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A bstract

In this thesis it is shown that the isodiametric inequality fails for Carnot- 

Caratheodory balls in the Heisenberg group HP (n £ N). Estimates for the 

ratio of the volume of a ball to the maximal volume of a set of the same 

diameter are established in this group, and the set of the maximal volume 

is also found among all sets of revolution about the vertical axis having the 

same diameter. Results of the similar nature are obtained in the additive 

group Rn+1 (n £ N) with non-isotropic dilations.

Using a connection between the isodiametric problem and the Besicovitch 

1/2-problem it is proved that the generalized Besicovitch 1/2-conjecture fails 

in the Heisenberg group HP (1 < n < 8) of the Hausdorff dimension 2n+2 and 

the additive group Rn+1 (n £ N) having non-isotropic dilations and integer 

Hausdorff dimension greater than or equal to n +  2. But the 1-dimensional 

case is shown to be exceptional -  the generalized Besicovitch 1/2-conjecture 

is true in any locally compact group which is equipped with an invariant 

metric, its Haar measure and has the Hausdorff dimension 1.

A question about the relation among the Hausdorff, the spherical and 

the centred Hausdorff measures of codimension one restricted to a smooth 

surface is also investigated in the Heisenberg group H1. It is proved that these 

measures differ but coincide up to positive constant multiples, estimates for 

which are found.
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N otation

We list here the notation which is used throughout the thesis. Some of 

these concepts are explained in more details in the text.

N set of natural numbers: 1, 2, . . .

Z set of integer numbers

R set of real numbers

R MU {—oo,00}, extended set of real numbers

[a, 6], (a, b) closed and open intervals in M

[a, b), (a, b] half-open intervals in M

C set of complex numbers

z, Imz, a,rgz complex conjugate, imaginary part and argument of 

z € C

Rn n-dimensional Euclidean space with the inner prod­

uct (x,y) = ]u”=i XjUj and the norm |x| =  \J(x, x), 

x =  (xj)”_ 1 G Mn is a typical point 

C 1 n-dimensional complex vector space with the inner prod­

uct (z,w)  =  YlTj=\zj'u]v  z — (zj)j=i ^ is a typical 

point

HI71 Heisenberg group of order n

| • | Euclidean norm or absolute value on C

II • II norm on a vector space



NOTATION 9

C, D set inclusions, may mean equality as well

H <] G, G > H  H  is a normal subgroup of a group G, may mean equality

sign sign function

det determinant of a matrix

t ( x , y) some trigonometric function r  of the angle between vec­

tors x and y in R3

B(x,r)  closed ball (with respect to a specific metric) of radius

r > 0 centred at x

U(x,r)  open ball (with respect to a specific metric) of radius

r > 0 centred at x 

Br B(0,r)  in Rn (metric can be non-Euclidean)

Ur U(0,r) in Rn (metric can be non-Euclidean)

diam A  diameter of a set A with respect to a specific metric

dist(rrr, A) distance between a point x and a set A  with respect to

a specific metric

dist(A, B)  distance between two sets A  and B  with respect to a

specific metric

projn orthogonal projection from Rn onto a hyperplane II

A  closure of A

dA  boundary of A

Xa characteristic function of A

fil^A restriction of a measure fi to A

A + B {x +  y | x G A,y  G B}

A — B  {x — y | x £ A,y  6 B}



NOTATION 10

A A  {Ax | x G A A G R

—A  (~1 M  =  i ~ x  I x  ^ A}

C 1 surface surface which admits a parametrization by continuously

differentiable functions 

C(£) set of all characteristic points of a surface E c i 1

%s s-dimensional Hausdorff measure

Ss s-dimensional spherical measure

Cs s-dimensional centred Hausdorff measure

Cn n-dimensional Lebesgue outer measure

a(n) Cn{x G Rn | |x| < 1}, volume of the unit ball in Rn

D S(A , x) upper s-density of A  in x

R s(A, x ) lower s-density of A in x

DS(A , x) s-density of A in x

G / H  quotient (factor) group of a group G over its normal

subgroup H

(0i, 02, • • •, 0n) subgroup of a group G generated by gu g2, . . . ,  gn € G 

L l [a, b] set of /^-measurable on [a, b] C R functions having finite

integral over [a, b]



Chapter 1

Introduction

1.1 Overview of the Thesis

The main object of study in this thesis is the isodiametric inequality and 

its applications in metric locally compact groups. Let us briefly outline the 

structure of the thesis and the most interesting results we obtained. The 

precise definitions of notions involved here will be given in the next section 

and subsequent chapters.

In Chapter 3 we investigate the isodiametric inequality in the Heisenberg 

group IF  (n € N). This inequality states that a ball maximizes the volume 

for the given diameter, which is well known in Euclidean spaces. From this 

point of view non-Euclidean spaces are of great research interest, in partic­

ular the Heisenberg group, an important object of study in various areas of 

mathematics and physics, with the most interesting type of a metric on it -  

the Carnot-Caratheodory (geodesic) metric. Such a metric space seems to 

be a likely candidate to have the balls maximizing the volume for the given 

diameter. In fact, we show that it is not true, Carnot-Caratheodory balls

11



CHAPTER 1. INTRODUCTION 12

don’t possess this property in the Heisenberg group. The distance between 

the poles of a ball is strictly less than its diameter and one of the poles is 

the most distant point of a ball from another one. Therefore addition of a 

“small” set to a pole preserves the diameter of a ball but increases its volume, 

which is a violation of the isodiametric property.

We also give a lower bound for the ratio of the volume of a ball to the 

maximal volume of a set of the same diameter. This bound appears to be 

more than 1/2, which gives a counterexample to the generalized Besicovitch 

1 /2-conjecture in the Heisenberg group HP (1 < n < 8) of the Hausdorff 

dimension 2n +  2, as we will see later on.

Next we prove that the convex hull of the Carnot-Caratheodory ball has 

the maximal volume among all sets of revolution about the vertical axis 

having the same diameter. However, an interesting question if this set has 

the maximal volume among all sets of the same diameter remains open.

We obtain similar results in the additive group Rn+1 (n G N) with non­

isotropic dilations. Moreover, we show that the ratio mentioned above may 

be arbitrary close to 1 in this group. In fact, it may converge to 1, but the 

rate of convergence cannot exceed 1/n 2 as the dimension n grows.

It has recently been proved by Schechter [41] that the generalized Besi­

covitch 1/ 2-conjecture fails by constructing a purely 2-unrectifiable metric 

space on the real line Rp with a translation invariant metric p (but with­

out dilations) that metrizes the Euclidean topology. The counterexample of 

Schechter extends easily to higher Hausdorff dimensions. A connection be­

tween the isodiametric problem and the Besicovitch 1/2-problem allows us 

to give simpler counterexamples in groups with dilations. In Chapter 3 we
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show that the generalized Besicovitch 1/2-conjecture (as well as the isodia­

metric property of balls) fails in the Heisenberg group ET* (1 < n < 8) of 

the Hausdorff dimension 2n H- 2 and the additive group Rn+1 (n e N) having 

non-isotropic dilations and integer Hausdorff dimension greater than or equal 

to n +  2.

However, in Chapter 2 we prove that the 1-dimensional case is excep­

tional -  the generalized Besicovitch 1/2-conjecture holds in any locally com­

pact group which is equipped with an invariant metric, its Haar measure and 

has the Hausdorff dimension 1.

Let us mention that the failure of the isodiametric inequality in Carnot 

groups (in particular the Heisenberg group) equipped with some types of 

homogeneous metrics and the Haar measure has recently been established 

by Rigot (see [36] and [37]). As a consequence it has been shown that the 

Hausdorff and the spherical measures of the homogeneous dimension of the 

group differ, but being Haar measures, they coincide up to a positive con­

stant multiple. In recent years there have been several publications establish­

ing connections among various measures on hypersurfaces in the Heisenberg 

group and more general spaces (see [15], [23], [24] and [31]). For example, 

Magnani [23] has found the connection between the usual Euclidean surface 

measure and the spherical measure (with respect to the homogeneous dis­

tance of the group) for smooth hypersurfaces. We apply results of Chapter 

3 in Chapter 4 to study a similar question (see an open problem stated in 

the introduction of [13]). Here we investigate an interesting problem about 

the relation among the Hausdorff, the spherical and the centred Hausdorff 

measures of codimension one restricted to a smooth surface in the Heisen­
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berg group H1. We prove that they are different but proportional and give 

estimates for proportionality constants.

As Chapters 2 and 3 deal with the Besicovitch 1/ 2-problem, let us explain 

the essence of this problem and its relation to some principal concepts of 

geometric measure theory in the rest of this section.

One of the fundamental results in geometric measure theory is that in Eu­

clidean spaces a W 1-measurable set A of finite Pi71 measure is n-rectifiable

if and only if the n-density of A  exists and equals 1 in W 1 almost all of its 

points (0 < n < k are integers; see also [12] and [27] for different characteri­

zations of rectifiability for subsets of Euclidean spaces).

The direct implication follows from fundamental publications of Besi­

covitch (see [5] and [6]). In 1928 Besicovitch [5] also proved the converse 

implication for k = 2 and n =  1, but the general case was accomplished 

only decades later: first Marstrand [25] proved this result for k = 3 and 

n — 2 in 1961, and then Mattila [26] generalized the proof of Marstrand 

to all 1 < n < k — 1 in 1975. In 1987 Preiss [34] proved a stronger re­

sult: n-rectifiability in Rk already follows from the existence of finite and 

non-zero n-density. But this cannot be true in all metric spaces, which is 

demonstrated by a simple example of the real line equipped with the metric 

d(x,y) = \ x -  y\1/2.

The extension of the direct implication to arbitrary metric spaces was 

completely solved by Kirchheim in 1994:

Theorem 1.1 (Kirchheim [20]). In a metric space n-rectifiability of a set 

A of finite H 71 measure implies the existence of the n-density of A equal to 1 

in 'Hn almost all of its points.



CHAPTER 1. INTRODUCTION 15

However, the question if the converse implication can be extended from 

Rfc to an arbitrary metric space X  is still unsolved.

In relation to this matter one may ask even a deeper question: what is 

the smallest, “threshold density constant” an(X)  such that once a subset of 

X  of finite /Hn measure has the lower n-density strictly greater than an(X)  

at W 1 almost all of its points, it is necessary n-rectifiable (we define an(X)  

precisely in Definition 1.13)? In the next section we show that an( X ) < 1 

(see Corollary 1.15). Let us note that the result of Mattila [26] mentioned 

above implies that crn(Rfc) < 1.

The following question is known as the generalized Besicovitch 1 /2-prob­

lem'. is it true that <Jn(X)  < 1/2 for an arbitrary metric space X I

The first results about these numbers are due to Besicovitch who proved 

the upper estimate cq(R2) < 1 — 10~2576, stated1 the lower estimate 

<ti(R2) > 1/2 and also conjectured that <7i(R2) =  1/2 in his famous paper 

[5] in 1928. Later on, in 1938, Besicovitch [6] improved the upper estimate 

by showing that <7i (R2) < 3/4 .2

The conjecture we have just mentioned is well known as the Besicov­

itch 1/2-conjecture. It remains open since that time and it is one of the 

most famous and oldest open questions in classical geometric measure the­

ory. Undoubtedly it is an extremely interesting problem and attracts a lot of 

attention also due to the fact that any other significant problem concerning 

1-densities in Euclidean spaces has been solved many years ago.

There have been a number of publications in attempt to estimate numbers 

an(X)  in Euclidean and non-Euclidean spaces, but the complete solution of

T t was proved by Dickinson [9] in 1939.
2 Alternative approach to the proof of this estimate can be found in [11].
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the problem is yet to be found. We should note that Preiss and Tiser [35] 

(see also Schechter [39]) managed to give an upper bound for c?i(X) less than 

3/4 in arbitrary metric spaces. This result improves and extends estimates 

of Besicovitch [6] and Moore [32] in Euclidean spaces. Figure 1.1 summa­

rizes the up-to-date progress in the generalized Besicovitch 1/2-problem since 

1928. These are all positive statements except for the last one, which indi­

cates a counterexample of Schechter [41] we have mentioned earlier.

Year Author Result

1928 A. S. Besicovitch [5] ai(R2) < 1 -  10~2576

1938 A. S. Besicovitch [6] o\ (R2) < 3/4

1939 D. R. Dickinson [9] <7i (R2) > 1/2

1950 E. F. Moore [32] ai(Rk) < 3/4

1961 J. M. Marstrand [25] cr2(R3) < 1

1975 P. Mattila [26] crn(R/c) < 1

1984 M. Chlebik [7] supk an(Rk) < 1

1992 D. Preiss and J. Tiser [35] <7iP0 < (2 +  a/46)/12 «  0.7319

1998 A. Schechter [39] aY{X) < 0.7266

2002 A. Schechter [41] 1/2 < cr2(Rp) < 1

Figure 1.1: The up-to-date progress in the generalized Besicovitch 1/ 2- 

problem
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1.2 Basic Definitions and Standard Theorem s

Let us introduce some notions extensively used in the thesis. Let X  be a 

metric space, A  C X  and T  be a family of closed subsets of X .  Let (f) be a 

measure on X  such that every open subset of X  is ^-measurable and every 

bounded subset of X  has finite (j) measure. Throughout the thesis a measure 

will always mean an outer measure as in [12].

Definition 1.2. The family T  covers A finely if for any x £ A  and any e > 0 

there is S £ T  such that x £ S  and diamS < e.

Definition 1.3. The family T  is said to be (j) adequate for A  if for any open 

subset V  of X  there is a countable subfamily Q C fF of disjoint sets such that

C V  and (f>((V Pi A) \  Us e g S )  =  0-

For any member S  of the family T  we define its r  enlargement

S  = U{T  | T  £ T , T  n S  0, diam T < rd iam 5}  (1.1)

Theorem 1.4. I f  1 < r  < oo; then T  has a subfamily Q of disjoint sets such 

that

\ J s c \ J s .
s <e ; f  seg

Proof See Corollary 2.8.5 in [12]. □

Remark 1.5. If S = B(x,r) ,  then S  C B(x,  (1 +  2r)r). Therefore if J 7 is a 

family of closed balls, we may replace the inclusion above by the following
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one

(J  S c  (J  B (x 1(l + 2r)r).
s e r  B( x , r ) eg

The parameter r  is often chosen to be 2.

Theorem 1.6. I f  T  covers A finely, 1 < r  < oo, 1 < A < oo, and

<K§) < a4>(S)

whenever S  £ T  and S is the r enlargement of S, then T  is adequate for 

A.

Proof. See Theorem 2.8.7 in [12]. □

Definition 1.7. A sequence (Ai)ie^ of subsets of X  is called a 5-covering of 

A if A  C UiAi and diamA* < 6 for each i € N. A 6-covering of A  is called 

centred if it consists only of closed balls centred in A.

Definition 1.8. For 0 < s < oo and 0 < 5 < oo we define

(i)

U SS{A) =  inf |  ̂ ►^(diamAj)5 | (A*)* is a 6-covering of A

and

H S(A) =  supftJ(A) -  limftJ(A).
<*>o

is called the s-dimensional Hausdorff measure on X.

(ii)

<Sj(A) =  inf ^ 2 _v(diamB(xi, n ))5 | (B(xi,ri))i  is a 6-covering of A

and

<Ss(̂ 4) =  sup SKA) =  limSJ(A).
S> 0 < )\0

S s is called the s-dimensional spherical measure on X.
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(hi)

CI(A)

= inf |^ ^ (d ia m S (x j, rj))s | (B(xi,ri))i is a centred 6-covering of , 

where and C |(0) =  0.

C0s(A) = suPq(^)- l im q(^).
<s>o 5\ °

Cq may fail to be monotone, since a smaller set may not have centres 

for the “best” covering (see [38]). Therefore in order to construct an 

outer measure let (see [38])

CS{A) = sup Cq(B).
B CA

Cs is called the s-dimensional centred Hausdorff measure on X.  

Definition 1.9. The Hausdorff dimension of a set A  C X  is

dim ,4 =  inf{s > 0 | /HS{A) — 0}.

The definition of measures and simple reasoning (see [38]) imply that for 

any A  C X

n s(A) < <SS(A) < CS(A) < 2SH S{A). (1.2)

Constructions of the Hausdorff and the spherical measures are particular 

cases of the more general Caratheodory’s construction, which can be made 

with an arbitrary non-negative set function instead of s-th power of the 

diameter and an arbitrary family of covering sets.

The same measure W  can be obtained by using a J-covering by all non­

empty closed (or all non-empty open) subsets of X .
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It is well known that measures and S s are Borel regular (that is, all 

Borel sets are measurable and every set A  C X  is contained in a Borel set 

B  C X  having the same measure as A  has). Borel regularity of Cs and 

more general centred measures on a separable metric space has recently been 

proved by Schechter in [40].

Definition 1.10. Let 0 < s < oo, A C X  and x E X .  The lower and upper 

s-densities of A  at x are

and the common value is denoted by DS(A , a;).

Definition 1.11. Let n E N. A set A C X  is called n-rectifiable if l-tn almost 

all of A  can be covered by countably many Lipschitzian images of subsets 

of Rn . A  is called purely n-unrectifiable if it contains no n-rectifiable set of 

positive 'Hn measure.

For n =  1 we simply call corresponding sets as rectifiable or purely un- 

rectifiable. Note that if a set is n-rectifiable (purely n-unrectifiable), then 

its every subset is also n-rectifiable (purely n-unrectifiable). The intersec­

tion of n-rectifiable and purely n-unrectifiable sets is always T^-null set. A 

countable union of n-rectifiable sets is itself n-rectifiable.

Theorem 1.12. I f  PL1 (A) < oo, A is compact and connected, then A is 

rectifiable.

D s{A,x) = lim inf
r \ 0

H 8(A n B ( x ,r ) )
(2 r)s

and

If these densities coincide at x , then we say that the s-density of A at x exists
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Proof. See Theorem 3.14 in [11] for the case X  = Rn. This result can easily

Definition 1.13. Let n G N. By an(X)  we denote the smallest number such 

that every subset A  C X  of finite 7in measure having at HT almost all of its 

points

is n-rectifiable.

Clearly, it exists once we allow crn( X ) to be infinite, but we even show 

that an( X ) < 1 in Corollary 1.15. If X  is n-rectifiable, it is obvious that 

an(X) = 0. And if X  is purely n-unrectifiable and 7in is locally-finite on X, 

then it is also easy to see that crn(X)  =  esssup^*  D J X , x ) .

Now we present an extremely useful theorem, which is applied many times 

throughout the thesis. Let 0 < s < oo, A C X , x € X  and ^ be a measure 

on X.  We use the following notation

D^s (n, A, x) = lim sup < - ^  I x  6 5, 0 < diam S  < r \  ,
r\o  ^(diam 6 )s J

be extended to an arbitrary metric space. □

Hn(A >x) > °n(X)

Ds - (/i, A, x ) = lim sup
n(ADB(y ,p) )  
(diam B(y,p))s

- \ x  e B{y,p),0 < diam B(y,p) < r

DCs(fi ,A,x)

lim supr\0 (diam B(y, p))
x G B(y ,p ), y € A, 0 < diam B(y,p) < r

for x e A, D qs (/i, A, x) =  0 for x ^ A. 

It follows that

Dc*(p, A, x) < Ds*(ii, A, x) < Dns(n,A,x). (1.3)
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Theorem 1.14. Suppose p is a Borel regular measure on X , A c  X  and ip 

is n s, s s or Cs measure. Then statements (i) -  (iv) hold.

(i)

n(A) < ip{A) sup A, x).
x £ A

(a) I f  V  is an open subset of X  and B  C V , then

p(V) > ip(B) inf D ^ p ^ X .x ) .
x e B

(Hi) I f  p(A) < oo and A is p-measurable, then

Dns(p ,A ,x) = 0 

for R s almost all x (E X  \  A.

(iv) I f  A c  X  and 'HS{A) < oo, then

0 < D ns{ n s,A ,x )  < 1 

for R s almost all x G X .

Proof, (i) Theorem 2.10.17(2) in [12] implies (i) for ip = W  or ip = S s and 

also implies that

p(A) < Cq (A ) sup DCs (p, A, x ) ,
x£A

which obviously holds also with Cq(A) replaced by CS(A).

(ii) This follows from [12, 2.10.18(1)] for ip = Tis or 'ip = S s. It also 

follows that if E  C B  C V, then

p ( V )  > Q (E )  inf D Cs ( p , X , x ) .
x £ E

The infimum can be taken over all x £ B, then taking the supremum over 

all E  C B  we get the required inequality for ip = Cs.

Statements (iii) and (iv) are particular cases of [12, 2.10.18(2, 3)]. □
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The last theorem implies immediately the following statement. 

Corollary 1.15. For any n G N and an arbitrary metric space X

crn(X) < 1.

Proof. Let A  C X  of finite /Hn measure have

Dn(A,x) > 1

at R 71 almost all of its points. Therefore we get

D nn {W1, A, x) > Dn(A,x) > Dn{A,x) > 1,

which may hold only at H n-null set by Theorem 1.14(iv). Thus A is a null 

set and the corollary follows. □

At the end of this section let us give definitions of an invariant metric, an 

invariant measure and the Haar measure, which are used quite often in the 

thesis.

Definition 1.16. Let (G, •) be a group.

(i) A metric d on G is called left invariant if

d(9' 9u9-  92) = d(gu g2),

for any g,gi ,g2 e  G.

(ii) A measure /x on G is called left invariant if

ti(g • A) =  11(A) 

for any g € G and any A C G.
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The right invariant metric and measure are defined similarly using multipli­

cations by g € G from the right.

Definition 1.17. Let (G, •) be a locally compact topological group. A left 

Haar measure on G is a non-zero, finite on compact sets and left invariant 

measure /i on G, which is Borel regular and also inner regular on Borel sets 

B  with respect to compact sets, i.e.

fi(B) =  sup{/z(G) | G C B, C compact}.

As a consequence of this definition fx is positive on every non-empty open 

set. A right invariant (right) Haar measure can be defined similarly. It is well 

known that a left (right) Haar measure exists and is unique up to positive 

constant multiples in a locally compact topological group (see [19, Chapter 

11]). Left and right Haar measures coincide in Abelian or compact groups. A 

measure which is both left and right Haar we call simply the Haar measure.



Chapter 2

Besicovitch 1/2-Conjecture in 

Dimension One

2.1 Prelim inary R esults

In this chapter we are going to prove that the generalized Besicovitch 1/2- 

conjecture holds in any locally compact group equipped with an invariant 

metric, its Haar measure and has the Hausdorff dimension 1, which makes 

this case exceptional from higher Hausdorff dimensions.

The aim of this section is to prove that under some conditions a compact 

ball in the group cannot be totally disconnected. Towards this end we care­

fully study our group using a connection between its metric and measure. 

We show that the structure of the group resembles that of the Cantor set. 

The result obtained here will allow us to prove our main claim in the next 

section.

Let £o > 0 and R  > 0. Let (G , •) be a locally compact group with an 

invariant metric d and a Haar measure n (both are left and right invariant)

25
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satisfy ing  th e  follow ing properties

(2 .1)

for every g € G and every 0 < r < R, and

fi(S) < diam 5 (2 .2)

for every S  C G w ith diam  S  < R.

Let e € G be the identity element of the group. Let 0 < A < R/6  be such 

that the closed ball B(e, A) is compact. The existence of A is guaranteed 

by the fact that G is a locally compact group. We are going to prove the 

following theorem.

Theorem 2.1. I f  G is a locally compact group with an invariant metric d 

and a Haar measure \i satisfying properties (2.1) and (2.2), then the compact 

ball B(e, A) cannot be totally disconnected.

In this section we assume that B(e , A) is totally disconnected compact 

ball. At the end of the section we prove Theorem 2.1 by deriving a contra­

diction. In order to do that let us establish a series of auxiliary facts.

Definition 2.2. Let e > 0. We call two points g,g e G e-chain connected if 

there is a chain of points in G

d(gi, 9i+i) < e, i = 0 ,1 , . . . ,  m -  1.

Let He denote a set of elements of G £-chain connected to the identity 

element e € ( ? .  It is clear that e G He.

g — 9oi 9h • • • j 9m — g

such that
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Lemma 2.3. For each e > 0 the set He is a clopen normal subgroup of G, 

He < G.

Proof. By the criterion of the subgroup He is a subgroup of G if and only 

if h~l ,hh  £ He for any h, h £ He. Let us prove that these conditions are 

fulfilled. As h and h are e-chain connected to e £ G, we may find two chains 

in He

e — ho, h \ , • • •, hjji — h, d{hi, ^ e, i — 0, 1, . . . ,  m  1,

and

e = h0, h \ , . . . ,  hn — h, d{J~ij, hj^.i) 6, j  — 0,1, . . . ,  1.

The chain

e = hol , h f l , . . . , h ^  = h~l 

is e-chain connecting e to h~l as

d{h~l , hf+i) = d{e, hih~/x) = d(hi+1, h{) < e, i = 0 , 1 , . . . ,  m  -  1.

Another chain

e — ho, /ijj. . . ,  hm — h — hho, h h \ , . . . ,  hhj  ̂— hh

connects e to hh and is also e-chain as

d(hhj, hhj+i) =  d(hj, hj+\) < e, j  =  0,1 , . . . ,  n — 1.

Therefore h~l £ He, hh £ He and it follows that He is a subgroup of G.

By the criterion of the normal subgroup He is a normal subgroup of G if 

and only if g~lhg £ He for any g £ G and any h £ He. The chain

e =  g~lhQg, g~lhxg , . . . ,  g~lhmg = g~lhg
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is e-chain connecting e to g 1hg, since

d(g~lhig, g~lhi+ig) = d(hi, hi+1) < e, i =  0 , 1, . . . ,  m  -  1.

Hence g~lhg 6  He and He is the normal subgroup of G.

The definition of He implies that it is a clopen set. He is a closed set, 

since it contains all its limit points. Indeed, if h is a limit point of He, then 

U(h,e) contains a point of He distinct from /i, therefore h is also in He. On 

the other hand, He is an open set, since U(h,s) C He for every h £ He. □

Lemma 2.4. He <] Hi for any 0 < e < e.

Proof Definition of He implies that He C Hs for any 0 < £ < e. By the last

theorem He < G and Hg < G. He is also a normal subgroup of Hg by the

same reason it is a normal subgroup of G. □

Lemma 2.5. He is a non-trivial subgroup for any e > 0.

Proof Otherwise if He = {e} for some 0 < e < R, then U(e,e) = {e}. 

Properties (2.1) and (2.2) of p, imply

€ < p(U(e,e)) < diam f/(e,e) =  0,

which cannot be true. □

Let AA = A  D B(e, A) for an arbitrary set A C G. If A  is a closed set, 

then AA is compact, being the intersection of the closed set with the compact 

B(e, A). For example, H A is a compact set.

Theorem 2.6. For any e > 0 there is 0 < e < i  such that H A is a proper 

subset of the set H A (hence He is a proper subgroup of the group Hg).
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Proof. Suppose on the contrary that = HA for some e > 0 and for any 

0 < e < 5. In other words, for any 0 < 5 < 5 and any g 6 H~" there is 5-chain 

in G connecting g to e. By the previous lemma U(e,8) /  {e} for all 8 > 0. 

Therefore there is h /  e, h € B(e,8) C HA for such small 8 < min{A/3, i}  

that
8 x 25oA

< 2£0 or 8 <
A — 38 1 -f- 6&0

As B(e , A) is totally disconnected, there are non-empty disjoint closed sets

Fi 3 e and F2 3 h which partition B(e, A) (see [21, §46])

B{e, A) =  F iU F 2.

Obviously, Fi and F2 are compact sets. Then letting

5 =  i  inf{d(<7i, g2) \ gx € Fx,g2 € F2} (2.3)

we have

0 < 2e < d(e, h) < 8 <  s.

Since Hf* =  HA, there is 5-chain

e — h0, h \ , . . . ,  hm — h

in G connecting e € Fi and h G F2. By deleting intermediate points of the 

chain if necessary we may assume that d(hi, hf) > e if \i — j\ > 2.

Now let us construct a special family of open disjoint balls centred at

some points of the chain. Denote

i0 = 0 and r0 =  d(h0, hi) < e.

Then i\ — 2 is the first index such that d(hi0, hj) > ro for any j  > i\ and

d{hh ,h io) < d ih i^h i^ i )  +  d(hh - U hio) < e +  r0.
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Denote

ri = d{hh ,hi0) -  r0,

then 0 < r\ < e. It follows that open balls U(hio,ro) and U(hii:ri) are 

disjoint.

Choose the first i2 > i\ such that d{hix,hj) > r\ for any j  > i2 (it is 

true for all j  > i 1 +  2, since d(hix,hj) > e > r\, therefore i2 =  i\ + 1 if 

d(hiixhix+i) > ri, otherwise i2 = i \ +  2), then d(hix, hi2-\) < r\ and

d(hi2, hix) ^  hix̂j < s +  T\.

Denote

r2 = mm{d(hi2,h iQ) -  rQ,d(hi2,hh ) -  n},

then 0 < r 2 <e.  Open balls U(hio,r0), U(hix,ri) and U(hi2,r2) are disjoint. 

We continue until d(hip, h) < rp, where

rp = min{d(hip, hik) -  rk \ 0 < k < p -  1},

on the step p (hip may coincide with h). The balls U(hinJrn) are disjoint and 

0 < rn < e for n =  0, 1, . . . ,  p.

Let 0 < k\ < p — 1 be such that rp +  r^  = d(hip, hiki). Since

rkl = mm{d{hiki,h ik) -  rk \ 0 < k < ki -  1},

there is 0 < k2 < ki -  1 such that rkl + r k2 = d(hik , hik ). Proceeding in this 

way we obtain a decreasing to zero subsequence p > k\ > k2 > ■ - • > 0 of the 

sequence p > p — 1 > p — 2 > ••• > 0 . Without loss of generality we may 

assume that they coincide, i.e. in definitions of radii the last term is always 

minimal on all steps of the construction

vn T Tn~i =  d(hin, hjn_1), 7i 1,2, . . .  ,p. (2-4)
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The construction implies that the chain of points

e /ijQ, hjj, . . . ,  hip, h

is 2e-chain with e G Fi and h E F2. This chain cannot be entirely in F?(e, A) 

by (2.3), therefore

dia.m{hi0ihil1. . . 1hip} > A.

Let hiq+l, 0 < q < p — 1, be the first point in this chain outside of

B(e, A — 35/2). Then the balls

U{hin,rn) and U(hhin,rn), n =  0 , l , . . . , g ,  (2.5)

are all inside of B(e , A) (as d(e, h) < 8 and 0 < rn < e < 8/2). Let
Q

U = \ J ( U ( h in,rn),
n=0

then U C Fi and hU C F2 by (2.3), therefore the balls (2.5) are all disjoint. 

Let us observe that

diam U > diam{hio, hix, . . . ,  hiq} > d(e, hiq) > d(e, hiq+1) -  d(hiq, hiq+1)

> A - | < 5 - ( r ,  +  r ,+1) >  A -  35. (2.6)

We notice that

since U U hU C B(e , A), and

8 A  R  
2 < ~ 6 < 36’

therefore we may use properties (2.1) and (2.2) of p to get

( \  \  q q Q
2 ( o +  £o ) 2r" < S  +  S  /J,(U(hhin,rn))

' ' n=0 n=0 n=0

= n (U U h U )<  diam(C7 U hU). (2.7)
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Now let us obtain an estimate for the last term of (2.7). Taking (2.4) into 

account one has

d(gi, g/) < d(gi, hia) +  d(hia,hi3+1) + -----b d(hit_x,hit) +  d(hit,g2)
t

< r s + (rs +  ra+i) +  h (rt_i +  rt) +  rt = 2 ^  rn
n=s

for any pair of points of U

g i e U { h is,rs) and g2 E U(hit,r t), 0 < s < t < q .

It follows that
9

diam U < 2 £ * • „  (2-8)
n=0

and
9

diam(C/ U hU) < 2 rn +  8. (2.9)
n=0

Combining estimates (2.7) and (2.9) we get

4Q+£°)X><2Er"+'5-
' ' n=0 n—Q

The last inequality together with (2.8) and (2.6) implies that

8 8 8 
£° < 2 J2Qn=o rn ~  diam U < A -  38 ’

which contradicts the choice of 8. □

Theorem 2.7.

n * = w -
£>0

Proof. Clearly, it is equivalent to prove that for any h € G, h /  e, there is 

£h > 0 such that h f  H£h.
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We have just shown that for any small enough <5 > 0 and any h G B(e,8), 

h ^  e, there is £h
d(e, h) 8
~ 2_  ̂ 2

such that there is no e^-chain connecting e and h (or equivalently h £ H£fi). 

We only have to prove that the same is also true for any h G G \  B(e,8). 

Consider the compact set

C = B{e,8)\U{e,8/2)

and its open cover

{U(h,eh) \ h e C } .

Observe that U(h,£h) n  H£h =  0. Let

(U(hit ehi))ki=1: hj6C 

be the finite subcover of the compact set C. Let

£$ min^s/jj, /̂i2 ? • • • j }

and note that £$< 8 /2. It follows that

U(hiy£hi) n H £s = 0 , i =  1 , 2 , . . . , A;,

and therefore

C f ) H £s= 0.

There is no ej-chain “crossing” C, i.e. with points in U(e, 8/2) and G\B(e, 8), 

since

dist(G \  B(e, 5), U{e, S/2)) > 5 > £«,

and therefore

( G \ B ( e , S ) ) n H ei = 9, 

as required. □
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Corollary 2.8. For small enough £ > 0 the group He is a subset of B(e, A), 

He is a compact subgroup of G and

limdiam He =  0.e\0

Proof The proof of Theorem 2.7 implies that for any small enough 6 > 0 

there is £$ > 0 such that

He c  U{e,5/2), 0 < e < es,

and the corollary follows easily.

□

Theorem 2.9. For i  > 0 the following statement holds

sup{/0 | 0 < p < £, Hf/ 7̂  H*}  =  inf{p | 0 < p < i, Hf/ = H f }  =: £

and

H ?  # H f ,

where 0 < £ < e, £ < A.

Proof The existence of the positive supremum and infimum follows from 

Theorem 2.6 and the fact that = H~" for p = e or e > p > A. This 

fact is obvious for p =  i, but if e > p > A, then both H ^  and HA coincide 

with B(e,A).  Hence if H f  /  HA for some 0 < p < i,  then we know that 

0 < p < £ and p < A.

Let us refer to the supremum and the infimum in the statement of the 

theorem simply as to sup and inf. Then Lemma 2.4 implies that H£  /  HA
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for any 0 < p < sup and =  H ^  for any inf < p < 5, therefore sup < inf. 

If the inequality is strict, then there is p between sup and inf such that either 

H£  ^  H'£• or =  HA. This contradicts to the definition of the supremum

or the infimum, hence they are equal.

Suppose that the second part of the statement is false, H* = H*.  But 

Hf/ /  HA for any 0 < p < 5, which means that there is gp E HA \  H^,  

i.e. gp E H f  is not p-chain connected to e. As H f  is compact, we may find 

gPn e  H? \  H*  such that

p„ / ' e  and gp„ -> g € Hf-, n  -» oo.

Obviously, there is N  E N such that

d{gPn,g )< P n , n > N ,

therefore g H^n for n > N. But g E H~* = H hence there is 5-chain 

connecting e and g in G

e  p o t  g\t • • • >gm g» gi+1 )  ^  £i  ̂ f i ?  • • • ? ^  f •

There is no > N  such that

d{gi, gi+i) < pno <S, i = o, 1, . . . ,  m  -  1.

It follows that g E HPnQ, and therefore g E H ^  , which is a contradiction. □

Let e > A, then H* = B(e, A). The last theorem gives us £\ := e such 

that £i < A and /  B(e , A). Let 5 := £\, then the last theorem also gives 

us 52 :=  5 such that 52 <  £\ and H£ /  H^x.

Repeating this procedure we obtain three infinite sequences: the decreas­

ing sequence of numbers

A  >  5 i >  52 >  . . . >  5„ >  . . . ,
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the sequence of nested sets, each one being a proper subset of the previous 

one,

and the sequence of nested clopen normal subgroups of G, also each one 

being a proper normal subgroup of the previous one,

G > H£1 > H£2 > . . .  > Hen > . . . .  (2.10)

T heorem  2.10. The series of numbers constructed above is convergent
oo

y Z £n < °°.
n= 1

Proof. Using the fact that each set H^  is a proper subset of the previous 

one we may find the following sequence

ho € B(e ,  A) \  hn^  e \  h £ ,

and therefore

U(h0,e l) c G \ H ei, U(hu e2) C  He i \ H e21 . . . ,  U(hn- U e n ) C Hen_x \  H£n. 

It follows that the balls

U[hi—i , £j), i 1, 2, . . . ,  n,

are disjoint and
n

€i) C B{e , A +  ex) C B(e, 2A).
i—1

Observe that en < A < f?/6, then by properties (2.1) and (2.2) of fi one gets
n n

fi(U{hi-U£i)) = n iU ^U ih i -u S i ) )  < fjt(B(e, 2A))
i=1 i=l

2
< diam J5(e, 2A) < 4A < - R  < oo.

O

The required statement follows immediately. □
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C orollary  2 .11 . There is N  € N such that for every n >  N

Hen C B(e, A), 

is a compact subgroup of G and

lim diam H£n = 0.n—> 0 0

Proof. Observe that the last theorem implies that en \  0 as n —» 00. Then

the statement follows from Corollary 2.8. □

Lem m a 2.12. I f  0 < e < A,

e := sup{p | 0 < p < i,  H% ±  Hf }, (2.11)

H  is a subgroup of G such that for any p > £

He C H  C Hp (2.12)

and

H  ±  Hlt (2.13)

then

dist(H, Hi \ H ) = e .

Proof. Let us observe that e > e by Theorem 2.9, thus H  C HE by (2.12), 

and the assumption (2.13) guarantees that HE \  H  ^  0. The group structure 

implies that h~lHE =  HE and h~lH  =  H  for any h G H  C HE, therefore

dist(tf, Hi \ H )  = dist(e, H~e \  H) p.
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Since He C H , the sets He and H g \ H  are disjoint, thus

p =  dist(e,H i \ H )  > e.

On the other hand,

p = d ist(tf, Hi \ H ) < i ,

otherwise there is no e-chain with points in H  and Hg \  H , which contradicts 

to the definition of Hg.

We have just proved

£ < p < £ < A, 

therefore B(e , A) contains points of Hg \  H  and

H A /  . (2.14)

If we assume that p > e, then not only H  C Hp by (2.12), but also

H = Hp, as there is no p-chain with points in H  and H g\H .  Then according

to (2.14)

e < p < e ,

which contradicts to the assumption (2.11). It follows that p = e and the 

lemma is proved. □

T heorem  2.13. Let 0 < e < A and

e := sup{p | 0 < p < e, H f  /  H^} .

Then the number of cosets of the quotient group Hg/H£ which intersect 

B(e, A) is finite. Moreover, the distance between distinct cosets of Hg/He 

is at least e and the distance e is attained from every coset to some other 

coset.
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Proof. As He is a normal subgroup of Hg by Lemma 2.4, there is a quotient 

(factor) group H i/H e, which consists of disjoint cosets. Observe that H A 

is covered by distinct disjoint cosets intersecting B(e, A). Let us take any 

one representative ga G H A, a  G I  ( /  is a set of indices), from each coset 

intersecting B(e, A), then

H f  C ( J  gaHc
aei

or

H A c { J ( g aHs)A c [ J g aH*A,
a£l a£l

since (gaHe)A C gaH^A. The sets gaH*A, a  G / ,  are disjoint, contained in 

£(e, 3A) and have equal positive n measure

n(gaH 2A) =  a  € I,

and

M(tf£2A) > > 0

by (2.1) and the fact that U(e,e) C H A (e < A). The number of such sets 

gaH}A, a  G / ,  is finite, since by (2.2)

//(£(e, 3A)) < diam £(e, 3A) < 6A < R  < oo.

By Theorem 2.9 H  = He satisfies assumptions of Lemma 2.12, therefore

dist(tf£, H, \  He) = dist(e, Hi \  He) =  e. (2.15)

It follows that for distinct cosets He /  gHe (g £ He)

dist(ff£, gHe) =  dist(e, # i/£) > e. (2.16)
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On the other hand, as Hf' /  HA (Theorem 2.9) there are non-zero but finite 

number of distinct cosets gHe /  He intersecting B(e , A). The equality (2.15) 

implies that for some of them

dist(tfe, gHe) =  e. (2.17)

Then (2.16) and (2.17) imply that for any pair of cosets gHe /  gHe

(g-'a i  h .)

dist(gHe, gHe) =  dist{Hc, g~lgHc) > e, 

and the distance e is attained from every gHe to some gHe. □

T heorem  2.14. Let 0 < e < A and

e := sup{p | 0 < p < £, Hf/ /  H f } .

Then the quotient group H i /H e is generated by all cosets £ distant from He,

i.e.

H i /H e =  (pjii/g, g2He, . . . ,  gpHe), 

where gj € Hi and gjHe are all cosets such that

dist(JTe, gjHe) =  e, j  = 1 ,2 , . . . ,  p.

For any g G Hi there is a chain of points

9 ~  90i 9 ii  • • •)  9m 

in distinct cosets of H i /H e with gm G He such that

d(9i, 9i+1) =e,  i =  0 , 1 , . . . ,  m -  1 .
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Proof. First of all we observe that

H  ($15 921 • • • ? 9p) "

which is a subset of Hg, is also a subgroup of Hg. Indeed, for any g , h  G H  we 

have £ G 5 f t  and h  G h H e { g ,h  € (gu  g2, . . . ,  5P) C f t ) ,  and since H e < f t  

one gets

(T1 € ( 5 f t ) - 1 =  5_1f t  C i /

and

g h  G 5 f t  • h H e =  g h H e C 

Since f t  is a normal subgroup of f t  and

He c H c  Hg,

f t  is also a normal subgroup of i / .  It follows that

H /H e =  (y\He, h H e , . . . , gpHe> C

Let us prove that for any g G H  there is a chain of points

51 =  9oi gi: • • • , gm

in distinct cosets of H /H £ with gm G f t  such that

d(0i}0i+i) =  e, z =  0, l , . . . , m - 1.

Since the group structure implies that

dist ( f t ,  gjHe) =  dist(e,5j f t )  =  £

and (5j f t ) A is compact, the distance e  is realized between e and some point 

of 5 jf t-  Therefore without loss of generality we may assume that

d(e,gj )=£,  j  =  1 , 2 , . . . ,  p. (2.18)
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For any g £ H  we have

P - ^ e  ^  H /  He = {g\He  ̂ ^2 H e j • • • j 9pHe) 5

then

<r]tf£ =  (-giHer ( g 2H£r  ■ ■ ■ au H cr -  =  • ■ •$£*#«>

where

9i ^  {pi j P2j • • • j Pp} 5 ^  ^

It follows that

p p r p 2a2--*p^m e F £.

We may also assume that the cosets

He,  (giHe)a\  (hHe)*'{hHe)*2, (9lHe)ai{92He)a2--{9mH£)arn

are all distinct. Then (2.18) implies that the chain

P, PPi“\  9 9 T 9 ? i P P rP 22 '--Pmm

has the required property.

The theorem follows once we show that H — Hi. Let us assume the 

opposite, H  ^  Hi, and derive a contradiction.

Observe that H  C Hp for any p > e, as we have just proved that any 

g £ H  can be p-chain connected to a point of He, and hence to e £ He. Then 

H  satisfies all assumptions of Lemma 2.12, therefore

dist(tf, Hi \ H )  = dist(e, Hi \ H )  = e. (2.19)

As i / A 7̂  HA by (2.14) there are non-zero but finite number (by the previous 

theorem) of distinct cosets gHe £ (H i/H £) \ (H /H £) which intersect B(e, A).
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The equality (2.19) implies that for some of them

dist(e, gHe) =  e,

or equivalently

dist (He,gHe) = e.

It means that

9^e  ^ 92H£1 • • • , 9pH£] C H / H e,

which is a contradiction. Therefore H  = H£ and the proof is finished. □

Now we are prepared to prove Theorem 2.1.

Proof of Theorem 2.1. Corollary 2.11 guarantees that nested subgroups of G 

in the sequence (2.10) are compact starting from some number iV e N and 

diam H£n < R. Since a diameter of a compact group is realized from any 

point, there is g0 G H£N (go /  e) such that

diam H£N =  d(e,g0).

As lim^oo diam H£n = 0 there is n0 > N  such that

#o £ H£nQ \  H£nQ+1.

By Theorem 2.14 there is a chain of points

(0) (o) (0)9o = 9o \ g \  = 9 i

in distinct cosets of the quotient group H£nQ/ H £riQ+1 with gi G H£tiq+1 such 

that

d (S i° \ 9i+i) =  £no+i. * =  0 , 1 , . . . ,  m 0 -  1.
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The balls

U(.9i j ^no+1 )j  ̂ TTIq 1,

contained in H£riQ \ H e +1 are disjoint, being in distinct cosets of H£tiq/ H eno+1.

We continue the construction in the same way. On the step k > 1 if 

9k 7̂  e, we may find nk > nk-i  such that

9k £ Henk \  H£nk+1'

Applying Theorem 2.14 we get a chain of points

(k) (k) (k)9k = 9o \ 9 i  ' , •••,  0^ ' = 9m  

in distinct cosets of He /H e +1 with gk+i G H£nk+l such that

=  £nt+i. * =  0 , 1, . . .  ,m* -  1.

The balls

U{g\k\ £ nk+1), 2 =  0, 1, . . . , TO* — 1,

contained in He \ H e +1 are disjoint, being in distinct cosets of H£nk / H£nk+1. 

The construction is stopped once gk — e.

We will only show how the contradiction can be derived in the case gk /  e

for all k > 0. The case gk = e for some k > 0 will lead to the contradiction

in a similar way.

Suppose that gk /  e for all k > 0. The sets

* =  0,1 .........

are disjoint, and so are the balls

U(9ik\ e nh+i), 2 =  0 , 1 , . . . , ™ * - ! ,  A; =  0,1, . . . .
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Since £„t+i < A < R / 6 and £„t+i < ii(U(glk\ e „ k+1)) by (2.1), the property 

(2.2) and the countable additivity of p imply

oo rn .j-1  oo m j - 1

H II e"j+1 < H II = /,(LJj°=i)ufeo’1 U ( g ^ \e ni+i))
j=0 i=0 j —0 z=0

< p(HeN) < diam H6n < R  < oo.

On the other hand, we have

k m j - 1 k m j - 1

H II e"i+i =  H II d(SiJ)'Si+i) ^  d ( 9 o \ 9 m l )  =  d(So,ftt+i)
j'=0 z=0 j=0 z=0

> d(g0ie) -  d(gk+ue) > diam H£n -  diam Henk+l. 

Letting k —» oo and taking into account that lim^oo diam H£n =  0 one gets

oo m j — 1

5Z S £ni+1 -  diam ^ ,
j=0 z=0

which contradicts to the estimate obtained earlier, and the proof concludes.

□

2.2 P roof of the Main R esult

Finally we are ready to prove the main result of this chapter -  the generalized 

Besicovitch 1/2-conjecture holds in 1-dimensional locally compact group G.

T heorem  2.15. I f  G is a locally compact group with an invariant metric d 

and the Haar measure H 1, then

ffi(G) <
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Proof. In Theorem 1.14 we may put s = 1, X  = G and A  to be a compact ball 

B(e,So). Such a ball exists, as the group G is locally compact, y }  measure 

of the ball is finite by properties of the Haar measure. Then the statement 

(iv) implies that

Dn i ( y \ B ( e , 6 0),g) < 1 

at H} almost all g G G, therefore 

{H1, G, g) < 1

at some g G U(e,So) as y 1(U(e, £0)) > 0. By the invariance of the measure

R }  it is true at any g G G. That is, independently of g G G for any e > 0

there is 5(e) > 0 such that

y ' i S )  < (1 +  e) diamS, 0 < diam S < 8(e). (2.20)

The case diam S' =  0 follows from the definition of the measure y 1.

Suppose a set E  C G, 0 < y l (E) < oo, at y }  almost all of its points 

fulfills

D x( E , g ) > 1- .  (2.21)

Once we prove that E  is rectifiable, then Definition 1.13 will imply that 

<71 (G) < 1/2.

It follows from (2.21) that

D 1( G , g ) > D 1{ E , g ) > 1-

at y 1 almost all g G E, therefore by the invariance of the measure y }

& ( G , e ) > i .  (2 .22)
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We may add some small positive number 5£o (0 < £o < 1/10) 1° the right- 

hand side of (2.22). Again that inequality remains true at any g G G. It 

follows that for some r0(£o) > 0 and all 0 < r < r0(eo)

U \ B { g , ( l - e , ) r ) )   ̂ 1 ,
 j--------r~-------  > -  +  b£0,

(1 -  e0)2r 2

therefore

n \ U { g , r ) )  ^  n 1( B ( g , ( l - e 0)r)) _ 1 -  e0 (1  , e_ ' U  1 , _
(1 +  ffo)2r *  ( T T ^  > r ^ ( 2 + 5£oJ > 2 + £ °- (2'23)

Put R — min{r0(£o), ^(^o)}5 then (2.20) and (2.23) show that the Haar mea­

sure

{x =  — %l
l + ^ o

satisfies properties (2.1) and (2.2). Let 0 < A < R j 8 be such that the ball 

B(e , A) is compact, then B(e, A) is not totally disconnected by Theorem 2.1. 

Hence there is a connected subset C C B(e, A) of positive TL1 measure, as 

all 7 ^ -null sets are totally disconnected (see Lemma 4.1 in [11]). We may 

also suppose that C is closed (consider its closure if it is not), and therefore 

compact. A connected compact C with /H1(C) < oo is rectifiable by Theorem 

1.12.

Let us prove that the ball B(e , A) is rectifiable. According to (2.20) %l 

measure of U(e, 4A) is finite

H l {U(e,AA)) < (1 + e 0)diam [/(e,4A ) <

Let

C/(e, 4A) =  Gi U G2 and Gx n  G2 =  0,

where G\ is rectifiable and G2 is purely unrectifiable parts of U(e, 4A). Since 

C is rectifiable subset of B(e, A) of positive V} measure, then up to a null
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set

C C <?i n  f/(e, 2A)

and

W1(GinC/(e,2A)) >0 .

Suppose also that

n 1(G2nU{e12A)) > 0.

Notice that for any g £U(e,  2A)

U (e, 2A) C gU(e, 4A) =  gGx U gG2,

where gG\ and gG2 are rectifiable and purely unrectifiable parts of gU(e, 4A). 

Since the intersection of rectifiable and purely unrectifiable sets is always a 

null set, gG\ and gG2 coincide on C/(e, 2A) with G\ and G2 respectively up 

to a null set. It follows that

H \ G X Cl B(g, r)) =H l (gGx n  B(g, r)) =  H 1 (G, n  B(e, r))

for any g G U(e, 2 A) and small enough r > 0, and if one of densities D x (Gx, g) 

or D x(Gi, e) exists, then so does the other one and they are equal. The same 

is also true for densities Dx(G2,g) and Dx(G2,e).

The statement (iii) of Theorem 1.14 with s = 1, X  = U(e, 2A), 

A =  G\ fl U(e, 2A) and — implies that

D 1{G1nU{e,2A),g) = 0

for H 1 almost all points

g e U(e, 2A) \  (Gx n  U{e, 2A)) =  G2 n  U(e, 2A).
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Let <7i be one of such points. Therefore for small enough r > 0 we have

which contradicts to (2.22). It follows that G2 H U(e, 2A) is a null set, thus 

the ball U(e, 2A) and its subsets, in particular B(e, A), are rectifiable.

Let E0 be a subset of E  satisfying (2.21) in every point g G E0, then 

E  = Eo up to ?{1-null set and 0 < ^ { E q) =  'Hl {E) < 00. According to 

(2.21) for every g G E0 there is some 0 < rg < A /5 such that

B(gi,r) c  C/(e,2A),

and thus

0 =  Di(Gi  D U(e,2A), gi) = lim
r \ 0

H 1(G1n U ( e , 2 A ) n B ( g u r)) 
2 r

— Di(G\,gi) — Di(Gi,e).

We obtain in a similar way that

D1(G2 DU(e,2A),g) = 0

for U 1 almost all points

g G U(e, 2A) \  (G2 n  U{e, 2A)) = G 1 n  U{e, 2A).

Let g2 be one of such points, then

0 — D i (G2, g2) — D l (G2, e).

Hence

D ^G , e) =  A(C/(e, 4A), c) =  Di(Gu e) +  A (G 2, e) -  0,

t f ( 5 0 n % r ) ) > r ,  0 < r < r g. (2.24)
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Therefore Eq has the following covering

£ o C  U  B (g ,rg),
9̂ -Eq

then by Remark 1.5

£ 0 C (J B(g,5rg),
geEi

where E\  C E 0 and the balls B(g,rg), g £ E\,  are disjoint. Notice that the 

union (set E{) is countable, since: 'H1(E 0) < oo,

|J (E0 n B ( g , r g)) C E 0,
g£E\

the sets in the union above are disjoint and have positive H 1 measure by 

(2.24).

We have already shown that B(e , A) is rectifiable, then so is B(g, A) for 

any g £ G. The balls B(g,brg) C B(g, A), g £ are also rectifiable, 

and so is E 0 which they cover. Therefore E  is rectifiable and the proof is 

finished. □



Chapter 3

Isodiametric Problem in 

Groups with Dilations

3.1 Isodiam etric Inequality and Besicovitch  

1/2-Problem

As we have already mentioned in Chapter 1, the isodiametric inequality states 

that a metric ball maximizes the volume for the given diameter. This fact is 

well known in Euclidean spaces Rn (see [10, 2.2] or [12, 2.10.33])

Cn{A) < a(n) ( ^ i ) "  , i c r .  (3.1)

We call a set which maximizes the volume for the given diameter the 

isodiametric set, alternatively we say that such a set has the isodiametric 

property. If a ball is not the isodiametric set, then we say that the isodia­

metric inequality or the isodiametric property fails for a ball.

In this chapter we show that the isodiametric property of balls may fail

51
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in non-Euclidean spaces, in particular in the Heisenberg group HP (n G N) 

and in the additive group Rn+1 (n G N) with non-isotropic dilations.

We also give estimates for the ratio of the volume of a ball to the maximal 

volume of a set of the same diameter.

We have already mentioned in Chapter 1 that the first counterexample to 

the generalized Besicovitch 1/2-conjecture has recently been constructed by 

Schechter [41]. As a consequence of our results we obtain simpler counterex­

amples to the generalized Besicovitch 1/2-conjecture in groups with dilations.

We will work in the setting of a locally compact group (G , ■) equipped 

with

(i) dilations 6r : G —> G, r > 0, which form a group of automorphisms of 

G such that

=  identity and Srs =  Sr o 6S, r, s > 0,

(ii) a left invariant and homogeneous with respect to dilations metric d, i.e.

d(9-9u9-92) = d{gu g2), g, 91,92 € G,

and

d{Srgu 6rg2) =  rd{gu g2), gi,g2 e G ,  r > 0.

We call such a metric homogeneous or compatible with left translations and 

dilations.

Let e be the identity element of G and the Hausdorff measure R n (n G N) 

be a left Haar measure on G. Properties of the metric imply that H n is not 

only left invariant

Hn{g-A) = Un{A), g & G, A c  G,
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but also homogeneous with respect to dilations, i.e.

n n(SrA) = r nn n(A), A c G .

In the next theorem we establish a connection among the isodiametric 

inequality, the density Dn(G,e) and the “density constant” an(G).

T heorem  3.1. Let G be a locally compact group with a homogeneous metric 

d and the left Haar measure W 1, then statements (i) -  (Hi) hold.

(i) For any g G G

Dn(G,g) =  Dn{G,e) = ----  — -r- < 1.
v v ’ sup{"H"(£>) | diam£> < 2} -

(H) U a diameter of a ball is double of its radius, then the isodiametric 

property of balls is equivalent to Dn(G,e) = 1.

(Hi) I f  Dn(G,e) < 1, then the group G is purely n-unrectifiable and

&n(G) = Dn(G,e) < 1.

Proof, (i) According to Definition 1.10 n-density of G at g G G is

n  ^  x r  K n(B(g,r))Dn(G, g) = lim    -----.
r \ o  (2 r)n

The homogeneity with respect to dilations and left invariance of FLn imply 

that
-Hn(B(g, 1)) 1))

Dn(G,g) = ------ —------= ------- —------- =  Dn(G,e). (3.2)

Let n =  ip = H", then by Theorem 1.14(i, ii) one gets

D-fin('Hn,G,e) = limsup { A  I e e S', 0 < diam 5 < r l  =  1.
r \ o  [(d iam o)n J
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Again by properties of 'Hn the last equality yields

sup{'Hn(D) | diam D < 2} =  2n,

which together with (3.2) implies (i).

(ii) This follows from (i) and the fact that a diameter of a ball is double 

of its radius.

(iii) If we assume otherwise, G contains a n-rectifiable set of positive 

nn measure, then by Theorem 1.1 and Theorem 1.14(iv) there has to be 

g G G such that Dn(G,g) = 1, and therefore Dn(G,e) = 1, which is a 

contradiction. It is clear that for purely n-unrectifiable group G the equation 

in (iii) holds. □

We use the last theorem to estimate Dn(G,e) and crn(G) when G is the 

Heisenberg group HP (n G N) or the additive group Rn+1 (n G N) with 

non-isotropic dilations. Since a left Haar measure is unique up to positive 

constant multiples, we may use not only Hausdorff, but also any other left 

Haar measure of the group G to simplify our estimates. The Lebesgue mea­

sure, which is easy to compute, will serve us as an alternative Haar measure 

in groups considered in this chapter. In order to give a lower estimate for 

Dn(G, e) and an(G) as accurate as possible we will also need a “good” upper 

estimate for the volume of a set of the given diameter. When we know which 

set maximizes the volume for the given diameter, the density Dn(G,e) can 

be calculated precisely.

Once we show that for some group 1/2 < an(G) < 1, it gives immediately 

a counterexample to the generalized Besicovitch 1/2-conjecture. But we don’t 

emphasize specially those counterexamples in the rest of the chapter.
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3.2 The Heisenberg Group

The Heisenberg group has become a subject of increasing interest in recent 

years. It finds its applications in a broad range of disciplines: quantum 

mechanics, harmonic analysis, complex analysis, partial differential equations 

and geometric measure theory, to name a few. The reader may consult [4],

[29] or [42] for extensive and thorough information on the subject. We only 

deal with those aspects of the Heisenberg group that concern the isodiametric 

inequality, densities and surface measures (the last question is considered in 

Chapter 4).

The Heisenberg group (IF , •) (n £ N) is the set

C1 x R= {(z,f) | z e C", t £ M} 

with the multiplication law

(z, t) • (iu, s) = (z + w,t  + s + 2 Im(z, iy)), (z, t), (w, s) £ C  x E . (3.3)

It is a non-Abelian group with the identity element being the origin 

0 =  (0,0) £ C™ x R and the inverse (z , t)~l = (—z , —t). We write an el­

ement of the group in several ways (x,y,t)  =  (x +  iy,t) = (z , t ), where 

x ,y  £ Rn , t £ R and z £ C” . It follows from (3.3) that the group operation 

can also be defined as

(x, y, t) • (x\  y \  t') =  (x +  x', y +  y', t + t' + 2{{y, x') -  (x, ?/'))), (3.4)

where (x,y,t ),  (x^y^t ')  £ IF . The formula (3.3) also implies that the group 

law is invariant under rotations of the coordinate system of the underlying 

space R2n+1 about the last (vertical) direction.
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In the Heisenberg group there are natural left translations

Thh! = h - h!, h, h! e HP,

and dilations

Sr(z,t) =  (rz ,r2t), r > 0.

The differential structure of HP is determined by the following so-called hor­

izontal vector fields

which are left invariant with respect to the group law (xj,yj £ R are compo­

nents of vectors x ,y  £ Kn). The Carnot-Caratheodory (CC) metric dc on HP 

is defined using horizontal vector fields via admissible curves as follows. A 

Lipschitz curve 7 : [0,1] —>• HP is called admissible if its tangent is spanned 

by Xj  and Y3

7(«) =  X A ( “ ) ^ ( 7 (“ ) ) + E l Cn+ ^ Y^ u^
j= 1 3=1

for a.e. u G [0,1] with Cj € L^O, 1], j  = 1, 2, . . . ,  2n. Then the Carnot- 

Caratheodory length of 7 is given by

The Carnot-Caratheodory distance dc : HP x HP —> [0,00] between points 

h, h' G HP is the infimum of lengths of all admissible curves joining these 

points and infinity if no such curves exist

n n

dc(h,h') = inf{/(7 ) | 7 is admissible, 7 (0) =  h, 7 (1) =  hf}.
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It appears that any pair of points can be joined by admissible curves 

(Chow’s theorem, see [8] and also [3], [18]) and the infimum is attained on 

so called geodesic curves (see [17, Theorem 1.10]). This metric is compatible 

with left translations and dilations and metrizes the Euclidean topology of 

R2n+ i. The Hausdorff dimension of HP with respect to the CC metric is 

2n +  2, which is strictly greater than the topological dimension of the group, 

2n +  1. 'H2n+2 and £ 2n+1 are left invariant and also right invariant Haar 

measures on HP (see [3], [29] and [42]).

The equations of geodesic curves, and thus of spheres with respect to the 

CC metric can be found in the literature, see for instance [3], [16], [29] and

[30]. It is known that the r-sphere dBr in HP is a hypersurface of revolution 

obtained by rotating the curve given by parametric equations (3.6) about the 

vertical T-axis (see Fig. 3.1 and 3.2)

sin^ . 9 / l  sin2<j>\ ^
xA<t>) =  r _ ^_ > = r  [ l ~  ~202~ ) ’ M -  n - (3-6)

From now on we will only focus on the group HI1, but all our results can 

easily be extended to Heisenberg groups of higher dimensions.

The parametrization of the sphere implies that the CC distance from the 

origin to a point on the C-plane is just the Euclidean distance, dc(0, (z, 0)) =  

\z\. If \z\ = r, then both (^,0) and (—z,0) are in Br and

dc( ( - z ,  0), (z, 0)) =  dc(0, ( z, 0 )-1 (z, 0)) =  dc(0, (2z, 0)) =  2 |z| =  2r,

therefore diamJ5r =  2r.

As the poles of the r-ball are N  =  (0, r 2/ 7r) and S  = (0, —r 2/ 7r), we have 

the following relation between the Euclidean | • | and the CC distances from
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T

X

Figure 3.1: The central vertical section of the unit sphere dB\

the origin to points on T-axis

|p| =  ^  =  * M  P e { N , S } .
7r 7r

Then the distance between points on the same vertical line is

d c( ( z , t ) ,  ( z , s ) )  =  d c(0, ( z , t )  ^ s ) )  =  dc(0, (0, s -  t ) )  =  k \ s  -  11, (3.7) 

and therefore

dc(N: S) = \J7r • = y/2r.

Let us prove the following statement.

Lem m a 3.2. One of the poles of Br is the most distant point of the ball from 

another pole

sup{dc(5, h) | h 6 B r} = dc(N, S) =  y/2r
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Figure 3.2: The unit ball B\ in H1

and

sup{dc(N , h) \ h e  B r} = dc{N, S) = V2r.

Proof. We will prove only the first formula, the second one is proved similarly. 

We have just shown the equality dc(N, S) = y/2r, hence we only need to check 

that dc(S,h) < \/2r, h G B r, or equivalently (see Fig. 3.3)

S - lB rC (3.8)

Let

tr((/)) = r2r  , 0 < (j) < 7r. (3.9)

Note that r ( 0) =  ti(7r) =  l / i t .  Then the balls B r and B have the following 

representation
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T

X

Figure 3.3: The central vertical section of spheres S ldB\  and d B ^

b V2r =  ^ Hl I M  < H < 2r2r '

As 5 - 1S r =  (0 , r 2/ 7r)Br the statement (3.8) is true once we show that for 

(z, t) G Br
r2
 h t7r

< 2r t
V2i

or

— + r 2r  f ^  ) < 2r 2r
71- \  r /  \ \ / 2  r

Let \z\/r = x  G [0,1], then we should check that for 0 < x < 1

I  + t ( x ) < 2t ( J l ) . (3.10)

For i  =  0 we have the equality. If we show that
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and for 0 < x  <  1

d 2 (  1 . . /  x  \  \  d 2r  (  x  \  d 2r  . N
- - - r ( ^ ) + 2 r  ^  (x )> 0 ,

dx2 \  7r \  a/2  J 7 dx2 \  y/2 7 dx2

then the inequality (3.10) will follow immediately. It is enough to make sure 

that d r / d x ( 0) > 0 and c p T / d x 2(x)  decreases on [0,1).

Towards this end let us find the first three derivatives of t r with respect 

to x r

d t r d t r /  d x r
d x r d(f) /  d(f) ’ 

d 2t r d  (  d t r \  d  ( d t r /  d x r \  d  f  d t r /  d x r \  /  d x T

d x 2 d x r \ d x r J  d x r \d( j )  /  dcj) J d(f> \d(f)  /  d(f) )  /  d(f)

and

d 3t r d  ( d 2t r \  d  (  d  ( d t r /  d x r \  /  d x r \  /  d x r

dx"3 dxr \  dx2 7 d(f) \d(/) \d(f) /  d(f) J /  d(f) )  /  d<f> 

Computations show that

dtri±\ 2 cos <f> /011a_ (0) =  _ r _ _  (3.11)

d^tr ( _  2(cos (/> + </> sin 0) 
dx2 (j) cos 0 — sin 0

and

It is clear that

The expression

dHr ($)  =  2<t>4
d x 3 r(cf) cos  4> — sin^)3

0 cos ^ — sin 4> = cos </>(</> — tan 0)

is negative for 0 < </> < 7r and vanishes at </> =  0. Therefore d 3t r / d x 3((f)) 

is also negative for 0 < (/> < n.  Thus taking the definition (3.9) of r  into
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account we conclude that

d2T (Pt\
= ~dx{ X = X l ° - x < 1 ’ 0 < ^ -  7r’

and d?r/dx2(x) decreases on [0, 1). □

The statement we have just proved allows us to add a “small” set to 

a pole of B r without increasing the diameter of the ball but increasing its 

volume, which violates its isodiametric property.

T heorem  3.3. The isodiametric inequality fails for the ball Br.

Proof. Let

Dr = Br U B ( N \N , (y/2 — 1 )r),

where N  = (0 ,r2/7r) and iVi =  (0, (y/2 — l )2r2/n) are north poles of B r 

and B(^2_xy  respectively. Note that the south pole of B ( N iN , (y/2 — l)r) is 

N ^ N i N  =  N. Then diamDr = diam J9r =  2r, since

diam B(N\N, (y/2 — l)r) =  2(y/2 — l) r  < 2r

and by the previous lemma

dc{h\i h2) < dc(hi ,N)  +  dc(N, h2) < y/2r +  y/2(y/2 — 1 )r =  2r

for any hi £ Br, h2 £ B(N\N, (y/2 — l)r).

Let us compare volumes of Dr and Br. We will prove that there is e such 

that

B (N xN,e)  C B(NiN, ( V 2  -  l)r) \  Br.

Indeed, it is clear that

B {N 1N , e ) c B ( N 1N , ( y / 2 - l ) r )  if e < (V2 -  l) r
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and

B (N 1N , e ) n B r = 0 if e +  r < dc(0, N XN).

According to the equation (3.7)

dc&N^N)  =  \Jr2 + (\/2 — l)2r 2,

then e satisfies both conditions above if e < r J  1 +  (\/2 — l )2 — r. Since 

£ 3(F?(A  ̂A", e)) =  C3(Be) > 0, it follows immediately that

C3(Dr) > C3(Br).

□

Remark 3.4. The last theorem together with Theorem 3.1 implies that H1 is 

purely 4-unrectifiable and

cr4(H1) -  A Q H M ) < 1.

Ambrosio and Kirchheim [1] have even proved that H1 is purely k -unrecti­

fiable for k = 2,3,4. However, authors point out that this statement doesn’t 

hold for k =  1. More general results of this kind can be found in Magnani’s 

thesis [22]. The shortage of rectifiable sets in the Heisenberg group prompt 

researchers in the field to use an alternative, more intrinsic notion of recti- 

fiability (see [13], [14], [28] and [33]). For example, authors of [13] and [14], 

Franchi, Serapioni and Serra Cassano, have successfully used a new notion of 

rectifiability replacing Lipschitzian images of subsets of the Euclidean space 

in the classical definition (see Definition 1.11) by level sets of C l (in the in­

trinsic sense involving the differential structure of HP) real-valued functions 

on the Heisenberg group.



CHAPTER 3. ISODIAMETRIC PROBLEM 64

T heorem  3.5.

C \ B r)
>  0.825.sup{£3(D) | diamD < 2r}

Proof. Let us note that the orthogonal projection of H1 on the C-plane with 

the Euclidean distance is Lipschitz with constant one

dc((z, t), (w,s)) > | (2 ,0 )  -  (w, 0)| = \ z -  it;|, {z,t), (w ,s ) <E H 1.

Indeed, we obtain

dc((z,t), (w ,s )) =  dc(0, (w — z, s — t — 2Im(zw))) > dc(0, (w — 2 , 0 )) = \w — z\,

since (w — z, s — t — 2 Im(zw)) £ U\w- Z\.

Let D be any set of the CC diameter at most S. The closure of a set may 

only increase its £ 3 measure, but the diameter is unchanged by continuity 

of the metric dc, therefore we may assume that D is closed, and so £ 3- 

measurable set. The Euclidean diameter of the orthogonal projection of D 

on the C-plane is at most S as well. According to the isodiametric inequality 

in Euclidean spaces (3.1) the area of this projection is at most the area of 

the disk of the same diameter

line cannot be more than Cl of a vertical segment with the CC length J,

£ 2(projc D) < 7r

Let (2, t), (2, 5) G D, then by the equation (3.7)

y/n\s — t \ < 6  or |s — t\ < —.

Thus the linear Lebesgue measure C1 of the intersection of D with a vertical
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which is S2/n
S2

C \ D n { { z , t )  \ t e  M}) < —
7r

for any (z, 0) € projc D. Fubini’s theorem implies that

A2 A2 A4 £3(jD) < * 1  =  »
4  7T 4

On the other hand, the volume of the r-ball of diameter S = 2r is
/*7T

C3(Br) = 2?r /  xl(4>)t'T{4>) d<j> ss 0.2064<54. (3.13)
Jo

The exact coefficient is slightly more, therefore

> 4 • 0.2064 > 0.825.
£3(L))

We apply Theorem 3.1 to conclude the proof. □

Remark 3.6. As we have already mentioned, arguments used for HI1 can 

easily be extended to Heisenberg groups of higher dimensions. Thus the 

isodiametric inequality fails for CC balls in HP, by Theorem 3.1 HP is purely 

(2n +  2)-unrectifiable and

&2n+2 (HP ) = D2n+2(Un , 0) < 1.

Let us calculate a lower bound for cr2n+2(EP) in the same way as we did for 

(74 (H1) in the last theorem. Let diam D < S = 2r, then we have

2n P
7T

and

( r  \  

2 /

C ln+1(Br ) = 2 a ( 2 n )  f  x3n(<f>)t'r(<j>) d<f>
Jo

n ^ { t Y n+2 r  / s in (4 \2" / l  sin2<j>\'
=  2 a ( 2 n )  )  /  ( ^ )  (  -  -  )  d*.
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This gives us the lower estimate for

a2n+2(HT) =  Z>2n+2( H \ 0) =  Sup{£2„+1(£,) I diam D < 2r}'

which depends only on n and decreases to 0 as n —> oo, but for n up to 8 it 

is still strictly greater than 1/ 2.

3.3 The Isodiametric Set

In this section we show that the convex hull of the ball B r is isodiametric in 

the class of sets of revolution about the vertical T-axis having diameter 2r. 

However, we don’t know so far if this set is isodiametric in the class of all 

sets of diameter 2r.

For simplicity we continue considering the Heisenberg group H1, but again 

only minor changes are needed to extend our results to HP. The main result 

of this section is preceded by several auxiliary statements.

Lem m a 3.7. The set bounded by the curve 7 given by equations (3.6), T- 

axis and two tangents and l -n to 7 at points corresponding to 0 =  ± 7r is 

convex (see Fig. 3.4)-

Proof. First of all we check the behaviour of d2tr/dx2 (see the equation 

(3.12)). As already mentioned, cos0(0 — tan0), the denominator of the 

right-hand side of (3.12), is negative on (0,7r] and vanishes at 0 =  0. The 

numerator is 2 cos 0(1 +  0 ta n 0 ), it changes its sign on [0 , 7r] once from plus 

to minus at the point 0O such that 1 -f 0ot a n 0o =  0- Therefore d2tr/dxl((f)) 

is negative on (O,0o)5 positive on {4>o^] and vanishes at 0 =  0o- It is clear 

that the part of the curve 7 corresponding to 0 G (00, 7r] is above its tangent
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T

0 .

0 .

Figure 3.4: The curve 7 given by equations (3.6) with tangents ln and l-n, 

r — 1

In at (j) = 7r. The parameter (f) = (f)0 corresponds to the point of inflection 

of 7 , therefore 7 intersects In at some point with (j) =  <f>i < Another 

curve composed of ln between points (xr(n), tr(iT)) and (xr (< î), tr (0 i)) and 7 

between points (xr (</>i), tr (0 i)) and (a:r (0), tr (0)) has non-positive curvature, 

and therefore concave. In order to conclude the proof we just note that 7 

and U l-n are symmetric about the horizontal X-axis. □

Lem m a 3.8. Let z i , z2 £ C and \z2\ < \z\\, then

\lm(z1z2)\ < \z2Wz1 -  z2\.
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Proof. Let ip = arg z\ — arg z2, then

lm(ziz2) = Im(|zi| exp(i &rg zi)\z2\ exp(-2  arg z2)) =  |zi||z2| simp.

On the other hand, the cosine formula says

W -  ^212 =  N 2 +  \z2\2 -  2 |^111̂ 21 COS .̂

We have to check that

|zi|2|*2|2sin2^  < \z2\2{\zx\2 +  |-z2|2 -  2 |^i||^2| cos^)

or

|^i |2 sin2 ip < \zi\2 +  | z 2 |2 -  2 |zi||z2| c o s  ip, 

which is equivalent to

\zi |2 cos2 tp +  |z2|2 -  2 |^ i11̂ 2| cos^ > 0 .

Notice that the last expression is the full square of \z\ \ cos*ip — \z2\, therefore 

the inequality holds. The equality in the original inequality is possible only 

if z2 =  0 or cos ip = |z2|/|zi | (|zi| /  0). □

Lem m a 3.9. The diameter of any compact set K  C H1 is always attained

on its boundary.

Proof. Since dc{h\,h2) is a continuous function on H1 x H1, it attains a 

maximum on K x K  equal to diam K.  Let this maximum be attained at some 

points hi ,h2 £ K, dc{hi,h2) = diam K. We claim that it is necessary that 

hi ,h2 £ dK.  Let us assume that at least one of points, say h2, is not on the 

boundary dK.  Then h2 is an internal point of K , hence there is some £ > 0 

such that B(h2,e) C K.  On the other hand, h2 £ dB(hi,  diam if), therefore 

there is a point h £ B(h2,e) \  B(h\,  diam K)  C K  and dc(hi,h) > diamA',

which is a contradiction. □
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Remark 3.10. A left (right) group translation is a linear transformation of 

H1, therefore a plane translates to a plane, a line to a line, and a pair of 

parallel planes (lines) to another pair of parallel planes (lines).

Lem m a 3.11. Let T C H1 be a plane parallel to the C-plane, h2 E I \  and 

II C H1 be a vertical plane going through the vertical T-axis and the point 

h f lh2, where hi = (zi,t\)  E H1 and h2 =  (z2, t 2) E H1, Zi ^  z2. Then the 

tangent of the angle of inclination of the line I = h ^ T  n i l  to the C-plane 

is at most 2 min{|zi|, \z2\} and I intersects the vertical T-axis at the point

(0j t2 -  ti).

Proof. The statement of the lemma implies that

h2 E m / i i l l  and hil = T n hill.

Thus the line h\l is parallel to the C-plane and h2 G h\l. Since n  is a vertical 

plane going through 0 and h f lh2, h\ II is a vertical plane going through hi 

and h2. The plane T and the line hil intersect the vertical line going through 

hi at the point h = (zi ,t2). It follows that I intersects the vertical T-axis at 

the point h f lh =  (0,^2 — ^i)-

The vector h2 — h determines the direction of hil and the vector h f lh2 — 

h f lh determines the direction of I. Let us find coordinates of this vector

h f lh2 -  h f lh =  {-z i  +  z2, —ti + t 2 -  2 Im(2i22)) -  (0, - t i  +  t2)

= (-Zi + z 2, - 2 l m ( z i z 2)).

Therefore the tangent of the angle of inclination of I to the C-plane is 

2 | lm(ziz2)\/\zi — z21, which is bounded from above by 2 minjl^i|, \z2\} ac­

cording to Lemma 3.8. □
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Let Sr be the convex hull of the ball Br. It is clear dSr is a surface of 

revolution generated by rotating the curve given by parametric equations 

(3.14) about the T-axis (see Fig. 3.5)

(<h\ Sin^ U \ <  t  UiXr-W =  r —— , \</)\ < 7T, tr{(/)) =  <
sign( 0 r ( f ) if |  < \<f>\ < tr.

(3.14)

T

X

Figure 3.5: The central vertical section of dS\ and the unit sphere dB\

T heorem  3.12.

diam 5r < 2r.

Proof. According to Lemma 3.9 to prove this statement we only need to show 

that

diam d5r < 2r.
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Let us denote Ar = dSr Pi dBr and Cr = dSr \  dBr , then dSr = Ar UCr and 

Ar fl Cr = 0. We already know that diam dBr < 2r, therefore diam /lr < 2r, 

and we only have to check that dc(hi ,h2) < 2r or h i lh2 G B2r for any 

hi G A- U Cr and any h2 € Cr .

Consider a section of the set h^ ldSr by a vertical plane II going through 

the vertical T-axis and the point h i lh2, then

h i lh2 G h^CV n n.

Without loss of generality we may assume that h [ l h2 is on the XT-plane 

and II coincides with this plane. Note that Cr consists of two disks lying on 

parallel planes. Each disk is an open subset of the corresponding plane with 

the boundary in Ar. By Remark 3.10 the set h^CV also lies on two parallel 

planes. Since h i lCr is just the linear transformation of two disks, we have

h i lc r n n  =  f i  u z 2 ,

where and l2 are two parallel segments on the plane II (they may also be 

points, but it only simplifies the analysis). It follows that endpoints of these 

segments are in h i lAr.

Let h i lh2 G Zi, I be the line on which l\ lies, h\ =  (zi,t\)  G Ar U Cr 

and h2 = (z2, t2) G Cr, zi ^  z2. Then by Lemma 3.11 the line I intersects 

the vertical T-axis at the point h ^ h  = (0, t 2 — t\), h = (zi ,t2). Since 

\t2 — h\ < 2tr(7r/2) = t2r(7r), the point h i lh lies on the vertical T-axis 

between the poles of the ball B2r. We observe that if z\ =  z2, then h2 = h 

and h i lh2 =  h i lh G B 2r, which concludes the proof.

Lemma 3.11 also says that the line I has the tangent of the angle of



CHAPTER 3. ISODIAMETRIC PROBLEM 72

inclination to the C-plane at most

2m in { |z i | , |z2|} < 2|z2| < 2xr

As we can see from the equation (3.11)

dt2r ( , \ 
d ^ (±7r)

thus the part of the line I lying in the right half plane of II with respect to the 

T-axis is always between the tangents ln and to the curve 7 corresponding 

to B2r (see Fig. 3.4). If we show that endpoints of l\ are in B2r n  II, then 

Lemma 3.7 will imply that for the whole segment, i.e. l\ C B 2r n  n.

Let us consider two cases hi G Ar and h\ 6 Cr .

If hi G Ar, then endpoints of /1, being in h ^ A r ,  must also be in B2r n i l ,  

since 0 G h i lAr and

diam(/if1Ar) =  diamAr < 2r.

As we have just discussed, it implies that h i lh2 G /1 C 2?2r n ll, and therefore

dc{hi,h2) = dc(0,h i lh2) < 2r (3.15)

for any h\ G Ar and h2 G Cr. Note that I n T  = h ^ h  (or h\l fl h\T — h), 

but I j f lT  =  0 or h\li fl h{T C Cr fl h{T =  0, since projections of Ar and Cr 

on the C-plane are disjoint.

If hi G Cr, then endpoints of li, being in h i lAr, must be in B2r D II, 

because according to (3.15)

sup dc{fi,hilh') = sup dc{hi,h!) < 2r.
h'eAr h’eA T

It follows that li C B 2r n  II, and therefore dc(hi, h2) < 2r for any h i ,h2 G Cr 

or diamCr < 2r by the same reason used to derive (3.15). Note also that

4 r
?
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li n T  =  h i 1h (or hili n  hiT = h). Thus we have shown that dc(hi, h2) < 2r 

for any hi G Ar U Cr and h2 G Cr , as required. □

Lemma 3.13.

4 ( 0 ^ 1 ,  * l ) ,  ( * 2 , ^ ) )  <  ^ c( ( ^ 1 , 5 i ) , ( 2 : 2 , 5 2 ) )

if and only if

112 - t i -  2 <  |«2 -  si -  2 Im(^1^2)|-

Proof. Let

di = dc( ( z i , t i ) , ( z 2, t 2)) = dc{0, (zu t i ) ~ l {z2, t 2))

and

d2 = dc({zu  Si), (z2, s2)) = dc{0, (zu s i )~1(z2, s2)).

By the group multiplication law (3.3) one gets

(z i,* i)-1 (z2 ,*2 ) =  (z2 -  Z i M  -  ti - 2 l m ( z i z 2)) G d B dl

and similarly

{z i ,Si )~l (z2, s 2) =  (z2 -  z u s2 -  Si - 2 l m { z i z 2)) G d B d2.

It follows that

( z \ , t \ ) ~ l {z2, t 2) G B d2, 

or equivalently di < d2 if and only if

112 -  ti - 2 l m ( z i z 2)\ < \s2 -  si -  2 Im(z122)|-

□
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Lem m a 3.14. For any hi G dSr there is h2 G dSr such that dc(h\, h2) = 2r.

Proof. Let xr (0) and £r (0) be given by equations (3.14) and h\ =  (z, tr(</>)) G 

dSr, where \z\ = xr{<t>), \<j>\ < 7r. If |0| < 7t / 2, we put h2 =  (zexp(z7r + 

2*0), —tr (0)) G dSr . Let us find the distance between points h\ and h2. Let

h ^ h i  =  (zexp(27r +  2*0), — tr((f)))~1(z, tr((/>))

= (z — z exp(z7r + 2*0), 2tr (0) — 2 Im(z exp(*7r +  2*0)z)) =  (w, s),

then one gets

|iu| =  \z(l +exp(2z0 ))| =  |^exp(z0 )(exp(—*0 ) +  exp(z0 ))|

=  2 |d  cos0 =  2xr (0 ) cos0 =  ^  =  x2r(2<fi)
20

and

s =  2tr (0) +  2|z |2 Im(exp(2z0)) =  2tr (0) +  2x2(0) sin 20 

2 /  I sin20 \  /  sin0 \ 2 .

= *  u - V b H 1 * ) ^

If 7r/2  <  10| < 7r, we put h2 =  (z, —t r (</>)) G <9Sr, then

frj'/i, =  ( z , - i r{<j>)yl{z,tr{4>)) = (0 , 2tr (0 )) =  (o, 2 sign(0 )£r ( | ) )

=  ( i 2r(7r),sign(^)<2r(7r)).

In any case it follows that h^l hi G or dc(/ii, h2) =  2r. □
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T heorem  3.15. Sr has the maximal £ 3 measure among all sets of revolution 

about the vertical T-axis of diameter at most 2r.

Proof. Let D be any set of revolution about the vertical T-axis of the CC 

diameter at most 2r. As explained in Theorem 3.5, we may assume that D 

is a closed set. Then the Euclidean diameter of the orthogonal projection of 

D on the C-plane is at most 2r as well. This projection is a set of revolution 

about the origin, therefore it is contained in the closed disk of the C-plane 

centred at the origin and having the Euclidean radius r. Let

Dz = D n  {{z,t) | t G R}

and

uz =  sup{t G K | (z, t) G Dz}, lz = inf{£ G K | (z,t) G Dz},

where \z\ < r, and let xr{4>) and fr (0) be given by equations (3.14). We 

claim that for any z such that \z\ =  xr{4>) < r, 0 < 0 < tt,

Uz ~ h  < 2tr(</>). (3.16)

Let gi = (z ,u z) G D and h\ = (z ,ir((j))). If 0 < (f) < 7r /2, then using the fact 

that D is a set of revolution, we may choose points

g2 =  (z exp(i7r+2i(t)), lz) G D, lz < uz, and h2 = (zexp(i7r-\-2i(f)), — tr ((/>)).

Since dc(g2,gi) < dc(h2,hi) = 2r (Lemma 3.14), then Lemma 3.13 states 

that

|uz — lz — 2Im(^exp(27r +  2i(j))z)\ < \2tr(<j>) — 2 Im(z exp(z7r +  2i<f))z)\

or

uz — lz -t- 2\z\2 sin 2(f) < 2tr((/>) +  2\z\2 sin 20 ,
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and therefore uz — lz < 2tr((j)).

If 7r/2  < (j) < 7r, we choose

9 2  = ( z j z )  € D, L  < uz, and h2 = {z, - t r(<i>)).

As dc(g2,gi) < dc(h2,h\) =  2r (Lemma 3.14) again Lemma 3.13 implies that

lz ^  2tj*(0 ).

We conclude that the equation (3.16) holds, thus for any z such that 

\z\ = xr(4>) < r, 0 < (f) < 7r,

^ (L L ) < u z - l z < 2ir(<t>).

The proof is finished by applying Fubini’s theorem. □

Remark 3.16. Now we can make an upper estimate for a ^ H 1) more accu­

rate than just stating that cr^EI1) < 1 (see Remark 3.4). Using parametric 

equations (3.14) we find

which together with (3.13) yields

Taking also the lower estimate into account (Theorem 3.5) we conclude

0.825 < (74(H1) < 0.949.
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3.4 The Group R^+1

The same idea works also in the additive group Rn+1 (n G N) with dilations

Sr(x , t) =  (rx, rut), (x, t) G Rn x R, r > 0, a; =  2 , 3 , ,

and a metric d compatible with translations and dilations of the group. We 

denote such a metric space as RJJ+1 and the hyperplane t =  0 as X.  In 

this section we prove that the ratio of the volume of a ball to the maximal 

volume of a set of the same diameter may converge to 1, but the rate of such 

convergence cannot be faster than 1 / n 2 as the dimension n grows.

In the trivial case u  =  1 the group R^+1 is just a normed vector space 

(d-distance from the origin is a norm) and the isodiametric inequality always 

holds for balls (follows from Theorem 1.1 and Theorem 3.1(ii)).

It is clear that 7/n+w and Cn+l are Haar measures of the group. The 

identity element of the group is the origin 0 =  (0,0) G Rn x R. Observe 

that d-distance from the origin is some norm || • || on the hyperplane X , 

since the metric d is compatible with translations and dilations of RJ+1 • Let 

(0,1) G dBi, then the distance on the vertical axis is

d((0,t),(0,s)) =  I s - i l 17" (3.17)

Lem m a 3.17. The orthogonal projection of RJ+1 on the hyperplane X  is 

Lipschitz with constant one.

Proof. Using the translation invariance of the metric it is enough to prove 

that d(0, (x, 0)) < d(0, (x,t)) for any (x,t) G Rn x R. If d(0, {x,t)) = 6, we 

have

26 > d((—x, —t), (x, t)) = d(0, (2x, 21)) =  2d(0, (x, 21~UJt))
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or d(0, (x, 21-a;t)) < S. Continuing in this way we get

d(0,(®,2n(1- w)t)) < 5

for any n E N. It follows that

d(0, (x, 0)) — d((x, 0), (x, 2n(l~UJh)) < d(0, (x, 2n 1̂-CJH)) < S,

where by the property (3.17)

d((x, 0), (x, 2n^ - uk)) = d{0, (0, 2n(1- w)t)) =  (2n(1~w)^)1/wi

Since 1 — u  < 0, the last expression approaches zero as n —» oo, therefore 

d(0, (x, 0)) <5. □

Lem m a 3.18. The metric d induces the same topology on RJ+1 as the Eu­

clidean one.

Proof. First of all we notice that for any (x,t) E Rn x l

d(0, (x,t)) < d(0, (x, 0)) +  d((x,0), (x,t)) = ||x|| +  \t\1/u < 2 max{||x||, \t\1/uJ}.

(3.18)

On the other hand, Lemma 3.17 states that

d(0, (x, t)) > d(0, (x, 0)) =  ||x||, (3.19)

therefore

\t\l!u =  d((x, 0), (x, t)) < d((x, 0), 0) +  d(0, (x, t)) < 2c/(0, (x, t))

and

d(0, (x,t)) >  ^ |i |1Aj.
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Combining the last estimate with (3.19) we obtain

d(0,(x,t)) > max j | |z | | , i |* |1/wj  . (3.20)

The standard result of functional analysis says that all norms on Rn+1 as 

a finite dimensional vector space induce the Euclidean topology. We will use 

the norm max{||x||, |t|}, (x, t) G f  x l

Another standard topological result says that two metrics induce the same 

topology on a metric space if and only if any open ball with respect to each 

one of two metrics contains a concentric open ball with respect to the second 

metric.

We would like to show that the metric d induces the same topology as the 

norm max{||:r||, |t|}. Since d is translation invariant, we only need to check 

the above statement for balls centred at the origin, that is, we need to make 

sure that

(i) Vr > 0 3r' > 0 such that V(x, t) G Mn x M if max{||x||, \t\} < r', then 

d{0,(x,t)) < r,

(ii) Vr > 0 3r" > 0 such that V(:r, t) G Rn x R if d(0, (x , t )) < r", then 

max{||x||, \t\} < r.

The estimate (3.18) implies that

d(0, (x, t )) < 2 max{||x||, l l̂1̂ }  < 2(max{||x||, |t|})1//a;

if max{||a;||, |t|} < r' < 1 (then ||x|| < 1). Hence the statement (i) holds for 

r' < minKr/2)^, 1}. On the other hand, the estimate (3.20) leads to

max{||x||, |t|} < 2 max |  ||x||, — l1̂ ^  < 2d(0, (x, t))
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if d(0,(x,t)) < r" < 1/2 (then \t\ < 1 by (3.20)). So we may take 

r" < m in{r/2, 1/ 2} to satisfy the statement (ii). □

Remark 3.19. Lemma 3.18 implies that the closure of a set D c  Mn+1 in 

d-metric topology is closed in the Euclidean topology, thus £ n+1-measurable. 

The closure of a set may only increase its £ n+1 measure, but the diameter is 

unchanged by continuity of the metric d.

Remark 3.20. Let

doo(0, (x,t)) = max j ||x ||,  ^ | 1/w|

and

di(0,(x ,t)) =  ||x|| + \t\1/uJ 

be translation invariant metrics. It follows that

doo(0, (x,t)) < d(0, (x,t)) < di(0, (x,t)),

therefore the unit ball with respect to d contains the unit ball with respect to 

d\ and itself is contained in the unit ball with respect to d ^  (all balls being 

concentric).

Lemma 3.21. The triangle inequality holds for the metric d if and only if

Sa(x, t) + 6i-a(y, s) G Bi  (3.21)

for any (x, £), (y, s) € B\ and any 0 < a < 1.

Proof If the triangle inequality holds for d, then (3.21) follows easily.

Now suppose that the condition (3.21) holds. The triangle inequality is 

true if

d(0, SR{x, t) +  6r(y, s)) < d(0, SR(x, t)) +  d(0 ,6r(y, s)) =  R + r
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for any (x , t ) ,  (y,  s)  G B \  and any R  > 0, r > 0. It is equivalent to 

d { 0 , {&r (x , t ) +  6r (y,  s ) ) )  <  1

or

fi^R+r)-1 (^j t) “1“ ^r(/?+r)_1 (?/? ^)) 5: 1?

which follows from (3.21), if we put a = R(R  +  r )_1 G (0,1). □

Remark 3.22.

6a (x,  t )  +  S i - a (y,  s)  =  ( a x ,  a wJ) +  ((1 -  a ) y ,  (1 -  a ) u s)

=  [ a x  +  ( 1  — a ) ? / ,  a ut  +  ( 1  — a ) w s ) .

Lemma 3.23.

projx B\ = {(z,0) G Rn+l | ||x|| < 1}.

Moreover, if (x,t)>(x,s) G B\, t ^  s,  then the whole segment connecting

these points is in B\.

Proof Lemma 3.17 implies that if (x,t) G B\, then (x, 0) G therefore

projx J5i =  J5i D X.

It is clear that

B if lX  =  {(x, 0) G Rn+1 | ||x|| < 1},

and the first part of the statement of the lemma follows.

Let (x, t),(x , s) G B\, t /  s, then Lemma 3.21 and Remark 3.22 imply 

that for any 0 < a < 1

(x, ctut  +  (1 — cf)u s)  G B i .
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Let us define the function

ip {a) =  aut +  (1 — oi)us, 0 < a < 1.

The function ip is continuous on [0,1], -0(0) = s and ^ ( 1) =  t. Therefore by 

Intermediate Value Theorem ip takes any value between s and t, and thus 

the whole segment connecting (x,t) and (x, s) is in B\. □

Lem m a 3.24. Let the unit ball B\ be symmetric about the hyperplane X . If

\t2 — ^i| 5̂  l52 — si|j (3.22)

then

d((xi ,t i) ,(x2, t2)) < d{{xu si) , (x2, s2)).

Proof. Let

di =  d((xu ti), (x2lt2)) = d(0, (x2 -  x i , t 2 -  ti))

and

d2 =  d({xu si), {x2, s2)) = d(0, (x2 -  x i , s 2 -  Si)).

The statement of the lemma is trivial if s2 — Si =  0, therefore we may assume 

that s2 — Si 7̂  0. Since the unit ball is symmetric about the hyperplane X , 

so is Bd2 =  Sd2Bi- Thus a = (x2 — x\, s2 — si) and symmetric about X  point 

b = (x2 — xi, si — s2), a /  b, are in Bd2 or 6i/d2a, Si/d2b G B\. Therefore by 

Lemma 3.23 the segment connecting 8i/d2a and 8\/d2b is in B\, or equivalently 

the segment connecting a and b is in Bd2. The assumption (3.22) guarantees 

that the point (x 2 — X1X 2 ~ t\) lies on the latter segment, thus d\ < d2. □
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Lem m a 3.25. I f

{(*,<) € Rn+l I ||.r| < 1, |f| < 1} C B u  (3.23)

then the set

Dr =  {(x,t) G Rn+1 | ||z|| < r, |*| < 2UJ~1rUJ} (3.24)

has diameter 2r and maximizes Cn+1 measure for this diameter, it is the

isodiametric set.

Proof We use the argument similar to the one used for the Heisenberg group 

in the proof of Theorem 3.5. Let D be any closed set of diameter 2r (see 

Remark 3.19). By Lemma 3.17 the diameter of its projection on the hyper­

plane X  is at most 2r. As mentioned at the beginning of this section, the 

isodiametric inequality holds for balls in the normed vector space, therefore 

we have

£ n(projx £>) < a x (n)rn,

where ax{n)  is the volume of the unit ball {(x, 0) G Rn+1 | ||z|| < 1} in the 

normed hyperplane X.

The intersection of D with any vertical line again has diameter at most

2r, and hence its linear Lebesgue measure C1 is at most C1 of a vertical

segment of the length 2r with respect to the metric d, which is (2r)w

C \ D n { { x , t )  | t <E R}) < (2r)u

for any (x , 0) G projx D. Applying Fubini’s theorem one gets

Cn+1{D) < a x (n)rn(2r)“ = 2UJa x {n)rn+UJ
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for any set D of diameter 2r. Cn+l measure of the set Dr is exactly the 

right-hand side of the last estimate. It is easy to see that

Dr — Dr — 2Dr = {(re, t) £ Kn+1 | ||re|| < 2r, \t\ < (2r)w),

and the assumption (3.23) implies that

jDj' ^  ^ 2̂  ,

therefore Dr has diameter at most 2r. On the other hand, for any (rr, 0) £ 

dDr we have

d((—x, 0), (re, 0)) =  d(0, (2re, 0)) =  2r, 

moreover, for any (re, t), (—re, s) £ d.Dr by Lemma 3.17

2r > d((—x, s), (re, t)) =  d(0, (2re, t — s)) > d(0, (2x, 0)) =  2r,

and the lemma follows. □

Consider the following example.

Example 3.26. Let u = 2 and the unit ball be

B x = {(re, t) £ Rn+1 | ||re|| < 1, \t\ < 1 +  ||x||),

then by dilation rule the r-ball is

Br =  ( b , s ) e r +1 I — < i ,  14 < i  +  —  } •{ r r J

Let us prove that the balls are indeed generated by some metric d. The only 

non-trivial part is to verify the triangle inequality

d(0, (re, t) +  (y, s)) < d{0, (re, t)) +  d(0, (y, s)).
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Without loss of generality we may assume that

d(0,(x,t)) = l and d(0, (y, s)) = r < 1.

It follows that

\\x +  y\\ <  INI +  IMI < i  +  r

and

\t +  s\ < 1 +  ||x|| +  r 2 +  r\\y\\ < 1  +  (||x +  y\\ +  \\y\\) +  r 2 +  r\\y\\ 

< 1 +  ||x +  y\\ +  r +  r2 +  r 2 < (1 +  r )2 +  (1 +  r)\\x +  y ||,

therefore d(0, (x, t) +  (y , s)) < 1 +  r and the triangle inequality holds.

By the previous lemma Dr is the isodiametric set of diameter 2r and

Cn+1{Dr) = 4ax {n)rn+2.

Let us also calculate Cn+1 measure of the r-ball

ti
Cn+1(Br) = 4ax {n)rn+2 — 2ax {n) /  ( -  — r)  ds

,  *,xW (2 _ _ L _ ) _ L _ )

Thus the isodiametric inequality fails for balls in this example and by Theo­

rem 3.1

<7n+a,(R2+1) =  A ,+w(R2+\ 0 )  =  1 -  

for this particular purely (n +  o;)-unrectifiable metric space MJ+1.

Lemma 3.27.
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Proof. Integrating by parts we get
r = lf* 1 Ji T — 1 p  1

/  r n_1(l +  r)w dr — — (1 +  r)w rn(l +  r ) ^ 1 dr
Jo n r=n n Jo'0 11 r=0 JO

If we denote the integral on the left-hand side as I^-ii  then the last equality 

can be rewritten as
tu) — ^L__ 
n —l nn n

Let us apply this recursive formula several times

ra> 2 W US (  2 " - 1 U  -  1 2 \

n 1 n n \ n  + l n +  1 n+1)
_  2P_ _  u /  2u~l _  u — 1 /  2 (J~ 2 _  cj -  2 /u ;_ 3

n n I n + 1 n + 1 V n + 2 n  +  2 n+2
2 “  _  qj(a; -  l ) 2 u;~ 2 _  uj( uj — l ) ( u  — 2 )  _ 3

n n(n -I-1) n(n +  l)(n  + 2) n(n +  l)(n  +  2) 71+2

The definition of TJJYl implies that

n .  tu>—3 ^  max{2w_3, 1}
U<1n+2< n +  3 •

Therefore one gets

2 W u 2 u ~ l u(cu  -  1 )2 UJ~ 2 (  1 \
=    F  r +  7 — • t-T  r +  O - r  , n ->  oo,n n(n-1- 1) n(n + l)(n  +  2) \ n 4/

or equivalently

_  2P_ _  u 2 UJ~ l o ;2 u;~ 1 cu(o; -  1)2“ - 2 /  J _

n_1 n n2 ^  n2(n +  1) n(n +  l)(n  +  2) \ n 4
2" oj2u~1 cu2w—1 +  -  1)2“- 2 /  1 .

+ ---------------^ ------   +  0  — , n —> oo,
n n* n3 \  n4

and the lemma follows. □

T heorem  3.28. I f  the condition (3.23) holds, then

°n+u ( K +1) =  D„+U(VQ+1,Q) < 1 -  a,^ n2-— + O ( ^ )  , n -> OO.
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Proof. Let us define the following functions on the set {x G 1" | ||x|| < 1}

u(x) =  sup{£ G R | (x, t) G Bi},  

l(x) =  inf{t G R | (x,t) G L?i}

and

/(a;) =  u(x) -  /(x).

Points (x,u(x)) and (x,/(x)) are in for any ||x|| < 1 and functions u(x), 

l(x) and f (x )  are £ n-measurable, as the ball is closed. We have also assumed 

at the beginning of this section that (0,1) G dBi, therefore u(0) =  —1(0) = 1.

Note that since the relation (x,t) G B\ is equivalent to (—x , —t) G Bi, 

we obtain

u(x) =  sup{t G R | (—x, —t ) G B\}

= — inf{—t G R | (—x, —t) G L?i} =  —/(—x),

hence

u(—x) = —l(x),

and thus

/ ( —x) — u(—x) — l(—x) — —l(x) +  tt(x) — /(z ) . (3.25)

Let i / G R n and ||y|| = 1, then

( - r y ,u ( - r y ) ) ,  (Ry,u(Ry))  G J5i and ( - r y j ( - r y ) ) ,  (Ry,l(Ry)) e B v

Lemma 3.21 and Remark 3.22 imply that for any 0 < R < l , 0 < r < l ,  

R + r /  0

(°’6 r b )  u { ~ ry) + ( b t t )



CHAPTER 3. ISODIAMETRIC PROBLEM 88

and

It follows that

u { ~ r y )  +  ( 5 7 7 )
and

G ^b) l {~ ry )  + (sT7)
Thus the difference of the last two inequalities multiplied by (R  +  r )w gives

R “ f ( - r y )  +  r “ f ( R y ) < 2 ( R  +  r r :

or according to the formula (3.25)

R“f(ry)  +  r“f(Ry)  < 2(R +  r)u (3.26)

for any 0 < R < 1, 0 < r < 1.

Let J{ry) = j(y)rn~l , y e R n, ||y|| =  1, be the Jacobian of transformation 

from Cartesian to hyperspherical coordinates in the normed space X.  We 

notice that

a x { n ) = [  [  j (y)rn~l dr dy = — f  j{y)dy.
J\\y\\ = l Jo n J\\y\\ = l

Then multiplying the inequality (3.26) by j (y )Rn~1rn~1 and integrating with

respect to R  over [0,1], r over [0,1] and y over the set {y G Rn | ||y|| =  1}

we get

R UJ+n~1d R < 2 n a x (n) [  [  R n- lrn- \ R  +  r )wdRdr,  (3.27)
J o  Jo

where

V = Cn+1( B i ) = [  [  j{y)rn~lf (ry )drdy .  (3.28)
J\\y\\=lJo
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Lemma 3.25 tells us that D\ (see (3.24)) is the isodiametric set of diameter 

2 and

Vmol =  £ n+1(A )  =  2“a x (n). (3.29)

The last formula and the estimate (3.27) yield

T —  < 2 -“n(n + ui) f  [  R l~1rn- 1(R + r)u dRdr.
*max JO JO

The substitution v = min{r, R } /  max{r, /?} simplifies the iterated integral 

on the right-hand side

n Rn- 1rn- 1(R + r)u dRdr = -—  f  vn~l Ci + v)u dv,
2n +  to Jo

therefore
v  „  ni - u n{n + oj) f 1 ,
max

< 21~u,n~n +  f  + v)u dv. (3.30)
2n + u  J0 v ' v ;V, 

Finally the last estimate and Lemma 3.27 imply 

V  ^ 2(n + u)  /  u  | ivjui +  1) | G (  1
Vmax 2 n +  LU \  2 71 4 n2 \  n"

/  LU \  (  LU Lu(u +  1 )  _ /  1

_  (  2^ J  \  2n 4r^  ̂ ( r ?
_  / I  1 \  CJ2 a; (a; +  1) /  1

"^^^271 +  a; 2n)  2n(2n +  a;) 4n 2 \ n 3

=  1 -  W-4„2 1} +  0  Qj) - n ^ ° ° -  (3-31)

It can be verified that the right-hand side of (3.30) is strictly less than 

1 not only as n oo, but also for any n G N and lu = 2 ,3 , . . . .  Thus the 

isodiametric inequality fails for balls and by Theorem 3.1 the statement we 

are proving holds in the purely (n +  cj)-unrectifiable metric space MJ+1. □

Remark 3.29. If the unit ball Bi is the set of revolution about the vertical 

axis, then f (x )  = f(\\x\\), ||a;|| < 1, and equalities (3.28) and (3.29) imply
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that

T -  =  2~un f  rn- 1f (r)dr .
v max J 0

Let us show on the example that the order 2 of the term 1/n  in the

estimate given by the last theorem is precise, in other words, this order can

be achieved.

Example 3.30. Let the unit ball be

B \ = {(x, t)  e Rn+i i imi < i, iii < (i + n*nr -  2 - in*r},

then by dilation rule the r-ball is

Br = {{y,s) G Rn+1 | ||2/|| < r, \s\ < (r +  \\y\\)u -  2u}~1\\y\\u} .

Let us prove that the balls are generated by some metric. Again the only

non-trivial part is to make sure that the triangle inequality holds, i.e. that 

(x +  y, t +  s) G B \+r for any (x, t) G dB\ and any (y, s) G dB r , r < 1. Since

11̂  +  y II <  INI +  IMI <  1 +  r,

we only need to show that for ||x|| < 1 and ||y|| < r

\t +  s\ < (1 +  r + \\x + y||)w -  2u~l \\x 4- y\\u. (3.32)

We know that

\ t + 8\ < ( i  +  iM i r  -  2w- i iixir +  ( r + iMi r  -  2" - i i iyi r  (3.33)

Note that as long as u > 1 and A > 0 (A, B  E R) the function

= {A + v)u + B
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is monotonically increasing on [0, A], since for 0 < v < A

(v) = u(A  +  v)w_1 — 2u~1uvu~1 = u{(A +  u)w_1 — (2 v Y ~l) > 0.
dv

As the function ^(v)  =  (1 +  r +  v)u — 2u~1vuj increases on [0,1 + r], one gets

{ l+ r+ \ \x  + y\\)u}- 2 UJ- 1\\x + y\\UJ > {l + r+\\\x\\-\\y\\\)UJ- 2 UJ- 1\\\x\\-\\y\\\u.

(3.34)

Thus in order to establish the inequality (3.32) it is enough to check that the 

right-hand side of (3.33) doesn’t exceed the right-hand side of (3.34). This 

is equivalent to the statement

F(a, b) < 0, 0 < a < 1, 0 < b < r,

where

F{a,b) = (l + a)u — 2u~1auj -^(r + b)^ — 2UJ~1bUJ — (l + r-\-\a — b\)u + 2UJ~1\a — b\UJ.

(3.35)

The function F(a,b) is continuous on [0,1] x [0, r] and differentiable in this 

region except for points where a = b. Let us find a maximum of F(a,b) in 

the region above. Differentiating F  with respect to its first variable we have 

f)F
——(a, b) =  cj(1 -I- a)w_1 — 2UJ~1uaUJ~1 — cu(l -f r +  |a — sign(a — b)
da

+ 2UJ~1u\a — 5|w_1 sign(a — 5), a ^  b.

It is easy to see that

OF
——(a, b) < 0 if 0 < 5 < a < l  
oa

and
dF
—— (n, b) > 0 if 0 < a < b < r, 
da
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and therefore

F(a, b) < F(b, 6), 0 < a < 1, 0 < b < r.

Note that the definition (3.35) of F(a, b) implies

F ( b , b ) = M b )  +  M b ) ,

where

and

^ ( b )  = {l + b)“

(b) =  (r + bY  — 2W 1bu — (1 + r)u. 

As both functions i/h(b) and ^ ( b )  increase on [0, r],

F(b, b) < 'ipiir) +  — 0? 0 < 5 < r,

and the triangle inequality is proved.

Then Remark 3.29 gives the ratio

V
Vmax JO

and by Lemma 3.27 we obtain

2~un [  2 ((1 +  r)u -  2w" 1rw) rn~l dr
J o

(3.36)

Knox V An2 \  n3 J J n +  u
LJ CO u ( u  +  1 )  _  /  1

— “*----T------------ 1----- 0~2------*" ®  ( _ 3n +  lj n 2 nl \ n 6

= 1 -  t j(2„2 1} +  °  (J?) (3-37)

As we can see, the order 2 of the term 1/n is indeed achieved in this example.
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Remark 3.31. Let us denote the supremum of crn+u)(RJ+1) (or V/Vmax) over 

different metrics by 9njW. Then based on estimates (3.30) and (3.36) one gets

As we have already mentioned, it can be shown that 9n>w < 1 for any n G N

and lj = 2 ,3 ,___  The estimates (3.31) and (3.37) imply that 9n>w - >  1 and

1 — @n,uj — 0 (1 / n 2) as n —> oo. On the other hand, the number 9n tends to 

0 for the fixed n £ N and lj —> oo.

We continue considering the group K[J+1. this section we will find the 

isodiametric set under some less restrictive assumptions on the shape of the

than the assumption (3.23). Convexity and symmetrization arguments will 

be quite helpful in this task.

In the next lemma we will make use of the Brunn-Minkowski inequality 

for Euclidean spaces. It states that if A and B  are non-empty subsets of Rm, 

then

(see Theorem 3.2.41 in [12]).

Lem m a 3.32. I f  C C RJ+1 and the set C = \ (C  — C) is a central sym­

metrization of C , then statements (i) -  (in) hold.

2- un [  2 ((1 +  r)w -  2a;- 1r w) rn~l dr < 6>n,w

3.5 The Group (II)

ball (on the metric compatible with translations and dilations of the group)
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(i) C is centrally symmetric and

Cn+1(C) > Cn+1(C).

(ii) diamC < 2 if  and only if £1/2 (C — C) C B\.

(Hi) I f  C is a convex set of diameter at most 2, then so is C.

Proof, (i) The set C is symmetric about the origin, since —C =  C. The 

Brunn-Minkowski inequality implies that

Cn+l(C - C ) ^ >  2£ n+1(C)^P

or

Cn+1(C) > Cn+l(C).

(ii) It is clear that diamC < 2 if and only if

a — b G B 2 or £1/2(0 — b) G B\ 

for any a, b 6 C, or equivalently

S1/2( C - C )  C B x.

(iii) If C  is a convex set, then so is C. More generally, if A, B  C Rn+1 

are convex, then so is A +  B. Indeed, a convex combination of any points 

a\ -f 61, a2 +  b2 6 A +  B  (cq, a2 € A  and 61, b2 G B) is the sum of two convex 

combinations of the corresponding points of A and J5, and therefore it lies in 

A + B

a (a i  +  &i) +  (1 —  ck) ( c i 2 T  ^ 2)  — (ckoi -t- (1 — ex.)a2) +  (o;6i +  (1 — q ) ^ )  £ A-\- B ,
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where 0 < a  < 1.

Notice that by central symmetry of C

C - C  = C + C.

It is obvious that

C +  C D 2C,

and since C is a convex set, the opposite inclusion is also true, thus

C — C = 2C = C — C.

Therefore the statement (ii) implies that if diamC < 2, then diamC < 2 . □

T heorem  3.33.

Dn+U{R2+1,0) > 2 1- “

Proof. Let D be any subset of M̂ +1 of diameter at most 2, then by the 

previous lemma the set D = I(D — D) is centrally symmetric,

Cn+1(D) > £ n+1(D)

and

^1/2{D — D) C B\.

Therefore

Cn+l(D) < £ " +1 Q ( D  -  £>)) =  2“- 1£ n+1(<51/2(r> -  D)) < 2“- 1£ n+1(B1), 

and we apply Theorem 3.1 to conclude the proof. □

T heorem  3.34. I f  the unit ball B\ contains a symmetric about the origin 

convex set C such that
rn+\(n\

> 2 , (3.38)
£ ”+1(£i)

then statements (i) and (ii) hold.
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(i) The isodiametric inequality fails for balls and

<jn+u,(R2+1) = Dn+u) j 9) 1.

(ii) I f  the ball is a convex set itself, then

< W R 2 +1) =  £ W R 3 +1,0) =  21-"  < l.

Proof, (i) Let us denote C = then the assumption (3.38) implies

£ n+1(C) = 2u~1Cn+l(C) > Cn+l(Bi). (3.39)

On the other hand, since C is also a convex symmetric about the origin set, 

we have

C - C  = C + C = 2C

and

S1/2(C -  C) =  61/2(2C) = C C B u

therefore by Lemma 3.32(h) diamC < 2. It follows that the isodiametric 

inequality fails for balls and by Theorem 3.1 the statement (i) is true in the 

purely (n +  a;)-unrectifiable metric space .

(ii) If the ball is convex itself, we may put C = B\, then (3.39) implies 

that
Cn+1(Bi)  =

£ " + 1(C')

Thus 2l~u is the upper bound for JDn+w(R5+1,0). By the previous lemma it 

is also the lower bound and the statement (ii) follows. □

D efinition 3.35. Let D be a bounded subset of Rn+1 and H  be a hyperplane 

in Rn+1. For any line I orthogonal to H  and intersecting D construct the
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closed segment on I symmetric about H  and having the length Cl (lr\D). The 

union of these segments is called the Steiner symmetral of D with respect to 

H.

Until the end of this section we suppose that the unit ball B\ is symmetric 

about the hyperplane X.  Let Ds be the Steiner symmetral of D with respect 

to X  and lx, x G l n , be the line through (x,0) G X  orthogonal to X.

Lem m a 3.36. For a bounded set D C MJ+1 statements (i) and (ii) hold.

(i) diam D s < diam D.

(ii) If  D is Cn+1 -measurable, then so is Ds and

jCn+l(Ds) = £ n+l(D).

Proof, (i) Let a =  (M ) and b = (y , s ) be any points in D s. Since Ds is 

the Steiner symmetral of D with respect to X , there are points a\ =  (M i), 

a2 =  ( M 2) and h  = (y, Si), b2 = (y, s2) in D (t\ < t2 and s 1 < s2) such that

h  ~ ti > £ l {lx H D ) and s2 — s \ >  Cl (ly n  D).

Without loss of generality we may assume that t2 — S\ > s2 — t\, then

\t -  si < |t| +  |«| < l- C \ l x n D) +  n D)

<  - { t 2 — t i )  +  - ( s 2 — S i )  =  ~ ( t 2 — S i )  +  - ( s 2 — t \ )  < t 2 — S i .

Lemma 3.24 implies that

d(a,b) < d(a2,b\) < diamD, 

which concludes the proof of the statement (i).
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(ii) If D is £ n+1-measurable, then by Fubini’s theorem the function 

C1 (lx fl D) of x  6 Kn is £ n-measurable. Therefore the Steiner symmetral 

D s is also Cn+1 -measurable and

£ n+1(Ds) =  [  £ 1{lx n D ) d x  = £ n+1(D).
J  Rn

□

T heorem  3.37. I f  D C and diam D < 2, then

£ n+1(D) < 2u~l f  min{2, Cl {lx Pi B\)} dx.
J  ||x||<l

Proof. Without loss of generality we may assume that D is closed, thus £ n+l- 

measurable (see Remark 3.19). By the previous lemma the Steiner symmetral 

of D with respect to X  has the following properties

diam Hs < diamZ) < 2

and

Cn+1(D8) = £ n+1(D).

By Lemma 3.32 the set D = 1{DS — D s) is centrally symmetric,

Cn+1(D) > Cn+\ D S) -  Cn+1{D) (3.40)

and

61/2( D ' -  D') C B x. (3.41)

Let us observe that for any x G Rn

C \ l x n D s) < 2W,

since diam Ds < 2, thus by the definition of Ds
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for any (x,t) € D \  On the other hand, since

D = 1- { D S -  D‘) =  { | (*, t), (y , s) € Ds },

it follows that
' t — s

< 2OJ— 1
2

and therefore for any (z, 0) G projx D

Cl (lz n D )  < 2“

and

C1(lz n S l/2(Ds - D s) ) < 2 .

Using properties (3.40), (3.41) and Lemma 3.23 we conclude the proof as 

follows

Cn+l(D) < Cn+1 Q (£>s -  DS)J =  2u’~lCn+l{8l/2(Ds -  D s))

=  2" _1 f  C'{lx n  81/2(Ds -  D’)) dx
J | |x ||< l

< 2W_1 j  min{2, Cl (lx Pi L?i)} dx.
J\\x\\<l

□

C orollary  3.38. I f  the subset

C = { ( x , t ) e B l \ \ t \ < i }

of the unit ball is convex, then the set C =  C has diameter 2 and max­

imizes £ n+1 measure among all sets of diameter at most 2, it is the isodia- 

metric set.
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Proof. As C is convex symmetric about the origin subset of the unit ball, 

then diam C < 2 as proved in Theorem 3.34(i). Moreover, the diameter of C 

is 2, since

C n x  = c n x  = B1n x  = { (x , o )  €  Rn+1 | ||z|| < 1}.

On the other hand, the fact that B\ is symmetric about X  leads to the 

following equality

Cn+l(C) =  2UJ~lCn+1{C) = 2 " '1 [  C \ l x n  C) dx 

_  2^-i f  min{2, Cl (lx n B\)} dx.
J ||*||<i

Taking the previous theorem into account we finish the proof. □

Remark 3.39. Lemma 3.25 follows from the last corollary under the assump­

tion that Bi is symmetric about X.

We finish this section and this chapter with an example which demon­

strates Corollary 3.38 and appears to be quite useful in the next chapter.

Example 3.40. Let us consider a plane II going through the vertical T-axis 

in the Heisenberg group H1 equipped with the CC metric, n is the additive 

subgroup of H1, which can be viewed as R2 with u  =  2 and the r-sphere (see 

Fig. 3.1)

dBr n n = {{z,t) £ n | \z\ = r̂(</>), t = tr(<t>), \</>\ < 7r},

where functions xr(<f>) and tr((/)) are defined in (3.6).

Points (x i(± 7r), ^i(±7t)) = (0, i l /V )  lie on the unit sphere, therefore 

rescaling the last coordinate by the factor n (such that (0, ± 1) are on the 

unit sphere) leads us to the setting considered so far.
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It follows from Lemma 3.7 that the subset

C = {(z , t) G Bi D II | \t\ < t\ (7r)}

of the unit ball is convex. Therefore by Corollary 3.38 C — \ ^ C  is the 

isodiametric set of diameter 2 on II.



Chapter 4 

Hausdorff Measures on a 

Surface in the Heisenberg 

Group

4.1 The Blow-up Formula

In this chapter we study a problem about the relation among the Hausdorff, 

the spherical and the centred Hausdorff measures of codimension one (H3, 

S 3 and C3 measures with respect to the Carnot-Caratheodory metric dc) 

restricted to a C l smooth surface in the Heisenberg group H1. The use of 3- 

dimensional Hausdorff measures is justified by the fact that 0 < %3(E) < oo 

for a C 1 smooth bounded surface E C H1 (in particular the Hausdorff di­

mension of E is 3, see [18]). Saying “C 1 smooth” we always mean it in the 

Euclidean sense. The main result of this chapter is that these measures differ 

but coincide up to positive constant multiples, which we estimate as well.

102
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D efinition 4.1. Let E be a C l surface in the Heisenberg group H1. Let 

v(p, E) be a normal of E at p E E. Denote by i///(p, E) the Euclidean 

orthogonal projection of v(p, E) on the plane Hp spanned by X\  and Yi 

at p E E (see (3.5)), which is called a horizontal plane. We call the vector 

vh{Vi £) a horizontal normal of E at p. A point p E E is called a characteristic 

point of E if \vH(p,E)\ = 0. The set of all characteristic points of E, the 

characteristic set, is denoted by C(E).

The main tool of our investigation is the Blow-up formula, which is stated 

below. It has recently been shown by Balogh [2] that the characteristic set 

C(E) of a C 1 surface E C i 1 is %3-null. Therefore using the Blow-up formula 

for non-characteristic points of a C l surface E the connection among Li3, S 3 

and C3 measures on E can be established quite easily.

T heorem  4.2 (Blow-up form ula). Let E c i 1 be a C l surface, 0 £ E be 

a non-characteristic point o fE  and q0 E B\, then

, _ « 3(£ n 6 T(QoB l )) ^
r \ 0  r 3-----------------_  n  QoB i ) .

At first we list the additional notation used in this chapter.

Planes going through the vertical axis and only such planes we call ver­

tical. By n# we denote a vertical plane with a normal /?. Let Er = 6i/rE for 

r > 0 and A B = A fl B  for A, B  C H1. Let V  denote the convex hull of the 

open ball C/3 and K  = qoBi, q0 G B\. It is clear that 0 E K  C B 2 C V.

We use big O and little 0 notation in order not to specify constants and 

to show the rate of convergence to 0 (usually as r \  0). By o we mean a 

vector of o in R3.
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For the sake of brevity in notation is(p, S) or vH (p, S) we omit S  if S  =  Er 

and both arguments if p — 0 and S  =  Er , thus v(p) = v(p, Er), v — i/(0, Er) 

and vu =  J'jy (0, Er).

Let a measure the area of a surface in R3. Up to a positive constant mul­

tiple it coincides with the 2-dimensional Hausdorff measure with respect to 

the Euclidean distance. The measure a restricted to a plane is also identical 

to C2 measure on this plane considered as R2.

In the whole chapter we suppose that E e l 1 is a C l surface and only in 

this section that 0 G E is a non-characteristic point of E.

In order to prove Theorem 4.2 let us establish a series of auxiliary lemmas. 

The aim of the first three lemmas is to prove the isodiametric inequality for 

a subset E  of Ejf by determining the connection of its measure and diameter 

with those of the projection of its translations on the plane HVh . Since the 

closure of a set may only increase its measure without changing the diameter, 

we may assume E  to be closed, which is enough for our purpose.

Lem m a 4.3. Suppose that p0 G E  C Ejf, E' =  p$lE  and E" — projn^  E ', 

then

a(E) = (l + o(l))a(E"), r \  0, 

where the convergence of o( 1) is uniform for E  C Ejf and po G E.

Proof. Let us rotate the orthonormal basis of R3 about the vertical direction 

in such a way that the first basis vector is the unit normal of the vector 

vh. Let x  =  ( x ^ \  x (2\  x ^ )  G R3 be a typical point in the new basis. Then 

v =  0, z^3)), ish — (^^>0,0) and =  \vh\ ^  0, as 0 G E is a

non-characteristic point of E, and therefore of Er (see Remark 4.4).
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We may assume that E is given locally as a level set of a C 1 function 

/  : V  —> R with a non-vanishing gradient. Namely E is given by f (h) = 0 in 

5rV, r < 1, a small neighborhood of 0. Then Er has the equation f (Srp) = 0 

with p £ V. The normal of Er at p £ Ejf is the vector

v(p) =  ( ^ r )  t =  trVf( trp)  = <5r(V /(0) +  o(l)) =  u+5ro( 1), r  \  0.

Here Vf{h)  = {df (h)/ d h ^ f j=l is a gradient vector of the function / .  Since 

v =  6rV /(0), it follows that

\v\ =  O(r), \ v ^ \  = \vH\ =  0(r)  and \ v ^ \  =  \v — vH\ =  0 (r2), r \  0.

(4.1)

Let po £ Ejf and consider how the normal z/(p) changes, when Er is 

translated to xEr . Every point p € Er is translated to a point <7 =  Po *p £ 

Po'Zr with po translated to the origin. Therefore the equation of Pq 1Er is 

f{5r(poq)) = 0 with q £ Pq lV  and the normal of Pq XEr at q £ Po !E)f the

vector

1/ \ / -lv- \ f d f ( S T(p0q ) ) \ 3V (?) =  V{q,pa Er) =  (  dq(j) J
3 df{Srp) dp{i)

\ h  dp {i) d v U)) j=1
= v{p0q)J(q).

p=pQq

It is the product of the vector v{poq) and the Jacobian matrix J(q) of p = p0q 

as a function of q

According to the Heisenberg group multiplication law (3.4)

p = Poq =  (p o ] +  9(1),Po2) + q{2), P o ] + q{3) +  2(po2V 1} - Po1)(?(2)), (4.2)
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therefore

J(q) =

(A

0

V2 p<2) - 2  p(0,} I )

It follows that

v'(q) = v(pQq)J{q) =  <5r (V/(0) + o(l)),/(g)

=  <5r(V/(0) +  o(l)) =  v + <5ro(l), r \  0. (4.3)

The following well-known formula for the area of the surface piece E  holds 

a(E) = [ f  dp(2) dp(3>
J J pro ip r o jn ^ tfC O S ^ p ),^ )’

Let us change variables in the double integral above from p^ , p ^  to q^ , q ^  

in such a way that p = poq, i.e.

p(2) =  P{q] +  q{2\

p(3) =  +  qW +  2(pQ2)g(1) -  p^qW ),

where q ^  =  q^(q^2\ q ^ )  is such that q € Pq1E%. Then we obtain

a (£ )  = f f
J J projn. E' cos(v{p0q), vH) D{q(2\q W )

£ ^ P ^ l dq ^ d q ^ ,  (4.4)

where
D(p(2, ,p (3>) .

D ( 9(2), 9 (3)) \ ^ - / i j = 2

is the Jacobian of transformation from to q̂ 2\ q ^  coordinates on

the plane n„H. Using the formula (4.2) we find

D(p(2\  p ^ )
= detD(qW,qW) y  2 (p(2)|£>  _  p(b) j +  2p(2)M , — 1 +  2p0(2 ) d q ^

dqW

(4.5)
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Since the equation f{Sr(poq)) = 0 implicitly defines as a function of q ^  

and q^ , differentiation of the implicit function gives

dq(l) df(Sr{Poq))/dq{3) z/(3)(q)
dqW df{6r{poq))/dq^ i/M{q)'

Taking equations (4.5), (4.6), (4.3) and (4.1) into account we have

(4.6)

D(p(2\ p {3)) _  (2) y'{3)(q) _  . _  n (2)V{3) + o(r2)
D(q(2\q W )  0 i/'^(q) 0 j / 1) +  o(r)

0 ( r 2)
— 1 + n (  n — 1 +  0 ( r ), t \  0 ,0{r)

and

1 \v(p)\\vH\ \v + Srd(l)\\vH\ \ish\Wh \ + o(r)\vH\
cos(v(p), vH) Mp)> vh) ( v  +  Sro( 1), vH) (v, V H )  + o(r2)

_  Wh \2 P o{t2) _  l + o(l) _  m  ,
|u„\2 + o(r2) 1 +  o(l) ( ^ ^  '

Both expressions go to 1 as r \  0 uniformly for p0,p  G Tff and together 

with the equation (4.4) they imply the statement of the lemma. □

Remark 4.4. Vectors i/jj = vh{0, £ r) anc  ̂ S) are both non-zero and have

the same direction due to the fact that v = 5rV f ( 0) and ^(0, E) = V /(0). 

Therefore we may use vh instead of vh{0, E) every time we are only interested 

in the direction of the last vector.

Lem m a 4.5. Suppose that p0 G E  C Ejf, E 1 = p$lE  and E" =  projn^  E 1, 

then

diam E" =  (1 + o(l)) diam E, r \  0, 

where the convergence of o(l) is uniform for E  C and p0 G E.

Proof. The statement of the lemma implies that 0 G E' and diam E' = 

diami? =  p, therefore E' C B p. As we have already mentioned in the
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previous lemma, points q G E' satisfy the equation f{Sr(p0q)) = 0 and the 

normal of pg D E' at the origin is ^'(0). By Mean Value Theorem we 

have

o =  f{Sr(Poq)) -  f{firPo) = (v'(0q),q), q G E ' , 0 < 0 < 1

(q G H1 is multiplied by a scalar 0), which combined with the equation (4.3) 

leads to

{v +  8rd(l),q) = 0

or

(v,q) = ~(Sro(l),q} = o(r)p 

as r \  0. It follows that

{vH, q)  +  { v - V H , q )  =  o{r)p,

where (v — vn,q) — 0 ( r 2)p2 (see (4.1)), and therefore

(vh, q) = o(r)p.

Recalling also that |i/#| =  0(r)  by (4.1) we find the Euclidean distance from 

a point q G E' to the plane 11^

{- ^  = o(l)p, r \  0. (4.7)
Wh \

The convergence in (4.7) is uniform for p0 G EjC and q G Pg lY%.

Let p" =  projn^  p' and q" =  projn^̂  q' for any p',q' G E ' . The triangle 

inequality implies that

dc(p”: q") < dc{p", p') +  dc(p', q') +  dc(q', q") < dc{p", p') +  p +  dc{q\ q")
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and

dc(p',g') < dc{p',p") + dc(p",q") + dc(q",q') < dc(p', p")+diam E"+  dc(q",q').

Estimates for distances between p' and p", q' and q" are identical, we show 

one of them. Let p1 = (zi,t) and p" =  (z2,t), then the formula (4.7) implies 

\zi — Z2\ = o(l)p as r \  0. Using (3.7) and Lemma 3.8 one has

dc{p',p") = dc{d,p'-lp") =  dc(0, (- z i  +  z2, —2 \m{ziz2)))

< dc(0, {—Z\ +  Z2-, 0)) -f dc(0, (0, —2 Im ^ !^ )))

=  I -  zi +  z2\ +  v  27r| lm(ziz2)\

<  | — Z\ +  z 2 1 +  y 2 ‘Tr\z2\ \ — Z\ -h z 2j

<  o(l)p+ y/27rp^~o(l)p =  o(l)p, r \  0 .

Combining these estimates we get

diam E" < (1 +  o(l))p

and

p < diamE^" + o(l)p,

or equivalently

diamjE" > (1 +  o(l))p

as r \  0, where the convergence of o(l) has the required property, and the 

theorem is proved. □

As we have already mentioned in Example 3.40, any vertical plane II is 

the additive subgroup of the Heisenberg group H1. Hence measures H 3 and 

o (which is C2 on n) are identical on h  up to a positive constant multiple,
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being Haar measures of the subgroup. The isodiametric constant for subsets 

of the vertical plane II is the number

a(S) . .
a  ~  sup 77------ c 5 ' 4-8)sen (diam S)s

It is independent on the choice of the vertical plane II because of the in­

variance of the metric, and thus the invariance of measures H? and a under 

rotations about the vertical axis. The definition of a implies that the isodi­

ametric inequality for subsets of II is

a(S) < a(d iam 5)3, S  C II. (4.9)

Let us show that the similar inequality holds for subsets of the surface piece 

Yff for small enough r > 0.

Lem m a 4.6. The isodiametric inequality for subsets of has the form 

a(E) < (1 -I- o(l))a;(diam £)3, E  C Sjf, r \  0,

where the convergence of o( 1) is uniform for E  C Ejf.

Proof Let po G E  C Ejf, E' =  p^1 E  and E" =  p r o j ^  E ' . Lemmas 4.3 and

4.5 combined with the isodiametric inequality (4.9) of the vertical plane 11^ 

give the required estimate

a{E) =  (1 +  o(l))a{E") < (1 +  o(l))a(diam E")3

= (1 +  o (l))a ((l +  o(l)) diam E )3 =  (1 +  o(l))a(d iam E )3, r \  0.

□

The following simple statement will be useful in the proof of Lemma 4.8.
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Lem m a 4.7. For any vertical plane II and qo £ H1 the following is true

<t(II fl d(q0Bi)) = 0.

Proof. Let us notice that

a f n n ^ g o ^ i D ^ a ^ o ^ n ^ i ) ,  (4.10)

since

d(q0Bi) = q0dB 1

and multiplication of the set II fl d(qoBi) by qq1 only moves it from the 

vertical plane II to another parallel plane ^ 1II and shifts its sections by 

vertical lines (each section by a different value) in the vertical direction. It 

is clear that the right-hand side of the equation (4.10) is zero. □

It follows from the formula (4.7) that Tff approaches the plane as 

r \  0. This fact enables us to establish the continuity result for o measure 

on Yff.

Lem m a 4.8. For any q, qo £ B\ the following statement holds

lim a ( Z f l ) = ar\0,q-*qo

Proof The area of the surface piece EqBl is

d p ^  dp
* ( ! ? * )  = [ [  B .4 . f  = [ f  9rA P (2\ p {3)) d p V  dpW,

J J p C O S (j/(p ), V „ )  J J n VH
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where

9rAp{2\ p {3}) = ,— . (0,p{2\ p(3)) 6 K h , p ecos(is(p), V H )

It follows from (4.7) that the Euclidean distance from a point p G Ejf to the 

plane 11̂  is

— 0(i) diamK = o(l), r  \  0. (4-11)
\vh |

According to Lemma 4.7 cr-a.e. point {0,p(2\ p ^ )  G 11^ is either internal or 

external point of qoBi. By (4.11) for p  G there is some sp > 0 such that 

for all 0 < r  < ep and \q — qo\ < £p statements (i) and (ii) hold

(i) p  G q B i  if (0,p^2\ p ^ )  is internal point of qoB\,

(ii) p  ^ q B \  if (0,p^2\ p ^ )  is external point of qoBi.

Therefore for cr-a.e. (0,p^2\ p ^ )  G 0 < r  < ep and \q — qo\ < £p the

following equality holds

xprojn„H e;Si (p<2)-p(3)) =  *<>■ (p(2),p (3))

or

jjm  Xproj E« s , (p (2), p (3)) =  x nTOB ,(p (2), p (3)).r\0,q^q0 Pr0JnUfI ^

The proof of Lemma 4.3 implies

l im c o s ( v { p ) , v H) =  1, p  G Ejf,
r \ 0

therefore we have

Jim 9r,q(p{2\ p {3)) = Xn^ s i b (2),P(3)), cr-a.e. (0,p{2\ p {3)) G n v
r\0,£/->go VH
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Finally by Lebesgue Convergence Theorem it follows that

lim a(E?Bl) =  lim [ f  gr,q{p{2\ p {3)) dp{2) dp{3)
r \ 0 , q —*qo r \0 ,q -> q o J  J u v

= f f  Xu90Bi (p{2\ p {3)) dp{2) dp{3) = cr(nloBl).
J J uyh

□

Lemma 4.9.

<t(II* ) < oTiminf %3(E f ).H r\o  r

Proof. Consider an arbitrary e-covering of E^ by at most countable family 

of closed sets { E i  | Ei  C  Ejf, diamEj <  e} . The subadditivity of a  and the 

isodiametric inequality for subsets Ejf established in Lemma 4.6 yield

op*) <£>(£;,)<  (i + 0(i)) a ̂ (̂diarnE1* )3. r \ 0 .
i i

Taking the infimum over all such e-coverings of E^ we have

<7(E?) < (1 +  o(l))aH3(X?) < (1 +  o ( l) )a n 3(X? ), r \  0.

Now applying Lemma 4.8 we obtain the required statement. □

According to Example 3.40 the set

S i  =  ^ s 2 { ( z , t )  e  B i  n n ^  | \t \  <  ( t t ) }

= |  (z, t ) <E ^ b 2 n  u VH I \t\ < 2 t\(tr) |

has diameter 2 and maximizes a  measure among all subsets of of diam­

eter at most 2, it is the isodiametric set on n„H. Therefore
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is also the isodiametric set of diameter 2p on UUH- It follows from the defi­

nition (4.8) of the isodiametric constant a  that

<j (Sp) = a(diam 5p)3. (4-12)

Let us introduce the following notation

S qp = ( p r o j^  Sp) H q~l£ r , q G Er.

Hence

qSgp = (?projnJw Sp) fl Er , q G Er ,

and it is clear that 0 G S q and q G qSqp.

The sets qSq are of great interest to us, as they are “almost” isodiametric 

for small enough r > 0. They satisfy the isodiametric equality similar to

(4.12).

Lem m a 4.10. Let q G Ejf and qSq C V, then

(diamqSq)3 =  (1 +  o (l))— r \  0 ,
H a

where the convergence of o( 1) is uniform for q G Ejf and qSq C V.

Proof. As q G qSq C Ejf and p r o j ^  S q = Sp, Lemma 4.5 claims

diam qSq =  = (1 + o(l))d iam 5p, r \  0. (4.13)

Combining this equation with the isodiametric equality (4.12) we get 

(diam gSp3 =  (1 +  o(l))3(diam5p)3 =  (1 +  o (l))<7̂ p^, r \  0 .

Then according to Lemma 4.3 the required statement follows. □
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Lem m a 4.11. Let

T  = {S  | S  = qS% C V, g € £ * , p < e), e > 0. 

be the family of closed subsets of Then T  is V? adequate for E ff .

Proof. The statement of the lemma follows from Theorem 1.6, let us only 

check that assumptions of Theorem 1.6 are indeed satisfied. The formula

(4.13) implies that the family T  covers E^ finely for any e > 0. We need to 

show that for some 1 < r  < oo and 1 < A < oo

n 3{s) < x n 3{s)

whenever S  € T  and S  is the r  enlargement of S  given by (1.1).

Let us observe that if S = qSqp, then by the definition (1.1) of S  one gets

diam S' < (1 +  2r) diam 5, r \  0. (4.14)

By Lemma 4.10 we know

(diamS)3 =  (1 +  o(l ))—— r \  0, (4.15)
a

and by analogy with the proof of Lemma 4.9

<?(S) < (1 + o(l))a'H3(S), r \  0. (4.16)

For any e > 0 there is R > 0 such that d ia m ^ S  < e (R < e /  diamS), 

therefore

Rl{S)  =  -^'HKSrS) < (diamSRS)3 = (diam S)3

and

n 3(S) < (diamS)3.
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Using this inequality together with estimates (4.14), (4.15) and (4.16) we 

conclude

%3(5) < (diam 5)3 < (1 + 2r)3(diam 5)3

<  ( 1  +  2 r ) 3 ( l  +  o ( l ) ) ( 1  +  ° ( 1 ) ) a ^ 3 ( 5 )a

=  (l  +  o ( m i  +  2r)3n 3(S), r \  0.

For small enough r > 0 finally we get

n3(S) < 2 ( 1  +  2 t ) 3H 3{S) .

□

Lem m a 4.12.

a lim sup?/ (Er ) < cr(II ).
r \ 0

Proof. Let us recall that K  =  qoBi, Qo £ B\ and denote

Vn =  qoUi+i/n C U 3 CV, n <E N.

As mentioned in the previous lemma, the family of sets

^ = { s | S  = 9SJC V, ge  E* p < | }

covers E ^  finely for any e > 0. Lemma 4.11 tells us that T  is R? adequate 

for E^, i.e. for E^n open in Ejf the family T  has a countable subfamily Q of 

disjoint sets such that (see Definition 1.3)

U secS cE j'"  and R \ E *  \  UsegS) = 0.
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Applying Lemma 4.10 and summing over all S  € Q we have

] P ( d i a m S ) 3  <  ( 1  +  o ( l ) )  ^  r  \  ° -

s e g  s eg

The formula (4.13) guarantees that

diam S  =  (1 +  o(l))2p < 4 p < e

for small enough r > 0. Therefore properties of the covering Q mentioned 

above imply that

a -H 3 (E f)< (l +  0(l))a(E rv'’‘), r \  0. (4.17)

Note that V\ D V2 D .. .  D Vn D . . . and

oo oo
n  = o  #0^ 1+1/ ™= = k .
n=1 n—1

Therefore by continuity of o measure on £ r it follows that

lim =  a(D~ t (Er n  V„)) =  cr(Er n  K )  = o(ErK).
71—lOO

Letting e \  0 and n —► oo the inequality (4.17) gives

a-H3(£* ) < (1 + o(l))a(E*), r  \  0. (4.18)

Applying Lemma 4.8 one gets the required statement. □

Now we are ready to prove the Blow-up formula.

Proof of Theorem 4-2. The Blow-up formula

n 3( E n S r K )  /u3m  ^
i \ o  ? ------- =  n  K >
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is equivalent to

limW3( E * ) = « 3( n * ) .
T \ 0

According to Lemmas 4.9 and 4.12 the above limit is

l im « 3( £ f ) =
r \ 0  a

Therefore the theorem is proved once we show that for any cr-measurable 

subset A of a vertical plane II the following relation between measures holds

a(A) =  ah? (A). (4.19)

Since a is the Haar measure on II, by Theorem 1.14(i, ii) we get

c7(A) =  /HZ{A) limsup { , | 0 G S  C II, 0 < diam 5 < r \  . (4.20)r\o ^ [ (diamS)3 J

If we recall the definition (4.8) of the isodiametric constant a , then (4.19) 

follows immediately from (4.20) and the proof is finished. □

Let us prove the important consequence of Theorem 4.2, which is also 

of the blow-up type. We will use it to establish our main result in the next 

section.

T heorem  4.13. Let E C H1 be a C 1 surface and 0 G E be a non-charac­

teristic point of E, then

limsup (  ^  — 9 yB^  | y e B p, 0 < p < rX =  sup n qBx)
r\Q  t  P J i

and

limsup | ^  | y € Yi n Bp, 0 < p < r j  =  ^ ( I I ^ o .e )  n Bi).
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Proof. Since

( H ^ Z n y B A , „  „hm sup < ----------;--- — y e B„, 0 < p < r
r \ 0 p 6

= limsup{7{3(Ep n  6i/pyBi) \ 5l/py G B\, 0 < p < r}r\ 0

= limsup{?{3(Ep n  qBi) \ q G B\, 0 < p < r}r\ 0

and

( H 3( Z n y B p) ^  n n
limsup < --------- -----— h / G E n  Bp, 0 < p < r
r\ o I p6

= limsup{'H3(Ep D 5i/pyBi) \ Si/Py e E p n B i ,  0 < p < r}r\0

= Iimsup{7/3(EP fl qB\) \ q G Ep fl B\, 0 < p < r},r\ 0

the formulas we need to prove are

limsup{/H3(Ep D qB\) \ q G B\, 0 <  p <  r }  = sup 'H3( IiUH fl qB\) (4 .21)
r\ °  qeBi

and

limsup{?^3(Ep fl qBi) | q G Ep fl B\, 0 < p < r j  = 'Uz(n VH D B\). (4.22)
r \ 0

Let us prove (4.21). It is clear that for any q G B\ and r  >  0

sup{%3(Ep n qBi) \ q €  B u 0 < p < r }  > %3(Er/2 Pi qB\). (4.23)

Letting r \  0, applying Blow-up Theorem 4.2 and then taking the supremum 

over q G B\ on the right-hand side one has
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Suppose the strict inequality holds. It follows that there are e > 0 and r0 > 0 

such that for any 0 < r < ro1

sup{'H3(Ep fl qBi) | q G L?i, 0 < p < r} > sup H 3{HVh D qBi) +  e. (4 .25)

Therefore the following statement holds

3e > 0 3N  G N Vn > N  3qn G B\ 30 < pn < — Vg G Bi 
n

pn Fl QnB\) > 'H3(H.1/h fl qB\) +  e.

Then there is a subsequence of (#n)neN which converges to some qo G B\. For 

the convenience of notation we may suppose that this subsequence is (qn)nen 

itself. Let us put q =  qo in the last inequality and take the limit as n oo

lim 'HS(EPn n qnBi) > TL3(RvH n  q0Bi) +  e. (4.26)n—>oo

According to the inequality (4.18) we have

a'H3{EPn H qnB{) < (1 +  o(l))a(EPn n qnBi), n o o .

We may apply Lemma 4.8 and then the equation (4.19) to get

lim n3{ n qnB 0  < CT(n ^ n g°g L). =  W3(n n
n—>oo a

which contradicts to (4.26), and therefore (4.21) is proved.

We observe that for any q G II„H

u 3{n„H n q B i )  =  n 3( q - l n „ H n b o  =  n b o , (4.27)

Tn fact, it is true for any r >  0, since the left-hand side of (4.25) increases together 

with r.
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since q~lUUH =  HUh, being the subgroup of the group H1. The formula 

(4.22) is proved similarly with only differences listed below. According to 

(4.27) equations (4.23) -  (4.25) are still true if on the left-hand sides we 

write q e Ep C\ Bi instead of q G on the right-hand side of (4.23) q = 0 

and on the right-hand sides of (4.24) and (4.25) q G 1 1 ^  n  B \  instead of 

q G B\. Therefore in the subsequent equations we have qn G E Pn fl B \  and 

q, qo G n„w fl B \ . The rest of the proof is unchanged. □

4.2 Application of the Blow-up Formula

We are going to prove the main result of this chapter about the relation 

among %3, S3 and C3 measures on a C 1 surface E C  H1 of finite Ti3 measure. 

Formulas of the blow-up type play the crucial role in this section.

Let X  = H1, %3(E) < oo, A C E and fi — V? LE, then Theorem 1.14(i) 

implies

U3(A) < S 3(A )supD ssCH3,E ,x )  (4.28)
x£A

and

n 3(A) <C3(A) sup DC3(n3,Y,,x). (4.29)

Since fi is a Borel regular measure (we may assume E to be a closed set) and 

//(E) < oo, then according to [12, 2.2.3 and 2.2.2]

n(A) =  inI{fi(V) | V  is open, A C V } .

Therefore Theorem 1.14(ii) implies

n 3(A) > S3{A) inf DS*{H3, E, x) (4.30)
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and

H?(A) > C3(A) in fD c3(H3,E ,x).  (4.31)
x E A

Let us repeat the proof of Lemma 2.9.6 and Theorem 2.9.7 in [12] with 

slight modifications. Then our main result will follow easily from these facts 

with the aid of Theorem 4.13.

Lemma 4.14.

(i) Ds*{'H3, E, x) is a S 3-measurable function on E.

(ii) Dcsi'H3, E, x) is a C3-measurable function on E.

Proof Suppose that 0 < a < b < oo and A, B  are bounded sets such that

A C {x e E | Ds^iPC3, E, x) < a}

and

B  C {x G E | ^ ss('H3, E, x) > b}.

We may find Borel sets A' and B' for which

A c  A', S 3(A) =  S 3(A'), n 3(A) = U 3{A!)

and

B e  B \  S 3(B) =  S 3(B'), H 3{B) = H 3{B').

Therefore inequalities (4.28) and (4.30) imply

U 3{A! n  B') = n 3{A n B') < a<S3(.4 n B') = aS3(A! D B')

and

n 3{A! H B') = n 3(A' H B ) >  bS3(A' n B) = bS3(A' n B'),
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which leads to S 3(Af D B ') = 0, and hence

S 3(A U B) = S 3({A U B ) n  A') +  S 3{{A U B) n B') > S 3{A) +  S 3{B).

Then application of the statement [12, 2.3.2(7)] concludes the proof of the 

first part of the lemma. The second statement is proved in the same manner 

using (4.29) and (4.31). □

Theorem 4.15.

(i) I f  A C E is a S 3-measurable set, then A is H 3-measurable and

% \A )  =  [  Dsz{n 3,E ,x )d S 3.
J  A

(ii) I f  A C E is a C3-measurable set, then A is %3-measurable and

% \A )  = [  Dc*{n3,E ,x)dC 3.
J A

Proof. There is a Borel set B  containing A such that <53(B \  A) = 0, thus 

/H3( B \ A )  = 0  by (1.2) and it follows that A is ^-m easurable.

The sets

Z  = { x e Z \ D S3{H3,Z, x)  = 0}

and

IT =  {x e  E | Asa (n 3, E, x) =  oo} 

are 5 3-measurable by the previous lemma. From (4.28) one gets

n 3{Z) = 0 =  [  ~Ds^{fH3, E, x) dS3.
J z

The inequality (1.3) and the statement (iv) of Theorem 1.14 imply

0 < D53(773, £ , * ) < !
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for R 3 almost all i G S ,  hence R 3(W) =  0, and thus <S3(W) =  0 by (1.2), 

which leads to

R 3(W) = 0 =  [  DS3 { H \E ,x )d S 3.
J w

We note that A \ ( Z U W) is the union of disjoint ^-m easurable sets (by the 

previous lemma)

An =  {x e A I tn < DS*{R3, E, x) < tn+1}, n G Z,

for any 1 < t < oo. Therefore (4.28) and (4.30) give estimates

n 3{A) = J 2 n 3 (An) < £ > ”+1<S3(4,)
nGZ nGZ

[  DszCH3,'S ,x )d S 3 =  t I  ~DS3("H3, E, x ) dS3
neZ  J  An J  A

and

n 3(A) =  £ V ( .4 n) > J 2 tnS 3(An)
neZ  neZ

>]TV* f  Ds*CH3,Z ,,x )dS3 = t~l I  D s*(H3,Z ,x ) d S 3. 
nGZ J  An J  A

Letting t \  1 finishes the proof of the first part of the theorem. The second 

statement is proved similarly using (4.29) and (4.31). □

C orollary  4.16. Let H be a vertical plane, then statements (i) and (ii) hold.

(i) I f  A  C  E is a S 3-measurable set, then A is V?-measurable and

n 3(A) = i  sup n 3( n n  q S ^ i A ) .
b qeBi

(ii) If A  C E is a C3-measurable set, then A is R 3-measurable and
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Proof. Let x  G A\C(E). As we have already mentioned at beginning of the 

chapter, the characteristic set C(E) is /H3-negligible, and therefore accord­

ing to (1.2) it is also S 3- and C3-negligible set. Then using definitions of 

D53(?{3, E, x), Dc3(?{3,E,x) (see p. 21) and Theorem 4.13 we get

D s3{ H 3,T , , x )  =  l im su p  P  I x  € 0 < P <  r )

= Ji“ sup \ — m — | x  S'e ^  0 < " < r }

=  5 sup W3(n „ „ (o,I - i E) n q B i )
°  q&B 1

and

DC3(7i3,'E, x ) =  limsup { ^  ^  | x G £(?/, p), y G E, 0 < p < rr\0  ̂ (2p)3
,. f %3(x-1E H , 1

=  limsup < --------- . .  — | x y € x ED LL, 0 < p < r >
r \ 0 ( C2P;*3 J

-  -PL3(11^(0^ - ie) n  Bi).

Therefore Theorem 4.15 implies that

Pi3(A) = \  [  sup H 3( n ^ (o,x- iE) n  qBx) dS3
° .7,4 geBi

and

w3M  = 1 f  h3( n  BO dc3.

Since %3 is invariant under rotations about the vertical axis and B\ is a solid 

of revolution about the vertical axis, integrands are independent of x and 

equal to

sup H3(UHqBi )  and /H3( I I nB i )
qeBi

respectively for any vertical plane II. Thus the corollary follows. □
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Remark 4.17. From equations (4.19) and (4.12) we know that for any vertical 

plane II
* s ( n n B i )  =  =  (diam5(;)3 ^ n n s 1) )

(X ( J y S p )

where Sp, p > 0, is the isodiametric subset of II. This expression is easy 

to compute for CC balls. Since the p-sphere dBp is a surface of revolution 

about the vertical axis of the curve given by equations (3.6), we have

(7(n n B„) =  4 /  x ^ t ' ^ )  d<t> ss 2.0448p3. 
Jo

According to Example 3.40 we find

*00r 9  o
a(Sp) =  8 /  xp(<t>)t'M) d<t> S3 2.5125p3,

Jo

where 0O is the unique solution of the equation tp(<t>o) =  tp(n) on (0, 7r) 

((f)o «  0.5022). Also taking into account that diamS'p =  2p we get

^ nnB^ S i i " 0-814'
Remark 4.18. Similarly to the previous remark we have 

n 3(n  n qBi) = (diam51)3<T̂ n  R gBl^
£7(51) 

and therefore

1 r>\ sup €Bl£r(nn?Bi)-  sup M (nn qBi) =  -----------j —---------- .
o  q e B i

It is worth noticing that for any g G l 1

c r ( I l  f l  q B i )  =  a { q ~ l H D  L ? i ) ,

which can be verified in the same way as the equation (4.10). Let n  =  Tip be 

an arbitrary vertical plane with a unit normal (3. If A > 0 is the Euclidean
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distance from the origin to the plane q~lRp, then the point qx =  A/3 (multi­

plication by a scalar) lies on the plane q~lYip. Planes q~lRp and qxRp have 

the common point qx and the common normal /3, therefore they coincide. 

Thus we may assume that q~l =  qx =  A/3. Numerical computations show 

that

sup a(q~1Up fl Bi) = sup a(qxIlp H Bi)
q £ B i  0 < A < 1

=  & (q \R p  H Bi)|a«o.27 ~  2 .1037,

and therefore
1 2 1037
-  sup U3{n n qBi) ss ' ss 0.837.
® q€.Bi Z . 0 1 ZO

The dependence of a(qxUp D Bi) on A G [0,1] is reflected on Fig. 4.1 (the 

area under the graph is half of the volume of Bi).

1 .

0 .

Figure 4.1: The area of the section qxTlp Pi B\ as a function of A € [0,1]
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