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Abstract
The M il gene was originally identified through its role in infant acute 

myeloid and lymphoid leukaemias. M il also has a role in normal haematopoiesis as 

identified using mouse knockout models. Homozygous mutation of M il is embryonic 

lethal, which has limited research into its role in haematopoiesis.

To overcome this embryonic lethality, a conditional knockout mouse model 

of A/77 was established. In this model, exons 9 and 10 of M il were flanked by LoxP 

sites (‘floxed’), which recombined to induce deletion of exons 9 and 10 in the 

presence of the Cre recombinase. Deletion of exons 9 and 10 lead to complete loss of 

the MLL protein as detected by immunoblotting. By breeding mice homozygous for 

the floxed M il allele to mice that carried the Cre recombinase under the control of 

the Vav promoter, it was possible to delete M il within the haematopoietic system.

Analysis of foetal and adult haematopoiesis in the absence of M il was carried 

out using the new model. In embryos lacking M il, the foetal liver showed a marked 

reduction in the number of colony forming cells as well as both long and short term 

haematopoietic stem cells. When transplanted into lethally irradiated recipients 

with wild type competitors, M il deficient foetal liver cells were unable to contribute 

to reconstitution of the haematopoietic system.

In adult mice, removal of M il had no apparent effect on the steady state 

haematopoietic system. Populations of myeloid, lymphoid and stem cells were 

unaffected. However, in competitive repopulation assays, M il deficient bone marrow 

cells were unable to compete with wild type cells. This work suggests M il is needed 

for the correct development of foetal liver haematopoiesis and also to maintain self­

renewal potential in adult haematopoietic stem cells. However, it appears that M il is 

not needed to maintain adult haematopoiesis under homeostatic conditions.
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Chapter 1 

Introduction

1.1 Mil: The Mixed Lineage Leukaemia gene.

This study concentrates on the role of gene M il {M ixed Lineage Leukaem ia) 

in regulating haematopoiesis in foetal and adult mice. M il was first discovered due to 

its involvement in chromosomal translocations in infant leukaemia (Daser and 

Rabbitts, 2004; Djabali et al., 1992; Ernst et al., 2002). Animal models and 

biochemical studies have shown that the A///gene codes for a large protein involved 

in chromatin remodelling that the MLL protein has some role in regulating 

haematopoiesis in a normal context. This Chapter gives an overview of the processes 

that M il may be involved in regulating and an introduction to the MLL protein 

itself.

1.2 Haematopoiesis

Haematopoiesis is defined as the formation and differentiation of red and 

white blood cells. In mammals, the continuous process of blood cell self renewal 

requires a population of haematopoietic stem cells (HSCs) that are able to give rise to 

all the different lineages of blood cells throughout the lifespan of an individual. 

These multi-potent stem cells are thought to undergo asymmetric cell division to 

produce progenitor cells which can then divide and differentiate to produce the 

lymphoid, myeloid and erythroid cells of the haematopoietic system (Cumano and 

Godin, 2007; Shizura et al., 2005; Weissman et al., 2001).

1.3 Haematopoietic development in mice

Embryonic haematopoiesis has been extensively studied in mice, and two 

distinct extra and intra-embryonic waves of haematopoiesis have been identified. In 

the first wave, primitive haematopoiesis begins in the blood islands of the yolk sac at
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embryonic day 7.5 (E7.5) (Bonnet, 2003; Cumano and Godin, 2007; Fujikawa et al., 

2003; Mikkola and Orkin, 2006; Wong et al., 1986). The first cells of haematopoietic 

origin to be produced in the embryo are found here and are thought to be derived 

from mesoderm cells of the primitive streak (Palis and Yoder, 2001). These are 

nucleated erythrocytes (so called primitive erythrocytes due to their resemblance to 

erythrocyte precursors in the adult bone marrow) that express foetal specific 

isoforms of haemoglobin (Cumano and Godin, 2007; Zhu and Emerson, 2002). At 

this time point, the yolk sac does not appear to contain haematopoietic stem cells 

capable of contributing to all adult haematopoietic lineages, as shown by 

repopulation assays (Cumano et al., 1996; Cumano and Godin, 2007; Godin and 

Cumano, 2002). However, it is possible that the yolk sac can support the expansion 

of definitive HSCs at later time points.

At E8.5, the first intra-embryonic haematopoietic precursors become 

apparent. These are situated in the paraortic splanchnopleura (P-sp) which then 

gives rise to the Aorta, Gonads, Mesonephros region (AGM) (Cumano et al., 1996; 

Godin and Cumano, 2002; Medvinsky and Dzierzak, 1996; Medvinsky et al., 1993). 

Cells which can give rise to long term reconstitution in Rag~2A x y c A mice have been 

detected in the AGM region by E l0.5 (Cumano et al., 1996; Godin and Cumano, 

2002; Medvinsky and Dzierzak, 1996; Muller et al., 1994). These cells, which reside 

in the ventral wall of the dorsal aorta, are thought to be the first definitive HSCs, 

which will eventually seed the foetal liver and then the bone marrow. There is also 

evidence to suggest that some definitive HSCs develop in the placenta (Gekas et al., 

2005; Mikkola and Orkin, 2006).

Between E9.5 and El 1.5, these HSCs transplant to the foetal liver, which 

becomes the primary site for haematopoiesis in the embryo (Cumano and Godin, 

2007; Mikkola and Orkin, 2006). Until haematopoiesis transplants to the bone 

marrow at E l5.5, the foetal liver is the main site of HSC expansion and 

differentiation. W hen cells from the foetal liver are transplanted into lethally 

irradiated mice, they are able to give rise to both long and short term haematopoiesis 

(Morrison et al., 1995; Rebel et al., 1996), showing the presence of HSCs that can 

function in the adult system. Following birth, the primary site of haematopoiesis is

18



the bone marrow, where HSCs reside in niches which are thought to protect their 

self renewal and multipotent capacities (Mikkola and Orkin, 2006).

1.4 Haematopoietic stem cells give rise to all the lineages of blood cells

In adult bone marrow, as in foetal liver, HSCs give rise to all the cells of the 

blood system. This small population of cells was originally identified through its 

ability to give rise to all mature blood cell lineages and to reconstitute the 

haematopoietic system when transplanted into lethally irradiated mice (Siminovitch 

et al., 1963; Smith et al., 1991; Spangrude et al., 1995).

The process by which HSCs divide and differentiate to give rise to mature 

cells is not known definitively, although several models have been proposed, (for 

review, see (Ema and Nakauchi, 2003).

One popular theory of HSC differentiation has been proposed by the group of 

Irving Weissman (Akashi et al., 2000; Kondo et al., 1997).In this model (see Figure

l.l,(Shizuru et al., 2005)) a subset of stem cells, the Long Term repopulating HSCs 

(LT-HSC) are capable of propagating haematopoiesis over the lifespan of an 

individual. These cells rest predominantly in the Go phase of cell cycle, and when 

transplanted into irradiated recipients, are able to maintain haematopoiesis for 

longer than 4 months (Forsberg et al., 2005; Forsberg et al., 2006). They can also 

reconstitute following serial transplantations into irradiated recipients, 

demonstrating their self-renewal capacity (Kiel et al., 2005). The LT-HSC gives rise 

to a population of more rapidly proliferating cells, the Short Term repopulating HSC 

(ST-HSC) which has a self-renewal lifespan of 6-8 weeks (Forsberg et al., 2006; 

Weissman, 2002) (Figure 1.1). The ST-HSC produces M ulti-Potent Progenitors 

(MPPs) which have a self-renewal lifespan of only two weeks (Figure 1.1). All of 

these stem cell types, although they have different self-renewal capacity, are 

multipotent and can give rise to the different mature lineages of the haematopoietic 

system.
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Figure 1.1. Haematopoiesis in Adult Mice.
LT-HSC -  Long-Term HSC, ST-HSC -  Short-Term HSC,
MPP - Multi-Potent Progenitor CLP -  Common Lymphoid 
Progenitor, CMP -  Common Myeloid Progenitor, GMP -  
Granulocyte/Monocyte Progenitor, MEP
Megakaryocyte/Erythrocyte Progenitor. Figure adapted from Shizura 
et al., 2005 with additional information from Zhong e t al. 2005 and 
Kiel e ta l 2005.
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1.5 Characterisation of foetal and adults HSCs

HSCs have been extensively characterised in both foetal and adult 

haematopoiesis. There are several characteristics in which foetal liver HSCs differ 

from adult bone marrow HSCs. Foetal liver HSCs expand rapidly and are actively 

cycling, whereas bone marrow HSCs are largely quiescent (Cheshier et al., 1999; 

Nygren et al., 2006). Foetal liver HSCs are also able to out compete bone marrow 

HSCs in transplantation experiments (Harrison et al., 1997; Rebel et al., 1996).

The transition from foetal to adult HSCs brings about a change in surface 

marker expression. Foetal liver HSCs, unlike adult bone marrow HSCs, express 

selected lineage markers, for example Macl, which is expressed on monocytes and 

granulocytes and is absent from HSCs in adult mice (Morrison et al., 1995). Foetal 

liver HSCs also express the marker AA4.1, which is normally expressed on B cells in 

adult mice. Adult HSCs also down regulate expression of CD34. There are several 

markers which foetal and adult HSCs share in common, however. Although some of 

these markers are not exclusively expressed on HSCs, they can be used in 

combination to purify the different HSC populations to a high degree. LT-HSCs, ST- 

HSCs and MPPs in both the bone marrow and foetal liver all express high levels of 

c-kit and Seal (Ikuta and Weissman, 1992; Spangrude et al., 1988) (Figure 1.1).

Markers which have been identified as differentially expressed between LT- 

HSC, ST-HSC and MPP in the foetal liver and bone marrow include CD38 (Randall 

et al., 1996; Zhong et al., 2005), T hy l.l (although this is not expressed by all strains 

of mice (Spangrude et al., 1988)), and the SLAM family members CD48 and CD 150 

(Kiel et al., 2005; Kim et al., 2006) The expression of these markers on the different 

HSC subpopulations is detailed in Figures 1.1 and 1.2. The tyrosine kinase receptor 

Flk2/Flt3 can also be used to differentiate between LT and ST-HSC in adult bone 

marrow cells, but not foetal liver (Christensen and Weissman, 2001).

Phenotypic characteristics of the stem cells can also be used to isolate them 

from other haematopoietic populations. For example, treatment of mice w ith 5- 

fluoruracil (5FU) results in ablation of the majority of haematopoietic cells in the 

bone marrow. This is because 5FU targets actively cycling cells. HSCs, however, are
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Linc-kithi 
Sca1+
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Thy-1 loFlk2/+ 
CD48CD150+ 
CD38hiCD34'/l0
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Thy-1 l0Flk2+ 

CD48CD150+ 
CD38'°CD34+

MPP
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CD48CD150
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Figure 1.2. Identification of stem cells in foetal haematopoiesis.
The figure shows the model conceived by Irving Weissmans group. 
LT-HSC -  Long-Term HSC, ST-HSC -  Short-Term HSC, MPP - Multi- 
Potent Progenitor, CLP -  Common. Figure adapted from Shizura et al., 
2005 with additional information from Randall e t al, 1996 and Kim et 
a l 1996.
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predominantly quiescent and therefore immune to 5FU treatment. This means that 

HSCs are enriched in the bone marrow of mice following 5FU treatment, and can be 

purified in this manner (Ogata et al., 1995). HSCs are also more efficient at effluxing 

dyes using a multi-drug like transporter and this means that they can be purified by 

staining them with dyes such as Hoechst 33342 (Goodell et al., 1996). W hen the 

cells are analysed by flow cytometry, the HSCs form a so-called ‘side population’ of 

cells negative for Hoechst 33342, separating them from other haematopoietic cells, 

which are positive (Goodell et al., 1996).

Using these markers and characteristics in combination with Lineage 

markers, c-kit and Seal, it is possible to analyse the different populations of HSC in 

the bone marrow and foetal liver in some detail.

1.6 Techniques used in the analysis of HSCs and progenitors

In addition to the various markers that have been characterised for use in 

identifying HSCs by flow cytometry, several techniques have been developed to 

identify HSCs and progenitors by functionality. In  vitro  methods to identify HSCs 

include the Cobblestone Area Forming Cell Assay (CAFC Assay) and the Long term 

Culture Initiating Cell Assay (LTC-IC Assay). Both of these techniques involve 

plating HSCs identified via flow cytometry onto irradiated bone marrow stroma 

cells. The HSCs then form so called ‘cobblestone’ areas which can be quantified by 

counting the cobblestone foci after limiting dilution (Ploemacher et al., 1989). The 

LTC-IC is defined as cells which can still produce clonogenic progenitors after 5 

weeks in culture (de W ynter and Ploemacher, 2001) (Ploemacher et al., 1989).

In  vitro  assays for progenitor cell function predominantly take the form of 

methylcellulose colony forming assays. These assays measure the ability of 

individual progenitor cells to produce colonies when cultured in semi solid media 

containing cytokines to promote differentiation of the cells (Humphries et al., 1981; 

Johnson and Metcalf, 1977; Johnson et al., 1976). Different combinations of 

cytokines can be used to promote growth and assay progenitors of B cells, myeloid 

cells and erythroid or megakaryocyte cells. Following culture, each colony is 

counted as a Colony Forming Unit (CFU) thought to derive from one progenitor cell.
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W hen assaying myeloid progenitors, it is possible to differentiate between the 

colony types by morphology and so assess whether the colony was formed by an 

early myeloid progenitor (CFU Granulocyte, Erythroid, Megakaryocyte, 

Macrophage) or later progenitors (Bust Forming Unit Erythroid, CFU Granulocyte, 

Macrophage).

The definitive in  vivo  assay for HSC function is still considered to be the 

repopulation assay. This involves transplanting cells from the bone marrow or foetal 

liver of one mouse to the bone marrow of a lethally irradiated recipient. On 

transplantation, the ability of the cells to reconstitute all of the mature 

haematopoietic lineages is an indication of their function as stem cells. Cells that can 

give rise to reconstitution past 3 months post transplantation, and can serially 

transplant have been termed LT-HSC. Cells that can reconstitute all lineages, but 

only transiently, for up to 4 weeks, have been termed ST-HSC (Ikuta and Weissman, 

1992; Siminovitch et al., 1964; Spangrude et al., 1988). Transplantation assays have 

also been developed to compare the reconstitution capacity of mutant HSCs to wild 

type HSCs. These assays make use of the marker CD45 (Ly5), which is expressed on 

immature and mature haematopoietic cells (with the exception of mature 

erythrocytes and platelets). Different strains of laboratory mice express different 

alloantigens of CD45 -  either CD45.1 or CD45.2 (Spangrude et al., 1988). Mutant 

cells of one strain and wild type competitors of another strain, can be transplanted 

together into lethally irradiated recipients. It is then possible to measure the 

contribution of each population of cells to reconstitution using flow cytometry to 

analyse CD45.1 and CD45.2 expression. This technique has been very useful in 

establishing the roles of different genes in the regulation of HSCs using knockout 

mouse models (Hock et al., 2004a; Katsumoto et al., 2006; Lawrence et al., 2005b).

1.7 Differentiation of HSCs to mature lineages

Following the progression from LT-HSC to MPP and concomitant loss of 

self-renewal capacity, stem cells must differentiate to the mature lineages of the 

haematopoietic system. There is some discussion as to how this occurs. Following 

the model of Irving Weissman, differentiation of the HSCs progresses with the
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segregation of MPPs to committed progenitors of either the myeloid lineage or the 

lymphoid lineage. MPPs differentiate to become either common lymphoid 

progenitors (CLPs, IL-7R+/c-kitVScall0, CD34+), or common myeloid progenitors 

(CMPs, IL-7R/c-kitVScall0) (Weissman, 2002) (Figure 1.1).

The CMP differentiates to two further progenitor cells, the 

megakaryocyte/erythrocyte lineage restricted progenitor (MEP) and 

granulocyte/monocyte progenitor (GMP) (Akashi et al., 2000; Traver et al., 2001). 

These progenitors divide and differentiate to produce all the mature blood cell types 

of the myeloid, erythroid and megakaryocyte lineages. The CLP has the capacity to 

produce B and T-lymphoid cells and NK cells (Kondo et al., 1997). There is some 

disagreement in the literature as to whether this model is in fact correct, or whether 

there is more plasticity in some of the progenitor populations (Adolfsson et al., 2001; 

Adolfsson et al., 2005). However, this model is the most thoroughly researched at 

the present time (Adolfsson et al., 2001; Adolfsson et al., 2005; Forsberg et al., 2006).

1.8 Mature haematopoietic lineages: Lymphocytes

The lineages thought to be derived from the CLP include Natural Killer cells, 

and T and B lymphocytes. These cells are important in the response of the immune 

system to foreign antigens.

B lymphocytes function to produce antibody in response to external antigens 

and are an essential component of the adaptive immune system. Through 

progressive rearrangement of the light and heavy chain components of 

immunoglobulin genes, B cells can produce antibodies specific for an enormous 

number of antigens (Goldsby et al., 2003). B cells are thought to arise from CLP in 

the bone marrow (Kondo et al., 1997) and their subsequent development has been 

well characterised (Busslinger, 2004; Hardy and Hayakawa, 2001). A schematic 

detailing their development is shown in Figure 1.3. Following their production in 

the bone marrow and maturation in the spleen, they circulate the blood and lymph 

until they encounter their cognate antigen. Upon receiving additional signals from T 

Helper cells, they can begin to differentiate and begin secreting antibodies to mount 

an immune response to the encountered pathogen or irritant (Goldsby et al., 2003).
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Figure 1.3. B cell development in the bone marrow.
The figure shows the progressive differentiation of B cells from 
common lymphoid progenitors (CLP) to immature B cells (Imm. B cell). 
The blue circles represent different B cell stages. Shown in black are the 
markers expressed by the cells at different stages of development. 
Shown in dark blue are times at which gene rearrangement of the 
heavy and light immunoglobulins occurs. Figure based on figures from 
Hardy and Hayakawa, 2001 and Busslinger, 2004.
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T cells are also an essential component of the adaptive immune system. 

Unlike B cells, which can recognise free standing antigens, T cells can only 

recognise antigens when they are presented on the surface of an antigen presenting 

cell w ith the Major Histocompatibility Complex (MHC). T cells develop in the 

thymus, which is initially populated by progenitor cells derived from HSCs in the 

bone marrow (Schwarz and Bhandoola, 2004; Schwarz and Bhandoola, 2006). Once 

in the thymus, these cells are known as thymocytes. The earliest thymocytes are 

negative for both CD4 and CD8. These progress to cells which are Double Positive 

(DP) for CD4 and CD8 (Goldsby et al., 2003). Following positive selection, 

thymocytes mature into T cells that are Single Positive (SP) for either CD4 or CD8. 

These cells are then released into the periphery. T cells positive for CD8 recognise 

antigen presented with MHC Class I molecules and develop into Cytotoxic T cells 

(Tc or CTL Cells) (Goldsby et al., 2003). Cytotoxic T cells are involved in killing virus 

infected cells and cancerous cells (Goldsby et al., 2003). CD4 positive cells recognise 

antigen presented with MHC Class II molecules and are known as Helper T cells 

(effector or Th cells). In response to contact w ith their cognate antigen and MHC 

Class II, they can secrete cytokines and activate B cells and Tc cells. Memory T cells 

can be either CD4 or CD8 positive and can recognise pathogens encountered during 

a previous infection to mount a swift immune response (Goldsby et al., 2003).

Natural Killer Cells are a form of lymphocyte which are part of the innate 

immune system. They are cytotoxic cells which are activated by cytokines or 

interferons. They can induce apoptosis in infected cells and are important in the 

response of the immune system to viral infections (Goldsby et al., 2003).

1.9 Mature haematopoietic lineages: Granulocytes and Macrophages

The cells of the myeloid lineage include granulocytes and macrophages. Both 

derive from the CMP, and then a further committed progenitor, the GMP 

(Granulocyte/Monocyte progenitor) (Akashi et al., 2000; Traver et al., 2001). 

Granulocytes (neutrophils, basophils and eosinophils) constitute up to 70% of 

circulating white blood cells and function in the defence against pathogens through 

phagocytosis and secretion of toxic substances (Goldsby et al., 2003). They are
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recognisable through their expression of high levels of Grl (Ly6G) and Macl 

(CDllb) (Taylor et al., 2003). Macrophages begin life as monocytes in the bone 

marrow which then differentiate in tissues and have the ability to phagocytose and 

kill infected cells and pathogens and to present antigens to T-cells (Goldsby et al.,

2003). Monocytes are recognisable by their expression of low levels of Grl and high 

levels of Macl (Taylor et al., 2003).

1.10 Mature haematopoietic lineages: Erythrocytes and Megakaryocytes

The other proposed derivative of the CMP is the MEP 

(Megakaryocyte/Erythrocyte Progenitor) (Akashi et al., 2000; Traver et al., 2001). 

The MEP is thought to give rise to erythroid cells and megakaryocytes cells. The 

cells of the erythroid lineage differentiate into enucleated erythrocytes. 

Erythrocytes consist mainly of haemoglobin, a complex molecule containing haeme 

groups whose iron atoms temporarily link to oxygen molecules in the lungs. The 

erythrocytes then distribute the oxygen around the body via the circulatory system 

(Goldsby et al., 2003).

Megakaryocytes are large cells responsible for producing platelets, which are 

involved in blood clotting. Megakaryocytes undergo endoreduplication that results 

in an increase in cell size (Zimmet and Ravid, 2000). Platelets are produced in and 

released from the cytoplasm of the megakaryocytes.

1.11 The genetic control of haematopoiesis: Initiation of primitive and 

definitive haematopoiesis

The renewal and differentiation of HSCs to progenitors and then mature cells 

is tightly regulated by a combination of factors. Some of these factors have been 

identified using mouse knockout and conditional knockout models. These include 

genes which are necessary for the establishment of primitive or definitive 

haematopoiesis, but whose expression is not necessary for adult stem cell self 

renewal.

In the earliest stages of primitive haematopoiesis, the transcription factors scl 

{Stem Cell Leukaemia) and lm o2 {LIM Domain O nly 2) are needed for the formation
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of primitive erythroid cells. W hen mouse null models were analysed for of these 

genes, scLAand Lm o2/' embryos died at E9.5-E10.5 (Robb et al., 1995; W arren et al.,

1994). Both scP 'and  lm o2A embryos were anaemic and showed an absence of yolk 

sac haematopoiesis (Robb et al., 1995; W arren et al., 1994). Chimaeric mice made 

using Scl or lm o2  deficient ES cells showed that these cells could not contribute to 

haematopoietic lineages in adult chimaeras, supporting a role for these genes in the 

establishment of haematopoiesis (Robb et al., 1996; Yamada et al., 1998). However, 

conditional deletion of Lm o2 in early lymphocytes had no effect on the production 

of mature B and T cells (McCormack et al., 2003) in adult mice, suggesting that 

Lmo2 is not essential for adult haematopoiesis. Likewise, conditional deletion of scl 

in the haematopoietic compartment of adult mice showed that scl is not needed for 

the proliferation and self- renewal of adult HSCs (Mikkola et al., 2003). These 

experiments showed that, whilst Lmo2 and scl are needed for the establishment of 

primitive haematopoiesis in the yolk sac, they are not needed for the maintenance of 

adult haematopoietic cells.

Several genes are necessary for the establishment and maintenance of 

definitive haematopoiesis in the foetal liver. The most important of these is the 

transcription factor R u n x l/A m ll {Runt related transcription factor 1 /A cute M yeloid  

Leukaemia 1). In the absence of R unxl expression, although yolk sac haematopoiesis 

is normal, no definitive haematopoietic cells are seen in the foetal liver. No 

haematopoietic cells were apparent in the AGM of R u n x lA mice, and it has since 

been shown that R u n xl expression is a defining marker of stem cells in the AGM 

region (Mukouyama et al., 2000; North et al., 2002). Conditional deletion of A m ll in 

the haematopoietic system of adult mice showed that, whilst it is necessary for the 

establishment of definitive haematopoiesis in the foetus, R u n x l it is not needed in 

adult HSCs (Ichikawa et al., 2004).

WTiilst R u n xl is needed for the establishment of definitive haematopoiesis, 

there are other genes which, whilst not being needed for establishing definitive 

haematopoiesis, are necessary for the proper expansion and maintenance of HSCs in 

the foetal liver. These include the transcription factors c-myb, GATA-2, and Pu.l. In 

c-m yb  deficient foetal embryos, although sites of HSC development appear to be
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functioning in the AGM, the only mature cells seen in the foetal liver are 

megakaryocytes and erythroid cells (Emambokus et al., 2003; Sumner et al., 2000). 

The foetal liver cells do not express high levels of c-kit and can form very few 

colonies in myeloid CFU assays, suggesting reductions in myeloid progenitors and 

stem cells. These results suggest that whilst c-m yb  is not necessary for establishing 

definitive haematopoiesis in the AGM, it is needed for the maintenance and self­

renewal of HSCs and progenitors in the foetal liver. Embryos deficient in G ATA-2 

had pan-haematopoietic defects and died at E10.5 (Tsai and Orkin, 1997). Embryos 

deficient in P u .l die at E18.5 due to haematopoietic failure (Kim et al., 2004). Stem 

cells as defined by flow cytometry were absent or severely reduced in P u .lv~ 

embryos, as were all myeloid progenitors (Kim et al., 2004). This suggests that P u.l 

is needed for proper expansion of HSCs in the foetal liver.

1.12 The genetic control of haematopoiesis: Regulation of Adult HSCs

Following the transition of haematopoiesis to the bone marrow, HSC 

proliferation and differentiation is tightly regulated. In the foetal liver, HSCs must 

undergo large scale expansion in order to populate the foetal liver. This means that 

HSCs in foetal liver are predominantly actively cycling cells (Harrison et al., 1997; 

Nygren et al., 2006). In the bone marrow, the opposite is the case- HSC proliferation 

must be restrained in order to preserve the stem cell pool for the life-span of an 

individual. This requires, in some instances, regulation of the HSCs by a different set 

of genes to that which control the onset of primitive and definitive haematopoiesis. 

Genes which were necessary for the establishment of primitive and definitive 

haematopoiesis, such as A m ll/R u n x l and scl are no longer needed for HSC self­

renewal (Mikkola et al., 2003). However, as in foetal liver haematopoiesis, 

transcription factors play a large role in regulating HSC self renewal. A large part of 

this role is played through the regulation of cell cycle and apoptosis genes to 

maintain the self renewal capacity of HSCs. Another class of genes strongly linked to 

HSC regulation are chromatin remodelling proteins of the Polycomb and Trithorax 

groups.
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One transcriptional repressor that is not needed for primitive haematopoiesis, 

but is crucial for the maintenance of adult HSCs is Tel/Etv6 ( Translocation-Ets- 

Leukemia). Although homozygous deletion of Tel/Etv6 is embryonic lethal, yolk sac 

haematopoiesis is unperturbed in the absence of Tel/Etv6. However, induced 

deletion of Tel/Etv6 in adult mice abrogates LT-HSC activity without affecting 

progenitor functions indicating that Tel/Etv6 is essential for their survival HSCs 

(Hock et al., 2004b).

Other transcription factors have been identified as being important for HSC 

self-renewal and are thought to act via an effect on HSC proliferation. GATA-2, in 

addition to its role in regulating foetal liver and AGM haematopoiesis, also regulates 

HSC proliferation in adult mice (Ling et al., 2004). Mice heterozygous for G ATA-2 

had reduced numbers of HSCs which had a competitive disadvantage against wild 

type cells in transplantation assays, and showed delayed recovery after 5FU 

treatment (Ling et al., 2004). This suggests that G ATA-2 is necessary for the normal 

self renewal of HSCs. The ETS transcription factor P u .l is also needed to maintain 

the proliferation and differentiation of HSCs in adult mice, as shown using 

conditional knockout mice (Iwasaki et al., 2005).

In contrast, mice deficient for the transcription factor MEF/ELF4 had a 

slightly higher number of BM HSCs as defined by flow cytometry. These cells were 

protected from cell cycle dependent toxicity due to a greater number of cells being 

in Go. This suggests that MEL1/ELF1 regulates the entrance of HSCs into the cell 

cycle at ready state, and prevents their over expansion (Lacorazza et al., 2006).

As expected, several genes involved in regulating cell cycle progression have 

also been identified as important regulators of stem cell self-renewal. Some cyclin 

dependent kinase inhibitors (CDKi) are thought to act to prevent HSC hyper or 

hypo proliferation. For example, p21c‘PI/wafl deficient mice have normal numbers of 

HSC but these HSC exhibit a serial repopulation defect and reduced resistance to 

5FU treatment (Cheng et al., 2000b). This suggests that p21ciP1/wafl is needed to 

maintain cells HSCs in Go. In contrast, HSCs from mice deficient for p l& nk4c have 

improved long-term engraftment, suggesting that p W 1*40 functions to limit stem cell 

self renewal (Yuan et al., 2004). Mice deficient in p27kiP1, had normal numbers of
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stem cells, and no transplantation defects in the HSC. However, they had increased 

numbers of progenitors that out competed wild type cells in transplantation assays 

(Cheng et al., 2000). Mice deficient for p l6 NK4A had normal numbers of HSCs when 

young. However, in old mice, the numbers of both LT and ST HSC were increased, 

in comparison to wild type (Janzen et al., 2006). Bone marrow cells from old 

p l6 NK4A / mice also performed better in competitive and serial transplantation 

experiments (Janzen et al., 2006). This suggests that expression of p i  ffNK4A is needed 

to regulate HSC pool size as mice age. The mosue models show that CDKis are 

closely involved in positively and negatively regulating HSC self renewal and 

proliferation. CDKis are thought to act through their inhibition of cyclin/CDK 

complexes, leading to prevention of the phosphorylation of Rb protein. 

Interestingly, conditional deletion in adult mice of Rb, led to no observed 

abnormalities in the numbers or repopulating capacity of HSCs (Walkley and Orkin, 

2006). This suggests that the mechanism by which CDKis work to regulate 

proliferation in HSCs and progenitors is not dependent on Rb.

Three genes that encode proteins from the Polycomb (PcG) repressive 

complex 1 (PRC1) have been shown to be important in HSC function. Mice deficient 

in m e ll8  had increased HSCs that had higher self-renewal activity and elevated 

expression of H oxb4compared with wild type controls (Kajiume et al., 2004). Foetal 

liver HSCs and progenitors deficient in another PcG gene, rae28 have impaired self­

renewal capacity and were unable to reconstitute the bone marrow of lethally 

irradiated recipients (Ohta et al., 2002). Mice null for B m il had ten times as few 

phenotypic HSCs as wild type mice, with initially normal levels of progenitor and 

mature blood cells (Park et al., 2003). Gene expression profiles of BM mononuclear 

cells from B m il null mice showed increased expression of p l f f1* ^  suggesting that 

B m il controls HSC renewal by releasing the cells from cell cycle arrest imposed by

plffnk4A

The transcription factor C/EBPa (CCAAT/Enhancer Binding Protein Alpha) 

is thought to play an antagonistic role to Bm il. Disruption of C/EBPa in adult mice 

leads to an increase in expression of B m il and enhanced repopulation capacity in 

HSCs (Zhang et al., 2004).
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Recently, an anti-apoptotic factor, M cl-1 (M yeloid Cell Leukaemia Sequence 

I) was shown to regulate apoptosis in HSCs. Opferman et al. (2005) showed that the 

survival of bone marrow progenitors in vitro requires expression of M cl-1 induced 

by early-acting cytokines. In vivo, after conditional deletion of M cl-1, progenitors 

and HSCs are gradually depleted.

The regulation of the self-renewal, proliferation and differentiation of the 

HSC pool is co-ordinately regulated by many factors, and involves measures to 

prevent inappropriate cell expansion and death.

1.13 The genetic control of haematopoiesis: Differentiation to mature 

lineages

Many different transcription factors work in concert and/or antagonistically 

to direct differentiation of HSCs to the different mature lineages of haematopoietic 

cells. Expression levels of the different transcription factors are particularly 

important as it is thought that, although some transcription factors are expressed in 

many lineages, only when their expression is above a threshold level will they drive 

progenitors down a particular developmental pathway.

Transcription factors important for erythropoiesis include GATA-1, Lmo2, 

FOG-1 (Friend o f  GATA-1) and scl/tall (Allen et al., 2006a; Cantor and Orkin, 2002; 

Mikkola et al., 2003; Tsang et al., 1998). As discussed above, Lmo2 and scl are 

necessary for primitive erythropoiesis. Conditional deletion of scl in adult tissues 

also led to anaemia and thrombocytopenia in the mice, and an inability of the bone 

marrow cells to form BFU-E, suggestive of blocks in erythropoiesis and 

megakaryopoiesis (Hall et al., 2003). Gata-1 and Fogl also regulate both 

erythropoiesis and megakaryopoiesis. Embryos deficient in Fogl die of anaemia and 

have blocked erythropoiesis and megakaryopoiesis (Tsang et al., 1998). Loss of Gatal 

leads to blocked maturation of erythrocytes and megakaryocytes and the failure of 

erythropoiesis (Orkin et al., 1998; Weiss and Orkin, 1995).

The two predominant transcription factors that are thought to regulate 

myelopoiesis are P u.l and C/EBFol (Laiosa et al., 2006; Orkin, 2000). CMPs and
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GMPs are absent in the foetal livers of E14.5 embryos lacking P u .l, although MEPs 

were present (Kim et al., 2004). Adult mice in which P u .l was conditionally deleted 

in HSCs after birth were unable to produce CMPs. However deletion of P u.l after 

GMP formation resulted in excess granulocyte production (Dakic et al., 2005; 

Iwasaki et al., 2005). This suggests that P u.l is needed for the formation of CMP but 

is also jieeded to restrict differentiation in the GMP. Adult mice in which C/EBPa 

was conditionally deleted produced very few GMPs, neutrophils, eosinophils and 

monocytes (Zhang et al., 2004). Conditional deletion of C/EBPa in the GMP 

population did not affect their capacity to produce colonies in vitro, suggesting that 

C/EBPa is needed for the formation of GMP, but not for the downstream 

differentiation of granulocytes and monocytes (Zhang et al., 2004).

Pu. 1, in addition to regulating myelopoiesis, plays a further role in lymphoid 

development. Loss of Pu.l results in an inability of HSCs to produce CLPs as well as 

CMPs (Dakic et al., 2005; Iwasaki et al., 2005). Another transcription factor needed 

for CLP formation is Ikaros (Allman et al., 2003) as evidenced by the fact that mice 

deficient in Ikaros have undetectable levels of CLPs.

Further differentiation of CLPs to mature B cells requires different levels of 

several transcription factors. Inactivation of transcription factors such as PAX5 

(Paired Box Gene 5), E2A and EBF (Early B cell Factor) (Bain et al., 1994; Isnard et 

al., 2000; Lin and Grosschedl, 1995; Nutt et al., 1999) all result in disrupted B cell 

development. Loss of EBF or Pax5 in adult mice leads to a block in B cell 

development at the ProB stage and loss of E2A leads to a loss of B cells early in 

development, before DJ immunoglobulin gene rearrangement (Bain et al., 1994; Lin 

and Grosschedl, 1995; Nutt et al., 1999) . Interestingly, Pax5 deficient B cells can be 

induced to differentiate to cells of the myeloid lineage, and express genes of 

different lineage-affiliated gene programs (Nutt et al., 1999). Therefore, Pax5 plays 

an essential role in B-lineage commitment by suppressing alternative lineage 

choices.

Correct maturation of T-cells requires transcription factors such as 

R u n xl/A m ll, c-m yb, E2A/HEB and GATA3 (Laiosa et al., 2006; Rothenberg and 

Taghon, 2005). A m ll/R u n x l is needed for the proper expansion of DN thymocytes,
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and also to suppress CD4 expression during the selection process for CD8 SP cells 

(Telfer et al., 2004; W oolf et al., 2003). c-m yb  is required during several stages of T 

cell development - transition through the DN stage in the thymus, survival of DP 

thymocytes, and differentiation of CD4+ thymocytes (Bender et al., 2004). E2A and 

HEB are partially redundant bHLH transcription factors, but in the absence of either 

protein, T cell differentiation is partially blocked before the transition from DP to 

SP cells (Bain et al., 1997; Barndt et al., 1999). GATA3 is the only transcription 

factor that appears to have a T cell specific role. It is needed for the formation of the 

earliest thymocytes, before the DN stage and has further roles in regulating the 

development of Th cells (Ting et al., 1996; Zhu et al., 2004). N otchl, a component of 

the N otch signalling pathway is also important for T cell development. In mice in 

which N o tch l has been conditionally deleted, T cell development is absent, and 

instead, B cell development occurs in the thymus (Radtke et al., 2004; Robey and 

Bluestone, 2004). This showed that N otch l signalling is needed to suppress B cell 

development in lymphoid progenitors in order for T cell development to occur. 

N o tch l signalling is also required for later stages of T cell development (Radtke et 

al., 2004; Robey and Bluestone, 2004). Another group of signalling proteins 

important for T cell development are those of the Vav family (Tybulewicz, 2005). 

These are cytoplasmic guanine nucleotide exchange factors for Rho-family GTPases 

and are phosphorylated in response to T cell antigen receptor signalling (Bustelo et 

al., 1992). Vavl deficient mice showed a partial block at the transition from DN to 

DP cells (Turner et al., 1997). Mice deficient in all three Vav family proteins (Vavl, 

Vav2, Vav3) show a 100-fold reduction in number of DP and SP thymocytes, in 

comparison to a normal number of DN thymocytes. This demonstrates the 

importance of the Vav family in regulating the DN to DP transition (Fujikawa et al.,

2003)

The genetic control of the differentiation of HSCs via committed progenitors 

to the mature lineages of the haematopoietic system requires careful coordination of 

a range of transcription factors, the levels of which can influence the cell fate of a 

specified progenitor.
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1.14 The Hox cluster: A family of genes involved in haematopoiesis

Another group of genes shown to play an important part in regulating 

haematopoiesis are the genes of the H ox family. The HOX proteins are transcription 

factors that are important in determining cell fate and body patterning in the 

developing embryo. They are orthologous to the HOM-C proteins in Drosophila 

(Grier et al., 2005; McGinnis and Krumlauf, 1992) (Figure 1.4) that were first 

discovered through the analysis of Drosophila mutants (Gehring and Hiromi, 1986). 

Mutation of genes from the HOM-C cluster gave rise to homeotic transformations in 

the flies, involving the transformation of one body part e.g. an antennae, to another 

e.g. a leg (Gehring and Hiromi, 1986). This meant that HOM-C genes were needed 

for specifying the body plan during embryological development (Gehring and 

Hiromi, 1986). Following the discovery of the HOM-C cluster in Drosophila, H ox 

genes were found to reside in similar clusters in mammalian genomes (Hart et al., 

1985; McGinnis et al., 1984).

The H ox genes code for transcription factors whose conserved motif is the 

homeodomain (Grier et al., 2005). This is a 61-amino-acid helix-turn-helix DNA- 

binding domain (Grier et al., 2005). Hox proteins may be involved in both 

transcriptional activation or transcriptional repression (Moens and Selleri, 2006; 

Owens and Hawley, 2002). In mammals, the H ox genes are organised in 4 clusters 

(see Figure 1.4 (Grier et al., 2005)), each containing 9-11 genes. They are expressed 

in precise temporal and spatial patterns during embryological development, and the 

importance of this expression is seen in the morphological abnormalities that can 

arise following targeted disruption of some of the H ox genes in mice. These include 

homeotic transformations of the skeleton, suggesting that their function is analogous 

to that of the HOM -C  genes in Drosophila (Chen and Capecchi, 1997; Davis and 

Capecchi, 1994; Davis et al., 1995; Kostic and Capecchi, 1994).

H ox genes are also expressed postnatally in adult tissues, including blood cells 

(Pineault et al., 2002; Sauvageau et al., 1994). A survey of the CD34+ populations 

(which included HSCs and progenitors) showed expression of several genes from the 

A, B  and C H ox  gene clusters (Sauvageau et al., 1994). It is thought that 3' genes of
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the H ox clusters are expressed in pluripotent progenitors, w ith 5' genes bring turned 

on in more committed progenitors (Lawrence et al., 1997; Sauvageau et al., 1994).

Evidence for the role of these H ox genes comes from over expression studies 

and mouse knockout models. These studies do not always present a clear picture of a 

particular gene’s role, due to a certain amount of redundancy between the H ox 

genes. At the earliest stages of haematopoiesis, mice deficient in Hoxb3 and Hoxb4 

produce HSCs and progenitors with a reduced proliferative capacity (Bjornsson et 

al., 2003), and over expression of Hoxb4 increases the regenerative capacity of HSCs 

(Antonchuk et al., 2001).

Several H ox genes appear to be involved in the regulation of progenitor cells. 

Knockout of Hoxa9 in mice leads to a reduction in myeloid, erythroid and B- 

lymphoid progenitors without a reduction in pluripotent progenitors (Lawrence et 

al., 1997). However, although the stem cell compartment appears normal, upon 

transplantation, it has a severe repopulating defect (Lawrence et al., 2005a). 

Knockout of Hoxb6 led to an increase in early erythroid progenitors, although 

peripheral blood counts remained unaffected (Kappen, 2000). Disruption of Hoxc8 

led to a reduction in erythroid and myeloid progenitors in some individuals, 

although this phenotype was not fully penetrant and was not cell intrinsic 

(Shimamoto et al., 1999).

It appears that several of the H ox genes have a similar function in regulating 

the pluripotent progenitor population, but that individual H ox genes play different 

roles in the further differentiation of progenitors. Ernst et al. (2004) looked at the 

colony forming ability of cells from embryoid bodies differentiated from M il 

deficient ES cells. These had reduced or absent expression of several H ox genes, and 

a much reduced ability to form myeloid colonies. W hen early progenitors from 

these embryoid bodies were transduced with individual H ox  genes, HoxA9, B4, A 10 

were able to rescue the phenotype and restore the ability of the cells to produce 

myeloid colonies. Subsequent differentiation, however, was influenced by the 

specific H ox gene expressed.
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1.15 Hox gene cofactors Pbxl and Meisl

Although HOX proteins have direct DNA binding capacity via the 

homeodomain, the sequence specificity of this binding is mediated by interaction 

with other homeodomain proteins such as PBX1 (Pre-B-cell leukemia Homeobox 1) 

and MEIS1 (Moens and Selleri, 2006). These cofactors can interact with a broad 

subset of HOX proteins and facilitate their binding to DNA (Moens and Selleri, 

2006). It came as no surprise, considering the importance of their interaction to 

HOX protein function, when it was found that these HOX co factors were needed 

for haematopoiesis to develop normally. Homozygous deletion of either M eisl or 

P bxl results in embryonic lethality in mice (DiMartino et al., 2001a; Hisa et al., 

2004a). Studies using M eisH  and Pbxl~A embryos show that they are both necessary 

for normal HSC function in the foetal liver. This evidenced by the fact that HSCs 

from both M e islA and P bxl A embryos have repopulating defects in transplantation 

experiments (DiMartino et al., 2001a; Hisa et al., 2004a).

1.16 The role of Hox genes and their cofactors in leukaemogenesis

In addition to their roles in normal haematopoiesis, its has been shown that 

several H ox genes and HOX cofactors play an active role in leukaemogenesis (Owens 

and Hawley, 2002). In human acute myeloblastic leukaemia, co-expression of 

Hoxa7, Hoxa9 and M eisl are frequently observed (Afonja et al., 2000; Lawrence et 

al., 1999). In some leukaemias H ox genes and their cofactors may become fused to 

other genes as a result of chromosomal translocations, resulting in the formation of a 

chimaeric protein (Owens and Hawley, 2002). For example, in some human AMLs, 

Hoxa9 can become fused to Nup98 resulting in a chimaeric protein with oncogenic 

potential (Nakamura et al., 1996; Owens and Hawley, 2002). The over expression of 

several H ox genes also leads to the expansion of haematopoietic progenitor cells in 

mouse and human cells (Owens and Hawley, 2002). This suggests that the 

transformation potential of H ox genes is through the deviation of their normal role 

in HSC and progenitor proliferation (Owens and Hawley, 2002).
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1.17 Mil -  a gene rearranged in infant leukaemia

One of the upstream regulators of H ox genes in both normal and leukaemic 

haematopoiesis is Mil. The M il gene was first identified through its role in infant 

and treatment-related secondary leukaemias (Djabali et al., 1992; Ernst et al., 2002; 

Zeleznik-Le et al., 1994). The most frequent cytogenetic abnormality found in these 

leukaemias is chromosomal rearrangement of the llq23  region. W hen the locus 

spanning the breakpoint in llq23  was cloned, the gene MLL (.ALL-1, HRX) was 

identified (Cimino et al., 1991).

In leukaemic cells the N-terminal portion of MLL becomes fused, through 

chromosomal translocation, to one of up to 50 possible partner genes. These fusion 

genes can be present in cases of both Acute Myeloid Leukaemia (AML) and Acute 

Lymphoid Leukaemia (ALL) (Daser and Rabbitts, 2004; Ernst et al., 2002; Hess,

2004). The fusion partners of MLL tend to be either transcriptional activators (e.g. 

Af9, Af4, ENL) or dimerising proteins (e.g. Gas7) (Dobson et al., 1999; Horton et al., 

2005; So et al., 2004; So et al., 2003). In primary murine haematopoietic cells, these 

fusion genes are often sufficient to induce immortalisation in  vitro and 

transformation to leukaemia in  vivo (Dobson et al., 1999; Horton et al., 2005; So et 

al., 2004; So et al., 2003).

It is thought that part of the action of MLL fusion proteins in leukaemia is 

through deregulated H ox gene expression (So et al., 2004). Murine cells 

immortalised with human MLL-ENL, a fusion gene which causes AML and ALL in 

infants, have upregulated expression of several H ox genes, notably genes at the 

posterior end of the Hoxa cluster, such as Hoxa7, Hoxa9, HoxalO  and H o xa ll 

(Horton et al., 2005; Zeisig et al., 2004). The H ox  genes have also been shown to be 

direct targets of MLL fusion proteins which induce activating histone methylation at 

H ox loci (Milne et al., 2005a).

40



1.18 Mil is involved in Hox gene regulation in the context of normal 

development

Following the identification of the role of M il in leukaemogenesis, research 

focused on whether the normal MLL protein was also involved in H ox gene 

regulation and the developmental processes which are normally regulated by the 

H ox genes. The M il gene encodes a protein of 3639 amino acids (human), molecular 

weight 430kd that is homologous to the Drosophila protein Trithorax (TRX) 

(Mbangkollo et al., 1995). Trithorax is a member of the Trithorax group (trx-G) of 

proteins that positively regulate gene expression during Drosophila development. 

These proteins do not initiate, but instead, maintain correct temporal and spatial 

expression of their target genes in the HOM Complex (HOM-C). This is evidenced 

by the fact that flies mutant for trx-G genes have homeotic transformations (Hess,

2004).

To investigate whether M il regulated H ox gene development during 

mammalian development, in a similar mechanism to Trx, mouse knockout models of 

M il were established (Figure 1.5) (Ayton et al., 2001; Yagi et al., 1998; Yu et al.,

1995) In the first model, M il was truncated at exon 3 by insertion of a lacZ/Neo 

cassette (Yu et al., 1995). The resultant homozygous mutant mice died by E10.5. 

Both homozygotes and, to a lesser degree, heterozygotes show segmental 

abnormalities suggesting haploinsufficiency of M il (Yu  et al., 1998; Yu et al., 1995). 

The heterozygotes had abnormalities of the axial skeleton normally w ith H ox gene 

mis-expression (Yu et al., 1995). The homozygotes had gross abnormalities of the 

branchial arches (the structures which give rise to the bones of the face) again 

associated w ith Hox gene deregulation (Yu et al., 1998). Heterozygous embryos had 

shifted expression patterns of Hox genes in the embryo, and homozygous embryos 

were unable to maintain expression of H oxa7 in the somites following E9 (Yu et al., 

1998). This confirmed that M il was necessary for the maintenance of H ox gene 

expression during development, making it orthologous to Trx.
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In the second knockout model of M il' the gene was truncated at exon 8 by 

the insertion of a neomycin resistance cassette (Figure 1.5). Although embryos 

homozygous for this truncation did not have the branchial arch abnormalities seen 

in the Yu knockout, they did have deregulated H ox gene expression (Yagi et al., 

1998).

1.19 Mil regulates haematopoiesis during development

In addition to the other developmental abnormalities, knockout embryos of 

both the Yagi and Yu models had abnormal haematopoietic development (Hess et 

al., 1997; Yagi et al., 1998). Analysis of yolk sac cells from mice homozygous for the 

exon 3 truncation showed that the overall number of haematopoietic cells was 

reduced in the absence of MU (Hess et al., 1997). The majority of cells in M il 

deficient yolk sacs were c-kit positive as compared with a minority in wild type yolk 

sacs. In methylcellulose assays, the mutant cells had a decreased capacity to produce 

myeloid colonies, but produced comparable numbers of erythroid colonies to wild 

type (Hess et al., 1997).

In the second model where M il was truncated at exon 8 , the embryos 

survived to E14.5, allowing analysis of foetal liver cells (Yagi et al., 1998). 

Homozygous mutant foetal livers had comparable numbers of mature cells, 

including myeloid cells, to wild type foetal livers, although the total cell number 

was reduced. In colony forming assays, the number and size of both erythroid and 

myeloid colonies was reduced in comparison to wild type (Yagi et al., 1998).

To further test the contribution of M il m utant cells to haematopoiesis, 

mutant homozygous ES cells were used (Ernst et al., 2004a). These cells were 

derived from ES cells used in the Yu model. In stromal cultures, mutant ES cells 

were unable to give rise to B-lymphopoiesis. W hen transplanted into blastocysts, 

mutant ES did not contribute to mature NK cells, T-cells or B-cells in the adult 

RAG -2  chimaeras. AGM cells from mutant embryos were unable to reconstitute 

haematopoiesis in sublethally irradiated recipients, as compared to wild type AGM 

cells, which gave 75% reconstitution (Ernst et al., 2004a).
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W hen M il deficient ES cells were differentiated down the haematopoietic 

lineage in embryoid body experiments, the cells were deficient in producing 

haematopoietic colonies (Ernst et al., 2004b). Q-PCR showed that in the absence of 

M il induction of Hoxa7, Hoxa9, HoxalO, Hoxb4, Hoxb5, Hoxb6, Hoxb8, and Hoxc6 

was reduced in the embryoid bodies (Ernst et al., 2004b). Ectopic expression of 

Hoxa9, HoxalO  or Hoxb4 was able to rescue the reduction in colony frequency in 

M1H embryoid bodies, suggesting that the haematopoietic abnormalities in M il 

deficient embryos are due to H ox gene deregulation (Ernst et al., 2004b).

1.20 MLL regulates Hox gene expression via chromatin remodelling

More recent research has focused on elucidating the mechanism by which 

MU controls the expression of H ox and other genes. The M il gene codes for a large 

protein, with several different domains (Figure 1.5). Some of these domains are 

conserved with Drosophila TRX. These include the PHD fingers and the SET 

domain (Hess, 2004). It has been shown that the many of the domains of MLL act to 

regulate gene expression via chromatin remodelling. Chromatin remodelling is a 

means of controlling the transcriptional activation status of genes (Jenuwein and 

Allis, 2001; Kouzarides, 2007; Li et al., 2007).

Chromatin is the state in which DNA is packaged, and depending on its 

formation, it can influence gene transcription. For example, euchromatin is 

chromatin which is lightly packed and contains a higher proportion of genes which 

are being actively transcribed (Alberts et al., 1994). Heterochromatin is more tightly 

packed and contains fewer genes undergoing transcription (Alberts et al., 1994). 

Chromatin is composed of DNA strands wrapped around nucleosomes. Each 

nucleosome is composed of an octamer of four core histones (H3, H4, H2A, H2B) 

(Campbell and Reece, 2005). Each histone has two domains -  a central region that 

interacts with the DNA and a tail region that projects outwards (Campbell and 

Reece, 2005).

Modification of amino acids in histone tails can weaken or strengthen their 

interaction with DNA, leading to a more open or a more closed chromatin formation 

(and the formation of heterochromatin) (Jenuwein and Allis, 2001). For example,
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acetylation of amino acids in the histone tails can lead to a more open chromatin 

formation allowing access to the DNA of transcription factors (Jenuwein and Allis, 

2001). Methylation of lysine and arginine residues in the histone tails can also lead 

to gene silencing or transcriptional activity (Jenuwein and Allis, 2001; Lachner and 

Jenuwein, 2002; Lachner et al., 2003). For example, methylation of Lysine 4 of 

Histone 3 (H3K4) has been shown to induce a transcriptionally active state whereas 

methylation of H3K9 has been shown to repress transcription (Milne et al., 2002; 

Nakamura et al., 2002).

The MLL protein is involved in both histone acetylation and histone 

methylation, either by the direct function of its domains, or by recruitment of other 

proteins via protein-protein interactions. The functions of the different domains of 

MLL are discussed below.

1.21 AT Hooks

There are three AT hooks located near the N-terminus of the MLL protein. 

AT hooks have been identified in several proteins and are thought to be able to bind 

to AT-rich regions in the minor groove of DNA (Broeker et al., 1996b). Using 

recombinant protein purified from bacteria, it has been shown in in  vitro assays that 

the AT hook region of MLL can bind to cruciform DNA. This binding is not thought 

to be sequence specific but rather structure specific (Broeker et al., 1996a).

1.22 SNL1, SNL2

These short nuclear localisation domains confer a punctuate localisation 

pattern of the protein in the nucleus (Yano et al., 1997).

1.23 Methyl transferase Domain

The Methyltransferase (MT) domain is so called because this 100 amino acid 

region bares homology to the regulatory region of DNA methyltransferase 1 

(DNMT1). The MT domain contains a CxxC motif shared with other proteins that 

are able to recognise and bind CpG dinucleotide sequences (Birke et al., 2002). 

Accordingly, recombinant MLL MT domain protein has been shown to bind
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unmethylated CpG DNA in  vitro and to bind to unmethylated DNA in vivo in VP 16 

reporter assays (Allen et al., 2006b; Ayton et al., 2004; Birke et al., 2002).

The MT domain lies in a larger region termed the ‘repression domain’, so- 

called because it can repress transcription when fused to the GAL4 DNA binding 

domain (Zeleznik-Le et al., 1994). This repression is thought to mediated through 

recruitment of histone de-acetylases, which remove acetyl groups from core histone 

tails in chromatin, thereby making it transcriptionally inert (Xia et al., 2003). It is 

also thought that HDACs may be able to recruit repressive complexes (Xia et al., 

2003; Zeleznik-Le et al., 1994). The repression domain can also interact w ith the 

Polycomb Group proteins (PcG) HPC2 and BMI-1 (Xia et al., 2003). Exogenous 

expression of BMI-1 in reporter assays with the MT domain of MLL increase its 

repressive activity (Xia et al., 2003; Zeleznik-Le et al., 1994). This is significant 

because in Drosophila and mouse, PcG proteins act antagonistically to trx-G proteins 

to maintain silencing of HOM -C  and H ox genes (Hanson et al., 1999).

1.24 PHD Fingers

The Plant Homeodomain (PHD) fingers, which are also present in TRX, are 

believed to play some part in the transcriptional regulation/ chromatin remodelling 

activity of MLL. This is because most proteins that contain PHD fingers are 

components of transcriptional regulation/ chromatin remodelling complexes, 

suggesting that these domains are intrinsic to their function (Eguchi et al., 2003). 

Further to this, the third PHD finger of MLL has been shown to interact with 

nuclear cyclophilin CYP33 (Fair et al., 2001). This is, in turn, thought to mediate the 

binding of HDAC1 to the MT domain (Xia et al., 2003; Zeleznik-Le et al., 1994)

Recent work has also shown that PHD fingers can act as highly specialised 

methyl-lysine binding domains (Li et al., 2006; Mellor, 2006; Pena et al., 2006). The 

PHD fingers of the chromatin remodelling proteins Ing2 (Inhibitor of Growth 

family 2) and BPTF (bromodomain PHD finger transcription factor) bind specifically 

to tri-methylated H3K4 (H3K4me3) (Li et al., 2006; Pena et al., 2006). H3K4me3 has 

been shown to be a mark for active chromatin and is found at the 5' end of genes 

together w ith acetylated lysines, another mark of active chromatin. It is thought
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that the PHD finger of BPTF, a subunit of the NURF chromatin remodelling 

complex, recognizes H3K4me3 in coordination with the recognition of acetylated 

lysine by an adjacent bromodomain. This recognition helps target the chromatin 

remodelling complex to the active chromatin (Li et al., 2006; Wysocka et al., 2006). 

M il contains 4 PHD fingers with a bromodomain between the 3rd and 4th fingers. It 

has not been shown whether the PHD fingers of MLL can bind to nucleosomes, as 

for ING2 and BPTF. However, H3K4me3 is positioned w ithin a cage of 4 aromatic 

amino acids in the BPTF PHD finger and aromatic amino acids are present in similar 

positions in the 3rd MLL PHD finger, supporting the possibility that the 3rd PHD 

finger of MLL may have some nucleosome binding capacity. The proximity of the 

3rd PHD finger to the bromodomain in MLL would support this.

1.25 Bromodomain

Little is known about the function of the bromodomain in MLL, however 

bromodomains are found in many chromatin associated proteins and nearly all 

histone acetyl-transferase (HAT)-associated transcriptional co-activators. They have 

been shown to interact with acetylated lysines, and to interact with PHD domains in 

tethering transcriptional HATs to the chromatin (Li et al., 2006; Wysocka et al., 

2006). They may also be important for the assembly and activity of multiprotein 

complexes in transcriptional activation (Dhalluin et al., 1999).

1.26 Dimerisation Domains (FYRN and FYRC)

W ithin MLL, there are two sites for proteolytic cleavage (CS1 and CS2) and 

two dimerisation domains (FYRN and FYRC). MLL is cleaved before entry to the 

nucleus, at two protease recognition sites, CS1 and CS2 by Taspasel to generate an 

N-terminal fragment, N320 and a C-terminal fragment C l80 (Hsieh et al., 2003).(see 

Figure 1.6). The two fragments then interact through the FYRN domain of the N- 

terminal fragment and the FYRC domain of the C-terminal fragment. This 

dimerisation confers stability to the N-terminal fragment.

The N-terminal fragment of MLL contains mostly transcriptionally repressive 

domains, so fusion to the C-terminus, which contains the transactivating domain
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and the SET domain, gives the protein an activating effect on transcription (Martin 

et al., 2003). Permanent dimerisation of MLL using pharmacologically dimerisable 

MLL fusion protein converts it to a transcriptional transactivator. This leads to 

upregulation of Hox genes Hoxa7 and Hoxa9, which are upregulated in some MLL 

fusion leukaemias (Martin et al., 2003).

Further evidence for the importance of cleavage and dimerisation to MLL 

function came with the analysis of a mouse knockout model for Taspasel. In the 

absence of Taspasel, no cleaved MLL protein could be detected in murine 

embryonic fibroblasts, although full length MLL was present (Takeda et al., 2006). 

Mice deficient in Taspasel had classic homeotic transformations characteristic of 

H ox gene deficiency, and the majority of homozygous null mice died at 1-2 days 

postpartum. However, this late lethality suggests that the full length, uncleaved MLL 

protein must have some residual function, as in the absence of MLL function, 

embryos die prenatally (Takeda et al., 2006; Yagi et al., 1998; Yu et al., 1995).
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1.27 Transactivation domain

The C-terminal fragment of MLL contains a transactivation domain (TAD). 

This activation domain can promote expression in Gal4 fusion experiments (Prasad 

et al., 1995). It is thought that the activity of this transactivation domain is based on 

its interaction with the CREB-CBP complex (Ernst et al., 2001). CREB (Cyclic AMP 

Response Element-Binding) is a signal dependent transactivator which becomes 

phosphorylated at serine 133 in response to stimuli that result in increased 

intracellular cyclic AMP. Upon phosphorylation, CBP (Creb Binding Protein) binds 

to CREB which results in a rapid induction of gene expression. This is through the 

direct recruitment of the basal transcriptional machinery and also through the 

acetyltransferase activity of CBP (Ernst et al., 2001). MLL has been shown to interact 

w ith the CREB-CBP complex in vitro. Point mutations which prevent this 

interaction also abrogate the transactivation potential of the MLL TAD in in  vivo 

GAL4 fusion reporter assays (Ernst et al., 2001).

1.28 SET domain

The SET domain is perhaps the best characterised of all the MLL domains and 

is highly conserved with other MLL and SET family proteins. SET domains are 

found in many proteins demonstrated to mediate lysine-directed histone 

methylation (Lachner and Jenuwein, 2002).

The MLL SET domain has been shown to possess histone methyltransferase 

activity both in  vitro and in  vivo (Milne et al., 2002; Nakamura et al., 2002). The 

SET domain of MLL is responsible for maintaining H3K4 methylation on the 

promoter and enhancer regions of Hoxc8 and Hoxa9 (Milne et al., 2002; Nakamura 

et al., 2002). This, in turn maintains transcription of these genes. This is evidenced 

by the reduced expression and H3K4 methylation status in M il null fibroblasts 

(Milne et al., 2002; Nakamura et al., 2002).

Recent work has shown that the SET domain is not as critical for MLL 

function as previously thought. A mouse knockout model has been established in 

which the MLL SET domain is absent. In the absence of the SET domain the stability
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and expression of the MLL protein are unaffected (Terranova et al., 2006). Mice 

homozygous for the SET deletion mutant are healthy and there is no embryonic 

lethality. Although the mice show some homeotic transformations characteristic of 

H ox deregulation, and reduced expression levels of Hoxc8 and Hoxd4, the 

phenotype is far milder than that of full MLL knockouts. This suggests that either 

MLL gene regulation is not solely based on the SET domain or that other SET 

domain proteins may be able to compensate for its function (Terranova et al., 2006).

1.29 The MLL protein family take part in large chromatin remodelling 

complexes

The presence of so many different domains in MLL would suggest that the 

protein can interact with several other proteins to perform different functions. This 

is apparently the case. MLL has been shown to participate in very large super 

complexes of 24 or more proteins (Nakamura et al., 2002). The proteins of the MLL 

super complex fall into eight different groups. These include core components of the 

nucleosome remodelling complex, members of the HDAC Sin3A complex, which is 

associated w ith transcriptional repression, components of the basal transcription 

machinery TFIID complex, and components of the yeast SET1 complex such as 

WDR5 (Nakamura et al., 2002) (Dou et al., 2006). Another protein recently found 

to complex with MLL is the tumour suppressor Menin (MEN1). It is thought that 

Menin functions to recruit MLL to the promoters of genes such as p27kiP1 (Milne et 

al., 2005c).

1.30 The MLL family of mammalian SET domain proteins

Several homologues of MLL that also contain SET domains have been found 

in mammals. These are termed MLL2, MLL3 and MLL4. Like MLL, these proteins 

have been shown to take part in chromatin remodelling complexes, although the 

components of these complexes vary (Goo et al., 2003; Hughes et al., 2004; Mo et al., 

2006). MLL2 and MLL3 have both been shown to take part in complexes w ith H3K4 

methylation activity that can positively regulate the expression of target genes (Goo 

et al., 2003; Hughes et al., 2004; Mo et al., 2006). M112has also been has been shown
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to complex with Menin and WDR5, as for MLL (Dou et al., 2006; Hughes et al., 

2004; Milne et al., 2005c; Mo et al., 2006). MLL2 null mouse die before El 1.5 and 

have growth retardation, widespread apoptosis and neural tube defects (Glaser et al., 

2006). Expression of H oxbl collapsed in M112/" embryos and expression of Hoxb2 

and Hoxb5 was reduced in embryoid bodies differentiated from MLL2 null ES cells 

(Glaser et al., 2006). This suggests that MLL2 targets different a different set of H ox 

genes to MLL. However, there is some scope for redundancy between these proteins 

as both MLL and MLL2 complex with Menin, which in turn has been shown to bind 

to the H oxc8 locus (Hughes et al., 2004; Milne et al., 2005c).

1.31 Transcriptional targets of MLL

MLL functions as a chromatin remodelling factor w ith DNA binding capacity 

that can activate and repress transcription through histone modification, direct 

interactions w ith transcriptional activating complexes and DNA methylation. Some 

of the gene targets of this activity have been identified.

As discussed above, the H ox genes are well characterised targets of MLL. M il 

homozygous null embryos have deregulated H ox expression leading to segmental 

abnormalities and MU deficient foetal liver was shown to have reduced levels of 

HoxalO, Hoxa9, Hoxa7 and Hoxc4 (Yagi et al., 1998; Yu et al., 1995). MLL also 

regulates the expression of several H ox genes, particularly of the Hoxa cluster, 

during embryoid body formation (Ernst et al., 2004b).

In non-haematopoietic cells MLL has been shown to bind to the promoters of 

the cell cycle inhibitors p27Aî i and ]>\%In]c4c as part of a complex w ith Menin (Milne 

et al., 2005c). Expression of p27*^; and p \%Ink4c was also reduced in M il deficient 

immortalised fibroblasts, which grow at a faster rate than wild type immortalised 

fibroblasts. This suggests that MLL, as well as regulating H ox  gene expression, may 

play a role in the cell cycle in some cells by up-regulating cell cycle inhibitors.

Another recently identified target of MLL is Gata3. MLL has been shown to 

localise directly with and regulate H3K4 methylation at the Gata3 locus in murine 

Th cells (Yamashita et al., 2006). In M il heterozygous mice the ability of memory 

Th2 cells to produce Th2 cytokines was reduced. This was because abnormal H3K4
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methylation at the Th2 cytokine and Gata3 gene loci resulted in reduced expression 

of these genes (Yamashita et al., 2006).

Further analysis of specific cell types, e.g. haematopoietic cells, may yet 

reveal more MLL targets.

1.32 The need for a conditional mouse model of Mil: Aims of this 

project

Due to the embryonic lethality of M il deletion, there have not been any 

studies performed looking at the role of M il in adult haematopoiesis. The limited 

material available from MU deficient embryos has also limited the study of foetal 

haematopoiesis in the absence of M il and the exact nature of the haematopoietic 

defect is not known. In order to study the role of M il further, a new, conditional 

mouse model of M il was needed. This study describes the establishment of a new 

mouse model that uses the Cre-lox system to induce haematopoietic specific deletion 

of MLL in adult mice. A full knockout model was also established to enable further 

study of foetal liver haematopoiesis. The aims of this project were as follows:

1. To establish new conditional and constitutive mouse knockout models 

of Mil.

2. To further analyse foetal liver haematopoiesis and characterise any 

effects on foetal HSCs in the absence of MLL.

3. To characterise the role of MU in  regulating adult haematopoiesis and 

HSCs.
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Chapter 2 

Materials and Methods

2.1 Materials

Reagents used in this project were from the following companies;

Perkin Elmer Life Sciences; Gene Screen Membrane.

Invitrogen; 1 kb ladder, Penicillin-streptomycin solution (10000 p/10000 pg/ml), 

Dulbeccos Modified Eagle Media (DMEM), L-Glutamine solution (200 mM), 

lx  Phosphate Buffered Saline solution (lx  PBS), lx  Trypsin-EDTA, lOOx 

Minimal essential amino acids, Hepes Buffered Saline Solution (HBSS), MEM 

Alpha media, Karyomax Colcemid solution (10 pg/ml), G418 solution (50 mg/ 

ml)

Promega; pGemT-Easy kit, restriction enzymes, klenow.

Sigma; General chemicals and reagents, Foetal Calf Serum (FCS) for MEF media, 

gelatine powder, Hepes Buffered Saline solution (HBS), 

Phenol:chloroform:isoamyl alcohol 25:24:1 saturated w ith 10 mM Tris pH 

8.0, 1 mM EDTA, Genomic Red taq 

Hyclone; ES cell FCS

VWR; General reagents and chemicals, Giemsa solution , Eukit, Superfrost© slides 

Chemicon; ESGRO® (Leukaemia Inhibitory Factory)

NE Biosciences; Restriction enzymes, T4 DNA ligase 

BD Biosciences; Advantage GC Taq polymerase kit 

Upstate; Mil c-terminal antibody, Mil N-terminal antibody 

Cell signalling technology; Hsp90 anitbody 

Stem cell technologies; Methocult 3434, 3630 

Peprotech; GMSCF

Pharmingen; Biotin-conjugated mouse lineage panel (for sorting FL cell)
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Miltenyi; Lineage cell depletion kit, mouse (for sorting adult BM), MS and LS 

magnetic columns, anti-pe, anti-APC and anti-bio microbeads 

Roche; Proteinase K (recombinant, PCR grade)

National Diagnostics; 20x SSC (Sodium Chloride Sodium Citrate)

Amersham Biosciences; ECL reagent, Sheep anti-mouse HRP

2.2 Methods

All buffers used in this work are detailed in Table 2.1

2.2.1 DNA sequencing and analysis

Vectors pM11197.Al and pMLL197.2kb were sequenced by the Scientific 

Support services at the Wolfson Institute, UCL.

2.2.2 Culture of Mouse Embryonic Fibroblasts for ES cell feeder layers

The pluripotency of ES cells was maintained by growing the cells on a feeder 

layer of irradiated mouse embryonic fibroblasts (MEFs). Embryonic material from 

neomycin resistant Rag2 A embryos at day 13-14 was provided by Ursula Menzel at 

NIMR. Primary embryonic fibroblasts were plated out in MEF medium (DMEM, 

10% FCS, 5 ml penicillin/streptomycin solution, 2 mM L-Glutamine) and cultured at 

37°C, 5% CO2 .

The cells were expanded over 3 passages from 1 to 25 175mm flasks. All 

flasks were then trypsinised, using 1% trypsin plus EDTA. The cells were pooled and 

counted and then y-irradiated using a CIS Bio International 137Cs irradiator, w ith a 

dose of 3500 rads. Cells were aliquoted at densities of 4x106 and 2x107 and frozen at - 

80°C in MEF freeze media (50% MEF media, 40% FCS, 10% DMSO).

2.2.3 Gelatinization of Plates for ES cell culture

Prior to laying down the feeder layer, plates were gelatinized. A solution of 

0.1% gelatine in lx  PBS was left on the plates for up to an hour. The gelatine was 

removed and the plates left to dry before the feeder layer was seeded onto the plate 

or media added.
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Buffer or Media Components

lx TE 10 mM Tris-Cl,pH 7.5, 1 mM EDTA

caesium chloride/TE 
solution

lg/ml CsCl added to lxTE

ES cell lysis buffer 0.1M NaCl, 1% SDS, 0.01M Tris-HCl, 0.001M 
EDTA, 0.5 mg/ml proteinase K Roche

Southern De- 
naturation buffer 1.5M NaCl, 0.5M NaOH

Southern 
Neutralisation buffer 1M Tris, 1.5M NaCl, pH 7.4

Southern Pre­
hybridisation solution

5xSSC, 0.5% SDS, 10% dextran sulphate, 1% Ficoll, 
1% polyvinylpyrrolidone, 1% BSA, 10 pg/ml 

denatured salmon sperm DNA

Hypotonic Solution 0.56% KC1 in ddH20

ES cell injection 
medium

90 ml DMEM plus HEPES, 10 ml ES cell FCS, 1.5 ml 
Penicillin/streptomycin solution, 1.5 ml L- 

Glutamine (2mM)

TNES lysis buffer 50mM Tris pH7.5, 50mM EDTA, 5% SDS plus 
0.5mg/ml proteinase K

RBC lysis buffer 17 mM Tris (pH 7.2), 0.144 M NH4C1

2X SDS-DTT sample 
buffer

0.2 M DTT, 2% SDS, 10% glycerol, 0.125 M Tris- 
HCL, pH 6.8, 0.1% bromophenol blue

MACs buffer lxPBS, 0.5% BSA, 2 mM EDTA

FACs running buffer 0.05% sodium azide, lx PBS

FACS staining buffer 0.05% sodium azide, 0.1% BSA

Western Running 
Buffer 1.92M glycine, 250mM Tris base, 1% SDS

Western Transfer 
Buffer

1 x CAPS (N-Cyclohexyl-3-aminopropanesulfonic 
acid), pH 11

TBS-T Buffer 0.14M NaCl, 0.025M Tris, 0.003M KC1, 0.4 pi Tween 
20/ ml, pH7.4

1 x Stripping Buffer 200mM Tris-HCl, pH 7.0, 0.1% SDS, 0.1 x SSC

Table 2.1. Buffers used in materials and methods.
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2.2.4 ES cell culture

PC3 ES cells (O’Gorman et al. 1997) at passage 14 were provided by Dimitris 

Kioussis, NIMR. Cells were routinely grown on a layer of irradiated mouse 

embryonic fibroblasts (MEFs) as a feeder layer. Feeder layers were laid down on 

gelatinized plates several hours before they were needed. Feeder layers were used in 

the densities shown in Table 2.2.

The ES cells were plated out onto MEF's and fed daily w ith ES cell medium ( 

450 ml DMEM plus 75 ml ES cell FCS (Hyclone), 3.5 pi p-mercaptoethanol (98% 

solution), 5 ml Penicillin/streptomycin solution, 5ml L-Glutamine (2mM), 50 pi LIF 

(107 units/ml, ESGRO), 5 ml minimal essential amino acids (100X)). Cells were split 

at ratio of 1:3 to 1:8 when confluent, as assessed by colony size and density. To split, 

the cells were trypsinised for 5 minutes at 37°C using lx  trypsin-EDTA, washed 

once in ES cell media and plated onto a fresh feeder layer.

2.2.5 Preparation of the targeting vector for electroporation into ES cells

For electroporation into ES cells, it was necessary that the targeting vector 

DNA be cleaned of any bacterial genomic DNA and proteins. For this reason, 

targeting vector DNA prepared from Escherichia coli using a Quiagen Maxiprep kit 

(according to manufacturers instructions) was further cleaned by performing a 

Caesium Chloride preparation. Briefly, 10 ml of caesium chloride/TE solution was 

added to 1-2 mg targeting vector DNA dissolved in 500 pi TE. 4 ml of 10 mg/ml 

Ethidium bromide solution was added and the mixture transferred to an 

ultracentrifuge tube. The tubes were capped and sealed and spun overnight at 57,000 

rpm, 20°C in an ultracentrifuge (Sorvall Discovery 100).

The following morning the tubes were removed and placed in a bench top 

clamp. A syringe needle was used to pierce the top of the tube to release any 

pressure, and then another needle and syringe were used to pierce the tube and 

extract the plasmid DNA. The DNA was transferred to a 15 ml tube, and 1 ml of 

NaCl-saturated isopropanol was added. After vortexing, the top layer was removed 

and the process repeated until the top layer was colourless. The bottom layer was
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Size of Dish Density of MEFs Volume of Media

96-well dish 2xl04 per well 50pl

24-well dish 1.3xl05 per well 500pl

60mm plate 2x106 4ml

10cm plate 4xl06 10ml

Table 2.2. Number of irradiated MEFs needed for feeder layers for ES 
cells.
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removed and transferred to a 50 ml tube. Three volumes of ddFEO were added to 

the DNA layer. Two volumes of 100% ethanol was added to this and the DNA left to 

precipitate for 10 minutes on ice. The tube was spun for 45 min at 4°C, 4000 rpm to 

pellet the DNA. The DNA was cleaned by spinning in 20 ml 70% ethanol for 15 min 

at 4000 rpm, the pellet dried and the DNA re-dissolved in sterile ddFhO water.

The purified targeting vector was linearised using an NsA site (shown in 

Figure 3.1), ethanol precipitated and re-suspended in sterile ddFhO, ready for 

electroporation into ES cells.

2.2.6 Electroporation of ES cells

The linearised targeting vector was electroporated into PC3 ES cells at 

passage 16. The day before electroporation, 10 x 10 cm dishes were laid down with 

MEFs in MEF media at the appropriate density. The MEF media was replaced with 

ES cell media the morning of the electroporation. A 6 cm plate of ES cells was grown 

to 50-100% confluency. The cells were fed with ES cell media at least an hour before 

they were needed for electroporation.

The ES cells were trypsinised as before, and a live cell count performed. The 

cells were re-suspended in electroporation buffer (HBS/ 7xlO'^/o p-mercaptoethanol) 

at a concentration of 107 cells/ml. 0.8 ml cells was mixed with 25 pg targeting vector 

DNA (re-suspended in sterile ddFhO) and the mixture transferred to a 4 mm 

electroporation cuvette. The cells were electroporated using an electroporator set at 

400 v, 25 pF. Following electroporation, the cells were immediately transferred to a 

15 ml tube containing 3.2 ml ES cell media.

400 pi of cells was added to each 10cm MEF plate, and the cells placed in a 

37°C/5% CO2 incubator. The following day, the media on all plates was changed to 

selection media (ES cell media plus 300 pg/ ml G418). The cells were left to grow 

under selection for the next 8-10 days, w ith a media change every 3 days.

2.2.7 Picking and Expansion of Selected ES cell clones

After 8-10 days of growth under selection, G418 resistant ES cell colonies 

were visible growing on the feeder layer. Each 10cm plate was examined for the
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presence of G418 resistant colonies and the media replaced with 1 x PBS. 96-well 

MEF plates in ES cell media were prepared before picking any clones (see Table 2)

Using a phase-contrast microscope, colonies of a suitable size were picked 

from the MEF plates using a P200 pipette. Each colony was transferred to a 96-well 

U-bottom plate containing 30 pi trypsin/ well. The colonies were trypsinised for 5 

minutes at room temperature and transferred to the pre-prepared 96-well MEF 

plate. Full 96-well plates were then transferred to 37°C/5% CO2 incubator. Between 

800-1000 colonies were picked in this way.

96-well plates were checked each day for confluent wells. Confluent wells 

were trypsinised and the cells were split to one DNA plate (gelatinised 96-well plate) 

and one freeze plate (96-well MEF plate). DNA plates were split to a further two 

DNA plates when confluent.

2.2.8 Freezing and of ES cell clones

Confluent 96-well plates of ES cells growing on MEFs were frozen at -80°C 

for future expansion. All wells of the plate were trypsinised with 50 pi trypsin per 

well, 50 pi ES cell media was then added to each well and the colonies made into 

single cell suspensions. 100 pi ES cell freeze medium (20% DMSO/80% ES cell FCS) 

was added to each well and the plates stored at -80°C.

2.2.9 DNA extraction from ES cell clones.

Confluent 96-well plates of ES cells growing on gelatine were lysed for DNA 

extraction. Media was removed from all wells and the wells washed once with 1 x 

PBS. 50 pi ES cell lysis buffer was added to each well and the plates incubated O/N 

at 37°C. Plates were then either frozen at -20°C for future use or DNA extracted 

directly.

To extract DNA, 100 pi ice cold isopropanol was added to each well. The 

DNA was left to precipitate at room temperature for an hour, after which the 

isopropanol was decanted off. 150 pi of 70% ethanol at room temperature was added 

to each well and then immediately decanted off. The wells were washed again with 

70% ethanol, and the plates were left to dry. DNA was re-suspended either in 50 pi
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1M Tris-HCl pH 7.5 or restriction digest buffer mix (according to manufacturer’s 

instructions), and shaken O/N at 37°C.

2.2.10 Analysis of ES Cell DNA from 96-well plates

To prepare genomic DNA for Southern blot analysis, restriction digests were 

set up directly in the 96-well plates following DNA preparation. The DNA in each 

well was digested with 60 units of enzyme in a 65 pi volume for at least 16 hours 

before being used for Southern Blot analysis.

2.2.11 Southern Blot Analysis

DNA extracted from 96-well plates of ES cell clones was analyzed by 

Southern Blot analysis. Southern Blots were prepared using a standard protocol. 

DNA Samples were run on an agarose gel of the appropriate concentration (0.7%- 

0.8%) O/N at 24 v. The samples were run against 1Kb ladder for size approximation.

The following day, the gel was photographed, w ith a ruler to mark the 

position of the ladder, and then washed in dH20 for 5 minutes. If large fragments 

were expected, the gel was de-purinated in 0.125M HC1 for 10 minutes. Gels were 

then washed again for 5 minutes in dH20. This was followed by 2 x 30 minute 

washes in de-naturation buffer, 1 x 5  minute wash in dH20, 2 x 30 minute washes in 

neutralisation buffer. Gels were washed again for 5 minutes in dH20.

Transfer apparatus was set up as follows: A sponge soaked in 10 x SSC was 

placed in a tray. On top of this, in order, were placed 3 sheets of 3MM filter paper, 

the gel (face down), a sheet of Gene Screen membrane, 3 more layers of 3MM filter 

paper, paper towels and weights. All filter paper and membranes had previously 

been soaked in 10 x SSC. The gel was transferred overnight.

Following transfer, the membrane was washed in 2 x SSC. The membrane 

was baked at 80°C for two hours and re-hydrated in 2 x SSC. The membrane was 

blocked in pre-hybridisation solution for 2 hours at 65°C with agitation. 70 ng of 

purified 32P d-CTP labelled probe was added to the pre-hybridisation solution and 

the probe left to bind O/N at 65°C. The probe (named the 3' probe) was obtained by 

digesting MLL genomic DNA, previously cloned into pBs, w ith BstXi/BgRl which
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released a 650 bp fragment from intron 13-14 of the gene. The blot was removed and 

washed the following day for 2 x 30 minutes in 3 x SSC/ 0.1% SDS, 2 x 30 minutes in 

0.3 x SSC/ 0.1% SDS. The blot was then placed in a phosphoimager cassette and 

visualised using a Typhoon 8600 phosphoimager.

2.2.12 Expansion of Positive ES cell Clones

Clones found to be positive for the 3' and 5* LoxP sites were thawed and 

expanded. Whole 96-well plates of clones were thawed at 37°C and transferred 

directly to 24-well MEF plates with ES cell media. W hen confluent, clones were 

expanded first to 6 cm dishes and then 10 cm dishes. 6 cm dishes were used for 

karyotyping. 10 cm dishes, when confluent, were trypsinised and split in 4. Three- 

quarters of the plate were frozen in 3 aliquots in ES cell freeze media.

The remaining quarter of the plate was used for DNA extraction for Southern 

Blot analysis using a standard Phenol: Chloroform extraction protocol. Briefly, cells 

were lysed with ES cell lysis buffer as before, in a 1 ml volume. 1 ml of 

phenol:chloroform:isoamyl was added to the lysates and the tubes were vigourously 

shaken for 1 minute. The tubes were then spun at 13,000 rpm for 5 minutes to 

separate the hydrophobic and hydrophilic layer. The top aqueous layer was 

transferred to a fresh tube and an equal volume of chloroform was added to it. The 

tubes were again spun at 13,000 rpm for 5 minutes and the top layer transferred to a 

fresh tube. 1 ml of 100% ethanol: 3M sodium acetate 25:1 was added to each tube 

and then the tubes were placed on dry ice for up to an hour. The tubes were then 

spun at 13,000 rpm for 10 minutes to pellet the DNA and the supernatant was 

removed. 1 ml 70% ethanol was added to each tube and the tubes were spun at 

13,000 rpm for 1-2 minutes. The ethanol was removed and the DNA pellets dried 

and resuspended in lx  TE.

2.2.13 Southern Blot Analysis of DNA from expanded clones

Southern Blot analysis was repeated using DNA from expanded clones. 

Southern Blots were performed as before using 5-10 pg DNA. Analysis was done
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using both the KpnI and NsA digests to ensure the presence of the LoxNeoLox 

cassette and the 5' LoxP site.

2.2.14 Karyotyping of ES Cells

Before using ES cells in blastocyst injections, it was necessary to karyotype 

them as culture of ES cells may result in aneuploidy in some cells. A 50-75% 

confluent 6cm plate of ES cells was used for karyotyping.

Cells were incubated in ES cell mediae plus 20 ng/ml Colcemid for 2 hours at 

37°C. The cells were then washed with 1 x PBS and trypsinised. After a second wash 

in 1 x PBS the cells were re-suspended in 5 ml hypotonic solution and incubated for 

6 minutes at room temperature. A few drops of fixative (3:1 methanol: acetic acid) 

were added to the hypotonic and the cells pelleted at 750 rpm for 5 minute. The 

hypotonic was removed and ice-cold fixative was added to the cells drop wise, to 

ensure an even suspension of cells. The cells were pelleted and washed in ice-cold 

fixative a further 3 times and finally re-suspended in an appropriate amount of 

fixative depending on the density of the suspension. Cells could be stored in fixative 

at -20°C for future use.

To make slides, Superfrost© slides were soaked in 5% acetic acid O/N and air 

dried. Fixed cells were dropped onto the slides using a Pasteur pipette and the 

metaphase spreads examined using a phase contrast microscope. Satisfactory spreads 

were left O/N at room temperature and stained the following day with 10% Giemsa 

stain for 20 minutes at room temperature. A coverslip was fixed to each slide w ith 

Eukit mountant. Metaphase spreads were examined using an oil immersion lenses 

and the chromosome counts made.

2.2.15 Blastocyst Injection

ES cell clones carrying the correct complement of chromosomes and positive 

for both LoxP sites and the Neo cassette were injected into C57B1/6 blastocysts by 

Dimitris Kioussis at NIMR. Cells were prepared for injection as follows: a 50-75% 

confluent 6 cm plate of ES cells was fed at least two hours before they were needed 

for injection. W hen the blastocysts were ready for injection, the ES cells were
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trypsinised and washed twice in ES cell media. The cells were resupended in 

injection media and taken on ice to be injected into blastocysyts. The blastocysts 

were implanted into pseudo-pregnant females and the resultant offspring analysed 

for levels of chimerism as shown by coat colour.

2.2.16 Mouse Genotyping

All chimeras and their descendents were housed at NIMR. Animal 

husbandry, re-derivations (necessary for transferral of the mice to clean animal 

facilities) and tail tipping were taken care of courtesy of staff at NIMR. DNA samples 

for genotyping were prepared from tail tips. Briefly, tips were digested O/N in 500 pi 

TNES lysis buffer plus 0.5 mg/ml proteinase K at 37°C or 55°C. The following day 

samples were spun at 13,000 rpm for 15 minutes and the supernatant transferred to a 

fresh microcentrifuge tube. 500 pi isopropanol was added to each tube and the DNA 

spooled out using an inoculating loop. DNA was washed once in 70% ethanol, re­

suspended in 1 x TE and shaken O/N at 37°C.

The DNA was then analysed by Southern Blotting or PCR. Southern Blotting 

was carried out as before, using a KpnI or NsA digest of 5-10 pg DNA and the 3' 

probe. PCR analysis was carried out using 3 combinations of primers. All primers 

and their binding sites in the different alleles are shown in Figure 4.2 and 4.8. 

Primers A and B were used to detected the presence of the Neo cassette. PCR 

reactions for genotyping the M il allele were set up using the Advantage GC2 PCR 

kit according to manufacturers instructions (BD-Biosciences). Genotyping for Cre 

transgenes was done using Genomic RedTaq (Sigma) according to manufacturers 

instructions. All primer combinations and the programmes used are shown in Tables

2.3 and 2.4.

PC3 ES cells are homozygous for the protamine-Cre transgene (O’Gorman et 

a l 1997), so that all offspring of successful chimaeras were heterozygous for this 

transgene. To detect the presence of the protamine-Cre transgene, a PCR using 

primers PC3CreF and PC3CreR was used (Tables 2.3 and 2.4).
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Primer Name Primer Sequence

LoxPF 5' TGCCCTAGGCCGACGTCGCATG 3'

LoxPR 5' TCGCCCGGGTAGTCGACCTGCA 3'

Intron5-
6MLLC

5' GGTCTCTAGAAGACAGGAGG 3'

PCR2a 5' CCCATGTACCTATCATCCAGC 3'

Exon5MLL 5' CAGTTGCTGGCTCAGAAGATGCC 3'

Intron5- 
6841OR

5' CACACCCATCTTAGGACTACCTCC 3'

B 5' GTCAGTGGTTGGTCACTGGG 3'

D 5' TGTCTCCTCTGTGATGATGCC 3'

A 5' GATCTCGTCGTGACCCATGG 3'

E2 5' GCCAGTCAGTCCGAAAGTAC 3'

F2 5' AGGATGTTCAAAGTGCCTGC 3'

G2 5' GCTCTAGAACTAGTGGATCCC 3'

PC3CreF 5' TTCCCGCAGAACCTGAAGATGTTCG 3'

PC3CreR 5' GCCGATTACGTATATCCTGGCAGC 3'

VavF 5' AGATGCCAGGACATCAGGAACCTG 3'

VavR 5' ATCAGCCACACCAGACACAGAGATC 3'

Table 2.3. Primers used for cloning and genotyping.
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PCR Primers Programme

Amplify LoxP LoxPF, LoxPR 94°C 3 min, (94°C 1 min, 63°C 1 min, 72°C 1 
min) x35 cycles, 72°C 10 min

Amplify 5' 
homology 
fragment

Exon5MLL, 
Intron5- 
6841OR

97°C 3 min, (97°C 30s, 63°C 1 min, 72°C 2 
min) x3 cycles, (96°C 30s, 63°C 1 min, 72°C 

2 min) x7 cycles, (96°C 30s, 62°C 1 min, 
72°C 2 min) xlO cycles, (96°C 30s, 61 °C 1 
min, 72°C 2 min) xlO cycles, 72°C 10 min

Amplify 3' 
homology 
fragment

Intron5-
6MLLC,
PCR2A

97°C 3 min, (97°C 30s, 63°C 1 min, 72°C 2 
min) x3 cycles, (96°C 30s, 63°C 1 min, 72°C 

2 min) x7 cycles, (96°C 30s, 62°C 1 min, 
72°C 2 min) xlO cycles, (96°C 30s, 61°C 1 
min, 72°C 2 min) xlO cycles, 72°C 10 min

Genotyping: 
Detect 3' LoxP

D,B 97°C 3 min, (97°C 30s, 63°C 1 min, 72°C 2 
min) x3 cycles, (96°C 30s, 63°C 1 min, 72°C 

2 min) x7 cycles, (96°C 30s, 62°C 1 min, 
72°C 2 min) xlO cycles, (96°C 30s, 61 °C 1 
min, 72°C 2 min) xlO cycles, 72°C 10 min

Genotyping: 
Detect the 

Neor

A, B 97°C 3 min, (97°C 30s, 63°C 1 min, 72°C 2 
min) x3 cycles, (96°C 30s, 63°C 1 min, 72°C 

2 min) x7 cycles, (96°C 30s, 62°C 1 min, 
72°C 2 min) xlO cycles, (96°C 30s, 61°C 1 
min, 72°C 2 min) xlO cycles, 72°C 10 min

Genotyping: 
Detect the 5' 

LoxP

E2,B 
E2, F 

E2, G2

97°C 3 min, (97°C 30s, 62°C 1 min, 72°C 2 
min) x3 cycles, (96°C 30s, 62°C 1 min, 72°C 

2 min) x7 cycles, (96°C 30s, 61 °C 1 min, 
72°C 2 min) xlO cycles, (96°C 30s, 60°C 1 
min, 72°C 2 min) xlO cycles, 72°C 10 min

Genotyping: 
Detect the 
PC3 Cre

PC3CreF,
PC3CreR

94°C 3 min, (94°C 40s, 62°C 40s, 72°C 30s) 
x30 cycles, 72°C 5 min

Genotyping: 
Detect the 

Vav-Cre

VavF, VavR 94°C 3 min, (94°C 40s, 62°C 40s, 72°C 30s) 
x30 cycles, 72°C 5 min

Table 2.4. PCR programmes used for cloning and genotyping
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A genotyping PCR was also used to genotype mice carrying the Vav-cre 

transgene. Primers VavF and VavR were used to amplify a band of 250 bp (Tables

2.3 and 2.4).

2.2.17 Mouse Husbandry

All mouse husbandry was carried out by staff in the animal facilities in 

NIMR. All animal husbandry and experimental procedures were carried out 

according to UK Home Office regulations and Institute guidelines.

2.2.18 Timed matings

W here embryos were needed, timed matings were set up by members of the 

animal house staff at NIMR. Up to three females were left w ith one male from 

approximately 5pm in the evening to 7am the next morning. The females were 

checked for the presence of a vaginal plug. Those that had plugged were considered 

pregnant and were separated from the male. The day that the plug was found was 

counted as E0.5. Pregnant mothers were sacrificed for embryos on the appropriate 

day.

2.2.19 Dissection of embryos and preparation of foetal liver cells

Pregnant females at the appropriate timepoint were killed using Schedule 1 

approved methods. The uteri were taken and placed in ice cold air buffered Iscoves 

Modified Dulbeccos Medium (AB IMDM). The embryos were dissected from the 

uterus and yolk sac and placed in ice cold AB IMDM in individual wells of 6-well 

plates. The fetal livers were removed from the embryos using dissecting forceps and 

the rest of the embryo removed to another dish. The heads of the embryos were 

used for genotyping. Each fetal liver was passed through a 70 pm cell strainer to 

produce a single cell suspension.

2.2.20 Removal of erythrocytes from single cell suspensions of 

hematopoietic cells
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W hen analysing cells from haematopoietic organs and blood, it was 

sometimes necessary to remove any erythrocytes present. Single cell suspensions 

prepared from bone marrow, spleen, thymus, blood or fetal liver were pelleted at 

1200 rpm for 5 minutes. The cells were resuspended in RBC lysis buffer and 

incubated at room temperature for 10 minutes. 10 ml of HBSS was then added to the 

tube and the cells were pelleted at 1200 rpm for 10 minutes. The cells were 

resuspended in the appropriate media.

2.2.21 Genotyping Embryos

Embryos were genotyped using the same PCR strategies that were used to 

genotype adult mice. Material from embryos e.g. the head was lysed in TNES lysis 

buffer plus 0.5 mg/ml proteinase K for 24 hours at 37°C or 55°C. DNA was then 

prepared as for tail lysates. PCRs were performed on the prepared DNA as for tail 

lysates.

2.2.22 Western Blotting to detect the MLL protein

All Western blotting was done by Samantha Hiew. The protocol was also 

optimized by Samantha Hiew. Whole-cell lysates for W estern blotting were 

prepared using 2X SDS-DTT sample buffer. 1 x 106 cells were taken from single cell 

suspensions from foetal liver and spleen and resuspended in 60pl sample buffer. The 

lysates were then sonicated for 1 minute w ith a 50% pulse and then boiled for 5 

minutes at 100eC. The samples were centrifuged at 13,000 rpm for several seconds 

and then if not used immediately, stored at -80 eC. The samples were loaded onto a 

SDS-PAGE gel with a 5% resolving gel and 4% stacking gel. The resolving and 

stacking gels were made according to standard protocols. Rainbow kaleidoscope 

ladder (Biorad) was used to assess protein fragment size. The gel was run at 50-65 v 

overnight in running buffer until the sample buffer had run off the end of the gel. 

The following day the protein was transferred onto PVDF membrane (Imobilon-P) 

in transfer buffer at 70 v/400 mA at 4eC for 5-6 hours.

Following transfer, the membrane was blocked for 1 hour with 5 % skimmed 

milk in TBS-T buffer. Two antibodies were used to detect the N-terminal and C-
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terminal fragments of the MLL protein. The N-terminal fragment runs at 

approximately 320 KD and the C-terminal fragment runs at approximately 180 kD 

(Hsieh et al., 2003). The anti-N-terminal antibody was raised against a maltose- 

binding protein (MBP) corresponding to human MLL amino acids 161-356 (clone 

N4.4) and the anti- C-terminal monoclonal antibody (Upstate) was raised against a 

maltose-binding protein (MBP) corresponding to human MLL amino acids 3084- 

3959 (clone 9-12). The binding positions of the antibodies are shown in Figure 2.1. 

The membrane was incubated overnight at 4eC with either MLLN4.4 (1:400) or MLL 

Clone9-12 (1:250) diluted in 5% milk/TBS-T. Proteins were detected using a sheep 

anti-mouse horse radish peroxidase (HRP) and a chemiluminescent reagent (ECL). 

Membranes were stripped in lx  stripping buffer, the blocking step was repeated and 

the membranes were re-probed with anti-HSP90 (1:2000) for 2 hours at RT as a 

loading control.

2.2.23 Counting Cells using Trypan blue

To obtain viable cell counts, trypan blue exclusion was used. Single cell 

suspensions were diluted in trypan blue and counted using a haemocytometer.

2.2.24 Analysis of data

All flow cytometric data was analysed using Summit 4.1, 4.2 or 4.3 

(Dakocytomation). All graphs were produced using either Microsoft Excel or 

Graphpad Prism 4. All statistical analyses were performed using Graphpad Prism 4 

software, according to the guide provided with the software. W hen comparing two 

data sets, a two-tailed non-paired t-test was performed to assess whether the sets 

were significantly different. Paired two-tailed t-tests were also used to analyse flow 

cytometric data from M il conditional mice. W here 3 data sets were analysed, One­

way anova with Tukeys multiple comparison test was performed.

2.2.25 Methylcellulose Colony-forming assays with foetal liver cells

Single cells suspensions were prepared from E l2.5 fetal liver. Following 

erythrocyte removal, 1.1 x 104 nucleated cells were added to 1.1 ml M3434
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Figure 2.1. Binding positions of the antibodies used for western blots of 
MLL.
The schematic shows the MLL protein. See Figure 1.5 for details of all the 
domains shown. The N-terminal antibody -  N4.4 - binds across the AT 
hooks. The C-terminal antibody -  9-12 -  binds across the SET domain.
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methylcellulose media (contains m-SCF, mIL-3, hIL-6, hEpo) plus GM-CSF at a 

concentration of 10 ng per ml. The cells were plated into 35 mm dishes and the 

cultures were placed in anther 10 cm dish containing a 35 mm dish of sterile 1 x PBS 

to prevent the plates from dessicating. The cultures were incubated at 37eC in 5% 

CO2 for up to 14 days. Colony Forming Units (CFUs) were scored after 7 and 14 days 

according to instructions from Stem Cell Technologies. Counts were made for CFU- 

Granulocyte, Macrophage (CFU-GM), CFU-Granulocyte, Erythrocyte, Macrophage, 

Megakaryocyte (CFU-GEMM) and Burst-Forming Unit Erythroid (BFU-E). The cells 

were then removed from the plate and then counted using trypan blue exclusion.

2.2.26 Cytospin analysis

To analyze the morphology of cells produced in CFU assays, cytopins were 

performed. Single cell suspensions were made and the cells washed twice in 1 x PBS. 

The cells were resuspended in MACs buffer at a concentration of 3 x 105 per ml. 100 

pi of cell suspension was centrifuged onto slides at 35 g for 5 minutes at low 

deceleration using a cytospin 3 machine (Shandon). The slides were then fixed and 

stained with May-Grunwald-Giemsa using a Shandon varistain 24-4 automated 

staining machine in the Haematology department at Great Ormond Street Hospital.

2.2.27 General protocol for the preparation of samples for flow 

cytometric analyses

For flow cytometry, samples from fetal and adult mice were prepared as 

follows. Single cell suspensions were prepared from foetal liver, adult bone marrow, 

thymus, spleen, mesenteric lymph node or blood. W here necessary, erythrocytes 

were removed by incubation in RBC lysis buffer. The cells were counted and 

aliquoted at a concentration of up to lx l0 7 cells per ml into either 5 ml round 

bottom FACS tubes or v-bottomed 96 well microtitre plates. The cells were washed 

once in staining buffer. All incubations and washes were performed with staining 

buffer, unless otherwise indicated. The cells were incubated with anti-Fcy lll/ll 

receptor mAh2 402 (1:5 dilution, produced in house) for 15 minutes on ice to prevent 

non-specific antibody binding. The cells were then incubated with the primary
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antibodies, at the specified dilution, on ice for 30 minutes. For details of all 

antibodies used, see Table 2.5. Isotype controls were routinely used for all 

experiments (Figure 2.2). W here a secondary antibody was used, the cells were 

washed once and incubated with the secondary antibody at the appropriate dilution 

for 15 minutes. The cells were then washed twice in running buffer. The cells were 

resuspended in 100-400 pi of running buffer and run on a Dakocytomation Cyan 

ADP flow cytometer. All samples were aquired using appropriate live gates (Figure

2.3). All flow cytometric data was analysed using Summit 4.1, 4.2 or 4.3 

(Dakocytomation).

2.2.28 Magnetic Activated Cell Sorting

W here it was necessary to sort for a population of cells expressing a 

particular marker, the Miltenyi Magnetic Activated Cell Sorting System (MACS) was 

used. The system was used according to the manufacturers instructions. Briefly, cells 

prepared from foetal liver or bone marrow were incubated w ith an antibody to the 

marker of interest (e.g anti c-kit APC, an ti-T erll9  PE, biotin-conjugated lineage 

markers). The cells were then washed and incubated w ith magnetic beads that 

bound to the conjugate present on the primary antibody (e.g Streptavidin beads, 

anti-APC, anti-PE beads). The cells were washed again and then passed down MACs 

MS or LS columns in the presence of a magnetic field. The column flow through was 

taken as cells negative for the marker in question, the cells attached to the column 

were taken as positive for the marker in question. The purity of all sorts was 

estimated following the sort by flow cytometry. W here necessary, cells were sorted 

twice to separate populations expressing different markers. For a detailed protocol, 

please see the manufacturers instructions (Miltenyi).

2.2.29 Analysis of foetal liver stem cells by flow cytometry

For analysis of fetal liver HSC populations, single cell suspensions were made 

from fetal livers from E l3.5 embryos. Total live cell counts were obtained for each 

foetal liver using trypan blue. Cells were stained with a biotin-conjugated Lineage 

antibody cocktail (CD3e (145-2C), CD45R/B220 (RA3-6B2), Ly6G and Ly-6C (RB6-
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Antibody Clone Isotype Supplier
W orking
Dilution

Anti-Seal-PE D7 IgG2a k
BD

Pharmingen
1:200

Anti-Mac 1- 
PE

M l/70 IgG2b k
BD

Pharmingen
1:200

Anti-Mac 1- 
FITC

M l/70 IgG2b k eBioscience 1:100

A nti-G rl-
APC

RB6-8CS IgG2b k eBioscience 1:300

A nti-Terll9-
PE

T erll9 IgG2b k
BD

Pharmingen
1:100

Anti-B220-
APC

RA3-6B2 IgG2a k eBioscience 1:100

Anti-CD 19- 
PE

1D3 IgG2a k
BD

Pharmingen
1:200

Anti-Ly5.2-
Bio

104 IgG2a k eBioscience 1:100

Anti-c-kit-
APC

2B8 IgG2b k eBioscience 1:100

Anti-Seal - 
FITC

D7 IgG2a k eBioscience 1:100

Anti-CD38-
PE

90 IgG2a k eBioscience 1:600

Anti-Ly5.2-
FITC

104 IgG2a k eBioscience 1:100

Anti-Ly5.1-
PE

A20 IgG2a k eBioscience 1:200

Anti-CD4-PE H129.19 IgG2a k
BD

Pharmingen
1:200

Anti-CD8-Tri CT-CD8a IgG2a k Caltag 1:100
Anti-IgG2A-

PE
G155-178 IgG2a k

BD
Pharmingen 1:100

Anti-IgG2b-
FITC

27-35 IgG2b k
BD

Pharmingen
1:100

Anti-IgG2b-
APC

N/A IgG2b k eBioscience 1:100

Streptavidin-
PerCP

N/A N/A
BD

Pharmingen
1:200

Table 2.5. Antibodies used for flow cytometric analyses.
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sample, the red plot is the isotype control stained sample.
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8C5), and TER-119, Pharmingen). Lineage positive cells were depleted using 

magnetic sorting according to the manufacturer’s instructions (MACS, Miltenyi). 

Lineage negative cells were incubated with anti-Fcy III/II receptor mAb24G2 to 

prevent non-specific antibody binding and then incubated with c-kit-APC, Seal 

FITC, CD38 PE, 7AAD (to gate out dead cells) and Streptavidin-PrCP. Cells were 

analysed on a Dakocytomation Cyan ADP as before.

2.2.30 Reconstitution experiments using foetal liver cells

For reconstitution experiments with foetal liver, single cell suspensions were 

prepared from foetal livers (CD45.2/Ly5.2+) isolated from M11A and M lt/+ E l4.5 

embryos and frozen in 90% FCS and 10% DMSO. After genotyping using embryo 

material, the foetal liver cells were thawed into HBSS and pooled by genotype. The 

cells were then stained with c-kit APC and T e rll9  PE antibodies and c-kit+T erll9 ' 

cells were sorted using the MACS system, as described previously (Miltenyi). 

C57BL/6 Ly5.1 recipients were irradiated w ith a first dose of 5 Gy and a second dose 

of 4 Gy. They were then injected intravenously w ith 4 x 104 viable sorted foetal liver 

cells plus a radioprotective dose of 2 x 105 C57BL/6 Ly5.1+ bone marrow cells. All 

injections were performed by Owen Williams. Blood was taken from the recipients 

1 month post-transplantation and the reconstitution levels were assessed by 

analysing the number of Ly5.1 and Ly5.2 positive cells present using flow 

cytometry. After 4 months, the recipients were sacrificed and the bone marrow, 

spleen and thymus analyzed for the presence of Ly5.1 and Ly5.2 positive cells by 

flow cytometry.

2.2.31 Analysis of adult haematopoietic populations by flow cytometry

Haematopoietic cells in adult M il conditional mice were analysed by flow 

cytometry. 8 week old mice were killed using Schedule 1 approved methods. Spleen, 

thymus and mesenteric lymph nodes were taken from each individual. These were 

passed through 70 pM cell strainers to achieve single cell suspensions. The femurs 

and tibia were taken from each mouse and transferred to AB IMDM. Any muscle or 

skin was removed from the bones which were placed in fresh HBSS. The bone
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marrow was then flushed from the bones using a 25 gauge needle. Erythrocytes 

were removed from all samples by incubation in RBC lysis buffer as before. Viable 

cell counts were made, and aliquots of 1 x 106 cells from each sample were 

transferred to 96 well v-bottom microtitre plates. The cells were stained with 

different combinations of the following antibodies: anti-CD4-PE, anti-CD8-Tri, 

anti-c-kit-APC, anti-Scal-PE, Biotin-conjugated-Lineage panel, anti-B220-APC, 

anti-CD19-PE, anti-Grl-APC, anti-Mac 1-FITC, anti-IgG2a-PE, anti-IgG2b-FITC, 

anti-IgG2b-APC, anti-Ly5.2-FITC, anti-Ly5.1-PE, Steptavidin-PrCP. The cells were 

analysed on a Dakocytomation Cyan ADP flow cytometer as before.

2.2.32 Methylcellulose CFU assays using adult bone marrow cells

Single cells suspensions were prepared from bone marrow. For bone marrow 

Pre-B assays, 5.5 x 104 nucleated cells were plated into 1.1 ml M3630 

methylcellulose media (containing hIL-7) and CFUs were counted after 7 days. For 

bone marrow myeloid assays, 2.7 x 104 nucleated cells were plated in 1.1 ml M3434 

media and CFUs were scored after 10 days.

2.2.33 Reconstitution experiments using adult bone marrow cells

For competitive reconstitution assays w ith adult bone marrow cells, bone 

marrow was prepared from two mice for each genotype (MlFlox/+, M llFlox/\ M il 

conditional). Erythrocytes were removed by lysis w ith RBC lysis buffer and the cells 

counted and pooled for each genotype. All injections were performed by Henrique 

Veiga-Fernandes. For the 10:1 ratio, 2 x 106 cells from each genotype were mixed 

with 2 x 105 WT C57B1/6J Ly5.1+ bone marrow cells and injected into 5 lethally 

irradiated C57B1/6J Ly5.1+ recipients. For the 1:1 ratio, 1 x 106 cells from each 

genotype were mixed with 1 x 106 W T competitor cells. After 4 weeks, blood was 

taken from the recipients for the analysis of reconstitution levels, as before. After 4 

months, the recipients were sacrificed and bone marrow, spleen and thymus were 

taken for analysis as before.
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2.2.34 Analysis of recombination in Mil cKO bone marrow and fetal 

liver stem cells

To sort bone marrow stem cells for DNA preparation, single cell suspensions 

were prepared from the bone marrow of 3 M il cKO  mice and pooled. The cells were 

stained with a biotinylated Lineage antibody cocktail (CD3e, C D llb , CD45R/B220, 

Ly6G and Ly-6C, and TER-119, Miltenyi), and the lineage positive cells were 

depleted by magnetic sorting. The remaining cells were stained with c-kit-APC and 

Seal-PE. c-kit^Scal* cells were sorted from the population using a Beckman Coulter 

Epics Altra. DNA lysates were prepared from the cells and the DNA analyzed by 

PCR, using primers E2 and F to detect the floxed allele, and E2 and G2 to detect the 

deleted allele.

To sort c-kit+T erll9 ' fetal liver cells for DNA preparation, E13.5 fetal liver 

cells were stained with c-kit-APC and Terll9-PE. T e rll9 + cells were depleted and 

then c-kitw cells were selected by magnetic sorting. DNA was prepared from the 

resulting cells for PCR analysis as above.
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Chapter 3 

Successful Targeting of Murine 

Embryonic Stem Cells with an M il 

‘Floxed’ allele

3.1 Introduction

As shown in previous studies, homozygous deletion of M il results in 

embryonic lethality (Ayton et al., 2001; Yagi et al., 1998; Yu et al., 1995). This 

lethality had previously prevented the study of haematopoiesis in adult mice in the 

absence of Mil. It was therefore necessary to create a line of mice in which M il 

could be conditionally removed only in the haematopoietic system. By removing 

MU only in the haematopoietic system, it was hoped that the lethality of 

constitutively removing M il would be overcome, enabling the study of adult 

haematopoiesis in the absence of Mil.

It was decided that the most efficient way to facilitate conditional removal of 

M il was by utilizing the Cre-lox system. The bacterial recombinase Cre recombines 

DNA sequences flanked by so called loxP sites (Kuhn et al., 1995). loxP sites are 

unique, 34 bp long sequences of DNA, that are not normally present in mammalian 

DNA (Sauer, 1998). By flanking exons 9-10 of M il w ith loxP sites, it was possible to 

create a ‘conditional’ or ‘floxed’ allele of gene. In the presence of the Cre 

recombinase, the loxP sites would be recombined to excise exons 9 and 10 of Mil. 

Cre is not normally expressed in mammalian cells, so by breeding mice carrying the 

‘floxed’ allele to mice that express transgenic Cre under tissue specific promoters it 

was possible to produce mice where exons 9 and 10 of M il were excised only in 

certain tissues, such as the haematopoietic system (Kuhn et al., 1995).
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An Embryonic Stem (ES) cell targeting strategy was used to establish a mouse 

line bearing a ‘floxed’ allele of Mil. ES cells are pluripoitent cells derived from the 

inner cell mass of blastocysts. They can be cultured for many passages and still retain 

their pluripotency as shown by the fact that when they are reintroduced into 

blastocysts, they can contribute efficiently to the formation of chimaeras (Bradley et 

al., 1984). Using ES cells, mutations and foreign DNA can be introduced into the 

genome via gene targeting. This involves the homologous recombination of DNA 

sequences residing in the chromosome with newly introduced DNA sequences 

(Thomas and Capecchi, 1987). For example, as described here, a plasmid carrying 

introns 5-6 to 10-11 of MLL DNA, including the floxed exons 9 and 10 and a 

selection marker, was electroporated into PC3 ES cells (Figure 3.1). The floxed 

section of MLL was then integrated into the ES cell genome via homologous 

recombination (Figure 3.3). ES cells clones carrying the targeted allele were 

identified using the selection marker. These clones were karyotyped and injected 

into blastocysts to give rise to chimeric mice bearing the targeted M il allele.

3.2 Construction of targeting vector pM11197.Al

The first targeting vector used for targeting was constructed by Dr Suzana 

Hadjur. A pBluescript vector containing introns 5-6 to 10-11 of mouse 129sv M il 

genomic DNA was provided by Dr Terry Rabbitts (LMB, Cambridge) (pBS-Mll). 

pBS-Mll was linearised using a BgAl site in intron 10-11 of the M il genomic DNA 

and the sticky ends blunted. A LoxNeoLox cassette (a neomycin resistance cassette 

flanked by two loxP sites) was excised from the vector, pM197, using a SaR/N otl 

double digest and the fragment ends blunted. The LoxNeoLox cassette was blunt- 

end ligated into the blunted BgAl site of pBS-Mll. The resultant vector carrying was 

named pM11197.

pM11197 was digested with A adl in intron 6-7 of the Mil genomic DNA and 

the ends blunted. A DNA fragment containing a loxP site was amplified from the 

vector, pGEM30, using the primers LoxPF and LoxPR (Table 2.3, Table 2.4). The 

150bp fragment containing the loxP site was then digested with A ad I and Smal and 

the sticky ends blunted. The loxP site fragment was then blunt-end ligated into the
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blunted AaAl site of pMLL197. The final vector, containing a loxP site in intron 6-7 

and a LoxNeoLox cassette in intron 10-11 of Mil, was named pM11197.Al (Figure 

3.1).

After sequencing, two tandem loxP sites were found to have been ligated into 

the 5' A adl site Figure 3.1. It was thought that the presence of two loxP sites here 

would not interfere with the targeting strategy and the vector was used to target 

mouse ES cells.

3.3 Failure of targeting using pM11197.Al

Targeting of the M il locus in PC3 ES cells by electroporation (O’Gorman et 

al., 1997) was attempted using pM11197.Al (Figure 3.1). Over 800 clones were 

picked following selection in neomycin, and DNA prepared and screened by 

Southern Blot Analysis. Of 1000 neomycin resistant clones picked, 12 were found to 

be positive for the LoxNeoLox cassette using a Kpnl Southern blot strategy W hen 

these clones were screened for the 5' loxP site, none were found to be positive (data 

not shown). Homologous recombination had not been achieved at the 5' end of the 

targeting vector.

It was possible that the incomplete homologous recombination of the 

targeting vector in ES cells was due to a lack of M il homology flanking the 5' loxP 

site or to there being too much space between the loxP sites. To increase the chances 

of correct recombination, a second targeting vector was constructed where the 5' 

loxP site was brought closer to the LoxNeoLox cassette and extra MU homology was 

added to the 5' end of the targeting vector. In this second vector, exons 9 and 10 of 

Mil, which encode part of the first PHD finger of the protein, were flanked by loxP 

sites (Figure 3.2).

3.4 Construction of the second targeting vector pMLL197.2kb

To create the second targeting vector, pM11197 was used as the starting point. 

The 5' loxP site was amplified from pGEM30 as before and sub-cloned into pGEM-T 

Easy. An Aatll/Sm al digest was used to digest out the loxP site from pGEM-T Easy. 

The ends were blunted and the loxP site was this time ligated into a blunted NsA site
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Figure 3.1. Schematics of the vectors used for targeting.
A) The first targeting vector, pM11197.Al.Filled black rectangles 
denote exons, red triangles denote loxP sites and Neor denotes the 
Neomycin resistance cassette. pBS indicates the pBluescript vector 
backbone. The blue denotes vector DNA, the black line denotes M il 
genomic DNA
B) The second targeting vector M11197.2kb
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KCQNLQWMPSKASLQKQTKAVKKKEKKSKTTEKKESKESTAVKSPLEPAQKAAPPP

REE PAPKKS S SE PPPRKPVEEKSEEGGAPAPAPAPE PKQVSAPASRKS SKQVSQPA

AW PPQ PP S T APQKKE APKAVP SE PKKKQ PPPPEPGPEQS KQKKVAPRP SIPVKQK
Exon 9

PKDKEKPPPVSKQENAGTLNILNPLSNGISSKQKIPADGVHRIRVDFKEDCEAENV 
Exon 10 PHD 1

WEMGGLGILTSVPITPRWCFLCASSGHVEFVYCQVCCEPFHKFCLEENERPLEDQ
PHD 2

LENWCCRRCKFCHVCGRQHQATKQLLECNKCRNSYHPECLGPNYPTKPTKKKKVWI

CTKCVRCKSCGSTTPGKGWDAQWSHDFSLCHDCAKLFAKGNFCPLCDKCYDDDDYE
PHD 2

SKMMQCGKCDRWVHSKCESLSGTEDEMYEILSNLPESVAYTCVNCTERHPAEWRIiA

LEKELQASLKQVLTALLNSRTTSHLLRYRQAAKPPDLNPETEESIPSRSSPEGPDP

PVLTEVSKQDEQQPLDLEGVKKRMDQGSYVSVLE FSDDIVKIIQAAINSDGGQPEI

KKANSMVKSFFIRQMERVFPWFSVKKSRFWEPNKVSNNSGMLPNAVLPPSLDHNYA

QWQEREESSHTEQPPLMKKIIPAPKPKGPGEPDSPTPLHPPTPPILSTDRSREDSP

ELNPPPGIDDNRQCALCLMYGDDSANDAGRLLYIGQNEWTHVNCALWSAEVFEDDD
PHD 4

GSLKNVHMAVIRGKQLRCEFCQKPGATVGCCLTSCTSNYHFMCSRAKNCVFLDDKK

VYCQRHRDLIKGEWPENGFEVFRRVFVDFEGISLRRKFLNGLE PENIHMMIGSMT

Figure 3.2. Position of the PHD fingers in the MLL protein.
Exon 9 is highlighted in purple, exon 10 is highlighted in blue. The 
PHD fingers are underlined.
As shown above, exon 10 encodes a portion of the first PHD finger. 
The cysteine residues that form part of one of the zinc binding sites in 
the first PHD finger are highlighted in red. The sites of the PHD 
fingers were identified using information from Aasland e t al. 1995 
and Jose Saldanha (personal communication).
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in intron 8-9 of pMLL197. Sequencing was used to check the orientation and 

sequence of the loxP site and to confirm the presence of only one loxP site.

The additional M il 5' homology was PCR amplified in two fragments from 

genomic DNA extracted from PC3 ES cells (129sv background). A 5' fragment was 

amplified by PCR using primers Exon5MLL/Intron5-68410R and a 3' fragment was 

amplified using primers Intron5-6MLLC/PCR2A (Table 2.3, Table 2.4). Both 

fragments were sub-cloned into pGEM-T Easy and sequenced to check for mistakes 

that may have occurred during amplification. The 5' fragment was digested out of 

pGEM-T Easy using an Xbal/SaA double digest and ligated into pGEM-T Easy 

containing the 3' fragment using an Xbal site in the 3' M il sequence and a SaA site in 

pGEM-T Easy. This vector was termed pGEM-T Easyl.4+lKb.

The MLL homology in pGEM-T Easyl.4+lK bl.l was directionally cloned 

into the targeting vector using a blunt/sticky ended ligation. pGEM-T 

Easy 1.4+1Kb 1.1 was linearised using an A&/I digest. The sticky ends were blunted 

and the vector digested again with Aadl, to release the fragment of homology. 

pBluescript MLL 197 was linearised with BstXL and the ends blunted. The vector was 

then digested with A ad I. The homology from pGEM-T Easyl.4+lK bl.l was ligated 

into the 5' end of the vector using the A atll in MU and the blunted BstX1 to create 

the finished vector, pMLL197.2kb (Figure 3.1).

Restriction digest mapping was used to check that the resulting targeting 

vector was correct (all the components had been sequenced prior to assembly of the 

vector). In this targeting vector, the 5' loxP site and the 3' LoxNeoLox cassette flank 

exons 9 and 10 of M il (Figure 3.1).

3.5 Targeting of ES Cells with the Second Targeting Vector

ES cells were electroporated with the second targeting vector, pMLL197.2kb. 

The targeting strategy is shown in Figure 3.3.

Eight-hundred neomycin resistant clones were picked following 

electroporation of PC3 ES cells with vector pMLL197.2kb. DNA was extracted from 

two samples of each clone for Southern Blot analysis. An aliquot of cells of each 

clone was frozen and kept at -70eC.
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Figure 3.3. Targeting Strategy and Southern Strategy for identifying 
positive ES cell clones .
The figure shows the wild type M il allele before targeting, and the 
targeted allele after homologous recombination with the targeting 
vector has taken place. Also shown are the position of the restriction 
sites and probe used in K pn\ Southern Blot Analysis and the 
corresponding fragment sizes. Bsl- BstXX Ns- NsiX, R l- EcoRX, Kp- 
KpnX.
The filled black boxes denote exons, the red triangles denote LoxP 
sites, Neor denotes the neomycin resistance gene and the filled red 
box denotes the 3' probe.
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3.6 Southern Blot with Kpnl showed successful recombination of the 

LoxNeoLox cassette

DNA from over seven hundred clones was screened for the LoxNeoLox 

cassette using the KpiA Southern strategy shown in Figure 3.3. One gel per 96-well 

plate was run, as shown in Figure 3.4. The wild type allele gave a band of 5.7 kb and 

the targeted a band of 7.2 kb (due to the presence of the LoxNeoLox cassette) (Figure

3.4). Of approximately 500 clones screened, thirty-nine were found to be positive for 

the LoxNeoLox cassette.

3.7 Southern Blot with Nsil showed successful recombination of the 5' 

loxP site

The thirty-nine clones that were positive for the LoxNeoLox cassette were 

screened for the presence of the 5' loxP site using the NsA strategy shown in Figure 

3.5. DNA from clones identified as being positive for the LoxNeoLox cassette was 

digested with N sil and probed with the 3' probe. A representative blot is shown in 

Figure 3.6. Four clones showed successful recombination of the 5' loxP site as well as 

the LoxNeoLox cassette. These were clones M119.21, 3.102, 9.33 and 3.37.

Clones M119.21, 3.102, 9.33 and 3.37 were thawed from 96-well plates. All 

successfully expanded to 10 cm plates, from which genomic DNA and cells for 

freezing were prepared.

3.8 Karyotyping of positive clones

W hen cultured, ES cells often develop chromosomal aneuploidy (the 

acquisition of extra chromosomes in addition to the normal complement of forty) 

(Koller, 1992). W hen injected into blastocysts, aneuploid ES cells can lead to 

developmental abnormalities in the resultant chimeras. For this reason it was 

important to karyotype the clones before injection. For Clone M113.102, 50% of the 

cells were aneuploid (Figure 3.7). Clones M119.21, 9.33 and 3.37 were found to 

contain over 90% normal cells (Figure 3.7). These clones, when grown in culture,
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Figure 3.4. Southern Blot of DNA from G418 resistant clones. 
Genomic DNA from neomycin resistant ES cell clones grown in a 96 
well plate was digested with Kpnl and then probed with the 3' 
probe.
Clones positive for the LoxNeoLox are highlighted by red stars. Wild 
type band =5.7 kb. Targeted band = 7.2 kb
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the red triangles denote loxP sites, Neor denotes the neomycin 
resistance cassette box and the red box indicates the 3' probe.

8 8



Figure 3.6. Southern blot of DNA from clones positive for the 
LoxNeoLox cassette.
DNA was digested with N sil and probed with the 3' probe to look 
for the presence of the 5’ LoxP site. Wild type allele = 12 kb, 
incorrectly targeted allele (LoxNeoLox cassette only) = 13.55 kb, 
correctly targeted allele (plus the 5' LoxP) = 18 kb.
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Figure 3.7. Examples of karyotypes of ES cell clones.
A) Karyotype of Clone M113.37, showing a normal complement of 40 
chromosomes.
B) Karyotype of aneuploid clone M113.102 showing an abnormal 
complement of 41 chromosomes.
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looked healthy and had 5-10% differentiation as expected for healthy, pluripotent 

ES cells.

3.9 Southern Blot analysis on DNA from expanded clones showed the 

correct clones were picked

Following expansion of Clones M119.21, 9.33 and 3.37, DNA from the clones 

was used for Southern Blot analysis using the N sil and KprH strategies mentioned 

previously (Figures 3.3 and 3.5). This was to ensure that the correct clones had been 

picked and that these clones were not mixed clones of correctly targeted and wild 

type ES cells. Clones M119.21, 9.33 and 3.37 were found to be positive for the 5' loxP 

site and the LoxNeoLox cassette after expansion (Figure 3.8).

3.10 Blastocyst injection with clones M119.21 and M113.37 resulted in 

high percentage chimaeras

Clones M119.21 and M113.37 were chosen for injection into C57BL/6J 

blastocysts. All blastocyst injections were performed by Dimitris Kioussis at NIMR, 

London. The injected blastocysts were implanted into pseudo-pregnant females. 

Injection of both clones resulted in the birth of litters containing chimeras 

exhibiting a high percentage of chimerism. The level of chimerism was indicated by 

amount of agouti coat colour that the mice had (PC3 ES cells are derived from 129Sv 

mice that carry agouti coat colour, C57BL/6 blastocysts carry black coat colour). A 

high level of chimerism suggested that the ES cells injected were contributing 

successfully to the tissues of the mice.

3.11 The injected ES cells successfully contributed to the germline of 

chimaeras

Male chimeras with a high percentage of chimerism were bred to C57B1/6J 

females. All breeding pairs produced offspring with agouti coat colour, showing that 

the ES cells had successfully contributed to the germline of the chimeras. Chimeras
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Figure 3.8. Southern blots to confirm the genotype of the expanded 
ES cell clones.

A) Southern blot analysis of clones M113.37.3.102, 9.21, 9.33 using a
an N sil digest. Wild type band =12 kb, targeted band =18 kb.

B) Southern Blot analysis of the same clones using a KpiiL digest.
Wild type band = 5.7 kb, targeted band = 7.2 kb.
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derived from clone M119.21 gave rise to line M119.21, those derived from M113.37 

gave rise to line M113.37.

3.12 Discussion

Establishing a conditional knockout model of the gene Mil

This chapter describes the successful targeting of mouse ES cells w ith a 

‘floxed’ allele of M il and the subsequent contribution of ES cells carrying this allele 

to the germline of chimeras.

Failure of the first attempt at targeting is likely due to the region of Mil targeted

As described in Section 3.3, PC3 ES cells were first targeted with a plasmid 

which exons 7 to 10 of M il were flanked by a loxP site and a LoxNeoLox cassette 

(pM11197.Al, Figure 3.1). W hen neomycin resistant clones were screened after 

targeting, of over 800 clones, none were found to have recombined both the 5' loxP 

sites and the 3' LoxNeoLox cassette successfully. This was attributed to a possible 

lack of homology at the 5'end of the targeting vector and the large distance (2.55 kb) 

between the 5' loxP site and the 3' LoxNeoLox cassette. Previous work has shown 

that increased flanking homology can increase the likelihood of the recombination 

of non-homologous sequences (Koller, 1992; Thomas and Capecchi, 1987). It is also 

of note that this region of M il is very close to the breakpoint cluster region of the 

gene, where chromosomal translocations occur (Scharf et al., 2006). W hen designing 

genotyping primers in this region, it was found that the majority of primers designed 

could not be used because of homology to sequences from several chromosomes. 

This would suggest that both the 5' loxP site and the 3' LoxNeoLox cassette were 

situated in introns w ith a large number of repetitive elements. This may have meant 

that when the ES cells were targeted, the LoxNeoLox cassette was incorporated into 

other sites in the genome other than the M il locus, via homologous recombination 

with repetitive sequences. This may account for the large number of neomycin 

resistant clones that were picked that had not incorporated the LoxNeoLox cassette 

at the M il locus.
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The Second Targeting Vector - Targeting exons 9 and 10 of Mil

In the second, successful targeting vector, the loxP site and the LoxNeoLox 

cassette flanked exons 9 and 10 of M il which encode two cysteine residues that form 

part of the first loop of PHD finger 1 of MLL (Figures 3.1 and 3.2). PHD fingers are 

zinc finger containing domains that are predominantly found in chromatin 

remodelling proteins (Bienz, 2006; Pena et al., 2006). As discussed in the 

introduction, they are important for the binding of nucleosomes and other ligands 

by chromatin remodelling proteins. So, by targeting the first PHD finger of the MLL, 

it was possible that important protein-protein interactions would be abolished, or 

that the protein’s structure would be affected.

The second targeting vector was successfiilly used to target PC3 ES cells

Using the second targeting vector, PC3 ES cells were successfully targeted. 

Southern blot strategies where the probe bound externally to the targeted area of 

M il were used to ensure that the M il locus had been targeted correctly. Three clones 

were found that contained the correctly incorporated 5' loxP site and 3' LoxNeoLox 

cassette and that had a normal complement of chromosomes. Two of these clones 

were injected into blastocysts and both gave rise to chimeras showing high levels of 

chimerism. A high level of chimerism indicated that the ES cells used to create the 

chimera were healthy and able to contribute significantly to the embryo (Capecchi, 

1989). W hen the male chimaeras were bred to C57BL/6 females, which, like the 

blastocysts, had a black coat colour, the resultant litters contained agouti offspring, 

the parental coat colour from the PC3 ES cells, which were derived from a 129sv 

background (O'Gorman et al., 1997). This indicated that the targeted ES cells had 

contributed to the germline of the chimeras.
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Chapter 4 

Deletion of Exons 9 and 10 of M il 

Resulted in a Knockout Phenotype

4.1 Introduction

The previous chapter described the establishment of two mouse lines 

carrying an M il allele where exons 9 and 10 were flanked by a LoxP site and a 

LoxNeoLox cassette. This chapter describes the production of mice carrying floxed 

and deleted alleles of M il. In addition this chapter shows that the deletion of exons 9 

and 10 lead to the loss of MLL protein expression.

The floxed and deleted alleles of M il were produced using the PC3 Cre 

transgene which is present in PC3 ES cells (O'Gorman et al., 1997). The PC3 Cre 

transgene expresses the Cre recombinase under the control of the mouse protamine 

1 (PrmT) promoter (O’Gorman e t al. 1997). The P rm l promoter is active only during 

the terminal, haploid stages of spermatogenesis, so in those chimeras carrying the 

PC3 Cre transgene, Cre-mediated recombination occurred only in male 

spermatozoa. Therefore the offspring of male mice carrying the PC3 Cre transgene 

had different recombination events w ithin the targeted M il allele. As there are three 

LoxP sites in the targeted allele, three different recombination events can occur. 

These are termed Type I, Type II and Type III ( Figure 4.1) (Cohen-Tannoudji and 

Babinet, 1998). These different recombination events successfully occurred in male 

chimeras carrying the targeted M il allele, allowing the implementation of breeding 

strategies to propagate the different M il alleles.

W hen the deleted M il allele, lacking exons 9 and 10 was bred to 

homozygosity, it was embryonic lethal. Lysates prepared from embryos homozygous 

for the deleted allele showed an absence of MLL protein, indicating that a true 

knockout model of A///had been established.
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Figure 4.1. The different Mil alleles.
The different alleles that result from Cre-mediated recombination of 
the targeted allele.
The Cre recombinase recombines the LoxP sites (shown as red 
triangles). Black boxes denote exons, Neor denotes the neomycin 
resistance gene.
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4.2 Recombination by the PC3-Cre recombinase occurred in the 

germline of male chimaeras

Due to PC3 Cre mediated recombination in the male germline, the offspring 

of male chimeras could carry one of three possible recombinants of the targeted M il 

allele. A Type I recombination event would create the deleted allele (-), a Type II 

event would create the floxed allele (Flox), and a Type III event would create the 

deleted/Neo allele as shown in Figure 4.1. The offspring of male chimeras and 

C57B1/6J females were genotyped to look for the different recombined M il alleles. 

All mice were genotyped using DNA made from tail tips. Initially, the mice were 

genotyped by PCR to look for the presence of the wild type allele, the neomycin 

resistance cassette and the floxed allele. A PCR using primers A and B was used to 

detect the presence of the neomycin resistance cassette Figure 4.2. A PCR using 

primers D and B was used to detect the presence of the wild type and floxed alleles 

Figure 4.2. An example of the genotyping of a litter produced a chimera x C57B1/6J 

cross is shown in Figure 4.3.

Initially, it was necessary to identify animals that carried the ‘deleted’ allele 

using Southern blot analysis. DNA from mouse tail tips was digested with Afr/land 

probed with the 3' probe as before (Chapter 3.7). The expected fragment sizes 

produced from the different alleles are shown in Figure 4.4. A representative blot 

showing the genotyping by Southern blot of a litter of mice produced from a 

chimera x C57B1/6J cross is shown in Figure 4.5. A PCR strategy, using primers E2 

and B to detect the deleted allele, was optimised using DNA from M ltA mice 

identified in southern blot screening (Figure 4.2). As shown in Figure 4.6, the PCR 

using E2 and B was optimised to successfully detect the ‘deleted’ allele.

Recombination in the male germline of the chimeras had successfully 

produced M lfr^ and M lt/Flox mice, which could be used to produce constitutive and 

conditional knockout M il mice.
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Figure 4.2. Original PCR strategy employed for genotyping the 
offspring from chimeras.
Primers A and B were used to detect the presence of the neomycin 
resistance cassette.
Primers D and B were used to detect the presence of the floxed and 
wild type alleles.
Primers E2 and B were used to detect the presence of the deleted 
allele.
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Figure 4.3. Genotyping heterozygotes.
The mice genotyped were the offspring from breeding a male 
chimaeras to C57BL/6 females.
A) PCR with primers Dnew and Bnew to identify mice carrying a 
wildtype or floxed allele. Wild type band -  730 bp, floxed band 
920 bp. The third band present in PCRs for the floxed allele is a 
hybrid band where the floxed PCR product has bound to the WT 
PCR product. It disappeared upon denaturation of the DNA.
B) PCR with primers Anew and Bnew to identify mice carrying 
either the targeted allele or the deleted/neo allele. The band 
amplified from the Targeted and deleted/neo alleles was 1 kb.
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Figure 4.4. N sil and K pnl Southern Blot Strategies for detecting the 
different MU alleles.
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denoted the 3' probe.
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Figure 4.5. Genotyping by Southern blot of a litter of mice produced 
from a S chimera x ?C57BL/6J cross.
DNA was digested with N sil, as in Figure 4.4. The floxed (Flox) band 
was 16.2 Kb, the deleted (-) band was 14.7 Kb and the wild type band 
was 12 Kb



Figure 4.6 Optimisation of PCR using primers E and B to amplify the 
‘Deleted’ allele.
The genomic DNA was had previously been genotyped by Southern 
blot. The expected band for the deleted allele was 900 bp.



4.3 Removal of PC3-Cre transgene

The PC3 ES cells used here were homozygous for the PC3 Cre transgene 

(O'Gorman et al., 1997). Hence all mice bred from chimeras where the PC3 ES cells 

had successfully contributed to the germline were heterozygous for the PC3 Cre 

transgene. Before establishing breeding strategies to produce experimental mice, it 

was necessary to remove the PC3 Cre transgene. Offspring of the chimeras 

heterozygous for either the floxed or ‘deleted’ (A///7) alleles were back

crossed to wild type C57B1/6J mice. The resultant offspring were screened for the 

PC3 Cre transgene by PCR. A representative genotyping PCR showing genotyping 

for the PC3 Cre transgene is shown in Figure 4.7. Although some preliminary 

experiments were done using mice heterozygous for the PC3 transgene, the majority 

of experiments in this thesis were performed using mice negative for the PC3 Cre 

transgene.

4.4 Establishing breeding colonies for the two mice lines

To produce mice for experiments, two breeding colonies were established, 

one to propagate mice derived from M119.21 ES cells and one from M113.37 ES cells. 

MU/+ and M lF ox/+ mice from both M il strains were backcrossed to C57B1/6J mice to 

begin the process of producing congenic strains. Breeding pairs were also established 

to produce mice conditional for M il in the haematopoietic system -  this breeding 

strategy is described in Chapter 6.

4.5 Failure of original genotyping PCRs

The initial PCR srategies used to detect the different M il alleles were slightly 

unreliable in that they often failed due to undiagnosed reasons. For this reason, it 

was necessary to establish a new genotyping strategy. Primers E2 and F replaced 

primers D and B to detect the wild type and floxed alleles, and primers E2 and G2 

replaced primers E2 and B to detect the deleted allele. The new PCR strategy and 

the band sizes expected are shown in Figure 4.8. This strategy proved to be more 

reliable.
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Figure 4.7. Removal of the PC3 Cre transgene from the mouse lines. 
The figure shows the genotyping for a litter of mice from a M lPox/+ X 
C57B1/6J cross. The positive control was genomic DNA from PC3 ES 
cells, which were homozygous for the PC3 transgene. The expected 
band size was 350 bp
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Figure 4.8. New PCR Strategy for genotyping the different M il alleles. 
Using Primers E2 and F, the band sizes are : Wild type -  730 bp, floxed 
-  920 bp.
Using primers E2 and G2, the deleted band is 300 bp. A band of 1.8 kb 
is also amplified from the floxed allele by E2 and G2, but is not 
reliably amplified.
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4.6 MllFlo*/+ and Mll/+ mice have no apparent phenotypic abnormalities

It was important to establish that mice carrying the floxed allele had a 

normal phenotype to ensure that targeting introns 8-9 and 10-11 of M il had no 

effect on its function. M llF,ox/F!ox mice at 8-10 weeks of age were of normal weight 

(23.9 ± 2.3 for males, 19.4 ± 1.7 for females) compared to wild type mice (22.7 ± 2.2 

for males, 20.9 ± 2.3 for females) and had no obvious anatomical abnormalities. 

MlF‘ox/+ mice were of normal fertility, and were born in the expected mendelian 

ratios Table 4.1. The same was true of M llflox/flox mice.

M11A mice were also born in mendelian ratios, when crossed with C57B1/6J 

mice (Table 4.2).

4.7 Homozygous deletion of exons 9 and 10 of Mil is embryonic lethal

In previous models, homozygous interruption of the MLL protein was 

embryonic lethal (Ayton et al., 2001; Yagi et al., 1998; Yu et al., 1995). To assess 

whether this was true in our model, M lt/+ were crossed to produce M il mice. As 

shown in Table 4.3, in 5 litters from these crosses, no M11A mice were born, 

confirming the lethality of homozygous deletion of exons 9 and 10 of M il. To assess 

at which point of development M ltA embryos died, timed matings were set up using 

M ll/+ mice. As shown in Table 4.3, normal numbers of M ltA embryos were present 

up to E12.5. Figure 4.9 shows a representive PCR for a litter of E12.5 embryos, 

showing the presence of an M ltA embryo. After this point, the numbers of M llv' 

embryos were gradually reduced, with the biggest drop occurring between E l2.5 

and E14.5. At these timepoints, dead MUrA embryos were frequently seen (data not 

shown). Live M11'Aembryos frequently showed oedema and petechiae under the skin 

(data not shown). From E15.5 onwards, live M il'/' embryos were seen, but they were 

increasingly rare, only 2 live Mll~/~ embryos were seen from five litters.

4.8 Mil 7" embryos have no detectable MLL protein

The embryonic lethality seen in M lt^  embryos suggested that either the 1st 

PHD finger was integral to the function of MLL or that the levels of MLL were
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M113.37
Genotype Males Females Total
M lf/ttox 42% 48% 46% (n=22)

M1F+ 19% 25.9% 23% (n=13)
fyjjpox/flox 38% 25.9% 31% (n=15)

M119.21
Genotype Males Females Total

M lf/FIox 60% 42.9% 56% (n=15)

M lt/+ 15% 25% 22% (n=6)
fyfjjFlox/Flox 25% 14% 22% (n=6)

Table 4.1. M lfox/+ and M lt/+ mice are bom  in mendelian ratios.
Offspring from M lFlox/+ x M lfIox/+
Expected ratios are : M lfIox/+ 50%, M lt/+ 25%, M lfIox/Flox 25%

M119.21
Genotype Males Females Total

M1F- 45.5% 43.9% 43% (n=54)

M lt/+ 54.5% 56.1% 57% (n=73)

M113.37
Genotype Males Females Total

M & - 43.5% 41.4% 45% (n=50)

M tf/+ 56.5% 58.6% 55% (n=62)

Table 4.2. M lt^  and M1F/+ mice are bom  in mendelian ratios
Results of breeding pairs with M1F/+ x W T C57B1/6J. Expected ratios 
are : M U * 50%, M lt/+ 50%
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Percentage of Hve Embryos

M1T/+ M l^- M R/-

E10.5 (n=19) 10.5% 47% 42%

El 1.5 (n=16) 18% 62% 18%

E12.5 (n=28) 14.2% 50% 35.7%

E l3.5 (n=35) 31% 48.9% 20%

E14.5 (n=51) 31% 54.9% 13.7%

E15.5 (n-11) 27% 63.9% 9%

E16.5 (n=9) 22% 66.7% 11%

Postnatal (n=38) 52.6% 47.4% 0%

Table 4.3. Embryonic lethality in M ///_ embryos.
Expected Mendelian ratios were: M lt^  50%, M lt/+ 25%, M ///_ 25%. 
The table shows data pooled from M113.37 and M119.21 strains.
At earlier timepoints (E10.5, El 1.5), live embryos were considered to 
be those that had a heartbeat. At later timepoints, live embryos were 
those that showed blood in the umbilical chord and veins.
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Figure 4.9. Genotyping of a litter of embryos from a M R /+ x MLt/+ 
timed mating.
The wild type allele was detected using primers E2 and F and the band 
size was 770 bp.
The deleted allele was detected using primers E2 and G2 and the band 
size was 300 bp.
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K562 Mll+/+ Mil-/+ M ll1-

Hsp90

Figure 4.10. M il-/- embryos show an absence of MLL protein.
Lysates made from foetal liver cells from M l//+, M lt/+ and A///7" 
embryos were run alongside lysates made from K562 cells (positive 
control). The blots were probed w ith either and anti-MLL N-terminal 
antibody (MLL-N) or and anti-MLL C-terminal antibody (MLL-C). 
The HSP90 antibody was used as a loading control.
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decreased. To ascertain the status of the MLL protein the absence of exons 9 and 10, 

protein lysates were made from the foetal liver cells of E l3.5 M lt/+, Mll~/+ and M il'/_ 

embryos. This analysis was done in collaboration w ith Samantha Y-L Hiew. W estern 

blotting was performed with the lysates using antibodies to detect the N-terminal 

the C-terminal MLL fragments. The binding sites for the antibodies are shown in 

Figure 2.1. The HSP90 antibody was used to ensure equal loading of the protein 

lysates. As can be seen in Figure 4.10, M11A embryos showed an absence of both 

MLL N-terminal and C-terminal protein fragments in comparison to M t/+ embryos. 

M lt/+ embryos also showed a decrease in the level of MLL protein. This result 

suggests that exons 9 and 10 of MLL are necessary either for the production or 

stability of MLL protein.

4.9 Discussion

Establishing two conditional and constitutive M il knockout mouse lines

This chapter describes the establishment of two mouse lines (M119.21 and 

M113.37) carrying a conditional and a constitutive knockout allele of M il. W hen 

chimeras derived from M il targeted ES cells were bred to C57BL/6J mice they 

produced offspring heterozygous for the targeted M il allele, showing that the ES 

cells had successfully contributed to the germline of the chimeras. As expected, the 

offspring of the chimeras carried different recombinants of the targeted allele, 

showing that all the LoxP sites were functional and that the PC3 Cre was inducing 

recombination during spermatogenesis (O'Gorman et al., 1997). This also meant that 

mice were born from both lines heterozygous for the floxed and deleted alleles of 

M il. These heterozygous mice were backcrossed to the C57B1/6J to breed mice 

heterozygous for the M il alleles but negative for the PC3 Cre transgene. Although 

the PC3 Cre transgene has not been shown to cause any phenotype, there is some 

very low level ectopic expression of the transgene in the brain (O'Gorman et al., 

1997). In addition, male mice carrying the floxed allele would undergo 

recombination during spermatogenesis, which would affect the breeding strategies.
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For these reasons, it was necessary to remove the PC3-Cre transgene by 

backcrossing the mouse lines to wild type C57BL/6J mice.

Establishment of breeding colonies to produce mice for experiments

Breeding colonies for each of the lines have been established to propagate the 

floxed and deleted alleles, and to begin the creation of congenic lines. The chimeras 

produced from the PC3 ES cells (which were derived from mice w ith a 129sv 

background) were bred to C57B1/6J WT females. An important reason for doing this 

was that the C57B1 background has been used as a model in many studies of murine 

haematopoiesis (Gekas et al., 2005; Morrison et al., 1995; Spangrude et al., 1995; 

W orton et al., 1969). This is also true of previous A/Z/knockout studies (Ayton et al., 

2001; Yagi et al., 1998). However, as the original ES cells used here were derived 

from a 129sv background, this meant that the mice used for experiments in this 

work were of a mixed C57B1/6 and 129sv background. For this reason, in all 

experiments littermates were used as controls.

Mlp/nox Mll /+ mice have no apparent phenotypic abnormalities

As described, M1FIox/f1ox mice had no apparent abnormalities in terms of 

weight and fertility. More importantly, breeding the floxed allele to homozygosity 

was not embryonic lethal. This would suggest that targeting introns 8-9 and 10-11 of 

M il has no obvious effect on the function of the gene. M1F' mice in our model had 

no apparent abnormalities in terms of fertility and weight. In the first M il mouse 

knockout model, heterozygous females were hypofertile and heterozygotes of both 

sexes had retarded growth and reduced weight (Yu et al., 1995). However, as in the 

new model, in another M il knockout model, heterozygotes were of normal weight 

and fertility (Ayton et al., 2001).

The new model represents a true knockout model of Mil

Although M ltA mice were apparently normal, M11A mice were not detected 

after birth. The cause of death was not known. This showed that exons 9 and 10 

were needed for MLL function. This theory was supported by W estern blots using 

lysates made from foetal liver cells which showed a total absence of MLL protein in
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M ll^  embryos. W hy would deletion of exons 9 and 10 of the gene lead to a complete 

loss of MLL protein? As shown in Figures 3.2 , two cysteine residues belonging to 

one of the putative zinc binding sites of PHD finger 1 of MLL are removed following 

deletion of exons 9 and 10 (Aasland et al., 1995). It is possible that the removal of 

these residues and probable loss of zinc binding in this location may have gross 

consequences for protein folding and maturation. This may lead then to degradation 

of the protein.

No previous knockout model of M il has been directly shown to result in an 

absence of MLL protein in the resulting embryos (Ayton et al., 2001; Yagi et al., 

1998; Yu et al., 1995). This means that our new model is the first proven true 

knockout of M il. The phenotype of M ilA embryos in our model most closely 

resembled that of M ll/' embryos in Yagi e t a l, 1998, where MU is truncated at exon 

11 . W hen M ills truncated at exon 11, homozygous embryos die between El 1.5 and 

E14.5 and show oedema and bleeding under the skin. This closely resembles the 

phenotype seen in M ll/' embryos lacking exons 9 and 10. However, in the new 

model, lethality in M11A embryos occurs at a slightly later timepoint. The reason for 

this is not clear, although it may be attributable to differences in strain background.

In three previous M il knockout models, M11A embryos all exhibited different 

phenotypes, depending at which point MZ/was truncated at. The phenotype of the 

embryos also varied greatly. In the model by Ayton e t a l from 2001, the embryos 

died before the implantation stage (Ayton et al., 2001; Yagi et al., 1998). In the study 

of Yu e t al. the embryos died at E10.5 and showed severe branchial arch 

abnormalities (Yu et al., 1998). No such abnormalities were noted in the mice of 

Yagi e t al. or in our mice (Yagi et al., 1998). The reasons for these differences in 

phenotype are not clear. It is possible that in the model of Yu e t al., a dominant 

negative was created. In this targeting, a LacZ  cassette was inserted into exon 3 of 

M il creating a fusion protein, which is detectable by immunohistochemistry (Scharf 

et al., 2007). This may account for the increased severity of phenotype in embryos 

homozygous for this fusion.
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Mice carrying the floxed allele and the deleted allele can be used to study 

hematopoiesis in the absence of Mil

Mouse lines carrying deleted and floxed alleles of M il were successfully 

established. The later lethality in M llv' embryos in this model compared to previous 

models meant that fetal liver hematopoiesis in the absence of M il could be more 

extensively studied. The floxed allele was used to produce adult mice conditional for 

M il as discussed in Chapter 6.
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Chapter 5 

Mll̂  Embryos Have Abnormal 

Foetal Liver Haematopoiesis

5.1 Introduction

It has been shown previously that MU deficient embryos exhibit 

abnormalities in yolk sac and foetal liver haematopoiesis. In MUA embryos these 

organs are reduced in cellularity and their cells have reduced colony-forming 

capacity (Hess et al., 1997; Yagi et al., 1998). Cells from the AGM (aorta-gonad- 

mesonephros) region of M il deficient embryos are also unable to repopulate the 

bone marrow of irradiated mice, in comparison to WT controls (Ernst et al., 2004a). 

These studies all suggest that M il is needed in a cell intrinsic manner for the proper 

progression of foetal haematopoiesis.

In previous mouse models of M il deletion, the early lethality of homozygous 

truncation of the gene has precluded a more thorough study of the role of M il in 

foetal haematopoiesis. In the model presented here, increased numbers of M lty~ 

embryos at E12.5, E13.5 and E14.5 allowed further investigation into definitive 

haematopoiesis in the absence of M il. These investigations have shown that whilst 

stem and progenitor cells are present in M1U' embryos, they are much reduced in 

number and do not have normal stem cell function in comparison to wild type cells.

5.2 Mil 7' embryos have reduced Foetal Liver Cellularity

To analyse foetal liver haematopoiesis in M11'A embryos in our mice, timed 

matings were set up between M lt/+ males and females. The females were taken at 

E13.5 and E14.5. At these time points, the foetal liver of M1U' embryos was visibly 

smaller before extraction (data not shown). To gain an accurate measurement of the 

reduction in foetal liver size, foetal livers were removed from M1U\ M ltA and M lt/+
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E13.5 (n=5-ll) and E14.5 (n= 6-8) embryos. Single cell suspensions were made and 

viable cell numbers obtained for each foetal liver.

Total foetal liver cellularity was reduced 2-fold in A///7' embryos compared to 

M llt/+ embryos (Figure 5.1). However, a 5-fold expansion in foetal liver size was seen 

in both M11A and M lt/+ embryos between E l3.5 and E14.5. This suggests that the 

haematopoietic cells that are present in A///7' foetal livers are able to undergo some 

degree of expansion.

5.3 Myeloid Progenitors are reduced in Mil/_ embryos

The reduced cellularity of the foetal liver in A///7' embryos, suggested that 

A///7' embryos in our model might possess a foetal liver phenotype similar to that 

seen before in other MU mouse models (Hess et al., 1997; Yagi et al., 1998).To assess 

this, the methylcellulose colony forming assays performed by Yagi e t al. 1998 were 

replicated to assess the ability of A///7' foetal liver cells to form myeloid colonies. 

Cells from E12.5 foetal livers from M ll^, M ltA and M lt/+ embryos were plated into 

methylcellulose w ith cytokines to induce myeloid colony growth (IL-3, IL-6, SCF, 

GM-CSF). After 7 days the colonies were counted and scored for the presence of 

Colony-Forming Unit Granulocyte, Macrophage (CFU-GM), Burst-Forming Unit 

Erythroid (BFU-E) and CFU- Granulocyte, Erythrocyte, Macrophage, 

Megakaryocyte (CFU-GEMM).

After 7 days in culture, the total number of myeloid CFUs was reduced 4-fold 

in cultures from M11A foetal liver cells compared to M lt/+ cells (Figure 5.2). Cell 

numbers in M ///_ cultures were reduced by 20 fold (Figure 5.2). Although there was 

a reduction in the total CFU number, there was no difference in the distribution of 

the different colony types between MU/~ and M lt/+ cultures (Figure 5.3). Many of 

the colonies in M llv~ cultures were smaller than in M lt/+ cultures, however, large 

colonies comparable to wild type colonies were also seen (Figure 5.4). The 

morphology of colonies in A///7' cultures also appeared normal (Figure 5.4). 

Cytospins of cells from A/Z77~ cultures showed maturing macrophages similar to those 

seen in M lt/+ cultures (Figure 5.5). The normal distribution and appearance of the 

colonies would suggest that the defect seen in A///7' cells lies in an early progenitor
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Figure 5.1. Foetal Liver cellularity is reduced in M IP^embryos. 
Expansion between E l3.5 and E14.5 in M il +/+, M1PA and A///7' fetal 
livers. Single cell suspensions were prepared from individual fetal livers 
and viable counts performed. P  values were calculated using lW ay 
ANOVA, with Tukeys multiple comparison test. (***) P < 0.001, (**) P  < 
0.01, (*) P  < 0.05. All samples were compared to M1P/+. The graph 
shows the mean (n=5-ll) and standard error of the mean of cell 
number in the fetal liver.
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Figure 5.2 Reduction in Myeloid CFU number from M Lt^foetal livers.
A. Myeloid CFU counts for E l2.5 fetal liver cells. Following the 
removal of erythrocytes, 1.1 x 104 fetal liver cells were plated in 
methylcellulose and CFUs were counted after 7 days.
B. The number of cells present in CFU cultures from E l2.5 fetal livers.
1.1 x 104 cells were cultured as above and after 7 days, single cell 
suspensions were made and viable counts performed.
/'values were calculated using lW ay ANOVA, w ith Tukeys multiple 
comparison test. (***) P  z  0.001, (**) P  < 0.01, (*) P  < 0.05. All samples 
were compared to M il WT. The bars show the mean and standard 
error of the mean.
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Figure 5.3 The proportions of different myeloid colony types are 
unchanged in M R embryos.
Proportion of different colony types produced by M R /+, M l and 
M il''’ E l2.5 fetal liver cells after 7 days culture in myeloid 
methylcellulose. CFU-GM = Colony-Forming Unit Granulocyte, 
Macrophage. CFU-GEMM = Colony-Forming Unit Granulocyte, 
Erythroid, Macrophage, Megakaryocyte. BFU-E = Burst Forming Unit 
Erythroid.
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Figure 5.4 Colony morphology in M Lt^ cultures.
The photographs show individual colonies from M7//_ and M lt/+ 
E12.5 foetal liver CFU assays at 7-9 days culture.
Photographs were taken at x 40 and x 100 magnification.

120



x 100

1
x 200

Figure 5.5. The morphology of cells produced in M llr^ myeloid 
cultures.
The photographs show details from cytospins of fetal liver cells after 
12 days in culture in methylcellulose M3434. The cells were stained 
with May-Grunwald (Giemsa). Photographs were taken at x 100 and x 
200 magnification. The black arrows indicate maturing macrophages. 
The cytopins for both M lt/+ and M ///_ cultures showed that the 
cultures were predominantly composed of maturing macrophages.
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before the division between erythroid and other myeloid lineages. The presence of 

maturing macrophages in M11A cultures would also suggest that those progenitors 

present are able to differentiate as normal. These results suggest a significant 

reduction in the number of early myeloid progenitors present in M il KO  foetal 

livers.

5.4 Haematopoietic stem cell numbers are reduced in Mil 7' foetal livers

The reduction in total cell number in A///7' foetal livers could be a result of a 

defect in the Haematopoietic Stem Cell (HSC) compartment in the absence of M il. 

To assess this, flow cytometric analyzes were performed to examine the number of 

cells in the HSC pool in E l3.5 foetal livers. It has been shown that the different HSC 

populations in the foetal liver can be defined by flow cytometry using a combination 

of lineage markers and antibodies to c-kit, Seal and CD38 (Randall et al., 1996). The 

population defined as being negative for the expression of lineage markers (Lin-), 

but high for the expression of Seal and c-kit (LinScal+c-kit111 or LSK) has been 

shown to harbour the majority of the HSCs in the foetal liver (Reya et al., 2001). 

This population can be further defined by looking at the expression of the marker 

CD38. LSK foetal liver cells that express high levels of CD38 are highly enriched for 

Long Term HSCs (LT-HSCs), whilst those that express low levels of CD38 are 

enriched for Short Term HSCs (ST-HSCs) (Randall et al., 1996) Figure 1.2. Cells from 

the foetal livers of E l3.5 M ily~, M ltA and M1TA embryos were analysed by flow 

cytometry for the expression of these markers. Lineage depleted cells were stained 

with c-kit APC, Seal FITC, Streptavidin PrCP (to stain any remaining lineage 

negative cells), CD38 PE and 7AAD. The Lineage negative cells were gated for Scal+ 

cells, allowing the analysis of c-kit and CD38 expression in the Lin Scal+ population 

(Figure 5.6).

W hen the foetal liver stem cell compartment was analysed, a 2.5 fold 

reduction was seen in the number of LSK CD3810 (ST-HSC) cells in M11A foetal livers 

(mean = 1.5 ± 0.9 x 104 cells) compared to M lt/+ foetal livers (mean = 3.9 ± 1.3 x 104 

cells) (Figure 5.7). A 5.7-fold reduction was seen in the number of LSK CDSS1” (LT- 

HSC) cells in M ll/' foetal livers (mean = 0.78 ± 0.52 x 103 cells) compared to M lt/+
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Figure 5.6. Identifying LT-HSCs and ST-HSCs. Cells from E13.5 fetal 
livers were depleted of lineage positive cells by magnetic sorting. A 
small sample was also stained with Lineage markers for flow 
cytometric analysis, to estimate the percentage of Lineage negative 
cells present in the fetal liver. The Lineage negative cells were stained 
with c-kit, Sca-1 and CD38, 7AAD and Streptavidin-PerCP. Any dead 
cells and Lineage+ were gated out and Lin"Scal+ cells were analyzed 
for the expression of c-kit and CD38.
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Figure 5.7. ST-HSC and LT-HSC Numbers in M ltA fetal livers.
Cells from E l3.5 fetal livers were depleted of lineage positive cells by 
magnetic sorting. A small sample was also stained with Lineage 
markers for flow cytometric analysis, to estimate the percentage of 
Lineage negative cells present in the fetal liver. The Lineage negative 
cells were then stained with c-kit, Sca-1 and CD38, 7AAD and 
Streptavidin-PerCP. Any dead cells and Lineage+ were gated out and 
Lin-Scal+ cells were analyzed for the expression of c-kit and CD38.
(A) Number of ST-HSCs present in E l3.5 fetal livers. ST-HSCs were 
defined as Lin' Seal'c-kithlCD38l0.
(B) Number of LT-HSCs present in E13.5 fetal livers. LT-HSCs were 
defined as Lin'Scal tc-kithlCD38hl.
P  values were calculated using lW ay ANOVA, with Tukeys multiple 
comparison test. (***) P < 0.001, (**) P  < 0.01, (*) P < 0.05, ns = not 
significant. All samples were compared to M1P/+• The bars show the 
mean and standard error of the mean.
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foetal livers (mean = 4.5 ± 1.8 x 103 cells (Figure 5.7). The percentage of LT-HSC as a 

proportion of the foetal liver was decreased 3-fold in M11A foetal livers (mean = 

0.019 ± 0.017%) compared to M l't/+ foetal livers (mean = 0.064 ± 0.031%) (Figure 

5.8). However, the proportion of ST-HSC in Af7//_ foetal livers (mean = 0.54 ± 0.22%) 

was not significantly different to that seen in M lt/+ foetal livers (mean = 0.64 ± 

0.26%) (Figure 5.8). The proportion of the foetal liver cells that were negative for 

lineage markers was also not significantly different in A///7' foetal livers (mean = 24.9 

± 7.5%) compared to M lt/+ foetal livers (mean = 23.8± 4.9%) (Figure 5.9). This data 

confirms a major loss in the number of HSCs present in foetal livers lacking M il, 

suggesting that M il is important for HSC development. The reduction in the 

proportion of LT-HSC present would suggest that these cells are the most severely 

affected by the absence of M il.

5.5 Mil7- foetal liver cells are unable to reconstitute the haematopoietic 

system

Although LSK CD38W cells were present in M il KO  foetal liver, it was not 

known w hether these cells possessed normal stem cell function. To assess this, 

competitive repopulation assays were performed w ith c-kit+T e rll9  cells sorted from 

pooled, frozen foetal liver cells from E14.5 A///7'an d  M lt/+ embryos. 4 x 104 of the 

foetal liver donor cells (Ly5.2+) were mixed with a radioprotective dose of 2 x 105 

wild type congenic C57BL/6 Ly5.1+ bone marrow cells and transplanted into lethally 

irradiated recipients. Analysis of blood taken from the recipients at 4 weeks post 

transplantation showed that M lt/+ cells reconstituted short term haematopoiesis 

efficiently, as measured by the percentage of Ly5.2+ cells present in the periphery 

(Figure 5.10). By contrast, A/7/7cells were unable to give rise to any short term 

reconstitution (Figure 5.10). At 4 months post transplantation, the recipients were 

sacrificed and the bone marrow, spleen and thymus populations were analyzed for 

Ly5.2+ cells (Figure 5.10B, 5.11). The organs of mice transplanted with M lt/+ cells 

contained high levels of Ly5.2+ cells in all populations analyzed, demonstrating their 

ability to give rise to long term reconstitution (Figure 5.10B, 5.11). No Ly5.2+ cells
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Figure 5.8. ST-HSC and LT-HSC Percentages in M lt^  fetal livers.
A) Percentage of ST-HSCs present in E l3.5 fetal livers. Lineage 
positive cells were depleted from E l3.5 fetal liver cells and then the 
cells were analyzed by flow cytometry using markers c-kit, Seal and 
CD38. ST-HSCs were defined as Lin' Scal+c-kithlCD38l0.
B) Number of LT-HSCs present in E l3.5 fetal livers. LT-HSCs were 
defined as Lin'Scal+c-kithlCD38hl.
P  values were calculated using lW ay ANOVA, w ith Tukeys multiple 
comparison test. (***) P z  0.001, (**) P <, 0.01, (*) P  <r 0.05, ns = not 
significant. All samples were compared to M1P/+- The bars show the 
mean and standard error of the mean.
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Figure 5.9. Percentage of MU-/- foetal liver cells negative for Lineage 
markers.
Cells were stained with an antibody mix containing Grl/Ly6G, B220, 
CD3, CD19 and T e rll9  and analysed by flow cytometry.
P  values were calculated using lW ay ANOVA, w ith Tukeys multiple 
comparison test. (***) P  z  0.001, (**) P  <. 0.01, (*) P  <r 0.05, ns = not 
significant. All samples were compared to M1P/+• The bars show the 
mean and standard error of the mean.
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Figure 5.10. Failure of M1P' fetal liver cells to reconstitute lethally
irradiated
recipients.
c -k itT erl 19 cells were magnetically sorted from frozen E14.5 foetal 
liver cell suspensions. After sorting, 4 x 104 viable cells were 
transplanted into lethally irradiated recipient mice with a 
radioprotective dose of 2 x 105 wild type bone marrow cells. Ly5.2+ 
cells represent the cells derived from donor foetal liver, Ly5.1+ cells 
represent cells derived from wild type bone marrow.
A) Representative dot plots showing the percentage of Ly5.2+ 
(donor) cells present in the peripheral blood of irradiated recipients 1 
month post-transplantation, as analysed by flow cytometry.
B) Table showing the number of irradiated recipients successfully 
reconstituted with either M ltA or M11~A fetal liver cells.
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Figure 5.11. Failure of M lt^  fetal liver cells to give rise to long term
reconstitution in lethally irradiated
recipients.
Representative dot plots showing the percentage of Ly5.2+ (donor) 

cells present in the hematopoietic organs of irradiated recipients 4 
months post-transplantation. Single cell suspensions were prepared 
from the hematopoietic organs of recipient mice and the cells 
analyzed by flow cytometry for Ly5.2 and Ly5.1. Ly5.2+ cells 
represent the cells derived from donor foetal liver, Ly5.1+ cells 
represent cells derived from wild type bone marrow.
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Figure 5.12. Failure of M ItA cells to contribute to the HSC 
compartment.
Representative dot plots showing the percentage of Ly5.2+ (donor) 
cells present in the bone marrow HSC compartment of irradiated 
recipients 4 months post-transplantation. Bone marrow cells were 
stained with Lineage markers, c-kit, Seal and Ly5.2 antibodies and 
the cells analysed by flow cytometry. The lineage positive cells were 
gated out and c-kit and Seal expression was analysed on the Lin'cells. 
Gates were set on the c-kithlScal+ (LSK) cells. The percentage of 
Ly5.2+ (donor foetal liver) cells in the LSK population was then 
analysed.

130



were detected in mice transplanted with M1U' donor foetal liver cells demonstrating 

that M11A cells were unable to give rise to any long term reconstitution (Figure

5.1 OB, 5.11). Analysis of the bone marrow stem cell compartment also showed an 

absence of Ly5.2+ cells in mice that had received M ilv~ cells, showing that the 

absence of mature Ly5.2+ cells was not due to a block in differentiation of the stem 

cells (Figure 5.12). These results suggest that whilst HSCs are present in M7//_ foetal 

livers, they are unable to function as self renewing stem cells when in competition 

w ith wild type HSCs.

5.6 Discussion

Similarities in the haematopoietic phenotype between this model and previous KO 

models of Mil

In this chapter, abnormalities in foetal liver haematopoiesis have been 

analysed in a new mouse model of M il. Previous studies w ith MU knockout models 

have shown defects in haematopoiesis in the yolk sac, AGM (Aorta-gonad- 

mesonephros) region and the foetal liver in the absence of M il (Ernst et al., 2004a; 

Hess et al., 1997; Yagi et al., 1998). In two of these models, cells from M ltA yolk sacs 

(Hess, 2004) or foetal livers (Yagi et al., 1998) produced fewer colonies in myeloid 

CFU assays compared to M lt/+ cells. The data presented here is consistent w ith this, 

in that reduced numbers of colonies were seen in M11A foetal liver cultures. The 

colony assays performed in this study, using cells from E12.5 foetal livers, were 

based on those performed in a previous study of an M il mouse knockout (Yagi et al., 

1998). W hen these cells were cultured, a 4- fold reduction in colony number was 

seen compared to wild type (Yagi et al., 1998). This bears striking similarity to the 

results in this study where a 5-fold reduction in colony number was seen. In the 

present study, no difference was seen in the proportions of the different colony 

types in M11'A cultures compared to M1U/+. This is in contrast to previous studies 

which saw reduced proportions of CFU-GEMM and CFU-GM produced (Hess et al., 

1997; Yagi et al., 1998). The reason for these differences is not clear, although they
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could be attributable to differences in the strain background of the mice, or to the 

levels of different cytokines used in the CFU assays.

The similarities between the foetal liver phenotype seen in M llh embryos 

presented here and in previous studies support the protein evidence suggesting that 

deletion of exons 9-10 of MU results in a null allele.

Mil is not needed for the establishment of definitive haematopoiesis in the embryo

The presence of myeloid progenitors in the foetal liver shows that, although 

M il is needed for the proper progression of definitive haematopoiesis, it is not 

needed for its establishment. The presence of haematopoietic stem cells, as 

characterised by flow cytometry would support this. M il is therefore not needed for 

the formation of HSCs in the AGM, the proposed site of origin for definitive HSCs 

(Godin and Cumano, 2002; Mikkola et al., 2003).

Mil7' foetal liver stem cells are able to give rise to a limited amount of expansion

Although the stem cell compartment was severely reduced, those stem cells 

that were present in M lth foetal livers were able to undergo some level of expansion, 

as shown by the size increase between E13.5 and E14.5 M llv~ foetal livers. It is not 

clear what cell populations are responsible for this expansion in MUh foetal livers 

but it is likely to be erythroid cells. By E l4.5, approximately 80% of the wild type 

foetal liver is made up of late stage erythroblasts and mature erythrocytes 

(Katsumoto et al., 2006). Further analysis of foetal liver cells for the markers CD71 

and Ter 119, which are expressed on erythroblasts (CD71, Ter 119) and erythrocytes 

(Ter 119) would give more information as to w hether the expansion seen in MUrA 

foetal livers is due to erythroid progenitors (Katsumoto et al., 2006; Socolovsky et al., 

2001).

Foetal liver myeloid progenitors are severely affected by Mil disruption although 

this defect is not due to a block in differentiation

Although foetal liver expansion was seen in M1U foetal livers, a profound 

defect was seen in myeloid CFU assays. Some myeloid differentiation could occur in 

the absence of MU as shown by the normal colony morphology and the presence of
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maturing macrophages in M ltA cultures. Further characterisation of the cells produced 

in M llv cultures is necessary to assess whether an absence of Mil leads to any abnormal 

differentiation .The lack of any obvious block in differentiation would suggest that the 

reduction in colony number in M liA cultures is due either to a reduced number of 

myeloid progenitors in the foetal liver or to a reduced capacity for those progenitors 

present to proliferate in response to cytokines.

As described above, there was no difference in the proportion of the different 

colony types produced in myeloid CFU cultures from M11A cultures compared to 

M lt/+ cells. Myeloid cell differentiation from HSCs occurs through a series of 

populations of progressively more differentiated progenitors (Akashi et al., 2000; 

Kawamoto, 2006; Traver et al., 2001). Although there is some disagreement as to 

where the first myeloid progenitor arises, the work from Irving Weissman’s 

laboratory has defined this as the Committed Myeloid Progenitor, or CMP. It has 

been shown, through in  vitro  colony forming assays, stromal culture assays and in  

vivo  reconstitution assays that the CMP, is to give rise to lymphoid cells, but can 

give rise to erythroid, megakaryocyte and myeloid cells Figure 5.13 (Akashi et al., 

2000; Traver et al., 2001). It is thought that two further progenitor cells are derived 

from the CMP - the Granulocyte/Monocyte Progenitor (GMP) which give rise to 

granulocytes and erythrocytes, and the Megakaryocyte/Erythrocyte progenitor 

(MEP), which gives rise to megakaryocytes and erythrocytes. You would therefore 

expect that a block in differentiation at either the GMP or the MEP stage would 

result in a reduction in the production of CFU-GM or BFU-E respectively in CFU 

assays. The equal reduction in all colony types in M11'A cultures would suggest that 

the defect is at the level of, or before, the CMP.

The reduction in myeloid CFU produced could be due to a reduction of 

myeloid progenitors in the foetal liver, or a block in proliferation. Flow cytometry 

could be used to assess whether myeloid progenitors are reduced in MUrA foetal 

livers. The CMP, MEP and GMP populations in the foetal liver can be identified by 

differential expression of the markers CD34, c-kit and FcyR (Traver et al., 2001). 

Further analysis by in  vitro  culture of foetal liver cells in media containing myeloid
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Figure 5.13. The development of myeloid cells.
The figure shows the model conceived by Irving Weissmans group 
(Akashi e t al., 2000, Traver e t al,. 2001)
CMP -  Common Myeloid Progenitor 
GMP -  Granulocyte/Monocyte Progenitor,
MEP -  Megakaryocyte/Erythrocyte Progenitor
Shown below the cells are the markers used for isolation of the 
indicated populations.
Figure reproduced from Shizura et al., 2005.
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cytokines, followed by cell proliferation assays could also show whether the myeloid 

progenitors have reduced proliferation capacity in response to cytokines.

Mil"7" foetal liver stem cells are not fully functional

The reduced numbers of cells and, in particular, the lower proportion of LT- 

HSC present in A///7- foetal liver suggested that M11A HSCs, whilst present, had 

reduced function. W hen these cells were used to reconstitute lethally irradiated 

mice in competition with WT bone marrow cells, they failed to give rise to any long 

or short term reconstitution. The absence of MZ/7'cells in the periphery of recipients 

at 4 weeks showed that A///7'ST-HSCs and/or progenitors were not able to give rise 

to haematopoiesis post transplantation. The absence of M ll/~ cells in primary and 

secondary haematopoietic organs of recipients at 4 months showed that A/7/7~ LT- 

HSCs were also unable to give rise to haematopoiesis. The transplantation assays also 

suggested that the defect in A///7' HSCs was cell intrinsic and not due to 

abnormalities in the A/7/7' foetal liver niche. Otherwise, M ilL/* HSCs, whilst being 

present in reduced numbers in the foetal liver, would have been able to give rise to 

normal levels of reconstitution when transplanted into a normal stromal 

environment.

The exact nature of the defect in HSCs lacking M il has not yet been 

elucidated. However, there are several possible explanations. For example, it is 

possible that A///7' HSCs are incapacitated in their ability to home to the bone 

marrow and other haematopoietic niches when transplanted. HSCs normally reside 

in specific regulatory microenvironments in the foetal liver, bone marrow and other 

haematopoietic organs- so called ‘niches’ (Chute, 2006; Zhang et al., 2003). The 

HSCs are tethered to the niche cells via multiple cell adhesion molecule-ligand 

interactions. For example, in the bone marrow niche, haematopoietic stem cells 

reside in the endosteal lining of the bone marrow cavity, and are attached to 

specialised osteoblasts via a homotypic N-cadherin interaction (Calvi et al., 2003; 

Zhang et al., 2003). The niche is thought to provide a microenvironment that 

supports the HSCs and prevents their differentiation (Chute, 2006; Takubo et al., 

2006; W ilson et al., 2004). W hen haematopoietic stem cells are transplanted into
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irradiated recipients, it is necessary for the cells to home to these niches where they 

can then begin to propagate the haematopoietic system. This is evidenced by the fact 

studies showing that inhibition of the receptors and ligands necessary for the 

tethering of HSCs to the niches results in reduced homing and a reduction in HSCs 

in the bone marrow (Papayannopoulou et al., 2001; Potocnik et al., 2000; Sugiyama 

et al., 2006). It is possible that the reconstitution defect seen in M R / HSCs could be 

due to a defect in their ability to home to the bone marrow niche. The ability of M R  

A HSCs to transfer from the AGM to the foetal liver, and the results presented in 

Chapter 6 would suggest that this is not the case. However, to assess w hether M R1' 

HSCs are compromised in their homing capacity, it would be necessary to perform 

homing assays, in which the foetal liver HSCs are labelled w ith a fluorescent dye 

(e.g. carbofloxyfluorescein diacetate, succinimidyl ester) and then transplanted into 

irradiated mice. The bone marrow of the long bones of the recipients can then be 

analysed 6 to 18 hours post-transplantation by flow cytometry or fluorescent 

microscopy to assess the homing efficiency of the donor cells (Wilson et al., 2004; 

Zhang et al., 2006).

It is interesting that the phenotype seen in M RA foetal livers is similar to that 

seen in several other mouse gene knockout models. Of particular interest, is the 

similarities seen between the phenotype in the M RA foetal livers and those seen 

when different H ox genes and their cofactors are deleted. For example, mice 

deficient in H oxa9 have normal numbers of LSK cells in the bone marrow, but in 

competitive reconstitution assays, these cells are severely compromised (Lawrence et 

al., 2005b). Mice deficient in the H ox cofactors P b xl and M eisl establish foetal liver 

haematopoiesis, but the cells present have reduced myeloid CFU potential and are 

again compromised in competitive reconstitution assays (DiMartino et al., 2001b; 

Hisa et al., 2004b). In M R  deficient foetal liver, stem cells populations are present, 

but these stem cells are not able to function as normal in CFU assays and 

competitive reconstitution experiments.

Several studies have shown that MLL binds to the promoters and coding 

regions of H ox genes and promotes gene activation through the methylation of 

Histone3 Lysine4 (Milne et al., 2002; Milne et al., 2005b). The induction of several
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H oxA, H oxB  and H oxC  cluster genes was severely reduced in embryoid bodies 

derived from M il null ES cells (Ernst et al., 2004b), and M il null embryos show 

disrupted H ox expression (Yagi et al., 1998; Yu et al., 1995). H ox gene expression 

was also severely reduced in murine embryonic fibroblasts derived from M il KO  

embryos in our model (unpublished results, S. Y-L. Hiew and H. J. M. Brady).

It is possible that the stem and progenitor cell defects that we see in foetal 

haematopoiesis maybe due to a reduction in H ox gene expression in the absence of 

M il. At this stage of development, it is thought that the expression of multiple H ox 

genes are needed to drive proliferation of stem and progenitor cells, and that M il 

maintains this expression (Bjornsson et al., 2003; Ernst et al., 2004b; Lawrence et al., 

2005b; Lawrence et al., 1997). In the absence of M il, although stem cells are 

produced in the foetal liver, they are not able to expand as normal, either in the 

foetal liver or post transplantation, both situations where the expansion of stem cells 

is required.

It has been shown in other cell types that M il activates H ox gene 

transcription through H3K4 methylation and also through its interaction w ith 

H4K16 histone deacetylases such as MOF (Dou et al., 2005) The phenotype of the 

mouse model of another histone acetyl-transferase, M onocytic Leukaem ia Z inc- 

finger (MOZ) bears a striking similarity to the phenotype seen in MU'- embryos 

(Katsumoto et al., 2006). Embryos deficient in M O Z  die by E15.5, and have a 

reduction in foetal liver size. W hen the foetal liver cells were analysed, they were 

found to have reduced numbers of myeloid progenitors, both by colony analysis and 

flow cytometry. Like M llh foetal livers, the ratio of lineage-committed CFUs was 

not affected. As in M llh foetal livers, the LSK population was severely reduced 

although present, but w hen M O Z  deficient foetal liver cells were transplanted, they 

could not reconstitute lethally irradiated recipients. The expression of Hoxa9, a 

target of MU, was also reduced. The common phenotype shared by M il and M O Z  

deficient embryos suggests a possible interaction between the two proteins. As yet, 

MLL complexes have not been analysed in haematopoietic cells, so it is possible that 

MLL may interact with different proteins, including M OZ, in this context.
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It is probable that MLL activates transcription of an unidentified set of target 

genes in early haematopoietic cells. M il targets have been identified in other cell 

types, for example embryonic fibroblasts (Milne et al., 2005b; Scharf et al., 2006; 

Scharf et al., 2007; Schraets et al., 2003), but have not been analysed in 

haematopoietic cells, w ith the exception of embryoid bodies (Ernst et al., 2004b). 

The new exon 9-10 deletion mouse model presents a unique opportunity to analyse 

M il targets in a haematopoietic specific context. Microarray analysis can be 

performed using M il1' foetal liver cells compared to M lth cells to identify genes 

whose expression is altered in the absence of MIL Identification of these targets may 

elucidate the mechanism by which M il is involved in stem cell regulation.
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Chapter 6

In the absence of Mil, homeostatic 

haematopoiesis is unaffected, but 

M il deficient stem cells cannot self- 

renew when transplanted

6.1 Introduction

The defects in stem cell self renewal and progenitor growth seen in M il 

deficient foetal livers would suggest that M il plays an important role in foetal 

haematopoiesis. To assess w hether this role was also needed in adult haematopoiesis, 

it was necessary to establish a line of mice in w hich MLL expression was abrogated 

only in haematopoietic tissues, leaving MLL expression intact in the rest of the 

mouse. This would overcome any embryonic lethal effects of M il deletion. The 

creation of a mouse conditional for M il could be achieved by breeding mice carrying 

the floxed allele of M il to mice which carry the Cre recombinase under the control 

of different tissue specific promoters (Porret et al., 2006). Several strains have been 

developed for the study of genes important for haematopoiesis. The most widely 

used expresses the Cre recombinase under the control of the promoter for the M xl 

gene (Hock et al., 2004b; Ichikawa et al., 2004; Opfer et al., 2005; Zhang et al., 2006). 

The M xl promoter is normally silent, but can be transiently activated upon 

application of interferon a  or p or a synthetic double stranded RNA (polyinosinic- 

polycytidylic acid or pI-pC). Activation of the promoter results in Cre mediated 

deletion in all cells. This model has been extensively used as it results in high levels 

of deletion in all haematopoietic cells including early stem cells. A more tissue
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specific Cre shown to induce deletion in early haematopoietic cells is the Tie2 Cre, 

where Cre is under the control of the Tie2 promoter, a gene which is expressed in 

haematopoietic stem cells and endothelial cells (Kisanuki et al., 2001; Schlaeger et 

al., 2005).

Several models have also been developed that enable Cre mediated deletion 

in selected haematopoietic lineages. The Lck-Cre transgene can be used to induce 

LoxP mediated deletion in CD4+ and CD8+T-cells (Hennet et al., 1995). The CD19 

Cre and m bl Cre transgenes can be used to induce deletion in pro-B and pre-B cells 

respectively (Hobeika et al., 2006; Rickert et al., 1997). The Lys2M Cre and C D llb  

Cre transgenes can be used to induce deletion in macrophages and granulocytes 

(Clausen et al., 1999; Ferron and Vacher, 2005). These mouse strains enable the 

study of the function of genes specifically in mature lineages of cells, whilst 

preventing any stem cell associated defects.

In this study, mice carrying the Vav Cre transgene have been used to create 

MU conditional knockout mice. This transgene utilises the promoter elements of the 

Vav gene. The Vav promoter drives expression in haematopoietic cells of all 

lineages, including functional stem cells, from the foetal liver through to adult 

haematopoiesis (Almarza et al., 2003; de Boer et al., 2003; Ogilvy et al., 1999). Using 

this approach, Cre is continually expressed throughout haematopoietic development 

resulting in high levels of recombination in mature B lymphoid, T lymphoid and 

myeloid cells (de Boer et al., 2003). In this study, mice carrying a floxed allele of M il 

were bred to mice carrying the Vav Cre transgene to produce mice conditional for 

M il in the haematopoietic system. These mice were then analysed to assess the 

contribution of M il to  adult haematopoiesis.

6.2 Establishment of Mil conditional mouse lines

Vav Cre transgenic mice were kindly provided by Dimitris Kioussis and 

Alexandre Potocnik, NIMR, Mill Hill (de Boer et al., 2003). The mice had been 

backcrossed onto and were congenic for the C57B1/6J background. The Vav Cre 

transgenic mice were bred to M ltA mice to produce M1FA VavCre mice. These mice 

were then bred to M1Flox/Flox mice to give rise to M il maK/~ VavCre mice. These mice, in
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w hich M il should be absent in the haematopoietic system, were termed ‘M il 

conditional mice’. M il conditional mice were born live w ith no apparent 

abnormalities.

6.3 High levels of recombination were seen in the haematopoietic cells 

of Mil conditional mice

To ensure that M il was being efficiently deleted, the levels of recombination 

were assessed in the different haematopoietic organs of M il conditional mice. 

Southern blot analysis confirmed that exons 9 and 10 of the gene were efficiently 

recombined in DNA lysates prepared from whole bone marrow, spleen, thymus and 

lymph node of M il conditional mice (Figure 6.1). MLL protein was also undetectable 

in spleen lysates from M il conditional mice, confirming abolition of MLL expression 

(Figure 6.2). To analyse the levels of deletion in haematopoietic stem cells, LSK cells 

were sorted from the bone marrow of MU conditional mice by a combination of 

magnetic activated cell sorting and FACS. PCR analysis of DNA prepared from the 

cells showed efficient recombination of the floxed allele, although some residual 

unrecombined DNA remained (Figure 6.3). These results showed that the Vav Cre 

transgene was efficient in inducing recombination in adult haematopoietic cells.

6.4 Homeostatic haematopoiesis in adult mice is unaffected by the 

absence of Mil

To determine w hether the haematopoietic system in M il conditional mice 

was affected by the absence of M il, cells from the bone marrow, spleen, thymus and 

lymph nodes were analysed by flow cytometry. M lFlox/+ mice were used as littermate 

controls, since these were comparable to wild type mice in similar assays (Figure 

6.4). For all experiments, 8 week old males and females were used. There was no 

difference in the mean total cell number of the spleen and thymus between M il 

conditional and M1Flox/+ control littermates (Figure 6.5). The populations of myeloid 

(Figure 6.6, 6.7), and lymphoid cells (Figures 6.8, 6.9, 6.10) were analyzed in the 

primary and secondary haematopoietic organs of M il conditional and M lFlox/+ mice.
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Figure 6.1. High levels of recombination were seen in the 
haematopoietic organs of M il conditional mice.
Southern Blot analysis of DNA prepared from the bone marrow (BM), 
spleen (S) and thymus (T) of M il conditional mice. DNA from M llFIox/+ 
VavCre mice was used as a control. Mil conditional mice are represented 
by M il cKO. The DNA was digested with Kpn\ and incubated with the 
3' probe shown in Figure 4.4. The floxed and the wild type bands ran 
at the same size (5.7 kb) and the deleted band was 9.2 kb. No floxed 
band was visible using DNA prepared from Mil conditional mice 
haematopoietic organs indicating very high levels of recombination. 
DNA prepared from the tail of the M il conditional mouse shows the 
presence of the floxed band, as expected.
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Figure 6.2. MLL protein is absent from the spleen cells of MU 
conditional mice.
Western Blot of MLL protein in the spleens of M il conditional mice. 
Whole cell lysates made from splenocytes were run with K562 cell 
lysates as a positive control. MLL N-terminal (MLL-N) and MLL C- 
terminal (MLL-C) antibodies were used to detect the presence of the 
MLL fragments as before. An antibody against Hsp-90 was used as a 
loading control.
M il cKO denotes M il conditional.
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Flox Allele Deleted Allele

Figure 6.3. Recombination in MU  conditional HSCs.
Recombination of the floxed allele in M il conditional LSK and lineage 
positive cells. Lineage positive cells were depleted from bone marrow 
cells by magnetic sorting. c-kithlScal+ (LSK) cells were sorted from the 
lineage negative cells by FACS and DNA was prepared from them. 
PCR analysis was then performed on the DNA using primers E and F 
and E and B. Genomic DNA from an M lfIox/~ mouse and an M1. 
embryo were used as positive and negative controls. Flox allele - 900 
bp, deleted allele - 250 bp.
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Figure 6.4. Haematopoiesis is comparable to wild type in A /Z^^m ice. 
Flow cytometric analysis of the haematopoietic system of MlFIox/+ 
control mice showed that they were comparable to wild type animals. 
For all charts, n = 2-3. All mice were 8 week old males. The graphs 
show the mean and the Standard Error of the Mean (SEM).
A) B cell and T cell numbers in the spleen. B cells were defined as 
B220+ and T cells were defined as CD4+ or CD8+.
B) B cell and myeloid cell percentages in the bone marrow. B cells 
were defined as above, myeloid cells were defined as Grl+ Macl+.
C) LSK (HSC) cell percentages in the bone marrow.
D) T cell numbers in the thymus. T cells were defined as above.

145



1 0

L. N _o o  8* 
os X

co 6- 
<0

-  ^  >« 
2 o *
O 00
O O' 2-

c
3
o

I F / O X / +

CZI/W //cK O

Spleen BM Thymus

Figure 6.5. Cell numbers in the haematopoietic organs of M il 
conditional mice are equivalent to controls.
Single cell suspension were prepared from the spleen, bone marrow 
(BM) and thymus of MlFlox/+ (FloxZ+)din& M il conditional (M il cKO) 
mice. Erythrocytes were removed and live cell counts taken. For the 
thymus, n=3-4, for the spleen and bone marrow, n=3-6. All mice were 
8 week old females. The graph shows the mean and SEM.
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Figure 6.6. Myeloid cell populations are unaffected in the absence of 
MU.
Representative dot plots showing flow cytometric analysis of myeloid 
cells in the bone marrow (BM) and spleen (S). Granulocytes were 
defined as G rlhl M acl+ and monocytes were defined as G rl]o M acl+.
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Figure 6.7. Myeloid cell populations are unaffected in the absence of 
MU.
Flow cytometric analysis of the myeloid cell populations in the bone 
marrow and spleen of M il conditional mice. For all charts, n = 3-4. 
Flox/+ denotes M lflox/+ control mice, M il cKO  denotes M il conditional 
mice. The graphs show the mean and the SEM.
Granulocytes were defined as G rlhl M acl+ and monocytes were 
defined as G rllc M acl+.
A) Granulocyte and monocyte populations in the bone marrow of M il 
conditional mice. Percentages are shown as the cell numbers obtained 
were not accurate.
B) Granulocyte and monocyte numbers in the spleens of M il 
conditional mice.
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Figure 6.8. B lymphoid populations are unaffected in the absence of 
MU.
Flow cytometric analysis of the B cell populations in the bone 
marrow and spleen of Mil conditional mice. For all charts, n = 4. The 
graphs show the mean and the SEM
A) Representative histograms showing flow cytometric analysis of B 
cell populations in bone marrow (BM), Spleen (S) and Lymph Node 
(LN).
B) B cell populations in the bone marrow and lymph node of MU 
conditional mice. Percentages are shown as the cell numbers obtained 
were not accurate.
C) B cell numbers in the spleen of M11 conditional mice. B cells were 
defined as B220+CD19+.
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Figure 6.9. T lymphoid populations are unaffected in the absence of 
MU
Representative dot plots showing flow cytometric analysis of T cells in 
the and spleen (S), lymph node (LN) and thymus (T) of M il 
conditional mice. In the spleen and lymph node the numbers of CD4+ 
and CD8+ cells were analysed. In the thymus, CD4+CD8+ cells were 
also analysed.
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Figure 6.10. T lymphoid populations are unaffected in the absence of 
MU.
Flow cytometric analysis of the T cell populations in the spleen, 
lymph node and thymus of Mil conditional mice. For all charts, n = 1 
male and 3 females. The graphs show the mean and the SEM. Flox/+ 
denotes M lflox/+ control mice, M il cKO denotes M il conditional mice.
A) Numbers of CD4 and CD8 single positive cells in the thymus and 
spleen of M il conditional mice.
B) Percentage of CD4 and CD8 single positive cells in the mesenteric 
lymph node of M il conditional mice. Percentages are shown as the 
cell numbers obtained were not accurate.
C) Numbers of CD4 and CD8 double positive cells in the thymus.
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No significant differences were found between M il conditional and M llFIox/+ mice in 

any of the major blood cell populations, when the data sets were compared, both 

w ith paired and un-paired t-tests. This surprising result suggests that M il is not 

required to establish normal steady-state haematopoiesis postnatally. M il is also not 

required for the differentiation of mature haematopoietic cells.

6.5 Foetal liver haematopoiesis is perturbed in Mil conditional foetal 

livers

The phenotype seen in the haematopoietic system of M il conditional mice 

was somewhat unexpected. The VavCre transgene is expressed in definitive 

haematopoietic cells from an early stage of development, which means that M il 

should be absent in M il conditional fetal liver cells as well as bone marrow (Ogilvy 

et al., 1999; Okada et al., 1998). To see if this was the case, hematopoiesis in M il 

conditional fetal livers was analysed and compared to M11~A fetal liver hematopoiesis. 

To ensure that recombination of the ‘floxed’ allele was occurring in foetal liver, 

DNA was prepared from M il conditional c-kit+T e rll9 ' foetal liver cells from E13.5 

embryos. PCR analysis of this DNA showed high levels of recombination (Figure 

6.11). Stem cells from M il conditional, M1F0X/+, M1FIox/FIox, and M llFlox/~ E l3.5 foetal 

liver were analyzed by flow cytometry, using LSK markers and CD38 as described in 

Chapter 5.4. Surprisingly, there was no significant difference in the number of ST- 

HSCs or LT-HSCs in M il conditional foetal livers compared to control M1FIox/Flox or 

MIF1™/* (Figure 6.12). To further analyze haematopoiesis in M il conditional embryos, 

myeloid CFU assays were performed with cells from E l2.5 foetal livers as before. A 

2-fold reduction in colony number was seen in M il conditional cultures compared 

with M lFIox/~ (Figure 6.13A). A 2-fold reduction in cell number was also seen (Figure 

6.13B). Southern blot analysis of DNA extracted from methylcellulose cultures 

showed high levels of recombination of the floxed allele in M il conditional cultures 

(Figure 6.14). The reductions in colony number and cell number were not as great as 

that seen between M1F'and M //Acultures, where there were 3.5-fold and 10-fold 

reductions, respectively (Figure 5.2).
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Flox Deleted
Allele Allele

Figure 6.11. The M il floxed allele is efficiently recombined in the 
foetal liver of AH1 conditional embryos.
Recombination of the floxed allele in M il conditional fetal liver cells. 
c-kit+T e rll9 ' cells were sorted from E13.5 fetal livers by magnetic 
sorting and DNA prepared from them. Primers E and F2 were used to 
amplify the floxed allele (900 bp) and primers E and G2 were used to 
amplify the deleted allele (250 bp).Tail DNA from a M lFlox/~ mouse 
was used as positive control.
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Figure 6.12. M il conditional foetal livers have normal numbers of 
haematopoietic stem cells.
A) Number of LT-HSCs present in M il control (Flox/Flox or Flox/+) 
M lfiox/- ancj M il conditional {M il cKO) E l3.5 fetal livers.
Lineage positive cells were depleted from E l3.5 fetal liver cells and 
then the cells were analyzed by flow cytometry for the markers c-kit, 
Seal and CD38. LT-HSCs were defined as Lin'Scal+c-kithlCD38hl.
B) Number of ST-HSCs present in M il conditional E l3.5 fetal livers. 
ST
HSCs were defined as Lin"Scal+c-kithlCD38l0.
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Figure 6.13. Myeloid CFU are reduced in M il conditional foetal liver.
The graphs show the mean and the SEM.
A) Myeloid CFU counts for M il cKO  E12.5 fetal liver cells. Following 
the removal of erythrocytes, 1.1 x 104 fetal liver cells were plated in 
methylcellulose and CFUs were counted after 7 days.
B) The number of cells present in CFU cultures from E l2.5 fetal livers. 
1.1 x 104 cells were cultured in methylcellulose and after 7 days, single 
cell suspensions were made and viable counts performed.
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Figure 6.14. High levels of recombination were seen methylcellulose 
cultures of M il condtional foetal liver cells.
Southern Blot analysis of DNA prepared from cells in methylcellulose 

cultures of the foetal livers of from a litter of embryos. All embryos 
were genotyped by PCR using material from the head. Mil conditional 
embryos are represented by M il cKO. The DNA was digested with 
K pn\ and incubated with the 5' probe shown in Figure 4.4. The floxed 
and the wild type bands ran at the same size (5.7 kb) and the deleted 
band was 9.2 kb.
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6.6 Reduced colony-forming capacity in Mil conditional bone marrow 

cells

Although there was no phenotype in M il conditional foetal liver stem cells as 

analyzed by flow cytometry, a functional defect was seen when the cells were 

cultured in methylcellulose. Similarly, in adult M il conditional bone marrow there 

was no reduction in LSK stem cells as analysed by flow cytometry (Figure 6.15). To 

assess w hether progenitor cells were functional in M il conditional adults, CFU 

assays were performed w ith cells from M il conditional, M1F1ox/FIox and M lF ox/+ bone 

marrow. W hen cultured in lymphoid conditions, M il conditional cells produced a 

significantly lower number (3-fold) of Pre-B cell CFUs compared to control cells 

(Figure 6.16A). A significant reduction in the number of CFUs (1.6-fold) was also 

seen when the cells were cultured in myeloid conditions (Figure 6.16B). In M il 

conditional myeloid cultures, a significant decrease was seen in the proportion of 

BFU-E and CFU-GEMM compared to M lFlox/+ cultures. The proportion of CFU-GM 

was not significantly decreased however (Figure 6.17). These results would suggest 

that, although haematopoiesis is able to proceed in the absence of M il, there are 

defects in both lymphoid and myeloid bone marrow progenitors.

6.7 Bone marrow cells from Mil conditional mice have a profound 

reconstitution defect

The reduction in CFUs produced from M il conditional progenitor cells 

suggested that M il conditional stem cells may also have had some hidden functional 

defects. To assess this, competitive repopulation assays were performed to test 

w hether bone marrow stem cells lacking M il would be able to compete w ith M il 

wild type stem cells. Ly5.2+ bone marrow cells from M il conditional, M lFlox/~ and 

MlF,ox/+ mice were transplanted into lethally irradiated recipients w ith C57BL/6J 

Ly5.1+ wild type competitor bone marrow cells in a 1:1 ratio or 10:1 ratio. 4 weeks 

post-transplantation, blood from the recipients was analyzed for the presence of 

Ly5.2+ and Ly5.1+ cells in the periphery. W hen transplanted at a 1:1 ratio, M il 

conditional bone marrow cells gave very low levels of reconstitution (0.9 ± 0.5%
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Figure 6.15. Bone marrow HSC number is unaffected in the absence 
of M R
Flow cytometric analysis of the HSC population in the bone marrow 
of M il conditional mice. For all charts, n = 3-4 females. The graphs 
show the mean and the SEM.
A) Representative dotplots showing flow cytometric analysis of the 
LSK population in bone marrow. LSK cells were defined as Lin' 
Scal+c-kithl.
B) LSK population in the bone marrow of M il conditional mice. 
Percentages are shown as the cell numbers obtained were not 
accurate.

0.30%
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Figure 6.16. Reduced CFU numbers in M il conditional bone marrow.
The graphs show the mean and the SEM.
A) Pre B CFU counts for M il Flox/+ and M il conditional {M il cKO) 
bone marrow cells. 5.5 x 104 cells were plated in methylcellulose and 
CFUs were counted after 7 days.
B) Myeloid CFU counts for M il Flox/+ and Mil conditional (Mil cKO) 
bone marrow cells after 10 days in culture in methylcellulose. 2.7 x 104 
cells were plated in methylcellulose and CFUs were counted after 10 
days.
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Figure 6.17. M il conditional bone marrow cells produced reduced 
frequencies of BFU-E and increased frequencies of CFU-GM.
Myeloid CFU counts for M ilFlox/+ and M il conditional (Mil cKO) bone 
marrow cells after 10 days in culture in methylcellulose. 2.7 x 104 cells 
were plated in methylcellulose and CFUs were counted after 10 days. 
The graph shows the proportions, in percentages, of BFU-E, CFU- 
GEMM and CFU-GM in methylcellulose cultures of bone marrow 
cells after 10 days of culture. The frequency of BFU-E was 
significantly reduced {p = 0.0125) and the frequency of CFU-GM 
significantly increased (p = 0.014) in M il conditional {M il cKO) 
cultures compared to Ml?lox/+ and M l?10*™0*. For both M il conditional 
and M il Floxcontrols, n = 5.

160



Ly5.2+ cells in the peripheral blood) compared to M lFlox/+ cells (37.6 ± 2.7%) (Figure 

6.18). M il conditional cells also gave very low levels of reconstitution when 

transplanted at a 10: ratio (10.35 ± 2.6%) compared to M lF ox/+ cells (81.7 ± 1.0%) 

(Figure 6.18).

At 4 months post-transplantation, the recipients were sacrificed and the bone 

marrow, spleen and thymus analysed for the presence of Ly5.2+ cells. W hen 

transplanted at a 1:1 ratio w ith wild type cells, M il conditional cells gave less than 

1% long term reconstitution, compared to a mean of 68 ± 12% reconstitution with 

M lF ox/+ cells (Figure 6.19, 6.20). W hen transplanted at a 10:1 ratio, M il conditional 

cells gave rise to 2 ± 2% reconstitution, compared to 87 ± 7% reconstitution with 

M lF ox/+ cells (Figures 6.19, 6.20). This reconstitution defect affected all 

haematopoietic lineages, as shown in Figures 6.21 and 6.22. This included the HSC 

compartment (Figure 6.22) suggesting that the lack of reconstitution of the mature 

lineages by M il conditional cells was not due to a block in HSC differentiation.

A significant reconstitution defect was also seen in M il heterozygous cells 

(M lF ox/~), particularly in the ability of these cells to reconstitute the T cell 

compartment (Figures 6.18- 6.22). These results show that, while M il deficient 

haematopoietic stem cells are able to generate steady state haematopoiesis, their 

ability to proliferate and self-renew is greatly compromised when they are placed in 

competition w ith wild type cells.
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Figure 6.18. M il cKO  bone marrow cells have a severe short term 
repopulating defect.
Reconstitution at 4 weeks post transplantation by M il conditional (M il 
cKO) bone marrow when mixed with wild type competitors in 1:1 
ratio and 10:1 ratios. The graph shows the percentage of Ly5.2+ cells 
present in the peripheral blood of recipients. For all samples, n=5, 
except Flox/+ 1:1, where n=4. The graphs show the mean and the 
SEM.
(***) P  < 0.001, (**) P< 0.01, (*) P  < 0.05. All samples were compared to
Mifiox/+.
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Figure 6.19. M il cKO  bone marrow cells have a severe long term 
repopulating defect.
Reconstitution at 4 weeks post transplantation by M il conditional 
(.M il cKO) bone marrow when mixed with wild type competitors in a 
10:1 ratio. Representative flow cytometric plots showing 
reconstitution levels in the organs of recipients. Single cell 
suspensions were prepared from spleen, bone marrow and thymus 
and Ly5.1+ and Ly5.2+ cells were analysed by flow cytometry.
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Figure 6.20. MU cKO  bone marrow cells have a severe long term 
repopulating defect.
Reconstitution at 4 months post-transplantation by M il conditional 
{M il cKO) bone marrow when mixed with wild type competitors in 
1:1 ratio and 10:1 ratios. For all samples, n= 4-5, except Flox/+ 1:1, 
where n= 3. The graphs show the mean and the SEM. (***) P < 0.001, 
(**) P< 0.01, (*) P  <0.05. All samples were compared to M lFIox/+.
A) Reconstitution levels in the spleens of recipients as shown by the 
percentage of Ly5.2+ cells present.
B) Reconstitution levels in the thymuses of recipients.
C) Reconstitution levels in the bone marrow of recipients.

164



90-

75-

60o 
+

Ag. ui 45
>*

30

15

0

B
100 -

75-
+
CM
IO>*

50

25

0

Spleen 1:1

* *

* * *

i
k k k

0
* * *

ns

i
* * *

j£ l

B cell T cell Myeloid 

Spleen 10:1
ns

* * *

J*L

* *

*

* * *

* *

□ F /o x /+
CUFlox/-
n n M ii

* * *

j5 l

B cell T cell Myeloid

Figure 6.21. M il cKO  bone marrow cells have a severe long term 
repopulating defect affecting all haematopoietic lineages.
Long term contribution, as shown by the percentage of Ly5.2+ cells, to 
the lineages of the spleen. B cells were defined as B220+CD19+, T cells 
as CD4+ or CD8+ and myeloid cells as G rl+M acl+. The graphs show the 
mean and the SEM
For all samples, n= 3-5. (***) P  < 0.001, (**) P< 0.01, (*) ^ < 0 .0 5 . All 
samples were compared to M lfIox/+.
A) Reconstitution levels when cells were transplanted at a 1:1 ratio 
w ith WT competitors.
B) Reconstitution levels when cells were transplanted at a 10:1 ratio 
w ith W T competitors.
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Figure 6.22. M il cKO  bone marrow cells have a severe long term 
repopulating defect affecting all haematopoietic lineages.
Long term contribution, as shown by the percentage of Ly5.2+ cells, to 
the lineages of the bone marrow. B cells were defined as B220+CD19+, 
HSCs as Lin'Scal+c-kithl and myeloid cells as G rl+M acl+. The graphs 
show the mean and the SEM
For all samples, n= 3-5. (***) P  < 0.001, (**) P< 0.01, (*) P  < 0.05. All 
samples were compared to M lflox/+.
A) Reconstitution levels when cells were transplanted at a 1:1 ratio 
w ith W T competitors.
B) Reconstitution levels when cells were transplanted at a 1:1 ratio 
w ith WT competitors.
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6.8 Discussion

Establishment of a line of mice conditional for Mil in haematopoietic tissues

This chapter describes the establishment and characterisation of a line of mice in 

which M il is absent in haematopoietic tissues due to Cre mediated deletion driven by the 

Vav Cre transgene. The Vav promoter has been shown to drive Cre expression in all 

mature lineages of haematopoietic cells, including eryhroid, myeloid and lymphoid cells 

(de Boer et al., 2003). PCR analysis of bone marrow lineage positive cells and LSK cells, 

and foetal liver c-kit+Terl 19 cells showed some residual flox allele, suggesting that there 

are still some M il heterozygous cells present in the haematopoietic system. However, no 

floxed DNA was detectable when cells from the haematopoietic organs and 

methylcellulose cultures of M il conditional mice and embryos were analyzed by 

Southern blot. MLL protein was also absent from spleen lysates of M il conditional mice. 

This means that the vast majority of cells in the haematopoietic system of M il conditional 

mice have no functional copy of Mil. Therefore, while it is possible that cells that have 

not deleted M il are contributing to haematopoiesis in M il conditional mice, their 

contribution seems to be negligible.

Mil is not needed for bone marrow homeostasis and the formation and maintenance 

of HSCs

It was surprising to see no effect on the development of mature lineages in 

the bone marrow of adult mice in the absence of M il. A similar effect has been 

reported for other genes known to be important for foetal liver haematopoiesis 

w hen deleted in adults. For example, the A m ll and Scl genes are essential for the 

initiation of definitive haematopoiesis in the embryo. However, when these genes 

are knocked out conditionally using the Cre-Lox system, no effect is seen on adult 

HSCs (Ichikawa et al., 2004; Mikkola et al., 2003). It has been suggested that these 

genes are necessary to form the first definitive HSCs but are not needed for their 

maintenance. This is not the case with M il, however, as definitive haematopoiesis 

does occur in M11A embryos in the absence of M il but it is severely reduced.
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Differences in phenotype between Mil conditional and Mil 7' embryos

Although recombination levels appear to be high in the foetal livers of M il 

conditional embryos, the haematopoietic cells exhibit a far less severe phenotype 

than that seen in M IR  embryos. In particular, the reduction of the HSC pool that is 

seen in M Ry~ embryos, is not seen in M il conditional embryos. There are two 

possible reasons for this difference. The first is that the Vav Cre transgene is active 

after the point where M il expression is critical. A previous study of M il knockout 

embryos has shown that MU is needed for the proper formation of the first definitive 

haematopoietic stem cells in the AGM (Ernst et al., 2004a). It is possible that there 

are also defects in the AGM in the M IR  embryos presented here. This would result 

in fewer HSCs seeding the foetal liver and have a knock on effect on foetal liver 

haematopoiesis. Although Vav is expressed in the AGM (Okada et al., 1998), it is not 

known if the Vav Cre transgene is active in the AGM. It is possible that in MU 

conditional mice, M11 is deleted after the point at which it is necessary for producing 

normal numbers of stem cells to seed the foetal liver.

Another possibility is that the few cells that escape M11 deletion in 

conditional embryos, either in the AGM or the early foetal liver, are able to give rise 

to sufficient stem cells to establish foetal liver and then adult haematopoiesis 

successfully. It would be impossible to detect the presence of these cells as continued 

expression of the Cre throughout development would mean that their progeny 

would be homozygous for the M11 deletion.

MU is needed for in vitro expansion of lymphoid and myeloid progenitors

Although no reduction was seen in the number of HSCs in MU conditional 

embryos, a defect was seen in myeloid progenitors. A similar situation was also 

observed in the bone marrow of MU conditional mice, where the number of HSCs 

was equivalent to controls, but the number of colonies formed in both myeloid and 

Pre-B CFU assays were reduced. So, MU does have a critical function in progenitor 

cell expansion of both the myeloid and lymphoid lineages. This function is apparent 

in in  vitro  culture, but is not reflected in the production of mature myeloid and B- 

lymphoid cells in  vivo. This supports the data from M IR  embryos, suggesting that
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M il is necessary for the expansion of progenitor cells in response to cytokines, as is 

seen in methylcellulose colony forming assays. Preliminary analysis by flow 

cytometry in M il conditional mice suggested that the numbers of Pre B cells in the 

bone marrow were normal in comparison to controls (data not shown). This would 

suggest that the defect seen in Pre B CFU assays is not due to a reduced input, but to 

an intrinsic defect in the Pre B cells to produce colonies. Further analysis by flow 

cytometry of the CMP population in the bone marrow will confirm whether this 

population is also normal in M il conditional mice. If this is the case, the reduction in 

CFU numbers may be attributable to a defective response of the cells to cytokines or 

a proliferative defect.

Mil deficient stem cells suffer are unable to self-renew in competitive repopulation 

assays

The hidden defect in M il deficient progenitor cells led to further examination 

of the HSC compartment in these mice. W hilst the HSC population showed no 

apparent abnormalities under homeostatic conditions in M il conditional mice, these 

cells crashed spectacularly when transplanted with wild type competitors into 

lethally irradiated recipients. Even when transplanted at a 10:1 ratio, they 

contributed to less than 10% of the major haematopoietic lineages 4 months post 

transplantation. The reconstitution defect extended to all mature lineages analysed, 

suggesting that the lack of reconstitution was due to a defect in the HSCs. This 

defect appeared to affect both long and short term stem cells, as out competition of 

the M il conditional cells was seen at both 4 weeks and 4 months post transplantation 

(Christensen and Weissman, 2001; Spangrude et al., 1995).

It has been noted that the transplantation of HSCs into irradiated recipients 

leads to increased cell cycle activity of the cells, and proliferative stress (Allsopp et 

al., 2001; Cheng et al., 2000b; Spangrude et al., 1995). Under these conditions, it is 

thought that sufficient stem cells need to remain quiescent to enable stem cell self 

renewal capacity to be maintained post transplantation. It is possible that M il 

deficient mice have a higher proportion of cycling BM HSCs, which would lead to 

an inability to self renew when placed under proliferative stress.
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There are several other genes which, when deleted, appear to have no or 

even a positive effect on the numbers of HSCs present in the bone marrow. 

However, when these stem cells are transplanted, particularly when in competition 

w ith wild type cells, they are unable to give rise to effective reconstitution or to 

serially transplant. These genes include the cyclin dependent kinase (CDK) 

inhibitor, p 2 1 ciP^wafl. Mice deficient in p 2 1 ciP1/waf have apparently normal 

haematopoiesis and normal numbers of stem cells. However, the stem cell pool 

contains fewer quiescent cells, and in serial transplantations, these cells show a self 

renewal defect. This suggests that p 2 1 ciP1/waf is needed to maintain stem cells in a 

quiescent state upon proliferative stress (Cheng et al., 2000b). Mice deficient in G fi- 

1, a transcriptional repressor which is thought to positively regulate expression of 

p 2 1 ciPUwat\ have slightly elevated numbers of LT-HSC, with a higher proportion or 

the cells in cycle. However, when these cells are transplanted in competition with 

wild type cells, very poor levels of reconstitution were seen from the Gfi- fA cells 

(Hock et al., 2004a). These two genes are of particular interest as G f i - 1 has been 

shown by luciferase reporter assays to be a target of HoxalO, and by micro array 

analysis, a target of H oxa9 (Ferrell et al., 2005; Magnusson et al., 2007). H oxa9 has 

been identified as a direct target of MU and H oxalO  is down regulated in embryoid 

bodies derived from M1H ES cells (Ernst et al., 2004b; Milne et al., 2005a; Milne et 

al., 2002; Milne et al., 2005b). The H oxa9 knockout mice share some phenotypes 

w ith the M il conditional mice -  they have normal numbers of HSCs but these have 

greatly reduced repopulation capacity when transplanted with wild type 

competitors (Lawrence et al., 2005b). This similarity in phenotype between Hoxa9, 

G fi-1 and p 2 1 ciP1/waf deficient HSCs, suggests a common causality by down regulation 

of p 2 1 ciP1/wafl as shown in the model presented in Figure 6.23. This would also suggest 

that the phenotype seen in MU deficient stem cells is due to a failure to self renew 

under proliferative stress, caused by the down regulation of p 2 1 ciP1/waf and an 

inability of the stem cells to remain quiescent. Analysis by Q-PCR of the levels of 

Hoxa9, HoxalO\ G fi-1 and p 2 1 c,P1/waf in M11 deficient stem cells may confirm if this is 

indeed the case. Cell cycle analysis would also reveal w hether the cell cycle profile 

of M11 deficient HSCs was abnormal, resulting in fewer cells residing in Go.
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It is interesting to note that the phenotypes seen in mature myeloid and 

lymphoid cells in the above knockout models are quite divergent. The p 2 1 ciP1/wafl 

deficient mice have no apparent abnormalities in the lymphoid or myeloid 

compartments, whereas 677/ deficient mice have no granulocytes and reduced 

numbers of lymphoid cells and progenitors (Cheng et al., 2000b; Hock et al., 2004a). 

The H oxa9 mice also have reduced numbers of myeloid and lymphoid cells 

(Lawrence et al., 2005c; Lawrence et al., 1997). These differences in phenotype 

would suggest that after HSC differentiation, the functions of these proteins 

diverges, and they may no longer be part of the same pathway.

It is also possible that M il may be directly responsible for the regulation of 

CDK inhibitors. For example, in M il deficient immortalised fibroblasts, MLL has 

been shown to cooperate w ith the tumour suppressor Menin to regulate the 

transcription of p27 (Milne et al., 2005c). It is possible that M il may be active in 

regulating other CDKis such as p 2 1 ciP1/wafl in a cell context dependent manner (Figure 

6.23). Therefore, the identification of M il targets in HSCs would prove whether this 

is the case and also identify other genes contributing to the knockout phenotype.

The effect of Mil deletion is dose dependent

The reduced repopulating capacity of heterozygote (M llFlox/~) cells shows that 

the dosage of M il is also important. Although the heterozygous cells had an 

intermediate phenotype in the reconstitution of all haematopoietic cell types, the 

most profound effect was seen on the T cell compartment. The reconstitution of all 

T cells was more severely reduced in comparison to M lFlox/+ control cells, and 

reconstitution in the thymus was only 20% when the cells were transplanted in a 1:1 

ratio w ith wild type cells (Figure 6.20B). This suggests a further role for M il 

specifically in the expansion of T cells.
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Figure 6.23. A Possible mechanism for the function of M il in the 
control of HSC self renewal.
MLL may positively regulate control of the expression of multiple Hox 
genes. The targets of these H ox genes include Gfi-1, which in turn 
regulates the expression of p 2 1 ciP1/wafl. p 2 1 ciP1/wafl acts to maintain the 
quiescent state of long term HSCs. M il may also directly control the 
expression of cyclin dependent kinase inhibitors.
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Chapter 7 

Overall Conclusions and Future

Directions
In this project two new mouse models of M/7 were successfully established. A 

null mouse model was established in which homozygous deletion of exons 9 and 10 

of M il resulted in an absence of MLL protein. A later lethality in MU~A embryos than 

was observed in earlier M il mouse models allowed a more detailed examination of 

foetal haematopoiesis in the absence of Mil. A conditional model was also 

established which utilized the Vav Cre transgene. M il conditional mice lost 

expression of MLL in a tissue specific manner in the haematopoietic system. 

Analysis of foetal and adult haematopoiesis in these mice has revealed the following 

findings:

• M il is not needed to establish definitive haematopoiesis but is needed 

for normal foetal liver haematopoiesis.

• Deletion of M il did not abrogate normal haematopoiesis in adult mice.

• M il foetal and adult stem cells cannot compete with wild type cells in 

competitive reconstitution assays.

• M il is needed for the proper expansion of progenitor cells in vitro.

• The M il phenotype is dose dependent.

Mil conditional mice: a useful model for future investigations into Mil 

function

The new conditional mouse model for M il provides a useful tool for studying 

the role of M il in a variety of processes. Further work is still needed to clarify the 

exact role of M il in the regulation of adult haematopoietic stem cells, including
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analysis of the downstream targets in M il conditional mice and cell cycle analysis of 

M il deficient HSCs. Further work is also needed to assess whether M il is needed 

outside of normal homeostatic haematopoiesis, during the response to 

immunological challenge. The apparent role of M il in regulating GATA-3 and 

cytokine production in memory Th2 cells (Yamashita et al., 2006) would suggest 

further roles in the T and B lymphoid response to infection. This is supported by the 

effect on repopulation of the T cell compartment by M il heterozygous cells seen 

here.

The new conditional model can be crossed to other tissue specific Cre 

expressing mice, to assess whether M il functions outside of the haematopoietic 

system. For example, there is growing evidence for a role for MU in 

neurodevelopment. M il has been linked to H4 acetylation in the adult brain and 

neuronal differentiation (Kim et al., 2007; Wynder et al., 2005). Using transgenic 

mice expressing Cre under the control of central nervous system specific promoters, 

e.g. the Glial Fibrillary Acidic Protein (GFAP), a mouse model where M il is 

conditional in the central nervous system could be established (Zhuo et al., 2001). 

This could be used to further investigate the role of M il in neural development. 

Other tissue specific Cre transgenes could be used to elucidate the role of M il in 

other cell types and processes. The new conditional model described here represents 

an exiting opportunity to explore the function of M il in murine development.
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