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Abstract

Sonic hedgehog (Shh) is a morphogen implicated in the developmental patterning of 

many vertebrate tissues. One such tissue is the neural tube (NT). In ventral regions of 

the NT distinct neuronal subtypes emerge in precise spatial order from progenitor 

cells arrayed along its dorsal-ventral axis. Shh regulates this process by controlling 

the expression patterns of transcription factors in progenitor cells. In addition, cross- 

repressive interactions between pairs of transcription factors, expressed in adjacent 

regions, ensures the generation of defined domains. The regulation of N kx2.2  and 

Nkx2.9  expression represents an example of this mechanism. The expression of these 

genes is restricted to a ventral (p3) domain, comprising neural progenitors dorsal to 

the floor plate. Induction of Nkx2.2  and Nkx2.9  requires high levels of Shh signalling. 

In part this appears to be because the homeodomain protein Pax6 must be repressed to 

allow N kx2 .2 l2 .9  induction. We have analysed the regulatory regions of the Nkx2 

genes in order to understand the molecular mechanisms underpinning their expression 

pattern. The 5 ’ flanking region of N kx2 .2  and N kx2 .9  contains a 250bp block of 

highly conserved DNA (CNCR) that is found in human, mouse, Fugu  and zebrafish. 

This region includes a binding site for the transcriptional regulators of the Shh 

pathway: Gli (GBS). Using a BAC homologous recombination system and assays in 

zebrafish, we provide evidence that the CNCR is required to direct Nkx2.2a-like gene 

expression. Mouse in vivo reporter assays using fragments containing the CNCR of 

zNkx2.2a, indicate the CNCR is sufficient to direct reporter gene expression in the p3 

domain of the NT. Mutational analysis indicates that the GBS is necessary but not 

sufficient to account for this expression profile. In vivo assays further suggest correct 

Nkx2.2  expression requires input from additional transcriptional activators as well as a 

floor plate repressor. All these factors appear to act through regulatory elements 

within the CNCR.
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Introduction

1 Introduction

7.7 Tissue P atterning - M orphogens

One of the fundamental questions in the development of organisms is how naive 

tissue is patterned to become a complex structure. Progenitor cells that make up the 

structures must receive instruction in order to differentiate into a particular cell type in 

an ordered and regulated fashion. One com m on m echanism  in em bryonic 

development, is the provision of molecular cues to the tissue. These cues provide 

positional information and determine the cell type that will form at precise spatial 

locations. Signals with this characteristic may act at a distance from their source, and 

several of these signals are morphogens.

1.1.1 Historical Perspective

Our current understanding of tissue patterning has been developed from a series of 

ideas spanning over a century (reviewed in Wolpert, 1996). In the late 19th century, 

studies of sea urchin embryos, led Hans Driesch to conclude that the fate of a cell 

within an embryo was determined by its position. This was the first suggestion that 

cells were responsive to their environment and received information about their 

position within the developing embryo. It was many years later that Thomas Hunt 

Morgan suggested that the source of the positional information could be the presence 

of a gradient. The gradient, it was hypothesised, provided the tissue with a polarity 

and ensured that cells at different positions within this gradient would respond 

accordingly. However, as the idea of gradients fell out of fashion, M organ’s ideas 

were not further pursued for almost a generation. However, in the 1950s and 1960s, 

renewed interest from theoreticians reawakened the idea of gradients.

In an influential synthesis, Lewis W olpert summarised the problem o f  tissue 

patterning with the now famous French Flag Problem (Wolpert, 1969). This is the 

problem of how a French flag-like pattern could be formed from a tissue of totipotent 

cells; one blue stripe, one white stripe and one red stripe. This can only happen if the

18



Introduction

cells all ‘know ’ their position within the tissue. He proposed that the measure of the 

concentration of a chemical could provide this positional information, whilst the slope 

of the concentration gradient could determine polarity. The size of the field over 

which morphogens act are generally small and the length of time required to act is 

short. These facts led Francis Crick to propose the idea that the patterning relied upon 

diffusible molecules to provide positional information (Crick, 1970). Although the 

theoretical basis for a morphogen was firmly established, it was another ~25 years 

before the first molecular identification of a morphogen.

1.1.2 Molecular Identification of Morphogens

For a molecule to be classed as a morphogen it must fulfil two principle criteria. First 

it must act at a distance from the source in order to confer long-range pattern. Second 

it must act at different concentration thresholds to control different cellular outputs. 

Thus in experiments in which morphogen concentration is altered, predictable 

changes in cell fate should result (Gurdon and Bourillot, 2001). Experimental 

evidence from many systems has now identified morphogen candidates that pattern 

different developing tissues. Some of the most well known examples of morphogens 

come from studies carried out in D rosoph ila . These include Bicoid (Bed) that 

establishes anteroposterior polarity in the Drosophila  embryo (Driever and Nusslein- 

Volhard, 1988a; Driever and Nusslein-Volhard, 1988b), Decapentaplegic (Dpp) that 

patterns the anteroposterior axis of the imaginal wing disc (Podos and Ferguson, 

1999) and Dorsal (Dl) that patterns the dorsoventral axis of the early embryo (Roth et 

al., 1989). Moreover, in vertebrates the mesoderm patterning factor Activin (Smith et 

al., 1990) has been shown to have morphogen properties, as have the hedgehog family 

of molecules (Ericson et al., 1997b; Marti et al., 1995; Roelink et al., 1995). In each 

case, differential regulation of gene expression by these factors has been described. 

Below I will briefly introduce each of these morphogens.

1.1.3 Morphogen Roles and Mechanisms

Bicoid is a maternal protein laid down in the anterior of the D rosophila  egg, 

translation only occurs after fertilisation. It is essential for correct patterning of the
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anterior-posterior axis of the developing em bryo (reviewed in Ephrussi and St 

Johnston, 2004). At these stages of developm ent the D ro so p h ila  em bryo is a 

syncitium: there are no cell walls and all nuclei share the same cytoplasm. The 

syncitial nature of the embryo allows Bicoid, a transcription factor, to establish an 

anterior to posterior gradient that provides positional information (Fig. 1.1 A: Driever 

and Nusslein-Volhard, 1988a; Driever and Nusslein-Volhard, 1988b). Therefore, 

Bicoid is an unusual morphogen, being an intracellular protein instead of a secreted 

extracellular factor.

Correct anteroposterior patterning of the embryo requires activation of a set of genes 

called Gap genes. Bicoid activates orthodenticle (o td ) in the most anterior region of 

the em bryo, otd  responds to high Bicoid concentrations (Fig. 1.1 A: Gao and 

Finkelstein, 1998). A second gene hunchback  (hb ) is activated by Bicoid, it responds 

to lower bicoid concentrations and is therefore expressed throughout the whole 

anterior half of the embryo, and also in a band at the most posterior of the embryo 

(Fig. 1.1 A: Driever and Nusslein-Volhard, 1989; Struhl et al., 1989). The differential 

activation of these genes establishes the first gene expression differences along the 

anterior-posterior axis and thereby initiates patterning by regulating the expression of 

further anteroposterior patterning genes.

Decapentaplegic (Dpp) is a member of the bone morphogenetic protein (BMP) family 

of TGF|3 signalling molecules. It acts as a long-range signal to pattern several tissues 

including the ectoderm of the D rosophila  wing imaginal disc, dpp is expressed in a 

narrow stripe at the anterior-posterior compartment boundary of the wing disc (Fig. 

1.IB). The transcription of two downstream genes, expressed within the wing disc, 

spalt (sal) and optom otor-blind  (om b), rely upon dpp  signalling (Lecuit et al., 1996; 

Nellen et al., 1996). om b  is expressed in a larger area of the wing disc and further 

from the source of Dpp than sa l, which is expressed in a nested region within the omb 

expressing domain (Fig. 1 .IB: Lecuit et al., 1996; Nellen et al., 1996). Ectopic 

expression of dpp  can recapitulate the pattern of expression of both om b  and sa l 

(Lecuit et al., 1996; Nellen et al., 1996). These results suggest that omb induction can 

occur at low levels of Dpp, while sal is only expressed at high concentrations.
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Dorsal (Dl) is a DNA binding protein that is related to the mammalian transcription 

factor NF-kB (Ghosh et al., 1990) and is distributed throughout the dorsoventral axis 

of the D rosophila  embryo in a nuclear concentration gradient (Fig. l .IC i: Roth et al., 

1989). The highest concentration of Dl is located in the most ventral cells, here the 

mesoderm is established by activation of genes twist (twi) and snail (sna) (Boulay et 

al., 1987; Thisse et al., 1991). Lower levels of Dl activate the gene rhom boid (rho), 

defining a second threshold of Dl activity, rho  expression determines the ventral 

presumptive neuroectoderm (Bier et al., 1990). short gastrulation (sog) is activated at 

yet lower levels of Dl in the presumptive neuroectoderm, sog  therefore occupies a 

slightly broader domain than rho (Francois et al., 1994). Finally the dorsal ectoderm 

and amnioserosa, the most dorsal structures of the embryo, are controlled by the 

restriction of decapentaplegic (dpp) and zerkniillt (zen) to these dorsal regions (Doyle 

et al., 1989; St Johnston and Gelbart, 1987). This is accom plished by low 

concentrations of Dl. Similar low levels of Dl activate sog and repress zen.

The activity of Dl protein is controlled by differential subcellular localisation. In the 

absence of an activation signal, Dl remains in the cytoplasm, bound to an inhibitory 

protein Cactus, related to mammalian Ik B (W asserman, 1993). Extracellular 

activation of the pathway leads to a breakdown of this complex and the nuclear 

translocation of Dl (Fig. l.IC ii:  Bergmann et al., 1996; Reach et al., 1996). The 

extracellular signal that initiates this process corresponds to the maternal protein 

Spatzle (Spz). Spz is locally activated at the ventral pole of an embryo by a cascade 

of proteases located in the perivitelline fluid (PVF), which separates the follicle cells 

and the oocyte (LeMosy et al., 1999). This locally active Spz ligand migrates laterally 

and binds to and activates ubiquitous receptor Toll (Morisato and Anderson, 1994; 

Schneider et al., 1994). At more lateral regions there are less bound Toll receptors 

and therefore less Dl enters the nucleus. In dorsal regions of the embryo, there are 

few, if any activated Toll receptors consequently no Dl enters the nucleus. Thus, set 

up, the nuclear Dl gradient patterns the dorsoventral axis of the embryo by activating 

the downstream genes discussed above (Roth et al., 1989; Rushlow et al., 1989; 

Steward, 1989).
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Finally, Activin is an example of a morphogen that patterns the mesoderm in Xenopus 

(Fig. 1.1D). It is a member of the TGF|3 superfamily, and was the first factor 

characterised as a mesoderm inducer (Smith et al., 1990). Not only does Activin 

induce dorsal mesoderm, but it also promotes the cell movements and convergent 

extension characteristic of dorsal mesoderm (Symes and Smith, 1987). After many 

years of uncertainty, recent evidence indicates that Activin is the endogenous factor 

required for normal mesoderm formation in Xenopus (Piepenburg et al., 2004).

Various in vitro experiments provided evidence to support the idea that Activin acts as 

a morphogen in the patterning of the mesoderm (Dyson and Gurdon, 1998; Green et 

al., 1992; Green and Smith, 1990; Gurdon et al., 1994). The addition of low 

concentrations of Activin to explants of prospective ectoderm tissue induced the 

lateral mesoderm marker X b ra ch yu ry  (X b ra ), whilst a three-fold concentration 

increase induced the dorsal mesoderm marker X gooseco id  (.X gsc ) (Gurdon et a!., 

1994). The same effect was observed with the injection of Activin mRNA, or by the 

addition of a bead soaked in Activin. In the case of the bead experiments, tissue 

located close to the source of the Activin received an initial wave of signal that 

induced Xbra  expression, this was followed by a subsequent induction of Xgsc 

(Gurdon et al., 1994). So, this suggested a relationship between the distance from the 

morphogen source and the gene induced; tissue closest to the source expressed Xgsc  

and tissue further away expressed X b ra . The induction of gene expression at 

particular concentration thresholds in vitro, mirrors the sequential activation of genes 

seen in the ventroposterior to dorsoanterior sequence in vivo (Green et al., 1992). 

Subsequent studies of Activin binding to cells, suggested that it is the total number of 

receptors that are bound by Activin that determines induction of Xbra  or Xgsc  (Dyson 

and Gurdon, 1998). A three-fold increase in Activin concentration, which switches 

gene expression, results in a three-fold increase in the number of bound receptors.

These examples of morphogens and their embryonic patterning activity, illustrates 

how a single signalling molecule can differentially regulate several genes at various 

concentration thresholds. The mechanisms by which the genes downstream of Bed, 

Dl, Dpp and Activin interpret the graded signal are as yet not fully understood. 

However, advances have been made in this field, this will be discussed later.
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1.1.4 Duration of Morphogen Signal

Experimental evidence supports the idea that morphogens pattern various developing 

tissues by setting up concentration gradients. However, recently it has also been 

proposed that it is not only the concentration of a morphogen, but also the duration of 

signalling that can determine cell fate. This idea has been suggested to provide an 

alternate explanation for morphogen activity but has received less consideration in the 

study of morphogens (Kang et al., 2003; Pages and Kerridge, 2000).

The importance of signal duration has been proposed by two groups to be a key 

parameter in tissue patterning; Pages and Kerridge proposed a model they termed the 

sequential cell context model (Pages and Kerridge, 2000), while Kang et al. termed 

their model the self enabling mechanism (Kang et al., 2003). Both of these models 

depend on a first wave of signal from the morphogen activating the expression of an 

early set of genes. These genes code for transcription factors. This first wave sets a 

context for the cells, which then go on to express a second set of genes after continued 

signalling by the morphogen. This mechanism is reminiscent of a feed forward loop 

(see below), in which a signal activates a set of early genes, which then cooperate 

with the signal to activate downstream target(s). This mechanism therefore implies a 

time delay while upstream genes are activated in response to initial morphogen 

exposure.

Pages and Kerridge used this idea to explain Dpp patterning of the imaginal wing 

disc. Tw o Dpp target genes, om b  and sa l, appear to be expressed at different 

concentrations of Dpp; low and high respectively and at different times in 

development, omb after 24 hours and sal after 72 hours (Lecuit et al., 1996; Nellen et 

al., 1996). It has also been shown that strong expression of dpp  can induce both genes 

at the same time (Lecuit and Cohen, 1998). From these data it was concluded that 

high Dpp concentration activates sa l and om b  but low concentration activates only 

omb. However, the sequential cell context model offers an alternative. In this view 

Dpp signalling activates om b  at early time points, and a longer period of Dpp 

exposure is required for sal induction. The induction of sa l may require Omb or
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possibly other targets (Pages and Kerridge, 2000). This model could also explain 

other examples of tissue patterning by morphogens; for example Activin patterning of 

the Xenopus mesoderm (Pages and Kerridge, 2000). Nevertheless, the relative 

importance of morphogen duration compared to concentration remains a poorly 

understood aspect of tissue patterning.

1.1.5 Sonic Hedgehog

One morphogen not yet discussed, is the vertebrate hom ologue of  Drosophila 

Hedgehog protein; Sonic Hedgehog (Shh). Shh acts as a long-range graded signal and 

has been shown to be crucial in the patterning of the dorsal-ventral axis of the neural 

tube (Briscoe et al., 2001; Briscoe and Ericson, 2001; Ericson et al., 1997a; Jessell, 

2000; Roelink et al., 1995; Wijgerde et al., 2002) and the anterior-posterior axis of the 

developing vertebrate limb (Helms et al., 1994; Riddle et al., 1993). Targeted 

disruption of the Shh gene in mice results in phenotypes similar to those seen in 

humans in a condition known as holoprosencephaly (HPE: Chiang et al., 1996). 

These include fusion of the telencephalic vesicle and optic vesicle (cyclopia) and 

failure to form midline structures such as notochord and floor plate. The action of 

Shh in patterning the dorsoventral axis of the neural tube and how the gradient is 

formed and regulated is the basis for this project.

1.2 Form ation and Patterning o f  the N eural Tube

1.2.1 Physical Processes Involved in Neural Tube Formation

The neural tube is the rudimentary structure of the adult central nervous system (CNS) 

of chordates. The CNS is made up of the brain (forebrain, midbrain and hindbrain) 

and the spinal cord. The neural tube, which will form the structures found in the 

CNS, is formed during a process called neurulation. Primary neurulation consists of 4  

steps; formation of the neural plate, shaping of the cells that make up the neural plate, 

bending of the neural plate to form the neural groove and finally closure to form a rod 

like structure that is the neural tube (reviewed in Colas and Schoenwolf, 2001).
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The neural plate is a thickened sheet of ectoderm located in the future dorsal region of 

the embryo. Bending of the neural plate involves elevation of the neural folds, tissue 

found at the lateral edges of the plate (Colas and Schoenwolf, 2001). In amniotes 

these folds then converge towards the midline and form the neural groove. This 

groove will become the lumen of the primitive neural tube once closure and fusion of 

the fold has occurred (Colas and Schoenwolf, 2001). The point of tube fusion 

becomes the roof plate of the neural tube, which is detached from the overlying 

epithelial ectoderm. Patterning of the naive homogeneous tissue that comprises the 

forming neural tube begins during neurulation and continues after neural tube fusion 

(reviewed in Jessell, 2000). This process will give rise to the multiple neuronal 

subtypes of the neural tube.

Neurons in the mature spinal cord serve two main purposes; to relay sensory input to 

higher centres in the brain and to coordinate motor output (reviewed in Jessell, 2000). 

A key feature of these neurons is that, not only do different neuronal subtypes serve 

d ifferent functions, but functionally  distinct neurons are located in spatially 

segregated domains in the neural tube. The neurons that process sensory input from 

the periphery and relay information to higher centres in the brain are mainly located in 

the dorsal neural tube. Neurons that are required for coordination of motor output are 

restricted to the ventral neural tube.

The process of neurulation in the teleost zebrafish (D anio rerio), is slightly different 

to that of mammals, however there are sufficient similarities to make the system a 

useful model for analysis (Lowery and Sive, 2004). The thickened sheet of cells, the 

neural plate, forms from the ectoderm as in amniotes. Cells from the neural plate drop 

ventrally into the mesenchyme and form the neural keel, which is a solid rod of cells. 

The midline of the neural keel is always apparent, however cell mixing does occur 

(Ciruna et al., 2006; Concha and Adams, 1998; Geldmacher-Voss et al., 2003). Cells 

frequently cross the midline, dividing cells can provide progeny for both sides of the 

neural tube, this appears to be a characteristic specific to teleosts. The lumen opens 

up later on within the mass of cells, this occurs in a ventral to dorsal manner (Lowery 

and Sive, 2004). Nonetheless, the subsequent patterning and specification of the 

neural tube appears similar in fish and amniotes (Lewis and Eisen, 2003).
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1.2.2 Morphogenetic Patterning of Neural Tube by Mesodermal 

Structures

A major goal of developmental neurobiology is to understand what makes particular 

neurons form at distinct spatial locations. In the CNS signals emanating from 

structures adjacent to the neural tube play a central part in this. The neural tube is 

surrounded on three sides by mesodermal structures: paraxial mesoderm laterally, 

which will form the somites; and the notochord, which lies ventral to the neural tube 

along the midline. The notochord is a rod like mesodermal structure, which is an 

essential structure for developing chordates (reviewed in Stemple, 2005). It plays an 

important structural role in early embryos, some vertebrates maintain the structure, 

however, in higher vertebrates it is a transient structure that becomes part of the centre 

of the intervertebral discs. At the ventral midline of the neural tube itself is a small 

group of wedge shape cells called the floor plate. Within the ventral neural tube, there 

are a mixture of interneurons and motor neurons. Motor neurons (MN) are found in 

the ventral horn of the mature spinal cord and innervate muscles to control motor 

output. In the developing neural tube, MNs and distinct interneuron groups arise in a 

precise spatial location within the dorsoventral axis.

Experimental evidence suggests that the notochord is required for the correct 

patterning of the neural tube (Placzek et al., 1991; Yamada et al., 1991). If the 

notochord was removed from a developing chick embryo, then the floor plate, a 

specialised group of cells located at the ventral midline of the neural tube, did not 

form (Yamada et al., 1991). Conversely, if a second notochord was grafted laterally 

to the neural tube, a second floor plate formed (Yamada et al., 1991). This second 

floor plate was accompanied by the formation of additional motor neurons at a 

distance from the additional floor plate. This led to the conclusion that a signal from 

the notochord is required for the correct formation of the floor plate and also for 

providing information about dorsoventral polarity. The floor plate itself has similar 

inductive properties for inducing further floor plate cells and motor neurons, 

suggesting it releases signals sufficient to induce floor plate and motor neuron fates 

(Yamada etal. ,  1991).
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1.2.3 Patterning of Neural Tube by Shh

In the grafting experiment, the position of the motorneurons in relation to the graft 

suggested that the signal emanating from the notochord and floor plate was capable of 

inducing particular cell identities at different distances from the signal source 

(Yamada et al., 1991). Subsequent experiments confirmed this observation and 

showed that the type of neuronal cell formed was in part determined by the distance 

from the notochord and floor plate (Placzek et al., 1991; Yamada et al., 1991). These 

studies also provided evidence that a secreted, diffusible signal was responsible for 

the patterning activity of the notochord and floor plate (Yamada et al., 1993).

In the search for possible signalling molecules that could be responsible for neuronal 

patterning, the secreted protein Sonic Hedgehog (Shh) was identified (Echelard et al., 

1993; Krauss et al., 1993; Riddle et al., 1993; Roelink et al., 1994). More precisely, 

the amino terminal peptide of processed Shh (Shh-N) was demonstrated to be 

responsible for the activity of the notochord and floor plate (Marti et al., 1995). Shh 

appears to fulfil the criteria required to be classed as a morphogen and evidence 

supports the hypothesis that it acts to pattern the neural tube.

First, shh is expressed in the right place (notochord and floor plate; Fig. 1.2A) and at 

the times these structures have patterning activity. It also appears to act on tissue at a 

distance from the source and direct various outputs for these cells (Ericson et al., 

1996; Marigo and Tabin, 1996). Shh establishes a ventral to dorsal concentration 

gradient (Fig 1.2B), which controls the patterning of the tissue via long-range graded 

signalling (Briscoe et al., 2001; Ericson et al., 1997b; Gritli-Linde et al., 2001; Lewis 

et al., 2001). Thus the level of Shh along the dorsal ventral axis appears to determine 

the progenitor domain identity, specifying the neuronal subtype that will develop 

(Briscoe and Ericson, 2001; Jessell, 2000; Wijgerde et al., 2002). In vitro experiments 

showed that changes in applied Shh concentration, resulted in predictable changes in 

neuronal cell fates, neurons in more ventral regions required higher concentrations of 

Shh for induction (Marti et al., 1995; Roelink et al., 1995). Further evidence from 

loss of function analysis showed that Shh was essential for the formation of the
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ventral structures of the neural tube, these did not form in mice lacking functional Shh 

(Chiang et al., 1996). This patterning action of Shh is a direct effect (Hynes et al., 

2000; Wijgerde et al., 2002). Smoothened (Smo) is the signal transducing unit of the 

Shh receptor, constitutively active forms of Smo ectopically expressed led to cell 

autonomously induced ventral cell types (Hynes et al., 2000). Conversely, inhibition 

of Shh signalling cell autonomously (Briscoe et al., 2001) or inactivation of Smo cell 

autonomously blocked Hh signal transduction (Wijgerde et al., 2002).

1.2.4 Transcription Factor Code

The ability of graded Shh signalling to directly control dorsoventral patterning in the 

ventral neural tube raised the question of how positional identity is imposed on 

progenitor cells and how this determines neuronal subtype identity. The progenitor 

cells interpret the gradient of Shh in the neural tube, by regulation of several 

transcription factors. These transcription factors, with the exception of the basic 

helix-loop-helix (bHLH) protein 01ig2, are members of the homeodomain (HD) 

protein family, including Pax7, Pax3, D bx l,  Dbx2, Pax6, Nkx2.2, Nkx2.9, Nkx6.1, 

Nkx6.2 and Irx3. The proteins are split into 2 classes; Class I proteins, the expression 

of which are inhibited by Shh e.g. Pax6 and Class II proteins, which are either directly 

or indirectly activated by Shh e.g. Nkx2.2 (Briscoe et al., 2000; Briscoe et al., 1999; 

Ericson et al., 1997b). Within the same class, genes respond to Shh in a concentration 

dependent manner. For example the repression of Class I genes with more ventral 

limits of expression require higher levels of Shh signalling compared to more dorsally 

restricted Class I genes. Conversely, Class II proteins that have a broad domain of 

expression in the ventral neural tube are induced by lower concentrations of Shh than 

Class II genes that are limited to more ventral regions. Combinatorial expression of 

these Class I and Class II proteins define distinct progenitor domains, giving rise to 

the 5 distinct groups of post-mitotic neurons: V0, V I ,  V2, V3 interneurons and motor 

neurons (MN; Fig. 1.3).

Evidence that graded Shh signalling establishes the transcription factor code emerged 

from studies of the expression patterns of N kx2.2  and P ax6  (Ericson et al., 1997b). 

Similar findings have been documented for other Class I and Class II proteins (see
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below). In the developing ventral neural tube P ax6  (Class I) and Nkx2.2  (Class II), 

have a mutually exclusive expression pattern with the most ventral progenitors 

expressing Nkx2.2  (p3, Fig. 1.3A) while Pax6  is expressed dorsal to the boundary of 

Nkx2.2  (Fig. 1.3A). In vitro experiments demonstrated that the expression of both of 

these proteins is regulated by Shh signalling in a concentration-dependent manner 

(Ericson et al., 1997b). Cells within chick neural explants, grown in the absence of 

Shh, express Pax6. Exposure to concentrations of Shh above a given threshold leads 

to repression of Pax6  and induction of Nkx2.2.

Shh regulation of Class I and Class II proteins is not sufficient to explain how the 

sharply delineated changes in gene expression are established. Cross-repressive 

interactions between select pairs of Class I and Class II proteins may help to explain 

this. Class I and II genes can be grouped in pairs, based on two prerequisites; i) the 

ventral limit of expression of a Class I protein coincides with the dorsal limit of the 

paired Class II protein and, ii) the pair of Class I and Class II factors display mutual 

cross-repression (Briscoe et al., 2000; Briscoe et al., 1999; Ericson et al., 1997b). 

With the exception of Pax6, the Class I and Class II proteins act as transcriptional 

repressors in neural progenitors by recruiting Gro/TLE corepressors (M uhr et al.,

2001). This evidence raises the possibility of direct interactions between the proteins 

and promoters of Class I and Class II genes, and supports the theory of repressive 

interactions. The interplay between pairs of transcription factors could explain the 

discrete changes of gene expression between progenitor domains in the ventral neural 

tube.

Gain- and loss-of-function studies, suggest that Pax6 and Nkx2.2 cross-repression is 

essential for establishing the progenitor domains and the correct gene expression 

boundaries (Briscoe et al., 1999; Ericson et al., 1997b). Expression of Nkx2.2  

expanded dorsally in mutant mice lacking functional Pax6 (Ericson et al., 1997b). 

This resulted in a decrease in motorneuron (MN) production and an expansion in 

Nkx2.2 produced V3 neurons. Pax6 is therefore required for precise positioning of 

the boundary between MN and V3 progenitors, and correct production of the neurons 

from these progenitors. The absence of Pax6 also results in defects in the generation 

of other ventral neuronal subtypes, in particular V I and V2 neurons (Ericson et al.,
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1997a), suggesting that Pax6 has further roles in the control of neuronal subtype 

identity in the neural tube. Additional studies indicated that in embryos lacking 

Nkx2.2, there was a loss of V3 interneurons, and a ventral shift in the MN progenitor 

marker 01ig2 and subsequently in the generation of M Ns (Briscoe et al., 1999). 

Expression of Pax6  was unchanged, possibly due to the presence of Nkx2.9, another 

Nkx family member, which is expressed in a similar domain to Nkx2.2  (Pabst et al.,

1998).

Further evidence from other pairs of Class I and Class II proteins supports the idea of 

reciprocal cross-repressive interactions (Fig. 1.3). The Class II proteins N kx6.1 and 

Nkx6.2 adjoin the ventral boundaries of the Class I proteins Dbx2 and D bx l,  

respectively (Fig. 1.3B). In double knock-out embryos lacking both Nkx6 proteins, a 

ventral expansion of D b x 2  expression was observed (Vallstedt et al., 2001). 

Moreover, a forced expression of Nkx6.1  cell autonomously repressed Dbx2, and 

misexpression of D bx2  resulted in the downregulation of Nkx6.1  (Vallstedt et al., 

2001).

1.2.5 Neuronal Subtype Identity from Progenitors

The expression of the Class I and Class II proteins defines a series of progenitor 

domains pO, p i ,  p2, pMN and p3 (Fig. 1.3B). Each domain occupies a unique 

dorsoventral territory of neural progenitors and is identified by the combinatorial 

expression of transcription factors. Each o f  these progenitor domains will 

subsequently generate the five distinct neuronal subtypes found in the ventral neural 

tube; VO, V I, V2, MN, V3.

The specification of the neurons by specific transcription factor profiles is supported 

by gain- and loss-of-function experiments. The forced expression of a Class I or 

Class II protein in the neural tube and targeted inactivation of individual Class I or 

Class II proteins changes the fate and position of individual neuronal subtypes in a 

manner predicted by the normal profile of transcription factor expression.
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The model for patterning the neural tube we can therefore summarise as follows. The 

initial activation or repression of the Class I and Class II proteins by graded Shh 

signalling provides positional identity to progenitor cells. Reciprocal repression 

between pairs of Class I and Class II proteins (e.g. Nkx2.2 and Pax6) enables the 

conversion of the gradient of Shh protein into discrete all-or-none changes in gene 

expression. The cross repression may therefore account for the differences in 

transcription factor expression profiles between adjacent progenitor domains. Each 

progenitor domain is defined by the combination of transcription factors it expresses. 

The progenitor cells in each domain then exit the cell cycle to form post mitotic 

neurons, the cells in each domain differentiate into a specific neuronal subtype; VO, 

V I, V2, M N o rV 3 .

1.2.6 Additional Neural Tube Patterning Signals

In addition to Shh other extracellular signals have been shown to contribute to correct 

patterning of the ventral neural tube. During neural induction, progenitors are 

exposed to fibroblast growth factors (FGFs), originating from the presomitic 

mesoderm, the regressing node and the neural plate. FGF signalling acts as an 

inhibitor of neural differentiation ensuring cells remain progenitors. FGFs also inhibit 

the expression of many of the progenitor transcription factors and it is not until cells 

have emerged from the influence of FGFs that they mature and begin to express Class 

I and Class II proteins (Diez del Corral et al., 2002; Novitch et al., 2003).

Conversely, retinoic acid (RA) is expressed anteriorly to FGF, in paraxial mesoderm 

adjacent to the neural tube. RA and FGF signalling pathways have been shown to 

have mutually inhibitory effects. RA is necessary for neuronal differentiation and 

progenitor transcription factor expression (Diez del Corral et al., 2003; Novitch et al.,

2003). RA is required for the specification of interneron and motorneuron progenitors 

(Diez del Corral et al., 2003; Novitch et al., 2003) and promotes Class I protein 

expression, therefore counteracting the ventralising effects of Shh.

31



Introduction

Two additional signalling pathways implicated in dorsoventral patterning are bone 

morphogenetic proteins (BMPs) and Wnts. Several members of the BMP family are 

expressed in the dorsal pole of the neural tube where they play a role in specifying 

dorsal neuronal fates (reviewed in Lee and Jessell, 1999). In addition, BMP proteins 

appear to oppose Shh mediated ventralisation of the neural tube limiting the dorsal 

extent of the ventral neural tube (reviewed in Lee and Jessell, 1999). Wnt proteins 

have been implicated in dorsal neural tube patterning (reviewed in Lee and Jessell, 

1999), both W ntl  and Wnt3a  are expressed in the dorsal neural tube at all anterior 

posterior levels. Overexpression studies of these Wnt proteins suggest a role in 

control and coordination of progenitor proliferation in the dorsal neural tube. These 

data suggest that the precise co-ordination of ventral neural patterning depends on 

interactions between several signalling pathways.

1.3 Hedgehog Signalling

1.3.1 D ro so p h ila  Hedgehog Signalling

The Hedgehog (Hh) signalling pathway is best understood in Drosophila (reviewed in 

Kalderon, 2005). The transmembrane receptor to which Hh binds is Patched (Ptc) 

(Fuse et al., 1999; Marigo et al., 1996a; Stone et al., 1996). In the absence of Hh, 

activity of another transmembrane protein Smoothened (Smo) is repressed by Ptc 

(Chen and Struhl, 1998; Taipale et al., 2002). If Ptc is deleted or mutated, the Hh 

pathway is active whether the Hh ligand is present or not (Chen and Struhl, 1996; 

Ingham et al., 1991). The role of Smo is to transduce the Hh signal intracellularly. 

Therefore in the most simplified view, binding of Hh to Ptc relieves the repression of 

Smo, which then transduces the intracellular Hh signal (Murone et al., 1999; Stone et 

al., 1996). Although initial findings suggested a physical interaction between Ptc and 

Smo, recent findings indicate this model is not correct (Zhu et al., 2003). In the 

absence of Hh, Ptc inhibits the level of Smo post-transcriptionally and reduces the 

proportion of Smo protein at the plasma membrane (Denef et al., 2000; Nakano et al.,

2004). How this is achieved remains to be determined.
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The transcriptional effector of the Hh pathway is Cubitus interruptus (Ci), in its 

absence Hh signalling cannot occur (Methot and Basler, 2001). Ci acts as both 

transcriptional activator and repressor. In the absence of Hh, Ci is proteolytically 

processed into a truncated repressor form, Ci-75, which inhibits the transcription of 

Hh target genes (Aza-Blanc et al., 1997). Ci-75 consists of the N-terminal domain 

and the zinc finger DNA binding domain, but not the C-terminal activator domain of 

Ci. Formation of Ci-75 requires protein kinase A (PKA: Chen et al., 1998b), which 

initiates a cascade of phosphorylation by glycogen synthase kinase 3|3 (GSK3(3) and a 

member of the CK1 family of kinases (Jia et al., 2002; Lum et al., 2003a; Price and 

Kalderon, 2002). Hh signalling inhibits processing of Ci, this results in the 

accumulation of the full length Ci, C i-155 (Methot and Basler, 1999; Ohlmeyer and 

Kalderon, 1998). Not only does Hh inhibit the cleavage of Ci, it also increases its 

activation potential, possibly by enhancing nuclear accumulation (Chen et al., 1999; 

Wang and Holmgren, 2000).

Between Smo and Ci, several components of an intracellular signal transduction 

pathway have been identified. Costal-2 (Cos2) a kinesin-like protein, stably 

associates with Ci, and is believed to restrict the movement of Ci in the cytoplasm and 

promotes cleavage to Ci-75 (Chen et al., 1999; Lum et al., 2003b; Robbins et al., 

1997; Sisson et al., 1997). Upon Hh binding, Smo recruits Cos2 thereby reversing the 

effects and increasing the amount of free un-cleaved Ci (Jia et al., 2003). Another 

protein, Supressor o f  Fused, Su(fu), also negatively regulates Ci by physical 

interaction, which promotes cytoplasmic localisation (Lum et al., 2003b; Methot and 

Basler, 2000). This negative regulation is relieved by Fused (Fu), which inactivates 

Su(fu) (Lum et al., 2003b). However, Su(fu) Drosophila  mutants are viable and Hh 

signalling appears normal in these embryos (Preat, 1992). Cos2 is necessary for the 

stabilisation of Fu, thereby having a positive effect on the Hh pathway as well as its 

negative regulation of the pathway (Lum et al., 2003b).

1.3.2 Vertebrate Shh Signalling

In jawed vertebrates, various homologues of the D rosoph ila  Hh  gene have been 

identified. In mice there are 3 homologues, sonic hedgehog (shh), desert hedgehog
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(dhh) and indian hedgehog  (ihh) (Echelard et al., 1993). Similarly, in zebrafish, there 

are currently 5 known homologues; shha (previously known as shh), shhb (previously 

known as tiggy-winkle hedgehog (twhh)), ihha, ihhb  (previously known as echidna  

hedgehog (ehh)) and dhh (Avaron et al., 2006; Currie and Ingham, 1996; Ekker et al., 

1995; Krauss et al., 1993). All of these hom ologues appear to have different 

expression patterns and play different roles in development. However they appear to 

share the same signalling pathway. Due to its involvement in the dorsoventral 

patterning of the neural tube, here I will focus specifically on the role of Shh.

Homologues of several components of the D ro so p h ila  Hh pathway have been 

identified. In mammals, two homologues of Ptc have been identified; P tc l  and Ptc2  

(Carpenter et al., 1998; Motoyama et al., 1998). As with Ptc in Drosophila , Ptcl acts 

to stop Hh pathway activity in the absence of ligand. Loss of P tc l  in mouse mutants 

led to constitutive activation of all downstream targets of the Shh pathway resulting in 

the overgrowth of neural tissue (Goodrich et al., 1997). In addition, Shh target genes, 

normally expressed in the ventral neural tube, were expressed in dorsal regions in the 

absence of Ptc. Ptc2  is expressed in many tissue types, overlapping with the 

expression of both shh  and dhh (Carpenter et al., 1998; M otoyama et al., 1998). 

However, Ptc2  mouse mutants showed no obvious defects in Shh signalling in the 

neural tube, suggesting it does not play a role in patterning the neural tube 

(Nieuwenhuis et al., 2006). Only one orthologue of the Smo  gene has been identified 

in mouse (A kiyam a et al., 1997). Experimental evidence suggests that, as in 

Drosophila, Smo acts as a positive transducer of Shh signalling. Smo  null mutant 

progenitor cells in the ventral neural tube were unable to transduce a Shh signal and 

consequently did not acquire a ventral identity but a dorsal one (W ijgerde et al., 

2002).

At the cytoplasmic level, it appears that Mouse and D rosophila  Hh signalling 

pathways have diverged, at least to some extent. The absence of the Cos2 orthologues 

Kif7 and Kif27 in mouse cell lines had no effect on Shh signalling (Varjosalo et al., 

2006). However, in zebrafish, inactivation o f  the Cos2 orthologue by morpholino 

injection led to ectopic Hh signalling (Tay et al., 2005), while loss of this gene in 

Drosophila was lethal (Grau and Simpson, 1987). Conversely, while mutations in
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Drosophila  Su(fu) had no effect on the Hh signalling pathway (Preat, 1992), loss of 

Su(fu) in mouse led to an increase in Shh activity with a phenotype similar to that of 

Ptcl  mutant mice (Cooper et al., 2005; Svard et al., 2006; Varjosalo et al., 2006).

As in D ro so p h ila ,  vertebrate Hh signal culminates in the regulation of Ci-like 

transcriptional effectors of the pathway. In vertebrates these are known as Gli 

proteins. The Gli proteins are zinc finger containing transcription factors, and are the 

homologues of D ro so p h ila  Ci. The Gli transcription factors bind to identified 

consensus sequence (Kinzler and Vogelstein, 1990), which has been found in several 

Shh-responsive genes (see below).

In vertebrates there are 3 Gli proteins; GUI , Gli2 and Gli3 (Ruppert et al., 1988), all 

are expressed in the neural tube (Brewster et al., 1998; Hui et al., 1994; Lee et al., 

1997). The different regulation and roles of these Gli proteins are slowly being 

understood (reviewed in Jacob and Briscoe, 2003). GUI is expressed in the ventral 

neural tube and its expression is dependent upon Shh (Bai et al., 2002); in the 

presence of Shh GUI is activated (Lee et al., 1997; Marigo et al., 1996b). The G lil  

protein contains a zinc finger DNA binding motif and an activator dom ain at the 

carboxy terminal, however, it does not contain a repressor domain (Dai et al., 1999; 

Sasaki et al., 1999).

Like Drosophila Ci, Gli2 and Gli3 can be proteolytically processed and are able to act 

as both activators and repressors (Dai et al., 1999; Ruiz i Altaba, 1999; Sasaki et al., 

1999). GU2 and GU3 are expressed in neural tissue prior to neural tube closure. After 

that, GU2 expression remains uniform, with GU3 expression becoming confined to 

intermediate and dorsal regions of the neural tube (Hui et al., 1994; Lee et al., 1997). 

Gli2 is an activator in the presence of Shh. A repressor form of Gli2 can be formed 

(Dai et al., 1999), this processing is believed to be inhibited by Shh signalling (Pan et 

al., 2006). In vivo, however most Gli2 is present in the full length form because the 

partial processing appears to be very inefficient (Pan et al., 2006). Instead, Shh 

appears to regulate the stability of Gli2 (Pan et al., 2006). Gli2 is readily degraded by 

ubiquitination due to hyperphosphorylation by PKA and GSK3. This process is
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suppressed by Shh signalling (Pan et al., 2006), resulting in the accumulation of full 

length protein able to activate transcription.

Like G//2, the activity of GU3 is dependent on Shh signalling. In the absence of Shh 

signalling, Gli3 is processed to a C-terminally deleted form to act as a repressor (Aza- 

Blanc et al., 2000; Dai et al., 1999; Wang et al., 2000a). In the presence of Shh, the 

generation of Gli3 repressor is blocked (Litingtung et al., 2002; Wang et al., 2000a). 

Therefore, Shh acts to stabilise Gli2 and 3, and to block their processing to 

transcriptional repressors. In the absence of Shh, GIi2 appears to be degraded while 

partial processing of Gli3 results in an increase in inhibitory forms of Gli3. Notably, 

even though Gli3 appears to act primarily as a repressor, there is evidence to suggest 

that it is able to act as an activator. In mice Gli 1 /Gli2 homozygous double mutants, 

there was evidence of Shh signalling, suggesting Gli3 was able to act as an activator 

in the pathway (Park et al., 2000).

Embryos from mouse G li3  knock-out lines, displayed a dorsal expansion of 

intermediate neuronal subtypes, suggesting a dorsal shift in Gli activator activity in 

the neural tube (Persson et al., 2002). However, the wild type expression pattern of 

progenitor markers in the intermediate neural tube was rescued in embryos carrying a 

Gli3  allele that encoded a protein equivalent to the repressor form (Persson et al.,

2002). This indicates that the Gli3 repressor form (Gli3R) is required for correct 

patterning of the intermediate neural tube. Conversely, Gli2 appears necessary for 

patterning the ventral neural tube. Mouse embryos lacking Gli2 failed to develop a 

floor plate and there was a dramatic reduction or absence of the most ventral neuronal 

subtypes including V3 interneurons, dopaminergic and serotonergic neurons (Ding et 

al., 1998; Matise et al., 1998; Park et al., 2000).

Gene knock-out studies of Gli proteins in mice have not only provided evidence that 

Gli proteins are required for neural tube patterning, but have also provided evidence 

of a model for their activity. This model suggests that there is a gradient of both Gli 

activator and repressor forms acting in opposing directions, regulated by Shh. G lil ,  2 

and 3 activators form a gradient from ventral to dorsal and the Gli2 and 3 repressors
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form a gradient from dorsal to ventral (reviewed in Jacob and Briscoe, 2003). Recent 

evidence has demonstrated that a gradient of Gli activator activity in the neural tube is 

sufficient to control the patterning of the neural tube (Stamataki et al., 2005). 

Different levels of Gli activity mimicked the effects of a Shh gradient by inducing 

transcriptional markers characteristic of the spatial location along the dorsoventral 

axis of the neural tube (Stamataki et al., 2005).

1.3.3 Control and Maintenance of Shh Gradient

In order for a morphogen to correctly pattern a tissue, regulating the distribution of the 

protein is crucial. One way that the Shh gradient is believed to be regulated is by 

negative feedback (reviewed in Perrimon and McMahon, 1999). This mechanism 

works by morphogen signalling up-regulating negative inhibitors of the pathway. The 

attenuation of signal is achieved through proteins that bind and sequester Hh. 

Drosophila  studies have identified Ptc as one such protein (Chen and Struhl, 1996). 

Therefore, Ptc inhibits the Hh pathway in two ways by sequestering Hh and by 

preventing Smo signal transduction (see above). Mouse P t c l , like D rosophila  P tc , 

has been shown to contain a Gli binding site in its promoter (Agren et al., 2004) and is 

positively regulated by the Shh signalling pathway (Goodrich et al., 1996). Another 

protein that has been found to be transcriptionally regulated by the pathway and acts 

as a negative regulator is Hh-interacting protein 1 (H hipl: Chuang and McMahon,

1999). A Drosophila  homologue of this gene has not been identified. There is now 

experimental evidence to suggest that both Ptcl and Hhipl mediate a process called 

ligand-dependent antagonism (LDA), which controls the range o f  signalling. 

Sequestration of Shh is important in this model (Jeong and M cM ahon, 2005). 

Experiments using mice lacking both Ptc  and H hip ,  provided evidence that the 

process of LDA was essential for the correct patterning of the ventral neural tube and 

the positioning of the various neuronal subtypes.

Further factors have been identified that are thought to be involved in the tight 

regulation of the Shh gradient. Two cell surface fibronectin containing proteins Cdo 

and Boc were identified, in a microarray screen, as being downregulated in response 

to Shh (Kang et al., 1997; Kang et al., 2002; Tenzen et al., 2006). Both Cdo and Boc
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are expressed in the dorsal spinal cord, where levels o f  P t c l  and H h i p l  gene 

expression are low, Cdo  is also expressed in the floor plate (Tenzen et al., 2006). 

Gain- and loss-of-function experiments suggest that Cdo and Boc have complex roles 

in the maintenance of the gradient. Cdo and Boc, cell autonomously enhance Hh 

signalling, Cdo increases Shh signalling in the floor plate where the highest Shh 

signalling levels are required. At more dorsal positions in the neural tube, where Shh, 

Ptcl and Hhipl levels are low, Cdo and Boc are proposed to sensitise cells to low 

levels of Shh protein. By ectopically expressing Cdo and Boc a non-cell autonomous 

expansion of dorsal genes was seen in cells dorsal to those containing the transgene 

(Tenzen et al., 2006). This was consistent with the idea that these proteins bind Shh 

impeding its ability to spread further through tissue.

1.4 Interpreting Graded Signals

In order for a tissue to be patterned by a morphogen, the signal needs to be interpreted 

by the receiving cells. Subtle differences in signal are translated into discrete 

responses by the cell, elaborated as discrete changes in gene expression. A key point 

is therefore to understand how a cell differentially regulates gene expression in 

response to small changes in extracellular morphogen concentration. The possible 

mechanisms by which cells achieve this and examples will be briefly discussed here 

(reviewed in Ashe and Briscoe, 2006).

1.4.1 Binding Site Affinity and Combinatorial Inputs

The presence of binding sites with different binding affinity for the morphogen 

activated transcription factors in promoters of target genes, is one way in which 

differential gene regulation could be achieved by a gradient (Fig. 1.4A). For this 

mechanism, target genes containing low affinity binding sites would require higher 

concentrations of the transcriptional regulator in order to be activated. Those 

promoters containing higher affinity binding sites would be activated by lower 

concentrations of transcription factor. Thus different groups of genes would respond 

to the different concentrations of morphogen in one tissue. Often viewed as the 

canonical mechanism, there are several examples of systems in which this is proposed
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to aid the interpretation of a morphogen gradient; notably for genes responding to the 

Dorsal (Dl) gradient and Bicoid (Bed) gradient (Driever et al., 1989; Ip et al., 1992; 

Jiang and Levine, 1993; Struhl et al., 1989).

In the dorsoventral axis of the Drosophila, target genes expressed where Dl proteins 

are present at high concentrations (presumptive mesoderm), contain low affinity 

binding sites, for example twist (twi). This ensures twi and other type I genes can only 

be expressed at positions of high Dl concentration (Jiang and Levine, 1993). 

Conversely, genes that contain high affinity binding sites in their promoters, for 

example rhomboid  (rho), respond to lower levels of Dl protein and are expressed at a 

further distance from the source of Dl (ventral neuroectoderm: Ip et al., 1992). 

However, this view of gradient interpretation is not sufficient to explain all of the Dl 

dependent outcomes. Recent studies of Dl responsive genes in the dorsoventral axis 

suggest that it is not only the affinity of Dl binding site but the combination of this 

and other transcription factors that lead to the correct gene activation (Fig. 1.4B: 

reviewed in Stathopoulos and Levine, 2004).

A similar observation has been made for genes responsive to Bicoid (Bed), the factor 

that patterns the anteroposterior axis of the Drosophila  embryo (see above). A Bed 

responsive gene, hunchback (hb), is expressed at low concentrations of Bed, and 

contains high affinity sites in the hb  enhancer (Driever et al., 1989; Struhl et al., 

1989). This allows expression even in posterior regions of the em bryo where Bed 

levels are low (Driever et al., 1989; Struhl et al., 1989). However, in other cases, Bed 

responsive genes activated at more posterior regions tend to be activated by other 

genes and require inputs from transcription factors such as Caudal and Kriippel 

(Ochoa-Espinosa et al., 2005).

1.4.2 Feed Forward Loops

A second way in which differential gene expression can be regulated in response to a 

morphogen is with gene networks, such as a feed forward loop (Fig. 1.4C: Mangan 

and Alon, 2003). A feed forward loop allows the integration of responding genes in a
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single pathway to regulate the response to a morphogen. This mechanism involves 

the sequential activation of two transcription factors, which together activate a third. 

The responsive gene in the pathway can only be activated if both of the first two 

factors are present.

Examples of such pathways have been reported in targets of the Drosophila  gene dpp, 

a ligand for the bone morphogenetic protein (BMP) pathway, which is involved in 

patterning the dorsoventral axis of the embryo (Lin et al., 2006; Xu et al., 2005). The 

activation of the Dpp signalling target genes Race  (Xu et al., 2005) and C15  (Lin et 

al., 2006) require induction by both Smad and Zen in order to be expressed. Smad 

and Zen bind to the enhancer of Race  at adjacent binding sites, direct interaction 

between the two transcription factors is required for gene activation (Xu et al., 2005). 

Both Smad and Zen are targets of Dpp signalling, peak levels of signalling activate 

Smad and Zen which then activate Race (Xu et al., 2005). The target gene C15  is 

activated in a similar fashion, however it responds to lower levels of Dpp signalling 

via Smad and Zen activation (Lin et al., 2006).

1.4.3 Other Mechanisms

In addition to those discussed, there are many other mechanisms that can contribute to 

how a set of target genes interpret gradients. For example, a positive feedback 

mechanism, this occurs when a target gene regulates its own expression once 

activated by the morphogen. A cross repression mechanism, as previously described, 

between Class I and Class II genes in the dorsoventral patterning of the neural tube 

could also contribute to the interpretation of morphogen gradients. Finally, patterning 

could be achieved by the production of reciprocal repressor gradients, which together 

could determine the threshold responses of target genes. All o f  these potential 

mechanisms are unlikely to function alone but in tandem to precisely pattern a naive 

tissue and to ensure discrete all or nothing responses by target genes.
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1.5 Promoter Analysis: Methods Utilised

In order to understand how the neural tube is patterned by a gradient of Shh we need 

to understand how extracellular changes in Shh concentration regulate differential 

gene responses in cells. Second, how are the cross repressive interactions between the 

homeodomain proteins integrated at the level of individual genes? Finally, how is 

neural specificity achieved? Shh is expressed in many tissues of the developing 

embryo, so why are the homeodomain proteins utilised in neural tube patterning only 

expressed in the CNS? In order to answer these questions, a comprehensive promoter 

analysis needs to be performed.

Promoter analyses of this type have been initiated for Shh-responsive genes: floor 

plate marker FoxA2  (Sasaki and Hogan, 1996; Sasaki et al., 1997); motor neuron 

progenitor marker Olig2 (Sun et al., 2006; Xian et al., 2005); as well as Shh  itself 

(Epstein et al., 1999; Jeong et al., 2006; Jeong and Epstein, 2003; Muller et al., 1999).

1.5.1 Shh  and F oxA 2  Promoter Analysis and Protein Interactions

Extensive analysis of the shh  locus in mouse has identified the enhancer elements 

needed for correct spatial expression of the shh gene in all regions of the mouse neural 

tube (Epstein et al., 1999; Jeong et al., 2006; Jeong and Epstein, 2003). Initial 

analysis used reporter constructs, driving LacZ, covering 35kb o f  DNA that included 

the shh  locus (Epstein et al., 1999). These enhancers directed precise Shh-like 

expression of the reporter in distinct locations within the CNS of the transgenic mice, 

including the ventral midline of the neural tube and notochord (Epstein et al., 1999).

This analysis revealed the presence of several enhancers all driving different 

expression patterns within the CNS. Enhancer SFPE1, located upstream of the shh  

gene, is a FoxA2 independent enhancer of expression and directed floor plate 

expression in the hindbrain and spinal cord (Epstein et al., 1999). 2 enhancers 

(SFPE2 and SBE1) were located within intron 2. SFPE2 directed similar expression 

to SFPE1 whilst SBE1 directed expression in the ventral midbrain and posterior 

diencephalon (Epstein et al., 1999). Cross species analysis of human, mouse, chicken
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and zebrafish using intron 2 narrowed the SFPE2 down to an 88bp fragment, 

containing FoxA and Tbx consensus binding sites (Jeong and Epstein, 2003). This 

fragment can direct Shh-like expression in the notochord and ventral midline. Further 

analysis using an enhancer trap method identified three further enhancers covering a 

400kb region that directed expression in more anterior regions not covered by the 

previous three enhancers (Jeong et al., 2006). A similar analysis was carried out on 

the zebrafish shh  gene (Muller et al., 1999), this identified intronic enhancers that 

directed notochord and floor plate expression in transgenic mice and zebrafish, 

suggesting conservation of regulatory mechanisms.

Using a similar method to that used for the analysis of the shh promoter, independent 

notochord and floor plate enhancers in the FoxA2  promoter were identified (Sasaki 

and Hogan, 1996). Identification of a Gli binding site within the floor plate enhancer 

suggested Shh involvement in the activation of floor plate FoxA2  expression (Sasaki 

et al., 1997). Targeted mutation of the Shh-responsive Gli binding site within the 

FoxA2  floor plate enhancer, led to a loss of reporter expression within the floor plate 

(Sasaki et al., 1997). Glil but not Gli3 can activate the Gli binding site, therefore Gli 1 

is a likely positive regulator of FoxA2.

Together, therefore, the data suggest that FoxA2 acts both upstream and downstream 

of shh. The shh  gene in zebrafish has been shown to contain 2 FoxA2 binding sites 

(Chang et al., 1997). Mice homozygous for a mutation in FoxA2  fail to develop node 

or notochord (Ang and Rossant, 1994). G lil  has been shown to positively regulate 

FoxA2  (Sasaki et al., 1997), which in turn activates shh  expression (Chang et al., 

1997; Ruiz i Altaba et al., 1995). This cascade initiated by Shh is essential for 

induction of the floor plate gene expression profile and for its own expression. 

However, maintenance of floor plate expression is not Gli dependent (Lee et al., 

1997), expression of Glis are downregulated in the floor plate once established.
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1.5.2 Additional Promoter Analysis Methods

The methods described above for analysis of gene promoters have several limitations: 

transgenes insert randomly in the genome and the expression is influenced by position 

of insertion; producing transgenic animals is expensive and time consuming; 

biochemical studies usually require more material than available from embryo 

experiments. To overcome these limitations a newly developed method can be used; 

ES cell analysis. This system has been successfully carried out to analyse the Olig2  

promoter, which identified a region that when deleted led to loss of Olig2  expression 

(Xian et al., 2005). This method involves electroporating a BAC containing the DNA 

of interest into ES cells and then multiple individual clones are allowed to proliferate. 

Each culture of stable clones is then grown in a media, which causes differentiation 

into neural cells (ES cell-derived neural cells; ESNCs). This enables transgenic 

expression to be analysed at each step of the pathway from a totipotent cell to a 

differentiated neural cell.

Further study of the Olig2  regulatory regions utilised another method that has 

successfully identified regulatory regions in the promoters o f  other genes; BAC 

transgenesis (Sun et al., 2006). This method targeted a BAC containing Olig2 with a 

traceable marker and transgenic animals were generated. This method identified a 

region of DNA that is believed to drive Olig2 expression in the motor neuron lineage 

only, not in oligodendrocytes (Sun et al., 2006).

1.5.3 Identification of Conserved Non-Coding Regions

In order to identify enhancer regions in genes of interest, in silico approaches are 

increasingly exploited. Identifying conserved regions o f  regulatory DNA by 

comparing genomic sequences, is a process called phylogenetic footprinting. This 

method has been very successful, and is based on the idea that regulatory regions that 

have been conserved are under more selective pressure than non-regulatory regions 

and mutation rates will be slower. Pair-wise comparison between closely related 

species, for example human and chimpanzee, provide little information due to the 

high proportion of conservation in the genome. Comparisons between highly
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diverged genomes, on the other hand, such as those of tetrapods and teleosts are more 

likely to identify regions important in gene regulation.

Once two or more genomes have been chosen, an alignment between the sequences 

needs to be performed. There are two commonly used methods for alignment; a local 

alignment that identifies short segments of similarity, and a global alignment that 

finds similarity across the full length of a sequence. For local alignments, the 

BLASTZ algorithm (Schwartz et al., 2000) is used, this is a modification on the 

original Gapped BLAST algorithm (Altschul et al., 1990). This algorithm uses the 

following strategy; it identifies short near exact matches in sequences and then 

extends them allowing no gaps. Finally it extends the gap free matches with less 

sensitive thresholds of matches.

For global alignments the Needleman-Wunsch algorithm is used (Needleman and 

Wunsch, 1970), this is often carried out by obtaining short local alignments to identify 

sub segments, subsequently a global alignment is carried out. This algorithm finds the 

alignment between 2 sequences (DNA bases or amino acids) that provides the 

maximum score. The scoring is allocated using a similarity matrix, which increases 

the score (+1) for similar matches and decreases the score for dissimilar matches (-1). 

There is also a linear gap penalty applied that affects the score of an alignment. This 

means that any gap, large or small, carries the same penalty and is therefore biased 

towards alignments with few gaps. There are various im plementations of these 

algorithms available many of which produce visualisations of the alignments.

Cross species comparisons have proven to be effective for identification of regulatory 

regions in both S a c c h a ro m y c e s  (Kellis et al., 2003) and in higher eukaryotes 

(Wasserman et al., 2000). Genes with high upstream conservation appear to be 

predominantly transcription factors (Iwama and Gojobori, 2004), especially those 

involved in developmental processes. However, this only identifies the regions of 

homology, the function and role of these regions then needs to be identified 

experimentally. One way to proceed is to try to identify putative transcription factor 

binding sites (reviewed in Tompa et al., 2005). The methods currently available have
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an important limitation, they assume that transcription factors bind independently and 

therefore ignore the proximity of other putative binding sites. The other main 

limitation to the currently available methods is that they assume all of the identified 

transcription factor binding sites are functional. This can only be concluded after 

experimental analysis.

To overcome this obstacle, new approaches are being developed that identify motifs 

that are common to genes regulated in a similar manner (Donaldson and Gottgens, 

2006; Wang and Stormo, 2005). This allows the identification of gene networks 

without needing prior knowledge about any genes identified. It is hoped this will 

provide a better understanding of the regulatory transcriptional controls that lead to 

differential gene expression. These systems can be applied to large eukaryotic 

genomes, however the regulatory motifs may be positioned further away from the 

gene of interest compared to the genomes of lower eukaryotes.

1.5.4 Aims

The gene chosen for promoter analysis in this study was N kx2 .2 .  It codes for a 

homeodomain containing protein, which requires a high concentration of Shh for 

expression. It is expressed in the developing spinal cord, hindbrain, forebrain (Price 

et al., 1992) and in the most ventral domain of progenitors and is repressed by Pax6 

(Fig. 1.3). Nkx2.2  mutant mice show a loss of V3 interneurons and a concomitant 

increase in MNs - a ventral to dorsal transformation (Briscoe et al., 1999).

Recent experimental evidence has provided further clues to how Nkx2.2  is regulated. 

Chick neural explant experiments showed that induction of N kx2.2  was delayed in 

response to Shh signalling, and its expression was only consolidated by prolonged 

exposure to Shh (E. Dessaud personal communication). These data raise further 

questions that can potentially be answered with a promoter analysis.
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The aim of this project is to analyse the promoter regions of the Nkx2 genes that 

respond to Shh and to isolate regulatory regions that direct specific neural expression 

and/or confer ventral patterning. The questions to be answered are:

Is the requirement for Shh direct for Nkx2.2 expression?

How does Pax6 repress Nkx2.2 expression?

Why is Nkx2.2 induction delayed?

Why does Nkx2.2 expression require prolonged exposure to Shh?

To answer these questions, a combination of in silico analysis and in vivo analysis in 

mouse, chick and zebrafish were performed. In vivo analysis was carried out through 

the production of both large (BAC) and small (plasmid) reporter constructs.
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Figure 1.1 Diagrams of morphogen gradients and their patterning of developing 

tissues.

A Bicoid (Bed) is a maternal protein laid down in the developing Drosophila  embryo, 

which sets up an anterior to posterior concentration gradient. It is responsible for 

determining the expression patterns of the downstream Gap genes, required for the 

correct patterning of the anteroposterior axis, orthodenticle  is expressed at high Bed 

concentrations and h u n c h b a c k  at low levels. B A concen tra tion  gradient of 

Decapentaplegic (Dpp) is set up at the anterior posterior com partm ent border of the 

Drosophila  wing disc. Target gene spalt (sal) is expressed at high concentrations of 

Dpp, with optomotor blind (om b) expressed at both high and low levels of Dpp. Ci A 

ventral to dorsal gradient of the protein Dorsal (Dl) is set up in the D ro so p h ila  

embryo. This determines the formation of different tissue types in the dorsoventral 

axis by activating target genes at different concentrations; dpp (decapentaplegic), zen 

(zerkniillt), sog (short gastrulation), rho (rhomboid), sna (snail)  and twi (twist). Cii 

The gradient is intracellular, binding of the ligand Spatzle to the ubiquitous receptor 

Toll, leads to degradation of the Cactus/Dorsal complex and Dorsal translocates to the 

nucleus to activate dow nstream  genes. D A gradient o f  A ctiv in  is set up in the 

Xenopus  embryo from a region named the Nieuwkoop centre. This gradient activates 

the gene X gsc  (Xenopus goosecoid)  at a higher concentration than X b ra  (Xenopus  

brachyury), which are required for formation of the dorsal and lateral mesoderm 

respectively. Diagrams are based on published figures (A she and Briscoe, 2006; 

Gurdon and Bourillot, 2001).
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Figure 1.2 Expression pattern of Shh in vertebrate neural tube and its 

mechanism of patterning the ventral neural tube via a concentration gradient.

A Transverse section of a chick neural tube at stage 18, immunostained for Shh. Shh 

protein was observed in the notochord and floor plate. B The expression of Shh  in the 

notochord (N) and floor plate sets up a protein concentration gradient in the ventral 

neural tube (light blue, left). A t particular thresholds o f  Shh in v ivo , 5 distinct 

neuronal subtypes differentiate (VO, V I ,  V2, MN and V3, left). This differentiation 

can be recreated in vitro  in neural explants, with 2-3 fo ld  increases in Shh 

concentrations (right). Each of the 5 neuronal subtypes is identified by specific 

molecular markers (Fig. 1.3). [Images A and B kindly contributed by James Briscoe].
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Figure 1.3 Transcription factor code that patterns the ventral neural tube.

A Downstream of Shh, transcription factors are grouped into two classes depending 

on their response to Shh; Class I genes are inhibited by Shh and Class II genes are 

activated. Cross repression between these genes leads to a sharpening of borders of 

expression. The combinatorial expression of transcription factors determines the 

progenitor domain formed, which then dictates the neuronal fate of the cell. B A 

summary of the expression patterns of transcription factors expressed in the mouse 

neural tube in progenitor cells (left). Molecular markers indicative of specific post­

mitotic neurons in the ventral neural tube (right), l lm age A kindly contributed by 

James Briscoe, B based on published figure (Persson et al., 2002)).
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Figure 1.4 Mechanisms used to interpret graded signals.

Three possible mechanisms used by cells to control differential gene expression in 

response to extracellular graded signals. A Binding site affinity. Genes containing 

high affinity binding sites (BS) can be activated by low concentrations o f  the 

morphogen activated transcription factor. However, enhancers containing low affinity 

binding sites require higher concentrations of the transcrip tion factor for gene 

activation. B Combinatorial input. The activation of a target gene may require the 

morphogen activated transcription factor, however in addition, a second transcription 

factor (Y) may be required. C Feed forward loop. The activation of a target gene 

may require the interaction of two transcription factors, both activated by the same 

morphogen. The morphogen transcriptional regulator may activate gene X. Then 

transcription factor X may work in concert with the transcriptional regula tor to 

activate another gene. Figure based on published diagrams (Ashe and Briscoe, 2006).
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2 Materials and Methods

2.1 In Silico Analysis

2.1.1 Identification of Zebrafish and Fugu  Nkx2 Genes

Known sequences of Nkx2.1 (Accession numbers; BC006221, BC057607), Nkx2.2  

(Accession Numbers; BC075093, NM_010919), N kx2 .4  (A ccession Numbers; 

AF202037, AF202038) and Nkx2.9  (Accession Numbers; BC041090, NM_008701) 

from human and mouse were used as templates to BLAST search the Ensembl 

database (www.ensembl.org) zebrafish genome, assembly Zv6. Reciprocal searches 

with the Ensembl mouse database (NCB1 36 Assembly) further confirmed these 

results. A similar search was carried out to identify genes in the Fugu  (Takifugu  

rubripes) Ensembl database (Fugu 4.0 Assembly).

2.1.2 Selection of Zebrafish Nkx2 In  S itu  Probes

EST Clones were identified from the Ensembl Zebrafish Assembly Zv6, which 

corresponded to untranslated regions (UTR) of the Nkx2 genes. If no EST was 

available, DNA was amplified by PCR from genomic Zebrafish DNA (see Table 1 for 

details).

2.1.3 Identification of Zebrafish BAC for Homologous Recombination

BAC ends that mapped to chromosome 17, close to Nkx2.2a  were identified. From 

these BACs, any which encompassed the entire Nkx2.2a  gene and contained a large 

fragment of 5 ’ (upstream) DNA were isolated. zK257G4 was chosen, which maps to 

position 41192800-41285800 in genome assembly Zv4 (release date October 2004).
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2.1.4 Extracting Non-Coding DNA and Alignment

Nkx2.2  and Nkx2.9  genes from human, mouse, zebrafish and Fugu  genomes were 

identified. 9kb of DNA 5 ’ of genes was exported in FASTA format. DNA was 

uploaded into Multipipmaker ( h i t p : / / p ip m a k e r .h \ .p s u .ed u /c g i -b in /r n u i t . ip ip m a k c r ) .  which aligned 

the DNA using a BLASTZ algorithm. To identify putative transcription factor 

binding sites, M atlnspector ( h t tp : /A v \v \v .g c n o m a t ix .d c / p r o d u c t s /M a iI n s p c c io r / in d c x . h t m l ) .  which 

identifies possible consensus sites using a library of matrices, was used.

2.2 G e n e r a l  M o le c u la r  B io lo g y  T e c h n iq u e s

2.2.1 Transformation of Chemically Competent Bacteria

Plasmid DNA prepared from ligations was transformed into chemically competent 

D H 5-a E.co li  bacteria. The bacteria were made competent using the protocol 

available at the following site: h ltp : / /b io im ) to co l .b io .co m /p ro U x . ,o l s t o o l s /p r o lo c o l . ih t m l? i d = p . } 8 6 .  Up 

to 500ng of DNA was added to a lOOpl aliquot of competent bacteria. This was 

incubated on ice for 30 mins followed by a heat shock at 42°C for 1 minute and 

returned to the ice for 2 minutes. 1 ml of LB (Luria-Bertani Broth; 10g/l Tryptone, 

5g/l Yeast Extract, 10g/l NaCl, pH 7.0) was added and the mixture was incubated at 

37°C for 1 hour. The bacteria was plated onto LB agar plates (LB broth + 15g/l agar) 

containing a selective antibiotic (0.1 mg/ml ampicillin, 50pg/ml kanamycin). Plates 

were incubated overnight at 37°C.

2.2.2 Plasmid DNA Preparation

For small-scale plasmid DNA preparation the Quantum Prep Plasmid Miniprep Kit 

(Biorad) was used. For large-scale preparations, the HiSpeed Plasmid Maxi Kit 

(Qiagen) was used, according to manufacturers’ guidelines.
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2.2.3 DNA Quantification

DNA quantification was performed by spectrophotometry using the ND-1000 

Nanodrop® (LabTech). This takes readings at k  = 260nm at which an optical density 

(OD) reading of 1 corresponds to 50pg/ml of double stranded DNA. The purity of the 

DNA was also measured by calculating the OD260/OD280 ratio. A ratio of 1.8 indicated 

a pure preparation.

2.2.4 Gel Electrophoresis

Gel electrophoresis was carried out to determine nucleic acid size and for separation 

and purification of nucleic acid products. Gels were prepared by dissolving 1-2% 

(w/v) agarose, depending on size of DNA to be resolved, in IX TA E (20mM TRIS 

acetate, ImM Na2EDTA.2H20, pH 8.5) with 0.5mg/ml ethidium bromide. Samples 

were mixed with 6X Buffer (6X TAE, 50% v/v Glycerol, 0.2% w/v bromophenol 

blue) and loaded onto the gel alongside a lkb ladder (Invitrogen) and run at 5-20V/cm 

gel length. Nucleic acids stained by ethidium bromide were visualised with a UV 

lamp (A,«  302nm).

2.2.5 PCR and Gel Band Purification

DNA purification from PCR reactions and after band isolation from an agarose gel 

was carried out using GFX PCR DNA and Gel Band Purification Kit (GE Healthcare) 

according to manufacturers’ guidelines.

2.2.6 DNA Modification

For the following DNA modifications, the enzymes used are listed:

• Digestion of DNA - Restriction enzymes (Roche and NEB)

• Blunting of dsDNA- DNA Polymerase I Large (Promega)

Ligation of DNA - T4 DNA Ligase (NEB)

De-phosphorylation - Shrimp alkaline phosphatase (Roche)
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Conditions for use of enzymes were according to manufacturers’ guidelines.

2.2.7 Southern Blotting

DNA digestion with appropriate restriction enzymes was carried out overnight. 

Digested DNA was run on a 1% agarose gel until the DNA had run the full length of 

the gel. The gel was visualised using a UV lamp and photographed with a ruler to 

ensure the positions of the MW marker could be located on the blot. The agarose gel 

was washed with distilled water and then washed with a depurination solution 

(0 .125M HC1) until the bromophenol blue in the loading buffer had turned from blue 

to yellow. The gel was then washed in a denaturation solution (0.4M NaOH) until the 

bromophenol blue had returned to its original colour.

A capillary blotting technique was used to transfer the nucleic acid to an N+ Hybond 

membrane (Amersham Biosciences), the denaturation solution was used as the 

transfer buffer. The transfer occurred overnight and the membrane was then washed 

twice for 5 minutes in 5X SSC to remove any excess agarose. The membrane was 

then washed in Church’s Buffer (7% SDS, 1% BSA, ImM  EDTA, 0.25M Phosphate 

buffer) at 65°C to pre-hybridise the membrane.

Radiolabelled probe was made using the Rediprime™ II DNA Labelling system 

(A m ersham  Biosciences) and Redivue a - 32P dC T P (A m ersham  Biosciences) 

according to manufacturers’ guidelines and purified using Microspin S-200 HR 

Columns (Amersham Biosciences). Purified probe was added to an appropriate 

volume of Church’s buffer, in which the membrane was left to hybridise overnight at 

65°C. The membrane was washed in a solution of 0.2X SSC and 0.2% SDS and 

monitored until background levels were almost undetectable. Membranes were stored 

at -80°C with X-ray film in autoradiography cassettes with intensifying screens before 

developing the films. This step was repeated until correct exposure time was 

identified.
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2.2.8 Isolation and Purification of Wild Type Zebrafish Genomic DNA

Embryos were incubated to 24hpf and pooled, 20-30 em bryos per extraction. 

Embryos were digested in 1ml extraction buffer (0.5% SDS, 0.1M EDTA, lOmM 

TRIS-HC1 pH 8.0, 0.1 mg/ml Proteinase K) for 4-5 hours at 55°C with occasional 

agitation. To extract genomic DNA, 1ml phenol/chloroform /isopropyl alcohol 

(25:24:1) mixture was added, the sample was vortexed and centrifuged for 5 mins at 

13000rpm . The aqueous  layer  was rem o v ed  and m ixed  with 1ml 

phenol/chloroform/isopropyl alcohol (25:24:1) mixture. This extraction step was 

repeated 3 times. The final aqueous layer was mixed with 1.5ml 100% ethanol and 

stored at -70°C for 1 hour to precipitate the DNA. Centrifugation at 13000rpm for 30 

mins at 4°C pelleted the DNA. The pellet was washed with 70% ethanol before being 

resuspended in dH20  and stored at -20°C.

2.2.9 Isolation and Purification of Mouse Genomic DNA

Tail or ear clippings from mice were digested and genomic DNA was extracted using 

the DNeasy Tissue Kit (Qiagen) following manufacturers’ guidelines.

2.2.10 Synthesis of Riboprobes for In  S itu  Hybridisation

RNA probes were constructed from plasmid DNA (Table 1) that was linearised using 

the appropriate enzyme for at least 2 hours. DNA was run on an agarose gel and the 

appropriate DNA band was cut and DNA extracted using purification kit (see above). 

In vitro RNA transcription was performed on linearised DNA at 37°C for 2 hours 

using; IX DIG-RNA labelling mix (Roche), lx  transcription buffer (Roche), 60 Units 

RNase inhibitor (Roche), 40 units RNA (T3, T7 or SP6) polymerase (Roche). Probes 

were then treated with 20 units DNase I (Roche) at 37°C for 15 minutes to remove 

DNA template and were purified by size-exclusion chromatography through a DEPC 

water column (Clontech Chroma Spin-100). A list of the RNA probes used can be 

found in Table 1.
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2.3 BAC Manipulation

2.3.1 BAC DNA Preparation for Electroporation into Recombinant E .co li

For large-scale preparations of BAC DNA, the Large-Construct Kit (Qiagen) was 

used according to manufacturers’ guidelines with the following modifications to 

increase DNA yield. Elution from column was carried out with elution buffer heated 

to 65°C and final precipitation of DNA was performed using glass centrifuge tubes 

instead of plastic. BAC zK257G4 contains a chloramphenicol resistance gene, BAC 

was grown in LB + 12.5pg/ml chloramphenicol.

To electroporate the BAC into the EL250 recombinant E.coli strain, a single colony 

was used to inoculate 50ml LB (+ 12.5pg/ml chloramphenicol), which was grown at 

32°C overnight shaking at 200rpm. The overnight culture was cooled on ice for 10 

minutes and the cells were collected by centrifugation at 4000rpm  for 5 minutes, 

supernatant was removed and cells were washed with ice-cold sterile dH20 .  

Centrifugation was repeated and 3 further washes were performed. The cells were 

resuspended in 200pl ice-cold sterile dHzO. 50pl aliquots o f  cells were mixed in 

0. lcm  gap electroporation cuvettes with lOOng BAC DNA in a volume of 2pl. DNA 

was electroporated in the following conditions: 1.75kV, 25p.F and 200Q with an 

expected time constant of 4.0 secs. 1ml of LB was added immediately after pulse was 

applied and the mixture was incubated at 32°C for 1.5 hours before plating onto LB + 

12.5pg/pl chloramphenicol plates. Plates were incubated at 32°C overnight for up to 

24 hours for colonies to grow.

2.3.2 Generation of Targeting Constructs

Targeting Vector 1 : used to insert Venus into exon 1 of Nkx2.2a.

Venus DNA was amplified from pVenus-Nl (Nagai et al., 2002) using primers 7 and 

8 (Table 2) and PCR conditions 2 (Table 3). Product was ligated into pCRII-TOPO 

Blunt (Invitrogen) and digested EcoRI x Smal. This fragment (approx. lkb) was 

ligated directionally into pIGCN21 (Lee et al., 2001) digested with EcoRI and Smal 

which replaces eGFPcre fusion protein. Homology arms were amplified from
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zK257G4 BAC DNA to ligate into the targeting vector. The upstream homology arm 

was amplified using primers 9 and 10 (Table 2) under PCR conditions number 3 

(Table 3). The ~600bp product was ligated into pCRII-TOPO Blunt, digested with 

Sail and ligated into the Sail site upstream of Venus in pIGCN21-Venus. The 

downstream homology arm was amplified using primers 11 and 12 (Table 2) under 

PCR conditions number 2 (Table 3). The ~500bp product was ligated into pCRII- 

TOPO Blunt, digested with Sfil and ligated into the Sfil site downstream of Venus in 

pIGCN21-Venus.

Targeting Vector 2 : Used to delete CNCR from zNkx2.2aVenus BAC

The FRT5-Neo-FRT5 (Schlake and Bode, 1994) cassette was amplified from 

pIGCN21, introducing the change in spacer sequence from FRT0 to FRT3 with the 

PCR primers. This fragment was amplified using primers 13 and 14 (Table 2) with 

PCR conditions Number 4  (Table 3). The product was ligated into pCRII-TOPO 

Blunt. Upstream homology arm was amplified from zK 257G 4 BAC DNA using 

primers 15 and 16 (Table 2), using PCR conditions number 2 (Table 3). The PCR 

product was ligated into pCRII-TOPO Blunt and digested with Kpnl and SacI and 

ligated into the pCRII-TOPO Blunt containing FRT5-Neo-FRT5, digested with Kpnl 

and SacI. The downstream arm was treated in the same manner, but was amplified 

using primers 17 and 18 (Table 2) and was digested with Notl and Xhol.

2.3.3 BAC Recombination

Electroporation of targeting cassettes for recombination was carried out using linear 

fragments of DNA. Targeting vector 1 was digested with Xhol and SacII, targeting 

vector 2 was digested with Kpnl and Xhol.

A colony of EL250 bacteria containing BAC of interest was grown overnight at 32°C 

in LB (+ 12.5pg/ml chloramphenicol) shaking at 200rpm, this culture was diluted into 

25ml LB at 1:50 and grown for a further 2-3 hours until the OD600 reached 0.5-0.7. 

Culture was then transferred to 42°C and shaken for a further 15 minutes.
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Culture was transferred to ice, cells were collected, washed and electroporated as 

previously described (Section 2.3.1). However, only lOng of linear DNA in a volume 

of 2pl was electroporated.

To recombine FRT sites, a single colony of bacteria containing correctly targeted 

BAC DNA was cultured in 5ml LB (+ 12.5pg/ml Chloramphenicol and 50pg/ml 

Kanamycin) at 32°C shaking at 200rpm. Overnight culture was diluted 1:10 with 

10ml LB (+ 12.5pg/ml chloramphenicol only) until O D ^  = 0.5. 0.1% L-(+)-

Arabinose was added to the culture and was incubated for a further hour at 32°C. The 

culture was then diluted to 10° with LB and then plated onto LB plates (+ 12.5pg/ml 

chloramphenicol) and grown overnight at 32°C.

2.3.4 Assaying BAC Recombination

For small-scale preparations to test for correct recombination, 6ml LB (+ 12.5pg/ml 

chloramphenicol for non recombined BACs or 12.5pg/ml chloramphenicol + 50pg/ml 

kanamycin) was inoculated with a single colony. The culture was grown overnight at 

37°C  (for DH10B cells) or 32°C (for EL250 cells). Cells were collected by 

centrifugation at 13000rpm for 1 minute (a small volume of culture was saved for 

inoculation of further cultures). The pellet was resuspended in lOOpl Resuspension 

buffer PI (Qiagen). 200pl of Lysis buffer P2 (Qiagen) was added and solution was 

mixed by inversion. 150pl of ice-cold Neutralisation buffer P3 (Qiagen) was added 

and again solution was mixed by inversion. The whole mixture was centrifuged at 

13000rpm for 10 minutes at room temperature. The supernatant was collected and 

mixed with an equal volume of phenol/chloroform/isopropyl alcohol (25:24:1) by 

inversion. The solution was centrifuged for 15 minutes at 13000rpm and the aqueous 

layer was removed. This was mixed with 1ml 100% ethanol and incubated at -70°C 

for 1 hour. The DNA was collected by centrifugation at 13000rpm for 20 minutes at 

4°C, and the pellet was washed with 70% ethanol and resuspended in dH20 .

To test for correct targeting and recombination, both southern blot analysis and PCR 

were utilised. For the first recombination, the 3 ’ homology arm was used as a probe,
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this was digested from the pCRII TOPO Blunt plasmid using EcoRI. For the second 

homologous recombination step, Venus was used as a probe, this was amplified by 

PCR as previously described. For the PCR to check the second homologous 

recombination step, primers 19 + 20 were used (Table 2) with PCR conditions number 

1 (Table 3).

2.4 Creating Plasmid Promoter Reporter Constructs

2.4.1 Amplification of Genomic DNA and Plasmid Construction

Zebrafish promoter reporter plasmids were prepared by PCR amplification using 

condition number 2 (Table 3) from BAC DNA, ligated into pCRII-TOPO Blunt in any 

orientation, the Sail hsp68FacZ reporter fragment (Kothary et al., 1989; Fogan et al., 

1993) was ligated into the Xhol site (5’ to 3 ’). Mouse constructs were made in a 

similar manner, however the DNA template used was genom ic DNA, the PCR 

conditions were number 1 (Table 3) and the plasmid was pCRII-TOPO.

Details of primers (Table 2) for amplification are as follows. 

Mouse promoter constructs:

mNkx2.9CNCR+PromLacZ primers 21 and 22

rnNkx2.2CNCR+PromFacZ primers 23 and 24

Zebrafish reporter constructs: 

zN kx2. 2CNCR+PromLacZ 

zNkx2.2CNCR+PromFacZ-2

primers 25 and 26 

primers 27 and 28

Zebrafish deletion constructs based on zNkx2.2CNCR+PromFacZ: 

zNkx2.2CNCRFacZ primers 25 and 29

zNkx2.2ACNCR+PromFacZ primers 30 and 26
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zNkx2.2A l CNCR+PromLacZ primers 31 and 26

zNkx2.2A2CNCR+p™"LacZ primers 32 and 26

zNkx2.2A3CNCR+PromLacZ primers 33 and 26

zNkx2.2A4CNCR+Pl”mLacZ primers 34 and 26

zNkx2.2A5CNCRtPromLacZ primers 35 and 26

zNkx2.2A6CNCR*p,omLacZ primers 36 and 26

2.4.2 Site Directed Mutagenesis

Construct zNkx2.2CNCR+PromLacZ was subjected to site-directed mutagenesis using the 

QuikChange® II Site-Directed Mutagenesis Kit (Stratagene) to mutate the Gli binding 

site. The manufacturers’ guidelines were adhered to with the following alterations to 

the PCR; lOOng template DNA was used, annealing temperature was increased to 

60°C, elongation time was increased to 8 minutes per cycle and 25 cycles were 

performed. PCR primers were PAGE purified, primers 37 and 38 (Table 2) were used 

to introduce the mutation.

2.4.3 Purifying DNA for Mouse Pronuclear Injection

Linear DNA used for pronuclear injection was isolated from the plasmids using Nsil, 

which isolated the promoter and the reporter on one fragment of DNA. The digested 

DNA was run on an agarose gel, the correct band was excised and DNA purified, it 

was resuspended into an injection buffer (lOmM TRIS, pH 7.4, + 0 . ImM EDTA) and 

injected at 2ng /p l

2.4.4 Mouse Genotyping

Purified genomic DNA from mice resulting from pronuclear injection was tested by 

PCR for the presence of LacZ. This was performed using primers 39 and 40 (Table 2) 

and PCR conditions number 5 (Table 3). A band of approximately 300bp was 

observed if a LacZ  transgene was present in the genomic DNA.
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2.5 Embryo Manipulation

2.5.1 Zebrafish Embryo Incubation and Harvesting

Zebrafish embryos were collected within 15 minutes of fertilisation and incubated at 

28°C in embryo water (red sea salt 0.03g/l, methylene blue 2mg/l). Embryos were 

staged according to published criteria (Kimmel et al., 1995).

Zebrafish embryos collected for in situ hybridisation were fixed in 4% PFA in PB 

|0.1M Phosphate Buffer| for a minimum period of 24 hours to a maximum of 72 

hours at 4°C. Following fixation, embryos were dehydrated with 100% methanol. 

Em bryos were s tored in 100% m ethanol at -2 0 °C  until required. For 

im munohistochemistry, embryos were fixed for 2 hours in 4% PFA at room 

temperature and either stored in PBST (PBS + 0.1% Triton X-100) at 4°C for up to 2 

days or were dehydrated with methanol as previously described, and stored at -20°C. 

Embryos for X-Gal staining were dechorionated and fixed in 4% PFA with 0.5% 

glutaraldehyde for 15 minutes at room temperature and stained immediately.

2.5.2 Cyclopamine Treatment of Zebrafish Embryos

Embryos (with chorion intact) were placed in lOpM cyclopamine (dissolved in 100% 

ethanol) in embryo water at between the 1 and 4  cell stage of development. The 

embryos were grown up until 24 hours of development at 28°C. In negative control 

experiments, the same volume of 100% Ethanol was added to embryo water and the 

embryos were incubated for the same length of time.

2.5.3 Zebrafish Embryo Injection

Embryos were collected in embryo water within 15 minutes of fertilisation and 

embryos still at the 1 cell stage were isolated. These embryos were lined up against a 

microscope slide and as much liquid as possible was removed, ensuring the embryos

65



M aterials and M ethods

were fixed in place. Needles were pulled from glass capillaries containing a filament 

(1mm outside diameter 10cm long). These needles were used to inject lnl of DNA 

(diluted to required concentration with Fish Injection Buffer: 0.2M KC1 and 5mM 

HEPES pH 7.3) directly into the single cell. Once the embryos were injected, they 

were incubated in embryo water at 28°C until required.

2.5.4 Chick Electroporation and Embryo Harvesting

Electroporation of chick embryos was carried out at stages HH 10-12 (Hamburger and 

Hamilton, 1953) following a published protocol (Briscoe et al., 2000). DNA was

diluted accordingly and 5% Fast Green was included in the DNA mixture. Embryos

were incubated at 37°C for 24-48 hours. Embryos were then dissected and fixed in 

ice cold 4% PFA for 30 minutes for X -G al s ta in ing  and 1 hour for

immunohistochemistry. Fixed embryos for im m unohistochem istry  and in situ  

hybridisation were equilibrated with 30% sucrose (in 0 . 1M PB) before mounting in 

O.C.T compound (BDH) and frozen on dry ice. Embryos were subsequently stored at 

-80°C. Chick electroporations were kindly performed by Anita Mynett.

2.5.5 Mouse Pronuclear Injection and Embryo Harvesting

Mouse embryos were harvested from and received by (CBA/Ca x C57BL/10) FI at 

E0.5 dpc. Injections were carried out as previously described (Hogan et al., 1994). 

Transient embryos were harvested at stage required. Embryos were fixed with ice 

cold 4% PFA fo r 30 minutes for L acZ  s ta in in g  and for 1 hour for

immunohistochemistry and in situ hybridisation. All mouse pronuclear injections 

were kindly performed by Sophie Wood (Procedural Services).

2.6 Visualising and Analysing Embryos

2.6.1 Zebrafish Wholemount In  situ  Hybridisation

Whole-mount in situ hybridisations were performed as previously described (Thisse et 

al., 1993) with some modifications. Zebrafish embryos were rehydrated in decreasing
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concentrations of methanol (75%, 50% and 25%) in PBT (PBS with 0.1% Tween 20) 

and then transferred to PBT (2 x 5min). At this point the embryos were dechorionated 

in PBT. The embryos were then re-fixed in 4% PFA (in 0 .1M Phosphate Buffer) for 

20 minutes at room temperature and then washed in PBT. After fixation, embryos 

were transferred to hybridisation buffer (HB: 50% formamide, 5xSSC (pH 7.0), 0.1% 

Tween-20, 50pg/ml heparin, 500pg/ml type VI torula RNA, 9mM citric acid to pH 

6.0-6.5) for 2-5 hours at 68°C. The buffer was then replaced with new HB containing 

lpg /m l of DIG-labelled RNA probe and the em bryos were incubated at 68°C 

overnight.

The following washes were performed at 68°C with preheated solutions; 50% 

HB/2xSSC (5min), 100% 2xSSC (15min) and 100% 0.2xSSC (30min). Washes of 10 

minutes each in 50% 0.2xSSC/PBT (twice) and 100% PBT were carried out at room 

temperature. Embryos were blocked for several hours at room temperature in 2mg/ml 

BSA and 2% goat/sheep serum in PBT and then incubated overnight at 4°C with 

alkaline-phosphatase-conjugated anti-DIG antibody Fab fragments diluted 1:2500 in 

blocking buffer.

On Day 3 embryos were washed with PBT a minimum of 8 times for 15 minutes. The 

embryos were then rinsed twice (5min) in NTM T (0. lM Tris-H Cl pH 9.5, 50mM 

MgCl2, 0 .1M NaCl and 0.1% Tween 20). Colour development was performed using 

NBT/BCIP (Roche ready made tablets; 1 tablet dissolved in 10ml of distilled H20).  

The reaction was stopped with 2mM EDTA in PBS (pH 5.5) and embryos were re­

fixed in 4% PFA in PB for 20 minutes at room temperature or overnight at 4°C. 

Embryos were then taken through a glycerol series (25%, 50%, 75% and 100% 

glycerol in PBT) and stored at 4°C in 100% glycerol. The yolk cell was mechanically 

removed from the embryos before photographing. In Figs. 3.4A, 3.4B, 3 .10C and 

3.10D in situ hybridisation was kindly performed by Vanessa Ribes.
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2.6.2 Zebrafish Wholemount Immunohistochemistry

If embryos were dehydrated, then a progressive rehydration in 75%, 50%, 25% 

MeOH/PBST (PBS + 0.1% Tween-20) was performed (5 minutes per wash). Then 

embryos were washed in PBST (PBS + 0.1% Triton X-100, 3 x 5  mins). If embryos 

were not dehydrated, these first two steps were ignored.

Embryos were dechorionated in PBST. Embryos were then blocked for 2 hours are 

room temperature (PBS + 0.1% Triton X-100 + 5% goat serum -  heat inactivated). 

Embryos were incubated overnight with the primary antibody at 4°C (in PBS + 0.1% 

Triton X-100 + 2% goat serum). Embryos were then washed in PBST ( 8 x 5  mins) 

and then incubated with the secondary antibody (in PBS + 0 .1 %  Triton X-100 + 2% 

goat serum) at room temperature for 2 hours. If required, Phalloidin stain (rhodamine 

conjugated; Molecular Probes) was diluted (1 in 250) into the secondary antibody 

mix. Embryos were once again washed with PBST ( 8 x 5  mins) and then stored in 

70% glycerol (in water) at 4°C until required. Yolks cells were m echanically  

removed before mounting onto slides using Vectashield (Vector Labs) mounting 

media. If sections were required, embryos were prepared for vibratome sectioning by 

mounting in molten 10% sucrose and 5% agarose (in water) and allowing mixture to 

cool and set.

2.6.3 Zebrafish p-Galactosidase Staining

Fixed and dechorionated embryos were washed with PBT at room temperature ( 4 x 1 0  

minutes). Embryos were washed in staining buffer (2mM MgCl2, 15mM K3Fe(CN)6, 

15mM K4Fe(CN)6 in PBS) at room temperature for 5 minutes. Then embryos were 

transferred to staining buffer containing 0.8mg/ml X-gal (dissolved in DMF), then 

placed at 37°C in the dark until colour developed. The reaction was stopped by 

washing embryos in PBT at room temperature ( 3 x 1 0  mins). Embryos were re-fixed 

in 4% PFA for 30 minutes at room temperature, then washed in PBT ( 3 x 5  minutes) 

at room temperature and stored in 70% glycerol (in PBT) at 4°C. Yolk cells were 

mechanically removed before photography.
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2.6.4 Chick and Mouse p-Galactosidase Staining

Fixed embryos were washed with PBS containing 0.02% NP-40 at room temperature 

(3 x 20 minutes). Embryos were then transferred to staining solution (5mM 

K3Fe(CN)6, 5mM K4Fe(CN)6, 5mM EGTA, 0.01% deoxycolate, 2mM M gCl2, 0.1% 

X-gal in PBS with 0.02% NP-40) and incubated at 37°C in the dark until the colour 

developed. To stop the reaction the embryos were washed at room temperature in 

PBS containing 0.02% NP-40 ( 2 x 5  minutes and 2 x 1 5  minutes). Embryos were then 

fixed in 4% PFA overnight at 4°C, followed by washes in PBS at room temperature (3 

x 5 minutes). Embryos were prepared for vibratome sectioning by mounting in 

molten 10% sucrose and 5% agarose (in water) and allowing mixture to cool and set.

2.6.5 Chick and Mouse Immunohistochemistry

Frozen fixed chick and mouse embryos were sectioned at 12pM. Fresh or frozen 

slides were washed in PBS ( 3 x 5  mins) and then placed into blocking solution (PBST 

|PBS + Triton X-100] with 1% BSA) for 15 minutes. Slides were incubated with 

primary antibodies (Table 4) in blocking solution overnight at 4°C. The following 

day slides were washed with PBS ( 3 x 5  mins) and incubated with FITC or Cy3 

conjugated secondary antibodies, diluted according to manufacturers’ guidelines 

(Jackson ImmunoResearch Labs) for 2-3 hours in the dark at room temperature. 

Slides were washed with PBS ( 3 x 5  mins) and mounted with coverslips using 

Vectashield with DAPI (Vector Labs).

Immunohistochemistry was also performed on embryos stained for (3-galactosidase 

activity and cryosectioned at 12pM. Slides were bleached (100% EtOH + 0.5% H20 2) 

for 15 mins at 4°C. Slides were washed in PBST (PBS + 0.1% Triton X-100) 3 x 5  

mins and blocked (PBST + 1% BSA) for 1 hour at room temperature. Slides were 

incubated overnight at 4°C with primary antibody in blocking solution. Slides were 

washed as before and incubated with biotinylated secondary antibodies (Jackson 

ImmunoResearch Laboratories) diluted in blocking solution for 2-3 hours at room 

temperature. Slides were washed and incubated with ABC complex (Vector Labs) for 

1 hour to bind secondary antibody with avidin-conjugated HRP. Finally slides were
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washed and staining was revealed with Fast DAB tablets (Sigma), reaction was 

stopped with PBST. Slides were post fixed with 4% PFA (in 0 .1M PB) and washed 

with water before mounting with Aquamount (BDH).

2.6.6 Mouse In  S itu  Hybridisation on Sections

Frozen embryos were cryosectioned at 12p,M, frozen or fresh slides were refixed at 

room temperature for 10 minutes in 4% PFA (in 0 .1M PB). Slides were washed with 

PBS ( 3 x 3  mins) and then acetylated for 10 minutes |1.3% (v/v) triethanolamine, 

0.2% (v/v) Cone. HC1, 0.25% (v/v) acetic anhydride (added just before slides) in 

w aterf Slides were washed with PBS ( 3 x 5  mins) and then prehybridised for 2-5 

hours at room temperature with hybridisation buffer [50% (v/v) deionised formamide, 

5X SSC, 5X Denhardts, lOmg/ml herring sperm DNA, lOmg/ml bakers yeast RNAJ 

enough to cover the slide. The prehybridisation buffer was replaced with 

hybridisation mix (200ng of DIG labelled probe/ml hybridisation buffer). The 

hybridisation mix was heated at 80°C for 5 minutes followed by 5 minutes on ice to 

denature the probe before applying to the slides. The slides were covered with 

coverslips and incubated at 70°C overnight in a humidified chamber (5X SSC, 50% 

formamide).

The following day, slides were washed in 5X SSC at room temperature to wash off 

the coverslips. The slides were then washed in 0.2X SSC at 70°C for 1 hour, followed 

by a wash in 0.2X SSC for 5 minutes at room temperature to cool slides down. Slides 

were transferred to buffer B1 (0.1M Tris pH 7.5, 0.15M NaCl) for 5 minutes at room 

temperature. Slides were then covered with blocking buffer (B1 + 10% goat serum) 

and incubated in a humidified chamber (dH20 )  at room temperature for 1 hour. 

Blocking buffer was then replaced with the antibody solution [1:5000 alkaline 

phosphatase conjugated anti-DIG antibody (Roche) in buffer B1 + 1% goat serum 1 

and slides were incubated overnight at 4°C in a humidified chamber.

On the final day, slides were washed with buffer B1 (3 x 5 mins) at room temperature. 

Slides were then transferred to buffer B3 (0.1M Tris.HCl pH9.5, 0.1M NaCl, 50mM
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MgCl2) for 5 minutes at room temperature. The stain was developed in the dark using 

lml NBT/BCIP solution |4pl of lOOmg/ml NBT in 70% dimethylformamide (Roche) 

and 4pl of 50mg/ml BCIP in 70% dimethylformamide (Roche) in IX  B3 + 5% PVA]. 

The colour reaction was stopped by washing slides with dH20 .  Slides were washed (3 

x 5 mins) with PBS and then post-fixed (10 minutes) with 4% PFA (in 0 .1M PB), 

followed by further washes with dH20  ( 3 x 5  mins). Slides were mounted with 

coverslips using Aquamount (BDH).

2.6.7 Mouse Wax Sectioning

Mouse embryos stained for [3-galactosidase activity were post-fixed and washed in 

PBS (3x5 mins). Embryos were dehydrated in graded alcohols and cleared in Xylene 

before embedding in Fibrowax (BDH). Wax blocks were sectioned at 6pM  using a 

rotary microtome. Sections were rehydrated using graded alcohols and washed in 

distilled water. The slides were subsequently counterstained using haematoxylin and 

eosin, before a final dehydration and clearing step (using Histoclear) followed by 

mounting with coverslips using DPX. All wax sectioning and subsequent staining 

was kindly performed by Elena Grigorieva.

2.6.8 Microscopy and Analysis

Images (using DIC; differential interference contrast) of wholemount embryos or 

sections were obtained using a Zeiss Axiophot microscope (Axioplan 2 imaging) and 

an Axiocam HRC Zeiss digital camera using Axiovision software. Fluorescent 

samples were photographed using the above setup + FluoArc UV lamp. Alternatively 

a Leica confocal microscope (True confocal scanner Leica TCS SP II) with Leica 

confocal software was used. All images were subsequently processed with Adobe 

Photoshop.
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2.7 Tables

cDNA Linearisation RNA
Polymerase

Origin

zNkx2.1 EcoRV Sp6 Accession Number A F321112

Amplification (zf gDNA): Primers 1 
& 2 (Table 2)

PCR conditions: No. 1 (Table 3)

Cloned into pCRII-TOPO 
(Invitrogen)

zNkx2.2a BamHI T7 Accession Number: B C 1 15166 

(Barth and Wilson, 1995)

zNkx2.2b Sail Sp6 cDNA clone (Accession Number: 
AI722890) IM AGE 3722576

iNkx2.4a Hindlll T3 CDNA clone (Accession Number: 
AW343688) IMAGE 2640862

iNkx2.4b EcoRV Sp6 Accession Number AF253054

Amplification (zf gDNA): Primers 3 
& 4  (Table 2)

PCR conditions: No. 1 (Table 3)

Cloned into pCRII-TOPO 
(Invitrogen)

zNkx2.9 EcoRV Sp6 Accession Number DG924560

Amplification (zf gDNA): Primers 5 
& 6 (Table 2)

PCR conditions: No. 1 (Table 3)

Cloned into pCRII-TOPO 
(Invitrogen)

E.coli
LacZ

Hindlll T3 (Huber et al., 2005)

Table 1 Templates for antisense RNA probes used for in situ hybridisation.

72



M ateria ls and M ethods

Primer
Number

Primer Sequence 5’ to 3’

1 GGCTCCTCGTCTGGTATGAA
2 GGGGACGTCTTCATTGTTGA
3 GGAATGGACGCCAGTAAATC
4 ACTAGGCGACATTTCCTCCA
5 ATTGAAGCTTCGCCAGACTC
6 AGTGCTGGTATGTGGGGAAA
7 GATCGAATTCCACCATGGTGAGCAAGGGCG
8 GATCCCCGGGGCAGTGAAAAAAATGCTTTATTTG
9 GATCGTCGACGTCTGCGACAATAGATAAA TGACACC
10 GCTGCACCAGTTTGACAATCCTC
11 GATCGGCCGAGGCGGCCAACGCCTGGAGTGTTAGTGC
12 GATCGGCCGAGGCGGCXCGTAGCCTAGCCGATTCAAC
13 GAAGTTCCTATACCTTITGAAGAATAGGAACTTCGGAATAGGAACTT  

CAAGATCCCCC I’GGCGAAAGGG
14 GAAGITACTATrCCGAAGITCCTATTCTTCAAAAGGTATAGGAACTTCAG

AGCGCITTTGAAGCTCGGAT
15 ACTGGGTACCC1TGGCCCG I CCAGTTCAATG
16 ACTGGAGCTCTTTCAATGGACTATCTCTTCAlTCAlTTCrG
17 ACTGGCGGCCGCGAAACGTGCAACATTGTCACC
18 A C TG CTCG AG CAATlTArG TAG G lCAArATlTTG G
19 GAAGA1TGAGTGAATGACXTAG FGG
20 G GT GTC ATTT ATCT ATT GTCG C A G
21 CATTTTGCCAGAGGCAGAGG
22 AAGGGACAGTGAGCGGTCTG
23 AGAGGCAACAGGCTCTAACG
24 CAGGC1TCCAGTTGGC1TTA
25 GCTAGGTACCGCAGTGAATGCCATGAC
26 GCTAGCTAGCTGGATA1TGCGCTACIGCTG
27 CAATTCACTCGCACAAATGG
28 TTTIGGTTCGGGATTAAGGA
29 TAGCCAGTCrrCTGCTCATCC
30 GAAACGTGCAACA1TGTCACC
31 GTCTGCAGCTTAGCAATCGG
32 GGAGCCGGACATTTGTCTAC
33 CATTTCCCCCATTGTCTGCAG
34 CGTATTGTACAGGGGCGTC
35 TTGGCCCTTAAATAAATGC
36 GCCGGACAAAAGCTTCC
37 g t g t t t g c c c g g g t t c g a a g t g g g a g g a t g a g c a g a a g a c t g g c

38 GCCAGTCTrCTGCTCATCCTCCCACTTCGAACCCGGGCAAACAC
39 GCACATCCCCCTTTCGCCAGCTGGCGTAAT
40 CGCGTCTGGCCTTCCTGTAGCCAGCITTCA

Table 2 Primers used for PCR.
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Condition No. Reaction Mixture Thermal Cycles

1 IX Mastermix (AB Gene) 

150ng/ul Primers 

lOOng Template DNA

x l - 94°C 2 mins 

x35 -  |94°C 30 secs) 

|60°C  30 secs] 

|72°C 30 secs] 

xl - 72°C 30 secs

2 IX High Fidelity PCR Mastermix 
(Roche)

1 SOng/pl Primers

lOOng Template DNA

x 1 - 94°C 2 mins 

xlO -  |94°C  10 secs| 

|60°C  30 secs| 

|7 2 °C 2  mins| 

\2 0  -  194°C 30 secs|

160°C 30 secs 1 

(72°C 2 mins +5secs/cyclc| 

xl - 72°C 7 mins

3 IX High Fidelity PCR Mastermix 
(Roche)

150ng/pl Primers

lOOng Template DNA

x 1 - 94°C 2 mins 

xlO -  |94°C  1 0secs| 

|60°C 30 secs - 0.5°C/cycle] 

[72°C 2 mins] 

x20 -  |94°C  30 secs] 

|60°C 30 secs -0.5°C /cyclc| 

|72°C 2 mins +5secs/cycle] 

xl - 72°C 7 mins

4 IX High Fidelity PCR Mastermix 
(Roche)

150ng/pl Primers

lOOng Template DNA

xl - 94°C 2 mins 

xlO -  |94°C 10 secs] 

[60°C 30 secs] 

[72°C 90 secs] 

x l5  -  |94°C 15 secs] 

]60°C 30 secs] 

]72°C 90 secs +5secs/cycle] 

x l - 72°C 7 mins

5 IX Mastermix (AB Gene) 

330ng/ul Primers 

lp l purified gDNA

xl - 94°C 4  mins 

x35 -  [94°C 30 secs] 

[60°C 30 secs] 

[72°C 40 secs] 

x l - 72°C 10 mins

Table 3 PCR conditions.
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Epitope/Antigen Species Origin

p-Galactosidase Goat Biogenesis

|3-Galactosidase Mouse Sigma

ChxlO Rabbit (Liu et al., 1994)

FoxA2 Mouse (Ericson et al., 1996)

Gata3 Mouse Santa Cruz

GFP Rabbit Invitrogen, Molecular Probes

Lim l/2 Mouse (Tsuchida et al., 1994)

Lim3 Mouse (Ericson et al., 1997b)

Mashl Mouse (Lo et al., 1991)

Nkx2.2 Mouse (Ericson et al., 1997b)

OHg2 Rabbit 

Guinea Pig

(Ligon et al., 2004) 

(Novitch et al., 2001)

Pax6 Mouse (Ericson et al., 1997b)

Pax7 Mouse (Ericson et al., 1996)

Table 4 Primary antibodies used for immunohistochemistry.

Solution Formulation

1M Phosphate Buffer (PB) 0.6M Na2H P 0 4.7H20 ,  0.2M NaH2P 0 4.H20

IX Phosphate Buffered 
Saline (PBS)

137mM NaCl, 2.7mM KC1, 4.3mM Na2H P 0 4.7H20 ,  
1.4mM KH2P 0 4, pH 7.4

20X Salt Sodium Citrate 
(SSC)

3M NaCl, 0.3M Na2citrate.2H20 ,  adjust pH to 7.0 
with 1M HC1

1 x T A E 40mM Tris Acetate, 2mM Na2EDTA.2H20 ,  pH 8.5

LB - Luria-Bertani Broth 10g/l Tryptone, 5g/l Yeast Extract, 10g/l NaCl, pH
7.0

Table 5 Formulation of solutions.
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3 Results: Nkx2 Gene Clusters and Expression Patterns

3.1 Nkx2 Gene Clustering in Human, Mouse and Fish Genomes

3.1.1 Expression Patterns of Genes Located in Nkx2 Clusters

To study the interpretation of the Shh gradient in the ventral neural tube, the Nkx2 

family of homeodomain proteins was chosen. Within the mammalian genome, the 

Nkx2.2  and Nkx2.4  genes are located close to one another in a cluster linked to the 

P axl  and FoxA2  genes. A paralogous cluster containing Nkx2.1  and Nkx2.9  linked to 

Pax9  and FoxA l  is located on a different chromosome (Santagati et al., 2003; Wang et 

al., 2000b). The close proximity of these genes and the conservation of their physical 

order and transcriptional direction in human and mouse (Fig. 3.1 A, 3 . IB), raises the 

possibility of a shared mechanism of transcriptional regulation.

Nkx2 genes are expressed in ventral neural tissue, suggesting they may be regulated 

by Shh signalling. The expression of Nkx2.1 and Nkx2.4 is anteriorly restricted in the 

mouse neural tube. N kx2 .1  is expressed from E9 in the ventral forebrain; 

diencephalon and ventral telencephalon (Lazzaro et al., 1991; Price, 1993). N kx2.4  

expression is less well characterised, nevertheless, published data suggests it is 

expressed more posterior to Nkx2.1 in the posterior hypothalamus (Price, 1993). The 

transcription factor N kx2 .2  is also detected by in situ hybridisation from E9 in 

developing mouse embryos (Price et al., 1992). It is expressed anteriorly in ventral 

forebrain and floor plate, partially overlapping Nkx2.1 expression (Price et al., 1992). 

At spinal cord levels, Nkx2.2 is expressed in the most ventral neural progenitors of the 

neural tube (Price et al., 1992). At early developmental time points, N k x 2 .2  

expression is detected in the floor plate (Briscoe et al., 1999), but by E10.5 expression 

shifts dorsally and is restricted to the progenitor domain for V3 interneurons (Fig. 

3 . IE: Ericson et al., 1997b). Later it appears to be expressed in a small number of 

post mitotic V3 interneurons. N kx2 .9  is expressed in a similar domain to N kx2.2  

(Pabst et al., 1998), however it is down-regulated in the mouse spinal cord at 

approximately E10.5 (Briscoe et al., 1999).
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The other notable genes found close to the Nkx2 genes are members of the Pax 

(Paired Box) gene family and the Fox (Forkhead Box) gene family. P a x l  and Pax9  

are expressed in mesodermal tissue in overlapping domains. Expression of P axl  

begins at E9 in the ventromedial compartment of the somite, the sclerotome (Deutsch 

et al., 1988). P ax9  is expressed in the same region of the somite however its 

expression is restricted to the posterior sclerotome (Neubuser et al., 1995).

The two Fox genes are located at a greater distance from the Nkx2 genes than P axl  

and Pax9  (Fig. 3.1 A, 3 . IB). They share similar expression patterns, F o x A l  and 

FoxA2  are expressed at earlier stages than the Pax genes and can be detected during 

gastrulation (Ruiz i Altaba et al., 1993). Both FoxA2 and FoxAl are detected in cells 

along the ventral midline of the neural tube (floor plate) at hindbrain and spinal cord 

levels. F oxA l  is expressed at E10 and FoxAl  slightly later, by E l 3 the floor plate co­

expresses both genes. Both are also expressed in the notochord from E10 (Ang et al., 

1993; Ruiz i Altaba et al., 1993).

3.1.2 Identification of Nkx2 Gene Clusters in Zebrafish and F ugu  

Genomes

To identify the Fugu  and zebrafish homologues of these Nkx2 genes, the Ensembl 

genome assemblies Version 4.0 and Zv6 respectively were searched using BLAST 

with known human/mouse sequences for Nkx2.1, Nkx2.2, Nkx2.4  and Nkx2.9.  The 

results (Fig. 3.1C, 3 . ID) suggested that a similar clustering has been maintained in 

both fish species. In zebrafish there appeared to be 3 clusters of Nkx2 genes 

compared to the 2 clusters identified in human and mouse. The presence of an 

additional Nkx2.2/2.4  cluster could be the consequence of the predicted additional 

whole genome duplication in zebrafish (Amores et al., 1998). The identification of a 

second Nkx2.2  gene is supported by published reports of an Nkx2.2b  gene expressed 

in the zebrafish lateral floor plate (Schafer et al., 2005).
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Nkx2.1  and Nkx2.4  are paralogous genes and have relatively similar gene sequences. 

Using the human Nkx2.4 sequence, two Nkx2.4 genes were isolated from the zebrafish 

genome by BLASTZ searching; Nkx2.4a  and Nkx2.4b  (Fig. 3 . ID). The sequence we 

have termed Nkx2.4b  is the gene published as Nk2.1a  (Fig. 3 . ID: Rohr and Concha, 

2000). Analysis of the relationships between N kx2 .1 and Nkx2.4 protein sequences 

from mouse, human and zebrafish (Fig. 3.2), suggests that the zebrafish Nkx2.4b 

protein is more similar to Nkx2.1 than Nkx2.4. However, regardless of protein 

sequence, due to gene expression patterns (see below and Discussion) we have 

suggested the zebrafish Nkx2.4b  gene is more functionally similar to Nkx2.4 than 

N kx2.1. BLASTZ searching using human Nkx2.1 identified a gene previously termed 

Nk2.1b  (Rohr et al., 2001), however, the name Nkx2.1  will be used for this project 

(Fig. 3 . ID).

Clustering of Nkx2 genes was also apparent in Fugu  (Fig. 3.1C), a small genome 

often exploited for identifying enhancers and gene regulatory domains (Aparicio et 

al., 1995; Brenner et al., 1993). N kx2 .1  appeared to map to a position on 

Scaffold_227 of the F ugu  assembly within the region of the expected cluster. 

However there are no recognised transcripts, which could therefore indicate that 

Nkx2.1 is not expressed in Fugu. The N kx2.1/2.9 and Nkx2.2/2.4  arrangements seen 

in human and mouse have been maintained in both Fugu and zebrafish. Thus, we can 

suggest that this gene arrangement may be significant for the regulation of the genes 

located in these clusters.

3 .2  In  S itu  E x p r e s s io n  P a tte r n s  o f  N k x 2  G e n e s  in  Z e b ra f ish

To characterise the expression patterns of the zebrafish Nkx2 genes and to test 

whether they have similar expression patterns to the mouse homologues, RNA probes 

for the identified zebrafish Nkx2 genes identified were synthesised and in situ 

hybridisation performed. Analysis was carried out at 11.5hpf (5 somite stage), 16hpf 

(14 somite stage), 21hpf (24 somite stage), 24hpf (prim-5 stage) and 30hpf (prim-15 

stage). Staging was according to Kimmel et al. (1995). As in mouse, Nkx2.2  and 

Nkx2.9  were expressed along the length of the neural tube at 24hpf, a stage equivalent
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to E10.5 in mouse (Figs. 3.4G, 3.5G, 3.8G). Nkx2.1  and Nkx2.4  were expressed in 

anterior regions of the neural tube (Figs. 3.3G, 3.6G, 3.7G).

Nkx2.1 (also known as N k l . l b : Rohr et al., 2001) expression was detected at 11.5hpf 

anteriorly and ventrally in the region of the future brain (Fig. 3.3A, 3.3B), however, 

published results show expression was observed as early as 10 hpf (Rohr et al., 2001). 

At 16 hpf the brain has not become morphologically distinct (Kimmel et al., 1995), 

but it has by 21 hpf. At 21 hpf strong expression of N kx2.1  was observed in the 

anterior ventral forebrain and slightly weaker staining was seen at more posterior 

positions (Fig. 3.3E, 3.3F). The ventral staining was clearly detected in 24hpf 

embryos (Fig. 3.3G), more posterior staining was almost undetectable (Fig. 3.3H). 

Expression was still maintained, albeit more weakly at 30 hpf (Fig. 3.31, 3.3J). The 

expression pattern observed for this gene supports previously published results that 

describes Nkx2.1 (N k l . l b ) as a marker for ventral telencephalon (Rohr et al., 2001). 

This expression pattern is also equivalent to that previously described in the mouse 

(Price, 1993).

Nkx2.2a  was also expressed as early as 11.5 hpf (Fig. 3.4A, 3.4B), and published 

reports indicated that the expression of this gene can be detected as early as 9.5 hpf 

(Barth and Wilson, 1995). Expression was initially seen in anterior regions of the 

neural tube, the presumptive forebrain. However by 16 hpf a weaker level of 

expression could be seen extending into more posterior ventral neural tube (Fig. 3.4C, 

3.4D). At later stages, ventral neural expression was observed extending the length of 

the neural tube to spinal cord levels (Fig. 3.4E-3.4J). Consistent with previous 

findings, expression in the spinal cord and hindbrain was much weaker than at more 

anterior levels (Barth and Wilson, 1995). N kx2.2b  displayed an almost identical 

expression pattern (Fig. 3.5), the RNA probe appeared to be weaker than Nkx2.2a.  

Published results of Nkx2.2b  expression suggest that it is expressed at much higher 

levels than Nkx2.2a  (Schafer et al., 2005), this difference may be due to probe 

efficiency. Nkx2.2b  was expressed as early as ~8hpf (Schafer et al., 2005), and 

appeared to be expressed until 30 hpf, however the staining was very weak by this 

stage (Fig. 3.51, 3.5J).
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The expression of both Nkx2.4a  and Nkx2.4b  were restricted to the ventral anterior 

neural tube at all stages characterised (Figs. 3.6, 3.7). Very weak expression was 

observed at 11.5 hpf in the future head (Figs. 3.6A, 3.6B, 3.7A, 3.7B). By 16 hpf 

expression was much stronger, but uniform (Figs. 3.6C, 3.6D, 3.7C, 3.7D), at 21 hpf 

expression of both Nkx2.4  genes was throughout the forebrain (Figs. 3.6E, 3.6F, 3.7E, 

3.7F). By 24 hpf, expression was stronger in more posterior regions, the 

hypothalamus (Figs. 3.6G-3.6J, 3.7G-3.7J), expression in the more anterior forebrain 

was present but weaker. In mouse, Nkx2.4  expression has been identified as being 

localised to the posterior hypothalamus (Price, 1993). The expression patterns of 

N kx2 .1  and N kx2 .4  in the zebrafish forebrain appear complementary, with little 

overlap, as noted for the mouse expression patterns (Price, 1993). The expression of 

zebrafish Nkx2.4b  (also known as N k l . l a ) has been published and is described as a 

marker for the ventral diencephalon or hypothalamus (Rohr et al., 2001; Rohr and 

Concha, 2000). This supports the expression pattern seen in Figure 3.7. The 

similarity in expression of Nkx2.4a  (Fig. 3.6) and Nkx2.4b  (Fig. 3.7) further supports 

the theory that the Nkx2.4b is more closely related to Nkx2.4  than Nkx2.1.

Nkx2.9  in mouse has a very similar expression pattern to Nkx2.2  until E10.5, at which 

point Nkx2.9 expression in the spinal cord begins to be down-regulated (Briscoe et al., 

1999). A similar expression profile also appears to characterise zebrafish Nkx2.9.  

Nkx2.9  expression was observed at 11.5 hpf in zebrafish in the future head (Fig. 3.8A, 

3.8B), by 16 hpf it was strongly expressed along the entire length of the ventral neural 

tube (Fig. 3.8C, 3.8D). At 21 hpf and 24 hpf, expression was observed at high levels 

in ventral forebrain, floor plate, ventral hindbrain and spinal cord (Fig. 3.8E-3.8H). 

By 30 hpf the expression had reduced (Fig. 3.81, 3.8J), although was still present, it is 

possible therefore that, as in mice, expression is down-regulated over time.

3 .3  R e s p o n s e  o f  Z e b ra f ish  N k x 2  G e n e s  to  S h h

Previous studies using cyclopamine have suggested that zebrafish Nkx2.2a  is under 

the control of Shh (Stamataki et al., 2005). To test if the other family members
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identified are also regulated by Shh, cyclopamine was used. Cyclopamine was added 

to 1 cell zebrafish embryos and in situ analysis carried out at 24 hpf and compared to 

embryos exposed to vehicle (ethanol) alone. Results indicate that the expression of 

Nkx2.1, Nkx2.2a, N kx2 .2b ,  and N kx2 .9  were dependent on Shh (Figs. 3.9B, 3.9D, 

3.9F, 3.10B). Expression of these 4 genes was lost when embryos were treated with 

10qM cyclopamine, compared to wild type expression patterns at 24 hpf (Figs. 3.3G, 

3.4G, 3.5G, 3.8G). Expression was not lost when embryos from the same clutch were 

treated with the ethanol control (Figs. 3.9A, 3.9C, 3.9E, 3.10A). The loss of 

expression of Nkx2.1, Nkx2.2 and Nkx2.9  is consistent with published results (Pabst et 

al., 2000; Rohr et al., 2001; Stamataki et al., 2005), which suggests that these genes 

require Shh signalling in order to be expressed. This is also consistent with 

experiments in zebrafish GUI mutants in which a direct requirement for Gl i l  in 

N kx2 .9  expression was identified (Xu et al., 2006). However, loss of Nkx2.1 

expression may be caused by the absence of ventral forebrain tissue due to loss of 

prechordal mesoderm in embryos in which Shh has been blocked (Chiang et al., 

1996). Cyclopamine treatment resulted in expected morphogenetic defects such as 

fusion of the optic vesicle (Fig. 3 .10B, 3 .10D, 3 .10F: Chiang et al., 1996) and rounded 

somites instead of the normal ‘V ’ shape (Fig. 3.9B, 3.9D, 3.9F: Wolff et al., 2003).

Intriguingly, Nkx2.4a  and Nkx2.4b  expression was maintained in the cyclopamine 

treated fish (Fig. 3.10C-3.10F), suggesting that its expression is not dependent on Shh 

signalling. Previous studies have suggested that Nkx2.4b  expression in the zebrafish 

diencephalon does not require Shh signalling (Rohr et al., 2001). These data therefore 

suggest that in contrast to Nkx2.1, Nkx2.2 and Nkx2.9, the expression of Nkx2.4  is not 

dependent on Shh. This may be due to the differences in anterior posterior differences 

in CNS midline fates (see Discussion).

Together, these data indicate the Nkx2  genes found in the zebrafish genome are 

clustered in a similar manner to those in mouse and also appear to share a similar 

expression pattern and regulation.
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Figure 3.1 Genomic arrangement of N k x 2 .2  and N k x 2 .9  genes and their 

expression in vertebrate species.

Diagrammatic representation of Human (A), Mouse (B), Fugu  (Takifugu rubripes, C) 

and Zebrafish (Danio rerio, D ) genomic regions harbouring N kx2 .2  and N kx2 .9  

orthologues. Solid lines represent chromosomes, the arrows represent direction of 

gene transcription and slanted parallel lines represent a large gap between genes. The 

scale bar represents 40kb. Name discrepancies; Human gene Nkx2.9  is annotated as 

Nkx2.8  in Ensembl database, Human and Mouse N kx2.l are both annotated as TITF1, 

zebrafish Nkx2.1 is N k l . l b  or t i t f lb  and zebrafish Nkx2.4b is titfla  or Nk2.1a. Data is 

based on Human NCBI 36 Assembly, Mouse NCBI 36 Assembly, Fugu 4.0 Assembly 

and Zebrafish Zv6 Assembly. E-G In situ hybridisation for Nkx2.2  and Nkx2.9  in 

mouse and zebrafish wild type embryos. E Mouse E l 0.5 in situ hybridisation for 

N kx2 .2  (image kindly contributed by James Briscoe). F Mouse E l 0.5 in situ 

hybridisation for N kx2 .9 .  G Zebrafish at 24 hpf, in situ hybridisation for N kx2.2a  

(images F and G kindly contributed by Vicky Tsoni).
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Figure 3.2 Similarity tree showing relationship between human, mouse and 

zebrafish Nkx2 proteins.

Full length protein sequences provided by the Genbank database. Nkx2.1, Nkx2.2 

and Nkx2.4 proteins from  m ouse, human and zebrafish were aligned with 

CLUSTALW. A similarity tree was formed with a Neighbour Joining Method, which 

makes no assumptions of constant divergence rates and with Uncorrected Distance, 

which estimates the proportional differences between sequences. Zebrafish Nkx2.1 is 

the same as the published protein Nk2. lb. The protein sequence of zebrafish Nkx2.4b 

(published name Nk2.1a) is more similar to zebrafish N kx2 .1. However, due to its 

observed gene expression pattern (Fig. 3.7) and response to Shh signalling (Fig. 3.10), 

it appears more functionally similar to Nkx2.4.
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Figure 3.3 Expression pattern of zebrafish Nkx2.1 in Wild Type embryos.

Wild type embryos were harvested at various time points and hybridised with RNA 

probe transcribed from a PCR product for the zebrafish gene Nkx2.1 , Ensembl Gene 

ID ENSDARG00000019835. All views of the embryos are lateral with anterior to the 

left. At 21 hpf, 24hpf and 30hpf heads were turned to be seen from a dorsal view and 

yolk cells were removed. A, B show expression at 11.5 hpf, C, D at 16hpf, E, F at 

21 hpf, G, H at 24hpf and I, J at 30hpf. A, C, E, G, I were taken at 10X 

magnification and B, D, F, H, J at 20X. Expression was observed as early as 11.5 hpf 

(A, B) in the ventral future head, similarly at 16 hpf (C, D). By 21 hpf, 

m orphologically distinct brain structures have formed and strong staining was 

observed in the anterior forebrain (E, F). Similar expression patterns were observed 

at 24 hpf (G, H) and 30 hpf (I, J), by which point staining appeared to have 

weakened.
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Figure 3.4 Expression pattern of zebrafish Nkx2.2a in Wild Type embryos.

Wild type embryos were harvested at various time points and hybridised with RNA 

probe for the zebrafish gene N kx2.2a  (Barth and Wilson, 1995), Ensembl Gene ID 

ENSDARG00000053298. All views of the embryos are lateral with anterior to the 

left. At 21 hpf, 24hpf and 30hpf heads were turned showing a dorsal view and yolk 

cells were removed. A, B show expression at 11.5 hpf, C, D at 16hpf, E, F at 21 hpf, 

G, H at 24hpf and I, J at 30hpf. A, C, E, G, I were taken at 10X magnification and 

B, D, F, H, J at 20X. Expression in the ventral forebrain at 11.5 hpf was evident (A, 

B), this extended to more posterior parts of the ventral neural tube by 16 hpf (C, D). 

At 21 hpf (E, F) the brain has morphologically segmented and expression was 

observed in the ventral forebrain, hindbrain and spinal cord. Expression patterns were 

maintained at 24 hpf (G, H) and up to 30 hpf (I, J) with weaker expression in the 

hindbrain and spinal cord.
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Figure 3.5 Expression pattern of zebrafish Nkx2.2b in Wild Type embryos.

Wild type embryos were harvested at various time points and hybridised with RNA 

probe transcribed from IM A G E clone 3722576 for the zebrafish gene N kx2 .2 b ,  

Ensembl Gene ID EN SD A RG 00000052550. All views of the embryos are lateral 

with anterior to the left. At 21 hpf, 24hpf and 30hpf heads were turned to be seen from 

a dorsal view and yolk cells were removed. A, B show expression at 11.5 hpf, C, D at 

16hpf, E, F at 21 hpf, G, H at 24hpf and I, J at 30hpf. A, C, E, G, I were taken at 

10X magnification and B, D, F, H, J at 20X. Expression in the ventral forebrain at 

11.5 hpf was evident (A, B), which extended to more posterior parts of the ventral 

neural tube by 16 hpf (C, D). At 21 hpf (E, F) the brain has morphologically 

segmented and expression was observed in the ventral forebrain, hindbrain and spinal 

cord. Expression patterns were maintained up to 24  hpf (G, H) with w eaker 

expression in the hindbrain and spinal cord. By 30 hpf, N k x 2 .2 b  was almost 

undetectable in the spinal cord with this probe (I, J), but was still present in the 

anterior parts of the neural tube.
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Figure 3.6 Expression pattern of zebrafish Nkx2.4a in Wild Type embryos.

Wild type embryos were harvested at various time points and hybridised with RNA 

probe transcribed from IM AGE Clone 2640862 for the zebrafish gene Nk.x2.4a , 

Ensembl Gene ID ENSDARG00000012693. All views of the embryos are lateral 

with anterior to the left. At 21 hpf, 24hpf and 30hpf heads were turned to be seen from 

a dorsal view and yolk cells have been removed. A, B show expression at 11.5 hpf, 

C, D at 16hpf, E, F at 21 hpf, G, H at 24hpf and I, J at 30hpf. A, C, E, G, I were 

taken at 10X magnification and B, D, F, H, J at 20X. Expression in the ventral 

forebrain at 11.5 hpf was present but very weak (A, B). By 16 hpf expression was 

much stronger and uniform within the ventral anterior neural tube (C, D). At 21 hpf 

(E, F) expression was observed in the ventral forebrain. Expression patterns were 

maintained to 24 hpf (G, H) and 30 hpf (I, J) with stronger expression in the more 

posterior forebrain.
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Figure 3.7 Expression pattern of zebrafish Nkx2.4b in Wild Type embryos.

Wild type embryos were harvested at various time points and hybridised with RNA 

probe transcribed from a PCR product for the zebrafish gene Nkx2.4b, Ensembl Gene 

ID ENSDARG00000010461. All views of the embryos are lateral with anterior to the 

left. At 21 hpf, 24hpf and 30 hpf heads were turned to be seen from a dorsal view and 

yolk cells were removed. A, B show expression at 11.5 hpf, C, D at 16hpf, E, F at 

21 hpf, G, H at 24hpf and I, J at 30hpf. A, C, E, G, I were taken at 10X 

magnification and B, D, F, H, J at 20X. Expression in the ventral forebrain at 11.5 

hpf was weak but detectable (A, B), by 16 hpf expression was much stronger and 

uniform within the ventral anterior neural tube (C, D). At 21 hpf (E, F) expression 

was observed in the ventral forebrain. Expression patterns were maintained to 24 hpf 

(G, H) and 30 hpf (I, J) with stronger expression in the more posterior forebrain.
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Figure 3.8 Expression pattern of zebrafish Nkx2.9 in Wild Type embryos.

Wild type embryos were harvested at various time points and hybridised with RNA 

probe transcribed from a PCR product for the zebrafish gene Nkx2.9, Ensembl Gene 

ID ENSDARG00000020332. All views of the embryos are lateral with anterior to the 

left. At 21 hpf, 24hpf and 30hpf heads were turned to be seen from a dorsal view and 

yolk cells were removed. A, B show expression at 11.5 hpf, C, D at 16hpf, E, F at 

21 hpf, G, H at 24hpf and I ,  J at 30hpf. A, C, E, G, I were taken at 10X 

magnification and B, D, F, H, J at 20X. Expression was seen at 11.5 hpf in the 

ventral anterior neural tube and was already a strong signal extending posteriorly (A, 

B). By 16 hpf strong expression was observed along the length of the neural tube (C, 

D). At 21 hpf (E, F) the brain has morphologically segmented and expression was 

seen in the ventral forebrain, floor plate and throughout the hindbrain to the very tip of 

the spinal cord (E, F). This was the same expression pattern as at 24 hpf (G, H). 

Expression patterns were maintained to 30 hpf (I, J) but the expression had weakened.
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Figure 3.9 Expression patterns of Nkx2.2  and Nkx2.9  in cyclopamine treated

embryos.

All views of the embryos are lateral with anterior to the left, yolk cells have been 

removed from embryos, which are 24 hpf. Pictures were taken at 20X magnification. 

Embryos were either placed in ethanol control (A, C, E) or were placed in lOpM of 

the Shh inhibitor cyclopamine (B, D, F) at the 1 cell stage and grown to 24 hpf. In 

situ hybridisation for Nkx2.2a  (A, B), Nkx2.2b (C, D) and Nkx2.9  (E, F) revealed that 

cyclopamine treatment blocks expression of all three genes. Ethanol treatment did not 

affect expression, compare A, C, E with Figs. 3.4G, 3.5G, 3.8G.
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Figure 3.10 Expression patterns of Nkx2.1 and Nkx2.4  in cyclopamine treated

embryos.

All views of the embryos are dorsal, yolk cells have been removed from embryos. 

Pictures were taken at 20X magnification. Embryos were either placed in ethanol (A, 

C, E) or were placed in lOpM of the Shh inhibitor cyclopamine (B, D, F) at the 1 cell 

stage and grown to 24 hpf. In situ hybridisation for Nkx2.1  (A, B) revealed that 

cyclopamine treatment blocks expression compared to the ethanol control where 

expression was the same as in wild type embryos (Fig. 3.3G). This loss of expression 

may be due to loss of prechordal mesoderm in embryos that have Shh signalling 

blocked. However, Nkx2.4a  (C, D) and N kx2 .4b  (E, F) show that expression in 

cyclopamine treated embryos was similar to ethanol control and wild type embryos 

(Figs 3.6G, 3.7G) suggesting that neither Nkx2.4a nor Nkx2.4b  expression requires Hh 

signalling.
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4 Results: BAC Homologous Recombination; Targeting 

Nkx22 with a Fluorescent Marker

4.1 Targeting Zebrafish Nkx2.2a C ontaining B A C  with F luorescent 

M arker Venus

4.1.1 Construction and Validation of zNkx2.2aVenus BAC

BAC homologous recombination is a method that has been successfully applied to the 

study of gene regulation. BACs contain large fragments of genomic DNA, which due 

to advances in homologous recombination techniques, can easily be modified. 

Markers of expression such as GFP can be inserted into coding sequence and putative 

regulatory elements can be modified and changes in expression assayed. The 

advantage of using a BAC transgenic approach, is that because of their size, it is likely 

that all of the regulatory elements necessary to direct expression will be present in the 

BAC, along with the gene of interest. To analyse the Nkx2.2a  gene regulation we 

therefore took a BAC transgenic approach. Zebrafish embryos were used for these 

experiments due to the ease of production of many transient transgenic embryos and 

the accessibility of embryos for analysis.

First, a BAC was identified that contained all the regulatory elements necessary for 

the correct expression of Nkx2.2a. Targeting the Nkx2.2a  gene within this BAC with 

a reporter recapitulated the endogenous Nkx2.2a  expression pattern in zebrafish. Then 

removal of presumptive regulatory non-coding DNA confirmed the necessity of these 

elements for correct expression of Nkx2.2a.

A  BAC containing 93kb of zebrafish genom ic DNA (zK257G4), including the 

Nkx2.2a  gene, was chosen for targeting. The BAC covered approximately 74kb of 

genomic DNA upstream (5’) and 17kb of DNA downstream (3 ’) of the Nkx2.2a  gene. 

We therefore thought it likely that all the necessary regulatory elements for expression 

of N k x 2 .2 a  were present (Fig. 4.1 A). To  perform the targeting, the BAC
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recombination system developed by Neil Copeland and colleagues was used (Lee et 

al., 2001; Yu et al., 2000).

This homologous recombination system uses a modified DH10B E.coli strain, EL250 

(Lee et al., 2001). Two Red  genes encoded by the bacteriophage X are required for 

recombination: exo and bet (Poteete, 2001; Stahl, 1998). A third X phage gene is also 

needed, gam , this inhibits RecBCD exonuclease to ensure linear DNA is not degraded 

by the bacteria (Poteete, 2001; Stahl, 1998). The genes required are expressed from a 

defective prophage, which is integrated into the E.coli chromosome of the modified 

strains (Lee et al., 2001; Yu et al., 2000). The EL250 strain contains the defective 

prophage, with the recombination genes expressed by a strong X promoter PL. This 

promoter is repressed by temperature sensitive X cI857 repressor within the strain 

(Lee et al., 2001; Yu et al., 2000). Consequently, only very low levels of expression 

occur at 32 °C, however upon increasing the temperature to 42°C for 15 minutes, exo, 

bet  and gam  are expressed at high levels and allow recombination. EL250 also 

contains an arabinose inducible Flpe recombinase gene (Buchholz et al., 1998; Lee et 

al., 2001), allowing recombination between F R T  sequences upon introduction of 

arabinose into the growth media.

EL250 was transfected by electroporation with BAC zK257G4. To confirm the 

integrity of the BAC in the clone of EL250s used for subsequent targeting, the DNA 

digestion pattern with 3 different restriction enzymes was compared with that of the 

purified DNA used for the transfection (results not shown). These data indicated that 

the clone of EL250 used contained intact zK257G4.

The strategy for introducing a marker into the Nkx2.2a  locus is outlined in Fig. 4. IB 

and 4.1C. The zK257G4 containing EL250 were transfected with a targeting plasmid 

containing a gene for the fluorescent reporter, Venus, flanked by DNA homologous to 

exon 1 of the Nkx2.2a  gene in the BAC (Fig. 4 . IB). Venus is a modified version of 

the commercially available marker YFP, that contains a point mutation which 

enhances its brightness compared to the original fluorescent marker (Nagai et al., 

2002). The targeting construct also contained a selectable Neomycin (Neo ) resistance
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gene to allow selection of BACs in which recombination with the plasmid had 

occurred (Fig. 4.1C). Once the BAC had been targeted, a second recombination, 

induced by arabinose, was carried out to allow recombination between the FRT0 sites 

flanking the N eo  thereby deleting the marker. The result was the N kx2 .2a  locus 

targeted with a traceable marker (Fig. 4.1C).

In order to check that the BAC was correctly targeted, Southern blots were carried out 

(Fig. 4.2). The Venus-Neo cassette was targeted to Exon 1 of the Nkx2.2a  gene, this 

introduced an extra Mfel restriction enzyme site to the Nkx2.2a  Locus (Fig. 4.2Ai, 

4.2Aii). Accordingly, digestion of BAC DNA with Mfel and probing a Southern Blot 

with a radiolabelled probe from the 3 ’ of exon 1, corresponding to the 3 ’ arm of the 

targeting construct, identified clones, in which the locus had been correctly targeted. 

In the original, untargeted BAC the 3 ’ probe identifies a 4.8kb fragment (Fig. 4.2Ai); 

the correct insertion of the cassette into exon 1 results in a 3.7kb fragment being 

identified with the 3 ’ probe (Fig. 4.2Aii). Upon deletion of the Neo  marker, by F R T  

site recombination, a further decrease in the size of the fragment to 2.4kb is predicted 

(Fig. 4.2Aiii).

Results of the Southern blot with the 3 ’ arm probe are shown in Fig. 4.2B. The 

digestion and probing of the original, untargeted BAC identified a fragment of 

approximately 4.8kb (lane 1, Fig. 4.2B). After digestion of targeted BACs the same 

probe identified two bands of approximately 3.7kb and 2.4kb (lanes 2 and 3, Fig. 

4.2B). Finally 8 clones, which were targeted and had Neo  deleted were also digested 

and labelled, there were 2 different outcomes with these clones. Two clones (clones 2 

and 7) contained 2 fragments of approximately 2.4kb and 3.7kb that were labelled by 

the 3 ’ arm probe (lanes 5 and 10, Fig. 4.2B). The other 6 clones upon digestion 

contained one labelled fragment of 2.4kb (lanes 4, 6-9 and 11 Fig. 4.2B). The results 

from the Southern blot suggest that the targeted BACs contained the correct sized 

insert (3.7kb), which was positioned correctly (lanes 2 and 3 Fig. 4.2B). Upon 

deletion of the N eo , the clones were again of the correct size (2.4kb), suggesting the 

FRT0 sites had correctly recombined leaving the expected product (Fig. 4.2Aiii).
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The presence of the second labelled fragment of 2.4kb in the recombined BACs (lanes 

2 and 3, Fig. 4.2B) could be explained by F R T  recombination and deletion of N eo  

prior to arabinose induction of Flpe recombinase. To test this hypothesis, a second 

Southern blot was carried out using a Neo  radiolabelled probe to test for loss of the 

Neo  marker (Fig. 4.2C). Consistent with the lack of N eo , the digestion and probing of 

the original BAC did not produce any bands (lane 1, Fig. 4.2C). On the other hand, 

the digested, targeted BACs contained a single fragment of 3.7kb labelled by the Neo  

probe (lanes 2 and 3, Fig. 4.2C). Clones in which Neo  had been deleted (lanes 4-11, 

Fig. 4.2C) were not labelled by the probe in 6 of the 8 clones, but fragments of 3.7kb 

were labelled in 2 clones (lanes 5 and 10, Fig. 4.2C). Thus this blot confirmed the 

loss of Neo  in the clones in which the FR T  sites had been recombined (Fig. 4.2C lanes 

4-11). The exceptions to this were clones 2 and 7, in which N e o  had not been 

completely deleted (Fig 4.2C, lanes 5 and 10). Moreover these data are consistent 

with the idea that the 2.4kb fragments highlighted by probing the targeted BACs using 

the 3 ’arm probe (lanes 2 and 3, Fig. 4.2B) resulted from BACs in which Neo  had been 

deleted. This was probably due to basal levels of transcription of Flpe recombinase  in 

the absence of arabinose.

4.1.2 Analysis of Zebrafish Embryos Injected with zNkx2.2aVenus BAC

The resulting zNkx2.2aVenus BAC (clone 8*, Fig. 4.2B, 4.2C) was chosen for further 

analysis. To test whether it was able to drive Venus  expression in the N kx2 .2a  

domains in the neural tube, it was injected into the cytoplasm of early one cell stage 

zebrafish embryos. Varying concentrations were tested and the em bryos were 

incubated for 24 hpf. The embryos were fixed, immunostained for GFP (recognises 

Venus protein) and numbers of embryos positive for Nkx2.2-like Venus expression 

were counted (Table 6). Embryos analysed were injected with 3 different 

concentrations of BAC DNA, an average of 33% of these embryos stained positive for 

Venus (Table 6). There is a trend of an increased percentage of positive embryos as 

BAC concentration was increased (Table 6).

Analysis of the distribution of Venus in transgenic embryos indicated that the 

expression of Venus (Fig. 4.3) appeared to recapitulate endogenous expression of
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Nkx2.2a  (Fig. 3.4). Expression was apparent in the most ventral regions of the neural 

tube. In a large proportion of embryos strong expression of the fluorescent marker 

was seen the entire length of the ventral neural tube (Fig. 4.3A, 4.3C) and was 

particularly strong in anterior regions of the em bryo (Fig. 4.3B, 4.3D). In 

approximately 20% of the embryos positive for Venus, expression was only observed 

in the ventral anterior neural tube including ventral forebrain and the ventral midline 

of the midbrain and hindbrain. In these embryos, Venus was not present in the spinal 

cord (data not shown). Expression in tissue other than the ventral neural tube, 

consisting of more than 1 or 2 positive cells, was observed in approximately 10% of 

embryos positive for Venus (as seen in Fig 4.3A). However, this ectopic expression 

was weak in comparison to the Nkx2.2-like expression and was not consistently 

observed in a spatially restricted location. Moreover, this ectopic expression was 

always accompanied by specific Nkx2.2-like expression in the neural tube.

The presence of bilateral pairs of Venus positive cells in the ventral neural tube (Fig. 

4.3B, 4.3D) could be explained by the division of cells observed during zebrafish 

neurulation. It is consistent with previous observations of bilateral distribution of 

daughter cells across the neural tube midline (see Introduction: Ciruna et al., 2006; 

Concha and Adams, 1998; Geldmacher-Voss et al., 2003).

To confirm that the Venus expressing cells were located ventrally in the neural tube, 

vibratome sectioning and confocal microscopy was performed (Fig. 4.3E-4.3G). 

Embryos were counterstained with Phalloidin (red), which stained the actin 

cytoskeleton, to visualise neural tube morphology. Spinal cord sections (Fig. 4.3E) 

showed Venus expression in the most ventral cells of the neural tube, comparable to 

wild type expression of Nkx2.2a  (Fig. 3.1G). Sections through the midbrain (Fig. 

4.3F) confirmed that the Venus expression in more anterior regions of the neural tube 

was also restricted to Nkx2.2a  expressing domains. This is also apparent in the high 

magnification view of the forebrain and midbrain (Fig. 4.3G).

These data suggest that the Nkx2.2a  gene was correctly targeted with Venus and that 

all the regulatory elements required for the endogenous expression pattern are present
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in the BAC. Using this in vivo assay, further analysis of the N kx2 .2a  regulatory 

machinery was carried out.

Concentration of 

Construct Injected 

(ng/pl)

Number of Embryos 

Positive for Nkx2.2-like 

Venus Expression

Total Number of 

GO Embryos 

Analysed (24 hpf)

% Embryos Positive for 

Nkx2.2-like Venus 

Expression

20 83 261 32%

50 11 31 35%

100 17 42 40%

Table 6 Results of injection of zNkx2.2aVenus BAC; a zebrafish Nkx2.2a

containing BAC targeted with a fluorescent marker.
Table shows the concentration of the BAC injected into the cytoplasm of early one-cell stage zebrafish 
embryos. Analysis of embryos was carried out at 24 hours post fertilisation (hpf). At each 
concentration the number of embryos immunostained positive for Venus was recorded; these embryos 
were positive for Nkx2.2a-like Venus expression in the neural tube. The third column shows the total 
number of embryos analysed. The final column indicates the percentage of embryos positive for 
Nkx2.2a-like Venus expression at 24 hpf.

4.2 In silico Alignm ent and CNCR Identification

Utilising the results obtained in Chapter 3, we analysed the promoter sequences of the 

four vertebrate Nkx2.2  and N kx2.9  genes. To do this, 9kb of sequence 5 ’ of the 

Nkx2.2  and Nkx2.9  genes was extracted from the Ensembl database and analysed 

using the Pipmaker BLASTZ alignment (Schwartz et al., 2000). This program aligns 

large pieces of DNA and identifies small regions of homology. From this alignment 

(Fig. 4.4A) a region of non-coding DNA of approximately 250bp was identified 

which contains very high homology between both genes across all four species, we 

refer to this as the Conserved Non-Coding Region (CNCR). This region is 

highlighted in green and pink (Fig 4.4A) indicating unbroken regions with 50-70% 

homology and greater than 70% homology, respectively. Potential transcription factor 

binding sites within this region were identified using Matlnspector from Genomatix 

(Fig. 4.4B). Several of these may be relevant to the regulation of N kx2  genes (see 

Discussion). Most notable was the presence of a motif identical to a canonical Gli 

Binding Site (GBS), which was present and conserved in each of the 8 sequences 

analysed, suggesting the possibility of direct regulation by Shh signalling.
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4.3 D eletion o f  CNCR from  zN kx2.2aVenus BA C  Leads to Loss o f  

R eporter Expression

4.3.1 Construction and Validation of zNkx2.2aVenusACNCR BAC

As injection into zebrafish of zN kx2 .2aV enus BA C correctly  recapitulated 

endogenous Nkx2.2a expression, we wanted to test if this expression was dependent 

upon the presence of the CNCR. To test this, the CNCR was deleted from the Venus 

targeted BAC. This was achieved using the same homologous recombination system, 

(Fig. 4.5).

Targeting of the BAC to create zNkx2.2aVenus BAC left an FRT0 site within exon 1 

of Nkx2.2a. In order to avoid recombination with this FRT0 site during the second 

round of homologous recombination, FRTS sites (Schlake and Bode, 1994) were used 

to flank Neo  (Fig. 4.5A). The frequency of recombination between F R T 5 sites and 

other F R T  sites is <1% (Schlake and Bode, 1994). Targeting Vector 2 (Fig. 4.5A) 

therefore consisted of Neo  driven by fi-lactamase promoter, flanked by FRT5 sites. 

This whole cassette was in turn flanked by homology arms that were designed to 

target N eo  to the CNCR, thereby deleting it (Fig. 4.5B). Flpe recom binase  was 

induced by provision of arabinose into the growth media, FRT5 sites recombined, 

thereby deleting N eo  (Fig. 4.5B). Due to the basal level of F R T  recombination 

observed in the first homologous recombination to create zNkx2.2Venus BAC, no 

intermediate clones (Fig. 4.6Aii) were tested. The F R T  recom bination step was 

undertaken immediately and resulting BACs tested.

After the homologous recombination was carried out to delete the CNCR and Neo,  

PCR and Southern Blots were carried out to test for correct targeting (Fig. 4.6). PCR 

using primers that span the region targeted provided an indication that the targeting 

had occurred correctly (PCR primer locations indicated in Fig. 4.6Ai). The expected 

PCR product of the zNkx2.2aVenus BAC was 1.4kb (Fig. 4.6Ai). Upon insertion of 

targeting vector 2 into the BAC and recombining F R T 5 sites, the expected PCR 

product was 1.2kb (Fig. 4.6Aiii). PCR of the zNkx2.2aVenus BAC (Fig. 4.6B lane 7)
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and targeted clones 3 and 6 (Fig 4.6B, lanes 3 and 6) provided products of the 

expected size. In contrast clone 4 generated a PCR product of ~1.4kb suggesting it 

was not correctly targeted (Fig. 4.6B lane 4).

To confirm this interpretation, the PCR product was digested with Aval. Clones in 

which targeting had not occurred contained an Aval site, while deletion of the CNCR 

removed this site (Fig. 4.6A). Therefore, the zNkx2.2aVenus BAC PCR product 

would be cut into 2 fragments upon digestion, whilst the clones with the CNCR 

deleted would remain as 1.2kb fragments. The results (Fig. 4.6C) indicated that 

clones 3 and 6 had lost the Aval restriction site due to the maintenance of the 1.2kb 

fragment (Fig. 4.6C lanes 3 and 6). In contrast clone 4 had maintained the Aval site 

and was digested producing two fragments, suggesting it had not been correctly 

targeted (Fig. 4.6C lane 4). The zNkx2.2aVenus BAC PCR product, upon digestion, 

contained 2 DNA fragments, confirming the presence of the Aval restriction site (Fig. 

4.6C lane 7).

To further confirm that the BAC had been correctly targeted, a Southern blot of the 

BACs digested with Aval and PstI was performed using a radiolabelled Venus probe 

(Fig. 4.6D). Upon digestion of the zNkx2.2aVenus BAC with Aval, the Venus probe 

would identify a fragment of 2.4kb (Fig. 4.6Ai). However, a correctly targeted BAC 

would remove the Aval restriction site. Therefore the Venus  probe would bind to a 

fragment of 5.1 kb (Fig. 4.6Aiii). In addition, digestion of the zNkx2.2aVenus BAC 

DNA with PstI, followed by probing with Venus would label fragments of the same 

size as digestion of BACs in which the CNCR has been deleted (423bp Fig. 4.6Ai-iii). 

This is due to the position of the PstI sites in relation to the Venus insertion, however, 

any change in fragment size may indicate an incorrect recombination between F R T0 

and FRT5 sites.

Digestion of the zNkx2.2aVenus BAC DNA with Aval and probing with Venus 

provided a band of 2.4kb, as expected, (Fig. 4.6D lane 8). The same DNA digested 

with PstI and probed with Venus, labelled a fragment of approximately 423bp, again 

as predicted (Fig. 4.6D lane 16). After targeting the BA C and hom ologous
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recombination to delete Neo, digestion and probing with Venus labelled a fragment of 

5.1 kb in BAC clones 3 and 6 (Fig. 4.6D lanes 3, 6, and 7). The PstI digest and 

probing of clones 3 and 6 labelled fragments of 423bp (Fig. 4.6D lanes 11, 14 and 15), 

the same size as that of the zNkx2.2aVenus BAC. The labelling of fragments of the 

same size in targeted and untargeted BACs indicated that no recombination between 

different FRT  sites had occurred. The PCR and Southern Blot analysis indicated that 

clones 3 and 6 had been correctly targeted to delete the CNCR without altering the 

DNA surrounding the target site.

4.3.2 Analysis of Zebrafish Embryos Injected with zNkx2.2aVenus- 

ACNCR BAC

To test whether CN CR is required  fo r  exp ress ion  o f  N kx2 .2a ,  purified 

zNkx2.2aVenusACNCR BAC DNA (clone 6* Fig. 4 .6) was injected into the 

cytoplasm of early one cell stage zebrafish embryos at 20ng/pl and embryos were 

incubated for 24 hours. Embryos were fixed before immunostaining for GFP and 

numbers of positive embryos recorded (Table 7). In >99% of the embryos, no specific 

Nkx2.2-like staining in the neural tube was observed (Fig. 4.7A-4.7D). Transverse 

sections of embryos counterstained with Phalloidin showed there was no Venus in the 

neural tube (Fig. 4 .7C’). Non-specific Venus was observed in ~10% of embryos. 

This non-specific expression was com parable to that observed on injection of 

zNkx2.2aVenus BAC (Fig. 4.3) and was present in a variety o f  tissues. In 4  out of 

591 embryos analysed, staining was observed in the neural tube (Fig. 4.7E-4.7F) and 

appeared to be restricted to the Nkx2.2a  domain. However the level of expression and 

number of expressing cells was low compared to zNkx2.2aVenus BAC.

Together these results provide evidence that the CN CR in the context of the whole 

gene is required for correct endogenous Nkx2.2a  expression.

110



Results

Concentration of 

Construct Injected 

(ng/pl)

Number of Embryos 

Positive for Nkx2.2-like 

Venus Expression

Total Number of GO 

Embryos Analysed 

(24 hpf)

% Embryos Positive for 

Nkx2.2-like Venus 

Expression

20 2 413 0.5%

40 2 178 1%

Table 7 Results of injection of zNkx2.2aVenusACNCR BAC; a zebrafish Nkx2.2a  

containing BAC targeted with a fluorescent marker with the CNCR deleted.

The BAC contains a Venus marker targeted to Exon 1 of zebrafish N k x2 .2 a  and the identified 250bp 

CNCR has been deleted. Table shows the concentration o f the BAC injected into the cytoplasm of 

early one-cell stage zebrafish embryos. A nalysis o f em bryos was carried out at 24  hours post 

fertilisation (hpf). For each round of injections the number of embryos immunostained positive for 

GFP was recorded; these embryos were positive in an Nkx2.2a-like domain. The third column shows 

the total number of embryos analysed. The final column records the percentage of embryos positive for 

Venus in an Nkx2.2-like domain.
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Figure 4.1 Schematic for the construction of zNkx2.2aVenus BAC.

A Diagram showing the position of the zK257G4 BAC with respect to the Nkx2.2a 

gene within the zebrafish genome. The gene is located at one end of the BAC; with 

the direction of gene transcription marked by a black arrow and a white cross marks 

the position of the Conserved Non-Coding Region (CNCR). B A diagram of the BAC 

containing the zNkx2.2a locus consisting of two exons and the procedure for targeting 

Venus to the first exon (scale bar is 200bp). This BAC was transfected into EL250 

bacterial cells. The targeting vector contained the Venus marker (+ SV40 polyA tail) 

fused to a Neomycin (Neo) resistance gene (+ /3-lactamase promoter) all flanked by 

FRT0 sites. This entire cassette was flanked by homology arms of approximately 

500bp, which targeted the cassette to the first exon of Nkx2.2a by homologous 

recombination. This was achieved by transfection of the targeting vector into the 

EL250 bacteria followed by a heat shock that activated the recombination machinery. 

This first product (Ci) then underw ent a second recom bination, induced by 

introduction of arabinose into the culture medium, which directed Flpe recombinase 

expression. The FRT0 sites recombined to delete the DNA between them. The 

resulting BAC (Cii) contained Venus and one FRT0 site within the first exon of the 

Nkx2.2a gene.
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Figure 4.2 Testing zNkx2.2aVenus BAC for correct targeting.

Upon targeting of the N kx2 .2 a  containing BAC, the correct positioning of the 

targeting cassette was tested. This was carried out using a Southern blot approach, a 

schematic of which can be seen in A. The 2 radiolabelled probes used were the 3 ’ 

homology arm and Neo,  the positions of binding of these probes are marked on the 

diagrams (A) with red arrows. The probes were hybridised to DNA cut with Mfel 

restriction enzyme (M). The sizes of the bands to which the probe was expected to 

bind are marked with black arrows. The Southern blots using the 3 ’ arm probe (B) 

and the Neo  probe (C) are shown. B and C: lane 1 is the original untargeted BAC; 

lanes 2 and 3 show recombined BACs (clones 1 and 2) targeted with Venus-Neo; 

lanes 4-11 show BACs in which the F R T  sites have recombined to delete the Neo  

marker (clones 1 to 8, * marks the clone used for further experiments). The probe 

labelled a band in lane 1 of 4.8kb, as expected. In lanes 2 and 3, recombined BACs 

show a drop in the size of the band to 3.7kb, upon deletion of Neo  the band size drops 

further to 2.4kb (lanes 4-11). The 2.4kb labelled band in the recombined BAC (lanes 

2 and 3) represents a recombination and deletion of Neo,  this was confirmed by 

probing the digest with a Neo  probe (C). The Neo  probe labelled a 3.7kb band in the 

lanes containing the digestion of the recombined BACs and those containing clones in 

which Neo  had not been successfully deleted (lanes 2, 7). This experiment provided 

evidence that the V en u s  has been targeted correctly to the N kx2 .2 a  locus in 

zNkx2.2aVenus BAC.
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Figure 4.3 Expression patterns of zNkx2.2aVenus BAC in 24hr zebrafish

embryos after injection.

A, C 24 hour embryos at 10X magnification. Embryo views are lateral, with the head 

turned for a dorsal view, B, D 20X magnification of anterior regions of the same 

embryos. Embryos were injected with zNkx2.2aVenus BAC DNA at early 1 cell 

stage in the cytoplasm at 20ng/pl. Embryos were incubated to 24 hpf, fixed and 

stained for GFP by whole-mount immunohistochemistry. GFP was observed in the 

ventral neural tube from anterior to posterior (A, C) or in anterior regions alone in 

33% of the embryos analysed. A small amount of non-specific expression was seen 

(A), however this was limited. The expression pattern of the Venus marker 

recapitulates the endogenous N kx2.2a  expression (see Fig. 3.4). High magnification 

confocal microscopy was performed for embryos counterstained with Phalloidin (red, 

E-G). lOOpM vibratome transverse sections were obtained of trunk (E) and midbrain 

(F), showing Nkx2.2a-Iike Venus expression in the ventral neural tube. G a dorsal 

view of the fore- and midbrain.

116



Results

GFP
10X 20X

GFP Phalloidin

117



R esults

Figure 4.4 BLASTZ alignment of human, mouse, zebrafish and Fugu Nkx2.2  and 

N kx2.9 gene promoters identifying a Conserved Non-Coding Region (CNCR) and 

putative transcription factor binding sites located within the CNCR.

9kb of DNA 5 ’ of the 8 genes was aligned using a Pipmaker BLASTZ alignment. 

This alignment, A, identified a region of homology when comparing all of the 

sequences to the human Nkx2.2  gene. This region, termed the Conserved Non-Coding 

Region (CNCR), is located approximately 2kb 5 ’ of the transcription start site. 

Highlighted in green and pink are regions of homology of 50-70% and >70% identity 

respectively. B The N kx2.2  genes are more similar to each other than to the N kx2.9  

genes. Many short motifs of sequence homology are shared between the genes 

(shaded boxes) these correspond to characterised binding motifs for several 

transcription factors.
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Figure 4.5 Schematic for constructing zNkx2.2aVenusACNCR BAC.

A second homologous recombination experiment was set up to delete the CNCR from 

the zNkx2.2aVenus BAC. A The zN kx2.2a  locus in BAC zK257G4 targeted with 

Venus into exon 1 (scale bar 200bp). Targeting Vector 2 consisted of Neo  driven by a 

13-lactamase promoter flanked by FRTS sites, which are in turn flanked by homology 

arms. The homology arms were designed to target N eo  precisely to the CNCR, 

thereby deleting it. The targeting vector was transfected into EL250 cells containing 

the zNkx2.2aVenus BAC. A heat shock was administered to the cells, which induced 

recombination between the BAC and the targeting vector. B The resulting BAC 

contained a fi-lactamase Neo  in place of the CNCR. Flpe recombinase was under the 

influence of an arabinose inducible promoter. Addition of arabinose to the growth 

media induced recombination between the FRT5 sites, resulting in the deletion of the 

CNCR.
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Figure 4.6 Testing zNkx2.2aVenusACNCR BAC for correct deletion of CNCR 

upstream of zNkx2.2a gene.

Upon targeting the N kx2 .2a-containing BAC to delete the CNCR, correct positioning 

of the FRT5-Neo cassette had to be verified. This was performed using a combination 

of Southern blots and PCR, a schematic of which can be seen in A. The DNA bound 

by the PCR primers is marked with red arrows 1 and 2, the size of the expected 

product is marked (red arrows) above the BAC (represented by a solid black line). 

The Southern blot probe recognised the inserted fluorescent marker Venus, the 

position of binding is marked (black arrows) above the BAC. The probes were 

hybridised to DNA cut with restriction enzymes Aval (A) and PstI (P). The sizes of 

the bands to which the probe was expected to bind are marked (black arrows) below 

the BAC. B, C, show the agarose gels of uncut and Aval cut PCR products 

respectively. The PCR was performed on targeted zNkx2.2aVenusACNCR BACs 

(lanes 1-6, * denotes clone used for further experiments) and zNkx2.2aVenus BAC 

(lane 7). Expected PCR product size of 1.2kb was observed in lanes 1, 3 and 6 (B), in 

which CNCR and N eo  had been deleted. Digested products were the same size as 

uncut due to the loss of Aval site (C). Uncut product size of 1.4kb for the 

zNkx2.2aVenus BAC (B), and digested band sizes of 0.6kb and 0.8kb were observed 

as expected (C). D BAC DNA digested with both Aval (lanes 1-8) and PstI (lanes 9- 

16) and probed for the presence of Venus sequence. Lanes 1-7 and 9-15 are BACs, 

which lack the CNCR and Neo. Lanes 8 and 16 contain DNA from zNkx2.2aVenus 

BAC. Upon Aval digestion (D, lanes 6 and 7), the Venus probe binds to expected 

band of 5.1 kb in BACs, which have had the CNCR and Neo  deleted. The labelled 

band was 2.4kb in the lane containing digested zNkx2.2aVenus BAC (D, lane 8). 

Upon PstI digestion, there was no change in labelled band size (423bp) between 

zNkx2.2aVenus BAC and the BACs in which the CNCR and Neo  had been deleted 

(D, lanes 14 and 15).
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Figure 4.7 Expression patterns of zNkx2.2aVenusACNCR BAC in 24hr zebrafish

embryos after injection.

A, C, E 24 hour embryos at 10X magnification. Embryo views are lateral, with the 

head turned for a dorsal view. B, D, F 20X magnification of anterior regions of the 

same embryos. Embryos were injected with zNkx2.2aVenusACNCR BAC DNA at 

early one cell stage in the cytoplasm at 20ng/pl. Embryos were incubated to 24 hpf, 

fixed and stained for G FP by whole-mount immunohistochemistry. In >99% of the 

injected em bryos (587/591) either no expression was seen at all or non-specific 

expression was observed in many different tissue types (A-D). Suggesting that CNCR 

deletion caused loss of specific Nkx2.2-like expression, therefore it is necessary for its 

expression. C’ To confirm there was no ventral neural tube expression of Venus, 

embryos were counterstained with Phalloidin (red), vibratome sectioned (lOOpM) and 

viewed with confocal microscopy. E, F embryos in which Nkx2.2-like ventral neural 

tube staining was observed, cells positive for Venus were observed in the ventral 

spinal cord (E') and ventral hindbrain (F). However, expression was weaker and 

observed in fewer cells than upon injection of zNkx2.2aVenus BAC.
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5 Results: Analysing the Role of Conserved Non-Coding 

Region (CNCR); Assay Development

5.1 Generation o f  Prom oter R eporter Constructs and A ssay Results

5.1.1 Generation of Promoter Reporter Constructs

In silico  analysis identified N kx2.2  conserved non-coding region (CNCR) a 250bp 

region close to the transcriptional start site of the Nkx2.2  and N kx2.9  genes (Chapter 

4), that is highly conserved across 4  diverse genomes examined. Moreover, transient 

assays in zebrafish embryos using a BAC containing an Nkx2.2a  reporter indicated the 

necessity for the CNCR to direct correct Nkx2.2  expression.

We therefore sought to test if the CNCR was sufficient to direct expression of a 

reporter gene in the ventral neural tube. Regions of promoter sequence, containing 

the CNCR, from mouse and zebrafish N kx2.2  and N kx2.9  of between lkb  and 1.3kb 

were cloned upstream of a hsp681acZ reporter construct (Kothary et al., 1989; Logan 

et al., 1993). The orientation of these regions were all 3 ’-5 ’ with respect to the 

hsp681acZ, to test for the o r ien ta t io n  in d e p e n d e n t  e n h a n c e r  activ ity . 

mNkx2.9CNCR+PromLacZ consisted of lkb  DNA from the m ouse N k x 2 .9  promoter 

sequence fused to hsp681acZ (Fig. 5.1 A), m N kx2.2CNCR+PromLacZ included an 

equivalent region from mouse N kx2 .2  (Fig. 5 . IB). In addition, two zebrafish 

co n s tru c ts ,  con ta in ing  d if fe re n t  reg io n s  o f  the  N k x 2 . 2 a  p ro m o te r ;  

zNkx2.2CNCR+PromLacZ and zNkx2.2CNCR+PromLacZ-2 containing 1.3kb and lkb  of DNA 

respectively (Fig. 5.1C, 5 .ID) were generated.

These four constructs were then tested in vivo  to determine where in the embryo they 

directed LacZ  expression. Various in vivo  assays were performed to find the method 

that provided the most reliable, consis ten t results. These  included chick 

electroporation, zebrafish injection and mouse pronuclear injection (PNI). The 

different techniques and results are discussed below.
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5.1.2 Chick Electroporation Assay Development

The first assay relied on chick electroporation. The zebrafish N kx2 .2a  construct, 

zNkx2.2CNCR+PromLacZ, was electroporated at a variety of dilutions at HH stage 10-12 

(Hamburger and Hamilton, 1953). Embryos were harvested and stained for |3- 

galactosidase activity. At high concentrations (500ng/pl) there was considerable, 

almost ubiquitous, expression in the neural tube (Fig. 5.2B), indicated by the blue 

staining. At lower concentrations (lOOng/pl; Fig. 5.2A), (3-gaIactosidase activity 

appeared more restricted to ventral regions of the neural tube corresponding to regions 

where Nkx2.2 is expressed.

To confirm these data, further electroporations at lOOng/pl were carried out. 

Promoter construct plasmid DNA was co-electroporated with a control vector 

(pCAGGS: Niwa et al., 1991) expressing GFP  at high levels. Therefore, any cell that 

was electroporated, expressed GFP,  enabling identification of transfected tissue. 

Electroporated embryos were immunostained for both GFP and (3-galactosidase (Fig. 

5.2C-5.2H). Analysis of a series of transfected embryos indicated that while some 

embryos demonstrated ventrally restricted expression of zNkx2.2CNCR+PromLacZ, there 

was little consistency in the electroporations. Sometimes specific ventral staining was 

detected (Fig. 5.2C-5.2E) however in other embryos, a more ubiquitous expression 

pattern was seen using the same concentration and preparations of DNA. Performing 

the analysis of the embryos 48 hours post electroporation (hpe; Fig. 5.2F-5.2H) did 

not increase specificity, neither did lowering the concentration of DNA further (data 

not shown). Therefore, while this approach shows some promise, it will require 

further development before offering a reliable assay.

5.1.3 Zebrafish Injection Assay Development

We next tested transient analysis in zebrafish embryos as an assay for enhancer 

activity. The same construct (zNkx2.2CNCR+PromLacZ) was injected into early 1-cell 

zebrafish embryos. Fish were fixed and stained for (3-galactosidase activity at 24 

hours post fertilisation (hpf). This technique resulted in a high level of mosaic, non­
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specific expression in injected zebrafish (Fig. 5.3A-5.3C). Small numbers of cells 

expressing the reporter were observed in what appeared to be the Nkx2.2 domain, in 

approximately 10% of injected embryos (black arrowheads in Fig. 5.3D). There was 

also L a cZ  expression in the notochord in many embryos (Fig. 5.3D). The specific 

Nkx2.2-like expression was observed in a higher proportion of embryos compared to 

injection of the control plasmid: lacZhsp68 reporter plasmid, containing no promoter 

fragment (results not shown).

In an attempt to improve this assay, a second method of injection was tested. This 

involved injecting the reporter DNA (i.e. hsp681acZ) and the promoter sequence 

(zNkx2.2CNCR+Prom) as separate pieces o f  DNA (Muller et al., 1997). This has been 

used as a rapid and efficient reporter assay for identifying expression patterns of 

zebrafish enhancer elements (Muller et al., 1999; Muller et al., 1997; Woolfe et al., 

2004). This method relies upon integration of both DNA fragments into chromosomal 

DNA. DNA injected into zebrafish embryos integrates randomly into the fish genome 

early in development. Concatamerisation of the reporter and enhancer fragments 

occurs, allowing the enhancer to exert its regulatory effects upon the reporter in a cis- 

or trans- manner (reviewed in Muller et al., 2002). Expression of the reporter will 

only be seen in transient embryos when both fragments have been inserted together. 

Thus, this method negates the problem of episomal expression from injected plasmids.

This method of injection resulted in much more tissue specific expression, compared 

to injection of a single reporter plasmid (Fig. 5.4). Less ectopic expression was 

observed, however expression remained highly mosaic. Activity of |3-galactosidase 

was detected in ventral neural tube cells (as indicated by black arrowheads in the high 

magnification images Figs. 5.4B, 5.4D, 5.4F). On close inspection, the cells positive 

for |3-galactosidase seemed to be located adjacent to the floor plate and therefore in 

the correct location to be reporting Nkx2.2 activity. Once again, using this method of 

injection, specific expression was detected in a higher percentage of injected embryos 

(30%) compared to those injected with the reporter alone (10%; results not shown). 

Nevertheless, the mosaicism and ectopic nature of expression in both of the zebrafish 

assays tested did not make either method suitable for obtaining clear and precise 

results.
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5.1.4 Mouse Pronuclear Injection Assay Development

Finally mouse pronuclear injection (PNI) was tested. This involves injection of linear 

DNA into mouse pronucle i,  w hich are then transferred  into female hosts. 

Development of embryos was allowed to proceed until the required stages, at which 

point they were harvested for analysis. E l 0.5 embryos were recovered and stained for 

[3-galactosidase activity (Fig. 5.5). All three constructs analysed, resulted in ventral 

Nkx2.2/2.9-like LacZ  expression along the length of the neural tube.

In the initial experiment using mNkx2.9CNCR+PromLacZ construct; 3 out of 13 embryos 

demonstrated |3-galactosidase activity. Expression was observed along the entire 

length of the neural tube including the midbrain and the spinal accessory nerve (Fig. 

5.5A, 5.5B). This is consistent with data from Santagati et al. (2003) who used a 

similar construct. The expression was restricted to neural tissue, suggesting there are 

regulatory regions within the lk b  sequence limiting expression to the neural tube. 

From transverse cryo-sections (Fig. 5.5B), LacZ  expression was observed in 3 bands 

of the neural tube: ventrally; in an intermediate domain; and in the most dorsal tip of 

the neural tube. The ventral domain appears to correspond to the endogenous 

N k x 2 .2 /2 .9  expression (Fig. 3 . IE, 3 . IF). The other regions of |3-gaIactosidase 

expression do not coincide with endogenous domains of N kx2 .9  expression (Fig. 

3 .IF). This suggests that mNkx2.9CNCR+PromLacZ lacks regulatory elements necessary 

to block dorsal or intermediate expression. The expression of N kx2.9  in the trunk in 

mice is normally down-regulated at E10.5 (Briscoe et al., 1999), however, in E10.5 

mice there was still LacZ  expression from mNkx2.9CNCR+PromLacZ. This may be due to 

the persistence of LacZ, which is recognised as having a long half-life. Alternatively, 

the loss of elements that would normally down-regulate expression at this point in 

development might account for persistent expression. This assay generated a 

significant proportion of injected embryos positive for the LacZ  reporter, with little or 

no ectopic expression, compared to chick and zebrafish assays discussed above.

We next tested rnNkx2.2CNCR+PromLacZ. This construct comprises a region of the 

mouse N kx2.2  promoter equivalent to that of the mouse N k x 2 .9  (Fig. 5 . IB).
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Alignment of the mouse Nkx2.2  and Nkx2.9  promoters was used to identify this region 

(alignment not shown). Mouse pronuclear microinjection was performed and E10.5 

transient em bryos were analysed, 1 out of 13 em bryos were positive for |3- 

galactosidase activity. W ho lem oun t staining of E10.5 em bryos showed |3- 

galactosidase enzym e activity along the length of the neural tube (Fig. 5.5C). 

Transverse cryo-sections of the embryo revealed LacZ  expression in ventral regions of 

the spinal cord (Fig. 5.5D).

In a further experiment, zN kx2.2CNCR+PromLacZ was injected, 1 out of 10 recovered 

embryos expressed (3-galactosidase at E10.5 (Fig. 5.5E). Expression of LacZ  was 

confined to the most ventral domain of the neural tube (Fig. 5.5F), the position of 

which was equivalent to the endogenous expression of N kx2.2 /2 .9  (Fig. 3. IE, 3 . IF). 

This construct therefore appears sufficient to reproduce the endogenous expression of 

Nkx2.2.

Together these data suggest that the mouse PNI provides a reliable assay for testing 

reporter activity. The analysis indicated a high degree of specificity with low levels 

of ectopic expression. Further analysis of reporter constructs was carried out using 

this method.

5.2 Analysis o f  Stable M ouse Transgenic L ines f o r  N kx2 Reporter 

Constructs

5.2.1 Analysis of mNkx2.9CNCR+PromLacZ Stable Line

A stable mouse line containing the mNkx2.9CNCR+PromLacZ construct was obtained and 

the expression pattern of L a c Z  from  E9.5 to E l 3.5 was analysed (Fig. 5.6). 

Wholemount analysis of reporter expression revealed strong expression at E9.5 in the 

neural tube (Fig. 5.6A), which continued at both E10.5 (Fig. 5.6D) and E l 1.5 (Fig. 

5.6G). In wild type embryos, N k x 2 .9  is dow n-regulated in the trunk by E10.5 

(Briscoe et al., 1999), in the transgenic line this was not the case. This may reflect the 

stability of the (3-galactosidase, which would lead to a perdurance of enzyme activity
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within embryos. At E12.5 (Fig. 5.6J) and E13.5 (Fig. 5.6M) the LacZ  expression had 

decreased in the majority of the spinal cord but could still be detected in more anterior 

neural tube and in younger, posterior spinal cord.

Wax sections of embryos stained for (3-galactosidase activity and counterstained with 

eosin, show clearly the down-regulation of expression in the neural tube at later time 

points. At E9.5 and E l 0.5 (Fig. 5.6B, 5.6E), expression at hindbrain level of the 

neural tube showed reporter expression in both lateral ventral portions of the neural 

tube and in intermediate regions as previously seen in transient embryos. Expression 

in the migrating accessory nerve could also be seen at E10.5 (Fig. 5.6E). At the 

forelimb level of the spinal cord, at E9.5 and E10.5 (Fig. 5.6C, 5.6F) expression was 

seen in an Nkx2.9-like manner in ventral neural tube and in an ectopic intermediate 

region. By E l 1.5 (Fig. 5.6H, 5.61) expression in the ventral neural tube at spinal cord 

levels had been lost as would be expected for wild type Nkx2.9. At later time points 

the neural tube expression of the reporter construct had been lost, however, a small 

amount of expression persisted at E12.5 at hindbrain levels of the neural tube (Fig. 

5.6K).

During patterning of the ventral neural tube, Nkx2 and Pax6 cross repress each others 

expression (Briscoe et al., 2000; Briscoe et al., 1999; Ericson et al., 1997b). To test to 

see if the mNkx2.9CNCR+PromLacZ reporter was sensitive to repression by Pax6 the 

mNkx2.9CNCR+PromLacZ line was crossed with mice that lack functional Pax6 (Sey)  

(Hill et al., 1991). These mice produce a truncated form of the Pax6 protein, resulting 

in Nkx2.2 and Nkx2.9  expression expanding dorsally in the neural tube (Briscoe et al., 

1999; Ericson et al., 1997b). The expansion of endogenous N kx2.2  expression in 

embryos lacking Pax6 was evident (Fig. 5.7F; black arrow heads) compared to 

heterozygous littermates (Fig. 5.7E). Moreover, in homozygous mice lacking Pax6, 

there was a dorsal expansion o f  the reporter (Fig. 5.7B, 5.7D) com pared to 

heterozygous littermates (Fig. 5.7A, 5.7C). This was most apparent at anterior levels 

of the spinal cord (Fig. 5.7A, 5.7B) compared to posterior levels (Fig. 5.7C, 5.7D). 

This finding is consistent with a greater expansion of Nkx2 at anterior levels 

compared to posterior levels in Sey mice (Ericson et al., 1997b). Strikingly, the dorsal 

limit of the reporter expansion appeared to coincide with the ventral limit of Pax7
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expression (Fig. 5.7H). These results indicate that the regulatory elements necessary 

for repression of Nkx2 genes by Pax6 are present in mNkx2.9CNCR+PromLacZ. The 

absence of Pax6 also appeared to de-repress reporter expression in the floor plate (Fig. 

5.7B, 5.7D, 5.7F, 5.7H), however this may be due to a slight timing difference in the 

two embryos compared. Alternatively, it may be due to the long half-life of LacZ 

causing perdurance of the reporter. In order to establish if there really was floor plate 

expression, further analysis needs to be carried out.

Stable lines of mice containing both of the zebrafish reporter constructs were also 

generated. The expression patterns of the promoter constructs from E9.5 to E l 3.5 

were analysed for these lines (Fig. 5.8, 5.12). Immunohistochemistry for the two lines 

at E10.5 (Fig. 5.9, 5.10, 5.13, 5.14) and El 1.5 (Fig. 5.11, 5.15) was also performed to 

determine the population of neurons positive for LacZ in an intermediate position in 

the neural tube.

5.2.2 Analysis of zNkx2.2CNCR+PromLacZ Stable Line

A stable mouse line containing the zNkx2.2CNCR+PromLacZ construct was obtained and 

the expression pattern of LacZ  from E9.5 to E13.5 was analysed (Fig. 5.8). Analysis 

of wholemount embryos assayed for |3-galactosidase activity showed very strong 

expression at E9.5 (Fig. 5.8A) along the length of the neural tube. This strong 

expression persisted to E10.5 (Fig. 5.8D) and E l 1.5 (Fig. 5.8G). At E12.5 (Fig. 5.8J) 

and E13.5 (Fig. 5.8M), |3-Gal activity was still apparent but staining was much weaker 

in the neural tube, especially in the anterior neural tube. The LacZ  expression pattern 

was similar to that of endogenous N kx2.2  in mouse embryos, where there are many 

progenitor cells expressing N kx2 .2  at earlier developmental stages (Briscoe et al., 

1999; Ericson et al., 1997b). However, at later time points, E12.5 and E13.5, fewer 

progenitor cells are present, only a very few post mitotic cells may still be expressing 

Nkx2.2.

Embryos expressing zNkx2.2CNCR+PromLacZ transgene were vibratome sectioned and 

hindbrain and forelimb sections were analysed from  E9.5 to E13.5 (Fig. 5.8).
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Hindbrain sections at E9.5 (Fig. 5.8B) and E10.5 (Fig. 5.8E) showed LacZ  expression 

in the most ventral neural tube and floor plate. This was a broader pattern of L acZ  

expression than that of wild type Nkx2.2  (Briscoe et al., 1999). At spinal cord levels 

at E9.5 (Fig. 5.8C), the expression of L acZ  was very strong in the ventral neural tube 

and floor plate, a pattern similar to wild type expression patterns (Briscoe et al., 1999; 

Jeong and McMahon, 2005). However, expression of LacZ  at E10.5 at forelimb level 

(Fig. 5.8F) was slightly broader than N kx2.2  wild type expression (Briscoe et al., 

1999). Weak L a cZ  expression at hindbrain level at E l  1.5 and E12.5 was located 

ventrally (Figs. 5.8H, 5.8K), and the pattern of expression was not dissimilar to 

Nkx2.2  wild type expression patterns at E12.5 (Vernay et al., 2005). Expression of 

LacZ  in the spinal cord at E l 1.5 (Fig. 5.81) and E12.5 (Fig. 5.8L) was similar to that 

of Nkx2.2 in the wild type (Briscoe et al., 1999), both progenitor and post mitotic cells 

were positive for |3-galactosidase activity. By E l 3.5, the L acZ  expression at both 

hindbrain (Fig. 5.8N) and forelimb levels (Fig. 5 .8 0 )  was more restricted to the 

midline. These data suggest that the zNkx2.2CNCR+PromLacZ reporter is able to direct 

Nkx2.2-like expression at equivalent embryonic stages to the expression of wild type 

Nkx2.2.

To identify the precise location of the L a cZ  expression in the ventral neural tube, 

immunohistochemistry of mice containing the transgene zNkx2.2CNCR+PromLacZ was 

performed. Embryos were harvested at E10.5 (Figs. 5.9, 5.10) and E l 1.5 (Fig. 5.11) 

and cryosectioned before co-immunostaining with antibodies against |3-galactosidase 

and a variety of progenitor and post-mitotic neuronal markers. At E10.5, the ventral 

LacZ seemed to be restricted to the Nkx2.2 p3 domain (Fig. 5.9A-5.9I). Almost all 

Nkx2.2 positive cells were also positive for LacZ (Fig. 5.9A). Moreover, no co­

expression of LacZ and 01ig2 was observed, suggesting there was no reporter 

expression in the pMN domain (Fig. 5.9D). There were also no observed cells 

expressing LacZ and FoxA2 (Fig. 5.9G), therefore the reporter was repressed from the 

floor plate by E10.5. These data suggest that the reporter expression observed in the 

ventral neural tube is restricted to the Nkx2.2 p3 domain at the same point in 

development that this is observed endogenously.
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At E l 0.5, there were some LacZ expressing cells in a more intermediate domain, seen 

both upon enzymatic staining (Fig. 5.8F) and immunostaining (Fig. 5.9A). In order to 

identify the intermediate population of cells expressing LacZ, further immunostaining 

was performed. Double positive cells for LacZ with Pax6 (Fig. 5.9J) and with M ashl 

(Fig. 5.9M) were identified (marked by white arrowheads in the figures). Both of 

these progenitor markers identify populations of cells in the p2 progenitor domain. In 

order to further confirm this finding, co-immunostaining of post mitotic markers with 

LacZ was performed. LacZ was observed in cells positive for L im l/2  (VO, V I and 

V2 interneuron marker; Fig. 5.10A, 5 .10A ’) and Lim3 (MN and V2 interneuron 

marker; Fig. 5.10D, 5 .10D ’). LacZ positive cells were also observed co-expressing 

V2 interneuron specific markers Gata3 (V2b interneuron marker; Fig. 5.10G, 5 .10G ’) 

and ChxlO (V2a interneuron marker; Fig. 5.10J, 5 .10J’). This further confirmed that 

the expression of LacZ in intermediate domain was confined to V2 interneurons, 

subtypes a and b, both as progenitor and post mitotic cells.

The expression of the LacZ was assessed at E l  1.5 to see if the reporter construct 

zNkx2.2CNCR+PromLacZ was able to direct specific expression at later developmental 

stages (Fig. 5.11). Ventral restriction of LacZ to the p3 domain was observed, the 

ventral LacZ positive cells were located in the Nkx2.2 positive domain (Fig. 5.11 A), 

but not present in the FoxA2 positive floor plate (Fig. 5.1 ID). As observed at E10.5, 

almost all Nkx2.2 positive cells were also positive for LacZ, suggesting that the 

zNkx2.2CNCR+PromLacZ construct directs Nkx2.2-like expression precisely at E l 1.5 as 

well as E10.5.

Expression of LacZ in intermediate domains of the neural tube seen at E10.5 was seen 

in fewer cells at E l 1.5 (Fig. 5 .1 1G-5.11R). There were more post-mitotic cells at 

E l 1.5 than E10.5 and were therefore more cells expressing markers L im l/2  (Fig. 

5.11G-5.11I), Lim3 (Fig. 5 .1 1J-5.11L), Gata3 (Fig. 5 .11M -5.110) and ChxlO (Fig. 

5.1 IP-5.11R). However, co-expression with LacZ was only observed with ChxlO 

(Fig. 5 . I IP )  in a slightly more posterior region of the neural tube. Therefore, we can 

conclude that the construct is able to direct correct ventral expression in the ventral 

tube at E l 1.5. However, by this developmental stage, there is less ectopic expression 

of the reporter, therefore very little expression was observed in the V2 interneurons.
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5.2.3 Analysis o f zNkx2.2CNCR+PromLacZ-2 Stable Line

A stable mouse line containing the zNkx2.2CNCR+PromLacZ-2 construct was obtained 

and the activity of (3-Galactosidase from E9.5 to E13.5 was analysed (Fig. 5.12). The 

general pattern o f  expression observed was very similar to that of the line containing 

transgene zNkx2.2CNCR+PromLacZ (Fig. 5.8) but slightly weaker. Expression of LacZ  at 

E9.5 (Fig. 5.12A), E10.5 (Fig. 5.12D) and E l  1.5 (Fig. 5.12G) in wholemount stained 

embryos was observed the entire length of the neural tube. At E12.5 (Fig. 5.12J), 

expression occupied the same domain, but was only faintly detectable. At E l 3.5 (Fig. 

5.12M) expression was barely visible in wholemount embryos.

In order to analyse the precise location of the |3-Galactosidase activity in the neural 

tube, embryos were vibratome sectioned, hindbrain and spinal cord level sections 

were analysed (Fig. 5.12). Expression of L acZ  at both hindbrain and forelimb levels 

of E9.5 embryos was identified in the most ventral domain o f  the neural tube, 

including the floor plate (Fig. 5.12B, 5.12C). By E10.5, the expression was 

maintained in the ventral domain, but was no longer present in the floor plate (Fig. 

5.12E, 5.12F). This dorsal shift of expression and repression from the floor plate is 

comparable to wild type N kx2.2  expression (Briscoe et al., 1999). At E10.5, LacZ  

expression was also observed in a few cells in the intermediate domain of the neural 

tube at forelimb level (Fig. 5.12F). By E l  1.5 L a cZ  expression was restricted to the 

ventral domain at both hindbrain (Fig. 5.12H) and forelimb level (Fig. 5.121). At 

E12.5 and E13.5 expression of L acZ  was restricted to very few cells in the ventral 

midline in the hindbrain (Figs. 5.12K, 5.12N) and spinal cord (Figs. 5.12L, 5.120).

Enzymatic staining of the embryos harbouring the zNkx2.2CNCR+PromLacZ-2 (Fig. 5.12) 

reporter construct showed that the expression o f  the reporter was similar to that in 

embryos containing zNkx2.2CNCR+PromLacZ (Fig. 5.8). Both constructs were capable of 

directing ventral neural tube expression similar Nkx2.2 expression observed in wild 

type embryos. However, the zNkx2.2CNCR+PromLacZ-2 construct appeared to direct a 

weaker expression that that of zNkx2.2CNCR+PromLacZ. This was also observed when 

E10.5 and E l 1.5 embryos were immunostained for LacZ. At E10.5, LacZ expression
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was fairly strong in the ventral p3 domain of the neural tube (Figs. 5.13, 5.14), 

however by E l  1.5, the number of LacZ positive cells had dramatically reduced (Fig. 

5.15).

Immunohistochemistry revealed LacZ expression from zNkx2.2CNCR+PromLacZ-2 in 

cells positive for Nkx2.2 (Fig. 5.13A). The cells positive for the reporter were 

positioned ventral to the OHg2 positive pMN domain (Fig. 5.13D) and dorsal to the 

FoxA2 expressing floor plate cells (Fig. 5.13G). This confirmed that the reporter 

construct was directing LacZ expression in the p3 domain at E10.5.

LacZ was detected by immunohistochemistry in a few cells in a more intermediate 

domain of the neural tube of mice harbouring construct zNkx2.2CNCR+PromLacZ-2 (Fig. 

5 .13A ). In o rd e r  to d e te rm in e  the lo c a t io n  o f  these  cells ,  fu r th e r  

immunohistochemistry was performed. C onstruct zN kx2.2CNCR+PromLacZ directed 

expression of LacZ in V2 interneurons at both the progenitor and post-mitotic stages. 

To test if the same population of neurons was expressing the reporter, similar staining 

with V2 markers was performed (Figs. 5.13, 5.14). Co-expression of the reporter with 

progenitor markers Pax6 (Fig. 5.13J) and M ash l (Fig. 5.13M) was not observed at 

E l 0.5. However this may be due to the anterior-posterior level of the sections, at 

more posterior positions there appear to be fewer intermediate cells expressing LacZ. 

At more anterior positions of E l 0.5 embryos, the zNkx2.2CNCR+PromLacZ-2 construct 

appeared to direct expression o f  LacZ in a greater num ber of cells in more 

intermediate domains (Fig. 5.14). Imm unohistochem istry for post mitotic markers 

revealed co-expression of LacZ with L im l/2  (Fig. 5.14A), Lim3 (Fig. 5.14D), Gata3 

(Fig. 5.14G, 5.14G’) and ChxlO (Fig. 5.14J, 5 .14J’). These data suggest that at E10.5 

the zNkx2.2CNCR+PromLacZ-2 reporter construct directed LacZ expression in post­

mitotic V2 interneurons, subtypes a and b. At E l  1.5, the intermediate population of 

LacZ positive cells were also positive for Lim3 (Fig. 5.15J, 5 .15J’), Gata3 (Fig. 

5.15M) and ChxlO (Fig. 5.15P). However, in the sections analysed, no cells were 

observed positive for LacZ and L im l/2  (Fig. 5.15G). These data suggest that LacZ 

expression is directed in V2 post-mitotic interneurons at E l  1.5 by reporter construct 

zN kx2. 2CNCR+PromLacZ-2.
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To see if the zN kx2.2CNCR+PromLacZ-2 construct was able to maintain Nkx2.2-like 

ventral reporter expression, E l 1.5 embryos were analysed by immunohistochemistry. 

At E l 1.5, the expression o f  ventral LacZ directed by zN kx2.2CNCR+PromLacZ-2 

appeared to be weaker than that observed at E10.5, there were fewer cells expressing 

LacZ in the p3 domain (Fig. 5.15). zNkx2.2CNCR+PromLacZ directed expression in all 

cells of the ventral p3 domain at both E10.5 and E l 1.5 (Figs. 5.9, 5.11). However, 

El 1.5 mouse embryos harbouring zNkx2.2CNCR+PromLacZ-2 did not appear to express 

LacZ in all cells of the Nkx2.2 positive p3 domain (Fig. 5.15A). LacZ expression was 

not detected in the FoxA2 positive floor plate cells (Fig. 5.15D).

Combining all of the results from enzymatic- and immunostaining of transgenic mice, 

we can conclude that both of the zebrafish reporter constructs zNkx2.2CNCR+PromLacZ 

and zNkx2.2CNCR+PromLacZ-2 direct reporter expression in both the ventral neural tube 

and in a more intermediate region of the neural tube. The ventral expression of LacZ  

corresponds to the N kx2 .2  expressing p3 dom ain, the more intermediate region 

corresponds to the p2 domain. The zN kx2.2CNCR+PromLacZ-2 reporter directs much 

weaker expression and also directs apparen t dow n-regu la tion  o f  expression 

prematurely at E l  1.5 in the p3 domain compared to endogenous Nkx2.2 expression.

5.3 The CNCR is Sufficient to D irect L acZ  Expression in the Ventral 

N eural Tube

The data indicated that the reporter constructs containing the Conserved Non-Coding 

Region (CNCR) were capable of driving N kx2.2/2.9-like expression. The constructs 

used contained the 250bp CNCR together with approximately lkb  of additional DNA. 

To address whether the CNCR alone was sufficient for this activity, two constructs 

based on zNkx2.2CNCR+PromLacZ were m ade (Fig. 5.16). One consisted of just the 

CNCR, zNkx2.2CNCRLacZ (Fig. 5 .16B ) and one was the reciprocal region, 

zNkx2.2ACNCR+PromLacZ (Fig. 5.16C) of the original construct (Fig. 5.16A). Mouse PNI 

was used to test the expression of LacZ  directed by these reporter constructs.
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A representation of the transient results of these injections at E10.5 can be seen in Fig. 

5.16. Injection of the construct containing only the CNCR, resulted in ventral 

Nkx2.2-like expression in the neural tube (Fig. 5.16D, 5.16E) albeit at apparently 

lower levels than zNkx2.2CNCR+PromLacZ. Intermediate expression was also detected in 

s im ilar  dom a ins  to those  seen w ith  PN I o f  the fu ll- leng th  construc t ,  

zNkx2.2CNCR+PromLacZ, and also the other zebrafish construct zNkx2.2CNCR+PromLacZ-2. 

Expression in the ventral neural tube driven by this promoter construct was seen in 6 

out of 36 injected embryos at E l 0.5 (Table 8).

In contrast, zNkx2.2ACNCR+PromLacZ did not result in any |3-galactosidase activity (Fig. 

5.16F). This result was confirmed by multiple injection events, the results of this can 

be seen in Table 8. Out of 29 injected embryos analysed at E10.5, 0 were positive for 

(3-galactosidase activity.

Construct for PNI Number of Injected Embryos Stained Positive 

for (3-galactosidase in ventral NT

zNkx2.2CNCRLacZ 6/36

zNkx2.2ACNCR+PlomLacZ 0/29

Table 8 Results from mouse pronuclear injection of zebrafish reporter 

constructs; zNkx2.2CNCRLacZ and zNkx2.2ACNCR+PromLacZ.

The numbers in the right hand column indicate the fraction o f embryos that at E10.5 were positive for 

|3-galactosidase activity using X-Gal substrate. These em bryos were injected with constructs 

containing a L acZ  gene driven by a minimal promoter (hsp68) and a region o f the zebrafish N k x2 .2a  

gene promoter. The construct containing an identified conserved non-coding region (CNCR) led to 

(3-galactosidase expression in the ventral neural tube (NT) in 6 out o f 36 embryos. The construct 

lacking this region led to 0 out of 29 positive embryos.
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Figure 5.3 Zebrafish embryos stained for p-Galactosidase activity 24 hours post 

fertilisation (hpf) after injection of zNkx2.2CNCR+PromLacZ reporter construct.

Uncut plasmid DNA (40ng/p,l) was injected into the cytoplasm of 1-cell stage 

zebrafish embryos. Embryos were incubated until 24 hpf, fixed and stained for 

P-Galactosidase activity. Representative images of embryos photographed at 10X 

(A-C), and at 20X (D). Lateral views of embryos are shown, with anterior to the left, 

yolk cells have been removed. Stained cells (black arrowheads) were located in the 

Nkx2.2 domain in the ventral neural tube, the large cells (black arrows) positive for 13- 

gal are notochord cells. The expression of the reporter was very mosaic and the 

promoter construct was also expressed in ectopic locations throughout the embryo.
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Figure 5.4 Zebrafish embryos stained for p-Galactosidase activity 24 hpf after 

injection of separate promoter (zNkx2.2CNCR+Prom) and reporter (hsp68LacZ) 

fragments.

Independent fragments of the promoter and reporter were co-injected at 60ng/pl and 

12.5ng/pl respectively into the cytoplasm of 1-cell stage embryos. Embryos were 

incubated until 24 hours post fertilisation (hpf) and then fixed and stained for |3- 

Galactosidase activity. The embryos are lateral with anterior to the left, heads have 

been turned for a dorsal view, and yolk cells were removed. Em bryos were 

photographed at 10 X (A, C, E) and 20X (B, D, F). The amount of ectopic L acZ  

expression was reduced compared to the conventional injection method (Fig. 5.3), 

however, the amount of mosaicism of expression was not reduced. Cells positive for 

LacZ  in the ventral neural tube are marked by black arrowheads (high magnification 

(B, D, F)
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Figure 5.5 Transient results of mouse pronuclear injection at E10.5 of mouse 

(rnNkx2.9CNCR+PromL acZ , m N k x2 .2CINCR+PromL acZ ) and  z e b r a fish  

(zNkx2.2CNCR+PromLacZ) promoter constructs.

mNkx2.9CNCR+PromLacZ (A, B), mNkx2.2CNCR+PromLacZ (C, D) and zNkx2.2CNCR+PromLacZ 

(E, F) were microinjected at 2ng/(btl into mouse pronuclei, which were transferred to 

host females and left until E l 0.5. After harvesting, embryos were fixed and stained 

for LacZ  expression. mNkx2.9CNCR+PromLacZ directed expression along the length of 

the ventral neural tube in 3 out of 13 transient embryos (A). The expression in the 

spinal accessory nerve (A, black arrowhead) is consistent with the observation that in 

N kx2.9  mutant mice there are defects in this nerve (Pabst et al., 2003). Expression 

was also observed in an intermediate domain of the neural tube (B). A low level of 

expression in the most dorsal cells of the neural tube was observed when the neural 

tube was cryo-sectioned (B). Injection of mNkx2.2tNCR+PromLacZ led to 1 out of 13 

embryos staining positive for LacZ  expression in ventral neural tube, in a domain 

similar to endogenous Nkx2.2  expression (C, D). Some ectopic expression within the 

more interm ediate neural tube was observed. zN kx2.2CNCR+PromLacZ directed 

expression of LacZ  in 1 out of 10 transient embryos in the ventral neural tube (E), the 

expression appeared specific to the mouse Nkx2.2  domain (F), with no ectopic 

expression.
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Figure 5.6 Expression patterns of LacZ from E9.5 to E13.5 in a stable mouse line 

containing reporter construct mNkx2.9CNCR+PromLacZ.

Embryos were collected from a stable mouse line containing reporter construct 

mNkx2.9CNCR+PromLacZ from  E9.5 to E l 3.5 and em bryos were stained for (3- 

galactosidase activity. W holemount embryos were photographed (A, D, G, J ,  M). 

Embryos were also sectioned and counterstained with eosin (B, C, E, F, H, I, K, L, 

N, O). Expression at E9.5 was observed throughout the length of the neural tube (A), 

when sectioned this was identified as expression in both ventral and intermediate 

positions within the neural tube (B, C). At E10.5 (D), expression was still seen 

throughout the neural tube in an Nkx2.9-like pattern, however it was weaker than at 

E9.5. Expression of N kx2.9  in wild type embryos would at this time point be down- 

regulated in spinal cord. This was not the case for the transgene, which was still 

expressed in both ventral and intermediate positions of the neural tube (E, F). At 

El 1.5, expression in the neural tube was still strong anteriorly, however was weaker 

posteriorly (G). This was also observed in the sections, expression was almost 

undetectable at posterior levels (I), but was still expressed ventrally in the hindbrain 

(H ). At E12.5, there was still neural tube expression in the brain (J) ,  however 

expression at hindbrain level was very weak (K) and has been lost in the spinal cord at 

forelimb level (L). Expression at E l 3.5 has been lost in all neural tube tissue (M, N, 

O)
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Figure 5.7 Results of crossing mNkx2.9CNCR+PromLacZ containing mouse line with

Pax6 mutant line Sey.

To test if the promoter region in the reporter construct m N kx2.9CNCR+PromLacZ was 

regulated by Pax6, the stable mouse line containing this transgene was crossed with a 

mouse containing a m utation  in the P a x 6  gene, Sey . Cryo-sections of stained 

heterozygous littermates (A, C, E, G) were compared to littermates homozygous for the 

Pax6  mutation (B, D, F, H) at the same level of the anterior-posterior axis. Expansion in 

LacZ staining was seen at anterior levels in mNkx2.9CNCR+PromLacZAS'£>,/ embryos (B) 

compared to the heterozygote (A). This dorsal expansion of ventral LacZ  expression was 

a lso  observed  in m ore  p o s te r io r  sections,  but not as e v id en t  (C, D ). 

Immunohistochemistry for Nkx2.2 (brown; E, F) suggested that endogenous N kx2 .2  

expression expanded more dorsally in homozygotes (F) compared to heterozygotes (E), 

marked by the black arrowheads. This dorsal expansion was due to the lack of repression 

by Pax6 in its absence. Immunohistochemistry for Pax7 (G, H) revealed that the dorsal 

limit of expansion of the LacZ reporter coincided with the ventral limit of endogenous 

Pax7  expression (brown).
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/Ẑ
"̂1

mo
jd+

M
QN

o6
 

gx
^N

^l
 

/Z
^®

H
uj

oj
d+

ao
N

o6
*2

^^
IN

^



R esults

Figure 5.8 Expression patterns of LacZ from E9.5 to E13.5 in stable mouse line 

containing reporter construct zNkx2.2CNCR+PromLacZ.

Embryos were collected from a stable mouse line containing reporter construct 

zNkx2.2CNCR+PromLacZ from  E9.5 to E l 3.5 and em bryos were stained for |3- 

galactosidase activity. W holemount embryos were photographed (A, D, G, J, M). 

Embryos were also vibratome sectioned (50 pM ) (B, C, E, F, H, I, K, L, N, O). 

Expression at E9.5 was identified the whole length of the neural tube (A), when 

sectioned, expression of the transgene was evident in the ventral neural tube (B, C) at 

both hindbrain and forelimb levels, in a broader domain than N kx2.2  in wild type 

embryos. At E l 0.5 (D), expression was observed throughout the neural tube in an 

Nkx2.2-like pattern, albeit weaker than at E9.5. The transgene directed expression in 

the ventral neural tube again at both hindbrain and forelimb levels (E, F). At El 1.5, 

LacZ  expression in the neural tube was still strong (G). This was also observed in 

sections, expression of L a cZ  was still found ventrally in the spinal cord (H ) and 

hindbrain (I). At E l 2.5, there was still neural tube expression the length of the neural 

tube (J), however expression was weak. This is obvious at hindbrain level (K) and in 

the spinal cord at forelimb level (L). Expression at E l 3.5 had been reduced further 

(M), in both the hindbrain (N) and spinal cord (O) it was restricted to the midline.
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Figure 5.9 Immunohistochemistry for neural tube progenitor markers in

zNkx2.2CNCR+PromLacZ mouse lines at E10.5.

Embryos were collected from  a stable mouse line containing reporter construct 

zNkx2.2CNCR+PromLacZ at E l 0.5. Co-immunostaining for neuronal progenitor markers 

and P-galactosidase was performed on 12pM cryosections. A-C Nkx2.2 and P-gal 

staining, D-F Obg2 and P-gal staining, G-I FoxA2 and P-gal staining, J-L Pax6 and 

p-gal staining, M-O M ashl and p-gal staining. A Nkx2.2 staining shows that almost 

all Nkx2.2 positive cells appeared to co-express the reporter P-gal suggesting that the 

zNkx2.2( NCR+PromLacZ transgene was able to correctly recapitulate Nkx2.2  expression 

at E10.5. D 01ig2 marks the motor neuron progenitor domain (pMN), the P-gal 

positive cells were located ventral to the Ohg2 domain with no co-expression. G B y  

E l 0.5 the expression of the transgene appeared to have receded from the floor plate 

and there was very little co-expression with the floor plate marker FoxA2. The 

zNkx2.2CNCR+PromLacZ transgene directed P-gal expression in a few neurons in a more 

intermediate domain than those in the Nkx2.2 p3 domain. The intermediate P-gal 

expressing neurons co-expressed progenitor markers Pax6 (J) and M ashl (M), 

marked by white arrows. M ash l and Pax6 are markers for V2 interneuron 

progenitors.
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Figure 5.10 Immunohistochemistry for neural tube post mitotic neuronal

markers in zNkx2.2CNCR+PromLacZ mouse lines at E10.5.

Embryos were collected from a stable mouse line containing reporter construct 

zNkx2.2CNCR+PromLacZ at E l 0.5. Co-im m unosta in ing  for neuronal post-mitotic 

markers and P-galactosidase was performed on 12pM cryosections. A-C L im l/2  and 

(3-gal staining, D-F Lim3 and P-gal staining, G-I Gata3 and p-gal staining, J-L ChxlO 

and P-gal staining. Imm unostaining for post-mitotic markers suggests that the 

transgene directed intermediate expression of p-gal in both progenitor (Fig. 5.9) and 

post-mitotic neurons. Co-expression of P-gal with L im l/2  (A, A’), Lim3 (D, D’), 

Gata3 (G, G’) and ChxlO  (J, J ’) suggests these intermediate cells were V2 

interneuron post mitotic cells of both a and b subtype.
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Figure 5.11 Immunohistochemistry for neural tube progenitor and post mitotic

neuronal markers in zNkx2.2CNCR+PromLacZ mouse lines at E l 1.5.

Embryos were collected from a stable mouse line containing reporter construct 

zNkx2.2CNCR+PromLacZ at El 1.5. Co-immunostaining for both neuronal progenitor and 

post mitotic markers with |3-galactosidase was performed on 12pM cryosections. A- 

C Nkx2.2 and P-gal staining, D-F FoxA2 and (3-gal staining, G-I L im l/2  and (3-gal 

staining, J-L Lim3 and (3-gal staining, M-O Gata3 and (3-gal staining, P-R ChxlO and 

(3-gal staining. By E l 1.5, the P-gal expressing cells were restricted to the V3 

interneuron progenitor domain, there were very few if any in the V2 interneuron 

domain. Almost all of the Nkx2.2 positive cells also expressed P-gal (A), however, 

there were no cells co-expressing FoxA2 and P-gal (B). The number of post-mitotic 

neurons had increased compared to staining at E l 0.5. Due to the reduced number of 

P gal positive intermediate cells, no co-expression with V2 interneuron post-mitotic 

markers L im l/2  (G), Lim3 (J), Gata3 (M) with P-gal was identified. However, a few 

cells were identified co-expressing P-gal and ChxlO (P). This suggests that those few 

intermediate P-gal positive cells, were located in the V2 domain.
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Figure 5.12 Expression patterns of L acZ  from E9.5 to E13.5 in stable mouse line 

containing reporter construct zNkx2.2CNCR+PromLacZ-2.

Embryos were collected from a stable mouse line containing reporter construct 

zNkx2.2CNCR+PromLacZ-2 from  E9.5 to E l 3.5 and em bryos were stained for |3- 

galactosidase activity. Wholemount embryos were photographed (A, D, G, J, M) and 

vibratome sectioned (50 pM ) (B, C, E, F, H, I, K, L, N, O). LacZ  expression at E9.5 

was identified the length of the neural tube (A), upon sectioning weak expression of 

the transgene was evident in the ventral neural tube (B, C) in a domain similar to 

Nkx2.2  expression in wild type embryos. At E10.5 (D), expression was still present 

throughout the length of the neural tube in an Nkx2.2-like pattern. The transgene was 

expressed in the ventral neural tube (E, F), a few cells expressed L a c Z  in an 

intermediate domain of the neural tube, at forelimb level (F). At El 1.5 expression of 

L acZ  was also present the length of the neural tube (G). This was observed in 

transverse sections, expression of LacZ  was located ventrally in the hindbrain (H) and 

spinal cord (I). By E l 2.5, there was very weak neural tube expression of LacZ  the 

length of the neural tube (J), which was barely visible at E l 3.5 (M). At E l 2.5 and 

E l 3.5, L acZ  expression was restricted to a few cells at the most ventral midline at 

hindbrain level (K, N) and forelimb level (L, O).
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Figure 5.13 Immunohistochemistry for neural tube progenitor markers in

zNkx2.2CNCR+PromLacZ-2 mouse lines at E10.5.

Embryos were collected from a stable mouse line containing reporter construct 

zNkx2.2CNCR+PromLacZ-2 at E l 0.5. C o-im m unostaining for neuronal progenitor 

markers and p-galactosidase was performed on 12pM cryosections. A-C Nkx2.2 and 

|3-gal staining, D-F 01ig2 and P-gal staining, G-I FoxA2 and P-gal staining, J-L Pax6 

and P-gal staining, M-O M ashl and P-gal staining. A Nkx2.2 staining shows that 

most of the Nkx2.2 positive cells appeared to co-express the reporter P-gal suggesting 

that the zNkx2.2( NCR+PromLacZ-2 transgene directs expression in the Nkx2.2 positive 

p3 domain at E10.5. D 01ig2 marks the motor neuron progenitor domain (pMN), the 

P-gal positive cells were observed in a position ventral to the Obg2 domain with no 

co-expression. G By E10.5 the expression of the transgene appeared to have receded 

from the floor plate and there was very little co-expression of p-gal with the floor 

plate marker FoxA2. The zNkx2.2CNCR+PromLacZ-2 transgene directed P-gal expression 

in a few neurons in a more intermediate domain than those in the Nkx2.2 p3 domain. 

However, this was only observed in very few embryos, not enabling identification of 

neuronal subtype in this set of immunostaining with progenitor markers Pax6 (J) and 

Mashl (M). Mashl and Pax6 mark V2 interneuron progenitors.

163



Results



Results

Figure 5.14 Immunohistochemistry for neural tube post mitotic neuronal

markers in zNkx2.2CNCR+PromLacZ-2 mouse lines at E10.5.

Embryos were collected from a stable mouse line containing reporter construct 

zNkx2.2CNCR+PromLacZ-2 at E l 0.5. Co-im munostaining for neuronal post mitotic 

markers and (3-galactosidase was performed on 12pM cryosections. A-C L im l/2  and 

(3-gal staining, D-F Lim3 and |3-gal staining, G-I Gata3 and (3-gal staining, J-L ChxlO 

and (3-gal staining. As was observed with reporter construct zNkx2.2CNCR+PromLacZ, 

im m u n o s ta in in g  fo r  p o s t-m ito t ic  m arkers  sugges ts  th a t  the tran sg en e  

zNkx2.2CNCR+PromLacZ-2 directed intermediate expression of (3-gal in post mitotic 

neurons. Co-expression of (3-gal with L im l/2  (A), Lim3 (D), Gata3 (G, G’) and 

ChxlO (J, J’) suggests these intermediate cells were V2 interneuron post mitotic cells 

of both a and b subtype.
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Figure 5.15 Immunohistochemistry for neural tube progenitor and post mitotic

neuronal markers in zNkx2.2CNCR+PromLacZ-2 mouse lines at E l 1.5.

Embryos were collected from a stable mouse line containing reporter construct 

zNkx2.2CNCR+PromLacZ-2 at E l 1.5. Co-immunostaining for neuronal progenitor and 

post mitotic markers with (3-galactosidase was performed on 12pM cryosections. A- 

C Nkx2.2 and (3-gal staining, D-F FoxA2 and (3-gal staining, G-I L im l/2  and (3-gal 

staining, J-L Lim3 and (3-gal staining, M-O Gata3 and (3-gal staining, P -R  ChxlO and 

(3-gal staining. By El 1.5, the number of (3-gal expressing cells within the V3 

interneuron progenitor domain had reduced compared to the number seen at E l 0.5. 

There were still a few cells expressing LacZ in the V2 interneuron domain. The 

ventral LacZ expressing cells were restricted to the Nkx2.2 positive p3 domain, 

however not all Nkx2.2 positive cells also expressed (3-gal (A). There were no cells 

co-expressing FoxA2 and LacZ (B), suggesting that the transgene did not direct 

expression in the floor plate at E l 1.5. The number of post-mitotic neurons observed 

in El 1.5 embryos had increased compared to E10.5. The (3-gal positive intermediate 

cells were found to co-express several V2 interneuron markers: Lim3 (J, J’), Gata3 

(M, marked with white arrow), ChxlO (P, marked with white arrow). However, no 

cells were identified co-expressing (3-gal and L im l/2  (G). These data suggest the 

intermediate population of LacZ positive cells were V2 interneurons of subtypes a and 

b.
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Figure 5.16 CNCR is necessary and sufficient for the activity of 

zNkx2.2CNCR+PromLacZ.

Reporter construct zN kx2.2CNCR+PromLacZ (A) contained 1.3kb of DNA from the 

zebrafish N kx2.2a  gene. Mouse pronuclear injection showed it could direct specific 

Nkx2.2-like expression of reporter LacZ  in the ventral neural tube. Constructs were 

created based on this original plasmid containing the same reporter but either just the 

250bp CNCR (B) or the reciprocal region, which did not contain the CNCR (C). 

Reporter constructs zNkx2.2CNCRLacZ and zNkx2.2ACNCR+PromLacZ were assayed by 

mouse pronuclear injection and embryos were stained for (3-galactosidase activity at 

E l 0.5. Injection of zNkx2.2CNCRLacZ led to reproduction of the expression pattern of 

the zNkx2.2( NCR+PromLacZ transgene that contained the CNCR and DNA up to the 

transcription start site of the zebrafish Nkx2.2a  gene (D). The expression pattern in 

ventral neural tube was comparable to Nkx2.2  expression. Vibratome sections (50pm) 

showed reporter expression at intermediate locations in the neural tube (E) in addition 

to the ventral expression. This result suggests the CNCR was sufficient for ventral 

reporter expression in the neural tube. Injection of the reciprocal region that did not 

contain the CNCR did not direct reporter expression (F) in any of the 29 embryos 

analysed. The absence of the CNCR in the promoter reporter construct resulted in a 

loss of LacZ  expression suggesting the CNCR was necessary for correct ventral neural 

tube reporter expression.
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6 Results: Identification of CNCR Domains Necessary for 

Ventral Neural Tube Expression

6.1 M utation o f  the G li B inding Site L ocated  W ithin the CNCR

In silico analysis of the N kx2.2  and N kx2 .9  promoters identified a 250bp conserved 

regulatory element (CNCR; Chapter 4), which contained many potential transcription 

factor binding sites. Most notable of these was the Gli binding site (GBS), raising the 

possibility that there is a direct requirement for Shh signalling in Nkx2.2  induction.

We next set out to test the hypothesis, to determine if the putative GBS in the CNCR 

was necessary for the activity of this element. T o  ascertain this, we mutated the GBS 

located at the 3 ’ end of the CNCR and assayed the expression pattern in vivo. The Gli 

binding site consensus sequence 5 ’ GACCACCCA 3 ’ was mutated to the sequence 5 ’ 

GAAGTGGGA 3 ’ using a commercially available site-directed mutagenesis kit (Fig. 

6 . 1A-6.1C). The mutated sequence has previously been shown to be unable to bind to 

Gli proteins in gel mobility shift assays (Sasaki et al., 1997).

Mouse PNI assayed the reporter activity of the construct containing the mutated GBS, 

zNkx2.2CNCR+PromGBSMutLacZ. Sections of E10.5-E11.5 transient mouse embryos 

showed a loss of LacZ  expression in the ventral domain of the neural tube (Fig. 6 .1E- 

6 . 1G). Of the 192 embryos analysed, only 5 contained observable |3-galactosidase 

activity. In 3 of the (3-galactosidase positive embryos, we observed LacZ  expression 

in an intermediate population of neurons in the neural tube, but not in the ventral 

neural tube (Fig. 6 . IE, 6 . IF). The remainder of the embryos had no |3-galactosidase 

activ ity  in the neural tube (Fig. 6 .1G). This  contrasted  with PNI o f  

zNkx2.2CNCR+PromLacZ in which 7 out of 48 transient embryos analysed were positive 

for |3-galactosidase, all of which contained activity in the ventral neural tube. From 

this we concluded that the GBS in the context o f  zNkx2.2CNCR+PromLacZ is necessary 

for the ventral expression of LacZ . The GBS, however, is not required for the
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intermediate neural tube expression observed in a small proportion of injected 

embryos.

6.2 Gli B inding Site is not Sufficient to D rive Ventral N eural Tube 

Expression

We next wanted to determine which regions of the CNCR were sufficient to direct 

expression in the ventral neural tube. We first generated a construct containing the 

GBS but none of the other conserved putative transcription factor binding sites (Fig. 

4.4). This construct, zNkx2.2AlCNCR+PromLacZ (Fig. 6.2B), was assayed by mouse PNI. 

E l 0.5 embryos were stained for (3-gaIactosidase activity. 88 transient embryos were 

analysed, of these, 7 were positive for (3-galactosidase activity. All of these positive 

transient embryos contained intermediate neural tube staining (Fig. 6.3A-6.3C) similar 

to that observed with zNkx2.2CNCR+PromGBSMutLacZ, however, none displayed LacZ  

ex p ress io n  in the ventra l neural tube .  T h is  re su l t  in d ic a te s  tha t 

zNkx2.2AlCNCR+PromLacZ, which includes the GBS (start position of construct marked 

on Fig. 6.2E), is not sufficient to drive expression of LacZ  in the ventral neural tube.

To identify which regions are required to drive ventral expression, a second construct 

was made: zNkx2.2A2CNCR+PromLacZ included an extra 32bp of DNA 5 ’ to the start site 

of zNkx2.2AlCNCR+PromLacZ (Fig. 6.2E). The enhancer activity of this construct was 

assayed with mouse PNI. The resulting transient embryos were analysed at E10.5- 

E 1 1.5. Of the 50 transient embryos analysed, 6 stained positive for LacZ  expression 

(Fig. 6.3D-6.3F). All of these positive embryos displayed a restoration of the ventral 

LacZ  expression in the neural tube, albeit weaker, and in some cases more ventrally 

restricted than in the original zN kx2.2CNCR+PromLacZ construct (Fig. 5.8). The 

intermediate expression previously described was also apparent in these transient 

em b ry o s  (F ig . 6 .3 D -6 .3 F ) .  A s tab le  m o u se  line c o n ta in in g  the 

zNkx2.2A2CNCR+PromLacZ construct was generated (see below), analysis indicated that 

the L a c Z  ex p re ss io n  in the ventra l neural tube was com parab le  to 

zNkx2.2CNCR+PromLacZ (Figs. 6.4-6.6). Flowever, one noticeable difference in 

expression pattern was the expression of L acZ  in the floor plate not seen in embryos
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containing the zNkx2.2CNCR+PromLacZ transgene. The loss of floor plate repression 

upon deletion of fragments of the CNCR will be discussed later (Chapter 7).

To further define the fragment within the CNCR necessary for ventral neural tube 

expression, a third construct was made, zNkx2.2A3CNCR+PromLacZ (Fig. 6.2D, 6.2E). In 

this construct the putative bHLH binding site was rem oved (Fig. 6.2E). 

zNkx2.2A3CNCR+PromLacZ contained the GBS and a further 13 bp 5 ’ to the GBS 

compared to zNkx2.2AlCNCR+PromLacZ. Transient mouse embryos were analysed after 

PNI at E10.5-El 1.5 and stained for |3-galactosidase activity. O f the 95 transient 

embryos analysed, 10 stained positive. Expression of LacZ  in 9 of these embryos was 

comparable to that observed with zNkx2.2CNCR+PromLacZ and zNkx2.2A2CNCR+PromLacZ 

constructs; expression was observed in the ventral and intermediate neural tube (Fig. 

6.3G-6.3I).

T he resu lts  ob ta ined  from the 3 c o n s t ru c ts :  zN kx2 .2A  l CNCR+PromLacZ,

zNkx2.2A2CNCR+PromLacZ and zNkx2.2A3CNCR+PromLacZ suggested that the GBS alone 

was not sufficient for the ventral neural tube expression of reporter gene LacZ . 

However the addition of an approximately 13bp element restored expression in the 

ventral neural tube. The putative bHLH binding site present in the CNCR is not 

necessary (Fig. 6.2). Intermediate expression in the neural tube is maintained in all 

three constructs.

6.3 Characterisation o f the In term ediate C ell Population E xpressing  

LacZ in the N eural Tube o f  the zN kx2.2A 2CNCR+PromLacZ Stable  

M ouse Line

The construct zNkx2.2A2CNCR+PromLacZ when expressed transiently in mouse resulted 

in both ventral expression of reporter LacZ and also expression in a more intermediate 

population of cells (Fig. 6.3D-6.3F). Our previous analysis of zNkx2.2CNCR+PromLacZ 

and zNkx2.2CNCR+PromLacZ-2 suggested the intermediate expression comprised a 

population of V2 interneurons (Chapter 5) while the ventral population labelled V3
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interneurons. To characterise the LacZ positive cells in the mouse line expressing 

zNkx2.2A2CNCR+PromLacZ, embryos were harvested at E l 0.5 and E l 1.5. These 

embryos were analysed by im m unohistochem istry  for m olecular markers of 

progenitor cells and post mitotic neurons in the neural tube.

In E l 0.5 zNkx2.2A2CNCR+PromLacZ embryos, (3-galactosidase activity was observed at 

high levels in the ventral V3 domain of the neural tube and in an intermediate 

population of cells in the neural tube (Fig. 6.4). The ventral LacZ expression marks a 

population of cells that also expresses Nkx2.2 (Fig. 6.4A-6.4C) and FoxA2 (Fig. 

6.4G-6.4I). However, not all Nkx2.2 expressing cells co-expressed LacZ. The dorsal 

limit of (3-galactosidase activity was more ventral to that of Nkx2.2 (marked by white 

arrowhead Fig. 6.4A). This difference could be explained by the temporal induction 

of expression in the p3 domain. The levels of (3-galactosidase enzyme at more dorsal 

positions may not have reached sufficient levels to be detected by the antibody at this 

time point. In contrast expression of Nkx2.2 may have reached sufficient levels to be 

detected. To resolve this, the same immunostaining was performed at a later time 

point (see below, El 1.5 analysis). LacZ was also expressed in floor plate cells 

marked by expression of FoxA2 (Fig. 6.4G-6.4I). At these stages there were a few 

Nkx2.2 positive cells in the floor plate (Fig. 6.4C: Jeong and McMahon, 2005), but 

the majority of expression had shifted dorsally.

The in te rm e d ia te  popu la tion  o f  ce l ls  e x p re s s in g  L acZ  at E10.5  in 

zNkx2.2A2CNCR+PromLacZ embryos were observed at a position dorsal to that of OHg2 

(Fig. 6.4D-6.4F), which is expressed in the pMN domain. OIig2 expression appeared 

to mark the ventral limit of the LacZ positive cells in the intermediate neural tube 

(Fig. 6.4D). Pax6, a marker for the progenitor cells in the pMN domain and more 

dorsal progenitor populations, was co-expressed with LacZ in a small number of cells 

(Fig. 6.4J), indicating the zN kx2 .2A 2CNCR+PromLacZ drives LacZ expression in 

progenitor cells. To determ ine the identity  o f  the progenitors  cells, co- 

immunostaining with M ashl was performed on E10.5 sections. M ashl marks a 

population of progenitor cells that differentiate into V2b interneurons as well as a 

dorsal population of cells in the neural tube (Li et al., 2005; Mizuguchi et al., 2001). 

In E l 0.5 embryos some of the M ashl positive cells in the V2 interneuron progenitor
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population co-expressed LacZ (Fig. 6 .4M -6 .40 ) ,  suggesting the LacZ positive 

intermediate population of cells are progenitors for V2 interneurons at E10.5.

To determine if zNkx2.2A2CNCR+PromLacZ directed expression of LacZ in post mitotic 

cells, co-im m unosta in ing  for (3-galactosidase and post-m ito tic  m arkers  was 

performed. In mouse embryos at E10.5 the numbers of post-mitotic neurons were 

low, however, there were populations of cells expressing L im l/2  (VO, V I ,  V2 

interneurons), Lim3 (V2 interneuron, MN), Gata3 (V2b interneuron) and ChxlO (V2a 

interneuron) expressing cells (Fig. 6.5). E l 0.5 sections from the transgenic embryos 

were co-stained for these 4  post-mitotic markers and |3-galactosidase. Double positive 

cells were observed with all four markers; Lim 1/2 (Fig. 6.5A-6.5C), Lim3 (Fig. 6.5D- 

6.5F), Gata3 (Fig. 6.5G-6.5I) and ChxlO (Fig. 6.5J-6.5L). This result confirms that 

the intermediate (3-galactosidase expressing cells in the m ouse line containing 

zNkx2.2A2CNCR+PromLacZ reporter are V2 interneuron cells, of both V2a and V2b 

subtypes. The reporter is expressed in both the progenitor and post-mitotic cells.

In order to determine the expression of LacZ in the zN kx2 .2A 2CNCR+PromLacZ 

transgenic mouse at later stages, El 1.5 embryos were analysed. The expression of the 

reporter in the ventral V3 interneuron domain and floor plate cells at these later stages 

was much reduced (Fig. 6.6), there were very few cells expressing the reporter in the 

ventral domain of the neural tube. The few ventral LacZ expressing cells observed 

were restricted to the Nkx2.2 positive p3 domain (Fig. 6.6A), however none were seen 

in the FoxA2 positive floor plate (Fig. 6.6D) as was observed at E10.5. It would 

therefore appear that in the reporter construct zNkx2.2A2CNCR+PromLacZ, an element 

that directs correct V3 domain expression of LacZ at E l 1.5 is missing. At E10.5, the 

LacZ reporter was not detected in more dorsal Nkx2.2 positive p3 domain progenitor 

cells. This therefore suggests that the zNkx2.2A2CNCR+PromLacZ construct is able to 

direct expression within the p3 domain, however it cannot recapitulate precise 

Nkx2.2-like expression.

The LacZ positive cells in the more intermediate domain of the E l 1.5 mouse embryos 

harbouring zNkx2.2A2CNCR+PromLacZ, did not appear to be reduced in number
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compared to E10.5 embryos (Fig. 6.6). At E10.5 this population of cells marked V2 

p o s t-m ito t ic  in te rneu rons ,  to co n f irm  if these  w ere  the sam e cells , 

immunohistochemistry of (3-Gal with the same 4 post-mitotic neuronal markers was 

performed (Fig. 6.6). Double positive cells were observed (Fig. 6.6 marked with 

white arrows) with all four markers; L im l/2  (Fig. 6.6G), Lim3 (Fig. 6.6J), Gata3 (Fig. 

6 .6M ) and C hxlO  (Fig. 6.6P). T hese  data sugges t tha t the construc t 

zNkx2.2A2CNCR+PromLacZ directs expression of the reporter in V2 post-mitotic 

interneurons at E l 1.5 as was observed at E l 0.5.

176



R esults

Figure 6.1 Transient results of mouse pronuclear injection at E10.5 of promoter 

construct zNkx2.2CNCR+PromGBSMutLacZ.

Constructs were made from the zebrafish N kx2.2a  promoter. zNkx2.2CNCR+PromLacZ 

contained 1.3kb of promoter DNA fused upstream of hsp68 (minimal promoter) and 

re p o r te r  L acZ  (A ). zN k x 2 .2 CNCR+PromG B S M u tL a c Z  is b ased  on the 

zNkx2.2CNC R+PromLacZ construct, but contains a mutation in the Gli binding site (GBS) 

located within the Conserved Non-Coding Region (CNCR: B). The mutation was 

from consensus binding site 5 ’ GACCACCCA 3 ’ to 5 ’ GAAGTGGGA 3 ’ (C) known 

to no longer bind to Gli proteins (Sasaki et al., 1997). The mutagenesis was carried 

out using a commercially available kit (Stratagene). The method relied upon PCR of 

the plasmid of zNkx2.2( NCR+PromLacZ using overlapping primers both containing the 

mutation (Di). The resulting plasmid contained mutations (x) on both strands (Dii). 

The template DNA was digested using Dpnl, which cuts any methylated or hemi- 

methylated DNA (Diii), the template DNA was therefore destroyed upon transfection 

into competent bacteria to amplify mutated DNA. The new construct was assayed by 

mouse pronuclear injection, to test if the mutation of the GBS would lead to a change 

in reporter expression pattern. Embryos were harvested at E l 0.5 and stained for (3- 

galactosidase activity before sectioning. Ventral expression of LacZ  was lost in these 

embryos (E-G), intermediate staining, albeit weak, was observed in 3 out of 192 

embryos (E, F). However, most embryos were negative for any LacZ expression (G), 

suggesting the GBS was necessary for ventral reporter expression.
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Figure 6.2 Summary diagrams of the deletion series of zNkx2.2CNCR+PromLacZ 

constructed to determine CNCR enhancer fragments sufficient to drive LacZ 

expression in the ventral neural tube.

Enhancer fragments based on zN kx2.2CNCR+Prom(A ) were constructed and placed 

upstream of a minimal reporter (hsp68) and a reporter (LacZ). These constructs all 

contained the Gli binding site (GBS) found at the 3 ’ end of the identified CNCR and 

additional 5’ DNA. The first construct, zN kx2.2A lCNCR+PromLacZ, contained only the 

GBS (B, E), the second, zNkx2.2A2CNCR+PromLacZ, contained an extra 32bp DNA 5’ to 

A1 (C, E) and the third, zNkx2.2A3( NCR+PromLacZ, contained an extra 13bp DNA 5’ to 

A1 (D, E). E The DNA sequence from the CNCR contained in the constructs.
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Figure 6.3 Transient results of mouse pronuclear injection at E 10.5/E 11.5 of 

zebrafish promoter constructs zNkx2.2AlCNCR+PromLacZ, zNkx2.2A2CNCR+PromLacZ 

and zNkx2.2A3CNCR+PromLacZ.

E x p r e s s io n  p a t te r n s  o f  r e p o r te r  c o n s t ru c t s  z N k x 2 .2 A lCNCR+PromLacZ, 

zNkx2.2A2CNCR+PromLacZ and zNkx2.2A3CNCR+PromLacZ were assayed by mouse PNI. 

These constructs were made from deleting portions of zNkx2.2CNCR+PromLacZ, which in 

transient mouse embryos at E l 0.5 led to intermediate and ventral L acZ  expression in 

the neural tube. Embryos were harvested at E10.5 and El 1.5 and stained for |3- 

galactosidase activity and sectioned before analysis. zNkx2.2A l CNCR+PromLacZ transient 

em bryos at E10.5 (A, B) and El 1.5 (C) displayed expression of L a c Z  in an 

intermediate position within the neural tube, but there was a loss of ventral 

expression. zNkx2.2A2rNCR+PromLacZ was tested in the same manner and expression of 

LacZ at E10.5 (D, E) and El 1.5 (F) was also observed in an intermediate domain, 

however ventral expression was restored, albeit weaker than zN kx2.2CNCR+PromLacZ 

(Fig. 5.8). Finally zNkx2.2A3CNCR+PromLacZ was tested, E10.5 embryos were harvested 

and s ta ined  (G -I). E xpress ion  was s im ilar  to resu lts  observed  with 

zNkx2.2CNCR+PromLacZ and zNkx2.2A2CNCR+PromLacZ; L a c Z  was expressed in both 

intermediate and ventral positions.
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Figure 6.4 Immunohistochemistry for neural tube progenitor markers in

zNkx2.2A2CNCR+PromLacZ mouse lines at E10.5.

A stable mouse line containing the reporter transgene zNkx2.2A2CNCR+PromLacZ was 

created. Embryos were harvested at E10.5, cryosectioned and co-immunostained for 

molecular markers of neural tube progenitor cells and the reporter (3-galactosidase. A- 

C Nkx2.2 and (3-Gal staining, D-F Ohg2 and (3-Gal staining, G-I FoxA2 and (3-Gal 

staining, J-L Pax6 and (3-Gal staining, M-O Mashl and (3-Gal staining. LacZ positive 

cells located in the ventral neural tube, co-expressed Nkx2.2 (A) and FoxA2 (G), 

suggesting expression in both the p3 domain and the floor plate of the neural tube. 

The dorsal limit of LacZ expression in the ventral domain (A, marked by white 

arrowhead) did not extend as far dorsally as the Nkx2.2 limit. The dorsal limit of 

ventral LacZ expression marked the ventral limit of MN marker 01ig2 (D). The 

intermediate LacZ positive cells were located dorsal to the 01ig2 positive cells (D) 

and some cells co-expressed Pax6 (J) and M ashl (M, M’)> suggesting  the 

intermediate population marked V2 interneuron progenitors.
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Figure 6.5 Immunohistochemistry for neural tube post-mitotic markers in

zNkx2.2A2CNCR+PromLacZ mouse lines at E10.5.

A stable mouse line containing the reporter transgene zNkx2.2A2CNCR+PromLacZ was 

created. Embryos were harvested at E l 0.5, cryosectioned and co-immunostained for 

molecular markers of neural tube post-mitotic cells and the reporter (3-galactosidase. 

A-C L im l/2  and (3-Gal staining, D-F Lim3 and (3-Gal staining, G-I Gata3 and (3-Gal 

staining, J-L ChxlO and (3-Gal staining. Co-expression of the LacZ reporter in 

intermediate positions of the neural tube with L im l/2  (A), Lim3 (D, D’), Gata3 (G, 

G’) and ChxlO (J, J ’) suggests the cells were V2 interneurons. The co-expression of 

both Gata3 and ChxlO suggests the reporter was expressed in both V2a and V2b 

subtypes.
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Figure 6.6 Immunohistochemistry for neural tube progenitor and post-mitotic

markers in zNkx2.2A2CNCR+PromLacZ mouse lines at E l 1.5.

Embryos were harvested at E l 1.5 after mouse pronuclear injection of reporter 

construct zNkx2.2A2CNCR+PromLacZ. Co-immunostaining for neuronal progenitor and 

post mitotic markers with (3-galactosidase was performed on 12pM cryosections. A- 

C Nkx2.2 and P-gal staining, D-F FoxA2 and (3-gal staining, G-I L im l/2  and P-gal 

staining, J-L Lim3 and P-gal staining, M-O Gata3 and p-gal staining, P-R ChxlO and 

P-gal staining. By El 1.5, the P-gal expressing cells restricted to the V3 interneuron 

progenitor domain, were dramatically reduced in number compared to the number 

observed at E10.5 (Fig. 6.4). Only a few cells expressing Nkx2.2 also expressed p-gal 

(A) and there were no cells co-expressing FoxA2 and LacZ (B). The number of post­

mitotic neurons present at E l 1.5 in the neural tube had increased compared to E l 0.5. 

Concomitantly there was an increase in the number of p -G a l positive intermediate 

cells. These intermediate LacZ positive cells were co-expressing L im l/2  (G), Lim3 

(J), Gata3 (M) and ChxlO  (P). Double positive cells are marked with white 

arrowheads. This co-expression suggested the more intermediate cells were V2 post­

mitotic interneurons of both subtypes a and b.
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7 Results: Nkx2.2 Floor Plate Repression

7.1 R eporter F loor Plate Repression

In both stable and transient transgenic mice contain ing  reporter constructs 

zNkx2.2A2CNCR+PromLacZ and zNkx2.2A3CNCR+PromLacZ, LacZ  expression was apparent 

in the floor plate at E10.5-E l 1.5 (Figs. 6.3 - 6.6). In contrast, at the same 

developm ental stage, transgenic mice harbouring  zN kx2 .2CNCR+PromL acZ  and 

zNkx2.2CNCR+PromLacZ-2 constructs, showed repression of LacZ  in the floor plate (Figs. 

5.8 -  5.15). Importantly, by El 1.5, N kx2.2  expression had been repressed from the 

floor plate (Fig. 5.11 A: Briscoe et al., 1999). These data suggested that regulatory 

e lem ents  con ta ined  w ithin  the reg ion  o f  the C N C R  tha t d is t ingu ishes  

zNkx2.2A2CNCR+PromLacZ from zNkx2.2CNCR+PromLacZ, must include one or more sites 

necessary for floor plate repression. To test this hypothesis, further constructs were 

generated and assayed with mouse PNI.

We first set out to confirm that zNkx2.2CNCR+PromLacZ was repressed in the floor plate 

in a manner similar to endogenous Nkx2.2. Stable transgenic mouse lines containing 

zNkx2.2CNCR+PromLacZ reporter construct were generated and immunohistochemistry 

was performed to identify the precise location o f  |3 -ga lac tosidase  activ ity . 

Cryosections of E10.5 and E l 1.5 embryos of four independent lines were obtained 

and immunohistochemistry for |3-gal, FoxA2 and Nkx2.2 performed (Fig. 7.1). 

Results suggested that in 3 of these lines LacZ was not present in the floor plate at 

either E10.5 or E l 1.5 (Fig. 7.1E-7.1P). Moreover, (3-gal was coincident with Nkx2.2 

(Fig. 7.1E-7.1P; stable line D analysed further in Chapter 5). Expression of LacZ at 

both E10.5 and E l 1.5 in lines B, C, and D was restricted to the Nkx2.2 positive 

domain (Fig. 7 . IE, 7.1G, 7.11, 7 . IK, 7.1M, 7 .10).  No co-expression between LacZ 

and FoxA2 was observed at E10.5 or E l 1.5 (Fig. 7.1F, 7.1H, 7.1J, 7.1L, 7.1N, 7.1P). 

In contrast at E10.5, transgenic line A displayed LacZ expression in both the Nkx2.2 

expressing dom ain (Fig. 7.1 A) and the FoxA2 expressing domain (Fig. 7 . IB). 

Analysis at E l  1.5 showed LacZ expression had not been restricted to the Nkx2.2 

domain only and was co-expressed with both Nkx2.2 and FoxA2. The repression of 

reporter expression in 3 out of 4 lines supports the idea that the zNkx2.2CNCR+PromLacZ
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construct directs expression precisely in the Nkx2.2 p3 domain of the ventral neural 

tube and is sufficient to confer repression in the FoxA2 positive floor plate.

To delineate the region of CNCR necessary for floor plate repression, three further 

deletion constructs based on zNkx2.2CNCR+PromLacZ were constructed (Fig. 7.2); 

zNkx2.2A4CNCR+PromLacZ, zNkx2.2A5CNCR+PromLacZ and zNkx2.2A6CNCR+PromLacZ. The 

ability to direct LacZ  expression was assayed by mouse PNI. Transient embryos were 

harvested between E10.5 and E12, and stained for (3-galactosidase activity (Fig. 7.3A- 

7.3E) or analysed for L acZ  expression by in situ  hybridisation (Fig. 7.3F-7.3H). In 

situ hybridisation provides a reliable guide to the precise location of gene expression. 

This is because the long half-life of the [3-galactosidase product means that the precise 

timing and location of the down-regulation of expression is concealed by perdurance 

of LacZ activity.

Em bryos con ta in ing  the zN kx2 .2A 4CNCR+PromL acZ  transgene , s ta ined  fo r  |3- 

galactosidase activity at E l 0.5 displayed LacZ  expression in the p3 domain, however 

it showed some repression in the floor plate (2/2; Fig. 7.3A). Embryos, assayed for |3- 

galactosidase activity at E l 1.5, conta in ing  transgene zN kx2.2A 5CNCR+PromLacZ 

demonstrated 2 different outcomes (Fig. 7.3B, 7.3C). In 4  of the 9 embryos positive 

for p-galactosidase activity in the neural tube, expression was restricted to the p3 

domain (Fig. 7.3B). In the remaining 5 embryos, expression was in both the p3 

domain and the floor plate (Fig. 7.3C). Enzymatic staining of embryos harbouring 

zNkx2.2A4CNCR+PromLacZ and zNkx2.2A5CNCR+PromLacZ constructs appear to display 

high levels of LacZ expression in the ventral neural tube. These constructs also 

appear to direct floor plate repression of LacZ. To confirm that the weak expression 

observed within the floor plate was due to LacZ perdurance, in situ hybridisation for 

L acZ  was performed. This analysis revealed that constructs expressing transgenes 

zNkx2.2A4CNCR+PromLacZ and zNkx2.2A5CNCR+PromLacZ at El 1.5 did not express L acZ  

in the floor plate (Fig. 7.3F, 7.3G). Both of these constructs appeared to express LacZ  

in the p3 domain, in which N kx2.2  is normally expressed, but neither appeared to 

express LacZ  in intermediate domains (see Chapters 5 and 6).
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A n a ly s is  o f  e m b ry o s  by e n z y m a t ic  s ta in in g  at E l  1.5 c o n ta in in g  

zNkx2.2A6CNCR+PromLacZ, revealed 5 out of 8 positive embryos expressed LacZ  in the 

floor plate only and not the p3 domain (Fig. 7.3D). 3 out of 8 embryos were positive 

for LacZ  expression in the floor plate and the p3 domain (Fig. 7.3E) albeit in a weaker 

and more restricted pattern than that observed with zNkx2.2A4CNCR+PromLacZ and 

zNkx2.2A5CNCR+PromLacZ. In situ  analysis o f  the zNkx2.2A6CNCR+PromLacZ construct 

showed LacZ  expression in transient mice in the floor plate only (Fig. 7.3H).

We can conclude from these data that the enhancer region present in constructs 

zNkx2.2A4CNCR+PromLacZ and zNkx2.2A5CNCR+PromLacZ contain the floor plate repressor 

element and are sufficient to maintain an Nkx2.2-like expression pattern. This 

indicates that the floor plate repressor element is positioned between the start of the 

zNkx2.2A5CNCR+PromLacZ construct and the start of the zN kx2 .2A 6CNCR+PromLacZ 

construct. Analysis of the sequence reveals several putative transcription factor 

b ind ing  sites  (see D iscu ss io n ) .  T h e  resu lts  o b se rved  from  assay ing  

zNkx2.2A6CNCR+PromLacZ are difficult to interpret because they are so different from 

other constructs. However, floor plate expression was observed in all embryos 

analysed, suggesting that the floor plate repressor element has been lost.
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Figure 7.1 Immunohistochemistry of stable transgenic lines containing transgene

zNkx2.2CNCR+PromLacZ at E10.5 and E11.5.

Em bryos from  4  independen t stable transgen ic  lines con ta in ing  transgene 

zNkx2.2CNCR+PromLacZ. Representative transverse sections from each line, embryos 

harvested at E10.5 (A, B, E, F, I, J, M, N) and El 1.5 (C, D, G, H, K, L, O, P). 

Immunohistochemistry for Nkx2.2 (green; A, E, I, M, C, G, K, O) and FoxA2 (green; 

B, F, J, N, D, H, L, P) with (3-galactosidase (red) was performed. In line A (A-D) 

LacZ was co-expressed at E l 0.5 and El 1.5 with both Nkx2.2 (A, C) and FoxA2 (B, 

D). In the other three lines at E10.5 and El 1.5, cells double positive for |3-Gal and 

Nkx2.2 (E, G, I, K, M, O) were observed but not for [3-Gal and FoxA2 (F, H, J, L, N,

P)
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Figure 7.2 Summary diagrams of the deletion series of zNkx2.2CNCR+PromLacZ 

constructed to determine CNCR enhancer fragments necessary to repress L acZ  

expression in the floor plate.

Enhancer fragm ents based on zN kx2.2CNCR+Prom(A ) were constructed and placed 

upstream of a minimal reporter (hsp68) and a reporter (LacZ). These constructs all 

contained the Gli binding site found at the 3 ’ end of the identified C N C R  and 

additional 5 ’ DNA. The first construct, zNkx2.2A4CNCR+PromLacZ (A4), contained 56bp 

less than the zNkx2.2CNCR+PromLacZ construct at the 5 ’ end (B, E). For the second 

construct, zNkx2.2A5CNCR+PrwmLacZ (A5), an additional 32bp of DNA from A4 was 

deleted (C, E). The third, zNkx2.2A6CNCR+PromLacZ (A6), an extra 30bp from A5 was 

deleted (D, E). E An alignment of the DNA sequence of the CNCR from the human, 

mouse, Fugu  and zebrafish Nkx2.2  and N kx2.9  genes contained in the constructs. The 

black triangles mark the start sites of A4, A5 and A6 constructs.
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Figure 7.3 LacZ  expression from promoter constructs zNkx2.2A4CNCR+PromLacZ, 

zNkx2.2A5CNCR+PromLacZ and zNkx2.2A6CNCR+PromLacZ at E10.5-E12 following PNI 

in mouse.

E x p r e s s io n  p a t t e r n s  o f  r e p o r t e r  c o n s t r u c t s  zN kx2 .2A 4CNCR+PromLacZ, 

zNkx2.2A5CNCR+PromLacZ and zNkx2.2A6CNCR+PromLacZ were assayed by mouse PNI. 

Two methods of analysis were performed; embryos were stained for (3-galactosidase 

activity (A-E) or in situ hybridisation (ISH) for LacZ  (F-H) was performed. Embryos 

were harvested at either E l 0.5 or E l 1.5 before staining for (3-galactosidase activity, 

followed by vibratome sectioning at 50pM . Embryos were harvested at E l 1.5 or E12 

and cryosectioned at 12pM before ISH was performed. Any embryos positive for 13- 

Gal activity in the ventral neural tube were further analysed. zNkx2.2A4CNf R+PromLacZ 

transient em bryos displayed repression of L a cZ  in the floor plate in 2/2 positive 

embryos analysed by enzymatic staining at E l 0.5 (A) and 6/6 positive embryos 

analysed by ISH at El 1.5 (F). Expression of L a cZ  was observed in the Nkx2.2 p3 

domain in these embryos. Embryos injected with zNkx2.2A5CN( R+PromLacZ displayed 

repression of LacZ  in the floor plate in 4/9 positive embryos analysed by enzymatic 

staining at El 1.5 (B), however, 5/9 of the embryos analysed displayed expression of 

L a cZ  the floor plate (C). All of the 9 embryos were positive for (3-galactosidase 

activity in the p3 domain, this expression was very strong in most of the embryos 

observed (C). 3/3 positive embryos analysed by ISH at El 1.5 displayed repression of 

LacZ  in the floor plate (B). Embryos injected with zNkx2.2A6( NCR+Pro,nLacZ displayed 

expression of L a c Z  in the floor plate only in 5/8 positive embryos analysed by 

enzymatic staining at E l 1.5 (D) and in 2/3 positive embryos analysed by ISH at E12 

(H ) However, 3/8 of the embryos analysed for (3-galactosidase activity displayed 

expression of LacZ  in the p3 domain and the floor plate (E).
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8 Discussion

8.1 E volutionary C onservation o f  Nkx2 Gene C luster

Nkx genes are the chordate orthologues of the D rosophila  NK genes. A relative of 

the more familiar Hox cluster, the NK gene cluster is present in the Drosophila  

genome, and is believed to be derived from the ancestral ‘megacluster’ of homeobox 

genes (reviewed in G arcia-Fernandez, 2005). There are several evolutionary 

conserved clusters of Nkx genes in chordate genomes (Garcia-Fernandez, 2005), each 

seeming to play a different role in the development of the vertebrate body-plan. It is 

believed that the last com mon ancestor of humans and D rosophila  had 7 NK genes 

that have since duplicated and split many times to form the clusters in our present 

genome (Garcia-Fernandez, 2005). There is a good correlation between an increase in 

cluster duplication and com plexity  of the systems patterned. The reasons why 

hom eobox gene c lustering has been conserved across evolution are not fully 

understood, however it does raise the possibility of a shared regulatory mechanism.

It was therefore not a surprise to identify Nkx2 gene clusters in the zebrafish and 

Fugu genomes, comparable to those previously identified in human and mouse (Fig. 

3.1: Santagati et al., 2003; Santagati et al., 2001; Wang et al., 2000b). The evidence 

that Nkx2.1, Nkx2.2, Nkx2.9, FoxA2, P a x l and Pax9  genes present in these clusters are 

Shh responsive and expressed ventrally (P a x l  and P a x9  in the ventral somites), 

supports the idea of co-regulation (Figs. 3.9, 3.10: Neubuser et al., 1995; Pabst et al., 

2000; Sasaki et al., 1997). However, not all of the genes in this cluster are regulated 

by Shh, as demonstrated here by the independence of the N kx2.4  gene expression 

from Shh signalling (Fig. 3.9: Rohr et al., 2001). Therefore, co-regulation by Shh is 

not sufficient to explain the maintenance of the clustering for all of its members. 

Perhaps additional features o f  their regulation may provide a reason for the 

evolutionary conservation of the gene cluster.
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8.2 Conservation o f  Nkx2 Gene C luster in Zebrafish

The expression patterns of the Nkx2 genes identified in zebrafish appeared to be 

comparable to those seen in mice. N kx2.2  alb  and its paralogue N kx2.9  were 

expressed the length of the anterior-posterior axis in the ventral neural tube (Figs. 3.4, 

3.5, 3.6), as observed in m ouse (Briscoe et al., 1999; Price et al., 1992). The 

expression pattern of the zN kx2.2a/b  genes were comparable to previously published 

results (Barth and Wilson, 1995; Schafer et al., 2005). Not only were the expression 

patterns similar, but the tim ing of expression between mouse and zebrafish also 

appears to be maintained. In mice Nkx2.9  is down-regulated in the trunk region of the 

neural tube from E10.5, whilst expression of N kx2.2  is maintained (Briscoe et al.,

1999). In situ hybridisation performed on zebrafish embryos between 11 hours post 

fertilisation (hpf) and 30hpf suggested that N kx2 .9  was also down-regulated at an 

equivalent developmental stage (after 24hpf; Fig. 3.81), whilst Nkx2.2 alb expression 

was maintained (Figs. 3.41, 3.51).

Nkx2.1  and N kx2.4  in mice are expressed in the ventral telencephalon and posterior 

hypothalamus respectively (Price, 1993; Wang et al., 2000b). Like Nkx2.2 and Nkx2.9  

the expression of these genes are ventrally restricted. Zebrafish Nkx2.1  (also known 

as Nk2.1b) was expressed in the anterior ventral telencephalon at 24 hpf, whilst the 

two N kx2.4  genes were expressed in a more posterior position of the forebrain, the 

hypothalamus (Figs. 3.3H, 3.6H, 3.7H: Rohr et al., 2001; Rohr and Concha, 2000). 

Comparison of the expression patterns suggested there was very little overlap in the 

expression of these Nkx2 genes. Thus zebrafish N kx2.1  and Nkx2.4  appear to have 

comparable expression profiles to the pattern of expression of the equivalent genes 

observed in mouse (Price, 1993).

The expression of Nkx2.1, N kx2.2 alb  and N kx2 .9  are reliant upon the presence of 

Shh, because inhibition of Shh signalling by cyclopamine leads to a loss of expression 

(Figs. 3.9, 3.10A, 3.10B). This supports previously published studies in zebrafish 

(Rohr et al., 2001; Stamataki et al., 2005) and also similar studies in mouse embryos 

(Pabst et al., 2000). Importantly, expression of N kx2 .4 a /b  does not appear to be 

dependent upon Shh for its expression (Fig. 3.10C-3.10F: Rohr et al., 2001). No
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similar studies have been carried out in mice however we would predict that Nkx2.4  

expression is also independent of Shh in amniotes.

The Nk2. la  (Rohr and Concha, 2000) and Nk2.1b (Rohr et al., 2001) proteins have 

been published as being members of the Nkx2.1 group of proteins. Comparing their 

protein sequence with that of human and mouse Nkx2.1 supports this observation 

(Fig. 3.2). However, analysis of expression patterns and their behaviour in response 

to Shh signalling suggests that the Nk2.1a gene is functionally more similar to 

Nkx2.4. Due to this we have termed the proteins zebrafish Nkx2.4b (Nk2.1a) and 

zebrafish Nkx2.1 (Nk2.1b). Expression of zN kx2 .1  is restricted to the ventral 

telencephalon (Fig. 3.3: Rohr et al., 2001), which is also the case for the mouse 

Nkx2.1 (Price, 1993). It is also down-regulated in response to cyclopamine treatment, 

which blocks Shh (Fig. 3.10: Rohr et al., 2001). Expression of Nkx2.4a  and Nkx2.4b  

is restricted to the hypothalamus (Figs. 3.6, 3.7: Rohr et al., 2001; Rohr and Concha,

2000), as is mouse N kx2.4  (Price, 1993). Expression of both of the Nkx2.4 genes is 

not dependent upon Shh signalling (Fig. 3.10: Rohr et al., 2001). Together these data 

suggest N k2 .la  is functionally similar to Nkx2.4. In addition to the functional data, 

the genetic linkage of N kx2 .4b  to N kx2.2b  on zebrafish chromosome 20 (Fig. 3 . ID) 

also suggests it is an Nkx2.4 paralogue. Genes N kx2.2  and Nkx2.4  are closely linked 

in the Fugu, mouse and human genomes (Fig. 3.1A-3.1C), while Nkx2.1  is linked to 

Nkx2.9.

The variation in response to cyclopamine treatment of the different Nkx2 genes 

reflects their position of expression along the anterior-posterior axis of the embryo. 

The most ventral cells in the CNS have one of two fates: floor plate cells; or in the 

most anterior CNS, hypothalamic cells (reviewed in Kapsimali et al., 2004). The 

specification of hypothalamic cells is believed to be controlled by members of the 

Nodal and W nt families (Kapsimali et al., 2004). Repression of Wnt signalling directs 

the formation of hypothalamic cells at the expense of floor plate cells (Kapsimali et 

al., 2004). In addition hypothalamus induction requires Nodal signalling (Kapsimali 

et al., 2004; Rohr et al., 2001). Therefore, regulation of markers of the hypothalamus, 

such as N k x 2 .4 ,  may require input from Nodal and Wnt pathways for correct 

induction. Shh signalling is required for hypothalamus formation, this structure is
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missing in mice lacking Shh, however it is not believed to be necessary for all aspects 

of its induction (reviewed in Wilson and Houart, 2004).

Together these data provide evidence to suggest that not only have the expression 

patterns of the Nkx2 genes in zebrafish and mice been conserved, but also the 

regulation and timing o f  expression. The presence of a highly conserved non-coding 

region (CNCR) upstream of both the mouse and zebrafish Nkx2.2/2.9 genes (see 

below) suggest a possible mechanism to account for the similarity in expression.

8.3 CNCR D rives N kx2.2/9-L ike Expression

Analysis of vertebrate genom ic DNA containing the Nkx2 genes had previously 

identified a regulatory region o f approximately lkb  upstream of N kx2 .9  that was 

capable of driving Nkx2.2/2.9 like expression in the neural tube of mice (Santagati et 

al., 2003). We confirmed that this region was present in the promoters of human, 

mouse and fish N kx2.9  genes. Moreover this region was also present in the promoters 

of the paralogous gene N kx2.2  (Fig. 4.4). Once this region had been identified, we set 

out to test if it was both necessary and sufficient for Nkx2.2  gene expression.

Using a BAC homologous recombination system, we ascertained that the CNCR was 

necessary for correct N kx2 .2  expression (Chapter 4). The targeting of a fluorescent 

reporter to the first exon of  N kx2.2a  in zebrafish recapitulated its expression in the 

ventral neural tube of 24 hr embryos (Fig. 4.3). Deletion of the CNCR from the BAC, 

led to loss of specific expression in >99% of embryos analysed (Fig. 4.7).

In vivo  evidence from this study suggests that the 250bp CNCR identified upstream of 

both Nkx2.2  and N kx2.9  is sufficient to drive correct expression of the reporter in the 

ventral neural tube o f  mice (Chapter 5). In the case o f  mouse N k x 2 .9 ,  the 

mNkx2.9CNCR+PromLacZ reporter construct, containing the CNCR, was able to direct 

LacZ  expression in the ventral most domain of the spinal cord in an expression pattern 

comparable to wild type (Fig. 5.6: Pabst et al., 1998; Santagati et al., 2003). The 

comparable construct from mouse Nkx2.2, mNkx2.2CNCR+PromLacZ, also containing the
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CNCR, was able to direct reporter expression, when assayed by mouse pronuclear 

injection, in a pattern similar to that of wild type expression (Fig. 5.5: Briscoe et al., 

1999).

Constructs containing l-1 .3kb o f  zebrafish N kx2.2a  promoter DNA, upon injection 

into mouse pronuclei, directed LacZ  expression in a pattern comparable to that of wild 

type mouse N kx2.2  (Figs. 5.5, 5.8, 5.12). These constructs, zNkx2.2CNCR+PromLacZ and 

zNkx2.2CNCR+PromLacZ-2, contained the CNCR plus other fragments of the promoter. 

Moreover, assaying further constructs (zNkx2.2CNCRLacZ and zNkx2.2ACNCR+PromLacZ) 

suggested that the CN CR alone was sufficient to direct LacZ  expression in an Nkx2.2 

like domain. Deletion of the CNCR in this context led to a complete loss of LacZ  

expression (Fig. 5.16).

Together these data suggest that the CNCR region identified upstream of Nkx2.2  and 

N kx2 .9  genes in several vertebrate genomes contains all the required regulatory 

elements for correct N k x 2 .2  expression in the mouse and zebrafish neural tube. 

Cyclopamine experim ents  in zebrafish (see above) indicate that the expression 

depends on Shh signalling. Thus the CNCR represents a Shh responsive neural 

enhancer.

The reporter plasmids frequently directed expression of LacZ  in a more intermediate 

domain of the neural tube in addition to the ventral Nkx2.2 like expression. This non­

specific expression was not observed in the zebrafish embryos harbouring the 

zNkx2.2aVenus BAC (Fig. 4.3). This may have been caused by the absence of a 

repressive element in the small plasmids that would normally block this expression. 

The ectopic L acZ  expression was observed in the p2 domain in both progenitor and 

post-mitotic cells. At later stages the zNkx2.2CNCR+PromLacZ construct was unable to 

direct LacZ  expression in the intermediate population, suggesting expression in post­

mitotic cells may have been due to perdurance of the enzymatic product (Chapters 5 

and 6). N kx6.1  and N kx6 .2  are orthologues of the D rosophila  N K 6  gene, both are 

expressed in the ventral neural tube (Fig. 1.3B). Nkx6.1  is expressed in the p2 domain
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in progenitor cells. There may be some homology between the regulatory elements of 

Nkx6.1 and Nkx2.2, which may explain the p2 domain expression.

8.4 E volu tionary Conservation o f  R egulatory E lem ents and Scalability  

o f  D e velopm ent

Importantly, similar activity was observed with the mouse and zebrafish N kx2 .2  

regulatory elements and both recapitulated the endogenous N kx2.2  expression in 

transgenic mice. Thus, the regulatory element is interchangeable between species. 

This highlights the evolutionary  conservation of regulatory mechanisms within 

vertebrates. This indicates that the same factors direct expression of zebrafish and 

mouse N kx2 .2 , supporting the idea that dorsal ventral patterning is equivalent in 

vertebrate neural tube development.

The scale and timing of neural tube development in zebrafish and mice vary. The 

process of neurulation in zebrafish takes only a matter of hours for completion, while 

the same process in mice takes 2 days. In both mouse and zebrafish, N kx2.2  in 

induced at equivalent times during neurulation. In addition, the Nkx2.2  expressing 

domain within the neural tube of mouse and zebrafish is different. N kx2 .2  is 

expressed in zebrafish  in a domain that is approxim ately  2 cells wide in the 

dorsoventral axis. In mice N kx2.2  expressing cells occupy a region closer to 6 cells 

wide. The ability o f  the zebrafish regulatory element to direct mouse Nkx2.2-like 

expression, suggests that differences in the proportion and timing of the ventral neural 

tube expressing N kx2.2  is not controlled by differences within the regulatory element. 

Therefore the scalability of expression must reside elsewhere in the system, not in the 

regulatory architecture. One candidate would be Shh signalling itself, perhaps the 

regulation o f  the Shh ligand and its range of activity differs proportionally between 

species.
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8.5 Direct Gli Input Required fo r  CNCR

One of the questions this project aimed to answer was whether the requirement for 

Shh for N kx2 .2  expression was direct. Experimental evidence suggested that Shh 

signalling is required for N kx2.2  expression (Chapter 3: Pabst et al., 2000; Stamataki 

et al., 2005). Identification of a Gli binding site within the CNCR (Fig. 4.4) raised the 

possibility that the requirem ent was direct. Analysis of G lil  mutant zebrafish 

identified a loss of N kx2.9  expression, suggesting a requirement for Gli and therefore 

a direct Shh requirement (Xu et al., 2006). Similarly in Gli2 mutant mice there is a 

loss of Nkx2.2  expression, suggesting a Shh/Gli requirement (Ding et al., 1998).

The Gli binding site identified in the CNCR is identical to the previously described 

“canonical” binding sequence (5' GACCACCCA 3': Kinzler and Vogelstein, 1990). It 

has been shown to bind to all Gli proteins and to D rosophila  Ci (Agren et al., 2004; 

Muller and Basler, 2000; Sasaki et al., 1997). To test the requirement for this site in 

the CNCR, reporter plasmid zNkx2.2CNCR+PromGBSM utLacZ contained a mutation in 

the Gli binding site (GBS) present in the CNCR in the zNkx2.2a  reporter construct. 

This mutation (5 ’ G A A G TG G G A  3 ’) has been shown not to bind to Gli proteins using 

electrophoretic mobility shift assays (EMSA: Sasaki et al., 1997). Mutation of the 

GBS within zN kx2.2CNCR+PromLacZ led to a loss of all ventral L acZ  expression (Fig. 

6.1), suggesting a direct requirement for Shh/Gli for correct Nkx2.2  expression. These 

data therefore offer an explanation for the requirement for Shh signalling in the 

induction of Nkx2.2.

The finding that the C N C R  is interchangeable between species for correct gene 

expression, combined with the evidence that all three Gli proteins and Ci are able to 

bind to the identified GBS, suggests a degree of functional redundancy but divergence 

of Gli protein function in mice and zebrafish. The activation of the ventral cell types 

in the neural tube (floor plate and V3) appears to be due to the action of G lil in 

zebrafish (Karlstrom et al., 2003), however this role is performed by Gli2 in mouse 

(Ding et al., 1998; Matise et al., 1998; Park et al., 2000). It seems likely therefore that 

the different functions of Gli 1/2 proteins in these species are not due to differences in 

the binding specificity of these proteins. The differences are more likely to be due to
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differences in the expression or transcriptional activity of Gli 1/2 in the two species. 

The conservation o f the GBS sequence between m ouse and zebrafish is consistent 

with the idea that the activation of the reporter by the CNCR is due to level of Gli 

activity and not the identity of the Gli protein itself.

8.6 C om binatorial Inputs R equired fo r  N kx2.2 Expression

The loss of L a cZ  expression  upon m utating the GBS suggested that this site was 

necessary for correct N kx2.2  expression. H owever deletion constructs based upon the 

CNCR suggested  that the GBS was not, alone, sufficient to direct N kx2.2-like 

expression. R eporter construct zN kx2.2A lCNCR+PromLacZ, which contained the GBS 

but not the majority of the conserved domains within the CNCR, was not sufficient to 

drive Nkx2.2 like ventral L acZ  expression (Fig. 6.3). The addition of ~13bp to this 

construct how ever restored the ventral expression of LacZ  (zNkx2.2A3CNCR+PromLacZ, 

Fig. 6.3, sum m arised F ig.8.1 A). These results suggest that in addition to Gli, a second 

‘X ’ factor is necessary for the ventral activation of Nkx2.2.

Sequence analysis identifies several consensus sites w ithin this 13bp (Fig. 8.1 A). One 

such binding sequence is for G lial cells m issing  genes {gem  and gcm2). These 

proteins were originally  identified as D rosophila  glial cell determ inant genes in the 

CNS (review ed in V an De Bor and G iangrande, 2002). The binding site for this 

transcription facto r has been identified, w hich is conserved in flies and m am m als 

(A kiyam a et al., 1996). A lthough gem  genes have been shown to have a gliogenic 

role in D ro so p h ila , it has been suggested that in addition it has a neurogenic role in 

the post em bryonic developm ent of the visual system  (Chotard et al., 2005). This is 

believed to be in co-operation with the Hh signalling pathway. Recently it has been 

shown that the chick orthologue of gem, c -G cm l, is expressed in the early developing 

chick spinal cord including neural progenitors in the region that expresses N kx2 .2  

(Soustelle et al., 2007). Overexpression studies in chick suggest it has a neurogenic 

rather than a gliogenic role (Soustelle et al., 2007). W hile in mice the role o f this 

protein (G cm l) has been associated with placental formation (Schreiber et al., 2000). 

Mice carrying m utations in the G cm l gene appear to form a normal nervous system, 

how ever the presence o f a G cm l paralogue raises the possibility of functional
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redundancy. The expression of mouse G cm l and G cm l  was identified by PCR in the 

CNS, how ever the levels were low and no in situ  hybridisation is currently available 

(K im  et al., 1998). It was proposed that they are m ainly expressed in non-neural 

tissue.

There is also a SOX binding site in the 13bp of CN CR 5 ’ to the GBS (Fig. 8.1 A). 

SOX pro te ins are a large group o f h igh -m obility -g roup  (H M G ) con ta in ing  

transcription factors that play many roles during em bryogenesis. The SOX proteins 

are grouped, based on their structural sim ilarity. SOXB proteins are believed to 

prom ote neuronal p rogen ito r identity , and m aintain  the expression o f neural 

progenitor genes (review ed in Pevny and Placzek, 2005). Shh is present in many 

developing tissues other than the CNS, however Nkx2.2  does not appear to respond to 

Shh signalling in these other tissues. SOX1, a SOXB protein, has been shown to be 

crucial for inducing a neural fate in cells (Pevny et al., 1998), so it is possible that the 

presence o f SOX sites in the CN CR is essential for neural specific expression of 

Nkx2.2.

Additional reporter constructs, zNkx2.2A4CNCR+PromLacZ, zNkx2.2A5CNCR+PromLacZ and 

zNkx2.2A6CNCR+PromLacZ, which contained more 5 ’ DNA to zNkx2.2A2CNCR+PromLacZ 

provided further clues to the regulation of N kx2.2  expression (Chapter 7, summarised 

Fig. 8 . IB ). T he ad d itio n  o f 21 bp 5 ’ to zN kx2.2A 2CNCR+PromLacZ to create 

zNkx2.2A6CNCR+PromLacZ directed reporter expression restricted to the floor plate only 

with occasional lim ited expression in the Nkx2.2 p3 domain (Fig. 7.3). This suggests 

that a repressor elem ent was present leading to loss o f reporter expression in an 

N kx2.2-like m anner betw een zN kx2.2A 2CNCR+PromLacZ and zNkx2.2A6CNCR+PromLacZ. 

M oreo v er, the  ad d itio n  o f 29bp  5 ’ to zN k x 2 .2 A 6 CNCR+PromLacZ, to m ake 

zNkx2.2A5CNCR+PromLacZ restored ventral reporter expression, suggesting an activator 

elem ent had been added, that led to ventral reporter expression. However, it is 

possible that the process of deleting DNA to make zNkx2.2A6CNCR+PromLacZ, destroyed 

an enhancer essential for correct ventral N kx2.2-like expression, producing an 

anom alous resu lt for zN kx2.2A 6CNCR+PromLacZ (Fig. 7.3). zNkx2.2A4CNCR+PromLacZ 

also directed ventral Nkx2.2-like expression, suggesting all of the elements required 

for correct N kx2.2-like expression were present in this construct. These data together
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suggest that the regulation of N kx2 .2  requires input from  m ultiple positive and 

negative regulators. A nalysis of the region to identify  possible factors shows 

predicted binding sites for several transcription factors, including those for O ctl and 

Pou3f2 binding sites (Fig. 8 .IB).

Both O ctl and Pou3f2 are members of the POU family of transcription factors, which 

contain a POU specific dom ain and a hom eodom ain, both are necessary for DNA 

binding (reviewed in Latchm an, 1999). O ctl is a ubiquitously expressed transcription 

factor (Scholer et al., 1989), whilst Pou3f2  (B rn-2 ) is expressed in the mouse CNS 

and is im portant fo r correct developm ent of the neocortex (Sugitani et al., 2002). 

P ou3j2  has been show n to be expressed in the ventral telencephalon ( E l3.5) and 

throughout the dorsoventral axis of the spinal cord (E10.5: Castro et al., 2006). Many 

factors in this fam ily  have been im plicated in patterning and developm ent of the 

nervous system . T he binding site identified may be for any of the octam er factors, 

since fam ilies of these proteins share sim ilar core recognition sequences.

Together these data suggest that although the Gli binding site is necessary for Nkx2.2  

expression, the site alone is not sufficient. The finding that an additional 13bp is 

required for correct expression suggests that at least one additional factor is required 

to bind to the C N C R  to drive expression. G cm l and SOX could be possible 

candidates for this process. However, construction of further plasmids suggests that 

the m echanism  for gene induction is more com plex than this. Assaying the activity of 

constructs zN kx2.2A 5CNCR+PromLacZ and zN kx2.2A 6CNCR+PromLacZ provided evidence 

that there may be additional activators and repressors (Fig. 8 .IB) located in the CNCR 

controlling N kx2.2  induction.

8.7 N kx2.2 F loor P late R epression

N kx2 .2  is initially expressed at ~E8.5 in the m ost ventral cells of the mouse neural 

tube, (Briscoe et al., 1999; Jeong and M cM ahon, 2005). FoxA2 expression is initiated 

at a sim ilar tim e point (Jeong and M cM ahon, 2005). These ventral cells will go on to 

form  the floo r plate, w hich expresses F o xA 2  but not N kx2.2 . As developm ent
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proceeds the expression of Nkx2.2  shifts dorsally to occupy a domain just dorsal to the 

expression o f FoxA 2  (B riscoe et al., 1999). This suggests that a m echanism  must 

repress N kx2 .2  expression w ithin the floor plate. Is FoxA2 the repression factor? 

N kx2 .2  and F oxA 2  are co-expressed in the same cells at both hindbrain (J. Jacob, 

personal com m unication) and trunk level (Jeong and M cM ahon, 2005) which argues 

against a sim ple repressive activity of FoxA2 on Nkx2.2  expression. M oreover, data 

suggests FoxA 2 acts as an activator (D enson et al., 2000; W ang et al., 2000c). 

However, this does not rule out the involvement of FoxA2 in the repression of Nkx2.2 

as there could be sequential induction of these two genes or additional genes (see 

below).

The analysis o f the C N C R  has provided evidence to suggest that it contains a 

repression elem ent, w hich blocks N kx2.2  expression in the floor plate. Transgenic 

mouse lines harbouring the reporter construct zN kx2.2CNCR+PromLacZ did not express 

L acZ  in the floor plate (Fig. 7.1). H owever, deletion of DNA at the 5 ’ end of the 

CNCR to create construct zNkx2.2A 2CNCR+PromLacZ directed L acZ  expression in the 

floor plate upon m ouse pronuclear injection (Fig. 6.3). In order to narrow down the 

elem ent that contained the floor plate repression elem ent, further constructs were 

made. A nalysis o f mice harbouring these constructs suggested that the floor plate 

repressor w as positioned  betw een the start site of zN kx2.2A 5CNCR+PromLacZ and 

zNkx2.2A2CNCR+PromLacZ.

To further define the region necessary for floor plate repression, mouse pronuclear 

injection o f construct zN kx2.2A 6CNCR+PromLacZ was perform ed. T his construct 

directed expression in the floor plate alone, as discussed in Section 8.6. The loss of 

ventral expression in this construct was possibly due to the loss of an activator. This 

expression o f L acZ  in the floor plate suggests that the floor plate repressor is located 

betw een the start sites o f zN kx2.2A 5CNCR+PromLacZ and zN kx2.2A 6CNCR+PromLacZ 

(sum m arised Fig. 8. IB). The analysis of this region to identify possible binding sites 

identified octam er sites (see Section 8.6). However, the identity of the floor plate 

repressor is unclear since there are no obvious candidates for the floor plate repressor 

w ithin this region of the CNCR (Fig. 8 .IB).
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In addition to FoxA 2, there are several genes expressed in the floor plate that may 

directly or indirectly repress N kx2.2  expression. A m icroarray screen identified a 

num ber o f genes up-regulated in response to high levels of Shh signalling, these 

included the Forkhead protein Fox jl (C. Cruz personal com m unication). In situ 

analysis confirm ed it is expressed in the floor plate. M utation of F o x jl in mice leads 

to random  le ft-rig h t body pattern ing , suggesting it plays a role in regulating 

asymm etric gene expression (Chen et al., 1998a). It is also believed to be involved in 

9+2 motile cilia biogenesis (Chen et al., 1998a) due to their absence in F o x jl  mutant 

mice. W hile there is currently no evidence to suggest that Foxjl plays any part in 

repressing N kx2 .2  expression , it along w ith other transcription factors represent 

candidates for m ediating the dow n-regulation of Shh in the floor plate.

8.8 P ax6 R epression  o f  N kx2.2

G ain-of-function  studies ind icate that the dorsal lim it o f N kx2 .2  expression is 

determined by Pax6 expression (Briscoe et al., 2000). It is still not known, however, 

how Pax6 exerts its repressive effects on N kx2.2. The cross-repressive interaction 

between N kx2.2 and Pax6 is well docum ented. The loss o f functional Pax6 in Sey 

mice leads to an expansion in Nkx2.2  expression and a dorsal shift of ventral neuronal 

subtypes (Ericson et al., 1997b). In N kx2 .2  m utant mice, there is no change in the 

ventral boundary o f P ax6  expression (Briscoe et al., 1999), however this may be due 

to the expression o f N kx2.9  in the same domain. The evidence that Pax6 functions as 

a transcriptional activator (M uhr et al., 2001) indicates that the activity of Pax6 on the 

Nkx2.2  gene is likely to be indirect.

One recently proposed m echanism  for the repression o f Nkx2.2  expression by Pax6  

suggested  tha t the W nt pathw ay was involved (Lei et al., 2006). This model 

suggested that the inhibitory com ponents of the W nt pathway via TCF/LEF binding 

sites, are necessary to determ ine the dorsal Nkx2.2  expression boundary. The model 

proposes that Pax6 activates an inhibitor o f the W nt pathway, SF R P 2  (secreted 

frizzled related protein 2), which is expressed in the ventral neural tube, not including
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the p3 dom ain. The inhibition of W nt signalling by SFRP2, means that Tcf4 recruits 

G roucho co-repressors, which in turn negatively regulate Nkx2.2, therefore restricting 

its expression  to the p3 dom ain. H owever, this explanation suggests that Pax6  

expression  is already determ ined, w hich then controls the boundary of N kx2 .2  

expression. This fails to explain how the P ax6  boundary is set up in the first place. 

M oreover our analysis of the CN CR indicates that the TCF/LEF binding sites do not 

account for the observed expression pattern of Nkx2.2  in the neural tube.

It was noticeable that none o f the reporter constructs analysed showed a dorsal 

expansion of L acZ  (Chapters 5-7). In contrast, in Sey mice lacking functional Pax6, 

expression o f the reporter expanded (Fig. 5.7). This suggests that the CNCR responds 

to the repressive activity  o f Pax6 and that the repressive activity is not obviously 

localised to a specific elem ent. A lthough, we cannot rule out the possibility that we 

have failed to identify a specific elem ent responsible for Pax6 mediated repression, 

our data suggest an alternative; that the repressive activity of Pax6 is via a different 

mechanism.

How then could Pax6 determ ine the dorsal lim it of Nkx2.2 expression? Pax6 could 

indirectly  determ ine the dorsal N k x 2 .2  expression boundary by regulating Shh 

signalling. For exam ple, Pax6 could positively regulate an inhibitor of Shh signalling 

or up-regulate the expression of Gli repressor proteins. One m echanism  could be 

activating and/or increasing the levels o f Gli3 protein and inhibiting the levels of Gli2, 

which w ould therefore repress Shh signalling.

8.9 M odel f o r  N kx2.2 R egulation

The analysis of the regulatory elem ents together with the observed characteristics of 

N kx2 .2  expression allows us to form ulate a model to explain its regulation. Recent 

evidence suggests that there is a sequential induction of Olig2  and N kx2.2  in ventral 

neural cells (E. Dessaud personal com munication), with both the strength and time of 

Shh signalling determ ining Nkx2.2  induction. There is a significant delay between the 

provision o f Shh protein and induction o f Nkx2.2. M oreover, Gli activity must be
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m aintained for N kx2.2  induction, as its expression was not consolidated in cells if Shh 

signalling was rem oved prem aturely (E. Dessaud personal com m unication). Finally, 

tissue exposed to Shh shows a dow n-regulation of Gli activity over time (E. Dessaud 

personal com m unication). A t the tim e when significant num bers o f cells have 

induced  N k x 2 .2  G li ac tiv ity  had decreased  and stab ilised . T h is tem poral 

desensitisation to the Shh signal is via an up-regulation of ligand inhibitors such as 

P tcl (E. Dessaud personal com munication).

A nalysis o f the regulatory elem ents necessary for N kx2.2  expression has provided 

evidence to suggest that Nkx2.2  induction requires Gli activity and an additional factor 

‘X ’. W e can therefore suggest that the delay in the induction of Nkx2.2  expression is 

due to the need to induce Gli transcriptional activity and for this to induce factor ‘X ’. 

In add ition  the requ irem ent fo r prolonged Gli activity for N kx2 .2  induction is 

accounted for by the requirem ent fo r X and Gli to jo in tly  act upon the regulatory 

elem ent. T hese data are consistent with a feed forw ard loop being involved in the 

regulation o f N k x 2 .2  by Shh signalling  (Fig. 8.1C). Shh signalling initiates Gli 

activity, w hich induces X, then Gli activity m ust be m aintained with X for Nkx2.2 

induction. Hence prem ature removal of Gli activity does not allow Nkx2.2  induction. 

The conso lidation  o f N kx2 .2  expression requires continued Shh signalling, once 

estab lished  O lig 2  expression  is dow n-regulated . N kx2.2 then represses O lig2  

expression to ensure it is not re-expressed within the p3 domain.

In addition to the m echanism  that accounts for the Shh responsiveness of the CNCR, 

the evidence suggests that com binations of positive and negative inputs are required 

for N k x 2 .2  gene expression (Fig. 8 .ID ). The expression of the L a cZ  reporter in 

ventral regions after injection of zNkx2.2A3CNCR+PromLacZ provided evidence that in 

addition to the GBS another positive factor binds with the 13bp located 5 ’ to the GBS 

(Fig. 8.1 A ). T ogether these factors are sufficient to confer ventral expression. 

H ow ever, this sim ple interpretation is further com plicated by the analysis of mice 

harbouring  zN kx2.2A 5CNCR+PromLacZ  and zN kx2.2A 6CNCR+PromLacZ. A nalysis of 

zN kx2.2A 6CNCR+PromLacZ expression (Fig. 7.3), dem onstrated that the reporter directs 

expression  in the floor plate but no ventral neural tube expression. The ventral 

expression is restored by injection of zNkx2.2A5CNCR+PromLacZ. Together these data
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suggest the spatial distribution o f factors (Fig. 8. ID) that would explain the results 

observed  in C hapters 6 and 7, and also dem onstrate a m ethod of fine-tuning the 

regulation that would ensure precise positioning of Nkx2.2  expression.

The model predicts that the injection of zN kx2.2A lCNCR+PromLacZ, containing only the 

G BS, w as not su ffic ien t fo r activation o f N kx2.2-like expression. Injection of 

zNkx2.2A3CNCR+PromLacZ, containing both the GBS and an activator recognition site 

directed ventral expression in both the p3 domain and floor plate. However, injection 

of zN kx2.2A 6CNCR+PromLacZ, contain ing  the GBS as well as both an activator and 

rep resso r reco g n itio n  site led to  non-specific  expression  in floo r plate and 

occasionally  the p3 dom ain. H ow ever, this construct was not sufficient to direct 

e x p re s s io n  in a p re c ise  N k x 2 .2 - lik e  d o m a in . F in a lly  in jec tio n  of 

zNkx2.2A5CNCR+PromLacZ, containing the feed forward activator in addition to activator 

and repressor recognition sites, d irected precise expression in the p3 domain only. 

Therefore this model suggests the presence of binding sites for general activators and 

repressors acting upon the C N C R  as well as Shh regulated factors (Fig. 8 .ID). In 

addition a floor plate repression factor appears to bind in the region present in the 

zNkx2.2A5CNCR+PromLacZ construct. This elem ent ensures dow n-regulation of Nkx2.2  

in the floor plate. Finally Pax6 sets the dorsal lim it o f Nkx2.2  expression either by 

activating a repressor of N kx2.2  or by regulating the level of Shh signalling.

8.10 C onclusions

The results obtained from  this project and other experim ents have provided evidence 

for a m odel, w hich may explain the mode through which genes are differentially 

expressed in response to the m orphogen Shh. It is a model that could be applied to 

other m orphogens crucial in the developm ent of many eukaryotes. This model differs 

from  the canonical view of m orphogen interpretation, in w hich genes respond to 

particu lar thresholds of m orphogen by binding affinity. In the canonical view, the 

m orphogen gradient is itself sufficient to regulate the differential gene expression that 

patterns the tissue. The changes in m orphogen concentration are translated into 

changes in the activity or num ber of active transcriptional effector molecules. Target 

genes are then activated based on the presence of numbers of binding sites for these
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effectors and the relative binding affinity. Our model suggest that the differential 

control o f gene expression is due to the presence of other factors required for gene 

induction and also from  the duration of morphogen signalling.

O ur resu lts support the ‘sequential cell con tex t’ and ‘se lf enabling m echanism  

m o d e ls’ (see In troduction) previously  proposed (K ang et al., 2003; Pages and 

K erridge, 2000). Relating these m echanism s to N kx2.2  expression, we can predict 

that early signalling o f Shh could activate an early set of genes that would down- 

regulate Pax6  expression. Continued Shh signalling would activate a late set of genes 

that would then activate Nkx2.2  expression.

8.11 F u ture W ork

The key issue that arises from  this study is the need to find the factors that bind to the 

identified elem ents w ithin the CNCR. M ore specifically, to test individual regions 

that this project has proposed are im portant for floor plate repression and for ventral 

expression of Nkx2.2. W hether the candidate factors bind to particular fragments, e.g. 

binding o f the G cm l protein to the 13bp fragm ent isolated in C hapter 6. Also to 

identify possible activator and repressor proteins that support the proposed model 

(Fig. 8 .ID).

To further exam ine the im portance of the elements required for floor plate repression 

or for the feed forw ard activation, these elements could be tested in the context of the 

BAC. The elem ents o f interest could be reintroduced into the BAC in which the 

C N C R  has been deleted. The change in V enus expression w ithin the neural tube 

could be analysed after injection of the BAC into zebrafish embryos.

If fu rther regulatory factors were identified for the induction of N kx2 .2 , it would be 

interesting to see if the promoters of other genes expressed in the neural tube contain 

sim ilar binding sites. This would identify other genes that may be regulated by Shh in 

a sim ilar m anner, and may provide confirm ation about the nature o f the differential 

gene expression in response to morphogenetic Shh signalling.
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Figure 8.1 A model for induction of Nkx2.2.

A A lignm ent of region o f CNCR identified to be necessary for ventral N kx2.2-like 

expression. The region lies 5 ’ to the identified Gli binding site and is predicted to 

contain an elem ent bound by a general activator. The start sites for constructs 

zNkx2.2A3CNCR+PromLacZ (A3) and zN kx2.2A lCNCR+PromLacZ (A l) are marked on above 

the sequence. The ability  of the constructs to direct LacZ expression  (>✓ ) or 

repression ( X )  in the floor plate or ventral p3 domain, is marked below the sequence. 

Putative transcrip tion  facto r binding sites identified by M atlnspector have been 

marked on above the sequence. G cm l = Glial Cells M issing Homologue 1, MZF1 = 

M yeloid Zinc Finger Protein 1. B A lignm ent for a region identified to contain both a 

general repressor for the expression of N kx2.2  and also a floor plate repressor. The 

start sites for constructs zNkx2.2A2CNCR+PromLacZ (A2), zNkx2.2A5CNCR+PromLacZ (A5) 

and zNkx2.2A6tNCRfPromLacZ (A6) are marked on above the sequence. The ability of 

the constructs to direct LacZ  expression ( ✓ ) or repression ( X )  in either the floor plate 

or ventral p3 dom ain of the neural tube is marked below the sequence. In addition, 

putative transcrip tion factor binding sites identified by M atlnspector are m arked 

above the sequence. NM P4 = Nuclear Matrix Protein 4, Pou3f2 = POU dom ain, Class 

3 factor 2 (also known as N-Oct3, Brn2), O ctl = Octam er 1, Pax3 = Paired Box Gene 

3, CPBP = Core Prom oter B inding Protein. C A diagram  of the proposed feed 

forw ard loop for the regulation of N kx2.2 by Shh signalling. D A proposed model 

that ties in the data from  the prom oter analysis of N kx2 .2  to explain the observed 

expression patterns. Red X m arks the suggested site for an elem ent that m ediates 

Pax6 repression if it is directly through the CNCR.
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