that evolve compatible shapes. 

Specifically, by predefining the shape of one species of aggregates, it would be 

possible to encourage other species of aggregates to evolve compatible shape in 

order to mate with it.

Cell signalling

This aspect of development can be studied by examining the conditions that cause cells in an 

aggregate (individual critters) to communicate information to other cells. This could be of 

interest both to developmental biology and to computer science (by demonstrating that 

evolved members are able to cooperate by sharing information in order to achieve an overall 

goal).

Simulation of cell signalling can be achieved by enabling internal communications within 

aggregates, which can be achieved in several different ways:

(a) By enabling critters to change their transmittance (colour) in real time, it would 

be possible for critters to relay information to other critters. The mechanism for 

transmittance detection is already in place.

(b) By incorporating a chemical diffusion network into the aggregate system, which 

may be used in the same way. This would require mechanisms for creation of a 

chemical, as well as mechanisms of detection of the chemical.

Both mechanisms would require that communication between members would be necessary 

or advantageous.

Complex interactions

In order to expand the investigation of complex interactions, the model’s hierarchical 

complexity needs to be further increased. Although this can be potentially accomplished in 

several ways, one way in particular seems like an appropriate choice: the creation of multiple 

societies within Mosaic World. By treating Mosaic World’s ecosystem as a society, creating 

multiple societies (each a complete and separate ecosystem), and enabling communication 

and interaction between societies, it will be possible to investigate the interactions that take
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place between different societies, and also compare the interactions that take place within 

several societies.

This setting can be used to investigate several different premises. For example, investigating 

the evolution of society: under what conditions a society manages to successfully stabilise? 

And how similar is it to its parent society? Alternatively, it is possible to investigate the 

evolution of language: by implementing a simple and evolvable form of communication and 

watching how members of a society communicate, and the difficulties of communication 

between members of different societies, some interesting insights about the evolution of 

language and communication may be obtained.

Evolvability

It is possible to examine the effect of different crossover operators using the evolvability 

measure defined in chapter 4. By incorporating the same principles believed to affect 

evolvability, it is likely that different types of crossover operators that have a positive effect 

on critter evolvability will be found. Specifically, these crossover operators can incorporate 

the same principles that were explored in chapter 4: gradual changes, structural duplication, 

and adaptive evolution.
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