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Abstract

Abstract

The mammalian Rab family consists of between 60-70 members, making it the 

largest sub family of the Ras superfamily. Rabs are responsible for vesicle trafficking 

within cells, acting as molecular switches cycling between the GDP inactive and 

GTP bound active forms. Far from being just cellular housekeeping genes, these 

genes have been shown to have specific functions which, when disrupted, can lead to 

clinical disorders and interesting developmental defects.

This thesis therefore seeks to investigate this interesting family of genes and their 

roles in zebrafish development. Using antisense morpholino oligonuleotides in a loss 

of function screen, this thesis identifies the function of 13 zebrafish rabs. Three of 

these, rabla3, rab3cl and rab28 have specific and interesting phenotypes, with 

pigmentation defects seen in rabla3 and rab3cl and behavioural defects seen in 

rab28. In particular, the pigmentation defect in rab3cl resulted in the discovery that 

the embryos were blind.

This thesis also shows an essential role for rab5a2 in zebrafish development and 

Nodal signalling. Disruption of this rab causes a dramatic early phenotype, with 

100% mortality in embryos prior to 24 hours post fertilization. rab5a2 morpholino 

injected embryos show no visable organizer and have reduced nodal target gene 

expression. Overexpression of rab5a2 shows embryos with additional expression of 

Nodal target genes no tail and goosecoid in the animal pole of the embryos but not 

the dorsal marker chd. Microarray analysis of rab5a2 morpholino injected embryos 

showed reduction and upregulation of expression of many genes involved in dorsal 

ventral patterning. This suggests a complex role for rab5a2 in patterning the early 

embryo, as both dorsalizing and ventralizing genes such as chd, bmp4 and wnt8 

were down regulated while, ventralizing genes such as bmp2b were upregulated.
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ADMP - anti-dorsalizing morphogenic protein

AP -  anterior posterior

Bmp -  Bone Morphogenic Protein

Bmpr - Bone Morphogenic Protein Receptor
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COP 1 - Coatomer complex

Cyc -  Cyclops

Dkk - Dickkopf

Dpp - decapentaplegic

DV -  Dorsal-Ventral

ER -  Endoplasmic Reticulum
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Glossary
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Introduction

1.1 Zebrafish Development

Zebrafish (Danio rerio) are small, fresh water fish, which as adults are 

approximately two centimetres in length. They produce small, transparent eggs, 

which are fertilized shortly after laying. Once fertilized, the zebrafish embryos 

develop rapidly with the embryo, being recognisable as a fish by 24 hours post 

fertilization (hpf). By 48 hpf, the juvenile pigment has become apparent and they 

have started to hatch from their protective membrane, known as the chorion. 

Following three days of development the swim bladder has developed and after five 

days the eyes have become fully functional and the young are capable of independent 

feeding. Sexual maturity is reached between three and six months (Westerfield 

2000).

1.1.1 From Fertilization to Gastrulation: An overview o f  

morphological characteristics

Shortly after fertilization, yolk platelets separate from cytoplasm, which collects 

around the point of sperm entry at the animal pole (Kimmel et al., 1995). This animal 

pole cytoplasm cleaves approximately every 20 minutes to form a clump of cells, the 

blastoderm, situated on top of the large yolk cell (Kimmel et al., 1995). When the 

blastoderm reaches 512 cells the cell cycles lengthen and become asynchronous, and 

de novo transcription of the zygotic genome begins in a process called the mid- 

blastula transition (MBT) (Kane and Kimmel, 1993). At approximately four hpf the 

blastoderm cells move over the yolk cell and cover it, in a process called epiboly. 

When the cells have migrated to cover half the yolk - 50% epiboly -  other 

gastrulation movements begin. Blastoderm cells internalise to form two cell layers; 

the outer epiblast and inner hypoblast (Kimmel et al., 1989). Concomitantly, a 

thickened marginal region, termed the germ ring, appears at the margin between the 

blastoderm and the yolk cell. This is followed by a local accumulation of cells in a 

structure called the embryonic shield which corresponds to the Spemann’s organizer 

identified in amphibian development (Schier and Talbot, 2001; Spemann and 

Mangold, 1924). The appearance of the shield is the earliest visual marker of the
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dorsal ventral axis in the embryo (Figure 1.1.1). During germ ring formation, epiboly 

temporarily arrests, but after shield formation, epiboly continues and the margin of 

the blastoderm eventually advances around the yolk cell to cover it completely 

(Houart et al., 1998; Kimmel et al., 1989)

Figure 1.1.1: Figure showing movement of blastoderm cells during early 
zebrafish development.
Black arrows indicate the movement of cells during epiboly. Yellow arrows indicate 
the movement of cells during involution. Red arrow identifies the dorsal organizer 
(shield)

1.1.2 Dorsal Establishment

Our understanding of the establishment of the dorsal axis remains incomplete. It has 

been shown however, that the yolk is an important early source of dorsal-ventral 

(DV) patterning signals (Piccolo et al., 1999). Dorsal identity in the embryo is 

established by a dorsal determinant, or determinants, that are initially located at the 

vegetal pole and translocated along microtubules to the future dorsal side before the 

first cleavage division occurs (Aanstad and Whitaker, 1999; Jesuthasan and Stahle, 

1997). Experimental evidence for the presence of maternally inherited dorsal 

determinants has been shown by removal of the vegetal most part of the yolk shortly 

after fertilisation, which resulted in strongly ventralized embryos (Mizuno et al., 

1996). This result suggests that the vegetal part of the yolk contains a dorsalizing 

factor, which is transferred to the future dorsal side early in development (Piccolo et 

al., 1999). Prior to shield formation p-Catenin, is seen to translocate to dorsal nuclei. 

It is thought that an unknown dorsalizing factor may bring about the stabilisation and 

nuclear translocation of P-Catenin and the activation of many dorsally associated
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genes (Kelly et al., 2000; Kelly et al., 1995; Schneider et al., 1996). Cytoplasmic p- 

Catenin is targeted for degradation by a complex containing APC, axin, Glycogen 

synthase kinase-P (GSKP) and other components which allow only low levels of p- 

Catenin to accumulate (Hinck et al., 1994; Papkoff et al., 1996). Activation of the 

canonical Wnt signalling pathway inhibits the P-Catenin degradation complex, 

stabilizing p-Catenin and allowing it to enter the nucleus where it then activates 

transcription of canonical Wnt target genes (Kelly et al., 1995; Papkoff et al., 1996; 

Schneider et al., 1996). p-Catenin accumulates specifically in nuclei of dorsal margin 

blastomeres as early as the 128-cell stage (Dougan et al., 2003; Schneider et al., 

1996).

Many of the molecular details of the establishment of dorsal identity are derived 

from experiments done with the amphibian Xenopus laevis. Many of these results 

have been replicated in zebrafish embryos. In zebrafish when P-catenin is activated 

outside the dorsal region, a second dorsal axis is induced (Kelly et al., 1995) and, in 

Xenopus laevis if maternal P-catenin mRNA is inhibited using antisense 

oligonucleotides, then dorsal cell fates are inhibited (Tao et al., 2005). In zebrafish, 

the maternal effect loci ichabod and tokkaebi disrupt the nuclear localization of p- 

Catenin and lead to ventralized embryos (Kelly et al., 2000; Nojima et al., 2004). 

Indeed ichabod has been recently shown to encode P-catenin-2 (Bellipanni et al., 

2006). In Xenopus laevis one target of P-Catenin activation, is the transcription factor 

siamois (Wylie et al., 1996). In zebrafish, dharma, the gene mutated in bozozok (boz) 

mutants, is also a member of the hox family, as is siamois and although probably not 

performing exactly the same function dharma may also encode an important 

mediator of P-Catenin function (Nelson and Gumbiner, 1998). Mutant boz embryos 

often have no notochord or prechordal mesoderm and exhibit cyclopia and 

deficiencies in ventral regions of the CNS. Earlier in development, the shield does 

not form and the expression of several organizer genes is strongly reduced or 

eliminated at late blastula. The Dharma protein is thought to act downstream of p- 

catenin since injection of p-catenin into boz mutants does not rescue the mutant. 

Mutants develop some dorsal tissue, suggesting that Dharma is only essential for a 

portion of organizer functions (Kodjabachian et al., 1999). Both siamois, in frog, and 

dharma, in fish, have been shown to induce the formation of an ectopic body axis 

when overexpressed (Fekany et al., 1999; Nelson and Gumbiner, 1998).
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In Xenopus laevis, p-Catenin has been shown to act on Vgl (a transforming growth 

factor-P (TGF-P)) and VegT (a T-box transcription factor) (Nielsen et al., 2000; Tao 

et al., 2005; Zhang et al., 1998). Both Vgl and VegT are localised to the vegetal 

pole. Vgl is synthesized as an inactive precursor protein from maternally supplied 

mRNA and activated dorsally during cortical rotation (Melton, 1987; Yisraeli and 

Melton, 1988; Zhang and King, 1996). Absence of Vgl leads to an absence of 

mesoderm (Melton, 1987; Zhang et al., 1998). VegT, on the other hand, can regulate 

generation of endoderm, in both a cell-autonomous manner and by inducing 

expression of the TGF-p family of secreted cytokines. In addition, the induction of 

TGF-Ps means that VegT is also upstream of the induction of mesoderm (Clements 

et al., 1999). When maternal vegT mRNA is depleted in early embryos it results in 

the loss of the vegetal mesoderm-inducing signals and the loss of endodermal 

markers. Therefore, maternal vegT is essential for mesoderm and endoderm 

development (Clements and Woodland, 2003). The lack of mesoderm and endoderm, 

caused by Vgl and VegT inhibition, can be rescued by injection of RNA encoding 

nodal proteins which are members of the TGF-p family which act downstream of p- 

Catenin, Vgl and VegT (Melton, 1987; Zhang et al., 1998; Zhang and King, 1996). 

In zebrafish, the factors with functional homology to Vgl and VegT are unknown as 

loss of function studies of the closest known orthologues do not produce similar 

phenotypes.

At MBT in zebrafish, the embryo switches from control by the inherited maternal 

products to control by the zygotic genome (Kane and Kimmel, 1993). Soon after this, 

other zygotic genes are activated by p-Catenin. Amongst these genes are chordin, 

dickkopfl (dkkl), squint (sqt) and fibroblast growth factors (fgfs). These genes act to 

inhibit the action of ventralizing factors or, in the case of sqt, to induce 

mesendodermal fates around the margin (Tao et al., 2005). The establishment of 

correct DV patterning is a balancing act between these dorsal associated genes 

antagonising ventral genes such as wnt8 and bone morphogenetic proteins (bmp) 

(This is discussed in more detail in section 1.1.3.3).

Recent research has suggested that DV asymmetry in zebrafish can be identified 

experimentally as early as the two cell stage (Gore et al., 2005). Map kinase p38
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antibody staining localises to the region of the embryo that will eventually become 

the dorsal side (Fujii et al., 2000). P38 has been shown not to specify dorsal fates 

since expression of dorsal genes still occurs in embryos expressing a dominant 

negative version of the gene (Fujii et al., 2000) It is thought, however, that p38 

controls the rate of cell division in the dorsal blastomeres since, when dominant 

negative versions are overexpressed, there are larger, fewer blastomeres on the dorsal 

side (Fujii et al., 2000). Disruption of microtubules, which are thought to participate 

in the specification of dorsal, results in no activation of p38, suggesting that p38 may 

be regulated by the same factors that establish DV asymmetry (Fujii et al., 2000). 

Direct evidence for early asymmetry is provided in recent work that demonstrated 

that maternal transcripts of sqt are localized to two blastomeres of the four cell 

embryo (Gore et al., 2005). Removal of cells containing these transcripts from four- 

to-eight-cell embryos, or oocyte injection of antisense MO oligonucleotides (MOs) 

targeted to sqt, cause a loss of dorsal structures (Gore et al., 2005).

1.1.3 Dorsoventral Patterning and the Organizer.

Formation of the zebrafish embryonic shield is the first morphological indication of 

the DV axis although it is clear that the DV axis has been established prior to shield 

formation. The shield consists of two layers of cells - the epiblast and the hypoblast - 

and is covered by a tight epithelium the enveloping layer (EVL). Despite members of 

the TGF-P and wnt families having been implicated in the formation of the organizer 

(Feldman et al., 1998; Smith and Harland, 1991), no endogenous signalling molecule 

has been identified that results in the direct formation of the organizer. The function 

of the organizer during gastrulation is to inhibit ventral signals, differentiate axial 

structures and facilitate morphogenesis. Many of these organizer functions are 

mediated through the secretion of signalling factors (Feldman et al., 1998; Knecht et 

al., 1995). Amongst the first of the signalling factors to be secreted are members of 

the FGF, Wnt and TGF-p families (Feldman et al., 1998). The organizer is known to 

induce dorsal fates within mesoderm, anterior fates within endoderm and neural fates 

within ectoderm, achieved through opposing morphogenic activities, emanating from 

the ventrolateral regions of the embryo (Kodjabachian et al., 1999).
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1.1.3.1 TGF-P signals.

TGF-p was identified in 1978 by de Larco et al due to its ability to induce 

phenotypic transformation of fibroblasts into diverse mouse cell types (de Larco and 

Todaro, 1978). Subsequently, many more TGF-P-related factors were identified 

resulting in a large family of TGF-ps, present in all metazoa. In humans, the TGF-p 

family contains at least 35 family members, including BMPs and Nodals (Derynck 

and Miyazono, 2006) which are also found in zebrafish. This section is concerned 

with the BMPs and their role in DV patterning, with the Nodals covered in greater 

detail in section 1.3.

The BMP family of growth factors were named for their ability to induce the 

formation of bone and cartilage. The BMPs induce ventral fates within the embryo 

and they accomplish this by binding to the extracellular domains of type I and type II 

BMP receptors (BMPRs) (Koenig et al., 1994; ten Dijke et al., 1994). These are 

transmembrane proteins, which contain intracellular serine/threonine kinase domains 

(Lin et al., 1992). Signal transduction through BMPRs results in mobilization of 

members of the Smad family of proteins, especially Smadl, Smad5 and Smad8 (Hild 

et al., 1999; Nakayama et al., 1998; Xu et al., 1998). These Smads are transcription 

factors, that are phosphorylated by ligand bound receptors, allowing them to 

translocate to the nucleus and, together with the non-receptor-regulated Smad protein 

Smad4, regulate target gene expression (Zhang et al., 1997). Secreted antagonists of 

this pathway include Chordin, Noggin and Follistatin, while the transmembrane 

protein Bambi functions as a decoy receptor (Fainsod et al., 1997; Onichtchouk et al., 

1999). In addition to this, there are inhibitory Smads, Smad6/7, which are thought to 

interfere with Smadl/5/8 phosphorylation (Heldin et al., 1997; Nakao et al., 1997). 

The inhibitory Smads also recruit ubiquitin ligases, known as Smad ubiquitination 

regulatory factor 1 (Smurfl) and Smurf2, to the activated type I receptor, resulting in 

receptor ubiquitination and degradation, and termination of signalling (Ebisawa et 

al., 2001; Zhang et al., 2001)

In zebrafish, a number of BMP pathway components are essential for the formation 

of ventral cell types, including BMP2b and BMP7. These are widely expressed soon 

after MBT but become restricted to the ventral half of the embryo by the onset of

21



Introduction

gastrulation (Dick et al., 2000; Schier and Talbot, 2005). Both of these genes have 

zebrafish mutants, (the bmp2b mutant swirl and the bmp7 mutant snailhouse) that are 

strongly dorsalized. It is thought that the ventralizing signal in vivo is a BMP2b- 

BMP7 heterodimer (Schmid et al., 2000). Previous studies in Drosophila, Xenopus 

laevis and zebrafish have shown that BMP signalling is required for global DV 

patterning decisions during early gastrulation (Gelbart, 1989; Graff et al., 1994; Pyati 

et al., 2005). In DV patterning, the effect of the BMP pathway in zebrafish is a 

balancing act between many factors. The major modifiers in this pathway include 

Alk8, a type I BMP receptor required for the specification of ventral cell fates (Bauer 

et al., 2001; Connors et al., 1999; Mintzer et al., 2001), Smad5 (Hild et al., 1999), 

Chordin, Ogon/Sizzled and the protease Tolloid (Connors et al., 1999). chordin 

mutants have a ventralized phenotype (Schulte-Merker et al., 1997) whereas 

bmp2b;chordin double mutants are dorsalized, suggesting that chordin is not needed 

for dorsal development if BMPs are inactivated (Hammerschmidt et al., 1996b; 

Miller-Bertoglio et al., 1999; Piccolo et al., 1996). The sizzled gene is mutated in 

ogon mutants (Martyn and Schulte-Merker, 2003; Yabe et al., 2003) which have a 

ventralized phenotype similar to chordin mutants. This phenotype can be suppressed 

by overexpression of Chordin (Miller-Bertoglio et al., 1999; Wagner and Mullins, 

2002). Tolloid promotes BMP signalling by cleaving and inactivating Chordin 

(Blader et al., 1997). The antidorsalizing morphogenic protein (ADMP) is a 

divergent member of the BMP family expressed on the dorsal side of the late blastula 

as well as in the axial mesoderm and anterior neuroectoderm during gastrulation 

(Lele et al., 2001; Lin et al., 1997). Overexpression of ADMP causes ventralization 

and a reduction of the organizer. Embryos injected with MOs (MO injected embryos) 

knocking down ADMP show moderate expansion of dorsal mesoderm. ADMP may 

be part of a negative feedback system which limits the size of the organizer region, 

possibly with the aid of bmp2b and bmp7 (Lele et al., 2001; Willot et al., 2002).

1.1.3.2 Wnt Signalling

The Wnt pathway is essential for ventral and posterior fates within the embryo. Early 

in zebrafish development, maternal signalling divides nascent mesoderm into axial 

(dorsal) and non-axial (ventral) domains. Subsequently, subdivision of non-axial 

mesoderm into multiple DV fate domains involves zygotic Wnt8 and BMP signalling
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as well as the Vent/Vox/Ved family of transcriptional repressors (Erter et al., 2001). 

Deletion or inhibition of both ORFs of the bicistronic (two non-overlapping open 

reading frames of wnt8 produces a loss of ventroposterior structures and expansion 

of dorsal fates (Lekven et al., 2001). A reduction of Wnt3a and Wnt8 activity results 

in stronger expansion of dorsoanterior fates, suggesting that these genes have 

overlapping functions (Shimizu et al., 2005a); (Ramel et al., 2005).

The Wnt family of proteins signal through Frizzled-Lrp receptor complexes and 

employ a number of cytoplasmic proteins to stabilize p-Catenin (Cong et al., 2004; 

Sheldahl et al., 1999; Yang-Snyder et al., 1996) . These proteins enable P-Catenin to 

accumulate in the nucleus and activate target gene expression. Secreted antagonists 

of this pathway include secreted ffizzled-related protein (SFRP), Cerberus and Wnt 

inhibitory factor (WIF), which act by binding to Wnt proteins. The Wnt antagonist, 

Dkk, acts by binding the LRP subunit of the receptor (Bafico et al., 2001; Brott and 

Sokol, 2002; Li et al., 2002) counteracting the ventralizing and posteriorizing effects 

of Wnt signalling (Hashimoto et al., 2000). ddk is an early target of maternal p- 

Catenin and is expressed early in the dorsal margin and dorsal yolk syncytial layer 

(YSL -  see section 1.1.4.1) as well as later during gastrulation in the developing 

prechordal plate (Gonzalez-Sancho et al., 2005).

Genes that may be modified by Wnt signalling include vox, vent and ved. 

Inactivation of the redundant homeodomain transcriptional repressors Vox (also 

known as Vegal) and Vent (Vega2) leads to severe loss of ventroposterior structures 

(Kawahara et al., 2000a; Kawahara et al., 2000b). This loss of function phenotype in 

zebrafish is strain dependent, AB strain fish lacking vox/vent are essentially wild type 

(Imai et al., 2001) whereas inactivation of a third gene encoding a homeodomain 

transcriptional repressor ved strongly dorsalizes all strains of embryos, including the 

AB strain (Shimizu et al., 2002). This dorsalized phenotype is similar to that seen in 

zebrafish wnt8 mutants and there is evidence that wnt8 activates vox and vent 

expression repressing dorsal genes (Ramel et al., 2005). chordin is a key target of 

Vox and Vent and these proteins also repress other dorsal genes including boz, 

goosecoid, floating head and dkkl (Imai et al., 2001; Melby et al., 2000).
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1.1.3.3 FGF signalling

The FGF family has been implicated in mesoderm formation, neural induction, DV 

patterning, and anterior-posterior (AP) patterning of the embryo (Furthauer et al., 

2004; Kimelman and Kirschner, 1987; Lamb and Harland, 1995). In early zebrafish 

development, as soon as the zygotic genes become activcated, FGF has a role in 

restricting bmp RNAs to the ventral side of the embryo (Furthauer et al., 2004). The 

FGF signal is initiated on the dorsal side of the embryo by the expression of fgf3,fgf8  

(a mutation in which is responsible for the zebrafish mutant acerebellar (Reifers et 

al., 1998) and fgf24, and this expression then spreads progressively to lateral and 

ventral domains. The restriction of BMP signalling shows an important role for FGFs 

in DV patterning. The FGF pathway is first active at the dorsal blastoderm margin, 

along the entire margin and, finally, in the tail bud (Furthauer et al., 2004; Ulrich et 

al., 2003). FGFs bind and activate receptor tyrosine kinases, the dimerization of the 

receptor results in frans-phosphorylation, as well as the recruitment and activation of 

downstream effectors (Bellot et al., 1991; Kombluth et al., 1988). Downstream 

targets of FGF include pea3, erm, and sprouty4 which are induced over broad 

domains in neighbouring cells (Furthauer et al., 2004; Ulrich et al., 2003). These 

genes are activated at different thresholds of FGF. In zebrafish wild type embryos, it 

has been shown that erm is activated furthest from the source of FGF, followed by 

pea3 and, finally, sprouty4 is activated closest to the source (Scholpp and Brand, 

2004).

In zebrafish, FGF signals may effect mesoderm formation via interactions with the 

Nodal signalling pathway (Furthauer et al., 2004), possibly relaying the action of 

TGF-p ligands over long distances. FGF is required downstream of Nodal signalling 

to induce the co-receptor One-Eyed Pinhead (Oep) in cells distant from the source of 

Nodal (Griffin and Kimelman, 2003; Mathieu et al., 2004). This mechanism 

contributes to the amplification and propagation of Nodal signals (Mathieu et al., 

2004). Partial inhibition of FGF signalling, and blocking of Oep, disrupts posterior 

development and leads to the death of dorsal mesoderm cells by the end of 

gastrulation (Griffin and Kimelman, 2003; Mathieu et al., 2004). The FGF and BMP 

pathways have also recently been shown to have a repressive effect on endodermal 

precursors induced by Nodal signalling (Poulain et al., 2006).
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1.1.3.4 Convergence Extension movements

The term convergent extension is used in the context of the developing zebrafish 

embryo to describe the movements that lead to the accumulation of cells at the dorsal 

side of the embryo followed by the anterior-posterior (AP) extension of the body axis 

(Warga and Kimmel, 1990) (Figure 1.1.2). Convergence and extension allows the 

thinning and spreading of the germ layers during epiboly. When Nodal signalling is 

lost both mesoderm formation and extension of the embryonic axis are inhibited. 

This loss does not, however, prevent the dorsal accumulation of cells suggesting that 

convergence and extension are not mutually exclusive (Feldman et al., 1998). It is 

thought that during convergence and extension, the cells move as a cohesive group as 

molecules that mediate cell polarity, sorting and adhesion have also been shown to 

be required for convergence and extension movements (Heisenberg et al., 2000; 

Ulrich et al., 2003; Wallingford et al., 2000). A mutation in zebrafish Wntl 1 (sib) - 

which has been shown to control cell cohesion through E-cadherin - results in 

embryos with compromised convergence and extension movements during 

gastrulation (Heisenberg et al., 2000; Ulrich et al., 2005).

Figure 1.1.2: Photo of an embryo 
undergoing convergence and extession 
movements.
Yellow arrow indicates convergence 
movements as cells move towards the 
dorsal side of the embryo. Blue arrow 
indicates extension movements as cells 
extend along the AP axis.
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1.1.4 The Yolk Cell

1.1.4.1 The Yolk Syncytial Layer (YSL) and its role in patterning

The YSL is an extra embryonic region, produced in zebrafish at the midblastula 

stage, when deep marginal blastoderm cells collapse and release their nuclei into the 

underlying yolk cell (Kimmel and Law, 1985). The YSL is a source of mesoderm 

and endoderm inducers (Chen and Kimelman, 2000; Hsu et al., 2006; Mizuno et al., 

1996). Transplantation experiments have shown that when the YSL is transplanted 

into the animal-pole region of the host after MBT, the yolk cell and the YSL can 

induce mesoderm and organizer gene expression in the blastoderm (Mizuno et al., 

1996). The YSL has been compared to the Nieuwkoop centre in Xenopus, a group of 

cells located in the dorsal-vegetal region of the blastula that are thought to induce the 

Spemann organizer in the overlying marginal zone in a non-cell-autonomous manner 

(Bischof and Driever, 2004; Gimlich and Gerhart, 1984). An important early step in 

the formation o f the Nieuwkoop centre in Xenopus is the nuclear localization of p- 

Catenin in an area that will become dorsal (Guger and Gumbiner, 1995). In 

zebrafish, P-Catenin accumulates in the nuclei of dorsal blastomeres and the dorsal 

YSL, where, with the Tcf/Lef family proteins, it activates the expression of zygotic 

genes that mediate the formation of dorsal structures. One of the first of these zygotic 

genes activated in zebrafish is boz, which is expressed shortly before MBT within 

dorsal blastomeres and then at late blastula/early gastrula in the dorsal YSL (Solnica- 

Krezel and Driever, 2001). It has been suggested that boz is a direct target of p- 

Catenin-Tcf/Lef signalling (Geng et al., 2003; Leung et al., 2003).

1.1.4.2 Epiboly and the importance of the yolk cell

At the start of epiboly, the cells of the blastoderm sit on top of the yolk cell. The yolk 

itself is surrounded by a thin anuclear yolk cytoplasmic layer. Between the 

blastoderm and the yolk are the YSL and the blastoderm rim. The YSL is divided 

into two sections both of which contain yolk syncytial nuclei. These are the external 

YSL, a relatively thick belt of cytoplasm, and the internal YSL, a thinner layer 

(Betchaku and Trinkaus, 1986; Kimmel and Law, 1985). In the killifish, Fundulus
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heteroclitus, the mechanism of epiboly has been more extensively researched 

(Trinkaus, 1963) but a similar process has been observed in zebrafish (Warga and 

Kimmel, 1990). Early work in Fundulus showed that epiboly begins with the 

contraction of the external YSL an autonomous process which can occur in the 

absence of the blastoderm. As epiboly progresses, the EVL, which tightly covers the 

blastoderm ensuring the correct physiological environment for the developing cells, 

moves down the yolk (Keller and Trinkaus, 1987). The underlying blastoderm cells 

link tightly with the YSL at the margin and are driven down the yolk by the YSL’s 

epiboly movements, which are, in turn, driven by an intercrossing network of 

microtubules (Trinkaus, 1984). In zebrafish changes in configuration of the yolk 

microtubules are strictly correlated with epibolic movements, with disruption of 

microtubules blocking the vegetal movement of the YSL but only partially disrupting 

the epiboly of the EVL and deep cells (Solnica-Krezel and Driever, 1994). Recent 

evidence in zebrafish has shown that pregnenolone, a steroid in the yolk cell, is 

required to maintain an adequate level of polymerized microtubules and so normal 

epiboly (Hsu et al., 2006).

In addition to the movements of microtubules in the yolk, epiboly is driven by 

endocytosis (Betchaku and Trinkaus, 1986; Solnica-Krezel and Driever, 1994). In the 

external YSL, immediately beneath the EVL attachment region, endocytosis removes 

sections of the external YSL membrane reducing it and pulling the EVL vegetaly. 

The external YSL membrane is then fused with the internal YSL membrane to 

expand the internal YSL and drive further epibolic movement (Betchaku and 

Trinkaus, 1986). At approximately 50% epiboly an actin band forms in the external 

YSL, beneath the EVL margin - the region of active endocytosis (Cheng et al., 

2004). This actin band is vital for epiboly, as shown by experiments in zebrafish 

inhibiting the formation of the actin cytoskeleton which result in a slowing of, and 

failure to complete, epiboly (Cheng et al., 2004; Zalik et al., 1999). betty boop the 

zebrafish homologue of MAPKAPK2 (a regulator of actin filament formation) 

displays premature constriction of the margin and is thought to regulate epiboly 

(Holloway, unpublished data, 2006; Wagner et al., 2004).

A further important factor in epiboly is the requirement for the intracellular adhesion 

molecule E-cadherin. Whilst a reduction in E-cadherin in zebrafish impairs epiboly, a
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stronger loss-of-function interferes with early cells divisions and halts development 

completely (Babb and Marrs, 2004). Interestingly, the first zebrafish epiboly mutant 

identified, half baked (hab) (Kane et al., 1996), has a defect in the E-cadherin (cdhl) 

gene. In the hab mutant, the deep cells cease movement at mid-gastrulation, whilst 

epiboly of EVL and YSL proceeds further (Kane et al., 2005; Shimizu et al., 2005b).

1.1.5 Morphogen Gradients in the Developing Embryo

A morphogen can initially be described as a substance which governs the pattern of 

tissue development in an organism, where different concentrations of morphgen can 

induce different cell fates. In the early 20th century, biological morphogen gradients 

were first suggested by Child and Boveri from their work in Hydra and nematode 

respectively (Child, 1915; Child, 1941; Gilbert, 1997; Slack, 1994; Tsikolia, 2006), 

with the discovery of their importance in developmental biology being accredited to 

the work done in Drosophila by geneticist Thomas Hunt Morgan (Lawrence, 2004; 

Lawrence, 2001; Oppenheimer, 1983; Yucel and Small, 2006). These ideas were 

later refined in the 1960’s by Lewis Wolpert with his 'French flag' model that 

described how morphogens could subdivide a tissue into discrete domains of 

different target gene expression (Figure 1.1.3) (Wolpert, 1996). Wolport’s work in 

chick limb development demonstrated that grafting the region with morphogenic 

properties to successive positions along the antero-posterior axis could modify the 

positional information along the axis and so modify the pattern of digits obtained. He 

concluded that the interpretation of positional information can provide the basis for 

pattern formation in limb morphogenesis and that this pattern was consistent with a 

model based on diffusion of a labile morphogen (Tickle et al., 1975), similar to that 

proposed for the development of pattern in invertebrates (Wolpert, 1996).
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Thresholds

Cell Type

Figure 1.1.3: Diagram of Wolperts “French flag” model
Showing how morphogens could subdivide a tissue into discrete domains of different 

target gene expression (reproduced from (Wolpert, 1996).

In developmental biology, following the work of researchers such as Wolpert, 

morphogens can be described as signalling molecules which form spatial 

extracellular concentration gradients emanating from a restricted source of 

production. Cells receive a different concentration of morphogen depending on their 

distance from the source and this elicits a concentration-specific response. A more 

solid understanding of morphogens was obtained when Gurdon and collaborators 

used the animal cap assay in Xenopus laevis (Gurdon et al., 1985). This exogenous 

model system showed that the selection of genes expressed by animal cap cells is 

determined by the distance from a source of Activin - a peptide growth factor of the 

TGF-P family contained in vegetal cells and capable of inducing other cells to form 

mesoderm. Activin’s long-range signal spreads over at least ten cell diameters in a 

few hours and does so by passive diffusion by-passing cells that do not respond to 

the signal or synthesize protein themselves. These results provided support for the 

operation of morphogen concentration gradients in vertebrate development as well as 

for a diffusion based model of these concentration gradients (Gurdon et al., 1994).

Following the general acceptance of morphogen gradients as a potential mechanism 

for patterning naive tissue, four models have been proposed for the establishment and
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maintenance of stable morphogen concentration gradients within tissues. The 

mechanisms underlying these models are trancytosis, cytonemes, argosomes and 

diffusion and will be discussed in the next sections.

1.1.5.1 Transcytosis

The transcytosis model suggests that a morphogen can be passed through a series of 

neighbouring cells in order to be transported over long distances (Strigini and Cohen, 

1997; Bellaiche et al., 1998). Enchev et al investigated morphogenesis in the wing 

imaginal disk of Drosophila. Their research suggested that simple diffusion could 

not explain the morphogenic gradient of Dpp and that receptor-mediated endocytosis 

was essential for Dpp’s long range movement (Entchev et al., 2000). Enchev et al 

proposed that Dpp was transported by transcytosis and suggested a role for Rabs, 

small GTPases of the Ras superfamily (Entchev et al., 2000). The transcytosis model 

will be expanded on in section 1.2 where the Rab family will be looked at in greater 

detail alongside the roles of Rabs in this method of morphogen movement.

1.1.5.2 Cytonemes

Cytonemes (‘cell threads’ neme = thread) is a term coined by RamTrez-Weber et al 

who discovered very thin projections from fluorescently labelled cells in the 

Drosophila imaginal disc emanating from the lateral flank towards the disc centre. 

These projections were shown to represent cytoplasmic extensions and were 

designated cytonemes. The cytonemes extend from disc cells toward the AP 

compartment border, but not from AP border cells outward. RamTrez-Weber et al 

(Ramirez-Weber and Komberg, 1999) hypothesized that the cytoplasmic extensions 

grow in response to a chemoattractant. Different parts of the imaginal disc were 

placed next to anterior or posterior fragments to ascertain which parts of the disc 

could act as an attractant. The results showed that the anterior or posterior fragments 

only grew projections if placed next to the excised boundary region from between the 

anterior and posterior. Branchless -  the drosophila homologue of FGF (dFGF) - was 

identified as a chemoattractant for these projections suggesting that activated FGF 

protein could be produced at the compartment border or that dFGF could function as 

a growth factor and stimulate non-polarized cell growth of cytonemes. Rami'rez-
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Weber et al (Ramirez-Weber and Komberg, 1999) also showed that projections 

similar to cytonemes could be seen in cultures from mouse limb bud as well as those 

from chick. The authors suggested that cytonemes might play a role in disc cells 

defining their relationship with signalling centres so that cytonemes link outlying 

cells directly to signalling cells. This mechanism has been suggested as an efficient 

long distance transport for morphogens such as Hh and Dpp whose movement is said 

to be inconsistent with simple diffusion in the imaginal disc. The hypothesis is that 

Hh and Dpp are released at sites of cytoneme contact delivering the morphogens 

efficiently to target cells and limiting their spread (Ramirez-Weber and Komberg, 

1999) (Figure 1.1.4). Recently Hsiung et al has shown evidence for cytonemes 

involvment in Dpp signalling with the Dpp receptor, Thickveins, present in punctae 

that move along cytonemes (Hsiung et al., 2005).

Ligand

o Cell

Cytoneme

Figure 1.1.4: Diagramatic representation of cytonemes possible role in 
morphogen gradient formation.
Diagram shows cytonemes projectiong from distant to expressing cells (adapted from 
(Williams et al., 2004).

1.1.5.3 Argosomes

Many morphogens have been found to be tightly associated with membranes; the 

Wnt family bind heparin sulphate proteoglycans (HSPG) whilst hedgehog binds to 

membranes via covalently attached cholesterol and palmitate (Hashimoto et al.,
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2000; Mann and Beachy, 2000; Nakato et al., 1995; Pepinsky et al., 1998). Greco et 

al observed that all hypotheses for the spread of morphogens assumed the release of 

the molecule from the membrane of the producing cells (Greco et al., 2001). Greco et 

al set out to investigate whether for the spread of morphogens might include their 

transport in vesicles at every stage of transport. This hypothesis was tested using 

fluorescent labelled markers (CFP-GPI) on the cytoplasmic and external faces of the 

membranes of the Drosophila imaginal disc. The expression of these markers was 

specifically driven in certain populations of cells within the wing disk but not others 

allowing the visualisation of vesicles derived from these populations in the non­

expressing tissue. These ‘exovesicles’, found distant from the tissue expressing the 

membrane marker, were termed argosomes presumably from the mythical Greek 

ship, Argo, captained by Jason. Argosomes were shown to consist mainly of 

membrane with a fraction present in the early endocytic compartment. This led 

Greco et al (Greco et al., 2001) to surmise that argosomes are of endocytic origin. 

The endocytic compartments that contain the endosomes were shown to move 

rapidly with some compartments containing multiple argosomes (Greco et al., 2001). 

Two methods were suggested for argosome production. The first involves the 

production of vesicles within endosomes, when the endosome fuses with the plasma 

membrane the internal vesicles (exosomes) are released into the extracellular space 

(Figure 1.1.5). The second method suggests that part of the producing cell is 

internalised by its immediate neighbour forming a vesicle (derived from the 

producing cell) in the endosomes of the receiving cell (Figure 1.1.5). Greco et al 

suggested that Wingless can move through the disc epithelium on argosomes since 

Wingless in receiving cells colocalizes with argosomes derived from cells that 

synthesize wingless (Greco et al., 2001). Further, the rate of Wingless spread is 

consistent with the spread of argosomes. As removal of HSPG results in Wingless 

not associating with argosomes the authors propose that one function for the 

interaction of Wingless with HSPG might be to allow the incorporation of Wingless 

into argosomes (Greco et al., 2001).
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Figure 1.1.5: Diagramatic representation of argosomes possible role in 
morphogen gradient formation.
Diagram showing membranes from producing cells transporting ligands through 
reciving tissue in “exovesicles” (adapted from (Williams et al., 2004))

1.1.5.4 Diffusion

The original and simplest model for the movement of morphogens in a tissue has 

been by extracellular free diffusion. The diffusion model implies that intermediate 

cells do not play any role during the movement of the morphogen. Support for this is 

seen in Xenopus laevis animal caps, when endocytosis is blocked but TGF-p 1 still 

spreads through the tissue (McDowell et al., 2001). Since morphogens signal over 

long distances doubt has been cast on the ability of free diffusion to form stable long- 

range concentration gradients with much of this stemming from the nature of the 

morphogen (Belenkaya et al., 2004; Entchev et al., 2000). The ideal morphogen to 

fit the diffusion model would need to be a small ligand which did not adhere to 

anything other than the receptor. Often this is not the case, both Wnt and Hh have 

been shown to adhere to proteoglycans in Drosophila and mouse cell culture, with 

Hh showing a high affinity for membranes (Blitzer and Nusse, 2006; Rietveld et al., 

1999). This would result in their diffusion being hindered by extracellular binding 

proteins and proteoglycans (Kerszberg and Wolpert, 1998; Piek et al., 1999). TGF-p 

is a small ligand but its movement in Xenopus laevis is limited by the expression of 

the TGF-p type 2 receptor (McDowell et al., 2001.), which in addition to its role in
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transducing the signal, also targets the TGF-P ligand for degradation thus removing it 

from the extracellular environment and restricting its signalling.

Investigations into the four proposed methods of morphogen movement were carried 

out in Xenopus laevis using the Xenopus nodal-related 2 protein (Xnr2) (Williams et 

al., 2004). Cytonemes were ruled out as a possible explanation since even though 

Xenopus cells did extend protrusions these were no longer than one cell diameter. A 

variation on the animal cap assay was used to examine whether argosomes could be 

responsible for the movement of Xnr2 (Williams et al., 2004). This was considered 

not to be the case when eGFP-Xnr2 was not observed in association with CFP-GPI 

positive vesicles in receiving cells. Transcytosis was also ruled out, since affecting 

endocytosis using constitutively active or dominantly negative Rab5 had no effect on 

the expression domain or level of activation of endogenous Xbra a target gene of 

Xnr2. Williams et al showed that eGFP-Xnr2 in the receiving cells was extracellular 

and confined to interstices between cells. They therefore, proposed that eGFP-Xnr2 

exerts its effects by diffusion. Time lapse corroborates this notion and shows that 

Xnr2 can travel ten cells within two hours on the exogenous animal cap assay. The 

authors admit the limitations of the animal cap assay and suggest that different 

morphogens in different developmental contexts use different means of transport 

(Williams et al., 2004).
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1.2 Cell Trafficking and Transport

Embryonic development relies on many different cell biological processes including 

cell signalling and cell adhesion. These would not be possible, however, without the 

cells ability to traffic and transport substances into, around and out of the cell. 

Eukaryotic cells routinely traffic substances, not only between organelles but also 

across the outer cell membrane, using vesicles - microscopic fluid filled sacs 

surrounded by a lipid membrane. Vesicles are involved in secretion, endocytosis and 

various recycling processes within the cell (Armstrong, 2000). There are four main 

stages to vesicle trafficking: formation - the vesicle must be formed and packed with 

its cargo; targeting -  the vesicle is released from its membrane and directed towards 

the target membrane; tethering/docking -  the vesicle aligns and attaches with the 

target membrane; and finally fusion - allowing the vesicle to release the cargo at its 

destination (Armstrong, 2000; Zerial and McBride, 2001). Each stage of the vesicle 

trafficking process requires specialized protein machinery, many of which belong to 

the Ras superfamily of guanosine triphosphatases (GTPases).

1.2.1 Introduction to Rabs

In 1983, the accidental discovery of Yptlp, in Saccharomyces cerevisiae by Gallwitz 

et al (Gallwitz et al., 1983) showed that vesicular transport is governed by conserved 

monomeric GTPases. Subsequently, Salminen and Novick (Salminen and Novick, 

1987) provided the first evidence that a Ras-like GTPase (Sec4) was directly 

involved in vesicular transport whilst Tavitian and colleagues (1987) cloned the first 

mammalian homologs of SEC4/YPT termed rab (ras-like in rat brain) genes 

(Touchot et al., 1987). Yptlp was shown to be necessary for the docking process of 

vesicles with the Golgi. Yeast cells lacking functional Yptlp showed accumulation 

of endoplasmic reticulum (ER) membranes, vesicles and ER core glycosylated 

proteins before they died (Schmitt et al., 1988). The yptlp  gene showed 70% 

sequence homology to the rabl gene found in mammalian cells and, furthermore, 

rabl could replace the essential function of yptlp  in yeast, suggesting that these 

genes are orthologous (Touchot et al., 1987). Continuing studies in yeast and
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mammalian cells showed that different Ypt/Rab-GTPases were performing the same 

function, however, each localized to different parts of the secretory and endocytic 

pathways (Lazar et al., 1997). The localization of these proteins and their effectors, 

aided by SNARE proteins, help determine the specificity of the vesicle, ensuring 

they are transported, docked and fused with the correct target (Hammer and Wu, 

2002; Ossig et al., 1995; Price et al., 2000a). The complete sequencing of the 

Saccharomyces cerevisiae genome has revealed the total number of ytp genes to be 

11, some of which are phenotypically redundant (Lazar et al., 1997). Only those ytp 

genes involved in the biosynthetic pathway are essential for cell viability. Loss of the 

Ytp proteins Yptlp, Ypt51p , Yptp6, Ypt7p, Sec4p and Ypt31p/Ypt32p (Benli et al., 

1996; Haubruck et al., 1989; Schmitt et al., 1986; Singer-Kruger et al., 1994; 

Wichmann et al., 1992), proved fatal for the cell and demonstrated their essential 

nature. These essential Ytp proteins correspond to Rabl, Rab5, Rab6, Rab7 Rab8 

and Rabl 1 in mammalian cells and are now considered ‘core’ Rabs (Lazar et al., 

1997; Singer-Kruger et al., 1995; Ullrich et al., 1996).

The Rabs are now known to be the largest sub family in the Ras superfamily. The 

Ras-superfamily comprises of over 150 human members (with evolutionarily 

conserved orthologs found in Drosophila, Caenorhabditis elegans, S. cerevisiae, 

Saccharomyces pombe and Dictyostelium as well as in plants (Bush et al., 1993; 

Garrett et al., 1993; Haubruck et al., 1990; Nonet et al., 1997). The Ras superfamily 

is divided into five major branches on the basis of sequence and functional 

similarities: Ras, Rho/Rac, Rab, Ran and Arf. (Colicelli, 2004; Pereira-Leal and 

Seabra, 2000; Wennerberg et al., 2005). The Rab family is found in all eukaryotes, 

with over 60 rab genes uncovered in the human genome (Colicelli, 2004; Zerial and 

McBride, 2001) and over 80 in zebrafish (Clark, MD, pers. com.). Rab proteins 

localize to specific intracellular compartments, consistent with their function in 

distinct vesicular transport processes (Zerial and McBride, 2001). This localization is 

dependent on prenylation (addition of hydrophobic molecules to facilitate protein 

attachment to the cell membrane) and specificity is dictated by divergent C-terminal 

sequences (Khosravi-Far et al., 1991). For example, Rabl is found in the 

intermediate compartment of the c/s-Golgi network and is involved in ER to Golgi 

transport (Ayala et al., 1989), while Rab5 is located in early endosomes (vesicles
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involved in endocytosis) and regulates clathrin-mediated vesicle transport from the 

plasma membrane to early endosomes (Gorvel et al., 1991).

Although Rab proteins are localized within individual cells, at the level of the whole 

organism many of the rab transcripts identified to date have ubiquitous distribution, 

although their level of expression may vary from one cell type to another. This is 

surprising given the high degree of regulation at the protein level (see section 1.2.3). 

However, there are exceptions with some Rabs being cell type- or tissue-specific. For 

example, in mammals Rab3A is only expressed in neurons and neuro-endocrine cells 

(Fischer von Mollard et al., 1990; Johnston et al., 1991) while Rab 17 has only been 

detected in epithelial cells (Lutcke et al., 1993).

1.2.2 Rab Homology and Classification.

The similarities between the members of the Ras-superfamily make them difficult to 

classify. All of the Ras family contain the conserved regions referred to as G1-G3 

and PM1-PM3. These regions are involved in binding guanine nucleotide and 

phosphate/Mg2+ respectively (Valencia et al., 1991). There are two regions that 

undergo a significant conformational change upon GTP binding and hydrolysis: the 

switch I (Ras residues 30-38) domain and the switch II (59-67) domain (Figure 

1.2.1). Although the GTP-bound and GDP-bound state of the Rabs (as with rest of 

the Ras family) have similar conformations they also have pronounced differences. 

Critically the GTP-bound conformation has higher affinity for effector targets 

(Bishop and Hall, 2000; Milbum et al., 1990). This difference corresponds to the 

changes in the switch I and switch II regions. It is mainly through the conformational 

changes in these two switch regions that regulatory proteins and effectors distinguish 

the nucleotide status of the GTPases (Dumas et al., 1999). Although the GTP-bound 

form is the active form for all Ras superfamily GTPases it is the cycling between the 

two states, in which distinct functions are associated with each nucleotide-bound 

form, that is also critical for the activities of Rabs (Geyer et al., 1996; Pereira-Leal 

and Seabra, 2000).
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■
PM1 R 1 PM3 G2

Figure 1.2.1: Diagram representing the structure of rab GTPases
Gl-3 (black) are regions involved in guanine nucleotide binding, PM 1-3 (blue) are 
regions involved in phosphate/Mg2+ binding, RabFl-5 (pink) are Rab family motifs 
and RabSFl-4 (green) are subfamily-specific sequences. Adapted from (Bucci et al.,

Studies undertaken by Pereira-Leal and Seabra (2000) facilitated the classification of 

Rabs. They showed the existence of five short conserved stretches of residues which 

appear to be diagnostic for the Rab family (Pereira-Leal and Seabra, 2000). These are 

termed Rab family motifs (RabF), with the section termed RabFl localising to the 

effector domain. Most, though not all Rabs, also have a double-cysteine motif in the 

C-terminus which is regarded as a good diagnostic of a Rab protein. Rab8 and Rab 13 

are the exceptions as they contain only a single cysteine residue. Therefore the 

double-cysteine motif may confirm that a given small GTPase is a Rab, but it’s 

absence should not be used to prove it is not (Pereira-Leal and Seabra, 2000).

The rab genes can also be placed into sub groups (such as Rab la and Rab lb) in 

which the genes share over 70% amino acid identity to one another. It could be 

assumed that these genes are functionally related and interact with the same type of 

effector but this is not necessarily the case. For example, the Rab3 subgroup has at 

least 4 members in humans showing 77-85% amino acide identity with the greatest 

variance evident within the N- and C-terminal regions. Although they have high 

sequence homology their subcelluar targets and functional roles are distinct (Pavlos 

et al., 2001). Rab3a is expressed in neurons and neuroendocrine cells and together 

with Rab3c regulates neurotransmitter release, Rab3b is specifically expressed in 

polarized epithelial cells, while Rab3d is mainly expressed in adipocytes and is 

possibly involved in glucose transporter trafficking in response to insulin stimulation 

(Bucci et al., 1995). While working on Rab3a Ostermeier and Brunger (1999) 

identified three regions that contribute to an effector region pocket that mediates 

binding to the effector. These regions were named Rab complementary-determining 

regions (RabCDR’s) with the individual regions called RabCDRI-III. These regions

1995)
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were shown to correspond to subfamily-specific sequences RabSF3 and RabSF4 

found by Moore (Moore et al., 1995; Pereira-Leal and Seabra, 2000). Taken together 

these bioinformatic analyses suggests that a GTPase can be identified as a Rab if it 

has the five Rab specific domains and usually, but not necessarily, a conserved PM/G 

(GTPase binding region) motif and a double-cystine C-terminal motif. Sub-families 

can be classified as such if they have 70% identity and conservation at the RabSF 

and RabF motifs (Pereira-Leal and Seabra, 2000).

Lastly, alternative splicing of a gene can result in different forms or a protein. rab6a 

is the only know rab to do this. The gene has a duplicated exon, and incorporation of 

either of the two exons by alternative splicing is shown to generate the isoforms 

named Rab6a and Rab6a’ in human, which differ in only three amino acid residues 

(Echard et al., 2000). Interestingly this is conserved in zebrafish where two isoforms 

of Rab6a have also been found (Clark, MD, pers. com.).

1.2.3 Rab Regulators

Rabs are described as molecular switches, able to cycle between GTP bound (active) 

and GDP bound (inactive) forms and thus, recruiting a diverse group of “effector 

proteins” to the cytoplasmic leaflet of vesicular membranes (Zerial and McBride,

2001). When a Rab switches conformation to the inactive form, the effectors 

dissociate, the Rab is removed from the membrane and recycled back to a donor 

compartment. Rab function is promoted by the following factors: 1) guanine- 

exchange factors (GEFs) which accelerate guanine-nucleotide exchange and promote 

formation of the active, GTP-bound form on targeting to a donor membrane (Camus 

et al., 1995; Schmidt and Hall, 2002). 2) GTPase activation factors (GAPs) which 

stimulate guanine-nucleotide hydrolysis to promote formation of the inactive GDP- 

bound form (Settleman et al., 1992) and 3) GDP-dissociation inhibitors (GDIs) 

which prevent nucleotide dissociation, extracting the Rab from the target membranes 

and recycling it back to the donor membranes by binding it only in its GDP rather 

than GTP state (Fischer von Mollard et al., 1994; Sasaki et al., 1991; Seabra et al.,

2002). GDI’s transport the Rab back to the donor compartment for recycling without 

the Rab becoming active (Figure 1.2.2).
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All members of the Ras superfamily of proteins undergo protein prenylation, a post- 

translational lipid modification that involves the attachment of a famesyl (15-carbon) 

or geranylgeranyl (20-carbon) group to cysteine or serine residues at or near the C- 

terminus. These modifications are essential for the GTPases to associate tightly with 

cell membranes. Without this lipid modification, the proteins remain in the cytosol 

and are unable to associate with membranes or localise subcellularly, processes 

which are critical for their biological activities (Wennerberg et al., 2005, Casey and 

Seabra, 1996). Three different protein prenyltransferases have been identified which 

perform this role, protein famesyl transferase (PFT or FTase), protein geranylgeranyl 

transferase type-I (PGGT or GGTase-I) and Rab geranylgeranyl transferase (RGGT 

or GGTase-II). These proteins have a heterodimeric structure and consist of distinct 

a- and p-subunits (Leung et al., 2006). FTase and GGTase-I recognise only 

substrates containing a CAAX motif at the C-terminus and these are found in the Ras 

sub familys of Rac and Rho. GGTase-II recognises only Rab substrates of which 

there are six different C-terminal motifs -CC, -CXC, -CCX, -CCXX, -CCXXX and -  

CXXX (Pereira-Leal and Seabra, 2000).

There are two conditions in which prenylation can occur. In the first, a newly 

synthesized Rab must form a stable complex with Rab escort protein (REP) to enable 

its recognition by GGTase-II. In the second, a newly synthesized Rab can associate 

with a preformed REP:GGTase-II complex (Mruk et al., 2005). The first scenario 

suggests association of an unprenylated Rab protein with REP where the interaction 

relies mostly on ionic bonds and does not involve the two C-terminal cysteine 

residues (Anant et al., 1998). This complex is then presented to GGTase-II, which 

adds two geranylgeranyl moieties to the Rab protein without prior dissociation of 

REP (Thoma et al., 2001b; Thoma et al., 2001c). After the transfer of the isoprenoids 

onto C-terminal cysteines, the complex remains associated until the binding of a new 

geranylgeranyl diphosphate (GGpp) molecule, which stimulates the release of the 

Rab-GG:REP complex. The REP then delivers the Rab to the target membrane 

(Leung et al., 2006). The second scenario implies that REP-1 and RGGT can form a 

tight complex in the presence of GGpp. This complex can associate with a Rab 

protein, but this occurs ten times more slowly than in the first scenario (Thoma et al., 

2001a). This model depends on the in vivo concentrations of the proteins involved.
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At high concentrations of all the components the second scenario maybe preferred 

whereas at low concentrations, the first scenario may be preferred.

Upon completion of its function at the target membrane the Rab/REP complex must 

then be returned to its membrane of origin. This is mediated by the cytosolic protein 

Rab GDP dissociation inhibitor (GDI). Rab-GDI interacts promiscuously with the 

GDP-bound Rab extracting it from membranes to the cytosolic reservoir for re-use 

(Wu et al., 1996). GDI/Rab forms a soluble complex in the cytoplasm which then 

delivers the Rab to the donor membrane. Once there, the GDI is released to the 

cytosol and the Rab remains membrane-associated. As GDI has a strong binding 

affinity for GDP bound Rabs the less well-characterized GDI-dissociation factor 

(GDF) catalyses the dissociation of Rab GDI complexes in order to enable transfer of 

Rabs from GDI onto membranes. Work in mammalian cells has shown that the 

integral membrane protein Yip3 acts catalytically to dissociate complexes of 

endosomal Rabs bound to GDI and to deliver them onto the membranes (Sivars et 

al., 2003). Rab-GDI’s share homology with REP, but are thought to bind only 

prenylated Ypt/Rab proteins, preferentially in their GDP-bound form, inhibiting GDP 

dissociation and masking the prenyl modification (Seabra and Wasmeier, 2004). 

Once at the membrane the Rab is activated to the GTP-bound form by GEF and is 

ready to transport vesicles from the donor membrane to the target membrane. At this 

point the Rab is hydrolysed back to its GDP bound state with the help of GAP. The 

Rab is then ready to be recycled back to the donor compartment by GDI and the 

whole process starts again. All of the Ras superfamily of small GTPases exhibit 

high-affinity binding for GDP and GTP, and possess low intrinsic GTP hydrolysis 

and GDP/GTP exchange activities. GTPases within a family branch use shared GAPs 

and GEFs whereas GTPases in different branches exhibit structurally distinct but 

mechanistically similar GAPs and GEFs (Bernards and Settleman, 2004; Pan and 

Wessling-Resnick, 1998).
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1.2.4 Rab Effectors and SNARES

Rab effectors are a soluble and diverse collection of proteins that transduce the Rab 

signal. A Rab effector preferentially binds to the GTP-bound conformation of Rab 

and competes for interaction with GAP proteins (Nakafuku et al., 1993; Schimmoller 

et al., 1998). They can be described as a protein - or protein complex - which binds 

the GTPase directly in a GTP-dependent manner and is required for the Rab-specific 

downstream function (Grosshans et al., 2006; Nakafuku et al., 1993). These Rab 

effectors perform diverse functions including vesicle budding, tethering and docking, 

vesicle transport by way of the cytoskeleton and vesicle motility. The Rab effectors 

show structural heterogeneity with some effectors sharing structural features. For 

example, pi 15/Usolp, Rabaptin-5 and early endosome antigen 1 (EEA1), all contain 

predicted coiled-coil regions, Rab3-interacting molecule (Riml), EEA1 and 

Rabenosyn-5 contain FYVE zinc-fingers (named after four proteins Fabl, 

YOTB/ZK632.12, Vacl, and EEA1) (Christoforidis et al., 1999a; McBride et al., 

1999; Stenmark et al., 1996). The best characterized Rab effectors have been shown 

to mediate tethering and docking of a Rab-bearing vesicle with the target membrane 

to which it will fuse (McBride et al., 1999; Zerial and McBride, 2001). Other well 

characterised effectors are involved in vesicle motility while in recent work 

interesting insights into cell adhesion and cell signalling have been identified 

(Eggenschwiler et al., 2001; Eggenschwiler et al., 2006; Gibbs et al., 2004; Lock and 

Stow, 2005; Pellinen et al., 2006; Scholpp and Brand, 2004).
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Figure 1.2.2: Diagram showing the regulation of Rab GTPases during vesicle 
trafficking.
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1.2.4.2 Tethering Effectors

The best characterized Rab effectors have been shown to mediate tethering and 

docking of a Rab-bearing vesicle with the target membrane to which it will fuse 

(McBride et al., 1999; Zerial and McBride, 2001). Membrane tethering is a 

conserved mechanism that depends on Rab effectors. In yeast, tethering of ER- 

derived vesicles to the Golgi complex depends on the membrane recruitment of 

Usolp by Yptlp which is exclusively required on target Golgi membranes (Cao and 

Barlowe, 2000). In mammals the homologue of Usolp, pi 15 binds directly to Rabl 

(Beard et al, 2005). Rabl recruits pi 15 onto coat protein 2 (COPII) vesicles at the 

budding step committing the vesicles to targeting and fusion (Allan et al., 2000). In 

yeast a multi-protein complex called TRAPP (transport protein particle) also targets 

ER-derived vesicles to the Golgi apparatus by accelerating nucleotide exchange on 

Yptlp in the Golgi (Sacher et al., 1998; Wang et al., 2000) The delivery of post- 

Golgi vesicles to the plasma membrane in yeast depends on Sec4p and the tethering 

factor exocyst. The exocyst is a complex of eight proteins that are specifically 

required for exocytosis with an equivalent complex exists in mammals (Kee et al., 

1997; TerBush et al., 1996). The exocyst complex in yeast contains eight different 

proteins namely Sec3p, Sec5p, Sec6p, Sec8p, Seel Op, Secl5p Exo70p and Exo84p. 

Most of these units were discovered when mutations resulted in an accumulation of 

vesicles destined for the plasma membrane (Wiederkehr et al., 2004). The complex 

localizes to sites of exocytosis on the plasma membrane in a process which is 

determined by the subunit Sec3p (Finger et al., 1998). The exocyst mediates vesicle 

targeting and, through another subunit (Secl5p) interacts specifically and directly 

with Sec4p in a GTP-dependent manner, a process that is considered to control the 

assembly of the whole complex (Guo et al., 1999). The mammalian exocyst 

comprises homologues of the eight subunits found in yeast. In mammals the subunit 

responsible for association with Rabs is Sec5, rather than Seel 5 in yeast. Another 

difference between the yeast and mammalian exocyst is that the mammalian complex 

associates with a protein called RalA instead of a Rab (Brymora et al., 2001).

In early endocytosis, mammalian Rab5 regulates both clathrin-coated vesicle- 

mediated transport from the plasma membrane to the early endosomes and 

homotypic early endosome fusion (Bucci et al., 1992; Gorvel et al., 1991). Early
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endosomal autoantigen 1 (EEA1) is the Rab5 effector that mediates 

tethering/docking of early endosomes (Christoforidis et al., 1999a). This will be 

discussed in further detail in Chapter 5.

1.2.4.1 SNAREs

Vesicle tethering and docking requires another group of proteins for completion. 

Once the vesicle reaches its target, the effector triggers the interaction of vesicular 

(v-SNARE) and target (t-SNARE) proteins. This brings the vesicle and the target 

membranes into close apposition and mediates fusion (Kierszenbaum, 2000).

SNARE (Soluble NSF Attachment Protein REceptor) proteins have been proposed to 

mediate all intracellular fusion events (Sollner et al., 1993). The first of these to be 

discovered were the synaptic proteins; SNAP-25, syntaxin (STX1), and VAMP 

(Vesicle -Associated Membrane Protein or synaptobrevin) (Bennett et al., 1992; 

Oyler et al., 1989; Trimble et al., 1988). STX1 and VAMP are anchored to the 

membrane by a carboxyl-terminal transmembrane domain while SNAP-25 is 

peripherally attached to the membrane by the covalent attachment of 16-carbon 

saturated fatty acids (palmitate) to four cysteine residues in the central region of the 

protein (Chen and Scheller, 2001). It was thought that each type of transport vesicle 

had a distinct v-SNARE, which paired with an unique complementary t-SNARE at 

the appropriate target membrane (Rothman and Warren, 1994; Sollner et al., 1993). 

This interaction enabled the vesicle to dock at the appropriate membrane, leading to 

the subsequent dissociation of the SNARE complex, with the ATPase activity of 

NSF (V-ethylmaleimide Sensitive Fusion protein) driving the fusion. This view has 

since been modified and it is now thought that NSF acts as a chaperone to reactivate 

SNAREs after fusion instead of directly driving fusion (Morgan and Burgoyne, 

1995). The specificity of targeting is brought about by the Rab protein family, with 

assembly of the SNARE complex driving the lipid fusion (Chen and Scheller, 2001).

Rabs and SNAREs interact via intermediate proteins the nature and number of which 

can be quite diverse between different steps of membrane traffic (Armstrong, 2000; 

Tall et al., 1999). The active form of the Rab protein generally nucleates the 

assembly of a protein complex that can ultimately bind to or tether the target
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membrane and then a SNARE complex can form (Armstrong, 2000). Certain 

organelles are enriched in SNAREs which helps them to identify the correct target 

and to limit non-specific fusion events. During vesicle transport a given SNARE will 

spread throughout many cellular compartments such that organelles will contain 

SNARE complexes which must remain inactive until they return to their place of 

specific function. This is where the Rabs provide their additional layer of regulation 

(Zerial and McBride, 2001).

1.2.4.3 Budding effectors

It is thought that Rab proteins influence vesicle budding, in a transport event-specific 

manner (Allan et al., 2000; Bucci et al., 1992; Riederer et al., 1994). in vivo studies 

in mammals have indicated a possible role for Rabl in budding of vesicles from the 

ER (Allan et al., 2000; Nuoffer et al., 1994). While Rab9 has been implicated in 

budding from endosomes directed to the trans-Golgi network (TGN) (Riederer et al.,

1994). In yeast a component (Vam2p/Vps41p) of the Ypt7p (Rab7)-tethering 

complex HOPS has been implicated in the budding of vesicles from the Golgi (Price 

et al., 2000a). HOPS stands for homotypic fusion and vacuole protein sorting and is 

also referred to as Class C Vps protein complex (Rieder and Emr, 1997). 

Components of this complex include as mentioned the Vam2p/Vps41p proteins as 

well as Vam6p/Vps39p proteins (Price et al., 2000a; Seals et al., 2000). It should be 

noted that Ytp7p has not been shown to be directly implicated in Golgi budding 

(Price et al., 2000b). in vivo mammalian Rab5 has been shown to modulate the half- 

life of clathrin-coated pits on the plasma membrane during vesicle formation (Bucci 

et al., 1992). in vitro mammalian Rab5 is required for vesicle formation with the 

suggested Rab5 GAP, RN-Tre, downregulating Rab5 and inhibiting receptor 

internalization (Lanzetti et al., 2000; McLauchlan et al., 1998).

1.2.4.4 Motility Effectors

Rabs have been shown to determine the distribution of cellular compartments by 

regulating the movement of vesicles and organelles along cytoskeletal filaments 

(Cheney and Rodriguez, 2001). Probably the best charachterized of these is the Rab 

motility effector myosin Va. In collaboration with Rab27a and melanophilin (another 

Rab effector), myosin Va has been shown to be involved in correct pigment
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patterning in both mice and humans as defects in any of these genes is responsible 

for the human disorder Griscelli’s syndrome (see section 1.2.6.4) (Bahadoran et al., 

2001; Matesic et al., 2001; Menasche et al., 2000). In yeast, interactions have been 

found between Sec4p and the myosin heavy chain Myo2p (Pruyne et al., 1998) 

suggesting that vesicles are propelled by motor proteins along polarized actin cables 

towards the site of exocytosis (Pruyne et al., 1998; Schott et al., 1999). In a screen 

looking for mammalian Rab effectors it was found that Rab6 interacts with a kinesin- 

like protein (Echard et al., 1998), Rabkinesin-6, which has since been shown to be 

important for cytokinesis (Echard et al., 1998; Hill et al., 2000). Rab5 has been 

shown to regulate the attachment of early endosomes to microtubules and their 

motility along those microtubules (Nielsen et al., 1999).

1.2.4.5 Cell Adhesion Effectors

Recent papers have shown a role for Rabs in cell adhesion (Kohler and Zahraoui, 

2005; Ulrich et al., 2005). Small GTPases, such as Rab3b, Rab8 and Rab 13 have 

been shown to localize to tight junctions between cells (Lutcke et al., 1993). These 

tight junctions are multifunctional complexes involved in various signalling events 

controlling cell-cell adhesion, differentiation and polarity. Kohler et al (2004) 

demonstrated that mammalian Rab 13 directly interacts with PKA and inhibits PKA- 

dependent phosphorylation of the actin-remodelling protein VASP resulting in the 

recruitment of VASP, ZO-1 and claudinl to cell-cell junctions to be inhibited 

(Kohler et al., 2004). Kohler also suggested a link between Rab 13 and protein kinase 

A signalling during tight junction assembly in epithelial cells (Kohler et al., 2004).

Pellinen has shown an association, in both yeast and mammalian cells, of Rab21 and 

Rab5 with integrins (Pellinen et al., 2006). Continual trafficking of integrin cell 

adhesion molecules to and from the cell surface is vital to cell migration. Rab21 and 

Rab5 associate with the cytoplasmic domains of a-integrin chains, and their 

expression influences the endo/exocytic traffic of the integrins (Pellinen et al., 2006). 

Knock down of Rab21 impairs integrin-mediated cell adhesion and motility, whereas 

its overexpression stimulates cell migration and cancer cell adhesion to collagen and 

human bone (Pellinen et al., 2006). If there is a point mutation in the integrin in the 

region where the integrin associates with Rab21, when Rab21 is overexpressed, it
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fails to induce cell adhesion (Pellinen et al., 2006). It is thought that these Rabs target 

the integrins to intracellular compartments and this regulates cell adhesion. (Pellinen 

et al., 2006).

1.2.5 Disorders caused by Mutations in Rabs

Although there are now over 60 Rabs uncovered in the human genome only a small 

number of mammalian Rabs have been show to be directly linked with specific 

disorders: These Rabs are Rab3a, Rab7, Rab23, Rab27a and Rab38 (Eggenschwiler 

et al., 2001; Kapfhamer et al., 2002; Loftus et al., 2002; Menasche et al., 2000; 

Verhoeven et al., 2003).

1.2.5.1 Rab3a and the earlybird mouse.

In a screen for mouse mutants with abnormal rest-activity and sleep patterns, a 

“semidominant” mutation called earlybird - which shortens the circadian period of 

locomotor activity and homeostatic response to sleep loss was - identified 

(Kapfhamer et al., 2002). Sequence analysis of rab3a identified a point mutation in a 

conserved amino acid (Asp77Gly) within the GTP-binding domain resulting in 

significantly reduced levels of Rab3a protein suggesting that the Asp77Gly change 

may affect the overall stability of the protein. Phenotypic assessment of earlybird 

mice and mice with a null allele of rab3a revealed anomalies in circadian period and 

sleep homeostasis, providing evidence that Rab3a-mediated synaptic transmission is 

involved in these behaviours (Kapfhamer et al., 2002). Rab3s are known to be the 

most abundant Rab proteins in the brain and have a regulatory role in synaptic 

vesicle trafficking. Mice with a targeted loss-of-function mutation in rab3a have 

defects in Ca2+-dependent synaptic transmission which lead to an increased number 

of vesicles released in response to an action potential in the mutant mice (Kapfhamer 

et al., 2002).

1.2.5.2 Rab7 in Charcot-Marie-Tooth type 2B Neuropathy
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Charcot-Marie-Tooth type 2B (CMT2B) neuropathy is a clinical disorder 

characterized by distal muscle weakness and wasting and a high frequency of foot 

ulcers, which results in the need for amputations of the toes due to recurrent 

infections. The gene responsible has been mapped to chromosome 3ql3-q22 where 

two mis-sense mutations (Leul29Phe and Vall62Met) were found in Rab7. The 

alignment of Rab7 orthologues shows that both missense mutations target highly 

conserved amino acid residues. Rab7 is a late endosomal protein with expression 

found in sensory and motor neurons (Verhoeven et al., 2003). Later work showed a 

further mutation a heterozygous A to C mutation, changing asparagine to threonine at 

codon 161 whose phenotype lacked the motor features of the other mutations. This 

mutation is situated adjacent to one of the previous mutations suggesting hotspot for 

mutations in the highly conserved C terminus of Rab7 (Houlden et al., 2004).

1.2.5.3 Rab23 and the openbrain mouse

Sonic hedgehog (Shh) is essential for many aspects of mammalian embryogenesis 

including the patterning of the neural tube and limbs (Chandrasekhar et al., 1998; 

Couve-Privat et al., 2004; Tsukazaki et al., 1998). Hedgehog acts as an extracellular 

ligand which binds the trans-membrane receptor Patched (Ptc). In the absence of 

Hedgehog, Patched represses the activity of a second transmembrane protein, 

Smoothened (Smo), thereby blocking the downstream signalling pathway (Murone et 

al., 1999).

The mouse open brain (opb) gene product has been shown to have an opposing role 

to Shh (Gunther et al., 1994). In neural patterning opb is required for dorsal cell 

types and Shh is required for ventral cell types in the spinal cord (Eggenschwiler and 

Anderson, 2000). Mutations in opb causes the embryos to die during the second half 

of gestation with an open neural tube in the head and spinal cord, abnormal somites, 

polydactyly and poorly developed eyes (Gunther et al., 1994). opb mutants lack 

dorsal cell types specifically in the caudal spinal cord while Shh mutants lack ventral 

cell types throughout the spinal cord (Eggenschwiler and Anderson, 2000). The opb 

mutant phenotypes resemble those produced by partial loss of function of Ptc which 

acts as a negative regulator of the Shh pathway (Eggenschwiler et al., 2001). The opb 

mutant phenotype could be the result of partial activation of the Shh signalling
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pathway in dorsal and lateral neural cells. When opb was cloned it was found to 

encode for Rab23 (Eggenschwiler et al., 2001). Dorsalizing signals are thought to 

activate transcription of rab23 in order to silence the Shh pathway in dorsal neural 

cells. (Eggenschwiler et al., 2001). More recent research using Rab23-GFP showed 

that Rab23 co-localizes in endosomes with Ptc but it was thought that it may act 

more distally in regulating Shh (Evans et al., 2003).

Additional proteins which influence Shh signalling and whose cellular trafficking 

could be regulated by Rab23 have been uncovered (May et al., 2005). A forward 

genetic approach in mice identified a role for intraflagellar transport (IFT) genes in 

Shh signal transduction, downstream of Ptc and Rab23 (May et al., 2005). IFT 

proteins are essential for cilia assembly and have recently been associated with a 

number of developmental processes, such as left-right axis specification and limb 

and neural tube patterning (Haycraft et al., 2005; May et al., 2005) (Wang et al., 

2006).

Work this year (Eggenschwiler et al., 2006) has shown that, contrary to initial 

speculations suggesting that Ptc and Smo are the targets of Rab23 action, Rab23 

mutants do not appear to affect the localization and dynamics of either protein. 

Genetic analyses have now shown that Rab23 actually functions downstream of Smo 

and affects the function of the Shh-regulated Gli family of transcription factors 

(Eggenschwiler et al., 2006). Double mutant analysis has shown that the primary 

target of Rab23 is the Gli2 activator and that Rab23 and Gli3 repressor have additive 

effects on patterning (Eggenschwiler et al., 2006). Analysis of Gli3 protein suggests 

that Rab23 also has a role in promoting the production of Gli3 repressor 

(Eggenschwiler et al., 2006). Antibodies generated against Rab23 showed that the 

protein is highly enriched in the adult rodent brain and present in low levels in 

multiple tissues of the adult rodent. This suggested a role for Rab23 not only in the 

embryo but also in the adult (Guo et al., 2006).

1.2.5.4 Rab27a in Griscelli syndrome and Ashen mice

Griscelli’s syndrome (GS) is a rare autosomal recessive disease characterized by an 

immune deficiency. Patients have uncontrolled T-lymphocyte and macrophage
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activation (haemophagocytic syndrome, HS) leading to death in the absence of bone- 

marrow transplantation. In addition, patients show partial albinism with striking 

silvery-metallic hair sheen and mild cutaneous depigmentation (Griscelli et al., 

1978). The disease has been attributed to an abnormal melanosome distribution 

(Griscelli et al., 1978). Melanosomes are melanin-containing vesicles in the 

epidermis the uniform distribution of which leads to normal pigmentation.

Originally the mutation responsible for this syndrome was mapped to 15q21 and the 

myosin-V gene (Pastural et al., 1997). However a mutation in the rab27a gene can 

also cause GS (Pastural et al., 2000). Studies have shown that in normal melanocytes 

Rab27a colocalizes with melanosomes but in melanocytes isolated from a patient 

with GS, there is abnormal melanosome distribution and a lack of rab27a expression. 

Re-expression of rab27a in GS melanocytes restores melanosome transport to 

dendrite tips, leading to a phenotypic reversion of the diseased cells implicating 

Rab27a as a key component of vesicle transport machinery in melanocytes 

(Bahadoran et al., 2001). Unlike the GS patients with the myosin-V gene mutation 

GS patients with the Rab27a mutation exhibited reduced T cell cytotoxicity and 

cytolytic granule exocytosis (Menasche et al., 2000).

The pigmentation defect mutants dilute (d), leaden (In), and ashen (ash) in mice 

show mutations in myosin Va, melanophillin and rab27a respectively, with defects in 

myosin V and rab27a and more recently melanophilin corresponding to genes shown 

to be defective in GS (Matesic et al., 2001; Menasche et al., 2003; Mercer et al., 

1991; Wilson et al., 2000). All three mouse mutations produce a lightened coat 

colour due to defects in pigment vesicle transport (Wilson et al., 2000) in addition 

ash mice show platelet defects resulting in increased bleeding times and a reduction 

in the number of platelet dense granules.

Melanosomes are transported by microtubules to the dendrite tips and then are 

retained there by MyoVa-mediated interaction with the cortical actin cytoskeleton 

(Wu et al., 1998). It is thought that Rab27a, melanophilin, and myosin Va form a 

ternary complex in the human melanocyte cells where melanophilin has a role in 

bridging Rab27a on melanosomes and myosin Va on actin filaments during
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melanosome transport. (Costa et al., 1999; Karcher et al., 2001; Nagashima et al., 

2002).

Myosin VaMelanophilin

Rab27

Melanosome

Figure 1.2.3: Diagram of myosin Va attachment to melanosomes via 
melanophilin.
(Adapted from Cheney and Rodriguez, 2001; Costa et al., 1999; Karcher et al., 2001; 
Maciver, 2006)

1.2.5.5 Rab 38 and the chocolate mouse.

Disorders with reduced pigmentation can be placed into two groups according to 

whether they affect melanocyte differentiation or melanosome function. Those that 

affect melanocyte differentiation are characterized by a localized absence of 

melanocytes resulting in “ white patch” patterns. Disorders with affected 

melanosome function include Oculocutaneous albinism (OCA) I-IV and Griscelli 

syndrome (GS). Microarray analysis has revealed that rab38 demonstrates a similar 

expression profile to melanocytic genes and further comparative genomic analysis 

has linked human rab38 to the mouse chocolate (cht) locus (Loftus et al., 2002). 

Mutant mice exhibit a brown coat similar in colour to mice with a mutation in 

tyrosinase-related protein 1 (Tyrpl). This forms a mouse model for OCA (Loftus et 

al., 2002; Suzuki et al., 2003). In the melanocytes of these mice the targeting of 

TYRP1 protein to the melanosome is impaired, suggesting that Rab38 plays a role in 

the sorting of TYRP1 (Loftus et al., 2002). More recent work has also shown that 

rab38 mRNA and native protein are expressed in a tissue-specific manner in the 

lung, skin, stomach, liver, and kidney. Cellular analysis has shown Rab38 mainly
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colocalized with endoplasmic reticulum-resident proteins and also partly with 

intermittent vesicles between the endoplasmic reticulum and the Golgi complex. This 

implies that Rab38 abnormality may cause multiple organ diseases as well as OCA 

(Osanai et al., 2005).

1.2.6 Morphogen Signalling and Vesicular Trafficking.

1.2.6.1 Endocytosis

Endocytosis has been shown to be essential for cell motility, cell signalling and cell 

adhesion and can be broadly placed into two categories; clathrin mediated (CME) 

and non-clathrin mediated (Le Roy and Wrana, 2005). Much of the literature is 

concerned with CME which is of particular interest in development, as a possible 

route by which TGF-p receptors, such as those for the Nodals, are internalized 

(Anders et al., 1998). Clathrin independent endocytosis is used to describe any 

endocytic process that does not involve clathrin (Le Roy and Wrana, 2005). One 

form which is suggested to also play a role in development relies on cholesterol-rich 

membrane domains such as lipid rafts and caveolae (raft/caveolae endocytosis )(Polo 

and Di Fiore, 2006). In this form of endocytosis receptors are internalized and 

thought to be delivered for degradation (Le and Nabi, 2003; Pelkmans et al., 2005). 

Investigations using epiderimal growth factor receptors have suggested that during 

signalling a choice is made between CME and raft/caveolae endocytosis (Polo and 

Di Fiore, 2006). If low doses of receptor are internalized then endocytosis progresses 

via CME. High doses of receptor internalization have been shown to correlate with 

the monoubiquitination of EGFR and so are probably destined for degradation via 

raft/caveolae endocytosis. It has therefore been suggested that CME is preferred at 

low doses for prolonged endosomal signalling but some of the receptors are routed 

through the raft/caveolae endocytosis pathway for degradation at higher does. Such 

routing avoids excess stimulation with signalling considered as the ratio of CME to 

raft/caveolae endocytosis (Polo and Di Fiore, 2006). This view, however, has been 

recently challenged by the suggestion that clathrin coated vesicles may play a part in 

the degradative endocytic pathway (Lakadamyali et al., 2006).
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The correct sorting of endocytic ligands and receptors is essential for proper cell 

function. Early endosomes are considered to be the initial sorting station, where 

cargos for degradation are separated from those for recycling (Lakadamyali et al., 

2006). Live mammalian cell imaging used to monitor individual endosomes and 

ligands has shown that a sorting mechanism takes place prior to early endosome 

entry and that endosomes are comprised of two distinct populations. The first of 

these endosomes are highly mobile on microtubules and mature rapidly toward late 

endosomes. The second are static endosomes that mature much more slowly. Those 

cargos destined for degredation are targeted to the dynamic endosomes whereas 

those destined for recycling are enriched in the larger, static population 

(Lakadamyali et al., 2006). This pre-early endosome sorting process is thought to be 

dependent on microtubule motility, involve endocytic adaptors and interestingly 

begin at clathrin-coated vesicles (Lakadamyali et al., 2006).

In metazoans, CME requires dynamin, a member of a family of self assembling 

GTPases. During endocytosis, dynamin forms an oligomeric ‘collar’, in a GTP- 

dependent manner, which is thought to induce fission of vesicles from the plasma 

membrane (Takei et al., 1995), in addition to recruiting effectors such as actin- 

binding proteins (Elde et al., 2005). The actin cytoskeleton is important in 

endocytosis as demonastrated by interference with actin turnover in mammalian cells 

by pharmacological agents which inhibits endocytic uptake and the formation of 

coated vesicles (Lamaze et al., 1997). However, this block in endocytosis in 

mammalian cells seems to be partial (Fujimoto et al., 2000; Moskowitz et al., 2003).

1.2.6.2 Evidence for vesicle trafficking in morphogen movement

The trancytosis model of morphogen movement proposes that morphogens use 

vesicular trafficking through the cells to reach their target cells. Much of the 

evidence for this comes from work in Drosophila other investigations, however, 

suggest a role for this mechanism in vertebrates.

The Drosophila Dpp protein, the orthologue of Bmp2/4, has been shown to act as a 

morphogen, patterning the early embryo including well characterised roles in 

specifying cell fates along the AP axis of the wing (Eldar et al., 2002; Lecuit et al.,
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1996; Weigmann and Cohen, 1999). Functional GFP-Dpp fusions have enabled 

visualisation of Dpp showing that it forms a long-range dose gradient across 30 cells 

(Entchev et al., 2000; Teleman and Cohen, 2000) travelling at a rate of more than 

four cells per hour in all directions. This is not unusual for signalling factors and is 

consistent with diffusion, however Dpp cannot form a stable gradient by diffusion 

(Entchev et al., 2000; Teleman and Cohen, 2000). It is possible this is due to the 

mature Dpp peptide binding to the extracellular matrix components and so restricting 

its extracellular movement. The binding of Dpp to the receptor may also decrease the 

range of Dpp. Additionally Dpp signalling range may be reduced by internalized Dpp 

being degraded in receiving cells upon targeting to the late endosome/lysosome. 

Labelled GFP-Dpp disappears within 3h and is considered to be actively degraded 

(Entchev and Gonzalez-Gaitan, 2002).

Dpp has been show to be targeted towards degradation by a sorting mechanism 

which depends on the small GTPase Rab7 (Entchev et al., 2000). Dpp’s signalling 

range has been shown to be determined by Rab7-dependent rates of degradation 

(Entchev et al., 2000). Entchev et al have shown that Dpp is internalized by the 

receiving cells where it localizes in endosomes and is then excised with the help of 

dynamin in clathrin-coated pits to form endocytic vesicles (Entchev et al., 2000). In 

the dynamin mutant (shibire) Dpp is not internalized and can only be observed 

extracellularly adjacent to its source (Entchev et al., 2000). In endocytic and 

endosomal-defective tissue Dpp has a range which, Entchev et al propose is 

consistent with their estimated range - less than five cells - of Dpp in the absence of 

transcytosis (Entchev et al., 2000). They proposed that receiving cells are required to 

perform transcytosis in order to form a long-range Dpp gradient (Figure 1.2.4). Their 

transcytosis model implies that Dpp is internalized in the receiving cell, traffics 

through the endocytic pathway and is re-secreted allowing it to signal in adjacent 

cells. Consistent with this is the observation that Rab5 activity can alter the 

signalling range of Dpp (Entchev et al., 2000). Rab5 controls endocytic trafficking 

by directing the budding of endocytic vesicles from the plasma membrane 

(McLauchlan et al., 1998) to their fusion with the early endosome (Bucci et al., 

1992). Cells expressing a dominant negative Rab5 showed reduced range of 

expression of the Dpp target gene spalt, whilst cells overexpressing Rab5 showed 

increased expression range of spalt (Entchev et al., 2000). Enchev et al suggested
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that once Dpp enters the endocytic pathway, it can be sorted towards degradation or 

recycling (Entchev et al., 2000). Recycled Dpp is re-secreted and moves forward into 

the target tissue. Dpp transcytosis is considered to be controlled by endocytic Rab 

proteins which include Rab5 and Rab7.

+ Receotor

o Producing cell

0 Receivino cells

M orphogen

o V esicles

□ Extracellular
matrix

Figure 1.2.4: Diagramatic representation of planar transcytosis possible role in 
morphogen gradient formation.
Diagram A shows morphogens moving through receiving cells in vesicles. Diagram 
B shows planar transcytosis impeded by a reduction in endocytosis (i.e.rab5 deficient 
cells).

Teleman and Cohen (2000) have an alternative explanation to transcytosis. They 

agree that Dpp-GFP forms an unstable extracelluar gradient which can travel over 

long distances. However, they show with the slow spread of target gene induction 

that this extracellular gradient differs from the activity gradient. They propose that 

the activity gradient is shaped at the level of receptor activation possibly by the need 

to downregulate a Dpp repressor (Teleman and Cohen, 2000). A subsequent paper by 

Belenkaya et al (2004) contradicted earlier studies and showed that Dpp is mainly 

extracellular with its extracellular gradient coinciding with its activity gradient. They 

demonstrated that blocking endocytosis using shibire does not block Dpp movement 

but inhibits Dpp signal transduction suggesting endocytosis is needed but not 

essential for transport. They suggest a model where Dpp moves along the cell surface 

by restriced extracellular diffusion involving glypicans Dally and Dally-like 

(Belenkaya et al., 2004).

The Drosophila Wnt homolog Wingless (Wg), has been found in vesicular structures 

at the target tissue (Gonzalez et al., 1991). It has therefore been suggested that it
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spreads throughout the target tissue by trafficking through the receiving cells during 

patterning of the epidermis in the Drosophila embryo (Bejsovec and Wieschaus,

1995). Wg is thought to be internalized by Dynamin-dependent endocytosis, since in 

dynamin mutant embryos Wg is only able to elicit signalling in the cells 

neighbouring the source (Bejsovec and Wieschaus, 1995). This indicates that long- 

range Wg activity requires endocytosis. The finding that a response is elicited in 

neighbouring cells implies that Wg signal transduction in these neighbouring 

receiving cells could occur in the absence of Wg internalization (Bejsovec and 

Wieschaus, 1995). Alternatively this suggests that dynamin is required for secretion 

(Strigini and Cohen, 2000). In the Drosophila wing, impaired dynamin function 

reduces Wg transcription but when Wg production is unaffected, extracellular Wg 

levels are increased by impaired dynamin (Seto and Bellen, 2006). Despite this, 

target gene expression is reduced, suggesting that internalization at the target is also 

required for efficient Wg signalling in vivo. Rab5 deficient cultured cells showed a 

reduction of the activity of the Wg reporter Super8XTOPflash suggesting that 

internalization and endosomal transport facilitate Wg signalling (Seto and Bellen, 

2006). When endosomal transport is impaired, Wg signalling is reduced however, 

when transport to endosomes is increased expression of Wg targets is enhanced. This 

increased signalling correlates with greater colocalization of Wg, Arrow, and 

Dishevelled on endosomes (Seto and Bellen, 2006). Regulation of endocytosis is the 

mechanism through which Wg signalling levels are determined (Seto and Bellen, 

2006).

Hedgehog (Hh) has been shown to restrict the propagation of Wg signalling 

suggesting that this signalling pathway sets a barrier for the spreading of Wg (Sanson 

et al., 1999). It has been suggested that it does this by vesicular trafficking (Dubois et 

al., 2001). Wg degradation is specifically enhanced posteriorly by a mechanism 

thought to be initiated by Hedgehog activating EGF receptor signalling (Scott, 2001). 

Sequentially EGF receptor signalling is thought to activate the transcription of an 

unknown factor in posterior cells and this in turn enhances Wingless degradation 

(Dubois et al., 2001). In the absence of the Hh ligand, Patched (Ptc) antagonizes Hh 

signalling by binding Smoothened and blocking its signalling activity and possibly 

destabilizing it (Chen and Struhl, 1996; Denef et al., 2000). When Hh is present it 

binds to Ptc triggering its internalization, followed by phosphorylation of
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Smoothened which becomes stabilized and accumulates at the surface and signals 

(Denef et al., 2000). There is the possibility that Hh elicits signalling by diverting Ptc 

into a distinct trafficking route releasing Smoothened from its repression (Chen and 

Struhl, 1996; Denef et al., 2000) and implying a role for Hh in vesicular trafficking. 

Vesicle trafficking may have an additional role in the movement of Nodal and Lefty. 

In chick embryos Nodal-GFP and Lefty-GFP fusion proteins are localized in the 

endosome (Sakuma et al., 2002) suggesting the possibility that Nodal and Lefty 

dispersal occurs by intracellular trafficking. Vesicular trafficking has been suggested 

to play one of two roles depending on the morphogen (Entchev and Gonzalez-Gaitan,

2002). Intracellular trafficking could push forward the ligands when the extracellular 

space restricts its movement as seems to be the case for Dpp in the wing. 

Alternatively, internalization and degradation of the morphogens could restrict the 

range of the morphogen if the extracellular matrix permits its long-range diffusion as 

appears to apply to Wg in the Drosophila embryo (Entchev and Gonzalez-Gaitan, 

2002).
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1.3 Nodal signalling

Zygotic Nodal signalling is essential for mesoderm and endoderm formation in the 

developing embryo (Feldman et al., 1998) with evidence in chick suggesting a 

possible role for endocytosis in its movement (Sakuma et al., 2002). Recently 

maternal transcripts of the zebrafish nodal Squint have been shown to be localized to 

cells that may form the dorsal side of the embryo (Gore et al., 2005) suggesting a 

role for maternal transcripts of Nodal protein in DV patterning. Nodal proteins are 

therefore considered to be of great importance in the study of zebrafish development

1.3.1 Introduction to Nodal Signalling

Nodal is a gene found to be essential for the establishment of the primitive streak, in 

mice, from which mesoderm and endoderm are derived, nodal encodes a TGF-0 

superfamily ligand (Zhou et al., 1993) identified by an insertional mutagenesis screen 

in mouse. Mutant embryos, lacking a functional nodal gene fail to gastrulate and the 

expression of mesoderm markers such as brachyury is severely inhibited (Rebagliatia 

et al., 1998). Zebrafish have 3 homologues of this gene squint (sqt), cyclops (eye) 

and southpaw. Squint and Cyclops are expressed at the blastoderm margin and are 

required for prechordal plate and notochord formation. In their absence there is a 

lack of mesoderm and endoderm formation (Dougan et al., 2003; Feldman et al.,

1998) (Figure 1.3.1). An additional role for Nodal signalling has been observed in 

patterning axial mesoderm precursors in the organizer along the anterioposterior axis 

(Gritsman et al., 2000). This patterning occurs by differential activation of the Nodal 

signalling pathway (Gritsman et al., 2000). Embryos mutant for both squint and 

cyclops do not develop a shield and, in addition markers for dorsal mesoderm such as 

goosecoid and floating head are not expressed at the onset of gastrulation (Feldman 

et al., 1998). The nodal related gene southpaw (spaw) has been shown to regulate 

left-right asymmetry in the visceral organs and brain of the developing embryo, spaw 

is expressed bilaterally in paraxial mesoderm precursors then subsequently within the 

left lateral plate mesoderm (Long et al., 2003) but is not detected prior to
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somitogenesis. Since much of this thesis is concerned with events preceding 

somitogenesis, the actions of spaw will not be fully discussed.

The nodal related genes encode a pro and mature region that once transcribed are 

cleaved to produce a mature ligand which is a covalently disulfide-linked dimer. All 

TGF-p related ligands show a conserved cysteine this is essential for the secretion 

and biological function of the protein (Sampath et al., 1998). A mutation of this 

cysteine is thought to disrupt the formation of disulphide bonds and possibly ligand 

dimerization.

Figure 1.3.1: The zebrafish nodal mutants.
Comparing wild type embryos to squint homozygous mutants, cyclops homozygous 
mutants and both sqt and eye homozygous mutants (Feldman et al., 1998).

1.3.2 Cyclops

cyclops muatants have a variety of alleles of differing types and strengths most 

derived from ENU mutagenesis (Table 13.1) (www.zfin.org) The cyclops (eye) gene 

product is required for the formation of ventrally located cells in the neuroectoderm, 

both in the forebrain and more posteriorly in the floor plate (Solnica-Krezel et al.,

1996). cyclops mutants have been shown to have a failure in specification of cells

60

http://www.zfin.org


Introduction

that come to occupy the ventral midline of the neural tube (Hatta et al., 1991) giving 

a cyclopean phenotype (Figure 1.3.1).

Allele Mut. Type Brief Description

b16 Deficiency Strong cyclopia, interrupted floor plate.
m101 Unknown Cyclopia; CNS and floor plate defects.
m122 Unknown Cyclopia; CNS and floor plate defects.
m294 Point Cyclopia; CNS and floor plate defects; null allele. 

Temperature-sensitive allele. Incompletely penetrant at 22 deg. C,
sg1 Point completely penetrant at 28.5 deg C.
st5 Deficiency
te262c Unknown Patchy floor plate; weak allele.
tf219 Unknown Cyclopia, no FP, abnormal RT projection; allele strength = b16.
tu43x Unknown
B299 Deletion

B213 Translocation

Table 1.3.1: Different alleles of e y e ,  their mutation type and a brief description
Adapted from the Zfin website (www.zfin.ors)

cyclops transcripts are not detectable in the fertilized egg, but are activated after the 

MBT, reaching maximal expression level at shield stage, after which there is a 

decrease in expression (Rebagliatia et al., 1998). Expression begins in early 

gastrulation (30% epiboly) in cells encircling the blastoderm margin and is 

progressively restricted to the dorsal organizer. Mid-gastrulation expression extends 

along the midline mesendoderm and by the end of gastrulation cyclops is expressed 

in the prechordal mesendoderm and posterior tail bud mesoderm but disappears from 

both regions by the 2-3 somite stage. In cyclops mutants the expression is initially 

indistinguishable from WT but declines thereafter and is absent in the prechordal 

plate, cyclops expression is initially normal in the mutant oep (see Chapter 3.4), but 

decreases during gastrulation contributing to the cyclopia and floorplate defects of 

oep mutants. This suggests that cyclops and oep are necessary for maintenance rather 

than activation of cyclops expression (Rebagliati et al., 1998). Subsequently it was 

found that oep is a co-receptor required for nodal signalling (Gritsman et al., 1999). 

In bozozok (boz) mutants which show a loss of chordomesoderm (Fekany et al.,

1999) dorsal cyclops expression is greatly reduced or absent throughout gastrulation
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resembles that of cyc, but is usually less severe. The range of phenotypes varies from 

mild phenotypes such as eyes being to close together (hence the name) to more 

severe phenotypes including complete cyclopia (Figure 1.3.1). This is, again, due a 

failure to specify prechordal mesendoderm and subsequent failure to specify the 

midline of the anterior neural plate.

Although very similar and partially functionally redundant, Sqt has been shown to 

differ from Cyc in a number of important ways. While Cyc only has short range 

activity, Sqt can act as morphogen (Chen and Schier, 2001) capable of acting in a 

dose dependent manner directly at a distance. Sqt producing cells can induce 

expression of gsc - a nodal target gene - at the source and in its immediate 

neighbours where there are high levels of nodal signalling. Further away Sqt induces 

first flh  and then at a greater distance ntl and bik where the levels of nodal signalling 

are lower. At reduced levels of Sqt, gsc is not induced and ntl is only induced close 

to the source (Chen and Schier, 2001). This long range signalling was not seen in 

cells producing Cyclops (Chen and Schier, 2001).

1.3.4 Receptors, Co-receptors9 Extracellular Inhibitors

The TGF-p superfamily ligands signal by binding to transmembrane serine-threonine 

kinase receptors. Two sets of receptors have been identified, which are assembled 

into a receptor complex (Dougan et al., 2003). Type I receptors are predominantly 

involved in the activation of downstream transducers while type II receptors 

phosphorylate and activate type I receptors in response to ligand binding (Whitman, 

2001). In addition to these receptors there is a class of factors specifically required 

for signalling by Nodal related ligands. These are EGF-CFC factors; a family of 

membrane attached extracellular glycoproteins that include OEP in zebrafish and 

Cripto in mice. Maternal and zygotic loss of oep function phenocopies the loss of 

both Sqt and Cyc. Loss of oep function renders cells unable to respond to ectopic cyc 

or sqt but does not alter responsiveness to activin (Whitman, 2001) another TGF-p 

family member that signals through the same receptors as the Nodals (Reissmann et 

al., 2001; Sun et al., 2006). This suggests that the requirement for EGF-CFC factors 

is specific to the Nodal superfamily of TGF-p ligands (Gritsman et al., 1999).
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The best characterized Nodal antagonists in zebrafish are the Lefties (Goering et al., 

2003; Parsons et al., 2002a; Schmid et al., 2000). There are at least two zebrafish 

lefties, lefty 1 and lefty 2. Overexpression of these in zebrafish induces phenotypes 

strongly resembling cyclops;squint double mutants or maternal-zygotic one-eyed 

pinhead mutants (Sakuma et al., 2002). Loss of Lefty function leads to enhanced 

Nodal signalling during mesoderm induction with expansion of mesendoderm and 

loss of ectoderm in addition to left-right pattern defects (Parsons et al., 2002a; 

Sakuma et al., 2002). Individually, loss of Leftyl causes aberration during 

somitogeneseis stages including left-right pattern defects, while Lefty2 depletion has 

no obvious consequences. The gastrulation defects of embryos depleted of Leftyl 

and Lefty2 have been shown to result from the deregulation of Sqt signalling 

(Parsons et al., 2002a). In contrast, de-regulation of cyclops does not affect 

morphology or the transcription of Nodal target genes during gastrulation. Cyclops is 

thought to be specifically required for the maintenance of lefty 1 and lefty 2 

transcription. Severe gastrulation defects do not arise in zebrafish unless two Nodals 

or two Leftys are removed (Parsons et al., 2002a). This suggests that the activity of 

Leftys is controlled at the level of transcription with Lefty expression being 

dependent on Nodal signalling in most tissues.
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identifying boz as an early-acting upstream regulator of cyclops (Sampath et al., 

1998).

/ .3.3 Squint

There are two known mutant alleles of the squint both of which are insertion 

mutations (Table 1.3.2) (www.zfin.org). Expression of sqt is both maternal and 

zygotic with sqt RNA found to be uniformly expressed in oocytes at all stages of 

oogenesis (Gore and Sampath, 2002). Five minutes after egg activation sqt RNA 

aggregates in clusters throughout the yolk and is detected in the emerging 

blastoderm. At the one cell stage RNA is restricted to the blastoderm and excluded 

from the yolk cell (Gore and Sampath, 2002). This movement from yolk to 

blastoderm is microtubule dependent (Gore and Sampath, 2002). At the four cell 

stage sqt localizes to two blastomeres that may become the dorsal region of the 

embryo. Removal of these blastomeres can result in loss of dorsal structures. This 

localization requires a highly conserved sequence of the 3’ untranslated region 

(UTR) (Gore et al., 2005).

Allele Mut. Type Brief Description
Cz35 (z1) 
hi975

lncortir>n

Insertion
Cydopia; prechordal plate, ventral nervous system defects; null allele. 
Mild eye cyclopia, u-shaped somites.

Table 1.3.2: Different alleles of squint, their mutation type and a brief 
description.
Adapted from Zfin (wwu.zfin.0r2)

Subsequently in the developing embryo the sqt gene has been shown to be expressed 

in the dorsal region of the blastula including the embryonic YSL which has been 

implicated as a source of signals that induce organizer development and 

mesendoderm formation. Mis-expression of sqt RNA within the embryo or 

specifically in the YSL induces ectopic or expanded dorsal mesoderm (Feldman et 

al., 1998). The expression of Sqt is shown to be at peak abundance around sphere 

stage and declines sharply after shield stage. Loss of sqt results in a phenotype that
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1.4 Thesis aims

With the publication of the zebrafish genome, Dr Matthew Clark has undertaken to 

identify all the Rabs in the genome and classify them according to sequence 

homology to their mammalian counterparts. To date, there are estimated to be over 

80 zebrafish rabs (Clark, MD, pers. com.), compared to over 60 in mammals 

(Colicelli, 2004). This thesis aims to characterise the function of specific members of 

the extensive rab family. To achieve this anti-sense MO oligonucleotides will be 

used to knock-down individual rabs with further analysis including overexpression 

assays and microarrays

This thesis aims to uncover new roles for the rab family in zebrafish development 

with the ultimate aim of identifying the function of all the zebrafish rabs. This thesis 

presents the results obtained when 13 rab genes were knocked-down, bringing the 

total number of genes screened to 37 with a small number of these genes exhibiting 

specific and fascinating defects when knocked-down. In mammalian development a 

small minority of rab genes have been implicated in disorders such as Griscelli’s 

syndrome or the openbrain mutant in mice. Investigations into rabs in zebrafish have 

shown that sequence homology does not necessarily translate to functional homology 

(Campos, 2004).

In addition to screening the zebrafish rabs, this thesis further characterizes the 

function of rab5a2: the only rab gene screened to date which resulted in mortality 

before the completion of epiboly. The essential nature of this rab is not surprising, 

since rab5 has been identified as one of the core rab genes. What is surprising is that, 

although many of the other core rabs have also been screened, none of them have 

shown such a dramatic early phenotype. In addition, there are four rab5 genes in 

zebrafish, however, none of the other rab5s display such early morbidity. Recent 

experiments in zebrafish have shown the zebrafish rab5 family to be important in 

cell signalling and cell migration during early development. This research, coupled 

with results from Dr Campos showing a lack of organizer and nodal responsive
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markers in rab5a2 MO injected embryos, has suggested a role for rab5a2 in Nodal 

signalling.

It is therefore the aim of this thesis to further characterise rab5a2 and in particular its 

effect on Nodal signalling by using antisense morpholino oligonucleotides and 

overexpression of RNA analysis. This thesis also looks at the contribution of 

maternal and zygotic transcripts of rab5a2 in nodal signalling in addition to 

analysing the effect of rab5a2 on exogenously supplied nodal RNA. Finally this 

thesis uses microarray analysis to identify other genes and possible pathways 

affected by the knocking down of rab5a2. The results show a complex and vital role 

for rab5a2 in cell signalling and zebrafish development and that its loss of function 

impacts on many hundreds of genes.
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Chapter 2

Materials and Methods
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2.1 Embryology methods

2.1.1 Embryo Fixation

At different stages of embryo development 10 embryos were placed in Eppendorf 

tubes and the water replaced with 4% PFA in PBS. These were stored overnight at 

4°C. If embryos were over 20 somites the chorions were removed before fixing in 

PFA. If the embryos were younger than 20 somites the chorions were removed after 

fixing. Fixed embryos were dehydrated by washing 3 times with 100% MeOH. They 

were then stored in 100% MeOH at -20°C.

2.1.2 In Situ Hybridization Analysis.

The embryos were rehydrated by serial incubations of PBT and methanol (75% 

MeOH /25% PBT for 5 min, 50% MeOH -/50% PBT for 5 min, 25% MeOH /75% 

PBT for 5 min, 100% PBT for 5 min twice). They were then placed in hybridisation 

mix (HM) for 5 min, the HM was changed and the embryos placed in the incubator at 

68°C for no less than 1 hour. The HM was then removed and replaced with 200pl of 

HM containing 1 pg/ml of probe and left to hybridise overnight at 68°C.

The embryos were washed in 50% HM/50% 2xSSC for 5 min, 2xSSC for 15 min, 

and 0.2xSSC for 2 x 30 min at 68°C. They were then washed with 50% 

0.2xSSC/50% PBT for 10 min and PBT for 10 min at room temberature (RT). The 

embryos were finally washed in fresh PBT/2% goat serum/2mg:ml BSA and left for 

several hours at RT. The PBT was then replaced with PBT/2% goat serum/2mg:ml 

BSA containing 1:2500 dilution of anti-dig solution (Roche) and left at 4°C 

overnight.

The PBT antibody solution was removed and the embryos washed with PBT (PBT 

quick wash, PBT for 3x5 min, PBT for 4x15 min all at RT). The embryos were then 

washed with staining buffer (2x5 min) incubated in staining solution (NBT/BCIP 

(Roche)) in the dark and monitored for expression. The staining reaction was stopped
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by removing the staining solution and washing the embryos in PBS pH 5.5/2mM 

EDTA for 3 min. The embryos were then fixed in PFA for 20 min at RT.

2.1.3 Designing UTR or ATGMorphlino’s

Antisense MO-modified oligonucleotides or MOs will be used for loss of function 

anlysis. In zebrafish these are both effective and specific translation inhibitors 

(Nasevicius and Ekker, 2000). The MOs were designed using the known sequences 

for each zebrafish rab and 25 bases of sequence unique to that gene designed either 

against the start codon (ATG) of the open reading frame or against the 5’ UTR 

region. These were then sent for synthesis to Genetools (www.gene-tools.com). The 

MOs arrived back in a powdered form that was re-hydrated in distilled water. The 

MOs were quantified and the working doses achived by dilution with phenol red and 

MO buffer (see section 2.1.5). Phenol red was used as it is pH sensitive and therefore 

enables visualization of those embryos that were not correctly injected.

2.1.4 Designing Splice MO’s

Splice MOs were designed by identifying an intron exon boundary of the gene of 

interest. A MO was then designed against 25 bases of this region with at least 10 

bases in the intonic region and at least 10 bases in the exonic region. The sequence 

was then sent to Genetools for synthesis. The MO was then diluted as in section 

2.1.5.

2.1.5 Resuspension, cleaning and dilution of MOs

The powdered MO was dissolved in 60pl of distilled water. 1 pi of MO was diluted 

in 800pl of HC1 0.1M and quantified using a spectrophotometer. The concentration 

of MO was calculated as follows:

C(pg/pl)= (A x 800 x MW)/ molar absorbency(s)

Where A was the value from the spectrophotometer. The stocks were diluted in 

phenol red at 2ng, 4ng and 8ng per 1.4nl.
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2.1.6 Microinjection o f embryos at the 1- 8 cell stage

The embryos were injected using a pneumatic picopump (World Precision 

Instruments inc.) attached to nitrogen-filled tubing and holder. This was mounted on 

a Narishigne micro manipulator which was in turn mounted on a Kanetec stand. The 

injection needles used were filamented borosilicate glass capillaries (World Precision 

Instruments inc 1B00F-4) pulled using a Kopf needle puller (model 720 at solenoid 

level 3 and heat level 15) and the edge cut with a razor blade, and calibrated under 

the microscope with a millimetre ruler. The embryos were aligned for injection along 

a glass slide placed in a glass petri dish. 1.4nl of the desired solution was injected 

into the yolk of the embryo at the 1 -4 cell stage under a Leica dissecting microscope.

2.1.7 Microinjection o f embryos for 1 cell in 128

Embryos were de-chorionated on agarose in lx danieau solution at the four cell 

stage. A ramp was made by placing a glass slide at a slight angle into a small petri 

dish containing 2% molten agarose (Sigma) in lx Danieau solution. When the 

agarose was set the slide was removed and the dish filled with lx Danieau solution. 

A filamented borosilicate glass capillarie (World Precision Instruments inc 1B00F-4) 

was pulled into a needle and the end cut with a razor blade. The needle was filled 

with the desired solution and calibrated to inject lOOpl. When the embryos reached 

the 64 cell stage they were lined up on the ramp, when they reached the 128 cell 

stage a single cell in the animal pole was injected (see section 2.1.6 for apparatus 

used).

2.1.8 Visualizing biotinylated-dextran.

Embryos were fixed (see section 2.1.1), rehydrated (see section 2.1.2) and incubated 

for 30 minutes in 1:5000 avin in PBT. The embryos were then washed 3 times with 

PBT and soak for 30mins in 0.4mg/ml DAB/PBT (Sigma). The solution was then 

changed for DAB/PBT with 0.003% H2 O2 and watched for 30mins. Once the desired 

staining was achieved the reaction was stopped by rinsing with PBT. The embryos 

were then fixed in PFA for 20 mins at RT.
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2.1.9 Fixing Embryos for Protein and/or RNA extraction.

Embryos were transferred into a clean Petri dish and washed once in lx Danieau 

solution. The required number of embryos were placed in a 1.5ml Eppendorf and 

washed again. All the Danieau solution was removed leaving. The tubes were then 

flicked so the embryos are arranged along the side of the tubes. The tubes were then 

snap frozen in dry ice and stored at -80.

2.1.10 Assaying epiboly movements

The embryos were de-chorinated at dome stage, 30% epiboly and shield stage in a 

petri dish containing 1% agarose and filled with lx Danieau solution. The embryos 

were then placed in glass dishes contaning 5mg/ml of biotinylated-dextran 

(Molecular probes 10,000mw lysine fixable) in lx Danieau solution for 20 minutes. 

The embryos were then washed 3 times over 15 minutes and fixed in 4% PFA.

2.1.11 Staging embryos

During the Rab screen in Chapter 3 the embryos were staged according to time post 

fertilization. Therefore, both the control MO injected embryos and the rab 

morpholino injected embryos are the same age but not necessarily the same 

developmental stage. This enables any developmental delay to be visualized. In 

contrast during both the characterization- and microarray analysis of rab5a2 

(Chapters 5 and 6) the experimental and control embryos were analyzed at the same 

developmental stage. Here, the time post fertilization differed due to the 

developmental delay seen in the experimental embryos. Staging in this way was 

necessary to compare the pathways affected by rab5a2 at set developmental stages.
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2.2 Molecular Methods

2.2.1 Synthesis o f Probe

2pg of plasmid was linearised by digesting with the appropriate enzyme for 2hrs at 

37°C. The total volume was then made up to lOOpl. lOOpl of 

phenol/chloroform/isoamylalcohol solution was added to the linearised DNA 

vortexed briefly and centrifuged for 2 minutes at 13000rpm. The top layer was 

removed and put in a clean Eppendorf. lOOpl of chloroform/isoamylalcohol solution 

was added vortexed and centrifuged for a further 2 minutes. The top layer was again 

removed and put in a clean Eppendorf. lOul of NaAc (3M pH 5.2) and 3x100% 

ethanol was added. This was left at -20°C for lhour and then centrifuged at 

13000rpm for 30 minutes. The ethanol was removed and 300pl of ice cold 70% 

ethanol added and then centrifuge at 13000rpm for 10 minutes. The ethanol was 

removed and the DNA pellet dried at 37°C. The DNA was then resuspended in 8.5pl 

of water.

The RNA was synthesized by adding 4pl of 5x transcription buffer (NEB), 2pi of 

0.1M DTT, 2pi of NTP-DIG-RNA (Roche), 1.5pl of RNAse inhibitor (NEB) and 2pl 

of polymerase (NEB) to the resuspended DNA. This was incubated at 37°C for 2hrs. 

A lpl aliquot of the RNA was removed and run on a 1% agarose/TAE gel to estimate 

the amount of RNA synthesized. The volume of the reaction was then increased to 

50pl and 2pl of DNase I (ribonuclease-free) (Promega) was added. The reaction was 

then incubated at 37°C for 30 minutes to remove the DNA template and leave only 

RNA.

The RNA was recovered by centrifuge using a Chroma spin-100 column (Clontech). 

The column was first centrifuged to remove the water. The volume of RNA was 

increased to lOOpl and added to the column which was spun at 3000rpm for 5 min to 

recover the RNA. The RNA was quantified in a spectophotometer and diluted to the 

desired concentration using RNAse free water.

72



Materials and Methods

2.2.2 PCR amplification o f DNA

5 pi of template DNA, 5pl of forward primer (lOpM), 5pi reverse primer (lOpM), 

0.5pi polymerase (eg. Taq), lOpl 5x PCR buffer and 24.5pi H2 O were mixed 

together in a 0.2ml PCR tube. The tube was placed in the thermal cycler (MJ 

Research inc) at:

1) 94°C for 2min

2) 94°C for 15 seconds

3) Annealing temperature of primers for 30seconds

4) 72°C for 30 seconds

5) Goto 2 29 times more

To check the size of the PCR product lpl of the reaction was run on a 2% agrose 

(Sigma) gel with an appropriate DNA ladder.

2.2.3 Cloning

2pl of PCR product, 1 pi of salt solution, 1 pi of TOPO cloning vector and 1 pi of 

sterile water were mixed together in and Eppendorf tube and left to incubate at room 

temperature for 20 minutes. They were then placed on ice.

2.2.4 Transformation

2ul of the TOPO Cloning reaction was added to 20pl of One Shot TOPO 10 

chemically competent E.Coli and mixed gently. The mixture was incubated on ice 

for 20minutes and then heat-shocked for 30 seconds at 42°C. The tubes were 

immediately transfered on to ice and left for 2 minutes. 250pl of room temperature 

SOC medium was added to the reaction, the tubes were caped tightly and shake 

horizontally (200rpm) at 37°C for 1 hour. Pre-warmed selective plates were spread 

with either 25 pi or 200pl of the transformation reaction and incubated overnight at 

37°C. Finally 3-5 colonies were picked and cultured in L-broth with a suitable 

selective antibiotic over night at 37°C. The culture was then centrifuged and the 

supernatant drained. The plasmid DNA was then recovered from the remaining pellet 

by the use of a Qiagen miniprep kit.
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2.2.5 Recovery o f Plasmid DNA from E.ColL

This was done using a Qiagen mini prep kit using the protocol set out by the 

manufacturer.

2.2.6 59 capped RNA synthesis

5pl of linearised DNA, lOpl of 5x transcription buffer, 5 pi of 0.1M DTT, 5pl of 

5mM CAP (NEB), 5pl of ImM GTP (NEB), 5pl of 5mM UTP (NEB), 5pl of 5mM 

ATP (NEB), 5pl of 5mM CTP (NEB), 2pl of RNAse inhibitor (NEB) and 3 pi of 

polymerase (NEB) were mixed together in a 1.5ml Eppendof tube and incubateed at 

37°C for 20mins. 4pl of lOmM GTP was added to the reaction which was incubate at 

37°C for a further 2 hours, lpl of the reaction was then run on a 1% agarose gel 

(Sigma) to check whether the RNA was synthesized. 3 pi of RNAse free DNAse 

(Promega) was added and the reaction incubated at 37°C for a further 20 mins. 1 pi of 

the reaction was then run on a 1% agarose gel. The volume of the reaction was 

increase to lOOpl and the RNA recovered using chroma-100 spin columns (see 

section 2.2.1).

2.2.7 Agarose Gel Electrophoresis.

A 1% agarose gel was prepared by dissolving agarose in TAE and adding 5 pi of 

ethidium bromide per 100ml. The gel was poured into a gel tray and combs placed in 

until set. Once set the combs were removed and the gel placed in the gel tank with 

TAE poured to the fill line on the tank. lOpl of ladder was loaded into the first lane 

with lpl of the sample mixed with 9pl of orangeG load buffer loaded into 

subsequent lanes.

2.2.8 Extracting RNA from injected embryos

30 embryos were prepared as described in section 2.1.9. lOOpl of Trizol was added 

to the frozen samples which were then homogenised (blue pestles from Eppendof). 

20ul of chloroform was added and the tubes shaken vigorously for 15 seconds. The 

tubes were left at room temperature for 2-3minutes then centrifuged at 1200xg for 

15minutes at 4°C. 70pl of the clear supernatant was removed and place in a clean 1.5
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ml Eppendorf tube with 70pl of isopropanol. The samples remained at room 

temperature for 10 minutes and were then spun for lOminutes at 4°C. The 

isopropanol was removed leaving a pellet.The pellet was washed with 120pl of 70% 

ethanol and vortexed briefly. The pellet and ethanol were spun at 7,500xg for 10 

minutes. The ethanol was removed and the pellet dried. The pellet was resuspended 

in 30pl of H2O and 1 pi run on a 1% agarose gel.

2.2.9 Making cDNA

1.5pg of RNA was placed in a clean Eppendorf and the volume made up to 12pl with 

water, lpl of 0.5pM random primers were added to the RNA and the tube spun 

briefly. The samples were then incubated at 70°C for 10 minutes. 4pi of (5x) 1st 

strand buffer, lpl of (lOuM) DNTP’s and 2pi of (0.1M) DTT was added and 

incubated at 42°C for 2minutes. lpl Superscript RT (200U/ul) was added and the 

reaction incubated at 42°C for 1 hour. The reaction was heated to 70°C for 15 

minutes and spun briefly. Finally the reaction was placed on ice for 10 minutes and 

stored at -20

2.2.10 Taqman RT-PCR

Using cDNA made from the protocol in section 2.2.9 a dilution plate was made. A 

control sample was diluted 1/10, 1/100 and 1/1000. All other samples were diluted 

1/ 10.

2pl of the undiluted control was placed in the first well of a 96 well of an Applied 

Biosystems ABI optical plate, 2pl of 1/10 control dilution was placed in the second 

well, 2pl of of the 1/100 control dilution was placed in the third well and 2pl of the 

1/1000 dilution placed in the fourth well. 2pl of all other samples were placed in the 

remaining wells. To each sample (including control dilutions) was added lOpl of 

Applied Biosystems TaqMan Universal PCR Master Mix, lpl of TaqMan primer and 

7pl of water. This was repeated using all the required primers and control primers
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Each plate was then sealed with Applied Biosystems ABI optical adhesive covers 

(4311971). The plates were then placed in the RT-PCR (ABI prism) machine. Using 

the 7000system software the programme was set to absolute quantification for a 96 

well plate and set for a 20pl reaction. The programme was then run and results saved 

for analysis.

2.2.11 Producing GFP-Nodal Fusion constructs

The cleavage sites for both Sqt and Cyc were identified (Figure 2.2.1) (Squint - 5‘ 

CGGCGCCACAGAAGG'3 .Cyclops-5 "CTCAGGAGCCGCAGG"3 ) (Rebagliatia et 

al., 1998) and primers designed to isolate the pro and mature regions (Table 2.4.2)

Squint 

C yclops

Figure 2.2.1: Cleavage site of Nodals in Xenopus laevis and zebrafish.
The yellow blocks identifiy the cleavage regions in zebrafish squint and cyclops.

The pro and mature regions of sqt and cyc were amplified from cDNA by PCR using 

KOD polymerase. A one percent agarose gel was run to check for the correct size 

product. The PCR products were cleaned using a Qiagen MinElute kit.lpl of Taq 

was added to lOpl of PCR product and 5pi of buffer and incubated at 72°C for 10 

minutes. The products were cloned into the Invitrogen GFP cloning vectors 

(pcDNA3.1/CT-GFP TOPO and pcDNA3.1/NT-GFP TOPO) according to the 

Invitrogen protocol with the pro regions in the C-terminal linked GFP vector (pro- 

GFP) and the ligand regions in the N-terminal linked GFP vector (GFP-ligand).The 

clones were sent away for sequencing for conformation of correct insert.

The pro-GFP and GFP mature constructs were digested using the restriction enzymes 

BsrGl and Xmal. The digests were then run on a gel and the large fragment from the 

pro-GFP construct cut from the gel and cleaned using a Qiagen gel extraction kit. 

This process was repeated for the smaller fragment of the GFP-ligand construct. The

OfVDI KKAS..XVPG 1JXHMWRNS N H H L ...9 I0  
CtVMS KNTV..RVTD TRIPftRSQKT KNTI. . . VMH 
fijOID DNAN. , KVKG J M l j a i k n  |T Q I .  . .HVS 
§ m  DRAGGGSKPV DDRVRMAAG
WAQK 0QLKV1R0GW OBIWRHHL. ..... ................
, m v  VMPOIQTUH ’■"HgggH ir ilHVMQMKHV 
tFLfS RNKXKVXRGR ALRSRR3RR................. GVPV

X nr-1  .................................................
X nr-2  .................................................
X nr-3  .................................................
N d r-1  .................................................
N odal .................................................
X nr-4  .................................................
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large pro-GFP fragment was treated with SAP (Promega) as described by the 

manufacturer. The large pro-GFP fragments and the small GFP-ligand fragments 

were then ligated together (Figure 2.2.2) using T4 DNA ligase (Promega) as 

described by the manufacturer. The constructs were then transformed as described in 

section 2.2.4 and the DNA recovered using a Qiagen minprep kit.

The DNA was sequenced and the correct fusion constructs amplified using primers 

from Table 2.4.2 which add restriction sites to the amplified products. The amplified 

products and the insertion vector (pCS2+) were digested using EcoRl and BamHl 

and the products run on a gel. These were cleaned and ligated using T4 DNA ligase 

(Promega) as described by the manufacturer. The constructs were then transformed 

as described in section 2.2.4 and the DNA recovered using a Qiagen minprep kit. The 

constructs were sequenced and the correct fusion constructs used to produce capped 

RNA (see section 2.2.6) for injection (see section 2.1.6).

T7 Pro-domain

BsrGI '
Xma1

Vector

i

jFT Lioand-domain

BsrGI Xmal

Liaand-domain [ BG”T7 Pro-domain

Vector

Figure 2.2.2: A diagrammatic representation of the methods used to make a 
GFP-nodal fusion construct
Showing the promoter domains and the restriction enzymes used and where they cut.

2.2.12 p-catenin stain

Embryos were fixed in 4% paraformaldehyde in phosphate-buffered saline (PBS) for 

four hours at 4°C. The embryos were then dechorionated and washed with PBS/ 

0.1% Triton X-100 (PBS-Tr) five times. The embryos were then washed with
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PBS/0.1% Triton X-100/% DMSO (PBS-DT) and blocked with 5% bovine serum in 

PBS-DT for one hour. After one hour the embryos were incubated with anti-p- 

catenin antibodies (1/500 dilution, Sigma C2206) overnight at 4°C. The embryos 

were then washed four times with PBS-Tr and incubated with secondary anti- rabbit 

antibody at 1/500 dilution, from the VECTASTIN ABC kit, for six hours at room 

temperature. The embryos were washed four times with PBS-Tr. Two drops of 

solution A and two drops of solution B (vectastain ABC kit) were added to PBT and 

left for 30min at RT after which time they were added to the embryos and left at RT 

for one hour. At the end of the hour the embryos were washed six times over the 

period of one hour. A diaminobenzidine (DAB, Sigma) tablet was dissolved in 33ml 

of PBT and any particulate spin out. 1ml of this was added to each of the goups of 

sample embryos which were left to incubate for lOminutes in the dark on glass. Ip of 

30% H2O2 is then added to the DAB and embryos these were then left in the dark and 

observed for staining. When it was time to stop the reaction the embryos were wahed 

in PBT.

2.2.13 Producing a dominant negative and constitutively active 
Rab5a2.

Primers were designed enabling a point mutation to be made in the GTP binding 

region of rab5a2 producing resulting in the Rab being either in the GTP-bound 

conformation (constitutively active) or the GDP-bound conformation (dominant 

negative). The constitutively active primer produced an A to T mutation (shown in 

lower case in Materials section 2.4 Table 2.4.2) resulting in the amino acid at 

position 81 changing from Q to L. While the dominant negative primer also 

produced an A-T mutation (shown in lower case in Materials section Table 2.4.2) 

resulting in the amino acid at position 133 changing from N to L.

Using the Stratagene QuikChange Site-Directed Mutagenesis Kit lpl of ds-DNA 

template (50ng) was added to a PCR tube containing 2.5pl of 10X QuickChange 

Multi reaction buffer (Stratagene), 18.3pl of double-distilled H2 O, 1.2pl of lOpM 

mutagenic primers, lpl of dNTP mix (Stratagene) and lpl of QuickChange Multi
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enzyme blend (Stratagene). The reaction was placed in the thermal cycler (MJ 

Research inc) at:

1: 95°C for 1 minute

2: 95°C for lminute

3: 55°C fori minute

4: 65°C for 4minutes 45 seconds

5: Repeat from step 2 29 more times

The reaction was placed on ice for 2 minutes, lul of Dpn I (Stratagene) restriction 

enzyme (10U/ pi) was added to the reaction which was pipetted up and down several 

times to mix the reaction. The reaction was spun for 1 minute then incubated at 37°C 

for lhour.

45 pi of the XL 10-Gold (Stratagene) ultracompetent cells were transferred to a 

prechilled 14ml BD Falcon polypropylene round-bottom tube (BD biosciences 

Catalog 352059). 2pl of the P-ME mix (Stratagene) was added to the cells. The 

contents were swirled and incubated on ice for lOminutes swirling every 2 minutes.

1.5 pi of the Dpn I -treated DNA was added to the ultracompetent cells which were 

then incubated on ice for a further 30 minutes. The cells were then heat pulsed in a 

42°C water bath for 30 seconds and then incubateed on ice for 2 minutes.0.5ml of 

preheated (42°C) NZY+ broth was added to the reaction. The reaction was incubated 

at 37°C for 1 hour shaking at 225-250rpm. The DNA was then recovered using a 

Qiagen miniprep kit and sequenced to check for only the required mutation. All 

controls were performed as described in the Stratagene QuikChange Site-Directed 

Mutagenesis Kit
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2.3 Expression Array

2.3.1 Total RNA extraction from tissue using TrizoL

The embryos were homogenised in 1.5ml Eppendorf tubes in 10 volumes of Trizol 

per embryo with a pestle (Eppendorf). The homogenate was then triturated six times 

with a 1ml filtered pipette tip then six times with a 200pl filtered pipette tip. The 

embryos were incubated for 5 minutes at room temperature. Phase Lock Gel-Heavy 

tubes were prespun at 1500rpm for 30seconds. The cell lysate was added to the Phase 

Lock Gel-Heavy and incubate at room temperature for 4 minutes. 0.2 ml of 

chloroform per 1 ml of TRIzol reagent initially used was added to the tubes. The 

tubes were capped and shaken vigorously for 15 seconds after which they were 

centrifuged at 12,000xg for 10 minutes at 2-8°C. The clear aqueous phase containing 

the RNA was transferred to a fresh 1.5ml Eppendorf tube. The RNA was 

precipitated by adding 0.5 mlof Isopropyl alcohol per 1ml Trizol reagent initially 

used. The samples were mixed by repeated inversion and allowed to incubate at 

room temperature for 10 minutes. The samples were centrifuged for 10 minutes at 

12,000xg at 2-8°C. The supernatant was removed and the RNA pellet washed by 

adding 1ml of 75% ethanol per 1ml Trizol reagent initially used. The samples were 

vortexed and centrifuged at 7,500xg for 5 minutes at 2-8°C. The supernatant was 

removed and the pellet briefly air-dried. The RNA pellet was dissolved in 20pl of 

RNase free water and incubated at 55-60°C for 10 minutes. The RNA was 

quantitated using a Nano drop and 1 pi of each sample run on a 1% gel.

2.3.2 Generation o f Amino Allyl-modified Amplified RNA (aRNA)

This protocol uses the Ambion Amino Allyl MessageAmp™ II aRNA Amplification 

Kit all reagents were from this kit unless otherwise stated.

2pg of RNA was prepared in lOpl of RNase-free water in a 0.5ml tube and placed on 

ice.lpl of T7 Oligo (dT) Primer (Ambion) and lpl of 0.1 X bacterial mRNA cocktail 

were added. The RNA oligo mixture was incubated at 70°C for 10 min and snap- 

chilled on ice. 2plof lOx First Strand Buffer (Ambion), 4pl of dNTP mix (Ambion),
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1 pi of Rnase inhibitor (Ambion) and 1 pi of ArrayScript (Ambion) were added to the 

mixture.The reaction mixture was spun briefly and incubated at 42°C for 2 hours and 

then chilled on ice for 2 minutes. 63 pi of Nuclease-free water, lOplof 10X Second 

Strand Buffer, 4pl of dNTP Mix, 2pl of DNA Polymerase and lpl of Rnase H was 

added on ice to the reaction mixture and mixed gently. The samples were spun 

briefly and incubated at 16°C for 2 hours. 250pl of cDNA Binding Buffer was added 

to the samples and mixed by pipetting up and down 3-4times. The samples were 

transferred to a Filter Cartridge (Ambion kit) and centrifuge for 1 minute at 

10,000xg. The flow-through was discarded. 500pl of wash buffer (Ambion kit) was 

added to the cDNA filter cartridge and centrifuged for 1 minutes at 10,000xg. The 

flow through was discarded. The cDNA Filter Cartridge was spun for an additional 

minute to remove trace amounts of buffer. 9pl of nuclease-free water (pre-heated to 

55C) was added to the centre of the filter in the cDNA Filter Cartridge, left at room 

temperature for 2 minutes and then centrifuged for 1 minute at 10,000xg. A second 

9pl of preheated nuclease-free water was added to the cartridge and spun as 

previously.

3pi of aaUTP (50mM), 12pl of ATP, CTP, GTP mix (25mM), 3pl of UTP Solution 

(50mM), 4pl of T7 10X Reaction Buffer and 4pl of T7 Enzyme Mix were added to 

the double-stranded cDNA at room temperature and mixed gently. The reaction 

mixture was spun briefly and incubated for 16 hours at 37°C. 60pl of room 

temperature nuclease-free water was added to the in vitro transcription reaction. 

350pl of aRNA Binding Buffer and 250pl of 100% ethanol was added to each aRNA 

sample and mixed by pipetting the mixture up and down 3-4 times. The sample was 

pipetteed onto the centre of the filter in an aRNA filter Cartridge and centrifuged for 

1 minute at 10,000xg. The flow through was discarded. 650pl of wash Buffer was 

added to each aRNA Filter Cartridge and centrifuged for 1 minute at 10,000xg. The 

flow-through was disgarded and the aRNA Filter Cartridge spun for an additional 1 

minute to remove trace amounts of wash buffer. lOOpl of nuclease-free water 

preheated to 60°C was added to the centre of the filter. The filter cartridge was left at 

room temperature for 2 minutes and then centrifuged for 1 minute at 10,000xg. The 

aRNA in the elute was then quantitated.
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2.3.3 Dye Coupling Amino Allyl-modified aRNA 

Dye Coupling Reaction

The aRNA was spun for 5 minutes at 13000rpm. For each labelling reaction (2 per 

sample cy3 and cy5) 15pg of aRNA was removed and placed in a fresh tube. To this 

l/lO111 volume of 3M NaAc pH5.2 and 2.5 volumes of 100% ethanol was added and 

the mixture incubateed at -20°C for 30 minutes to precipitate. The precipitated aRNA 

was spun at 13000rpm for 5minutes. The pellet was washed with 500pl of 80% 

ethanol and spun at 13000rpm for 2-5minutes. The ethanol was removed and the 

pellet was resuspended thoroughly in 9pl of coupling buffer (Amino Allyl 

MessageAmp II aRNA Amplification Kit, Ambion). Light levels were reduced and 

activated CyDyes (CyDye Post-Labelling Reactive Dye Packs, Amersham) packs 

were left to equilibriate to room temperature. 11 pi of DMSO (Amino Allyl 

MessageAmp II aRNA Amplification Kit, Ambion) was added per vial of dye pack. 

The resuspended CyDye was added to the aRNA in coupling buffer, mixed and 

incubate at room temperature in the dark for 45 minutes. 4.5ul of 4M hydroxylamine 

was added to the reaction mixture and incubated at room temperature for 15 minutes.

Purification of dye couples aRNA.

To each labelling reaction was added 75pl of RNase-ffee water and 350pl of buffer 

RLT from RNeasy mini kit (Qiagen). This was mixed thoroughly. 250pl of 100% 

ethanol was added and mixed thoroughly by pipetting. The sample was transfered to 

a RNeasy Mini column and spun for 1 minutes at 8000rpm. The column was 

removed to a fresh collection tube and 500pl of buffer RPE was added. The column 

was spun for 1 minute at 8000rpm.This was repeated twice. The column was placed 

in an elution tube and 50pl of water added. The column was incubated at room 

temperature for 2 minutes then spun at 8000rpm for 1 minute. Another 50pl of water 

was added to the column and incubated at room temperature for 2 minutes. The 

column was spun at 8000rpm for 1 minutes and the column discarded. The dye 

coupled aRNA was then quantified.
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2.3.4 Competitive Hybridisation o f labelled aRNA to Microarrays.

The labelled aRNA is spun for 5 minutes at 13000rpm. 2 fig of labelled aRNA is 

removed and combined with those aRNAs to be compared on the array. 8 pi of Cot-1 

DNA (lug/ul, Invitrogen), 4pl of polyA DNA (2ug/ul, Sigma), 25pi of salmon sperm 

DNA (lOmg/ml, Ambion), 1/10* volume 3M NaAc pH5.2, 2.5 volumes of 100% 

ethanol were added to the combined aRNAs. The sample was incubated at 20°C for 

30minutes and spun for 5 minutes at 13000rpm. The pellet was washed with 500pl 

80% ethanol. The ethanol was removed and the pelley was dried for a few minutes at 

70°C to remove any remaining ethanol. lOpl of water was then added and the sample 

incubated at 70°C for 5 minutes to dissolve the pellet. 50pl of RNA hybridisation 

buffer was added and mixed. The sample was the incubated at 70°C for 5 minutes 

and at room temperature for 10 minutes. The sample was then spun briefly, mixed 

and spun for 5 minutes at 13000rpm. 55pl of the hybridisation sample mixture was 

applied to a coverslip (25 x 60mm) placed on a flat surface. A microarray slide was 

gently lower onto the coverslip and placed DNA side up in the humid chamber to 

incubate at 47°C for 12-24 hours.

Array washes

The microarray was removed from the humid chamber and quickly placed in a slide 

rack submerged in 200ml of room temperature wash solution 1 (See Materials 

section 2.4). The slide was washed at room temperature for 5 minutes with gentle 

shaking. The slide rack was transfered to wash solution 2 and wash at room 

temperature for 15 minutes with vigorous shaking. This step was repeated with clean 

solution 2. The slide rack was then transfered to wash solution 3 and wash at room 

temperature for 5 minutes with vigorous shaking. This step was repeated with clean 

solution 3. After a final rinse in fresh wash solution 3, the slide rack is quickly 

transfered to a centrifuge and spun at lOOOrpm for 1-2 minutes to dry the slides. The 

slides were then scanned using a laser-based scanner by PerkinElmer (ScanArray 

ExpressHT). The slides were analysed using image analysis software by PerkinElmer 

(version 3) which aligns the oligo spots and analyses the intensity of each of the dyes 

for each oligo spot on the array. The intensity data for each slide was then transferred 

into Agilent’s Genespring software for analysis the difference in intensities between 

both dyes. This data was then grouped with the other replicates including the dye
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swapped slides and analysed for differences between experimental and controls 

samples. The data was normalized using LOWESS (see Methods section 2.6) and 

finally the threshold for the fold change of gene expression between the experimental 

and control genes was set. For example only those genes that showed a 1.5 fold 

change in expression between the control samples and the experimental samples are 

listed to have changed. From the normalized data set those genes that show a 

significant change (p<=0.05) in a t-test were also listed to have changed. Therefore 

the genes that were finally selected to have changed were those that showed both a 

three fold change in expression and that were statistically significant. This ensures 

the minimum of false positive.
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2.4 Materials

Phenol/chlorophorm/isoamylalcohol solution:

phenol:chloroform:isoamylalcohol = 25:24:1

Hybridisation Mix (HM):

50% formamide 

5xSSC

0.1% Tween 20

pH adjusted to 6 with citric acid

50 pg/ml heparin

500 pg/ml Torula RNA

Staining buffer (NTMT):

lOOmMtris HC1 pH 9.5 

50 mM MgCl2 

lOOmMNaCl 

0.1% Tween 20

Staining solution:

NBTlOOmg/ml-112.5 pi 

BCIP 50 mg/ml -175 pi 

Staining buffer - 50 ml

For 500 ml:

250 ml formamide

125 ml 20xSSC

500 pi Tween 20

4.6 ml citric acid 1M, pH6

500 pi heparin 50 mg/ml 4xSSC

0.25 g Torula RNA

For 50 ml

5 ml 1M tris HC1 pH 9.5

2.5 ml 1M MgCl2 

1 ml NaCl 5M 

50 pi Tween 20
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PCR buffer (5x):

2.5ml 2M KCL 

lml 1M Tris pH8.4 

0.25ml 1M MgCl2 

200pl dATP 100|iM 

200|il dTTP 100(iM 

200|il dCTP lOOpM 

200pldGTP lOOpM 

1.7ml BSA 10|ig/ml

Phenol Red MO buffer:
1:4 25mg/ml phenol red : 5mM HEPES (pH7.2), 200mM KC1 

Danieau Solution:

30x

5M NaCl 1740mM

KC1 21mM

1M MgS04 12mM

Ca(N03)2 18mM

HEPES pH7.6 150mM

Expression Array:

Wash solution 1: 2X SSC filter sterilised

Wash solution 2: 0.1X SSC, 0.1% SDS, filter sterilised

Wash solution 3: 0.1X SSC, filter sterilised

RNA hybridisation Buffer:

50% formamide 

5X SSC 

0.1% SDS 

0.1 mg/ml BSA
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Agarose gel for embryo manipulation

2% Agarose gel with lx daneaus.

NZy+ Broth
lOg of NZ amine (casein hydrolsate)

5g of yeast extract 

5g of NaCl

Deionized H20 to a final volume of 1 liter 

pH7.5

Autoclave then to 50mls of above was added:

625pi 1M MgC12 

625pl 1M MgSo4

lml of 20% glucose (or 500pl of 2M glucose)

Gene
name

MO
Name Type Sequence Clone

Rab3c1 zRab3c1 Splice T G AC AT C AACTTACCAGTCCTGTAC
Rab3c1 zRab3c1 ATG TTGTCTTGCGTAGCAGCCATCTTCC IMAGp99801811847
Rab5a1 zrab5a1 ATG G AC AGTT GT C AAT C ACCCCGTCTT C I MAGp998J226597
Rab5a2 zrab5a2 ATG TCGTTGCTCCACCTCTTCCTGCCAT IRAKp961M19104
Rab5b zrab5b ATG CCTGCCTGTCCCACGGGTACTCATG CHBOp575A2123
Rab5c zrab5c ATG CGCTGGTCCACCTCGCCCCGCCATG IRAKp961l04102
Rab1a3 MC14 UTR GATTCATCGTGGACTGGACACTG IRAKp961 G04102
Rab11a1 MC3 UTR TACGAACTCCGTGI I I ICAAATGTA IMAGp998H109110
Rab20 MC5 UTR AG ACT C AACT CT CACAGGT AAACTC I MAG p998N 1514300
Rab3c1 MC7 UTR CGTATAACTCCATTTGCTTTAGACA I MAG p99801811847
Rab11b1 MC9 UTR AIM IAGACAAGCCGCCCCGTCCTG IMAGp998P2011849
Rab1a2 MC11 UTR GTTCAGCAGGAGATCGGACTCTTTT I RAKp961C23103
Rab11b2 MC13 UTR ACCGC ACT G AAAT GTT GTTATTT AG IRAKp961G01102
Rab6a MC15 UTR CAGACATGCTGCCGGTTCCACT IRAKp961H19102
Rab28 MC17 UTR GCTTCAGCTCGGCAGCGCGACAC IRAKp961N08101
Rab11a2 MC19 UTR ATCTCGATCAAAACAAAAGCGCAAA LLKMp964G0315
Rab18(2) MC21 UTR ACCGGAAAATGCCT CTAT G AGCAAA MPMGp637E1023
Rab1a4 MC23 UTR CATGACGGACAGCACGCGAAAATCC Singapore 58G07
Rab1a1 MC25 UTR AAAGGGCTTGTTATTGTTTGTCCAG
Rab5a2 zRab5a2 Splice AT G AAGCGTTT GT CTTACCT CCTAT

Table 2.4.1 Experimental MOs showing sequence, type of MO, target gene and 
corresponding gene clone.
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Primer Nam e S eq u en ce
Rab5a2 forward 
Rab5a2 reverse
Constitutively active Rab5a2 forward 
Constitutively active Rab5a2 reverse 
Dominant negative Rab5a2 forward 
Dominant negative Rab5a2 reverse 
Forward Squint pro primer 
Reverse Squint pro Primer 
Forward Squint ligand primer 
Reverse Squint ligand primer 
Forward Cyclops pro primer 
Reverse Cyclops pro primer 
Forward Cyclops ligand primer 
Reverse Cyclops ligand primer 
pCs2 Cyc F 
pCs2 Cyc R 
pCs2 Sqt F 
pCs2 Sqt R

CGGGAT CCCGGT CAT GGCAGGAAGAGG
GGAATTCCGAGGAGCGTGGTTTAGGT
GGATACAGCTGGCCtGGAGCGCTACCACAG
CT GT GGT AGCGCTCCaGGCCAGCT GT AT CC
AGCTTT GGCT GGGAtCAAGGC AGACCTT GC
GCAAGGT CT GCCTT GaTCCCAGCCAAAGCT
ATGTTTTCCTGCGGGCTCCTGA
T CCTT CT GT GGCGCCGA
AACCACAGAACTGATGATAG
T CAGT GGCAGCCGCATTCT
AT GCACGCGCTCGGAGT
CCCTGCGGCTCCTGA
GGCCGCCGGGGGCCA
T CACAGGCAT CCGCACT
GGAATTCCATGCACGCGCTCGGAGT
AAGGCCTTTCACAGGCATCCGCACT
GGAATT CC AT GTTTT CCT GCGGGCTCCT G A
AAGGCCTTT CAGT GGCAGCCGCATT CT

Table 2.4.2: Experimental primers showing sequence, direction and target gene.
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2.5 Equipment

2.5.1 Photography

Photographs were acquired using either a Zeiss Axioplan 2 compound microscope 

with the Axioplan camera and Axiovision 4 software or on a Leica dissecting scope 

with the Zeiss Axioplan camera and Axiovision 4 software.

2.5.2 Microscopy
General microscope work was done on a Leica (M295) dissecting microscope. For 

live embryos the microscopes own light was used. For in situ's an external light 

source was used.

2.5.3 Confocal Microscopy

Embryos were placed in a depression slide in lx danieau solution and covered with a 

22mm x 40mm coverslip. The embryos were then viewed under a Biorad confocal 

microscope.

2.5.4 Optokinetic response apparatus

The optokinetic response apparatus consists of a spinning cylinder of alternating 

black and white colour. Inside this cylinder is a stable immobile platform on which 

the petri dish containing fish imobalised in methyl cellulose (Sigma) were placed 

(Figure 2.5.1 inset). The spinning cylinder is controlled by a dial which dictates the 

direction of cylinder movement and the speed (Figure 2.5.1). The apparatus was 

made by Loyd Stemple from technical Lego.
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Figure 2.5.1: The optokinetic response apparatus for assaying embryos for 
blindness. Apparatus is seen placed under a under a Leica (M295) dissecting 
microscope. Inset picture shows white platform on which embryos in dish are 
placed and alternating white and black pattern of the spinning disk.
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2.6 Statistical Analysis

The microarray data was analysed using Genespring (Agilent Technologies) which 

uses a standard t-test for analysis. The data is normalized to try and correct for 

systematic bias and remove non-biological influences. Genespring uses locally 

weighted scatterplot smoothing (LOWES S) for for global normaliztion. This adjusts 

for overall dye bias
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Chapter 3

Screening the Zebrafish Rabs
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3.1 Introduction

This study is a continuation of work by Dr. Isabel Campos, a former PhD student in 

the Stemple laboratory (Campos, 2004). With the sequencing of the zebrafish 

genome, more Rabs have been uncovered and there are now estimated to be over 80 

rab genes (Clark, MD, pers. com.). cDNA clones for many of these genes have either 

been cloned by PCR and/or 5’ and 3’ RACE, or were obtained from outside sources 

(RZPD) and confirmed by sequencing. Design of the morpholinos (MO) for the first 

pass of this screen was primarily undertaken by Dr. Matthew Clark, with any 

additional MOs, for more in depth studies, designed by the author.

3.1.1 Loss o f Function Screen

The MO for the initial pass of the loss of function screen are designed against 25 

bases of the UTR region immediately 5’ of the ATG start codon. There are three 

reasonsfor this: The first is that the UTR is considered to be more unique to the gene, 

a MO designed against this area is unlikely to bind any other gene, but to be sure 

each MO was checked by both Dr Clark and the author. Secondly, a MO in this area 

allows more efficient rescue by the injection of RNA encoding solely the open 

reading frame, as this does not contain sequence complementary to the MO. Lastly in 

our hands UTR MOs are usually more subtle than ATG MOs. An ATG MO, that 

would normally be lethal at a low dose, could show a distinct phenotype at higher 

does if a UTR MO were used.

In the initial pass of the Rab MO screen the embryos were injected with three 

different doses of MO: 8ng, 4ng or 2ng producing a dose response curve. The 

embryos were checked for a phenotype at gastrulation, 24 hours post fertilisation 

(hpf), and then each day until 5 days post fertilization (dpf). If all the embryos died 

then a lower dose was used, until the embryos no longer showed a phenotype. If the 

embryos show an abnormal phenotype, they were re-injected to check for 

reproducibility and photographed at shield stage if there was a gastrulation 

phenotype, 24hpf, 48hpf and, in some cases, later, up to 5 dpf. All rab MO injected
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embryos were compared against embryos injected with a standard control MO 

supplied by Genetools at a dose 2ng higher than that of the highest does of rab MO.

This chapter concentrates on the Rabs screened solely by the author and shows the 

diverse range of phenotypes observed when rab expression is disrupted. These 

include heart phenotypes, pigmentation phenotypes, hatching phenotypes and some 

less specific phenotypes, such as greying of the brain indicative of cell death or tail 

abnormalities. Although, the Rabs do not typically exhibit a single phenotype but, 

rather, a host of malformations, this chapter has grouped the Rabs based on the 

common phenotypic features.

3.2 Pigmentation defects following knockdown of 
zebrafish rabs

This section focuses on those Rabs which following MO knockdown resulted in 

pigmentation defects. Stripe formation and colour patterning in zebrafish is an 

interesting system in which to study how spatial patterns form. It is also an 

interesting and visual way of examining at neural crest function. Most pigmented 

cells of vertebrates are derived from the neural crest, a transient population of cells 

that arises during neurulation along the dorsal neural tube and then migrates 

throughout the embryo (Kelsh et al., 1996). The neural crest also specifies many 

other cell types including neurons and glia of the peripheral and enteric nervous 

systems and cartilage of the head and neck (Eisen and Weston, 1993; Raible et al., 

1992).

There are three types of pigment cells in zebrafish: the black melanin-containing 

melanophores; the yellow or orange pteridines and carotenoids containing 

xanthophores and the silvery guanine-rich reflecting platelets -  iridophores (Parichy, 

2003). Melanophores in zebrafish start to appear at 24hpf, increasing in number until 

around 60hpf (Yang et al., 2004), at which point, the embryo has approximately 400 

melanophores. This number remains constant until approximately two weeks post 

fertilization, at which time the juvenile fish starts to develop its adult pigment (Milos 

et al., 1983; Parichy et al., 1999). A melanophore cell contains hundreds of melanin-
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filled pigment vesicles, known as melanosomes. These melanosomes can be 

aggregated in the centre of the cell or dispersed through the cytoplasm. This pigment 

movement takes place in response to extracellular cues such as neurotransmitters 

(Levina and Gordon, 1983). The melanosome dispersion is induced by elevation of 

intracellular cAMP levels, while aggregation is triggered by depression of cAMP 

(Horowitz et al., 1980). Melanosomes are known to be associated with the 

microtubule based motors, dynein and kinesin (Lambert et al., 1999). Movement of 

the melanosome towards the centre of the cell is believed to involve the activation of 

the associated dynein motors (Skold et al., 2002). Movement towards the cell 

periphery is believed to involve the associated kinesin motors. Kinesin-2 is thought 

to mediate the long-range transport of melanosomes on microtubules, while myosin 

V, on actin filaments, is considered to be required for uniform distribution (Levi et 

al., 2006; Rogers and Gelfand, 1998; Wu et al., 1997). Interestingly two mammalian 

disorders casued by mutations in rab27a and rab38 result in pigmentation defects 

(section 1.2.6.4 and 1.2.6.5).

3.2.1 Rab3cl

3.2.1.1 Initial Screening

Embryos injected with the rab3cl MO initially appeared normal and underwent 

successful gastrulation. By 24h hpf, about 80% of the 2ng rab3cl embryos had 

survived as the dose of rab3cl morpholino increased the number of embryos that 

survived decreased (2ng n = 31/38, 4ng n = 25/38, 8ng n = 22/43). While the 2ng 

embryos looked phenotypically normal many of the embryos that had been injected 

with either 8ng or 4ng of the rab3cl MO had small heads and brains (4ng n = 10/25, 

8ng n = 22/22) (Figure 3.2.1 C), compared to control MO injected embryos 

(controls) (n = 40) (Figure 3.2.1 A). The MO injected embryos had poorly defined 

brain structures with the fore-, mid-, and hindbrain being disrupted (Figure 3.2.1 D). 

Some of these embryos also displayed heart oedema sometimes with no discemable 

heart tube (not shown).
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At 48hpf, many of the embryos appeared normal, with the remainder possessing 

smaller brains, which appeared to be tinged yellow (2ng n= 2/31, 4ng n = 10/25, 8ng 

n = 22/22). In addition, some showed curved tails and malformed, oedematous hearts 

and had no circulation (2ng n= 2/31, 4ng n = 10/25, 8ng n = 12/22).

Rab3c

Figure 3.2.1: Lateral view of 24hpf embryos: control MO injected embryo (A) 
compared to 8ng rab3cl MO injected embryo (C). Dorsal anterior view of 24hpf 
embryos: control MO injected embryo (B) compared to 8ng rabScl MO injected 
embryo (D).

By day five, the surviving embryos, were either normal or showed either defects in 

the distribution of melanophores, with thicker blotches of pigment being laid down 

on the head (2ng n = 7/31, 4ng n = 5/25, 8ng n = 10/22) (Figure 3.2.2 B and A) or a
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shorter body, a smaller brain and pericardial oedema (2ng n = 2/31, 4ng n = 10/25, 

8ng n = 12/22) (Figure 3.2.2 D and C). A closer look at the milder pigmentation 

phenotype revealed several aspects: Firstly, it showed a tight packing of 

melanophores on the head of the MO injected embryos (Figure 3.2.3 D and A). 

Secondly, the eyes of the MO injected embryos were smaller and the lens appears to 

be protruding (Figure 3.2.3 E and B). Finally, the swim bladder was either absent or 

not inflated (Figure 3.2.3 F and C). This interesting pigmentation phenotype is a 

characteristic of fish that have adapted themselves to darker surroundings (Logan et 

al., 2006). These observations led to the hypothes that the embryos were blind with 

constantly dark adapted pigment pattern, consistent with the defects observed in eye 

morphology.

Figure 3.2.3: The dorsal view of pigment patterns in the head of five dpf control 
injected embryos (A) compared to five dpf rabScl MO injected embryos (D). 
The dorsal view of eye morphology in 5 dpf control MO injected embryos (B) 
compared to rab3cl injected MO embryos (E). Side view of swim bladder in five 
dpf control MO injected embryos (C) compared to five dpf rab3cl MO injected 
embryos (F).
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Figure 3.2.2: Dorsal view of 5dpf embryos: control MO injected embryo (A) compared to mild phenotype in rab3cl 
MO injected embryo (B) Lateral view of 5dpf embryos: control MO injected embryo (C) compared to severe 
phenotype in rab3cl MO injected embryo (D)

'O
00



Screening the Zebrafish Rabs

3.2.1.2 Assaying for blindness

To establish whether the embryos were blind, an optokinetic response apparatus was 

constructed (see Figure 2.5.1 Materials and Methods section 2.5.4). Each embryo 

was assayed individually so that movements from one embryo did not affect any 

other embryo. Both the control and the MO injected embryos were assayed for their 

ability to follow the clockwise and anti-clockwise motion of an alternating back and 

white spinning cylinder (see inset Figure 2.5.1 section 2.5.4). The control embryos 

followed the movement of the cylinder in both the anti-clockwise and clockwise 

directions (Figure 3.2.4 A and B see supplemental disk Mov 3.2.1 A and Mov 

3.2.IB). Conversely, the rab3cl MO injected embryos showed no response to the 

spinning cylinder, in either direction (Figure 3.2.4 C and D see supplemental disk 

Mov 3.2.1C and Mov 3.2.ID). The embryos were lightly touch-stimulated using a 

pair of forceps, resulting in eye movement in both control injected and rab3cl MO 

injected embryos.

Figure 3.2.4: Still images taken from a short movie (see supplemental disk Mov 
3.2.1). The stills at the top of the figure show the dorsal view of a five dpf control 
embryo following the spinning cylinder first in a clockwise direction (A), 
compared to no cylinder movement (A’), and then in an anticlockwise direction 
(B) compared to no cylinder movement (B’). The stills at the bottom of the 
figure show a five dpf rab3cl MO injected embryo not responding to cylinder 
movement in any of the directions (C, C’ D and D’).
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3.2.1.3 Penetrance of phenotype

None of the three doses of the rab3cl MO produced a fully penetrant mild or severe 

phenotype. Therefore, the dose was increased until it became fully penetrant, or all 

the embryos died. The pigment phenotype increased in penetrance in a dose 

dependent manner (Figure 3.2.5) until 16ng. At 16ng, it was still not fully penetrant 

but at 19ng, all embryos displayed a phenotype far more severe. These embryos had 

very small brains and eyes, a short body axis and curved tail. These individuals were 

not assayed for blindness, since the eyes were so small that they appeared virtually 

absent.
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Figure 3.2.5: Graph showing the penetrance of rab3cl (black triangles) in a dose 
dependent manner (points with no error bars n=1 clutch, points with error bars 
n=2 or more clutches) compared to control embryos (red circles). The number 
of rab3cl injected embryos showing a phenotype at 2ng: n=7/23, 2/11 4ng: 5/19, 
8ng: 10/39, lOng: 4/19, 10/25, 14ng: 18/41 and 16ng: 35/48, 12/19, 35/39, 33/87. 
The number of control injected embryos showing a phenotype 2ng: 0/29, 0/15 
4ng: 0/20 8ng: 0/44 lOng: 0/32, 0/30 14ng: 0/45 and 16ng: 0/45, 0/23, 0/41, 0/44.
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3.2.1.4 Confirmation of rab3c1 MO injected phenotype using alternative 
MOs.

To ascertain whether the phenotype observed due to the rab3cl MO, was a verifiable 

effect, two additional MOs were designed. The first was designed against the start 

codon of the open reading frame of the rab3cl gene and the second is a splice MO, 

designed to bind part of an intron and an exon. Either 16ng or 18ng of the splice MO 

was injected, as a comparison with the UTR MO. The 3 standard doses (2ng, 4ng, 

8ng) of the ATG MO were injected for the screen.

At 24hpf, the 4ng ATG MO injected embryos showed smaller brains and eyes and a 

curved tail (Figure 3.2.6 D) (n = 35/35, 7 died), compared with controls (Figure 3.2.6

A). The 8ng ATG MO injected embryos showed a more severe phenotype, with very 

little brain, massively reduced eyes and reduced tail structures (n = 22/22, 17 died). 

The 16ng splice MO injected embryos showed a smaller brain and a mildly curved 

tail (n = 34/34, 5 died) (Figure 3.2.6 E), compared to controls (Figure 3.2.6 A). The 

18ng splice MO injected embryos showed very small brain and head structures and 

significantly reduced tail structures (n = 30/30, 12 died). On closer inspection, both 

the splice MO injected (Figure 3.2.6 F) and the 4ng ATG MO injected (Figure 3.2.6 

D) had less well defined brain structures, compared to controls (Figure 3.2.6 B).

By 5dpf, the 16ng rab3cl splice MO injected embryos had smaller eyes and the 

concentrated melanophores, seen in the UTR MO injected embryos. They also 

showed a severely curved body axis (n = 17/34) (Figure 2.3.7 B) when compared to 

controls (Figure 2.3.7 A). When assayed, some of the rab3cl splice MO injected 

embryos did not respond to the spinning cylinder of the optokinetic response 

apparatus (n = 7/34). As with the UTR MO injected embryos, this phenotype is not 

fully penetrant and many of the injected embryos appear normal (n = 17/34) and 

respond to the optokinetic response assay. By 5dpf, the 18ng splice MO injected 

embryos have all died. The 2ng rab3cl ATG MO injected embryos appear normal 

but have a mildly curved body axis (n = 25/40) (Figure 2.3.7 D). When assayed, 

most of the 2ng rab3cl ATG MO injected embryos responded to the spinning 

cyclinder of the optokinetic response apparatus (n = 36/40). At 4ng, they present a 

more severe phenotype, with the head becoming smaller (n = 35/35) but, as with the
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2ng ATG MO injected embryos, these embryos were assayed and not considered 

blind as they responded to the spinning cyclinder of the optokinetic response 

apparatus (n = 34/35). The embryos injected with 8ng of ATG MO had striking 

defects: the body axis was greatly reduced; tail structures were reduced; and there 

was pericardial oedema. In the head, not only was the brain reduced but the eyes 

were drastically reduced in size or absent (n = 18/18) (Figure 3.2.7 F and G).

Control

Splice MO

Figure 3.2.6: Lateral view of 24hpf embryos comparing control MO injected 
embryos (A) with 4ng injected rab3cl ATG MO injected embryos (C) and 16ng 
injected rab3cl splice MO injected embryos (E). A close up view comparing the 
brain structures of control MO injected embryos (B) with 4ng injected rab3cl 
MO injected embryos (D) and 16ng injected rab3cl splice MO injected embryos
(F).
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C on tro l

B

Control ATG 2ng

Splice 16ng

Control

Figure 3.2.7: Dorsal view of five dpf control injected embryos (A) compared to 
five dpf 16ng splice MO injected embryos (B) and five dpf 2ng ATG MO 
injected embryos (D) compared to control (C). Lateral view of five dpf control 
injected embryos (E) compared to 8ng ATG MO injected embryos (F and G).
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3.2.2 Rabla3

The rabla3 embryos all gastrulated normally and were similar to the controls. By 

24hpf, the 2ng and 4ng MO injected embryos appeared normal (2ng n = 42/42, 4ng n 

= 40/43). However a small proportion of the 4ng MO injected embryos had slightly 

reduced head size, compared to control MO injected embryos (n = 3/43). At 8ng, c. 

60% of the MO injected embryos had died (n = 28/49), with 25% of the embryos 

exhibiting a normal phenotype. The last 15% of embryos showed a slightly reduced 

head size (n = 7/49).

At 48hpf, the 2ng injected embryos still appeared normal, as did the majority of the 

4ng injected embryos. The remaining 4ng rabla3 MO injected embryos and 15% of 

the 8ng injected embryos still displayed slightly reduced brain size and reduced 

melanophore density (4ng n = 3/43 , 8ng n = 7/49) (Figure 3.2.8 D) when compared 

to controls (Figure 3.2.8 A). Upon closer inspection, the head (Figure 3.2.8 E) and 

yolk sac (Figure 3.2.8 F) had a reduced density of melanophores, in the 4ng and 8ng 

MO injected embryos, when compared with controls (Figure 3.2.8 B and C).

Since this phenotype was not fully penetrant the dose was increased to lOng. Many 

of the embryos died prior to 24hpf, as would be expected (n = 28/46). Surviving 

embryos, however, all exhibited a common phenotype (n = 18/18). By 48hpf, the 

lOng injected rabla3 MO injected embryos displayed a slightly reduced head size 

and a curved body axis, as well a reduced density of melanophores (Figure 3.2.9 B), 

compared to controls (Figure 3.2.9 A). Since the curved body axis was a new 

phenotype, compared with the last pass of injections, further study was warranted. 

The MO injected embryos possessed U-shaped somites and, interestingly, a 

shortened body axis, kinks in the notochord (Figure 3.2.9 D and C) and intermittent 

failure of vacuolation in some of the notochord cells (Figure 3.2.9 F and E).
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Figure 3.2.8: Lateral view of a 48hpf control MO injected embryo (A) compared 
to an embryo injected with 8ng rabla3 MO (D). Dorsal magnified view of head 
pigmentation of a control injected embryo (B) compared to an embryo injected 
with 8ng rabla3 MO (E). Ventral magnified view of the yolk pigmentation of a 
control MO injected embryo (C) compared to an embryo injected with 8ng 
rabla3 MO (F).
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Figure 3.2.9: Lateral view of 48hpf control MO injected embryo (A) compared 
to lOng rabla3 MO injected embryo (B).
lOx magnification of the lateral view of the mid section of control MO injected 
embryo (C) compared to lOng rabla3 MO injected embryo (D).
lOx magnification of the lateral view of the mid section of a control MO injected 
embryo (E) compared to lOng rabla3 MO injected embryo (F) under reflected 
light enabling a clearer view of embryo somites and notochord.
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3.3 Slowed Development

This section focuses on those Rabs which following MO knockdown resulted in 

developmental delay. In all cases this delay was seen as early as shield stage with 

many MO injected embryos reaching shield stage hours after their control MO 

injected siblings.

3.3.1 Rah l l a l

Injection of 2ng, 4ng or 8ng’s of rablla l MO showed an early phenotype. When the 

control injected embryos had reached shield stage (n = 45) (Figure 3.3.1 A), the 

rab lla l MO injected embryos were still beginning epiboly (2ng n = 46/48, 4ng n = 

38/38, 8ng n = 48/50) (Figure 3.3.1 B) and took two hours more than control injected 

embryos to reach shield stage (Figure 3.3.1 C). At shield stage an accumulation of 

cells became apparent at the animal pole (2ng n = 43/45, 4ng n = 38/38, 8ng n = 

46/50) (Figure 3.3.1 C and A).

By 24hpf, the majority of embryos died, leaving approximately 10% of the 2ng 

rab lla l MO injected embryos (n = 5/48) and approximately 8% of the 4ng MO 

injected embryos (n = 3/38). All of the embryos injected with the highest dose of 

rablla l MO died. The surviving rab lla l MO injected embryos (2ng and 4ng) had 

all either arrested at late gastrulation or had shortened tails with U-shaped somites 

and small heads (2ng = 5/5, 4ng = 3/3) (Figure 3.3.1 E and D).

When the embryos reached 48hpf, the embryos injected with rab lla l MO exhibited 

reduced distance between the eyes and smaller brains (Figure 3.3.1 G and F) and 

possessed a bent tail, a malformed heart and no evident circulation (Figure 3.3.1 G) 

(2ng n = 5/5, 4ng n = 3/3)

By 5dpf, the embryos injected with 4ng rab lla l MO had died while many of the 

remaining 2ng injected embryos had failed to hatch, (n = 5). Survivors showed some 

circulation, however, it was absent from the intersomitic region and blood cells 

appeared to adhere to the yolk.
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Figure 3.3.1: Shield stage embryos injected with control MO (A) compared to 
the same time point in embryos injected with rabllal MO (B) and shield stage 
in embryos injected with rabllal MO, arrow indicates accumulation of cells 
(C). 24hpf embryos injected with control MO (D) compared to 24hpf embryos 
injected with rabllal MO (E). 48hpf embryos injected with control MO 
compared to (F) to 48hpf embryos injected with rabllal MO (G).
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3.3.2 Rabla4

At shield stage, the embryos injected with 2ng of rabla4 MO (n = 45), along with 

the majority of the 4ng rabla4 MO injected embryos (n = 40/46), were comparable 

to control MO injected embryos (n = 47). A small proportion of the 4ng rabla4 MO 

injected embryos (6/46) and all the 8ng rabla4 MO injected embryos (n = 41) 

exhibited delayed gastrulation, this resulted in the rabla4 MO injected embryos only 

reaching approximately 20% epiboly (Figure 3.3.2 B) by the time the control 

embryos reached shield stage (Figure 3.3.2 A). When the 8ng rabla4 MO injected 

embryos did reach shield stage, approximately two hours later than controls, they 

possessed an enlarged shield (n = 40/41) (Figure 3.3.2 C and A).

o
B

ft
Figure 3.3.2: Shield stage control MO injected embryo (A) compared to the 
same time point embryo injected with 8ng of rabla4 MO (B) and shield stage 
embryo injected with 8ng of rabla4 MO (C). Lateral view of 24hpf control MO 
injected embryo (D) compared to 24hpf embryo injected with 8ng of rabla4 MO 
(E). Lateral view of 48hpf control MO injected embryo (F) compared to 48hpf 
embryo injected with 8ng of rabla4 MO (G).
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By 24hpf, the majority of the 2ng and 4ng rabla4 MO injected embryos appeared 

normal (2ng n = 45, 4ng n = 40/45) although a small proportion displayed smaller 

brains and kinked tails (2ng n = 0, 4ng n = 6/45). When the 8ng rabla4 MO injected 

embryos reached 24hpf, about. 35% of the embryos were dead (n = 14/41). Those 

that survived had reduced head structures and a curved tail (n = 27/27) (Figure 3.3.2 

E and D).

At 48hpf many of the 2ng and 4ng rabla4 MO injected embryos appeared normal; 

however, a small proportion still possessed small brains and shortened curved tails 

(2ng n = 0, 4ng n = 6/45). In addition the 4ng rabla4 MO injected embryos also 

showed some pericardial oedema (n = 6/45) and did not hatch (n = 22/45). The 8ng 

rabla4 MO injected embryos did not hatch and displayed pericardial oedema, 

similar to that seen in the 4ng rabla4 MO injected embryos. These embryos also 

displayed yellowing of the brain, smaller eyes, shortened tails with U-shaped somites 

and a curving notochord (n = 24/27) (Figure 3.3.2 G and F).

At 3dpf, all the 2ng rabla4 MO injected embryos hatched (n = 45) although some 

had an inward curving body axis and swam in circles (n = 4/45). Although fewer 

embryos hatched this phenotype was exaggerated in the 4ng rabla4 MO injected 

embryos where the embryos exhibited a curved body axis and swam in a large 

circular motion on their sides (n = 24/46). Those 4ng rabla4 MO injected embryos 

that failed to hatch exhibited abruptly curved, or ‘kinked’, tails and pericardial 

oedema (n = 22/46). At 8ng, only about 10% of embryos hatched (n = 3/27) and 

these, in common with the 4ng rabla4 MO injected embryos, had difficulty 

swimming normally swimming on their back and sides. Those that did not hatch 

showed the same phenotype as the 4ng rabla4 MO injected embryos (n = 24/47).
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3.3.3 Rabl8(2)

Injection of 2ngs, 4ngs or 8ng’s of rabl8(2) MO resulted in an early phenotype, with 

gastrulation in these embryos delayed by approximately two hours (2ng n = 42, 4ng 

n = 45, 8ng n = 37/39). When the embryos reached shield stage, they showed an 

elongated and pinched yolk (2ng n = 42, 4ng n = 45, 8ng n = 37/39) (Figure 3.3.3 B 

and A).

Figure 3.3.3: Shield stage embryos: control MO injected embryo (A) compared 
to embryo injected with 4ng of rabl8(2) MO (B). Lateral view of 24hpf 
embryos: control MO injected embryo (C) compared to embryo injected with 
4ng of rabl8 MO (D). Lateral view of 48hpf embryos: control MO injected 
embryo (E) compared to embryo injected with 4ng of rabl8(2) MO (F).

By 24hpf, the embryos injected with 2ngs of rabl8(2) MO possessed a smaller head, 

while, about. 50% of the 4ng rabl8(2) MO injected embryos were dead (n = 24/45). 

The remaining 4ng rabl8(2) MO injected embryos displayed brain cell death and 

small eyes (n = 21/21) (Figure 3.3.3 D and C). In addition the 4ng rabl8(2) MO
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injected embryos had tails that were either very short and curved with U-shaped 

somites, or absent (n = 21/21) (Figure 3.3.3 D). When the dose of the rabl8(2) MO 

was increased to 8ng, approximately 87% of the MO injected embryos were dead 

before 24hpf (n = 34/39). Those that remained were an accumulation of dying cells 

on the yolk (n = 5/5).

By 48hpf, the 8ng rabl8(2) MO injected embryos were dead. The 2ng rabl8(2) MO 

injected embryos failed to hatched, showed kinked tails and pericardial oedema (n = 

37/37). The 4ng rabl8(2) MO injected embryos showed a similar, if more severe, 

phenotype, with a small proportion of embryos exhibiting no tail structures and eyes 

that were substantially reduced, or absent (n = 16/16)(Figure 3.3.3 F). In addition the 

head structures were greatly reduced (Figure 3.3.3 F and E).

At 3dpf, the 2ng rabl8(2) MO injected embryos had not hatched and their heads 

started to develop a yellow/green colour and a thick layer of melanophores (n = 

37/37). Consistent with the pericardial oedema the heart was beating slowly and 

there was no movement of blood. The 4ng rabl8(2) MO injected embryos did not 

hatch and exhibited a similar, if slightly more severe, phenotype than the 2ng 

rabl8(2) MO injected embryos (n = 16/16).

3.3.4 Rablal

Embryos injected with rablal MO exhibited a developmental delay (2ng = 45 ,4ng = 

38, 8ng n = 42). When the control embryos had reached shield stage, all of the 

rablal MO injected embryos, regardless of the dose of rablal MO injected, were at 

least two hours delayed.

By 24hpf, c. 50% of the 2ng rablal MO injected embryos were dead (n = 23/45). 

Approximately 10% of the embryos appeared normal (n = 4/45), whereas, the 

remainder had massive brain cell death and curved tails (n = 18/45) (Figure 3.3.4 B 

and A). In addition, a small proportion of the phenotypic rablal MO injected 

embryos displayed grey cells in the tail indicative of cell death (n = 3/18) (Figure

3.3.4 B). The majority of the 4ng rablal MO injected embryos had died by 24hpf (n 

= 35/38). Approximately, 10% survived and these had severe defects, missing head
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structure, some tail structure and massive widespread cell death over the whole 

embryo (n = 3/38). The 8ng rablal MO injected embryos were all dead.

C D

Figure 3.3.4: Lateral view of 24hpf embryos: control MO injected embryos (A) 
compared to 2ng rablal MO injected embryos (B) Lateral view of 48hpf 
embryos: control MO injected embryos (C) compared to 2ng rablal MO 
injected embryos (D)

By 48hpf only about 25% of the original clutch of 2ng rablal MO injected embryos 

survived (n = 12/45) a third of those remaining appeared normal (n = 4/12). Those 

rablal MO injected embryos with a phenotype exhibited reduced head structures 

with brain cell death, some being so disrupted that they comprised only a pair of eyes 

on an elongated yolk (n = 3/12). Other rablal MO injected embryos had pericardial 

oedema, in addition to short, bent tails with indistinguishable somites (n = 5/12) 

(Figure 3.3.4 D and C). By this time point, the 4ng rablal MO injected embryos 

were all dead.

At 3dpf, remaining rablal MO injected embryos were either normal (n = 4/9) or 

displayed a similar phenotype to those at 48hpf, with kinked tails, indistinguishable 

somites and reduced head structure when compared to controls (n = 5/9).
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3.4 Hatching Defects

This section describes those rabs that, when knocked-down led to a failure to hatch. 

Hatching results from the combined effort of the hatching enzyme secreted from the 

hatching gland, along with osmotic and mechanical mechanisms (Denuce, 1985; 

Yamagani, 1988). The hatching gland is derived from the prechordal plate which, in 

turn, is derived from the embryonic shield in the area of the dorsal margin. The 

prechordal plate cells differentiate to form various different types of cells. Those 

cells that will become the hatching gland migrate from the dorsal margin of the 

embryo along the dorsal midline to anterior of the forebrain, where they accumulate 

to form the polster, upon completion of gastrulation. By 24hpf, the cells of the 

hatching gland are located on the pericardial membrane. They can be visualised as a 

semi-circle around the yolk and are prominent due to the presence of brightly 

refractive cytoplasmic granules within the hatching gland cells (Houart et al., 1998).

3.4.1 Rabllbl

Figure 3.4.1: Lateral view of 24hpf embryos: control MO injected embryo (A) 
compared to embryo injected with 4ng of rabllbl MO (B). Dorsal anterior view 
of 24hpf embryos: control MO injected embryo (C) compared to embryo 
injected with 4ng of rabllbl MO (D).
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All of the embryos gastrulated successfully with the majority of the 2ng rab llb l MO 

injected embryos appearing normal by 24hpf (n = 36/42). However a few 2ng 

rab llb l MO injected embryos exhibited a grey brain, indicative of cell death and a 

reduction in the size of the eyes (n = 6/42). Increasing the dose of rab llb l MO to 

4ng resulted in all embryos exhibiting this abnormal phenotype, in addition they 

exhibited a shortened tail with U-shaped somites (n = 46/46) (Figure 3.4.1 B and A). 

Injection of 8ng of the rab llb l MO resulted in a more severe phenotype with the 

entire embryo turning grey, indicative of cell death. The 8ng rab llb l MO injected 

embryos exhibited massively reduced brain and head size as well as tail defects (n = 

39/39). Closer inspection of 4ng rab llb l MO injected embryos revealed small, 

malformed eyes and badly defined brain structures, resembling an unstructured mass 

of cells than clearly defined regions (Figure 3.4.1 D and C).

Figure 3.4.2: Lateral view of 48hpf embryos: control MO injected embryo (A) 
compared to embryos injected with 4ng of rabllbl MO (B). Dorsal view of 
48hpf embryos: Control MO injected embryo (C) compared to embryos injected 
with 4ng of rabllbl MO (D).

When the phenotypic rab llb l MO injected embryos reached 48hpf, they possessed 

smaller brains and eyes (2ng n = 36/42, 4ng n = 46/46, 8ng n = 39/39) (Figure 3.4.2 

B and A) and exhibited bent tails and a curved body axis (Figure 3.4.2 D), compared 

to controls (Figure 3.4.2 C).
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At 4dpf, none of the phenotypic rab llb l MO injected embryos had hatched (2ng n = 

36/42, 4ng n = 46/46, 8ng n = 39/39) and many displayed pericardial oedema (2ng n 

= 6/42,4ng n = 46/46, 8ng n = 39/39).

3.4.2 Rabllb2

The rabllb2  MO injected embryos all gastrulated comparably with the control 

embryos (2ng n = 40/40, 4ng n = 42/42, 8ng n = 45/45). At 24hpf, all embryos, 

regardless of which dose was injected, showed the same phenotype (2ng n = 40/40, 

4ng n = 42/42, 8ng n = 45/45). The MO injected embryos all had reduced sized, 

greying brains, indicative of cell death. Furthermore, they had U-shaped somites, 

shortened tails and pericardial oedema (Figure 3.4.3 B and A).

Figure 3.4.3: Lateral view of 24hpf embryos: control MO injected embryo (A) 
compared to an embryo injected with 4ng of rabllb2 MO (B). Lateral view of 
48hpf embryos: control MO injected embryo (C) compared to an embryo 
injected with 4ng of rabllb2 MO (D arrow represents hatching gland cells).

When the embryos reached 48hpf, the rabllb2  MO injected embryos showed a 

disjointed ‘patchy’ hatching gland, with the cells accumulating in peaks in individual 

areas around the yolk (shown by arrow in Figure 3.4.3 D). The brains of these 

embryos remained small and had a yellowish tinge (Figure 3.4.3 D), compared to 

controls (Figure 3.4.3 C). In addition rabllb2  MO injected embryos had curved and 

shortened tails, the eyes were small and closer together and they had pericardial 

oedema (Figure 3.4.3 D) (2ng n = 40/40, 4ng n = 42/42, 8ng n = 45/45).

A B
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By 72hpf, none of the rabllb2  MO injected embryos hatched, the brain remained 

yellow, the embryos were shortened and pericardial oedema persisted (2ng n = 

40/40, 4ng n = 42/42, 8ng n = 45/45). By 5dpf, all the rabllb2  MO injected 

embryos were dead.

3.4.3 Rab6a

When the embryos reached shield stage, the rab6a MO injected embryos were 

visually normal. When they reached 24hpf, the 2ng rab6a MO injected embryos had 

small heads, with the distance between the eyes severely reduced, compared to 

controls. In addition the 2ng rab6a MO injected embryos possessed short bent tails 

with straight somites (n = 43/43) (Figure 3.4.4 B), compared to the V-shaped somites 

of the controls (n = 45/45) (Figure 3.4.4 A). The majority of the 4ng (n = 42/43), and 

all the 8ng rab6a MO injected embryos (n = 47/47) died. Those of the 4ng rab6a 

MO injected embryos that survived possessed no head structures and greatly reduced 

tail structures (1/1).

o o
B
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Figure 3.4.4: Lateral view of 24hpf embryos: control MO injected embryo (A) 
compared to embryo injected with 2ng of rab6a MO (Figure B). Lateral view of 
48hpf embryos: control MO injected embryo (Figure C) compared embryo 
injected with 2ng of rab6a MO (Figure D).

By 48hpf, all of the 4ng rab6a MO injected embryos were dead (n = 1/1), the 2ng 

rab6a MO injected embryos had very small brains and small closely spaced eyes. 

The tail was shortened and bent posteriorly (n = 43/43) (Figure 3.4.4 D and C).
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By 4dpf, most of the rab6a MO injected embryos had not hatched and the hatching 

gland appeared disjointed and patchy with possible pericardial oedema (n = 39/43).

3.4.4 Rab lla2

All embryos appeared phenotypically normal at gastrulation. At 24hpf, the embryos 

injected with 2ng of rablla2  MO displayed a slightly reduced head size (Figure

3.4.5 B and A) and shortened tails, with U-shaped somites (n = 44). When the dose 

of rablla2  MO was increased to 4ng or 8ng the phenotype remained consistent, but 

a greater proportion of embryos died before 24hpf (4ng n = 38/41, 8ng n = 43/46 

died).

By 48hpf, the 2ng rablla2  MO injected embryos had kinked or, in some cases, 

absent tails, and some pericardial oedema (n = 44). The 4ng rablla2  MO injected 

embryos displayed a yellow tinged head with thick pigment (n = 3/3). At the higher 

dose of 8ng, the majority of the rablla2  MO injected embryos were dead (n = 2/3) 

while survivors were phenotypically similar to the 4ng rablla2  MO injected 

embryos.

Figure 3.4.5: Lateral view of 24hpf embryos: control injected embryo (A) 
compared to embryo injected with 2ng of rablla2 mopholino (B).

When the embryos reached 4dpf, a large proportion of the 2ng rablla2  MO injected

4ng rablla2  MO injected embryos were dead and the remainder appeared normal, 

except for the thick pigment on the dorsal side of the embryo (n =1/1). At 8ngs, all of 

the rablla2  MO injected embryos were dead by 4dpf.

A B

embryos remained unhatched and had pericardial oedema (n = 39/44). Most of the
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3.5 Swimming Defects

3.5.1 Rab28

During gastrulation the rab28 MO injected embryos are phenotypically normal. By 

24hpf all rab28 MO injected embryos exhibited a reduced head size (Figure 3.5.1 C 

and A) regardless of the dose of rab28 MO injected (2ng n = 43/43, 4ng n = 42/42, 

8ng n = 39/39). The 8ng rab28 MO injected embryos exhibiting greying of the brain, 

indicative of cell death, and, in a small percentage of cases (n = 5/39) the tail curved 

upwards.

o
Figure 3.5.1: Lateral view of 24hpf embryos: control MO injected embryo (A) 
compared to embro injected with 4ng of rab28 MO (Figure C). Lateral view of 
48hpf embryos: control MO injected embryo (Figure B) compared to embryo 
injected with 4ng of rab28 MO (Figure D).

By 48hpf, the 2ng rab28 MO injected embryos appeared normal (n = 43/43), 

whereas the 4ng rab28 MO injected embryos had a curved and shortened body axis, 

in addition to a smaller head and pericardial odeama (n = 42/42) (Figure 3.5.1 D and

B). These 4ng rab28 MO injected embryos showed modified swimming behaviour, 

with the embryos twitching and swimming in circles. When the dose of rab28 MO 

was increased to 8ng embryos showed a similar phenotype to the 4ng rab28 MO
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injected embryos and in addition the 8ng MO injected embryos possessed kinked 

tails (n = 39/39).

By 4dpf, 2ng rab28 MO injected embryos appeared phenotypically normal (n = 

43/43). The 4ng rab28 MO injected embryos continued to show pericardial oedema, 

a shortened body axis and a high proportion of them had bent tails. In addition, the 

4ng rab28 MO injected embryos still displayed abnormal swimming behaviour (n = 

42/42). The 8ng rab28 MO injected embryos again showed a similar phenotype to 

those injected with 4ng of rab28 MO (n = 39/39).
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3.6 Non-Specific Defects

This section focuses on those Rabs that, when knocked-down, exhibited no specific 

phenotypes. Each of these Rabs showed brain defects and defects in the tail.

3.6.1 Rab20

The rab20 MO injected embryos gastrulated normally, regardless of the dose of MO 

injected. By 24hpf, approximately 20% of the 2ng and 4ng rab20 MO injected 

embryos died (2ng n = 9/46, 4ng n= 13/49). The majority of those that survived were 

phenotypically normal (2ng n = 34/37, 4ng n = 35/36) however, some exhibited 

reduced head and brain size and slightly shortened tails (2ng n = 3/37, 4ng n = 1/36). 

When the dose of rab20 was increased to 8ng a larger percentage of embryos died (n 

= 34/56) while all the surviving embryos showed reduced head and brain size and 

slightly shortened tails. In addition, they displayed a slow heart beat and no blood 

flow (n = 22/22) (Figure 3.6.1 B and A).

By 48hpf, the 8ng rab20 MO injected embryos exhibited curved tails (Figure 3.6.1 D 

and C), a sigmoidal body axis (n = 22/22) (Figures 3.6.1 F and E) and reduced head 

structures.

At 5dpf, the rab20 MO injected embryos displayed reduced hatching success (n = 

15/22) and a shortened curved tail (not shown) when compared to controls. In excess 

of one third of the rab20 MO injected embryos failing to hatch exhibited pericardial 

oedema and had no circulation (n = 5/22).
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c D

Figure 3.6.1: Lateral view of 24hpf embryos: control MO injected embryo (A) 
compared to embryo injected with 8ng of rab20 MO (B). Lateral view of 48hpf 
embryos: control injected embryo (C) compared to embryo injected with 8ng of 
rab20 MO (D). Dorsal aspect of 48hpf embryos: control MO injected embryo 
(E) compared to embryo injected with 8ng of rab20 MO (F).

3.6.2 Rabla2

At shield stage, rabla2 MO injected embryos were comparable with the control MO 

injected embryos, exhibiting no delayed gastrulation and no morphological 

differences between the organizers, at any of the doses injected. By 24hpf, the 

majority of the 2ng rabla2 injected embryos appeared normal (n = 42/42). The 4ng 

rabla2 MO injected embryos exhibited reduced head size and brain cell death (n = 

40/40), when compared to controls (n = 48/48). Increasing the rabla2 MO dose to 

8ng resulted in the embryos exhibiting a more severe reduction in head size and 

severe brain cell death (n = 33/33) (Figure 3.6.2 D), when compared with controls (n 

= 48/48) (Figure 3.6.2 C). In addition to this the 8ng rabla2 MO injected embryos
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showed severe reduction in tail structures (Figure 3.6.2 B) when compared with 

controls (Figure 3.6.2 A)

c

Figure 3.6.2: Lateral view of 24hpf embryos: control MO injected embryo (A) 
compared to embryo injected with 8ng of rabla2 MO (B). lOx magnification of 
anterior dorsal view of 24hpf embryos: control MO injected embryo (C) 
compared to embryo injected with 8ng of rabla2 MO (D).

At 48hpf, the 2ng rabla2 MO injected embryos had smaller heads and smaller eyes 

(n = 42/42), when compared to controls (n = 48/48). In addition, the 2ng rabla2 MO 

injected embryos had curved tails. The 4ng rabla2 MO injected embryos displayed 

reduced head size, eye size and brain cell death. They also exhibited shortened axis 

and curved tails (n = 40/40). The 8ng rabla2 MO injected embryos had severely 

reduced head and eye size and brain cell death (Figure 3.6.3 D and C). In addition the 

8ng rabla2 MO injected embryos showed an oedematous area around the yolk, 

severely reduced tail structures, with the remainder of the tail being kinked 

posteriorly (n = 33/33) (Figure 3.6.3 B and A). The notochord in the 8ng rabla2 MO

D
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injected embryos was either, curved and misshapen (Figure 3.6.3 F and E) or was not 

visible (Figure 3.6.3 G and E).

At 4dpf, the 2ng and 4ng rabla2 MO injected embryos had smaller heads and eyes 

than controls and curved tails. The 8ng rabla2 MO injected embryos showed 

severely reduced head and eyes, when compared to controls. In addition they 

exhibited shortened, kinked tails and an oedematous area round the yolk. Only about 

20% of the 8ng rabla2 MO injected embryos hatched (n = 7/33).

mJmrnK

Figure 3.6.3: Lateral view of 48hpf embryos: control MO injected embryo (A) 
compared to embryo injected with 8ng of rabla2 MO (B). Dorsal view of 48npf 
embryo: control MO injected embryo (C) compared to embryo injected with 8ng of 
rabla2 MO (D). lOx magnified lateral view of rear of head and midtrunk region of 
48hpf embryos: control MO injected embryo (E) compared to embryo injected 
with 8ng of rabla2 MO (F). lOx magnified posterior lateral view of 48hpf embryo 
injected with 8ng of rabla2 MO (G).
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3.6 Summary o

Gene Summary of phenotypes in rab morpholino injected embryos

Rab1a1 Developmental delay, brain cell death, tail defects, pencardial oedema

Rab1a2 Brain cell death, tail defects inc notochord, pericardial oedema

Rab1a3 Reduced head size, reduced pigment, kinks in notochord

Rab1a4 Developmental delay, enlarged organizer, reduced head size and tail defects, pericardial oedema, reduced hatching success

Rab3c1 Reduced head size, thicker bands of pigment, smaller eyes, protruding lens, swim bladder defect, blind

Rab6a Reduced head size, tail defects, fail to hatch

Rab11 a 1 Developmental delay, shield - accumulation of cells on animal pole, tail defects, reduced head size, malformed heart, limited circulation

Rab11a2 Reduced head size, tail defects, pericardial oedema, fail to hatch

Rab11b1 Brain cell death, tail defects, pencardial oedema, fail to hatch

Rab11b2 Brain ceil death, tail defects, pencardial oedema, patchy hatching gland, fail to hatch

Rab 18(2) Developmental delay, shield - elongated embryo, reduced head size, tail defects, pericardial oedema, reduced blood flow, fail to hatch

Rab20 Reduced head size, tail defects, pericardial oedema, limited circulation

Rab28 Brain cell death, curved axis, abnormal swimming behaviour, pericardial oedema

Table 3.6.1: Showing the range of phenotypes seen in embryos injected with morpholinos to different rabs.
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4.1 Screening the Zebrafish Rabs

The rab genes have classically been thought of as housekeeping genes because of 

their ubiquitous expression and vesicle trafficking role (Gurkan et al., 2005; Le 

Gallic and Fort, 1997). It is easy to assume that, given this ubiquitous expression, 

loss of a given Rab function would not yield a specific phenotype. However, this is 

not necessarily the case, a few rabs have been implicated in mammalian disorders 

such as Griscelli’s syndrome (Menasche et al., 2000) or Charcot-Marie-Tooth type 

2B neuropathy (Verhoeven et al., 2003). The specificity of rabs, in addition to some 

control at the gene expression level, is achieved by post-translational protein 

modification and the actions of protein regulators i.e. RabGDI. It is, therefore, 

important to investigate each rab to identify any specific role. The continuation of 

the Rab screen has resulted in the identification of a further 13 Rabs (bringing the 

total number of rabs screened to 37) that, when knocked-down, show defects in 

normal development. In many of these cases, the defects are very similar and include 

reduced head size and defects to the tail. However, some rabs show more individual 

phenotypes, including pigmentation defects, slowed development and a failure to 

hatch.

4.1.1 Pigmentation Defects

The knocking down of the Rab genes rab3cl and rabla3 resulted in defects in 

pigmentation. While rab3cl MO injected embryos showed a thicker layer of pigment 

the rabla3 MO injected embryos showed the opposite with a reduction in 

pigmentation.

4.1.1.1 Rab3c1

In mammals Rab3c localizes to synaptic vesicles and cycles on and off the synaptic 

vesicle membrane with the exocytic release of neurotransmitters. Rab3c dissociates 

from the synaptic vesicles after the stimulation of exocytosis (Fischer von Mollard et 

al., 1994) and is thought to perform an important regulatory role in exocytosis rather
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than direct involvement (Geppert et al., 1997; Nonet et al., 1997). This synaptic 

localization may explain the phenotype seen in the rab3cl MO injected embryos. At 

24hpf, the brain is severely disrupted with forebrain and mid brain structures ill 

defined, by 5dpf these fish show pigmentation defects and are unable to respond to 

visual stimulus. When touched, the rab3cl MO injected fish were capable of moving 

their eyes which suggested the fish were blind and unable to see the stimulus, rather 

than incapacitated and unable to respond. The pigmentation defect in the rab3cl MO 

injected embryos can be explained by their failure to respond to light as control 

embryos which are capable of subtly altering their chromatophores to blend into their 

environment (Logan et al., 2006). In bright sunlight or against light backgrounds, 

zebrafish can aggregate their melanosomes becoming considerably lighter, while in 

the dark or against a dark background, they can disperse the melanophores and 

become darker. As the MO injected embryos are unable to see their environment, 

they are constantly dark adapted so their melanophores are always dispersed, 

resulting in them appearing darker (Logan et al., 2006). In addition, the rab3cl MO 

injected embryos have no visible swim bladder. This may be due to the swim bladder 

not developing or not inflating. The abnormal eye morphology in the MO injected 

fish - small eyes with protruding lenses - may be the cause of the blindness, possibly 

via a reduced retina, a problem with the lens or other eye components. Malformation 

or disruption to the optic nerve or visual centres of the brain is also a viable 

explanation since Rab3c is known to be involved in synaptic transmission (Fischer 

von Mollard et al., 1994). In the adult rat brain, staining for Rab3a, with which 

Rab3c has been shown to be localized (Fischer von Mollard et al., 1994), showed no 

localisation in the optic tract (Xu et al., 1998). However, expression of rab3cl in 

zebrafish shows expression throughout the brain including the post optic areas 

(Campos, 2004).

A screen in Drosophila seeking to identify potential targets for retinal calmodulin 

proteins found one of the groups of potential targets included proteins with domains 

similar to the Rab3 GDP/GTP exchange factors (Alvarez et al., 2003). Interestingly 

although Rab3c itself has never been associated with human disease and disorders its 

regulators have. Homozygous inactivating mutations in the GTPase activating 

protein Rab3GAP has been shown to be responsible for Warburg Micro syndrome 

(WARBM1) (Aligianis et al., 2005). WARBM1 is a severe autosomal recessive
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disorder that is characterized by developmental abnormalities of the eye (including 

microcomea, congenital cataracts and optic atrophy) and the central nervous system 

(including microcephay). It is thought that defects in Rab3GAP causes a failure of 

the exocytic pathway to release ocular and neurodevelopmental trophic factors 

(Aligianis et al., 2005). A more recent paper showed that Martsolf syndrome, which 

has overlapping characteristics with WARBM1, also has defects in RAB3GAP. 

RAB3GAP is a heterodimeric protein with one catalytic (RAB3GAP1) and one 

noncatylitic subunit (RAB3GAP2). Warburg microsyndrome shows defects in 

RAB3GAP1, while Martsolf syndrome shows defects in the second (Aligianis et al., 

2006).

Rab escort protein REP1 is the zebrafish homologue of the human choroideremia 

gene and the first characterized REP. The human disease choroideremia shows X- 

linked degeneration of the retinal pigment epithelium, resulting in affected males 

developing night blindness in their teens with progressive loss of peripheral vision 

and then complete blindness. Loss of function of the gene choroideremia found on 

the X chromosome is responsible (Cremers et al., 1992). Interestingly, a zebrafish 

mutant for REP1 shows startling similarities to rab3cl MO injected embryos. At 

5dfp the REP1 mutants had uninflated swim bladders, noticeably smaller eyes and 

irregular eye pigmentation. The REP1 mutants also showed a patchy, discontinuous 

distribution of iridophore pigment cells. Electron microscopy showed that the retinal 

layers were disrupted in the mutants. At 6dpf, oedema was observed around the heart 

and abdomen. In addition, REP1 mutants had defects in hair cells including the 

lateral line and the inner ear (Starr et al., 2004).

There is still some concern over the incomplete penetrance of the phenotype 

observed in rab3cl MO injected embryos which could be due to several factors. The 

first theory is that the phenotype seen in the rab3cl MO injected embryos isn’t the 

result of knocking down rab3cl alone. It is possible that some of the embryos may 

have a mutation in other genes only uncovered on knocking down rab3cl. A second, 

more likely possibility is that there is a mutation in the rab3cl gene itself. To 

confirm this it will be necessary to sequence the gene in the rab3cl MO injected 

phenotypic and non-phenotypic siblings and compare.
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4.1.1.2 Rab1a3

The rabla3 MO injected embryos showed less pigmentation than controls. This 

phenotype appears to be due to fewer melanophores rather than abnormal distribution 

of melanosomes within the melanophores. However, the melanosomes in the 

remaining melanophores of the rabla3 mutant embryos appeared to have aggregated. 

One possibility for this reduction in melanophores is that the cells don’t migrate 

properly from the neural tube, resulting in fewer melanophores reaching their 

destination. This may result from a defect in neural crest cells. Dr Isabel Campos 

showed a similar phenotype in the rab which she named rablb. Unfortunately, once 

the zebrafish genome was sequenced, the MO used for this rab was shown to 

partially knock down two additional rabl genes. However, the clone which Dr 

Campos used for the expression pattern of rablb has equally close homology to 

rab la  as it does for rablb, showing 98% identity to the rabla3 clone. Therefore, it is 

probable that these genes are the same. The expression pattern for rablb showed 

localization in the chordamesoderm, polster, neural crest and blood. The localization 

in the neural crest is consistent with the phenotype seen in rabla3 MO injected 

embryos. Defects in neural crest cells have been seen in zebrafish to be responsible 

for the loss of pigment (Kelsh et al., 1996; Parichy et al., 1999; Southard-Smith et al., 

1998).

In the zebrafish mutant colourless (els) there is extensive loss of pigment cells and 

enteric nervous system, with large reductions in sensory and sympathetic neurones 

and putative satellite glia and Schwann cells (Dutton et al., 2001; Kelsh and Eisen,

2000). This phenotype suggests that els functions in specification, proliferation or 

survival of progenitors for all nonectomesenchymal crest derivatives (Dutton et al.,

2001). The els gene encodes a sox 10 homologue, loss of which causes neural crest 

cells to take ectomesenchymal fates rather than form non-ectomesenchymal fates. If 

cells do form non-ectomesenchymal fates, they generally fail to migrate and do not 

overtly differentiate, dying by apoptosis between 35 and 45 hours post fertilisation 

(Dutton et al., 2001). The melanophore defects in els mutants are thought to be 

mostly explained by disruption of expression of microphthalmia (Mitf). M itf is a 

basic helix-loop-helix/leucine zipper transcription factor, known to be required for 

development of eye and crest pigment cells in the mouse. Interestingly, the human
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disorder Waardenburg- Shah syndrome shows reduced enteric nervous system and 

reduced pigment cell number (Dutton et al., 2001).

An additional explanation for the reduction in melanocytes in rabla3 morphant 

embryos may be a defect in migration. A possible explanation for this defect in 

migration could be defective cell adhesion, since this has been shown to be required 

for cell migration (Ulrich et al., 2005). In chick, during delamination in neural crest 

cells, N-cadherin is down-regulated in migrating neural crest (Bronner-Fraser et al., 

1992; Nakagawa and Takeichi, 1995; Nakagawa and Takeichi, 1998), whilst 

cadherin-6B, which is expressed in the dorsal neural tube is also down-regulated 

(Nakagawa and Takeichi, 1995; Nakagawa and Takeichi, 1998). These expression 

patterns suggest that cadherins mediate strong cell contacts in the neuroepithelium 

and must be down-regulated for neural crest cells to become migratory (Halloran and 

Bemdt, 2003), suggesting a role for cadherins and cell adhesion in the distribution of 

melanophores. However, the zebrafish N-cadherin mutant, parachute, has no defects 

in pigmentation (Lele et al., 2002). The zebrafish mutant sparse encodes a type III 

receptor tyrosine kinase, kit, which is expressed in melanocytes and is required, cell 

autonomously, for melanocyte dispersal and migration from the neural tube (Parichy 

et al., 1999). The sparse mutant exhibits only half the normal complement of 

melanocytes (Kelsh et al., 1996; Nasevicius and Ekker, 2000; Odenthal et al., 1996).

The rabla3 MO injected embryos, in addition to showing reduced melanophore 

numbers, showed increased aggregation in the remaining melanophores. To ascertain 

whether the melanophores in theses embryos are unable to diffuse their 

meloanosomes, it would be interesting to place the rabla3 MO injected and control 

MO injected embryos into either caffine or adrenalin and compare: the aggregation 

of melanosomes can be achieved by addition of adrenalin, while dispersion can be 

achieved by addition of caffeine (Rodionov et al., 1998).
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4.1,2 Slowed Development

Four of the Rabs in the screen showed slowed development and were deformed as 

early as shield stage. Such early phenotypes could be down to problems with 

convergence extension and dorsoventral patterning or epiboly.

In the epiboly mutant hab, epiboly begins normally in the blastula and early gastrula 

stage but, by 70% to 80%, epiboly mutants begin to arrest and dissociate, with their 

blastoderm peeling off the yolk. When the zygotic and maternal genomes are 

heterozygous (ZMD) for hab, the embryos complete epiboly an hour after their wild 

type siblings (McFarland et al., 2005). In addition, morphogenesis of the neural tube 

is abnormal, with gaps forming in the midline during segmentation stages. At later 

stages, ectopic rows of neurons form in the widened spinal cord and hindbrain 

(McFarland et al., 2005). The hab mutant is caused by a mutation in the zebrafish 

homolog of the adhesion protein E-cadherin (Shimizu et al., 2005b). E-cadherin is 

required for the epiblast cells from the interior layer to sequentially move into the 

exterior layer, where they become restricted to that layer; and participate in subtle 

cell shape changes that further expand the blastoderm. In hab mutants, cells that 

intercalate into the exterior layer do not change cell shape or become restricted, with 

many of these cells moving back into the interior layer, hablE-cadherin is necessary 

for the cell rearrangements that spread the teleost blastoderm over the yolk (Shimizu 

et al., 2005b). Although the hab mutant shows slowed development, the phenotype is 

quite different from those observed in the slowed development rabs. The severest 

hab mutants died before 24hpf, with cells peeling off the yolk -  a phenotype not seen 

in any of the rab loss of function experiments in this chapter. The hab mutants also 

show asynchronous movement of cells down the yolk and a large streak of 

accumulated cells on one side of the embryo. In the rab loss of function embryos, 

this asynchronous movement is not evident and, although there is some cell 

accumulation in these embryos, it is not as extensive as in the hab mutants. This 

suggests that the phenotypes seen in rab loss of function are for the most part 

unlikely to be due to an effect on epiboly.
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The process of convergence and extension occurs during epiboly and it is thought 

that these movements must be interdependent, as epiboly is slowed in Xenopus laevis 

by treatments that block convergence (Hikasa et al., 2002).The zebrafish trilobite 

(tri) mutant, however, shows reduced convergence and extension movements, while 

epiboly and involution are not affected (Hammerschmidt et al., 1996a; Sepich et al., 

2000; Solnica-Krezel et al., 1996). Since convergence/extension cell movements 

contribute to lengthening of the embryo (Kimmel et al., 1995), the tri mutant embryo 

is shorter and its somites are wider than in a wild-type embryo. These mutant 

embryos show normal organizer formation, tissue patterning, and overall 

development (Sepich et al., 2000; Solnica-Krezel et al., 1996). The convergence 

movements of lateral cells in tri mutants are normal from shield through yolk plug 

closure, but are reduced, compared with wild-type, by the one somite stage (Sepich 

et al., 2000). A second convergence/extension mutant knypek is required for 

convergence movements of lateral cells and convergence extension movements of 

dorsal tissue. The mutants show reduced body length and a shortened malformed tail. 

The knypek gene product regulates cellular movements but not cell fate specification, 

with the convergent extension movement defects in knypek associated with abnormal 

cell polarity, as mutant cells fail to elongate and align medio-laterally. The knypek 

locus encodes a member of the glypican family of heparan sulfate proteoglycans. 

Glypican is required during vertebrate gastrulation, as a positive modulator of non- 

canonical Wnt signalling, to establish polarized cell behaviours, underlying 

convergent/extension movements (Topczewski et al., 2001). All of the rab loss of 

function experiements that showed slowed development also, showed reduced body 

length. rabla4 and rab 18 showed a more pronounced reduction than rab lla l, which 

is consistent with a defect in convergence and extension. The tri mutant showed 

thicker somites, whereas the somites in these rabs appeared normal thickness, 

although they were U-shaped rather than the chevron shape seen in controls. The tri 

mutant also showed convergence extension defects after the yolk plug closure stage, 

whereas the rab loss of function embryos showed defects in gastrulation at shield 

stage. Although both tri and knypek mutants show cyclopia, the head defects seen in 

the rab MO injected embryos are not consistent with this phenotype; they show a 

more severe phenotype, with smaller head and eye structures. This suggests that 

altered convergence and extension movement defects are either not responsible for
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the defects seen in these rab loss of function embryos or that they are accompanied 

by other defects.

Defects in epiboly and convergence/extension alone don’t explain the defects seen in 

these slow developing rab MO injected embryos but a combination of both factors 

may explain some of the phenotypes seen. The early arrest mutants such as zombie, 

spectre and speed bump show head defects similar to those seen in the rab MO 

injected embryos, in addition to a reduction in body axis and defects in the tail (Kane 

et al., 1996b). However, these arrest mutants do not arrest until 80% epiboly at the 

earliest, which is inconsistent with the slowed development in the rab MO injected 

embryos apparent at shield stage. Since Rab proteins are responsible for vesicle 

trafficking, it is possible that these rabs might be involved in both epiboly and 

convergence extension in addition to other as yet unknown process.

4,1.3 Hatching Gland

Zebrafish embryos hatch from their chorions, using a combination of processes. The 

osmotic pressure of the perivitelline fluid within the chorion increases, while the 

hatching gland releases enzymes that digest the chorion membrane. The chorion is 

thus weakened and the embryo can use muscular movements (eg. a flip of the tail), to 

release itself from the chorion (Buznikov and Ignat'Eva, 1958). Hatching gland cells 

produce secretory granules that contain the hatching enzyme. These secretory 

granules increase in number until the hatching gland disappears after hatching 

(Buznikov and Ignat'Eva, 1958)

In zebrafish, the hatching gland is composed of two cell populations: mesodermally 

derived hatching gland cells, which express the hatching gland gene (hgg), and 

ectodermally derived support cells (Kimmel et al., 1990). The hatching gland is 

derived from the polster, an accumulation of cells found anterior and below the 

forebrain of the embryo at tail bud stage. The polster, in turn, is derived from the 

anterior mesendoderm. Differentiation of the polster and, later, the hatching gland 

cells, is controlled by specific gene regulation, a process programmed early in 

embryogenesis (Inohaya et al., 1995; Inohaya et al., 1999). There are many genes
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expressed in the pre-polster, the best characterised of these is Cathepsin L {CatL or 

hggl), a protease secreted by the hatching gland. Also expressed in the pre-polster, is 

cyclase associated protein- 1 (Capl), which is thought to be required for the 

regulation of actin dynamics within pre-polster cells, influencing cell behaviour 

during the generation and migration of the polster (Daggett et al., 2004).

An important family of transcription factors in the formation of the polster are the 

zebrafish Kruppel-like factors (zKLF4). zKLF4 is a zinc finger family of 

transcription factors, expressed early during polster formation, which are required for 

further specification of the polster into the hatching gland (Kawahara and Dawid, 

2000; Kawahara and Dawid, 2001). KLF4 is one of the earliest markers of the polster 

and lateral plate mesoderm (LPM), and marks the fate of the hatching gland, blood, 

and vasculature (Amatruda and Zon, 1999; Oates et al., 2001), with zKLF4 having a 

critical role in erythroid cell differentiation in zebrafish (Kawahara and Dawid, 2000; 

Kawahara and Dawid, 2001). If zKLF4 is knocked-down, the hatching gland is 

absent and the embryos do not hatch (Gardiner et al., 2005), although the embryos 

were normal until this stage, including those cell types derived from the same parent, 

such as heart and anterior macrophages. If the embryos were manually 

dechorionated, they developed normally and survived into adulthood.

The four rab genes that showed a failure to hatch when knocked-down, also showed 

a variety of other phenotypes: most notably, pericardial oedema. It is possible 

thereofore that the hatching defect seen in these rab MO injected embryos is due to 

an effect on the polster or anterior mesoderm. It is, also, possible that these rabs 

affect specification of the hatching gland from the polster. However, due to the 

multitude of other phenotypes, it is unlikely that these rabs affect just the hatching 

gland cells. The rabllb2 MO injected showed the hatching gland cells to have 

accumulated at two points on the yolk, rather than the uniform stripe of cells seen in 

controls, suggesting a defect in the dispersal of the hatching gland cells. In addition, 

this accumulation of cells appeared to be dying, which could be due to a number of 

factors, including apoptosis due to the cells being mis-dispersed or hatching gland 

cells being poisoned by disrupted secretion. Three out of four of the MO injected 

rabs that showed the hatching defect were from the Rab 11 family. It is, therefore, 

possible that these Rabs may function in the same pathway.
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All of the rab MO injected embryos with hatching gland defects also showed defects 

in the tail structures, with rabllb l, rabllb2 and rab6a showing the severest defects. 

These tail defects could be responsible for the inability of MO injected embryos to 

hatch, since even with a fully functional hatching gland, the embryos would be 

unable to break their way out of the chorion as their tail movements would be 

compromised. It is, therefore, possible in such cases that the hatching gland has little 

to do with the inability to hatch. It is more likely, though, that there is a defect in the 

hatching gland in some, if not all, of the rab genes, especially rabllb2  MO injected 

embryos, which show an abnormal hatching gland. This defect in the hatching gland 

may then be aggravated by the defects in tail structure, resulting in the embryos 

inability to hatch. To establish if the reduction in hatching success is the result of 

defects in the hatching gland, expression of genes associated with the gland, such as 

hggl, could be assayed. While to establish if muscle defects in the tail could be 

responsible, phalloidan staining could be employed.

4.1.4 Swimming Defects

Many of the MO injected embryos showed some sort of tail defect and, therefore, 

had abnormal swimming behaviour. The rab28 MO injected embryos, however, 

appeared largely normal, compared to many of the other rab MO injected embryos in 

the screen. There was some brain cell death at 24hpf and, by 48hpf, pericardial 

oedema. However, the most striking defect was the modified swimming behaviour 

these embryos showed. Some of these MO injected embryos had kinked tails but 

many of them, other than a slightly shortened body axis, showed normal tail 

structures. The rab28 MO injected embryos swam in a circular pattern.

There are many possible explanations for the swimming defect in the rab28 MO 

injected fish, including muscle abnormalities, defects in the notochord, basement 

membrane or neuromuscular junctions and impaired balance.

Embryos with defects in neuromuscular junction usually show short swimming 

response, twitch once mutant embryos, when touched, respond with one or two
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swimming strokes, instead of an escape response. This response is called use- 

dependent fatigue and has been shown to be a consequence of a mutation in the 

tetratricopeptide domain of muscle rapsyn. This mutation inhibits the formation of 

subsynaptic acetylcholine receptor clusters. This loss of receptor clusters results in 

reduced synaptic strength, is augmented by a postsynaptic depression not seen at 

normal neuromuscular junctions, and results in use-dependent muscle fatigue (Ono et 

al., 2002). The shocked (sho) mutant also exhibits an aborted escape response 

(Granato et al., 1996). shocked (sho) is a mutation which causes motor deficits 

attributable to CNS defects. Mutant embryos display reduced spontaneous coiling of 

the trunk, diminished escape responses when touched, and an absence of swimming. 

The shocked mutant shows a mutation in the slc6a9 gene that encodes a glycine 

transporter (GlyTl). glytl is expressed in the hindbrain and spinal cord, which are 

regions known to be required for generation of early locomotory behaviours (Cui et 

al., 2005). A lack of muscle acetylcholinesterase in the mutant ache shows slowed 

synaptic current and so sustained contractions on both sides of the tail (Behra et al.,

2002). Embryos with muscle defects, such as dystroglycan MO injected embryos, 

respond to touch but appear to be less flexible than controls. By 48 hpf, dystroglycan 

MO injected embryos are curved and dystrophic, compared with controls, and move 

in an uncoordinated fashion (Parsons et al., 2002b). In lama2 MO injected embryos, 

there is defective organisation of the muscle tissue and they responded poorly to 

touch, with uncoordinated movements (Parsons et al., 2002b). None of these defects 

show comparable swiming behaviour to that seen in the rab28 MO injected embryos, 

suggesting the neuromuscular junction, notochord or muscle tissue may not be 

responsible for the defective swimming behaviour seen in these MO injected 

embryos. In order to ascertain if this is the case, expression of genes required for 

notochord, such as laminins or coatomers, could be assayed, while defects in muscle 

structure can be investigated by phalloidin. Defects in the neuromuscular junction 

could be identified by expression analysis of neuronal markers and by 

pharmaceutical methods, such as addition of acetylcholinesterase inhibitors.

Fish with defects in balance show characteristic swimming behaviour, with the fish 

swimming in circular motions, resulting in the name “circler” mutants (Nicolson et 

al., 1998). The causes of balance defects include defects in ear and the lateral line. 

The inner ear contains two macular organs, the saccule and utricle, which are found
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in all vertebrates. The saccule and utricle are pouch-like vestibules which contain a 

bed of hair cells coupled to calcium carbonate crystals. In fish, the crystals coalesce 

to form a single large polycrystalline mass called an otolith. Forces that result in the 

movement of the otolith are transduced to the underlying hair bundles (Nicolson, 

2005), with defects in the otoliths or the hair cells causing defects in balance. The 

gene starmaker is needed for otolith formation. Knocking down this gene results in a 

small fraction of MO injected embryos displayed circling behaviour (Sollner et al.,

2003). Defects in hair cells in zebrafish can affect both the ear and the lateral line, 

since the lateral line is a system of superficial canal hair cells that detects water 

movements. Glial cells have been implicated in preventing premature development 

of lateral line hair cells (Grant et al., 2005; Lopez-Schier and Hudspeth, 2005). The 

swimming defect in these rab28 MO injected embryos seems quite similar to the 

defects seen in fish with ear or balance defects. This does not though explain the 

oedematous region around the heart.

Defects in hair cells could result from defects in all forms of cilia. Monocilia have 

been proposed to establish the left-right (LR) body axis in vertebrate embryos by 

creating a directional fluid flow that triggers asymmetric gene expression. Cilia 

inside Kupffer’s vesicle are motile and create a directional fluid flow just prior to the 

onset of asymmetric gene expression in lateral cells. Ciliated KV cells are required 

during early somitogenesis for subsequent LR patterning in the brain, heart and gut 

(Essner et al., 2005). This may explain the brain heart and swimming abnormalities.

4.1.5 Non-Specific Defects

The compex defects seen in the two rab MO injected embryos in this group, such as 

brain cell death, oedema and tail defects, were also seen in many of the other MO 

injected embryos. The brain and tail structures are under the control of many 

pathways. Therefore, it is difficult to ascertain which pathways have been disrupted 

by these rabs being knocked-down. It is necessary to look at the data obtained for 

homologues of these rabs in other models
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Amoung the first rab genes uncovered in rat brain was the homologue of ytpl, rabl. 

There have now been two mammalian rabl genes identified rab la  and rablb. Both 

mammalian rabl genes have been suggested to regulate transport of cargo between 

the ER and the Golgi apparatus (Palokangas et al., 1998; Plutner et al., 1991; 

Sannerud et al., 2003; Tisdale et al., 1992). Rabl in rat brain is seen in neuroblasts 

and glioblasts (Ayala et al., 1989). This expression may explain the cell death death 

seen in rabla2 MO injected embryos, in addition to that seen in rabla4 and rablal. 

Interestingly, in yeast, Yptlp associates with cytoplasmic a-synuclein and elevated 

expression of Rabl, protected against a-synuclein induced dopaminergic neuron loss 

in animal models of Parkinsons disease (Cooper et al., 2006).

Rab la and Rablb have been found to be highly expressed in human cardiac tissue. In 

addition, Rablb has been shown to be highly expressed in murine cardiac tissue. 

Cardiac specific overexpression of Rab la in cardiac tissue of mice resulted in a 

dilated cardiomyopathy that resulted in premature death at six weeks of age. Rab la  

overexpression revealed that Golgi stacks and surrounding transitional vesicles were 

markedly enlarged. This shows a role for rabl in heart developmeant and may 

explain the pericardial oedema in rablal, rabla2 and rabla4. If the heart is 

defective in these MO injected embryos, circulation is reduced and oedema may 

result. However, there was no obvious defect, other than the oedema, in the heart of 

these rabl MO injected embryos but it is possible circulation may have been 

reduced.

In human cell tissue culture the inactive form of Rablb has been shown to block 

forward transport of cargo and induces Golgi disruption (Alvarez et al., 2003). The 

phenotype is analogous to that induced by brefeldin A (BFA) and causes resident 

Golgi proteins to relocate to the ER, as well as inducing redistribution of ER-Golgi 

intermediate compartment proteins. The COPI (Coatomer complex ) machinary was 

shown to be compromised by the release of beta-COP into the cytosol. Inactive 

Rablb is reversed by expressing known mediators of COPI recruitment suggesting 

that Rablb function influences COPI recruitment. Further evidence is provided by 

the finding that cells expressing the active form of Rablb are resistant to BFA. 

(Lazar et al., 1997). The notochord defect, seen in the rabla2 MO injected embryos, 

may be the the result of the rabla affecting COPI. The zebrafish mutants sneezy,
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happy, and dopey encode the a, (3 and p’ subunits of COPI. These mutants all show 

defects in their notochord. Coatomer activity is required for normal chordamesoderm 

differentiation, perinochordal basement membrane formation and pigmentation 

(Coutinho et al., 2004). Although associations have been seen for Rablb and COPI 

all zebrafish rabls share high sequences homology with both rabla and rablb. It is, 

therefore, possible that any of the zebrafish Rabls may function in a similar way to 

mammalian Rablb.

rab20 has been shown to be expressed in the kidney tubule and intestinal epithelial 

cells in mice (Curtis and Gluck, 2005). Electron microscopic studies have revealed 

that Rab20 is located on endocytic structures underlying the plasma membrane, 

suggesting that they play a role in endocytosis/recycling (Lutcke et al., 1994). 

However, this is the extent of the current knowlage on rab20. It is, therefore, difficult 

to discuss the mechanisms that could be involved in rab20 function and those that 

are defective in the rab20 MO injected embryos. This problem led Dr Matthew Clark 

to develop a small inexpensive microarray for the routine analysis of molecular 

phenotype. In the future, microarray analysis of this and the other rabs may provide 

valuable information on these lesser studied rabs as well as new insights into those 

that are better characterised.
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Chapter 5

Characterization of Zebrafish Rab5a2
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5.1 Introduction.

5.1.1 An introduction to the Rab5 family.

The rab5 family is the best characterized of all the rab families and has been 

identified as one of the core rabs (Bucci et al., 1992; Chavrier et al., 1990). The Rab5 

protein localizes to clathrin coated vesicles, early endosomes and the plasma 

membrane (Bucci et al., 1992). The protein is essential for in vitro homotypic fusion 

of early endosomes and is able to increase the rate of endocytosis in vivo when 

overexpressed (Gorvel et al., 1991; Gruenberg and Howell, 1989; Li and Stahl, 

1993). Original experiments done in mammalian cells assumed only one Rab5 and 

looked at the function of different parts of the protein (Kinsella and Maltese, 1991). 

Deletion of the entire C-terminal tetrapeptide motif CCSN abolished rab5 activity 

but deletion of only the last three residues showed residual rab5 activity. A mutant 

containing a 4-residue deletion from the N-terminus retained full activity while N- 

terminal deletion of 19 residues partially blocked rab5 activity (Bucci et al., 1992). 

An amino acid dominant negative Rab5 (N133L) inhibited endogenous Rab5 

activity, while a constitutively activate Rab5 (Q79L) had no effect on Rab5 activity 

(Bucci et al., 1992; Li and Stahl, 1993). In contrast, subsequent studies have shown 

that overexpression of constitutively active Rab5 causes dramatic enlargement of 

early endosomes (Stenmark et al., 1994). Overexpression of the wild-type rab5 

enhanced the rate of transferrin receptor internalisation, with rab5 mutants deficient 

for GTP binding inhibiting transferrin receptor uptake (Bucci et al., 1992). Taken 

together these results suggest that Rab5 activity is rate-limiting in the early endocytic 

pathway. Rab5 has a role in fusion of clathrin-coated vesicles to early endosomes. A 

cytosolic component containing Rab5-GDI is essential for the Rab5 clathrin-coated 

pits to sequester transferrin efficiently. Rab5-GDI has been shown to have a role in 

the earliest stages of the endocytic pathway and is a direct link between the processes 

of transport vesicle formation and the recruitment of components required for 

subsequent fusion reactions (Chavrier et al., 1992).

The original Rab5 has now been renamed Rab5a since the discovery of two separate 

highly similar genes, Rab5b and Rab5c (Singer-Kruger et al., 1994; Wilson and
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Wilson, 1992). Interestingly, in the yeast Saccharomyces cerevisiae, three highly 

related Rab5 proteins had already been isolated and named Ypt51p, Ypt52p, Ypt53p 

(Bucci et al., 1995). These three Rab5s colocalize at the plasma membrane and early 

endosomes with Rab5b and Rab5c stimulating early endosome fusion in vitro and 

transferrin endocytosis in vivo. The ability of Rab5a to regulate transport in the early 

endocytic pathway is shared by the Rab5b and Rab5c genes with all three proteins 

being ubiquitously expressed. It has been suggested that the presence of three Rab5 

genes may reflect an evolutionary need to ensure Rab5 function even in the presence 

of a harmful mutation (Chiariello et al., 1999). Alternatively each gene could fulfill a 

distinct role and be responsible for fine regulation of the early endocytic pathway 

(Chiariello et al., 1999). The latter hypothesis is supported by recent work showing 

that all the Rab5 genes are differentially recognized by different kinases. Rab5a is 

efficiently phosphorylated by extracellular-regulated kinase 1 while cdc2 kinase 

preferentially phosphorylates Ser-123 of Rab5b. This differential phosphorylation by 

these kinases could specifically modulate the function of the different Rab5 genes in 

vivo (Christoforidis et al., 1999b).

Rab5 has a large diverse and complex group of interacting molecules, over 20 

polypeptides were isolated from bovine brain cytosol that interact both directly or 

indirectly with the GTP-bound form of Rab5 (Stenmark et al., 1995). The first Rab5 

effector identified was Rabaptin-5 which is essential for early endosome fusion 

(Lippe et al., 2001a; Lippe et al., 2001b). Rabaptin-5 forms a complex with Rabex-5, 

which catalyses nucleotide exchange on Rab5. When Rab5 is activated by Rabex-5, 

the Rabaptin-5-Rabex-5 complex induces its own membrane recruitment through 

Rabaptin-5 (Rybin et al., 1996). This positive-feedback loop counteracts GTP (Lippe 

et al., 2001a) which is thought to enrich active Rab5 on the membrane, a region 

where other Rab5 effectors are recruited (Christoforidis and Zerial, 2000; Lippe et 

al., 2001a; Lippe et al., 2001b). This localized clustering of activated Rab5 proteins 

is thought to regulate tethering machinery. GTP-bound Rab5 interacts with several 

other effectors, such as EEA1, Rabenosin5 (Christoforidis and Zerial, 2000), and 

hVps34 (Nielsen et al., 2000). EEA1 and Rabenosyn5 possess FYVE domains that 

bind to phosphatidylinositoBphosphate (PtdIns[3]P) (these have been shown also to 

be Rab5 effectors) (Bucci et al., 1992; Christoforidis et al., 1999b; Stenmark and 

Aasland, 1999) (Gonzalez-Gaitan et al., 1994). Binding of the FYVE domain to
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PtdIns(3)P, complete with interaction of Rab5, is responsible for specific targeting of 

these proteins to early endosomes.

5.1.2 Rab5 and its role in cell signalling

An important role for Rab5 has been identified in cell signalling. Strigini and Cohen 

proposed a role for Rab5 in planar transcytosis mediated spread of Wg in the 

drosophila imaginal disc (Strigini and Cohen, 2000) (section 1.2.6.2). However, 

more recent data using a temperature-sensitive dynamin mutant, shibire, in 

drosophila which blocks endocytosis suggests Wg spreads extracellularly (Marois et 

al., 2006). Wg is expressed in a stripe of cells straddling the dorsal-ventral boundary 

and forms a symmetrical gradient in dorsal and ventral compartments along the 

imaginal wing disk. When a dominant negative form of Rab5 was expressed in the 

dorsal compartment, initially Wg protein levels were elevated in dorsal tissue nearest 

the Wg-expressing cells but, as time progressed, large amounts of Wg invaded the 

entire dorsal compartment. The authors theorised that this spatial progression of Wg 

accumulation resulted from intervening tissue no longer internalizing Wg when 

endocytosis was disrupted. This suggested that Rab5-dependent endocytosis of Wg 

normally limits the range over which Wg spreads (Marois et al., 2006). In addition, 

transcription of both fz2  (a wingless receptor) and dip (a member of the glypicans 

which have been implicated in the movement of the morphogens Hh, Dpp and Wg) 

increases, while that of arrow (thought to be a wingless co-receptor) decreases 

rapidly (Marois et al., 2006).

5.1.3 Rab5 genes in zebrafish

There is very little literature on Rabs in zebrafish, with much of this done by Dr 

Isabel Campos for her PhD thesis (Campos, 2004) and Dr Mathew Clark (Clark, 

MD, pers. com.). There are two further publications on the zebrafish Rabs and in 

particular the Rab5 family, from the laboratories of Brand and Heisenberg at Max 

Planck Institute for Cell Biology (Scholpp and Brand, 2004; Ulrich et al., 2005). 

Scholpp and Brand (2004) investigated the control of signalling range of Fgf8 by
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endocytosis, while Ulrich, Krieg et al. (2005) investigated Rab5c in cell cohesion 

during gastrulation and the role of Wntl 1 (Ulrich et al., 2005).

5.1.3.1 Rab5 in the spread of Fgf8

Scholpp and Brand (2004) report that Rab5s function in endocytosis as regulators of 

FgfB spread. The data showed that FgfB colocalises with Rab5 in 54% of vesicles. 

Injection of a dominant-negative, form of the Fgf receptor XFD decreased 

internalization of FgfB (Amaya et al., 1993). This resulted in an accumulation of the 

FgfB protein around the receiving cells and detection of the FgfB protein at greater 

distances from the source, when compared to uninjected control embryos. When 

Rab5 function was disrupted by injecting RN-tre (a GAP), FgfB was absent from 

intracellular vesicles and accumulated extracellularly at a greater distance from the 

source. However, overexpression of Rab5 reduced the range of FgfB spreading and 

increased the size of the FgfB-positive intracellular compartments. Transplantation 

experiments showed that when cells injected with RN-tre were transplanted into 

control embryos near a source of Fgf8, host cells took up the protein, even if cells 

inhibited for Rab5 function were located between the source and the receiving cells. 

In these embryos, little extracellular Fgf8 accumulated, unlike embryos where all 

cells received RN-tre. In embryos where Rab5-overexpressing cells were 

transplanted, these cells showed an accumulation of FgfB, while cells that lay behind 

them were deficient of FgfB. In embryos injected with RN-tre, expression of Fgf8 

target genes spry4, pea3 and erm showed broadened expression compared to 

controls, knock down of rab5a2 also showed a broadened expression of spry4. 

Conversely, embryos injected with rab5a RNA showed a severe reduction in the 

induction of spry4. This paper has, therefore, suggested a restrictive clearance model 

for the spread of FgfB. Endocytosis serves to restrict spreading of FgfB protein away 

from the source, by clearing FgfB protein from the extracellular space via 

endocytosis, defining how far the protein is able to spread and determining the width 

of the target tissue responding to FgfB signalling. Given that FgfB and Rab5 only 

localizes in a percentrage of cases Scholpp and Brand suggested that the vesicles, 

which, didn’t co-localise with Rab5 might be destined for degradation (Scholpp and 

Brand, 2004), as FgfB was seen in the intracellular degradative pathway of receiving 

cells. Therefore, they argue that FgfB spreads extracellularly by a diffusion-based
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mechanism where target cells can actively influence the gradient through endocytosis 

and subsequent degradation, with the involvement of Fgf receptors (Scholpp and 

Brand, 2004).

5.1.3.2 Rab5c and its role in cell cohesion

Ulrich, Kreig et al (2005) used Rab5 and in, particular, Rab5c’s role in endocytosis, 

to elucidate the effect of Wntl 1 on cell cohesion during gastrulation. In particular, 

the study is concerned with Wntl 1 ’s role in controlling prechordal plate progenitor 

cell movements. Previous work by the authors had shown that prechordal plate in 

zebrafish is formed by a highly cohesive group of axial mesendodermal progenitor 

cells which move in a straight path from the germ ring toward the animal pole of the 

gastrula (Ulrich et al., 2003) and that E-cadherin-mediated cell cohesion is required 

for the coordinated movement of prechordal plate progenitor cells during zebrafish 

gastrulation (Montero et al., 2005). Ulrich et al. (2005) showed that in wild-type 

embryos, prechordal plate progenitors moved both toward the overlying epiblast cell 

layer and along it toward the animal pole. However, embryos lacking wntl 1 

(silberblick mutants (sib)) showed slower movement toward the animal pole with 

cells often moving in the opposite direction toward the vegetal pole, although cells 

moved normally towards the epiblast. The coherence of the prechordal plate 

progenitor cell movements at the onset of gastrulation were also reduced in slb/wntll 

mutants. The authors suggest that W ntll is required to align the movement of 

individual prechordal plate progenitors and that this alignment might represent a way 

by which W ntll efficiently coordinates prechordal plate progenitor movement 

toward the animal pole. In addition, the authors suggested that Wntl 1 might control 

alignment of prechordal plate progenitor movement by regulating the cohesion of 

these cells. In cell cultures, mutant for w ntll, large cell aggregates were reduced 

while small cell aggregates were increased when compared to wild-type. However, 

when E-cadherin was knocked-down in cultured wntH'A mutant cells showed no 

significant differences in aggregates while wild-type cells displayed an increase in 

small cell aggregates and a decrease in large cell aggregates, compared to wild-type 

cells with E-cadherin. Wntl 1 expression was, therefore, suggested to lead to changes 

in the subcellular localization of E-cadherin from the plasma membrane into 

cytoplasmic dots (Ulrich et al., 2005), these dots localized with injected mRNA YFP-
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fusion of the zebrafish Rab5c. W ntll overexpression was shown to lead to an 

increase in the proportion of Rab5c-positive endocytic E-cadherin vesicles as did the 

overexpression of a constitutively active form of rab5c-YFP in slb/wntll mutant 

embryos, rab5c MO injected embryos were shown to frequently have a posteriorly 

displaced and elongated prechordal plate at the end of gastrulation, phenocopying the 

slb/wntll mutant phenotype. However, slb/wntll mutant embryos, expressing da- 

rab5c-YFP, formed a prechordal plate that was wild-type in appearance, suggesting a 

rescue of the mutant phenotype. The de-adhesion forces needed to dissociate wild- 

type versus slb/wntll mutant cells from E-cadherin substrates were decreased, but 

could be rescued by expressing low amounts of w ntll mRNA. Similarly in rab5c 

MO injected cells there was a decrease in the de-adhesion forces when compared to 

wild type. The study suggests that Wntl 1 modulates E-cadherin dynamics through 

endocytosis and recycling. E-cadherin being partially, but not exclusively, required 

for W ntll control of mesendodermal cell cohesion, suggests a role for other 

adhesion molecules such as integrins.

5.1.3.3 The zebrafish rab5s

Dr Matthew Clark and Dr Isabel Campos have identified 4 zebrafish Rab5s; two 

Rab5as, Rab5b and Rab5c. Both Rab5as are in the zebrafish online resource zfin 

(www.zfin.org) - they are termed ‘Rab5a’ and ‘Rab5a like’. In Dr Campos’ thesis 

these Rabs are re-named Rab5al and Rab5a2 respectively (Campos, 2004). Embryos 

showed no obvious phenotype when rab5al was knocked-down by Dr Campos, 

however rab5a2 MO injected embryos showed a very striking gastrulation 

phenotype, the embryo showed no morphological organizer and died before the 

completion of epiboly (Figure 5.1.1). In addition, development is drastically slowed 

when control embryos reach 90% epiboly, compared to rab5a2 MO injected 

embryos, which only reach 50% epiboly. In cases where rab5a2 MO injected 

embryos reached 80-90% epiboly the blastoderm margin contracted and pinched off 

the yolk causing its contents to leak and the physiological environment surrounding 

the blastoderm cells to be disrupted resulting in death (Campos, 2004). rab5b MO 

injected embryos showed thinner and u-shape somites, forebrain defects and cell 

death in the brain (Campos, 2004). Finally, rab5c MO injected embryos showed a 

similar phenotype to embryos with depleted rab5b with u-shape somites, shortened
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tail, forebrain defects and cell death in the brain (Campos, 2004). The lack of 

morphological organizer in the rab5a2 MO injected embryos led Dr Campos to 

perform expression analysis for the nodals and their downstream markers. rab5a2 

MO injected embryos displayed a startling lack of expression of the nodals and a 

majority of their target genes. The MO injected embryos showed no sqt, eye, bik, gsc 

or flh expression and a severe reduction in ntl expression compared to control 

injected embryos (Figure 5.1.2). The dramatic early phenotype seen in rab5a2 MO 

injected embryos has, so far, only been seen following the depletion of this Rab, out 

of all the Rabs screened. Rab5a2’s phenotype and the dramatic loss of nodal 

signalling have led me to further investigate its function and, in particular, its role in 

nodal signalling.
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Control rab5a2 MO

Figure 5.1.1: Time series of 3ng rab5a2 MO injected embryos (B,D,F,H) 
compared with control injected embryos (A,C,E,G). Animal view (A) and side 
view (C) of control injected embryo at shield stage compared to animal view (B) 
and side view (D) of 3ng rab5a2 MO injected embryos at the same time point. 
Control injected embryos at 90% epiboly (E) compared to the same time point 
in the 3ng rab5a2 MO injected embryos (F). 8 somite stage control embryo (G) 
compared to 3ng rab5a2 MO injected embryo at the same time point (H). 
(Campos, 2004)
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Control MO Rab5a2 MO

Figure 5.1.2: Comparison of ish expression patterns for sqt, eye, gsc flh  bik and 
ntl in shield stage control MO injected (left column) and shield stage 3ng rab5a2 
MO injected embryos (right column)(Campos, 2004).
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5.2 Reproducibility and further analysis of the Rab5a2 
loss of function phenotype.

To characterize Rab5a2, first, it was necessary to check the reproducibility of the loss 

of function phenotype and the nodal expression pattern seen in the rab5a2 MO 

injected embryos. Following this, it was necessary to look more closely at this 

expression pattern in order to ascertain if there is a temporal element to the 

expression pattern seen in the rab5a2 MO injected embryos. In addition it would be 

interesting to investigate whether the loss of Nodal signalling was due to maternal or 

zygotic transcripts. Finally, in all other systems that have been studied Rab5a 

localized to endosomes and has been shown to be responsible for clatherin-mediated 

endocytosis (Bucci et al., 1995; Bucci et al., 1992; Gorvel et al., 1991). It was 

therefore important to investigate Rab5a2s effect on other endocytic pathways, and, 

for this, the role of endocytosis in epiboly was studied.

The rab5a2 MO injected embryos (rab5a2 MO injected embryos) are throughout this 

study compared to lOng of control MO injected embryos. This control MO is the 

rab5a2 MO containing a five base mismatch.

5.2.1 Reproducing the loss of function phenotype

Using the MO designed by Dr Campos, at the dose used in the original 

investigations, 3ng of rab5a2 MO was injected and compared to control MO injected 

embryos. Since the rab5a2 MO injected embryos showed no phenotype, the dose 

was increased until an effect was observed. At 5ng of rab5a2 MO, all embryos died 

before completing epiboly (n = 47), while at 4ng of MO they all appeared similar to 

control MO injected embryos (n = 44). When the dose was increased still further to 

6ng, the rab5a2 MO injected embryos died between 30% and 50% epiboly (n = 

41/45). In the 5ng rab5a2 MO injected embryos, at approximately 30% epiboly, fluid 

appeared to accumulate between the blastoderm cells and the yolk (Figure 5.2.1) this 

was not seen in control MO injected embryos. In the 6ng rab5a2 MO injected 

embryos, this build-up of fluid up, occurred at the earlier stage of approximately 10% 

epiboly and was more pronounced. In the control MO injected embryos, the cells
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appeared as a smooth blastoderm covering the yolk cell, in the rab5a2 MO injected 

embryos, the cells appeared to have a substantially rougher blastoderm with cells 

appearing as a less cohesive group. Finally the rab5a2 MO injected embryos, as 

described by Dr Campos, showed substantial developmental delay, compared to 

control MO injected embryos (Figure 5.2.1).

Figure 5.2.1: Control embryo at 70% epiboly (A) compared to 5ng rabSa2 MO 
injected embryo at the same time point (B) and control embryo at shield stage 
(C). Arrow in B indicates the apparent build-up of fluid between the yolk and 
the cells.

5.2.2 Reproducibility of the expression patterns of nodal and nodal- 

responsive genes in rab5a2 MO injected embryos.

To reproduce the expression patterns of the nodals and the nodal-responsive genes in 

the rab5a2 MO injected embryos, embryos were injected with either 5ng of rab5a2 

MO or lOng of control MO and fixed at 50% epiboly. The rab5a2 MO injected 

embryos showed no expression of the downstream nodal markers gsc or flh  and 

reduced expression of ntl and bhik. They also showed no expression of eye (Figure

5.2.2). As with Dr Campos’ data, it was difficult to see sqt staining in the control 

embryos, so it is difficult to determine whether sqt expression is reduced in the MO 

injected embryos (Figure 5.2.2). Using a higher dose (6ng) of rab5a2, the effect of 

the MO was to visibly abolish the bhik and ntl staining in addition to that of gsc and

B c

flh.
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Control rab5a2 MO

sqt

eye
I

gsc

flh

Figure 5.2.2: Animal view of expression patterns of the nodals and nodal- 
responsive genes in shield stage control MO injected and 5ng of rab5a2 MO 
injected embryos.
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5.2.3 Further analysis o f the loss offunction phenotype

To establish whether the loss of nodal signalling is time and dose dependent, 

embryos were injected with either 2ng, 5ng or 8ng of rab5a2 MO and along with 

lOng control morpholino injected embryos were fixed at four time points (30%, 50%, 

70% and 90% epiboly). Subsequently, expression patterns of gsc and ntl were 

examined. These two genes are induced by differing doses of nodal so should 

provide an accurate picture of Nodal signalling at these time points. Furthermore, the 

expression pattern of the dorsal marker chordin was recorded, to investigate if nodal 

signalling alone was affected, or whether the effect relates to the establishment of 

dorsal in general.

Figure 5.2.3: Graph showing the percentage of embryos that showed a reduction 
in expression of gsc at either 2ng, 5ng or 8ng of rab5a2 MO and at 30%, 50%, 
70% and 90% epiboly stages.

gsc
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chd

ll 120

1

Figure 5.2.4: Graph
showing the percentage 
of embryos that 
showed a reduction in 
expression of chd at 
either 2ng, 5ng or 8ng 
of rab5a2 MO and at 
30%, 50%, 70% and 
90% epiboly stages.

ntl

Figure 5.2.5: Graph
showing the percentage 
of embryos that 
showed a reduction in 
expression of ntl at 
either 2ng, 5ng or 8ng 
of rab5a2 MO and at 
30%, 50%, 70% and 
90% epiboly stages.
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The expression of gsc in the 2ng MO injected embryos was reduced in 45-65% of the 

embryos between 30-90% epiboly. However the number of embryos showing a 

reduction in gsc expression fell to only 15% at 50% epiboly (Figure 5.2.3). 

Increasing the dose of MO to 5ng resulted in between 55-85% of the embryos 

showing a reduction in gsc expression between 30-90% epiboly (Figure 5.2.3). At the 

highest dose of morpholino all the 30% and 50% epiboly embryos showed a decrease 

in gsc, however, by 70% epiboly all the 8ng embryos were dead (Figure 5.2.3).

The expression of ntl in all the rab5a2 MO injected embryos was variable. The 2ng 

MO injected embryos showed a reduction in ntl expression of 65% at 30% epiboly. 

At 50% epiboly no embryos showed an obvious reduction in ntl expression, at 70% 

79% of embryos showed reduced expression while at 90% epiboly only 23% of 

embryos showed a reduction in ntl expression (Figure 5.2.5). Increasing the dose to 

5ng resulted in between 50-85% of embryos showing a reduction in ntl expression 

between 30-90% epiboly. However, at 50% epiboly the number of embryos that 

showed reduced ntl expression had fallen to just 3% (Figure 5.2.5). Increasing the 

dose still further resulted in 88% and 57% of the embryos showing reduced 

expression of ntl at 30% and 50% epiboly respectively. At 70% and 90% all the 8ng 

rab5a2 MO injected embryos had died (Figure 5.2.5).

The expression of chd in the 2ng rab5a2 MO injected embryos was reduced in 

between 25-50% of the embryos between 30-90% epiboly (Figure 5.2.4). When the 

dose of the MO was increased to 5ng between 70-90% of the MO injected embryos 

showed a reduction in chd expression at between 30-90% epiboly (Figure 5.2.4). 

When the dose of rab5a2 MO was increased still further all of the embryos showed a 

reduction in chd expression at 50% and 30% epiboly stages. However at 70% 

epiboly and 90% epiboly all the embryos had died (Figure 5.2.4).
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5.2.4 Maternal verses zygotic

The early phenotype of the rab5a2 MO injected embryos and the ubiquitous 

expression pattern of rab5a2 seen as early as the one cell stage (zfin) suggests that 

maternal rab5a2 plays an important role in zebrafish development. In order to 

ascertain whether this is the case a splice MO was designed, this straddles a splice 

site of the gene of interest and so binds, in part, to the intronic and, in part, to the 

exonic section of the gene. This ensures that the MO only binds to transcripts that 

have not yet been spliced, such as zygotic transcripts (Draper et al., 2001).

Embryos were injected with either lOng of rab5a2 splice MO or lOng of control 

MO. At shield stage the rab5a2 splice MO injected embryos were comparable to 

controls showing a visible organizer unlike the rab5a2 morpholino injected embryos. 

However by 24hpf the rab5a2 splice MO injected embryos appeared as an 

accumulation of dead cells on top of the yolk (Figure 5.2.6).

4 T
A B

Figure 5.2.6: Lateral view of 24hpf embryos: control MO injected embryo (A) 
compared to 8ng rab5a2 splice MO injected embryo (B).

Although the rab5a2 splice MO injected embryos had showed massive cell death at 

24hpf at shield stage they had a visible organizer, it was therefore necessary to look 

at the expression pattern of the nodal responsive genes ntl, bik and gsc and the dorsal 

marker chd. The rab5a2 splice MO injected embryos and control MO injected
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embryos were fixed at 50% epiboly. Analysis of the expression patterns for gsc, ntl 

and chd in the splice MO injected embryos showed them to be similar to those seen 

in the controls (Figure 5.2.7). bik expression however appeared slightly reduced in 

the splice MO injected embryos (n = 10/12).

bik

gsc

ntl

chd

Figure 5.2.7: Animal views of shield stage embryos: gsc, ntl, chd and bik expression 
in control MO injected embryos on the left compared to lOng rab5a2 splice MO 
injected embryos on the right

Control rab5a2 splice MO
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5.2.5 The effect o f loss ofRab5a2 function on epiboly movements

Epiboly in zebrafish is considered, in part, an endocytic event (Betchaku and 

Trinkaus, 1986). Therefore, to ascertain whether the phenotype seen in rab5a2 MO 

injected embryos is, in some part, due to its effect on the role of endocytosis during 

epiboly, the epiboly movements of rab5a2 MO injected embryos were compared 

with those of controls, at three different time points of epiboly. The embryos were 

placed in lx Danieau solution, containing 5mg/ml biotinylated dextran (10,000mw), 

at dome stage (start of epiboly), 30% epiboly and shield stage for 15 minutes, they 

were then washed three times in lx Danieau solution and immediately fixed in 4% 

PFA. Once fixed, the embryos were stained for biotin (Solnica-Krezel et al., 1994). 

The control MO injected embryos, at dome stage and 30% epiboly, all showed a ring 

of staining around the leading edge of the blastoderm (Figure 5.2.8). At shield stage, 

this staining formed more of a gradient moving from the dorsal to ventral side of the 

embryo. The rab5a2 MO injected embryos showed very little staining at dome stage 

(n = 13/17) and even less staining at 30% (n = 12/13). There was no staining seen in 

the rab5a2 MO injected embryos at shield stage (n = 14/15) (Figure 5.2.8).

The rab5a2 MO injected embryos showed defects in endocytosis however epiboly 

did proceed but at a slower pace and did not complete. This suggested that the 

microtubules in the yolk were unaffected and were responsible for epiboly 

proceeding as far as it did. Cold shock depolarizes microtubules therefore 5ng 

rab5a2 MO injected embryos and control MO injected embryos were placed at 20°C 

and monitored overnight. The control embryos developed normally (n =16/16) but 

with some developmental delay whereas the rab5a2 MO injected embryos arrested 

and died at sphere stage to very early epiboly (n = 14/14) (Figure 5.2.9, supplemental 

movie 5.2.9). The rab5a2 MO injected siblings that were incubated at 28°C died at 

the later stage of 70% epiboly while the control MO injected siblings incubated at 

28°C developed normally.
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Control - Dome Stage r5a2 MO - Dome Stage

Control - 30% Epiboly r5a2 MO - 30% Epiboly

Control - Shield Stage r5a2 MO - Shield Stage

Figure 5.2.8: The right column shows the effect of 5ng of rab5a2 on different stages of epiboly when 
compared with control MO injected embryos in the left column.
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3hpf

7.5hpf

12.5hpf

14hpf

Figure 5.2.9: A time series of embryos cold shocked at 20°C: 3hpf control MO 
injected embryos (A) compared to rab5a2 MO injected embryos (B). 7.5hpf 
control MO injected embryos (C) compared to rab5a2 MO injected embryos 
(D). 12.5hpf control MO injected embryos (E) compared to rab5a2 MO injected 
embryos (F). 14hpf control MO injected embryos (G) compared to rab5a2 MO 
injected embryos (H).

Control rab5a2 MO
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5.3 Analysis of overexpression of Rab5a2

5.3.1 Rab5a2 overexpression

Wild type rab5a2 mRNA was overexpressed in wild type embryos by injecting 1.5ng 

of rab5a2 capped mRNA. At 40-50% epiboly, an accumulation of cells became 

apparent on the animal pole of approximately one third of the rab5a2 overexpressing 

embryos (n = 14/41). In the remaining rab5a2 overexpressing embryos, the organiser 

appeared larger (n = 27/41), when compared with MO buffer injected embryos 

(Figure 5.3.1). The rab5a2 overexpressing embryos then appeared to arrest for 

approximately one hour, during which time either the accumulation of cells on the 

animal pole disappeared, or the enlarged organiser reduced in size and the embryo 

became what appeared phenotypically wild type (n = 41/41). At 24hpf, 

approximately two thirds of the rab5a2 overexpressing embryos appeared similar to 

MO buffer injected embryos, except for an enlarged yolk extension (n = 27/39). The 

remaining third had a reduced body axis and reduced head size (n = 12/39). By 5dpf, 

all the rab5a2 overexpressing embryos show a severely shortened body axis and 

thicker, less extended yolks (n = 38/38), compared to MO buffer injected embryos 

(Figure 5.3.1).

5.3.2 Nodal markers expression pattern in Rab5a2 overexpressing 
embryos

To establish whether overexpression of rab5a2 affected the expression pattern of 

nodal markers, embryos were fixed at shield stage and stained for bik, ntl, gsc and 

chd expression by in situ hybridization. In both the MO buffer injected embryos and 

the rab5a2 overexpressing embryos, the bik expression patterns were similar (Figure

5.3.2). A similar expression pattern between MO buffer injected embryos and rab5a2 

overexpressing embryos was also seen for ntl. There appeared to be a small 

difference in the expression pattern of chd, with the rab5a2 overexpressing embryos 

showing chd expression encroaching into the ventral region more than in MO buffer 

injected embryos (Figure 5.3.2). There was a substantial difference in gsc expression 

pattern between the MO buffer injected embryos and the rab5a2 overexpressing
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embryos. The rab5a2 overexpressing embryos showed the same gsc expression 

pattern as the MO buffer injected embryos on the dorsal side of the embryo but in 

addition there was gsc expression on the animal pole closest to the ventral side of the 

embryo (Figure 5.3.2). This expression was not seen in the MO buffer injected 

embryo (Figure 5.3.2) and was stronger than the dorsal expression seen in these 

embryos.

To further analyse this result, rab5a2 overexpressing embryos and MO buffer 

injected embryos were fixed at 30%, 50%, 70% and 90% epiboly so that the 

expression pattern of chd, ntl and gsc could be followed over time. At 30% epiboly, 

the rab5a2 overexpressing embryo showed expression of gsc in the ventral region, in 

addition to its usual dorsal expression. This additional expression pattern was seen in 

83% of the embryos (n = 10/12). Interestingly, at this stage ntl expression in the 

rab5a2 overexpressing embryos shows spots of staining in the animal pole, 

compared to the marginal expression observed in the MO buffer injected embryos. 

This expression of ntl was seen strongly in 50% (n = 6/12) of the rab5a2 

overexpressing embryos, with a further 17% exhibiting weaker staining (n = 2/12) 

(Figure 5.3.3). At 50% epiboly 73% of the rab5a2 overexpressing embryos (n = 

8/11) show strong additional staining in the animal pole of embryos stained for gsc 

expression, while 18% of the experimental embryos showed fainter (n = 2/11), 

additional gsc staining. At this stage, most of the embryos, stained for ntl expression, 

showed no additional staining (n = 11/12). However 67% of rab5a2 RNA injected 

embryos (n = 8/12) showed ntl staining which began to encroach on the animal pole 

from its marginal domain, showing a thicker band of staining round the embryo than 

is seen in MO buffer injected embryo (Figure 5.3.3).
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Figure 5.3.1: A shield stage 1.5ng rab5a2 overexpressing embryo compared to shield stage MO buffer injected embryo. Lateral 
view of 24hpf 1.5ng rab5a2 overexpressing embryo compared to 24hpf MO buffer injected embryo. Lateral view of 5dpf 1.5ng 
rab5a2 overexpressing embryo compared to 48hpf MO buffer injected embryo
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Control

bik

gsc

ntl

chd

Figure 5.3.2: Animal view of expression patterns of the nodal and dorsal 
markers in control injected and rab5a2 overexpression embryos at shield 
stage.
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At 70% epiboly, 39% of rab5a2 RNA injected embryos show strong additional gsc 

expression in the animal pole (n = 5/13), while 23% show weak additional gsc 

expression (n = 3/13) when compared to MO buffer injected embryos (Figure 5.3.3). 

ntl expression at this stage in rab5a2 RNA injected embryos is seen in the margin 

comparable with MO buffer injected embryos. In addition, there is strong staining in 

the animal pole in 39% of the experimental embryos (n = 5/13), with similar but 

weaker staining seen in another 31% of experimental embryos (n = 4/13) (Figure

5.3.3). The 90% epiboly rab5a2 RNA injected embryos continue to show 

mislocalized expression of both gsc and ntl with additional staining when compared 

to MO buffer injected embryos (Figure 5.3.3). At this stage, the number of embryos 

that have this unusual gsc staining has fallen to 50% (n = 5/10) while those that have 

the strong unusual ntl staining remains at around 70% (n = 7/10). The chd expression 

pattern is unchanged in experimental embryos, compared to the MO buffer injected 

embryos in 30% (n = 12), 50% (n = 11), 70% (n = 10) and 90% (n = 10) epiboly. 

However, the strength of this expression appears stronger in rab5a2 RNA injected 

embryos compared to MO buffer injected embryos at the 70% (n = 10/10) and 90% 

(n = 10/10) epiboly stages (Figure 5.3.3).
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Figure 5.3.3: Showing the expression patterns of gsc, ntl and chd in control and Rab5a2 overexpressing embryos at 30%, 
50%, 70% and 90% epiboly. gsc expressing embryos are shown as animal pole views as are 30% epiboly ntl expressing 
embryos and 30% and 50% chd expressing embryos. The remainder of the embryos are shown as a side view for 
improved visualisation of expression patterns
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5.3.3 The effect o f constitutively active Rab5a2 on the zebrafish 
embryo

Much of the experimental work described in the literature describes the use of a 

constitutively active version of Rab5 for overexpression experiments. O ne base 

change in the injected RNA ensures that the Rab is locked in its GTP-bound form 

and so constantly active. The dose of wild-type rab5a2 RNA, needed to elucidate an 

overexpression phenotype was high; this is due to the many regulators of Rab 

function found in vivo eg. GAP, GDI etc. In order to overexpress wild type Rab 

protein, these regulators must be overcome by superior numbers of R ab protein. 

However, injection of constitutively active rab5a2 RNA (da-rab5a2 R N A ) would 

not require such a large dose of RNA as it is locked in the GTP-bound form  and, 

therefore, would be little affected by regulatory factors. Embryos injected with 

increasing doses of the da-rab5a2 RNA were examined.
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Figure 5.3.4: Comparison of different doses of da-rab5a2 RNA and the effect it 
has on 24hpf embryos.
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Injection of lOpg of constitutively active rab5a2 RNA resulted in no phenotype 

being observed (n = 10/10, n2 = 28/28) and the embryos were comparable with MO 

buffer injected embryos (n = 51/51) (Figure 5.3.4). Injection of 50pg of da-rab5a2 

RNA showed a small percentage of embryos with a phenotype similar to that seen in 

wild-type rab5a2 RNA injected embryos (nl = 1/39, n2 = 1/15), however, 

approximately 39% died (nl = 2/39, n2 = 11/15), while the remainder looked normal 

(nl = 36/39, n2 = 3/15). When the dose of da-rab5a2 RNA was increased to 75pg, 

again, only a small percentage, approximately 4% (nl = 7/85, n2 = 0/19), showed a 

phenotype similar to the wild type rab5a2 RNA overexpression, while 40% of the 

da-rab5a2 overexpressing embryos died (nl = 67/85, n2 = 0/19 ). At lOOpg over 

70% of the da-rab5a2 RNA injected embryos died (nl = 86/91, n2 = 11/23), with 

only 8% showing a wild type rab5a2 RNA overexpression phenotype (nl = 0/91, n2 

= 4/23) (Figure 5.3.4). Although the percentage of embryos showing a phenotype 

seemed to increase in relation to the percentage of normal embryos, the actual 

number that survived became smaller. This reduction in viable embryo numbers, 

coupled with the fact that constitutively active rab RNA has been artificially 

modified, resulted in the decision not to use this da-rab5a2 RNA for further studies 

but to use the wild type rab5a2 RNA.
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5.4 The effect of Rab5a2 on exogenous Nodal 
signalling

Examining the effect of Rab5a2 on exogenous nodal signalling enables the events 

that induce nodal signalling in the developing embryo to be separated from those that 

transport the nodal signal. Squint has been proposed as a morphogen (Chen and 

Schier 2001) acting directly on target cells over a distance while Cyclops signals in a 

more localized manner, because of these difference in signalling action it is 

important to look at both of these nodal proteins. To examine the role of exogenous 

nodal signalling, RNA encoding either sqt or eye was injected, along with the lineage 

label biotinylated-dextran into a single cell at the centre of the animal pole of 

embryos at the 128 cell stage. These embryos were allowed to develop for three 

hours and then fixed for ntl and gsc expression analysis. The daughter cells of the 

original injected cell will all produce the nodal signal derived from the RNA with 

which the original cell was injected. These daughter cells will also stain for 

biotinylated-dextran allowing accurate visualisation of those cells producing the 

nodal signal. Injection into the middle of the animal pole avoids the exogenous 

produced gsc or ntl expression from encroaching on the area of the embryo where 

endogenous expression of gsc or ntl is evident. These single cell injections were 

performed into embryos injected at the one cell stage with either a control MO, 5ng 

of rab5a2 MO or 1.5ng of rab5a2 RNA.

5.4.1 Injection o f 5pg o f squint into a single cell of 128 cell stage 

embryo

Control MO injected embryos showed gsc expression close to the cells producing Sqt 

(Figure 5.4.1) (n = 15/19) with possible faint expression in an additional three 

embryos (n = 3/19). The rab5a2 MO injected embryos showed a considerably fainter 

but broader band of gsc expression (n = 8/10) (Figure 5.4.1). In embryos 

overexpressing rab5a2 gsc expression was similar to that seen in control embryos (n 

= 6/12) with faint expression in an additional four embryos (Figure 5.4.1). Control 

MO injected embryos showed expression of ntl in a broad ring around the Sqt
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producing cells (n = 25/25) (Figure 5.4.1). The rab5a2 MO injected embryos showed 

reduced intensity of expression of ntl (n = 4/14), whilst there was very faint possible 

expression in an additional seven embryos (Figure 5.4.1). In embryos overexpressing 

Rab5a2, there was strong ntl expression, similar to that seen in control embryos 

(n=7/8) (Figure 5.4.1).

Control rab5a2 MO rab5a2 RNA

Figure 5.4.1: Showing the expression of gsc and ntl in control, rab5a2 MO and 
rab5a2 RNA injected embryos when 5pg of sqt RNA are injected into the 
animal pole of 128 cell stage embryos (where blue is gsc or ntl expression and 
brown the cells injected with sqt RNA).

5.4.2 Injection o f lOpg o f squint into a single cell of 128 cell stage 

embryo

Control injected embryos showed exogenous gsc expression close to the cells 

producing the Sqt signal (n = 7/11) (Figure 5.4.2) with reduced expression in the 

remainder, ntl expression in the control embryos was seen as a thick band 

surrounding the Sqt producing cells (n = 7/8) with reduced expression in the 

remaining embryo. The rab5a2 MO injected embryos showed a broad band of faint 

gsc expression (n = 3/12), while some embryos showed very faint staining (n =2/12).
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However, over half of the embryos showed no gsc expression (n = 7/12). The rab5a2 

MO injected embryos showed faint ntl expression (n = 5/21) an additional eight 

embryos showed very faint to no expression whilst the remaining eight showed no 

staining (Figure 5.4.2). Exogenous gsc expression in rab5a2 overexpressing cells 

was comparable to control exogenous expression of gsc in (n =10/13). The remaining 

three embryos showed no gsc expression. Exogenous expression of ntl in the rab5a2 

overexpressing embryos showed expression comparable to controls (n = 12/21) with 

reduced expression in an additional seven embryos. The remaining embryos showed 

no ntl expression (Figure 5.4.2).

R ab5a2 RNA

Figure 5.4.2: Showing the expression of gsc and ntl in control, rab5a2 MO and 
rab5a2 RNA injected embryos when lOpg of sqt RNA are injected into the 
animal pole of 128 cell stage embryos (where blue is gsc or ntl expression and 
brown the cells injected with sqt RNA).

C ontrol
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5.4.3 Injection of 7pg of cyclops into a single cell of 128 cell stage 

embryo

Control MO injected embryos showed gsc expression close to the cells producing 

Cyclops (n = 7/10) (Figure 5.4.3) with fainter staining in an additional three 

embryos. The rab5a2 MO injected embryos showed a fainter expression of gsc than 

in controls (n = 6/19), with the remainder showing no staining (n = 13/19). rab5a2 

overexpressing embryos showed no expression of gsc in half of the embryos (n = 

6/12), three embryos showed expression comparable to controls while the last three 

showed faint expression (Figure 5.4.3). Control injected embryos showed a band of 

ntl expression thinly round the Cyclops producing cells (n = 8/9). rab5a2 MO 

injected embryos showed no ntl expression in nearly half the embryos (n = 7/15) 

while four showed possible very faint staining and the remainder showed ntl 

expression comparable with controls. The rab5a2 overexpressing embryos showed 

ntl expression comparable to controls in the majority of embryos (n = 10/14) with the 

remaining four showing no visible ntl expression (Figure 5.4.3).

Control rab5a2 Mo rab5a2 RNA

Figure 5.4.3: Showing the expression of gsc and ntl in control, rab5a2 MO and 
rab5a2 RNA injected embryos when 7pg of eye RNA are injected into the animal 
pole of 128 cell stage embryos (where blue is gsc or ntl expression and brown the 
cells injected with eye RNA).
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5.5 Additional functions for Rab5a2 in the developing 
embryo

5.5. /  The contribution o f Rab5a2 in the YSL

A source of many patterning and signalling factors, including Nodal is the YSL; it 

was, therefore important to ascertain whether Rab5a2 plays a role in the YSL. In 

order to achieve this, rab5a2 MO was injected into the yolk cell of 1000 cell stage 

embryos. Injection into the yolk at this stage is thought to ensures that the MO only 

has an effect in the yolk as the cells of the embryo after the four cell stage no longer 

enable free movement of RNA between cells (Hsu et al., 2006).At 24hpf the rab5a2 

MO injected embryos showed slightly curved tails compared to control. By 48hpf, 

the rab5a2 MO injected embryos looked dramatically different from controls; 

retaining the curved tails seen at 24hpf they now showed a thinner axis with reduced 

pigment (Figure 5.5.1 B) when compared to controls (Figure 5.5.1 A). Most 

dramatically though, the rab5a2 MO injected embryos showed an accumulation of 

what appeared to be dead cells on the part of the yolk attached to the embryo. This 

section of the embryos in controls is the site of the developing heart with blood being 

observed on the dorsal part of the yolk (Figure 5.5.1 C). In addition, this section will 

give rise to organs such as the gut kidney and liver. In the rab5a2 MO injected 

embryos there is no apparent heart (Figure 5.5.1 D and E) and the embryos die at 

approximately 3dpf.



Control Rab5a2 MO

Rab5a2 MORab5a2 MO

Control

Figure 5.5.1: Lateral view of embryos injected with rab5a2 MO at 1000 cell stage (B) compared to those injected 
with a control MO at 1000 cell stage (A). Magnified images of the head and yolk of embryos when injected with 
rab5a2 MO at 1000 cell stage under reflected and direct lighting (D and E) compared to those injected with a 
control MO a_ 1117 cell stage (C).7
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5.5.2 Expression of p-catenin in rab5a2 MO injected embryos

(3-Catenin localizes to the future dorsal side of the embryo early in development and 

is one of the earliest DV markers. The rab5a2 MO injected embryos showed not only 

a lack of nodal target genes but also a lack of eye expression. This suggested that, 

rab5a2 may affect a factor upstream o f nodal signalling. It is, therefore, possible that 

Rab5a2 may be involved in localization of p-Catenin. In order to investigate, this, 

control and rab5a2 MO injected embryos were stained, using a P-Catenin antibody 

conjugated to biotin. The control embryos showed a gradient of staining emanating 

from the dorsal side of the embryo. H alf of the rab5a2 MO injected embryos showed 

no staining while three out of 12 o f  the embryos showed staining all over the 

embryos, the remainder were similar to controls (Figure 5.5.2).

Control I rab5a2 MO (6/12) I rabSa2 MO (3/12)

Figure 5.5.2: Animal view of p-catenin expression in control injected and rab5a2 
MO injected embryos at shield stage.
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Microarray analysis of Rab5a2
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6.1 Introduction

Microarrays are a powerful tool which can be used to compare, not only the 

expression of thousands of gene within a sample but, also, between multiple samples. 

The arrays comprise ‘spots’ of DNA, RNA or oligonucleotides (probes), which 

correspond to genes, immobilized on slides or chips made from glass, silicone or 

plastic. A sample of RNA or cDNA is labelled with a fluorescent dye and hybridized 

to the microarray. The ‘spots’ on the slide then bind any complimentary RNA (or 

cDNA) in the sample in a dose dependent manner. The expression of these genes can 

then be quantified.

6.1.1 Why Microarray Rabs?

There are currently over 80 zebrafish Rabs, some of these as investigated in this 

thesis have very specific phenotypes (Chapter 3.). However, many show similar and 

complex phenotypes which include brain cell death, shortened AP axis and irregular 

somites. Others have shown no morphological phenotype. The similar and complex 

phenoypes seen in many of the Rabs makes it very difficult to identify any specific 

pathway which is affected in MO injected embryos while the presence of MO 

injected embryos with essentially wild type phenotypes, substantially compounds the 

problem. In these Rabs which show no phenotype a pathway may be affected, 

however, it is possible the loss of this Rab in ideal conditions is compensated for. 

Microarrays provide an efficacious method of screening all these Rabs and 

elucidating which pathways they affect.

6.1.2 The Microarray

The microarray used in the following experiment was a custom made oligonucleotide 

array designed specifically to investigate zebrafish developmental genes. Each slide 

contained 1898 separate oligos which were 65 base pairs in length and were carefully 

selected so that the 65 bases were unique to the particular gene they were targeting. 

The genes on the array included XPAT transcripts from ZFIN, approximately 300
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handpicked transcripts chosen by the Stemple lab, 213 transcripts thought to be 

involved in cell -  cell signalling chosen by the Wright lab at the Sanger Institute and 

109 housekeeping transcripts. These oligos were then immobilized onto a glass slide 

by an array spotting robot; each oligo was spotted twice to ensure greater 

reproducibility. This custom oligoarray was probed using two dyes enabling the 

control RNA samples to be labelled with one dye and hybridized to an array slide 

whilst the experimental RNA samples were labelled with a second and hybridized to 

the same array slide (Figure 6.1.1). Placing both control and experimental samples on 

the same array slide results in reduced experimental variation. To ensure any 

experimental variations resulting from differences in the dyes is minimised, the dyes 

were swapped resulting in one slide with Cy5 labeled control and Cy3 labeled 

experimental RNA and a second slide with Cy3 labeled control and Cy5 labeled 

experimental RNA.

6.1.3 The Experiment

In order to obtain samples for the array 300, single cell stage embryos were collected 

from three pairs of parent fish resulting in three groups of 300 embryos. Replicate 

parent fish came from the same line to reduce variation. Each clutch of 300 embryos 

is split into two groups with 150 embryos in each dish. One of the groups from each 

parent is injected with 6ng of control MO. The second is injected with 5ng of rab5a2 

MO. The embryos are left to develop at 28°C until they reached 30% epiboly, at 

which point 65 embryos are then removed from each of the control embryo injected 

groups and placed in a 1.5ml Eppendorf tube. The embryos were washed three times 

with zebrafish egg water. All the water is removed and the embryos are frozen in dry 

ice for 20minutes before being stored at -80. The same procedure is observed for the 

rab5a2 MO injected embryos. At shield stage a further 65 embryos were removed 

from both the control injected embryo groups and the rab5a2 MO injected embryos. 

The method employed for the 30% epiboly stage embryo is repeated for these 

samples. The remaining embryos are left to develop until 24hpf and their phenotype 

checked ensuring that there are no anomalies in these embryos and that they show 

the phenotype expected for these embryos. Embryos were frozen at 30% epiboly and 

shield stage enabling comparisons to be made between the former stage at which
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there is little visual difference between control and MO injected embryos and shield 

stage when the phenotype becomes apparent in the rab5a2 MO injected embryos.

Figure 6.1.1: Image capture of one of the custom made oligonucleotide 
microarray slides showing hybridization of control and rab5a2 samples as two 
colour data, (blue = cy5, red = cyc3 , other colours are a combination of the two 
samples)

RNA is isolated directly from the frozen samples by homoginising in trizol and the 

RNA quantified. Given the early stage of these embryos it was necessary to amplify 

the RNA (see Methods section 2.3.3).
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6.2 Results

6.2.1 Establishing an appropriate fold

The fold change for each gene that changes in the microarray experiment is plotted 

by the computer programme Genespring. The programme will then only show genes 

that change above the fold threshold, in the case of Figure 6.2.1 this is a two fold 

change. The blank area between the lines represents the majority of the genes while 

those points outside the lines represent those genes that changed by two fold or more. 

Due to the large number of genes that changed at the two fold level the fold change 

threshold was increased to three fold.

X-axis: rab 5a2  MOKO d y e sw a p  so lv e  
Y-axis rab 5a2  MOKO d y e sw a p  so lv e

C olored  by rab 5a2  MOKO d y esw a p  s  
G e n e  List 16v1 ?-2fold (255 )

Fife N a m e  b c h _ 1 205-16-cy5-p m t48_v_.cy3-p m tS2.gp r (norm alized)

% • •

i '- r  •*..-Si' -  2- 
- s : >  »!<*••

Figure 6.2.1 : Graph plotted in the microarray analysis programme Genespring 
showing the number of genes that changed more than two fold when rab5a2 MO 
injected embryos were compared to control embryos.
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6.2.2 The top 50 genes that increased and decreased in rab5a2 MO 
injected embryos when compared to controls.

After analysis by Genespring the data was tabulated with the accession number from 

NCBI, the oligo number and the fold change of that oligo. The accession number was 

then identified and the corresponding gene tabulated. Since most genes have two 

oligos the list was examined for a second oligo and the fold change for both 

averaged. Dr Wright’s oligos were also checked for duplicates with known genes on 

the slide, if these matched the fold change was again averaged. Due to the large 

number of genes that changed more than 3 fold the top 50 genes that increased and 

the top 50 genes that decreased at each stage were tabulated with their average fold 

change, the name of the gene and the number if oligos for that gene that changed 

(Tables 5.2.1-5.2.4).

6.2.2.1 Expression changes at 30% Epiboly Stage

In the 30% epiboly stage embryos at the 3 fold stringency 382 genes changed in the 

rab5a2 MO injected embryos when compared to control embryos. 201 genes showed 

a decrease in activity in rab5a2 MO injected embryos compared to controls while 

181 showed an increase in gene activity in rab5a2 MO injected embryos when 

compared to controls. The top 50 genes that decrease and the top 50 genes that 

increase between rab5a2 MO injected embryos and control embryos at the 30% 

epiboly stage are presented in Table 6.2.1 and 6.2.2 respectively.

6.2.2.2 Expression changes at Shield Stage

In the shield stage embryos at the three fold stringency 426 genes changed in the 

rab5a2 MO injected embryos when compared to control embryos. 211 genes showed 

a decrease in activity in rab5a2 MO injected embryos compared to controls while 

215 showed an increase in gene activity in rab5a2 MO injected embryos when 

compared to controls. The top 50 genes that decrease and the top 50 genes that 

increase between rab5a2 MO injected embryos and control embryos at shield stage 

are presented in Table 6.2.3 and Table 6.2.4 respectively.
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Av. fold change No oligo's Description
0.13 1 T-box gene 16
0.17 3 trophoblast glycoprotein-like
0.19 2 bone morphogenetic protein 4
0.22 1 zic family member 3 heterotaxy 1 (odd-paired homolog)
0.22 1 keratin 4
0.23 2 SRY-box containing gene 2
0.25 1 ATPase, Na+/K+ transporting, alpha 1b polypeptide
0.26 2 T-box transcription factor TBX6
0.26 2 zgc:101612
0.27 2 fibroblast growth factor 8
0.28 2 U1 small nuclear ribonucleoprotein polypeptide A
0.29 1 UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 5
0.30 1 Unknown
0.30 2 zgc:92414
0.30 2 Type I cytokeratin, enveloping layer
0.32 1 CCAAT/enhancer binding protein alpha
0.32 1 caudal type homeo box transcription factor 4
0.32 1 tyrosine 3-monooxygenase
0.33 2 chordin
0.33 1 fibroblast growth factor 24
0.33 1 methyl-CpG binding domain protein 3b
0.34 2 bonnie and Clyde
0.34 2 LIM homeobox 1b
0.35 2 Ved
0.35 1 fibroblast growth factor 19
0.36 1 mannosidase, beta A, lysosomal
0.36 2 protocadherin 8
0.37 1 tyrosyl-tRNA synthetase
0.37 2 gastrulation brain homeobox 1
0.37 1 peroxisomal biogenesis factor 3
0.38 2 mki67 interacting nucleolar phosphoprotein (human) -  like
0.38 3 deltaD (did),
0.39 2 zgc:101000
0.39 2 transgelin 2
0.39 1 AHA1, activator of heat shock ATPase homolog 1, like
0.40 1 hairy and enhancer of split related-7
0.40 2 solute carrier family 3, member 2 like
0.40 2 Vent
0.40 2 lymphocyte cytosolic plastin 1
0.40 2 ubiquitin-activating enzyme E1-domain containing 1

0.40 2 Wnt-11 protein precursor
0.40 2 Rab14
0.40 1 iroquois homeobox protein 1, a isofbrm 1
0.41 2 CB967 5- similar to Filamin A
0.41 1 glutamate-ammonia ligase
0.42 1 minichromosome maintenance protein 3

0.42 1 tumor protein p73-like isoform alpha 1
0.42 1 SRY-box containing gene 3
0.43 1 cysteine and glycine-rich protein 1

0.43 1 Homeobox protein Hox-B2a (Hox-B2)

Table 6.2.1: The fold change of the top 50 genes that decreased in rab5a2 MO
injected embryos at the 30% epiboly stage compared to control embryos.
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Av. fold change No oligo's Description
6.70 2 T-box 24
6.04 2 v-fbs FBJ murine osteosarcoma viral oncogene homolog
5.99 2 fbrkhead box 11
4.49 1 unc-45 homoiog B (C. elegans) (unc45b),
3.93 1 muscle segment homeobox E
3.91 2 claudin g (cldng),
3.71 2 Insulin gene enhancer protein ISL-2 (Islet-2).
3.69 2 Myoblast determination protein 1 homolog (Myogenic factor 1)
3.55 1 enolase 3, (beta, muscle)
3.53 2 heat shock protein 47
3.50 2 Homeobox protein Dlx6a (DLX-6)
3.43 2 matrix metalloproteinase 13
3.32 1 DIG0228_268
3.26 2 hemoglobin alpha embryonic-1 (hbael),
3.22 1 septin 9
3.11 2 insulin-like growth factor binding protein 1
3.10 2 Ribosome binding protein 1 homolog (dog)
3.06 2 H1 histone family, member X
3.01 2 Microphthalmia-associated transcription factor a (mitfa),
3.00 1 friend leukemia integration 1
3.00 2 Hypothetical protein
3.00 2 iroquois homeobox protein 7
2.99 2 Eomesodermin homolog
2.89 1 Aminolevulinate, delta-, synthetase 2
2.87 1 endothelium-specific receptor tyrosine kinase 2 (tie2),
2.83 1 hypothetical protein LOC405860
2.67 1 Ras homolog gene family, member E
2.65 1 CB1077 5- similar to Myosin Vb,
2.65 1 hemoglobin beta embryonic-1
2.64 1 SRY-box containing gene 31,
2.63 2 deltaA
2.61 1 myogenic factor 6
2.61 1 Forkhead box B1.1
2.56 2 suppressor of fused homolog (Drosophila) (sufu),
2.55 2 similar to CCCH zinc finger protein C3H-2
2.54 1 HHGP protein
2.53 1 Hypoxia-inducible factor 1 alpha inhibitor
2.52 1 hairy-related 5
2.49 1 bone morphogenetic protein 2b
2.46 2 transforming growth factor, beta receptor II (tgfbr2),
2.45 1 Bcl2-like
2.44 2 ATP synthase, H+ transporting, mitochondrial F0 complex, subunit c
2.43 2 LIM homeobox 8
2.41 2 four and a half LIM domains (fhl),
2.37 1 eyes absent homolog 1 (eyal),
2.34 2 dachshund a (dacha),
2.34 1 Ictacalcin
2.34 1 CUG triplet repeat, RNA-binding protein 1
2.32 1 growth associated protein 43 (gap43),
2.32 2 muscle-specific beta 1 integrin binding protein 2

Table 6.2.2: The fold change of the top 50 genes that increased in rab5a2 MO
injected embryos at the 30% epiboly stage compared to control embryos.
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Av. fold change No oligo's Description
0.07 2 T-box gene 6
0.07 1 zic family member 1 (odd-paired homolog) (zic1),
0.09 2 membrane protein, palmitoylated 1 (mpp1)
0.14 2 Carbonic anhydrase (Carbonate dehydratase)
0.17 3 Trophoblast glycoprotein-like
0.17 2 myeloid ecotropic viral integration site 3
0.20 1 myeloid ecotropic viral integration 1 (m eisl),
0.20 1 LTP4
0.21 2 GLI2a
0.21 2 Zgc:92414
0.21 2 myogenic factor 5
0.23 2 Macrophage stimulating 1 (hepatocyte growth factor-like)
0.23 2 type I cytokeratin, enveloping layer
0.23 2 Zgc:101612
0.23 1 midkine-related growth factor b
0.24 2 chordin (chd),
0.24 1 Keratin 4 (krt4),
0.24 2 Mki67 (FHA domain) interacting nucleolar phosphoprotein (human) -  like
0.25 1 Caudal type homeo box transcription factor 4 (cdx4),
0.25 2 Beta-2-microglobulin precursor
0.26 2 forkhead box C1b (foxclb),
0.26 2 protocadherin 8 (pcdh8),
0.27 1 zic family member 3 heterotaxy 1 (odd-paired homolog)
0.27 2 Rab14
0.27 1 tyrosine 3-monooxygenase
0.27 1 mutL homolog 1, colon cancer, nonpolyposis type 2
0.28 2 Clone CB926 5- similar to Gem-associated protein 5
0.28 1 minichromosome maintenance protein 3
0.29 2 Hypothetical protein LOC378998
0.29 2 Bone morphogenetic protein 4
0.29 1 seryl-tRNA synthetase (sars),
0.30 1 Kinesin family member 11 (kif11),
0.30 2 Oep
0.31 2 U1 small nuclear ribonucleoprotein polypeptide A
0.31 1 DIG04101903
0.31 2 Ved
0.31 2 Lymphocyte cytosolic piastin 1
0.31 2 Roundabout homolog 3 (robo3),
0.32 2 cDNA clone CB473 5
0.32 2 Sine oculis homeobox homolog 3b
0.33 1 Apolipoprotein A-l precursor (Apo-AI) (ApoA-l)
0.33 2 Sp5 transcription factor-like
0.33 3 delta D (did)
0.34 2 hypothetical protein LOC550434

0.35 1 fibroblast growth factor 19

0.35 2 interleukin 17 receptor D (ill 7rd),

0.36 2 Sonic hedgehog protein precursor (SHH) (VHH-1)

0.36 1 3-beta-hydroxysteroid dehydrogenase

0.36 2 Hypothetical protein.

0.36 1 retinol dehydrogenase 10

Table 6.2.3: The fold change of the top 50 genes that decreased in rab5a2 MO
injected embryos at the shield stage compared to control embryos.
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Av. fold change No oligo's Description
11.89 1 bomeo box B5a
8.90 2 claudin g
7.37 1 MAD homolog 3
7.06 2 neogenin 1
6.46 1 forkhead box B1.1
5.98 1 tyrosyl-tRNA synthetase
5.86 2 protein tyrosine phosphatase, non-receptor type 2, like
5.64 2 v-fos FBJ murine osteosarcoma viral oncogene homolog
5.37 1 sp8 transcription factor
5.14 2 forkhead box 11
4.95 1 dachshund a
4.37 2 ribosome binding protein 1 homolog (dog)
4.22 2 T-box 24
4.08 2 suppressor of fused homolog
3.91 1 Homeobox protein Hox-B5b (Hox-B5-like) (Zf-54)
3.89 1 enolase 3, (beta, muscle)
3.87 2 Insulin gene enhancer protein ISL-2 (Islet-2)
3.64 1 orthodenticle homolog 5
3.52 2 TSC22 domain family 2
3.50 2 zgc:86701 (zgc:86701),
3.50 1 ras homolog gene family, member E
3.43 2 selenoprotein P, plasma, 1b
3.43 1 ATPase, Na+/K+ transporting, alpha 1a.2 polypeptide
3.41 2 musashi homolog 2
3.40 2 Ena-vasodilator stimulated phosphoprotein
3.39 2 linker histone H1M
3.36 2 fused toes homolog
3.36 2 H1 histone family, member X
3.29 3 epithelial V-like antigen 1
3.19 2 Homeobox protein Dlx5a (DLX-4)
3.16 2 Heat shock protein 9B
3.15 2 Epididymal secretory protein E1 precursor
3.15 2 phenylalanine hydroxylase
3.12 2 similar to CCCH zinc finger protein C3H-2
3.10 2 jun B proto-oncogene
3.10 2 unc-45 (C. elegans) related
3.09 1 jagged 1b
3.07 2 zgc:101900 (zgc:101900)
3.07 2 DIX domain containing 1
3.05 1 septin 9
3.04 1 Paired-like homeodomain transcription factor 2a

3.01 2 insulin-like growth factor binding protein 1
2.94 2 dachshund b
2.92 2 translocating chain-associating membrane protein

2.82 3 deltaB
2.79 1 endothelium-specific receptor tyrosine kinase 2

2.77 2 Eomesodermin homolog
2.73 2 Homeobox protein Dlx6a (DLX-6)

2.68 1 T-box 20
2.68 2 Ribonucleoside-diphosphate reductase M2 chain

Table 6.2.4: The fold change of the top 50 genes that increased in rab5a2 MO
injected embryos at the shield stage compared to control embryos.
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6.2.3 Validation o f Results

RT-PCR was used to validate the results of the microarray. The remainder of the 

uncoupled RNA from the microarray was used in conjuction with fluorescent taqman 

oligonucleotides for some of the genes that were shown to change and others that 

were not. The oligos used were for the genes chordin, patched 2.1, transferrin 

receptor (tr), wnt8a, fgfS, ntl, gsc, bmp4, bmp2, Iftyl, lfty2, sqt, copa. The data for 

these was then plotted in a box and whisker plot showing the fold difference between 

rab5a2 MO injected embryos and control embryos. Since not all the genes could be 

put on a single plate, three different plates and three different dilutions were made. 

Therefore the housekeeping gene tr is plotted three times (blue boxes on Figure 6.2.3 

and Figure 6.2.4) on each graph, to evaluate the reproducibility of each dilution plate. 

The spread of the data seen in tr receptor expression (Figure 6.2.3 and Figure 6.2.4) 

for each plate dilution made it difficult to evaluate the differences between each 

plate. All the tr receptor expression data did fall within the same range but this range 

was extensive. The 30% epiboly data range for tr receptor was less extensive and 

suggests that at least for the 30% epiboly data each plate dilution was comparable to 

the other plate dilutions (Figure 6.2.3). tr and copa are described as housekeeping 

genes suggesting that their expression does not change (Batista et al., 2004). The 

microarray data showed that at 30% epiboly the expression of transferrin a, a tr 

ligand, was slightly increased (appendix) however there was no change at shield 

stage. RT-PCR data for tr expression both at 30% epiboly and (Figure 6.2.3) at shield 

stage (Figure 6.2.4) is inconclusive with no obvious fold change, copa showed little 

change in expression, however the median for the 30% data set fell below the one 

fold change boundary suggesting some weak support for a decrease in gene 

expression (Figure 6.2.3) although this is inconclusive. The microarray data showed 

a slight increase in copa gene expression in rab5a2 MO injected embryos at the 30% 

epiboly stage; however there was no change at shield stage (appendix).

The RT-PCR data set for bmp2b spans an extensive range at the 30% epiboly stage, 

thus proving inconclusive (Figure 6.2.3). The microarray data shows a large increase 

in bmp2b expression in rab5a2 MO injected with the gene appearing in the top 50 

genes that increase at the 30% epiboly stage (Table 6.2.2). At shield stage the
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microarray data continues to show an increase in bmp2b gene expression but to a 

lesser extent (appendix). The RT-PCR data for bmp2b at shield stage however 

appears not to change (Figure 6.2.4).

chd and bmp4 both showed dramatic decreases in gene expression in rab5a2 MO 

injected embryos in the RT-PCR data both at 30% epiboly and shield stage (Figure

6.2.3 and Figure 6.2.4). This correlates with the data seen in the microarray where 

both chd and bmp4 appear in the top 50 genes that decrease at both the 30% epiboly 

stage and shield stage (Table 6.2.1 and Table 6.2.3). The decrease in chd expression 

also corresponds to the abolition of chd expression seen in ish analysis reported in 

chapter 4. fgf8  also shows a decrease in gene expression of rab5a2 MO injected 

embryos in the RT-PCR data at both the 30% epiboly stage and shield stage (Figure

6.2.3 and Figure 6.2.4) corresponding to the substantial decrease in fgf8 gene 

expression seen in the microarray data at the 30% epiboly stage (Table 6.2.1). The 

microarray data did not show any difference for fgfS  expression at shield, however, 

this could be a result of the high fold change threshold set.

The nodal target genes gsc and ntl showed a trend towards decreased expression in 

rab5a2 MO injected embryos in the RT-PCR data set at both the 30% epiboly stage 

(Figure 6.2.3) and shield stage (Figure 6.2.4). ntl expression was also reduced in the 

microarray data at the 30% epiboly stage (appendix), while gsc and ntl expression 

have been shown by ish analysis to be reduced by ish analysis in rab5a2 MO 

injected embryos (Chapter 5 Figure 5.2.2). The nodal target gene flh  was also 

reduced in rab5a2 MO injected embryos in chapter 5 (Figure 5.2.2) in addition to 

being reduced in the 30% epiboly stage microarray data (appendix). Interestingly the 

expression of nodal sqt in rab5a2 MO injected embryos did not reach the three fold 

change threshold in the microarray data and the RT-PCR data is inconclusive 

however there is a weak trend towards decreased expression at the 30% epiboly stage 

(Figure 6.2.3).

Finally wnt8 and w ntll both showed decreased expression in rab5a2 MO injected 

embryos in the microarray data, w ntll showed a significant decrease at the 30% 

epiboly stage (Table 6.2.1) but did not reach the fold change threshold at shield 

stage, however expression of w ntll at shield stage in the rab5a2 MO injected
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embryos was shown by ish analysis to be decreased (Figure 6.2.2). wnt8a expression 

was decreased in both 30% and shield stage MO injected embryos in the microarray 

data (appendix) and the RT-PCR data (Figure 6.2.3 and Figure 6.2.4).

Control Rab5a2 MO

writ 11

Figure 6.2.2: ish analysis of w ntll expression in rab5a2 MO injected embryos 
compared to control embryos at shield stage.
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Figure 6.2.3.: Box and whisker plot showing the fold change of gene expression 
in rab5a2 MO injected embryos when compared to control embryos at the 30% 
epiboly stage. Where the upper and lower bounds of the box represent the 
upper and lower quartiles respectively, the line that bisects the box represents 
the median and the whiskers extend 1.5 times the inter-quartile range beyond 
the 25% and 75% quartiles (boxes). The red dotted line represents the point at 
which there was no change in expression and the blue boxes show tr.
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Figure 6.2.4: Box and whisker plot showing the fold change of gene expression 
in rab5a2 MO injected embryos when compared to control embryos at shield 
stage. Where the upper and lower bounds of the box represent the upper and 
lower quartiles respectively, the line that bisects the box represents the median 
and the whiskers extend 1.5times the inter-quartile range beyond the 25% and 
75% quartiles (boxes). The red dotted line represents the point at which there 
was no change in expression and the blue boxes show tr.
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6.2.4 Identifiction o f groups o f genes with similar function whoose 

expression changed with knock down o f rab5a2.

The top 50 genes that increased at the 30% epiboly stage were grouped according to 

their gene ontology (GO) terms (www.geneontology.org). This is a database of genes 

from different animals that have been given standardized terms to describe their 

function, location and biological process. This enables all known genes with know 

functions, locations and biological processes to have standardized terms enabling 

faster and more accurate comparisons between genes and pathways and animals. The 

top 50 genes that decreased and increased at the 30% epiboly stage and the top 50 

that decreased and increased at the shield stage were also grouped according to their 

GO terms. These groups were then displayed in pie charts (Figures 6.2.5 -  6.2.8).
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6.2.4.1 Groups of gen es that decreased at 30% epiboly stage

The majority of the genes that decreased at the 30% epiboly stage had either no gene 

ontology or the gene function was unknown. The majority of genes with known 

function are involved in transcription whilst genes involved in DV patterning are also 

significantly represented (Figure 6.2.5).

Unknown

Protein Translation
Transcription

Migration

Figure 6.2.5: Pie chart showing the gene ontology biological processes of the top
50 genes that decreased in rab5a2 MO injected embryos at the 30% epiboly
stage.
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6.2.4.2 Groups of g en es that increased at 30% epiboly stage

The majority of genes that increased were either unknown or had unknown function 

in the gene ontology database. As with the genes that decreased the majority of genes 

with known gene ontology function are involved in transcription. Interestingly 

ranked joint forth are genes involved in DV patterning (Figure 6.2.6).

Transcription

Figure 6.2.6: Pie chart showing the gene ontology biological processes of the top
SO genes that increased in rab5a2 MO injected embryos at the 30% epiboly
stage.
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6.2.4.3 Groups of genes that decreased at shield stage

In the top 50 genes that decreased at shield stage the majority had unknown function 

in the gene ontology data base or were unknown genes. Interestingly the majority of 

known genes that decreased at shield stage were implicated in DV patterning while 

those genes involved in transcription were ranked third (Figure 6.2.7).

Unknown

Biosynthesis
different,*a(jon

Figure 6.2.7: Pie chart showing the gene ontology biological processes of the top
50 genes that decreased in rab5a2 MO injected embryos at shield stage.
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6.2.4.4 Groups of genes that increased at shield stage

In the top 50 genes that increased at shield stage the majority again had unknown 

function in the gene ontology data base or were unknown genes. The majority of 

known genes that increased appear to be implicated in transcription, with those 

involved in protein processing ranking third. Interestingly the number of genes 

involved in DV patterning at shield stage, compared to 30% epiboly stage, appeared 

to have fallen resulting in the DV patterning genes being ranked at the bottom 

(Figure 6.2.7).

Unknown

Transcription

Figure 6.2.8: Pie chart showing the gene ontology biological processes of the top
50 genes that increased in rab5a2 MO injected embryos at shield stage.
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Chapter 7

Discussion and Further Work
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7.1 Characterization of Rab5a2

In total, 37 rab genes have been screened by knocking down the rabs using 

oligonucleotide MOs. Those rabs screened include members of the rabl, rab6, rab7, 

rab8, rabl 1 and all the members of the rab5 family, genes whose homologues in 

yeast are considered essential because of their lethality when knocked-down. rab5a2 

is the only rab gene in zebrafish which, when knocked-down, causes death before 

24hpf.

In 1996, the Tubingen screen for new zebrafish mutants uncovered four zygotic 

mutants that affect epiboly. The most severe of these, hab, resulted in death before 

24hpf (Kane et al., 1996; McFarland et al., 2005). Subsequently, it was shown that 

all these mutants resulted from mutations in E-cadherin (Kane et al., 2005). E- 

cadherin has been shown, in conjunction with Rab5c, to be responsible for Wntl l ’s 

function in cell cohesion during zebrafish gastrulation. The hab mutant is presently 

the only known zebrafish epiboly mutant. Although there is no evidence for E- 

cadherin involvement in the rab5a2 MO injected phenotype, w ntll was seen to be 

decreased in the microarray data (Figure 6.2.1) for the rab5a2 MO injected embryos. 

Disrupted cell adhesion may be responsible for the rougher appearance of the 

blasdoderm in rab5a2 MO injected embryos. A loss of adhesion between the 

blastoderm cells and the yolk may also be responsible for the liquid observed 

building up between the yolk and the blastoderm in the rab5a2 MO injected embryos 

(Figure 5.2.1). Interestingly, the homophilic cell adhesion gene protocadherin8 was 

shown by the microarray data to be decreased in rab5a2 MO injected embryos 

(Figure 6.2.1 and 6.2.3).

The reduction of Nodal signalling seen in the rab5a2 MO injected embryos (Figure

5.1.2 and 5.2.2) implies a role for Rab5a2 in nodal signalling. This involvement of 

rab5a2 with zebrafish signalling factors is not without precedent, as zebrafish rab5 

has been shown to play a role in the effective signalling range of Fgf8 (Scholpp and 

Brand, 2004). A reduction of Rab5, using the reportedly Rab5 specific GAP RN-tre, 

showed an increase in the range of FgfB signalling. In contrast to these results, the
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microarray data suggests that rab5a2 reduces Fgf8 signalling (Figure 6.2.1). The 

microarray shows that, at 30% epiboly, fg/S  gene expression is severely reduced in 

rab5a2 MO injected embryos.

The contrast between Scholpp’s data and that reported by the microarray, may be due 

to the use of RN-tre, a Rab5 GTPase activation factor (GAP). Although it is reported 

to be a Rab5 specific GAP (Lanzetti et al., 2004), further research has shown that its 

Rab5 activity is weak and that RN-tre has a greater specific catalytic activity towards 

Rab41 (Haas et al., 2005). In addition, RN-tre is reported to act as a Rab5 effector, 

although this is also disputed in the later report. It is, therefore, unclear whether the 

increased Fgf8 signalling range is the result of a reduction in rab5. Scholpp (2004), 

however, addressed this issue by using antisense oligonucleotides to knock down 

rab5a function and showed that the result is the same as that seen for RN-tre.

The conflict beween those results seen in the microarray and Scholpp’s data may, 

therefore, lie in the dose of MO used. The dose of MO used for the microarray was 

chosen to ensure the embryos showed a phenotype (Section 5.2.1). This is higher 

than that used for Scholpp’s data, where the dose used would possibly have only 

been enough to reduce rab5a signalling by a small amount. Also, there is an 

additional rab5a gene and, although the clone used for overexpression analysis 

corresponds to rab5a2, the identity of the MO used is not stated. Scholpp implies 

that rab5c RNA is used in some of these experiments and on occasion refers to the 

mRNA as rab5. Therefore, it becomes unclear as to which RNA is being used, which 

could explain the conflict seen between the microarry data and Scholpp’s data, since, 

although both rab5a and rab5c share high sequence homology, their functional 

homology in zebrafish has not been fully explored. However, overexpression of 

rab5a mRNA from the clone that corresponds to rab5a2 does show reduction of 

Fgf8 signalling, allegedly corroborating the effect seen in the rab5a MO. The 

reduced range of Fgf8, seen in the rab5a overexpressing embryos, does not directly 

measure Fgf8 signalling range but uses expression of the Fgf8 target gene spry4. In 

addition, it measures this effect using exogenously supplied Fgf8. The rab5a MO 

used also looks at the target gene spry4 but uses endogenous Fgf8. This thesis 

suggests that the conflict might be reconciled if a potential dual role is performed by 

rab5a2 in early zebrafish development.
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Overexpression of rab5a2 results in expression of gsc and ntl in the animal pole of 

the embryo (Figure 5.3.2) in addition to the normal expression pattern of these genes 

seen at the margin. The rab5a2 overexpression embryos also show either 

accumulation of cells in the animal pole or an enlarged organiser (Figure 5.3.1). 

These results, coupled with the lack of visible organizer and the reduction of eye, chd 

and nodal responsive genes in rab5a2 MO injected embryos, suggest a role for 

Rab5a2 in DV patterning and the establishment of the organizer. Interestingly, many 

of the genes that decreased in rab5a2 MO injected embryos, when compared to 

controls, have been implicated in DV patterning (Fainsod et al., 1997; Fekany et al., 

1999; Furthauer et al., 2004). At shield stage, this became more pronounced. In 

addition, some of the genes that increased in rab5a2 MO injected embryos have also 

been implicated in DV patterning (Hild et al., 1999; Melby et al., 2000; Ramel et al., 

2005). This is unsurprising, since DV patterning is a balancing act between genes 

which promote or antagonise ventral and dorsal signals. Those which promote 

ventral domains and inhibit dorsal include bmp4, ved and vox. While those which 

promote dorsal and inhibit ventral include chd, fgfS  and fgf24.

In the rab5a2 MO injected embryos chd, fgf8 andfgf24 are all decreased. This would 

suggest that an increase in expression of ventralizing genes should be seen in the 

rab5a2 MO injected embryos due to a reduction of pro-dorsal genes inhibiting them. 

However, this is not the case. The microarray data shows that genes which decrease 

in rab5a2 MO injected embryos both promote and antagonise ventral and dorsal 

domains. Expression of bmp4, which is known to induce ventral fates within the 

embryo, was shown to be decreased (Figure 6.2.1 and 6.2.3) as was wnt8a another 

ventralizing gene. wnt8a has been shown to act through the transcriptional repressors 

ved and vent also shown to decrease in the microarray (Figure 6.2.1 and 6.2.3). ved 

and vent act to repress dorsalizing genes, their main target is chd but in addition, 

they repress gsc and flh. Therefore, a decrease in vent and ved expression should 

result in an increase in gsc, chd and flh  expression. However, the expression of these 

genes is also decreased (Figure 5.1.2 and 5.2.2). In addition if rab5a2 were 

responsible for the establishment of the organizer, the accumulation of cells in the 

animal pole of rab5a2 overexpressing embryos might be a second organizer, while 

the enlarged organizer would show an expansion of the dorsal domain However,
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there is no additional or expanded expression of chd in these embryos and a second 

axis is not apparent, which is what would be expected if the accumulation of cells in 

the animal pole were a second organizer. Instead, the embryos show mostly normal 

development, except for a severely reduced body axis (Figure 5.3.1). Interestingly, 

the microarray data shows that expression of the ventralizing gene bmp2b is 

increased in 30% epiboly stage rab5a2 MO injected embryos. It was also increased 

in shield stage MO injected, but not to the extent seen at the 30% stage. While, the 

RT-PCR was inconclusive. This increase in bmp2b is unsurprising, as those factors 

which inhibit bmp2b are down regulated in rab5a2 MO injected embryos. However, 

bmp4, which is also inhibited by these factors, is decresed (Table 6.2.1 and 6.2.3).

The transcriptional repressor genes vent, ved and vox prevent the transcription of boz 

and other dorsal genes, particularly chd but also gsc and flh  (Imai et al., 2001) 

(Kawahara et al., 2000a; Kawahara et al., 2000b; Melby et al., 2000; Shimizu et al., 

2002). All three genes vox, ved and vent are activated by wnt8 (Ramel and Lekven, 

2004), which has been suggested to regulate these genes in conjunction with bmp2b, 

since loss of function of vox, vent and ved phenocopies the wnt8/swr (bmp2b) double 

mutant phenotype (Ramel et al., 2005). Both vent and ved are decreased in rab5a2 

MO injected embryos, as is wnt8 but to a lesser extent (Appendix 1 and 2). 

Interestingly, analysis of vox expression in control and rab5a2 MO injected embryos, 

showed an increase in vox expression in the rab5a2 MO injected embryos (Figure 

7.1.1). The possible increase in vox expression may be due to the increase in bmp2, 

whilst the decrease in ved and vox may be the result of decreased wnt8 expression. 

Therefore, it is possible that the reduction in chd, flh  and gsc expression is the result 

of an increase in Bmp2b repression acting through vox. It has been suggested that 

chd is not needed if bmps are inactivated (Schulte-Merker et al., 1997), since chordin 

mutants have a ventralized phenotype (Chen and Schier, 2001), whereas 

bmp2b;chordin double mutants are dorsalized. This implies it is more likely that the 

increase in Bmp2b may be repressing chd, rather than decreased Chd effecting 

bmp2b.
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Control

Figure 7.1.1 : Difference in expression pattern of the homeobox gene vox in 
rab5a2 MO injected embryos when compared to controls.

bmp4 acts to specify the formation of ventral mesoderm and suppress neural fates, 

whilst bmp2b is described as necessary for mesoderm cell fate commitment (Graff et 

al., 1994; Hawley et al., 1995; Schneider et al., 1996; Suzuki et al., 1994). Both 

bmp2b and bmp4 act to specify ventral identity and are negative regulators of 

endodermal cell fate specification. Therefore, it may be the difference between 

mesoderm cell fate commitment and mesoderm formation that results in the different 

expression profiles in the rab5a2 MO injected embryos. Other genes down regulated 

in the rab5a2 MO injected embryos also have roles in the mesoderm. fgf8  and fg/24 

are coexpressed in mesoderm precursors during gastrulation (Draper et al., 2003). A 

defect in the gene tbxl6  is responsible for the mutant spadetail. tbx6 and ntl are 

expressed in mesoderm and are known to regulate region-specific gene expression 

and developmental fate (Goering et al., 2003).

An additional interesting twist is that bonnie and clyde, which is involved in 

endoderm formation, is down regulated in rab5a2 MO injected embryos at 30% 

(Table 6.2.1) but increased slightly at shield (Appendix 2). Endodermal 

determination, initiated by the Nodal signalling pathway, has been shown to require a 

multitude of genes. Included in these are, as mentioned, bonnie and clyde (Trinh et 

al., 2003), as well as eomesodermin (eomes) (Bjomson et al., 2005), which is up 

regulated in the rab5a2 MO injected embryos, eomes, a maternal T-box gene and 

transcriptional activator, has also been shown to determine dorsal identity. Initially
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after fertilization eomes is expressed in a vegetal animal gradient in the embryo, with 

Eomesodermin protein (Eom) distributed cytoplasmically throughout the blastoderm. 

However, following midblastula transition, nuclear-localized Eomesodermin is only 

detected on the dorsal side of the embryo (Bruce et al., 2003). Overexpression of 

eomes results in Nodal-dependent and nieuwkoid/dharma (nwk/dhm) independent 

ectopic expression of the organizer markers gsc, chd and flh , and in the formation of 

a secondary axis (Bruce et al., 2003). Interestingly, the knocking down of rab5a2 

results in the increase of eomes (Figure 6.2.2 and 6.2.4) with the decrease of gsc, chd 

and flh  (Figure 5.1.2 and 5.2.2) and pre-24hpf embryonic lethality (Figure 5.1.1).

Overexpression of eomes has been shown not to have any effect on eye, sqt, bmp2b, 

vegal/vox or nwk/dhm, although eomes ’ effect on gsc, chd and flh  is nodal dependent 

and it has been speculated that eomes possibly regulates sqt (Bruce et al., 2003). 

Therefore, this raises the possibility that rab5a2 may affect nodal signalling by 

interfering with the pathway between eomes and sqt. eomes is suggested to activate, 

and possibly maintain, its own transcription (Bruce et al., 2003). If knock down of 

rab5a2 does disrupt the pathway between eomes and sqt the eomes expression might 

be increased to compensate. However, eomes autoregulation is suggested to be 

Nodal-independent, since injection of eomes into MZoep embryos resulted in 

induction of eomes expression (Bjomson et al., 2005). This increased expression of 

eomesodermin in rab5a2 MO injected embryos may be linked to the conflicting 

expression seen for bmp2b and bmp4 although there is no direct evidence linking the 

bmps to eomesodermin

Another possibility is that rab5a2 knock down results in mislocalization, or 

inhibition, of the early localization to individual cells of sqt, seen in the four cell 

embryo (Gore et al., 2005). Preliminarily data looking at the effect of rab5a2 on 

early sqt expression shows no sqt localization to individual cells in the 8-16 cells 

stage of control or rab5a2 MO injected embryos but does show localization in 

rab5a2 overexpresing embryos (Figure 7.1.2). Since there is no localized expression 

of sqt in the controls, as reported by Gore et al (2005), the signal was increased by 

injecting 15pg in 1.4nl of alexa-sqt into the yolk of control MO injected, rab5a2 MO 

injected and rab5a2 overexpressing embryos. Gore reports that this localizes in the 

same manner as endogenous sqt. Localization to individual cells of the 8-16 cell
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stage embryos was seen in control MO injected embryos, rab5a2 MO injected 

embryos and rab5a2 overexpressing embryos (Figure 7.1.2). However, the 

expression of sqt in the rab5a2 overexpressing embryos developed before that of the 

control and rab5a2 MO injected embryos. These data suggest that rab5a2 may effect 

zebrafish development at a very early stage. This would be consistent with the 

misexpression of p-catenin expression seen in the rab5a2 MOs, when compared to 

the gradient of p-catenin expression emanating from the dorsal side of control 

embryos (Figure 5.5.2). Such results imply a role for rab5a2 early in development, 

although it is unclear how and what role the early maternal transcripts of sqt or /?- 

catenin may play in this.
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zygotic transcripts of rab5a2 resulted in embryos with a visible organizer and normal 

speed of development, as well as expression of bik, ntl, gsc and chd being unaffected. 

However, the rab5a2 MO injected embryos, deficient in only zygotic transcripts, 

died before 24hpf, suggesting an equally important role for zygotic rab5a2 in later 

development.

To examine how Rab5a2 might directly affect nodal signalling, sqt or eye was 

injected into one cell of a 128 stage embryo. Sqt has been proposed as a morphogen 

acting directly on target cells over a distance while Cyclops signals in a more 

localized manner (Chen and Schier, 2001).

In embryos overexpressing rab5a2, injection of either 5pg or lOpg of sqt resulted in 

similar gsc and ntl expression to that seen in controls (Figure 5.4.1 and 5.4.2). This 

conflicts with evidence from the signalling factor fgf8, where overexpression of 

rab5a resulted in the fgfS  target gene spty4 showing a reduction in range of 

expression. This reduction in range was suggested to result from increased clearance, 

by rab5a, of the FgfS ligand present in the extracellular space -  a process termed 

“restrictive clearance”. Injection of 5pg of sqt into rab5a2 MO injected embryos 

resulted in a large proportion of embryos showing severe reduction of intensity of 

both gsc and ntl expression, with gsc showing a broader range of expression. 

However, many of the rab5a2 MO injected embryos showed no expression of either 

gsc or ntl. When the dose of sqt was increased to lOpg, a greater proportion of the 

embryos showed no expression of gsc or ntl.

This data is contradictory: the broader range of gsc expression would be consistent 

with the Scholpp’s theory of “restrictive clearance”, however, many embryos showed 

no expression, which is at odds with this (Scholpp and Brand, 2004). In addition, 

since gsc is induced at high doses of nodal and ntl induced at lower doses, the ntl 

expression would also be expected to be expanded. This contradictory data might be 

the result of the high background staining seen in rab5a2 MO injected embryos, 

masking the already weak gsc and ntl expression. The weak signal, seen in the 

rab5a2 MO injected embryos may result from the broader expression pattern. 

Therefore, if the embryo produced an even broader expression pattern this might be 

masked by the background staining. One theory is that extracelluar Sqt binds to its
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receptor but the receptor cannot be internalized and, therefore, it cannot activate 

target genes. If the receptors cannot be internalized, then Sqt cannot be restrictively 

cleared form the extracellular space and extracellular Sqt can travel further. If there 

is not complete knock down of rab5a2, then some of the receptors will be 

internalized and will activate target genes. Since Sqt has not been cleared, the 

extracellular dose would be high, so gsc is induced. This theory assumes that 

percentage of receptor occupancy is responsible for the type of target gene 

expression, i.e. if greater than a certain percentage of receptors are occupied, one 

target gene is induced, whereas, if less than this percentage are occupied, a different 

target gene is induced.

The effect of Rab5a2 on Cyc signalling differed to that of Sqt. Injection of eye into 

rab5a2 MO injected embryos resulted in the majority of embryos showing a lack of 

gsc and ntl expression (Figure 5.4.3 ). Those which did show gsc expression failed to 

show the expanded expression pattern observed for the sqt injected embryos, while 

those that showed ntl derived from the exogenous cyc also showed endogenous ntl 

expression, suggesting that there was not complete knock down of rab5a2. Injection 

of cyc into rab5a2 overexpressing embryos showed either absence or reduction of 

intensity of gsc expression in the majority of embryos, while ntl signalling was 

unaffected (Figure 5.4.3). These data seem contradictory but suggest a role for 

rab5a2 in Cyc signalling. It is possible that rab5a2 may have role in the secretion of 

the Cyc protein and with its internalization, once bound to a target cell receptor. If 

rab5a2 had a role in secretion, reduction of this gene would cause impaired secretion 

of Cyc and no target gene expression. Overexpression, on the other hand, might 

result in normal secretion, since the production of Cyc would be unaffected, but 

would result in increased internalization. This increased internalization would result 

in Cyc being removed from the extracellular space, lowering its extracellular dose 

and resulting in ntl expression rather than gsc. Since the rab5 genes have been well 

characterized as regulators of endocytosis (Bucci et al., 1992; Chavrier et al., 1990; 

Gorvel et al., 1991), it is probable that rab5a2 wouldn’t be directly responsible for 

secretion. The microarray data showed a reduction in the expression of rabl4 in 

rab5a2 MO injected embryos (Figure 6.2.1 and 6.2.3). Rabl4 has been shown to be 

involved in membrane trafficking between the golgi complex and endosomes. It is
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possible that these two rabs work in co-operation to ensure normal Cyc signalling, 

however, the data is inconclusive.

The RT-PCR data, used to validate the microarray, is also inconclusive. Much of this 

is due to the large degree of variation seen in these samples. This variation is 

controlled in the microarray data by the increased number of replicates, as well as by 

normalization of the data. Although the RT-PCR data is inconclusive for some of the 

genes, particularly the supposed non-changing housekeeping genes, the trend 

observed does suggest that the microarray data is accurate. Stronger evidence 

corroborating this is found in the expression patterns of chd, flh, and ntl in chapter 4. 

The down regulation of chd seen in the microarray data for rab5a2 MO injected 

embryos is validated by ish with the abolishment of chd expression seen in rab5a2 

MO injected embryos.

The microarray data showed hundreds of genes whose expression was changed when 

rab5a2 was knocked down even when the base line for change was set as high as 

three fold. This data suggests an early effect for rab5a2 and correspond with the 

early phenotype seen in these embryos. Even at the 30% stage, where there is no 

visual difference between the rab5a2 embryos and the control embryos, hundreds of 

genes changed their expression. The shield stage data showed an increase in the 

genes which changed, when compared to 30% epiboly embryos. This is expected 

given the suggestion that raba5a2 acts early in development and has an effect on 

signalling factors (Campos, 2004; Scholpp and Brand, 2004; Ulrich et al., 2005). The 

earlier in development rab5a2 acts, the further up the signalling cascade it is likely to 

act and, in disrupting an upstream signalling factor, Rab5a2 affects all the 

downstream factors acted upon by that initial factor. Therefore, analysis of gene 

expression at later stages of development should be predicted to show an increased 

number of genes that change.
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7.2 Further Work

7.2.1 Further analysis o f Rab5a2

Due to the complex nature of rab5a2 and the high degree of regulation of the protein 

it has been very difficult to fully explore its effect on Nodal signalling. It is possible 

that rab5a2 knock down or overexpression could be indirectly interfering with the 

secretion or synthesis of the Sqt and Cyc proteins. Transplantation of sqt and cyc 

overexpression cells into rab5a2 MO injected or overexpressing embryos would 

enable the role of rab5a2 in cells producing or receiving the sqt or cyc to be 

separated. This results from the cells transcribing and secreting the Nodal related 

proteins having wild type rab5a2 expression.

So far, much of the analysis has involved looking at Nodal responsive genes as an 

indicator of Nodal, rather than Nodal itself. To this end, sqt-gfp and cyc-gfp fusion 

proteins have been made by inserting a GFP region after the cleavage site, between 

the pro and mature domains of sqt and cyc (see Methods section 2.2.11). This ensures 

that when the proteins are cleaved, the GFP attaches to the mature domain.

To ascertain whether the sqt-gfp construct was producing the same effect as wild 

type sqt, lOpg of sqt-gfp RNA was injected into single cells of 128 cell stage 

embryos. These were then compared to embryos injected in the same manner with 

lOpg of wild type sqt RNA and those injected with lOpg of control RNA. 

Subsequently, each group of embryos was fixed at shield stage and examined for ntl 

expression. A similar procedure was completed for cyc-gfp, where it was compared 

against wild type cyc and control RNA. Expression of ntl was seen in the animal pole 

in both wild type sqt and sqt-gfp injected embryos, while the controls showed normal 

expression round the margin (Figure 7.2.1). Embryos injected with either cyc or cyc- 

gfp also showed expression of ntl in the animal pole (Figure 7.2.1). This suggested 

that the sqt-gfp and cyc-gfp was producing a similar affect to the wild type sqt and 

cyc RNA.
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To further compare wild type sqt and cyc with sqt-gfp and cyc-gfp, 5pg or 10 pg of 

either sqt, cyc, sqt-gfp or cyc-gfp were injected into single cell embryos. These were 

left to develop until shield stage, when they were snap frozen and prepared for RT- 

PCR analysis (see Methods section 2.2.10), using taqman oligos for Nodal 

responsive markers, gsc, flh, chd and lfy2 expression was increased compared to 

controls in embryos injected with either 5 or lOpg of sqt, 5 or lOpg of cyc, 5 or 10 pg 

of sqt-gfp or 10 pg of cyc-gfp (Figure 7.2.2). ntl and Ityl expression was increased in 

embryos injected with either 5pg or lOpg of sqt, 5pg of sqt-gfp 5pg of lOpg of cyc- 

gfp. Ifyl was also increase in embryos injected with 5 or lOpg of cyc (Figure 7.2.2)

Figure 7.2.1: Comparison of sqt and cyc RNA to sqt-GFP and cyc-GFP fusion 
constructs.
Comparison of ntl expression in embryos injected with lOpg of sqt RNA 
compared to embryos injected with lOpg of sqt-GFP RNA and embryos injected 
with lOpg of cyc RNA compared to embryos injected with lOpg of cyc -GFP 
RNA. ntl expression in control injected embryos are also shown.

Finally, the sqt-gfp construct was checked for GFP activity. This was achieved by 

injecting a single cell in a 128 cell stage embryos with the lineage label rhodamine 

and lOpg of sgt-gfp. The embryos were then observed under a confocal microscope 

for GFP activity. GFP was seen accumulating round cells containing rhodamine, 

which suggested that the sqt-gfp was functional (Figure 7.2.3 supl mov 7.2.3).

Injection of these GFP-nodal fusion constucts would enable the Nodal ligand to be 

followed in the developing embryo. Therefore, it would be possible to observe the

CvcGFP-1

Control

Cvcloos

SotGFP-1
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range of the ligand directly, instead of using target gene expression. Injecting these 

constructs into one cell of 128 cell embryo, either overexpressing rab5a2 or with 

rab5a2 knocked-down, would potentially enable visualization of the ligand being 

secreted or produced, and enable investigation into whether rab5a2 effects the 

secretion of the ligand. In addition, it would be interesting to transplant cells from 

embryos overexpressing these constructs into embryos, overexpressing rab5a2 or 

knocked-down for rab5a2. This would enable the visualization of these Nodals 

through the developing embryo without the secretion, or production, of the Nodal- 

GFP ligands being altered by alterations in rab5a2.
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Figure 7.2.3: Assessing the viability of the Squint-GFP fusion protein.
Confocal image of lOpg squint-GFP RNA injected embryos. The green 
colour identifies the Squint-GFP protein and the red (rhodamine) 
identifies the lineage of the cells injected with the squint-GFP RNA.

7.2.2 Investigations into the other members of the rab5 family.

In zebrafish, there are four members of the Rab5 family. Rab5c and Rab5b show 

similar phenotypes, which include brain cell death and tail defects, while Rab5al 

shows no phenotype. This thesis has shown that, out of all four Rabs, Rab5a2 is the 

most essential for early embryo development. Therefore, it is now important to
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establish whether these remaining Rab5s are even partially redundant and whether 

they have a role in cell signalling, in particular Nodal signalling.

Initial studies looking at the expression of dorsal and Nodal responsive gene have 

shown that rab5al appears to be redundant in regard to Nodal signalling (Figure 

7.2.4). However, rab5c and rab5b show a degree of down regulation. Rab5b 

particularly showed downregulation of all the genes investigated, while Rab5c 

showed down regulation of bhik. Therefore, it would be interesting to conduct 

microarray analysis on each of these genes to further quantifly to what extent these 

rabs effect cell signalling and which of these pathways, if any, overlap with other 

members of the Rab5 family.

Chd

G sc

Ntl

Bhik

Figure 7.2.4: Animal views of shield stage embryos: gsc, ntl, chd and bik 
expression in control MO injected embryos on the left compared to embryos 
injected with 12ng of rab5al MO, 8ng of rab5a2 MO and 8ng rabSc MO.

C ontrol Rab5a1 Rab5a2 Rab5b Rab5cn m n n□□□□□
nnnn
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Conclusions

This thesis presents the results of extensive experiments into the functions of 

members of the rab family of GTPases in the zebrafish. Results for more than a third 

(13) of the 37 rab genes that have been investigated to date are presented in this 

thesis. The results demonstrate the essential nature of many of these genes for early 

embryonic development, with a loss-of function screen using antisense MO 

oligonucleotides leading to severe, and in some cases, highly specific, developmental 

defects.

Of the 13 rabs investigated in detail and described in this thesis, rab3cl, rab28 and 

rabla3 show very specific defects when knocked down. rab3cl MO injected 

embryos display pigment defects, investigations into which demonstrate that these 

MO injected embryos are blind. rab28 MO injected embryos show circular 

swimming behaviour, which may result from defects in balance, while knocking 

down rabla3 shows a reduction in pigmentation. These defects show that, far from 

being purely housekeeping genes, rabs can exhibit tissue specificity. This 

corresponds to the effect seen in mammals, where five rabs have shown very specific 

phenotypes, with two of these responsible for human disorders (Menasche et al., 

2000; Verhoeven et al., 2003).

To date, members of the rabl, rab6, rab7, rab8 and rab 11 families, as well as all the 

members of the rab5 family -  genes whose homologues in yeast are considered 

essential due to the ensuing lethality when absent -  have been studied. Of these, only 

rab5a2, when knocked-down, causes death before 24hpf. Given the proposed 

housekeeping function of many of the rab genes, in particular those considered 

essential, it seems counter-intuitive that only rab5a2 should show such a dramatic 

early lethality. This thesis elucidates a novel, essential and complex role for the 

maternal transcripts of rab5a2 in Nodal signalling. The knocking down of rab5a2 

results in a severe reduction of cyc, Nodal-responsive genes and the dorsal marker 

chd. Overexpression of rab5a2 results in locally up-regulated expression of gsc and 

ntl in the animal pole, in addition to endogenous expression in the margin, but had
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little effect on chd expression. These results suggest that rab5a2 is a vital 

component of the Nodal signalling pathway. The results of this study show no 

evidence for the restrictive clearance model, suggested by Scholpp (Scholpp and 

Brand, 2004), for the movement of Fgf8, in Nodal signalling. However, this cannot 

be ruled out as experiments using exogenous sqt and cyc to investigate the effect of 

overexpression or knock-down of rab5a2 on Nodal signalling proved inconclusive. 

To address this, further studies using GFP tagged Nodals are necessary.

This thesis suggests a complex role for rab5a2 in DV patterning, since knocking 

down rab5a2 affects many DV patterning signals. Intriguingly, both dorsal 

promoting genes and some dorsal antagonists are affected by knocking down rab5a2, 

while other dorsal antagonists, such as bmp2b, are not affected. An important role is 

also established for rab5a2 in epiboly, and so early zebrafish development. Evidence 

for this is provided by the large number of genes whose expression changed when 

rab5a was knocked down

In conclusion, the rab genes are an interesting group of genes whose function can 

specifically impact on many important developmental processes. Although many of 

these genes show similar phenotypes, some show interesting and unique phenotypes 

that deserve further study. The unique phenotype of rab5a2 has shown this gene to 

be essential for early development and Nodal signalling with an interesting role in 

DV patterning, one again worthy of further study.

217



Appendices and References

Appendices and References

218



Appendix 1
Genes in rab5a2 morpholino injected embryos that changed more than 3 fold compared to controls at the 30% epiboly stage
Gene Name Fold Change Av. Description
NM_131058.1_3prime500bases378 0.13 0.13 ENSDARG00000007329:T-box gene 16 [Source:RefSeq_pepticle;Acc:NP_571133];

NM_194392.1_3prime500bases 194 0.20 0.17 0.12 0.16 ENSDARG00000040216;trophoblast glycoprotein-like [Source:RefSeq_peptide;Acc:NP_919373];

NM_131342.2_3prime500bases296 0.18 0.19 0.19 ENSDARG00000019995:bone morphogenetic protein 4 [Source:RefSeq_peptide;Acc:NP_571417];

NM 001001950.1_3pri me500bases 137 0.22 0.22 ENSDARG00000009849:zic family member 3 heterotaxy 1 (odd-paired homolog, Drosophila) [Source:RefSeq_peptide;Acc:NP_001001950];

NM_131509.1_3prime500bases430 0.22 0.22 keratin 4

NM_213118.1_3prime500bases147 0.19 0.28 0.23 ENSDARG00000014243:SRY-box containing gene 2 [Source:RefSeq_peptide;Acc:NP_998283];

NM_131690.1_3prime500bases388 0.25 0.25 ENSDARG00000019856:ATPase, Na+/K+ transporting, alpha 1b polypeptide [Source:RefSeq_peptide;Acc:NP_571765];

NM_131052.1_3prime500bases417 0.27 0.24 0.26 ENSDARG00000006939:T-box transcription factor TBX6 (T-box protein 6). [Source:llniprot/SWISSPROT;Acc:P79742];

NM_001007454.1_3prime500bases299 0.25 0.28 0.26 ENSDARG00000027699:zgc:101612 [Source:RefSeg_peptide;Acc:NP_001007455);

NM_131281.2_3prime500bases201 0.26 0.28 0.27 ENSDARGOOOOOOO3399fibroblast growth factor 8 [Source:RefSeq_peptide;Acc:NP_571356];

NM_001003875.1_3prime500bases285 0.29 0.27 0.28 ENSDARG00000037931 :U1 small nuclear ribonucleoprotein polypeptide A [Source:RefSeq_peptide;Acc:NP_001003875];

NM_198876.1_3prime500bases405 0.29 0.29 ENSDARG00000018971:UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 5 [Source:RefSeq_peptide;Acc:NP_942577];

DIG0410J903 0.30 0.30

NM_001002332.1_3pri me500bases404 0.26 0.34 0.30 ENSDARG00000007024:zgc:92414 [Source;RefSeq_peptide;Acc;NP_001002332];

NM_131108.1_3prime500bases390 0.31 0.30 0.30 ENSDARG00000036830:type 1 cytokeratin, enveloping layer [Source:RefSeq_peptide;Acc:NP_571182];

NM_131885.2_3prime500bases167 0.32 0.32 ENSDARG00000036074:CCAAT/enhancer binding protein alpha [Source:RefSeq_peptide;Acc:NP_571960];

NM_131109.1_3prime500bases25 0.32 0.32 ENSDARG00000036292;caudal type homeo box transcription factor 4 [Source:RefSeq_peptide;Acc:NP_571184];

NM_201513.1 _3prime500bases433 0.32 0.32 ENSDARG00000042539:tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, theta polypeptide

NM_130973.1_3pri me500bases361 0.30 0.36 0.33 ENSDAREST G00000005532 chordin

NM_182871.1_3prime500bases170 0.33 0.33 ENSDARG00000037677:fibroblast growth factor 24 [Source:RefSeq_peptide;Acc:NP_878291];

NM_212580.1_3prime500bases426 0.33 0.33 ENSDARESTG00000023644 methyl-CpG binding domain protein 3b

NM_130940.1_3prime500bases425 0.32 0.37 0.34 ENSDARG00000009737:bonnie and clyde [Source:RefSecLPeptide;Acc:NP_571015];

NM_131207.1_3pri me500bases 102 0.33 0.35 0.34 ENSDARG00000007944:LIM homeobox 1b [Source:RefSeq_peptide;Acc:NP_571282];

NM_183074.1_3prime500bases334 0.37 0.32 0.35 ENSDARG00000042503:ventrally expressed dharma/bozozok antagonist [Source:RefSeq_peptide;Acc:NP_898897];

NM_001012246.1_3prime500bases23 0.35 0.35 ENSDARG00000035748:fibroblast growth factor 19 [Source:RefSeci_peptide;Acc:NP_001012246];

NM_200159.1_3prime500bases291 0.36 0.36 ENSDARG00000008238:mannosidase, beta A, lysosomal [Source:RefSeq_peptide;Acc:NP_956453];

NM_131209.1_3prime500bases394 0.41 0.32 0.36 protocadherin 8

NM_201316.1_3prime500bases415 0.37 0.37 ENSDARG00000035913:tyrosyl-tRNA synthetase [Source:RefSeq_peptide;Acc:NP_958473];

NM_174861.2_3prime500bases259 0.41 0.34 0.37 ENSDARG00000019268:gastrulation brain homeobox 1 [Source:RefSeq_peptide;Acc:NP_777286];
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NM_200228.1_3pri me500bases99 0.37 0.37

NM_173288.1_3prime500bases371 0.38 0.38 0.38

NM_001003774.1_3prime500bases342 0.32 0.45 0.39

NM_201576.1_3prime500bases131 0.43 0.36 0.39

NM_212602.1_3pri me500bases425 0.39 0.39

NM_131609.1_3prime500bases422 0.40 0.40

NM_201514.1 _3pri me500bases375 0.38 0.41 0.40

NM_131700.1_3prime500bases289 0.38 0.41 0.40
NM 130955.1 3prime500bases324
DIG0402_1561 0.35 0.39 0.45 0.40

NM_131320.1_3prime500bases353 0.39 0.41 0.40

BC046031.1_3prime500bases262 0.43 0.38 0.40

NM_130956.1_3prime500bases 123 0.42 0.39 0.40

NM_201495.1_3pri me500bases221 0.32 0.48 0.40

NM_207184.1_3pri me500bases429 0.40 0.40

CF673281,1_3prime500bases425 0.43 0.39 0.41

NM_205732.1_3prime500bases414 0.41 0.41

NM_212567.1_3prime500bases8 0.42 0.42

NM_152986.1_3prime500bases147 0.42 0.42

NM_001001811,1_3prime500bases418 0.42 0.42

NM_205567.1_3prime500bases270 0.43 0.43

NM_131116.2_3prime500bases13 0.43 0.43

DIG0203_403 0.43 0.43

DIG0395_973 0.43 0.43

NM_198817.1_3prime500bases426 0.53 0.34 0.43

NM_214722.1_3prime500bases256 0.45 0.41 0.43

NM_130908.1_3prime500bases 107 0.43 0.44 0.43

BU670752.1_34 0.44 0.44

NM_001003501.1_3prime500bases284 0.43 0.44 0.44

NM_131882.2_3prime500bases379 0.40 0.48 0.44

NM_131163.1 _3pri me500bases430 0.44 0.44

NM_131884.2_3prime500bases139 0.46 0.42 0.44

NM_201493.1_3prime500bases 125 0.44 0.44

DIG0109_1354 0.45 0.45

ENSDARG00000013973:peroxisomal biogenesis factor 3 [Source:RefSeq_peptide;Acc:NP_956522];

ENSDARG00000040666:mki67 (FHA domain) interacting nudeoiar phosphoprotein (human) - like [Source:RefSeq_peptide;Acc:NP_775395]; 

ENSDARG00000015123:zgc:101000 [Source:RefSeq_peptide,Acc:NP_001003774],

ENSDARG00000034351 :transgelin 2 [Source:RefSeq_peptide;Aec:NP_963870];

ENSDARG00000011127:AHA1, activator of heat shock 90kDa protein ATPase homolog 1, like [Source:RefSeq_peptide;Acc:NP_997767]; 

ENSDARG00000017917:hairy and enhancer of split related-7 [Source:RefSeq_peptide;Acc:NP_571684];

ENSDARG00000037012:solute carrier family 3, member 2 like [Source:RefSeq_peptide;Acc:NP_958922];

ENSDARG00000017164:ventral expressed homeobox [Source:RefSeq_peptide;Acc:NP_571775];

ENSDARESTG00000012353 deltaD (did),

ENSDARG00000023188:lymphocyte cytosolic plastin 1 [Source:RefSeq_peptide;Acc:NP_571395];

ENSDARG00000029074 ubiquitin-activating enzyme E1-domain containing 1, mRNA, containing frame-shift errors 

ENSDARG00000004256:Wnt-11 protein precursor. [Source:Uniprot/SWISSPROT;Acc:073864];

RAB14

ENSDARG00000009510:iroquois homeobox protein 1, a isoform 1 [Source:RefSeq_peptide;Acc:NP_997067];

ENSDARESTG00000018874 CB967 5- similar to Filamin A 

glutamate-ammonia ligase

ENSDARG00000024204:minichromosome maintenance protein 3 [Source:RefSeq_peptide;Acc:NP_997732];

ENSDARG00000044356:tumor protein p73-like isofbrm alpha 1 [Source:RefSeq_peptide;Acc:NP_694518];

ENSDARG00000036440:SRY-box containing gene 3 [Source:RefSeq_peptide;Acc:NP_001001811];

ENSDARG00000006603:cysteine and glycine-rich protein 1 [Source:RefSeq_peptide;Acc:NP_991130];

ENSDARG00000000175:Homeobox protein Hox-B2a (Hox-B2). [Source:Uniprot/SWISSPROT;Acc:042367];

ENSDARESTG00000016981 starmaker (stm),

ENSDARG00000018806:cathepsin C [Source:RefSeq_peptide;Acc:NP_999887];

OTTDARG00000002166:zgc:55628:Novel_CDS

ENSDARG00000039072 Similar to ectoplacental cone, invasive trophoblast giant cells, extraembryonic ectoderm and chorion sequence 3, 

ENSDARG00000012341 :zgc:92451 [Source:RefSeq_peptide;Acc:NP_001003501];

ENSDARG00000022476 chemokine (C-X-C motif) receptor 4a (cxcr4a)

ENSDARG00000039694:Beta-2-microglobulin precursor. [Source:Uniprot/SWISSPROT;Acc:Q04475]; 

ENSDARG00000045369:CCAAT/enhancer binding protein beta [Source:RefSeq_peptide;Acc:NP_571959]; 

ENSDARG00000036291:nudeobindin 2a [Source:RefSeq_peptide;Acc:NP_958901];

ENSDARG00000054161 :fibroblast growth factor receptor 4 [Source:RefSeq_peptide;Acc:NP_571505];
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NM_131110.1_3prime500bases292 0.41 0.49 0.45 ENSDARG00000011166:Carbonic anhydrase (EC 4.2.1.1) (Carbonate dehydratase). [Source:Uniprot/SWISSPROT;Acc:Q92051];
NM_200659.1_3prime500bases358 0.45 0.45 ENSDARG00000025948:mutL homolog 1, colon cancer, nonpolyposis type 2 [Source:RefSeq_peptide;Acc:NP_956953],
NM_131861.1_3prime500bases69 0.50 0.41 0.45 ENSDARG00000030289:Jagged-1 a precursor (Jaggedla) (Jaggedl). [Source:Uniprot/SWISSPROT;Acc:Q90Y57];

NM_001002717.1_3prime500bases329 0.51 0.41 0.46 ENSDARG00000010206:p21-activated kinase 2 [Source:RefSeq_peptide;Acc:NP_001002717];
NM_131162.1_3prime500bases301 0.48 0.45 0.46 ENSDARG00000009905:Brachyury protein homolog (T protein homolog) (T-box protein ZFT) (ZF- T) (No tail protein).

CF673253.1_3prime500bases 193 0.46 0.46 ENSDARESTG00000008362 CB894 5- similar to Nogo-66 receptor homolog-1, mRNA sequence

NM_152980.1_3prime500bases185 0.46 0.46 ENSDARG00000031855:macrophage stimulating 1 (hepatocyte growth factor-like) [Source:RefSeq_peptide;Acc:NP_694512];

NM_173244.1_3prime500bases425 0.47 0.47 ENSDARG00000024904:TAL1 (SCL) interrupting locus like [Source:RefSeq_peptide;Acc:NP_775351];

CF569085.1_3prime500bases370 0.47 0.47 ENSDARG00000020386 CB939 5- similar to ATP-binding cassette transporter 1

NM_131287.2_3prime500bases377 0.40 0.55 0.47 ENSDARG00000041345:SRY-box 17 [Source:RefSeq_peptide;Acc:NP_571362];

NM_130946.1_3prime500bases316 0.48 0.47 0.47 ENSDARG00000010355:wnt8-iike protein 2 [Source:RefSeq_peptide;Acc:NP_001018637];

NM_131668.3_3prime500bases390 0.48 0.48 ENSDARG00000013144:ATPase, Na+/K+ transporting, beta 1a polypeptide [Source:RefSeq_peptide;Acc:NP_571743];

NM_212612.1_3prime500bases264 0.47 0.48 0.48 DEAD (Asp-Glu-Ala-Asp) box polypeptide 5 (ddx5),

NM_214808.1_3pri me500bases249 0.49 0.47 0.48 ENSDARG00000023520:Fibroblast growth factor-17b precursor (FGF-17b). [Source:Uniprot/SWISSPROT;Acc:Q6SJP8];

NM_173261.1_3prime500bases339 0.49 0.48 0.48 ENSDARG00000010948:kinesin family member 11 [Source:RefSeq_peptide;Acc:NP_775368];

CB333812.1_3prime500bases133 0.45 0.52 0.48 cDNA done CB159 5- similar to Epiplakin

DIG0345_1024 0.48 0.48 ENSDARG00000040815:hypothetical protein LOC325958 [Source:RefSeq_peptide;Acc:NP_956027];

NM_131557.1_3pri me500bases429 0.49 0.49 ENSDARG00000035831 :GATA-binding protein 6 [Source:RefSeq_peptide;Acc:NP_571632];

NM_194371,2_3pri me500bases 155 0.51 0.46 0.49 ENSDARG00000010124:Sp5 transcription factor-like [Source:RefSeq_peptide;Acc:NP_919352];

CD808440.1_3pri me500bases377 0.49 0.49 gastrula stage cDNA library Danio rerio cDNA clone CB473 5

NM_173221.2_3prime500bases432 0.49 0.49 ENSDARG00000013839:aldehyde dehydrogenase 3 family, member D1 [Source:RefSeq_peptide;Acc:NP_775328];

NM_001005390.1_3pri me500bases 12 0.41 0.57 0.49 ENSDARG00000035329:calpain, small subunit 1 [Source:RefSeq_peptide;Acc:NP_001005390];

NM_131025.2_3prime500bases229 0.42 0.56 0.49 ENSDARG00000035750:G1/S-spedfic cydin D1. [Source:Uniprot/SWISSPROT;Acc:Q90459];

NM_201124.1_3pri me500bases423 0.49 0.49 ENSDARG00000011545:arrestin, beta 2 [Source:RefSeq_peptide;Acc:NP_957418];

NM_131414.1 _3prime500bases435 0.50 0.50 ENSDARG00000040346 eph receptor B4a (ephb4a),

NM_212770.1_3prime500bases190 0.50 0.49 0.50 ENSDARG00000005185;carboxypeptidase N, polypeptide 1 [Source:RefSeq_peptide;Acc:NP_997935];

NM_131027.1_3prime500bases413 0.50 0.50 ENSDARG00000002952:smoothened homolog [Source:RefSeq_peptide;Acc:NP_571102];

NM_131092.1_3pri me500bases291 0.43 0.57 0.50 ENSDARG00000035095:one-eyed pinhead [Source:RefSeq_peptide;Acc:NP_571167];

DIG0366_880 0.50 0.50 ENSDARG00000056950:hypothetical protein LOC550602 [Source:RefSeq_peptide;Acc:NP_001017903];

AB097826.1_3prime500bases19 0.51 0.51 ENSDARG00000002403:Hypothetical protein YF-9 (Fragment). [Source:Uniprot/SPTREMBL;Acc:Q7T2W2];

NM 201475.1_3prime500bases382 0.47 0.55 0.51 ENSDARG00000031495:SET translocation (myeloid leukemia-assodated) A [Source:RefSeq_peptide,Acc:NP_958883];

NM_131245.1_3prime500bases275 0.48 0.53 0.51 inhibitor of DNA binding 6

NM_001004578.1_3pri me500bases336 0.55 0.47 0.51 ENSDARG00000014793:zgc:92331 [Source:RefSeq_peptide;Acc:NP_001004578];
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NM_199211.1_3prime500bases380 0.54 0.48 0.51 ENSDARG00000030700:CTP synthase [Source:RefSeq_peptide,Acc:NP_954681 ];
NM_199429.1_3pri me500bases 154 0.51 0.51 ENSDARG00000038097:phosphatidylinositol glycan, class Q [Source:RefSeq_peptide;Acc:NP_955461 ];
NM_201586.1_3pri me500bases423 0.47 0.56 0.51 dapper homolog 2. antagonist of beta-catenin

NM_131300.1_3prime500bases423 0.51 0.51 ENSDARG00000011956:Homeobox protein Dlx4a (DLX-8). [Source:Uniprot/SWISSPROT;Acc:Q98879];
NM_131221.1 _3pri me500bases428 0.51 0.51 ENSDARG00000015790:ATPase, Na+/K+ transporting, beta 3a polypeptide [Source:RefSeq_peptide;Acc:NP_571296];

NM_131114.1_3prime500bases186 0.53 0.50 0.52 ENSDARG00000036141 even-skipped-likel (evel)

CF673239.1_3prime500bases30 0.49 0.54 0.52 ENSDARESTG00000011746 CB996 5- similar to Poly [ADP-ribose] polymerase-2 (

NM_131560.1 _3prime500bases60 0.47 0.56 0.52 ENSDARG00000027205:mix-type homeobox gene 1 [Source:RefSeq_peptide;Acc:NP_571635];

NM_201331.1_3prime500bases423 0.52 0.52 ENSDARG00000012369:retinol dehydrogenase 10 [Source:RefSeq_peptide;Acc:NP_958488];

NM_194369.1_3pri me500bases417 0.52 0.52 ENSDARG00000037563:CD99 antigen-like 2 [Source:RefSeq_peptide;Acc:NP_919350];

NM_212777.1_3prime500bases392 0.53 0.53 ENSDARESTG00000022602 bromodomain containing 8 (brd8),

NM_131415.1_3prime500bases4 0.52 0.54 0.53 ENSDARG00000017354:eph-like receptor tyrosine kinase 6 [Source:RefSeq_peptide;Acc:NP_571490];

NM_213047.1_3prime500bases244 0.49 0.57 0.53 ENSDARG00000037109:PWP2 periodic tryptophan protein homolog [Source:RefSeq_peptide;Acc:NP_998212];

NM_131205.1_3prime500bases434 0.53 0.53 ENSDARG00000029079 ets related protein erm (erm),

nomo_3prime500bases177 0.53 0.53 ENSDARG00000034683

NM_131637.1 _3prime500bases240 0.56 0.51 0.54 ENSDARG00000014047:Claudin-like protein ZF4A22 (Claudin-7). [Source:Uniprot/SWISSPROT;Acc:Q9YH92];

NM_131146.2_3prime500bases230 0.54 0.54 ENSDARG00000033999:Cytochrome P450 26A1 (EC 1.14.-.-) (Retinoic add-metabolizing cytochrome) (P450RAI) (Retinoic add 4-hydroxylase).

NM_205585.1_3prime500bases175 0.54 0.54 ENSDARG00000035521 :secreted frizzled-related protein 1 [Source:RefSeq_peptide;Acc:NP_991148];

NM_199558.1_3prime500bases365 0.54 0.54 ENSDARG00000027109:zinc finger RNA binding protein [Source:RefSeq_peptide;Acc:NP_955852];

NM_130960.1_3prime500bases226 0.56 0.52 0.54 ENSDARG00000019920:lefty1 [Source:RefSeq_peptide;Acc:NP_571035];

NM_131851.1_3prime500bases133 0.51 0.57 0.54 ENSDARG00000041341 :SRY-box containing gene 32 [Source:RefSeq_peptide;Acc:NP_571926];

NM_214692.1_3pri me500bases406 0.53 0.56 0.54 membrane protein, palmitoylated 1 (mpp1),

DIG0389_910 0.54 0.54

NM_131482.1_3prime500bases380 0.60 0.49 0.55 ENSDARG00000005645:roundabout homoiog 3 [Source:RefSeq_peptide;Acc:NP_571557];

NM_200099.1_3prime500bases116 0.60 0.49 0.55 ENSDARG00000012000:dynein light chain (10.3 kD) (dlc-1) [Source:RefSeq_peptide;Acc:NP_956393];

NM_200104.1_3prime500bases385 0.55 0.55 ENSDARG00000036675:heterogeneous nudear ribonudeoprotein A1 [Source:RefSeq_peptide;Acc:NP 956398];

AY648733.1_3pri me500bases414 0.51 0.59 0.55 ENSDARG00000045321 :DNA polymerase alpha (Fragment). [Source:llniprot/SPTREMBL;Acc:Q6DRM6];

NM_001002312.1_3prime500bases360 0.55 0.55 ENSDARG00000041870:intraflagellar transport 172 [Source:RefSeq_peptide;Acc:NP_001002312];

AY216588.1_3pri me500bases 143 0.56 0.56 ENSDARG00000023220:Selenoprotein T2 (Fragment). [Source:llniprot/SPTREMBL;Acc;Q802G4];

CB923492.1_3pri me500bases387 0.57 0.54 0.56 ENSDARG00000004713:hypothetical protein LOC550434 [Source:RefSeq_peptide;Acc:NP_001017739];

NM_131227.1_3prime500bases133 0.56 0.56 ENSDARG00000043071:Retinal homeobox protein Rx3. [Source:Uniprot/SWISSPROT;Acc;042358];

NM_201452.1_3pri me500bases308 0.56 0.56 ENSDARG00000009484:ADP-ribosylation factor 1 [Source;RefSeq_peptide;Acc:NP_958860];

NM_131450.2_3prime500bases260 0.58 0.54 0.56 ENSDARG00000020711;Ribonudeoside-diphosphate reductase M2 chain (EC 1.17.4.1) (Ribonudeotide reductase protein R2 dass I).



DIG0121_607 0.56 0.56 E NSDARGOOOOO017320:F11 receptor [Source:RefSeq_peptide;Acc:NP_001004667];
NM_131455.1_3prime500bases385 0.56 0.56. ENSDARG00000014017:Ribonudeoside-diphosphate reductase large subunit (Ribonudeoside-diphosphate reductase M1 subunit)
BQ826572.1_3prime500bases187 0.57 0.57 cDNA done CB349 5- similar to Complement component C7

DIG0349_1819 0.57 0.57

NM_201463.1_3pri me500bases 130 0.57 0.57 ENSDARG00000022232:peter pan homolog [Source:RefSeq_peptide;Acc:NP_958871];
DIG0099_2026 0.57 0.57

DIG0346_877 0.57 0.57 ENSDARG00000021607:lglon1 [Source:RefSeq_peptide;Acc:NP_001003851 ];

DIG0131J438 0.57 0.57 ENSDARG00000058538:hypothetical protein LOC323048 [Source:RefSeq_peptide;Acc:NP_997799];

CF673237.1 _3prime500bases83 0.57 0.57 ENSDARG00000007781 CB994 5- similar to P70193 Membrane glycoprotein

NM_131291.1 _3pri me500bases223 0.57 0.57 fibroblast growth factor 3 (fgf3

NM_131098.1_3prime500bases249 0.59 0.57 0.58 ENSDARG00000040295:Apolipoprotein Eb precursor (Apo-Eb). [Source:Uniprot/SWISSPROT;Acc:042364];

AJ494837.1_3pri me500bases199 0.50 0.66 0.58 ENSDARG00000036558:Collagen XVIII (Fragment). [Source:Uniprot/SPTREMBL;Acc:Q8AWC6];

NM_212609.1_3pri me500bases 159 0.58 0.58 ENSDARESTG00000014051 guanine nudeotide binding protein (G protein), beta polypeptide 1 (gnb1),

NM_199547.1 _3prime500bases139 0.62 0.55 0.58 ENSDARG00000029252:Sjogren syndrome antigen B (autoantigen La) [Source:RefSeq_peptide;Acc:NP_955841];

NM_198871.1_3prime500bases153 0.60 0.57 0.59 zgc:63569 (zgc:63569),

BC075970.1_3prime500bases424 0.59 0.59 ENSDARG00000006427:Intestinal fatty add-binding protein. [Source:llniprot/SPTREMBL;Acc:Q8AX65];

NM_207048.1_3pri me500bases204 0.60 0.57 0.59 ENSDARESTG00000012052 cydin F (ccnf).

NM_131066.1_3prime500bases239 0.59 0.59 ENSDARG00000044163:snail homolog 1a [Source:RefSeq_peptide;Acc:NP 571141];

NM_200111.1_3prime500bases156 0.59 0.59 ENSDARG00000017748:hypothetical protein LOC378998 [Source:RefSeq_peptide;Acc:NP_956405];

DIG0401_1450 0.59 0.59 ENSDARG00000002336:Delta-like protein C precursor (DeltaC protein) (deIC). [Source:llniprot/SWISSPROT;Acc:Q9IAT6];

NM_200080.2_3prime500bases345 0.56 0.63 0.59 ENSDARG00000029086:keratin 8 [Source:RefSeq_peptide;Acc:NP_956374];

NM_173219.1_3pri me500bases266 0.60 0.60 LIM domain only 1 (lmo1),

NM_200084.1_3pri me500bases329 0.60 0.60 ENSDARG00000040464 phosphomannomutase 2 (pmm2),

CK445313.1_3prime500bases394 0.62 0.58 0.60 ENSDARG00000004017 CB1089 5- similar to sperm associated antigen 1,

BQ169366.1_3prime500bases3 0.60 0.60 ENSDARG00000013841 CB272 5- similar to TYROSINE-PROTEIN KINASE ABL2

NM_130964.1_3prime500bases414 0.61 0.61 ENSDARG00000007204 islet3 (isl3),

NM_181559.1_3prime500bases359 0.61 0.61 ENSDARG00000039128:glutamine synthetase 1 [Source:RefSeq_peptide;Acc:NP_853537];

NM_201459.1_3pri me500bases430 0.61 0.61 ENSDARG00000002792;archain 1 [Source:RefSeq_peptide;Acc:NP_958867];

NM_001008615.1_3prime500bases182 0.59 0.63 0.61 ENSDARG00000041065:heat shock protein 1 [Source:RefSeq_peptide;Acc:NP_001008615];

NM_001003882.2_3prime500bases425 0.61 0.61 ENSDARG00000008237:seryl-tRNA synthetase [Source:RefSeq_peptide;Acc:NP_001003882];

NM_130937.1_3prime500bases293 0.61 0.61 0.61 ENSDARG00000034894:Wnt-5 protein precursor. [Source:Uniprot/SWISSPROT;Acc:Q92050];

NM_205702.1_3pri me500bases229 0.61 0.61 zgc:76868 (zgc:76868),

NM_131874.1_3prime500bases111 0.58 0.65 0.62 ENSDARG00000035622:X-box binding protein 1 [Source:RefSeq_peptide;Aec:NP_571949];



NM_001002869.1_3prime500bases19 0.59 0.64 0.62 ENSDARG00000024593:DEAD (Asp-Glu-Ala-Asp) box polypeptide 27 [Source:RefSeq_peptide;Acc:NP_001002869];
NM_131834.1_3prime500bases233 0.62 0.62 ENSDARG00000041959:chemokine (C-X-C motif), receptor 4b [Source:RefSeq_peptide;Acc:NP_571909];
NM_198922.1_3pri me500bases281 0.62 0.62 ENSDARG00000029305:BAI1 -associated protein 2-like 1 [Source:RefSeq_peptide;Acc:NP_944604];

CF417054.1_3prime500bases17 0.63 0.62 0.62 cDNA clone CB850 5- similar to Methylmalonate-semialdehyde dehydrogenase

NM_212603.1_3prime500bases166 0.63 0.63 ENSDARG00000023330:addic (leucine-rich) nuclear phosphoprotein 32 family, member B [Source:RefSeq_peptide;Acc:NP_
NM_198908.1_3prime500bases138 0.62 0.64 0.63 ENSDARG00000007294:aconitase 2, mitochondrial [Source:RefSeq_peptide;Acc:NP_944590];
CF417014.1 _3pri me500bases203 0.63 0.63 ENSDARESTG00000002702 done CB810 5- similar to Beta-1 integrin

CK445305.1 _3prime500bases82 0.63 0.63 cDNA done CB896 5- similar to Spalt transcription factor SalU

NM_131055.1_3prime500bases433 0.63 0.63 ENSDARG00000021201 floating head [Source:RefSeq_peptide;Acc:NP_571130];

NM_181757.2_3prime500bases66 0.64 0.62 0.63 ENSDARG00000016470:annexin A5 [Source:RefSeq_peptide;Acc:NP_861422];

NM_131511.1_3prime500bases250 0.62 0.65 0.63 ENSDARG00000014673:frizzled 9 [Source:RefSeq_peptide;Acc:NP_571586];

NM_131516.1_3prime500bases368 0.64 0.64 ENSDARG00000002768:Parvalbumin beta. [Source:Uniprot/SWISSPROT;Acc:Q9l8VO];

NM_199274.1_3prime500bases294 0.64 0.64 ENSDARG00000040175:regulator of G-protein signalling 4 [Source:RefSeq_peptide;Acc:NP_954968];

DIG0408_1690 0.64 0.64

NM_131363.1_3prime500bases153 0.64 0.64 ENSDARG00000045102:sine oculis homeobox homolog 3b [Source:RefSeq_peptide;Acc:NP_571438];

DIG0557_1492 0.64 0.64

CF269292.1_3prime500bases211 0.64 0.64 CB751 5- similar to Vitamin K-dependent gamma-glutamyl carboxylase

NM_131235.2_3prime500bases8 0.64 0.64 GATA-binding protein 5 (gata5),

BI326806.1_3prime500bases170 0.65 0.65 ENSDARESTG00000000352 CB63 5- similar to SW:PGCV_CHICK Q90953 VERSICAN CORE PROTEIN PRECURSOR,

NM_183410.1_3prime500bases289 0.65 0.65 ENSDARG00000039645:annexin 11a isoform 1 [Source:RefSeq_peptide;Acc:NP_861430];

NM_131784.1_3prime500bases435 0.65 0.65 BMP and activin membrane-bound inhibitor (Xenopus laevis) homolog (bambi),

BU670702.1_3pri me500bases280 0.65 0.65 ENSDARG00000003509 CB407 5- similar to SPT:Q8UW4 ATP-binding cassette transporter 1,

NM_130988.1_3prime500bases427 0.65 0.65 ENSDARG00000038798:Patched protein homolog 1 (Patched 1) (PTC1). [Source:Uniprot/SWISSPROT;Acc:Q98864];

NM_131115.1 _3pri me500bases327 0.65 0.65 ENSDARG00000008174:Homeobox protein Hox-B1a (Hox-B1). [Source:Uniprot/SWISSPROT;Acc:042366];

CF269323.1_3pri me500bases 12 0.65 0.65 cDNA library Danio rerio cDNA clone CB732 5- similar to Centrin

NM_198870.1_3prime500bases332 0.65 0.65 ENSDARG00000009336:hypothetical protein LOC321033 [Source:RefSeq_peptide;Acc;NP_942571];

NM_131290.1_3prime500bases274 0.65 0.66 0.65 ENSDARG00000021032Torkhead box D3 [Source:RefSeq_peptide;Acc:NP_571365];

NM_131632.1_3prime500bases37 0.65 0.65 ENSDARG00000022606:atonal homolog 7 [Source:RefSeq_peptide;Acc:NP 571707];

NM_201292.1_3pri me500bases426 0.65 0.65 ENSDARG00000029928:adaptor-related protein complex 3, mu 1 subunit [Source:RefSeq_peptide;Acc:NP_958449];

NM_001002686.1_3prime500bases394 0.66 0.66 ENSDARG00000021003:zgc;91854 [Source:RefSeq_peptide;Acc:NP_001002686];

NM_201176.1_3prime500bases372 0.66 0.66 ENSDARG00000017775:similar to ATP synthase, H+ transporting, mitochondrial F0 complex, subunit c (subunit 9) isofbrm 3

CF673299.1_3prime500bases379 0.66 0.66 ENSDARESTG00000014248 CB926 5- similar to Gem-associated protein 5

DIG0123_592 0.66 0.66
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NM_131860.1 _3prime500bases339 0.66 0.66

NM_200075.1_3prime500bases316 0.66 0.66

BC055500.1_3prime500bases312 0.66 0.66

DIG0163_640 0.66 0.66

NM_201491.1_3prime500bases432 0.66 0.66

NM_213103.1_3prime500bases427 0.67 0.67

CB333792.1_3prime500bases355 1.50 1.50

NM_130948.1_3prime500bases53 1.50 1.50

NM_131305.1_3prime500bases228 1.51 1.51

NM_131734.2_3prime500bases396 1.51 1.51

NM_201329.1_3pri me500bases38 1.51 1.51

DIG0188_1237 1.52 1.52

NM_201178.1_3prime500bases414 1.52 1.52

NM_213387.1_3prime500bases47 1.53 1.53

NM_131878.1_3prime500bases369 1.53 1.53

NM_001004122.1_3pri me500bases414 1.53 1.53

DIG0311_361 1.54 1.54

NM_198912.1_3pri me500bases424 1.54 1.54

NM_131047.1_3prime500bases235 1.54 1.54

NM_212823.1_3prime500bases272 1.55 1.55

NM_131664.1_3prime500bases338 1.55 1.55

NM_173255.1_3prime500bases278 1.55 1.55

NM_201577.1_3prime500bases427 1.55 1.55

NM_153662.1_3prime500bases434 1.56 1.56

NM_213058.1_3prime500bases432 1.56 1.56

NM_200074.3_3prime500bases186 1.57 1.57

CF269307.1_3pri me500bases359 1.62 1.51 1.57

CD808453.1_3prime500bases353 1.55 1.58 1.57

BU808703.1_3prime500bases5 1.57 1.57

NM_199333.1_3pri me500bases 147 1.57 1.57

NM_201213.1_3prime500bases388 1.57 1.57

NM_001007282.1_3prime500bases238 1.65 1.50 1.58

NM_200088.1_3pri me500bases361 1.58 1.58
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ENSDARG00000015472:knypek{Source:RefSeq_peptide,Acc:NP_571935];

ENSDARG00000007665:Similar to RIKEN cDNA 1500019G21 gene [Source:RefSeq_peptide;Acc:NP_956369]; 

ENSDARG00000029172:Polr1 a protein (Fragment). [Source:Uniprot/SPTREMBL;Acc:Q7SXQ2];

ENSDARG00000003061 PREDICTED: similar to CD276 antigen isoform b [Source:RefSeq_peptide_predicted;Acc:XP_700973]; 

ENSDARG00000042853:isovaleryl Coenzyme A dehydrogenase [Source:RefSeq_peptide;Acc:NP_958899]; 

ENSDARG00000045902:hypothetical protein LOC406376 [Source:RefSeq_peptide;Acc:NP_998268]; 

cDNA library Danio rerio cDNA done CB116 3

ENSDARG00000037995:DVR-1 protein precursor. [Source:Uniprot/SWISSPROT;Acc:P35621];

ENSDARG00000013125:Homeobox protein Dlxla (DLX-1). [Source:Uniprot/SWISSPROT;Acc:Q98875]; 

ENSDARG00000005039:glutathione S-transferase pi [Source:RefSeq_peptide;Acc:NP_571809];

ENSDARG00000034771 :RAB13, member RAS oncogene family [Source:RefSeq_peptide;Acc:NP_958486]; 

ENSDARG00000056084:PREDICTED: similar to CG33141-PA [Source:RefSeq_peptide_predicted;Acc:XP_696105]; 

ENSDARG00000014577:Rhophilin 2 (GTP-Rho binding protein 2). [Source:llniprot/SWISSPROT;Acc:Q6TNR1]; 

ENSDARG00000044399:phosphoglycerate kinase 1 [Source:RefSeq_peptide;Acc:NP_998552];

ENSDARG00000025516:nanos homolog [Source:RefSeq_peptide,Acc:NP_571953];

ENSDARG00000042947:myostatin-2 [Source:RefSeq_peptide;Acc:NP_001004122];

ENSDARESTG00000005713 peptidase D (pepd),

ENSDARG00000043276:ca!reticulin [Source:RefSeq_peptide;Acc:NP_571122];

ENSDARG00000040602 ?

ENSDARESTG00000014726 epithelial protan lost in neoplasm (eplin),

ENSDARESTG00000018904 ATPase, H+ transporting, lysosomal, VO subunit c (atp6v0c),

ENSDARG00000005675 SEC61, beta subunit (sec61b),

ENSDARG00000018788:sialyitransferase 8 [Source:RefSeq_peptide;Acc:NP_705948];

ENSDARG00000004665:heat shock 70kDa protein 5 [Source:RefSeq_peptide;Acc:NP_998223];

ENSDARESTG00000025067 caldum homeostasis endoplasmic reticulum protein (cherp)

ENSDARG00000017906:hypothetical protein LOC554101 [Source:RefSeq_peptide;Acc:NP_001019574]; 

ENSDARESTG00000024342 done CB654 5- similar to Histone protein Hist2h3c1, 

cDNA done CB516 5- similar to C-ets-1 protein

ENSDARG00000003933:pyruvate kinase, muscle [Source:RefSeq_peptide;Acc:NP_955365];

ENSDARG00000010316:glutaminyl-tRNA synthetase [Source:RefSeq_peptide;Acc:NP_957507]; 

glutathione peroxidase 4a

ENSDARG00000035332:hypothetical protein LOC368366 [Source:RefSeq_peptide;Acc:NP_956382];



NM_212835.1_3prime500bases46 1.58 1.58 ENSDARG00000041954:chymotrypsin C (caldecrin) [Source:RefSeq_peptide;Acc:NP_956180];
NM_001007371,1_3prime500bases41 1.58 1.58 ENSDARG00000032640:zgc:101900 (zgc:101900), mRNA [Source:RefSeq_dna;Acc:NM_001007371 ];
NM_201470.1_3prime500bases432 1.58 1.58 ENSDARG00000008310:inositol hexaphosphate kinase 2 [Source:RefSeq_peptide;Acc:NP_958878];

NM_201587.1_3prime500bases206 1.58 1.58 islet cell autoantigen (ica),

NM_200108.1_3pri me500bases408 1.58 1.58 ENSDARESTG00000009408 zgc:55309 (zgc:55309).

NM_200025.1_365 1.59 1.59 ENSDARG00000037071 iribosomal protein S26 [Source:RefSeq_peptide;Acc:NP_956319];

NM_001007774.1_3prime500bases319 1.60 1.60 ENSDARESTG00000005461 zgc:101730 (zgc:101730), mRNA

NM_194401.1_3prime500bases291 1.60 1.60 ENSDARG00000002131:CUG triplet repeat, RNA binding protein 2 [Source:RefSeq_peptide;Acc:NP_919382];

NM_201457.1_3pri me500bases430 1.60 1.60 ENSDARG00000008175:replication factor C (activator 1) 3 [Source:RefSeq_peptide;Acc:NP_958865];

NM_131555.1_3prime500bases397 1.61 1.61 ENSDARESTG00000011910 dopachrome tautomerase (dct), mRNA

NM_131528.1_3prime500bases298 1.61 1.61 ENSDARG00000036693:Homeobox protein Hox-C9a (Hox-C9). [Source:Uniprot/SWISSPROT;Acc:Q9YGS6];

NM_131757.1_3prime500bases427 1.63 1.63 ENSDARG00000015707:dishevelled, dsh homolog 3 [Source:RefSeq_peptide;Acc:NP_571832];

CB891031.1_3prime500bases308 1.63 1.63 CB628 5- similar to Protein-tyrosine phosphatase X precursor

NM_131513.1_3prime500bases430 1.63 1.63 ENSDARG00000038528 cydin B1 (ccnbl),

CF673298.1_3prime500bases136 1.63 1.63 ENSDARESTG00000024736 done CB984 5- similar to Receptor-type protein-tyrosine phosphatase mu precursor

NM_213208.1_3prime500bases114 1.53 1.74 1.64 ENSDARG00000013307:60S ribosomal protein L19. [Source:Uniprot/SWISSPROT;Acc:Q6P5L3];

NM_212707.1_3prime500bases162 1.67 1.61 1.64 ENSDARG00000000068:solute carrier family 9 (sodium/hydrogen exchanger), isoform 3 regulator 1

NM_199216.1_3prime500bases16 1.64 1.64 ENSDARG00000004964:cytochrome P450, family 4 [Source:RefSeq_peptide;Acc:NP 954686];

NM_130939.1_3prime500bases418 1.65 1.65 cth1 (cth1)

BU670753.1_3prime500bases358 1.65 1.65 OTTDARG00000011035:si :ch211 -76m11.4:Novel_CDS;OTTDARG00000011034:si:ch211-76m11.3:Novel_CDS;

NM_131826.1_3prime500bases50 1.58 1.73 1.66 ENSDARG00000009182:sprouty (Drosophila) homolog 4 [Source:RefSeq_peptide;Acc:NP_571901];

NM_212795.1_3prime500bases117 1.74 1.57 1.66 ENSDARG00000022813:Dead end protein 1. [Source:Uniprot/SWISSPROT;Acc:Q7T1 H5];

NM_131105.2_3prime500bases297 1.66 1.66 alpha-tropomyosin (tpma),

DIG0187_604 1.66 1.66

NM_173257.1_3pri me500bases 146 1.66 1.66 ENSDARG00000015911:MCM2 minichromosome maintenance defident 2, mitotin [Source:RefSeq_peptide;Acc:NP

NM_131142.1_3prime500bases105 1.71 1.61 1.66 ENSDARG00000001353:Homeobox protein Hox-B1b (Hox-A1). [Source:Uniprot/SWISSPROT;Acc:Q90423];

NM_001008581.1_3prime500bases327 1.67 1.67 ENSDARG00000040046:hypothetical protein LOC494038 [Source:RefSeq_peptide;Acc:NP_001008581];

NM_131322.2_3prime500bases422 1.67 1.67 ENSDARG00000014626:Homeobox protein Dlx3b (DLX-3). [Source:Uniprot/SWISSPROT;Acc:Q01702];

NM_001002486.1_247 1.67 1.67 ENSDARG00000043977 zgc:92860 (zgc:92860),

NM_199538.1_3pri me500bases295 1.64 1.70 1.67 ENSDARG00000033768:hypothetical protein LOC321203 [Source:RefSeq_peptide;Acc:NP_955832];

NM_131506.1_3prime500bases351 1.68 1.68 ENSDARG00000005150:T-box 20 [Source:RefSeq_peptide;Acc:NP_571581];

NM_201487.1_3pri me500bases385 1.59 1.78 1.68 ENSDARG00000014230:dihydrolipoamide S-succinyltransferase [Source:RefSeq_peptide;Acc:NP_958895];

NM_152956.1_3prime500bases377 1.68 1.68 ENSDARG00000034785:dachshund b [Source:RefSeq_peptide;Acc:NP_694488];
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NM_181766.1_3prime500bases 179 1.77 1.62 1.69

NM_152948.1_3prime500bases351 1.69 1.69

NM_173241.1_3prime500bases267 1.72 1.70 1.71

NM_001003509.1_3prime500bases419 1.72 1.72

NM_178222.2_3prime500bases356 1.72 1.72

CF416980.1_3prime500bases316 1.81 1.64 1.72

NM_198980.1_3prime500bases177 1.51 1.96 1.73

DIG0406_2221 1.74 1.74

NM_153651.1_3prime500bases435 1.74 1.74

NM_178286.2_3prime500bases402 1.72 1.78 1.75

NM_131644.1_3prime500bases279 1.75 1.75

CF943689.1_3prime500bases114 1.76 1.76

CB923498.1_3prime500bases313 1.79 1.79

NM_131294.1_3prime500bases435 1.80 1.80

NM_212574.1_3prime500bases193 1.65 1.95 1.80

NM_200090.1_3prime500bases311 1.97 1.63 1.80

NM_198807.1_3prime500bases67 1.81 1.81

NM_201206.1_3prime500bases257 1.81 1.81

NM_200105.1_3prime500bases210 1.64 1.99 1.81

NM_131267.1_3prime500bases432 1.82 1.82

NM_001001941.1_3prime500bases82 1.84 1.84

NM_131875.1_3prime500bases0 2.16 1.54 1.85

NM_200960.1_3prime500bases153 1.63 2.07 1.85

NM_001007038.1_3pri me500bases269 2.06 1.64 1.85

NM_130945.1_3prime500bases213 1.86 1.86

NM_130947.1_3prime500bases404 1.87 1.87

NM_178297.2_3prime500bases120 1.73 2.02 1.87

NM_201299.1_3prime500bases275 1.73 2.05 1.89

NM_183071.1_3prime500bases384 2.20 1.58 1.89

NM_001004602.1_3prime500bases143 1.76 2.03 1.89

NM_173223.2_3prime500bases346 1.82 1.97 1.90

NM_131665.1_3prime500bases403 1.54 2.28 1.91

NM_194374.1_3pri me500bases 181 1.83 2.01 1.92
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annexin A11 b (anxal 1 b),

ENSDARG00000043658:coxsackie virus and adenovirus receptor [Source:RefSeq_peptide;Acc:NPJ)94480]; 

ENSDARG00000023002:dentideless homolog [Source:RefSeq_peptide;Acc:NP_775348];

ENSDARG00000004806:zgc:92443 [Source:RefSeq_peptide;Acc:NP_001003509];

ENSDARG00000023316:single-minded homolog 1 [Source:RefSeq_peptide;Acc:NP_835740];

ENSDARG00000042428 cDNA clone CB870 5- similar to Glutathione S-transferase 1

ENSDARG00000004311 :low density lipoprotein receptor adaptor protein 1 [Source:RefSeq_peptide;Acc:NP_945331];

ENSDARG0000001 l273:homeo box 11-like [Source:RefSeq_peptide;Acc:NP_705937];

ENSDARESTG00000006588 selenoprotein M (sepm),

ENSDARG00000043923:SRY-box containing gene 9b [Source:RefSeq_peptide;Acc:NP_571719];

ENSDARG00000045305 CB1053 5- similar to High-affinity cAMP-spedfic 3-,5-cydic phosphodiesterase 7A 

ENSDARG00000018678 done CB453 5- similar to Ras-related protein Rab-40C (SOCS box containing protein RAR3), 

ENSDARG00000043848:Superoxide dismutase [Cu-Zn] (EC 1.15.1.1). [Source:Uniprot/SWISSPROT;Acc:073872]; 

ENSDARESTG00000014835 solute carrier family 11 (proton-coupled divalent metal ion transporters), member 2 (slc11a2) 

ENSDARG00000040730:hypothetical protein LOC368478 [Source:RefSeq_peptide;Acc:NP_956384]; 

ENSDARG00000020289:PIF1 homolog [Source:RefSeq_peptide;Acc:NP_942102];

ENSDARGOOOOOOH626:COX15 homolog, cytochrome c oxidase assembly protein [Source:RefSeq_peptide;Acc:NP_957500]; 

ENSDARG00000026862Aised toes homolog [Source:RefSeq_peptide;Aec:NP_956399];

ENSDARG00000036097:iroquois homeobox protein 3a [Source:RefSeq_peptide;Acc:NP_571342]; 

ENSDARG00000004173;coatomer protein complex, subunit alpha [Source:RefSeq_peptide;Acc:NP_001001941];

SRY-box containing gene 10 (sox10),

ENSDARG00000011175:ATPase, H+ transporting, V1 subunit D [Source:RefSeq_peptide;Acc:NP_957254]; 

ENSDARG00000044593:ATP-binding cassette, sub-family C (CFTR/MRP), member 4 (abcc4), mRNA 

ENSDARG00000015717;fms-related tyrosine kinase 4 [Source:RefSeq_peptide;Acc:NP_571020]; 

ENSDARG00000040836:Wnt-4a protein precursor. [Source:Uniprot/SWISSPROT;Acc:P47793];

ENSDARESTG00000020068 selenoprotein P, plasma, 1a (seppla),

ENSDARG00000025904:glycoprotein, synaptic 2 [Source: RefSeq_pepti de; Acc: N P_958456];

ENSDARG00000040344;linker histone H1M [Source:RefSeq_peptide;Acc:NP_898894]; 

zgc:86701

ENSDARG00000002731 :syndecan 2 [Source:RefSeq_peptide;Acc:NP_775330];

ENSDARG00000021389:jagged 2 isoform 1 [Source:RefSeq_peptide;Acc:NP_571937];

ENSDARG00000041217:exportin 6 [Source:RefSeq_peptide;Acc:NP_919355];



NM_212817.1_3prime500bases313 1.89 2.01 1.95

NM_212817.1 _3pri me500bases337 2.01 1.89 1.95

NM_001001399.1_3prime500bases370 1.93 1.96 1.95

NM_201499.1_3pri me500bases421 1.96 1.96

NM_200107.1_3prime500bases149 1.97 2.01 1.99

DIG0379_421 1.99 1.99

CF417020.1_3prime500bases393 2.01 2.01

NM_001002468.1_3prime500bases415 2.01 2.01

NM_199532.1_3prime500bases 125 1.68 2.36 2.02

NM_130922.1 _3prime500bases109 2.24 1.81 2.02

NM_001007124.1_3prime500bases325 2.03 2.03

NM_199212.1_3prime500bases 100 1.93 2.15 2.04

BC081600.1_3pri me500bases407 2.05 2.05

NM_131247.1_3prime500bases435 2.05 2.05

Cab 2.05 2.05

NM_131041.1 _3prime500bases430 2.06 2.06

NM_131500.1_3prime500bases388 2.06 2.06

NM_131503.1_3prime500bases104 2.04 2.12 2.08

BM402118.1_3prime500bases243 2.15 2.02 2.09

NM_200109.1_3prime500bases196 1.72 2.47 2.09

NM_131848.1_3pri me500bases415 1.91 2.30 2.11

CF924885.1_3prime500bases240 2.09 2.13 2.11

NM_198978.1_3prime500bases380 2.12 2.12

NM_198072.1_3prime500bases142 2.03 2.22 2.13

NM_131247.1_3prime500bases423 2.13 2.13

NM_198978.1_3prime500bases371 2.15 2.15

NM_178298.2_3pri me500bases266 1.72 2.59 2.16

DIG0565_1528 2.16 2.16

NM_199519.2_3prime500bases22 1.93 2.45 2.19

NM_199273.1_3prime500bases79 2.32 2.07 2.19

NM_131729.2_3prime500bases151 2.21 2.21

NM_131184.2_3prime500bases100 1.99 2.44 2.22

NM_001003512.1_3prime500bases320 2.24 2.24
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ENSDARG00000038964:tnf receptor-associated factor 4b [Source:RefSeq_peptide;Acc:NP_997982]; 

ENSDARG00000038964:tnf receptor-associated factor 4b [Source:RefSeq_peptide;Acc:NP_997982]; 

ENSDARG00000005230:signal sequence receptor, beta [Source:RefSeq_peptide;Acc:NP_001001399]; 

ENSDARG00000025375:isodtrate dehydrogenase 1 (NADP+), soluble [Source:RefSeq_peptide;Acc:NP_958907]; 

ENSDARG00000037618:hypothetical protein LOC378866 [Source:RefSeq_peptide;Acc:NP_956401];

ENSDARG00000034829 CB816 5- similar to Procollagen-lysine,2-oxoglutarate 5-dioxygenase 3 precursor 

ENSDARG00000025350:hypothetical protein LOC436741 [Source:RefSeq_peptide;Acc:NP_001002468]; 

ENSDARG00000004402:ELOVL family member 6, elongation of long chain fatty adds [Source:RefSeq_peptide;Acc:NP_955826]; 

ENSDARG00000020298:B-cell translocation gene 2 [Source:RefSeq_peptide;Acc:NP_570997];

ENSDARG00000028415 met proto-oncogene (hepatocyte growth factor receptor) (met), 

ENSDARG00000025522:serum/glucocorticoid regulated kinase [Source:RefSeq_peptide;Acc:NP_954682]; 

ENSDARG00000016771:transferrin-a [Source:RefSeq_peptide;Acc:NP_001015057]; 

lactate dehydrogenase B4 (Idhb),

ENSDARG00000037231 :Neurogenin 1 (Neurogenic differentiation factor 3) (NeuroD3) (Neurogenin related protein-1). 

ENSDARG00000040159:wingless-type MMTV integration site family, member 4b [Source:RefSeq_peptide;Acc:NP_571575]; 

ENSDARG00000026534:Axin-1 (Axis inhibition protein 1). [Source:Uniprot/SWISSPROT;Acc:P57094]; 

ENSDARG00000014499:hypothetical protein LOC445204 [Source:RefSeq_peptide;Acc:NP_001003598]; 

ENSDARG00000039527 TSC22 domain family 2 (tsc22d2)

ENSDARG00000004729:transcription factor binding to IGHM enhancer 3a [Source:RefSeq_peptide;Acc:NP_571923]; 

ENSDARESTG00000025399 cDNA done CB1014 5- similar to Q8wux2 Similar to RIKEN cDNA 2510006C20 gene 

ENSDARESTG00000016872 programmed cell death 4b (pdcd4b),

ENSDARESTG00000006053 5-methyltetrahydrofolate-homocysteine methyltransferase (mtr),

ENSDARG00000035139 lactate dehydrogenase B4 (Idhb),

ENSDARG00000041022:programmed cell death 4 [Source:RefSeq_peptide;Acc:NP_945329];

ENSDARESTG00000011008 selenoprotein P, plasma, 1b (sepplb)

ENSDARG00000037493:hypothetical protein LOC553785 [Source:RefSeq_peptide;Acc:NP_001018583];

Enah/Vasp-like a (evla),

ENSDARESTG00000011553 zgc:66433 (zgc:66433),

OTTDARG00000006320:si :dkey-197d 18.1: Novel_CDS 

ENSDARG00000028148 paired box gene 2a (pax2a),

ENSDARG00000031616:zgc:92368 [Source:RefSeq_peptide;Acc:NP_001003512];



NM_182878.1_3prime500bases422 2.24 2.24 ENSDARG00000013443:ATPase, H+ transporting, lysosomal, V1 subunit B, member a [Source:RefSeq_peptide;Acc:NP_878298];
NM_212815.1_3prime500bases352 2.27 2.27 ENSDARG00000026797:v-akt murine thymoma viral oncogene homolog 2, like [Source:RefSeq_peptide;Acc:NP_997980],
NM_212994.1_3prime500bases261 2.41 2.14 2.27 ENSDARESTG00000019878 heterogeneous nuclear ribonudeoprotein K (hnrpk).

NM_130954.1_3prime500bases250 1.61 2.35 2.90 2.29 ENSDARG00000010791 :deltaA [Source:RefSeq_peptide;Acc:NP_571029];

NM_173222.1 _3prime500bases325 1.89 2.72 2.30 ENSDARG00000043257:creatine kinase, brain [Source:RefSeq_peptide;Acc:NP_775329];
NM_198208.1_3pri me500bases 109 1.98 2.66 2.32 ENSDARESTG00000005100 transcription factor Dp-2 (tfdp2),

NM_131893.1 _3prime500bases348 2.32 2.32 ENSDARESTG00000004657 myeloid ecotropic viral integration 1 (meisl),

NM_198877.1 _3prime500bases272 2.30 2.34 2.32 ENSDARG00000042931 :musde-spedfic beta 1 integrin binding protein 2 [Source:RefSeq_peptide;Acc:NP_942578];
NM_131341.1_3prime500bases304 2.32 2.32 ENSDARESTG00000000876 growth assodated protein 43 (gap43).

NM_131613.1_3prime500bases337 2.34 2.34 ENSDARG00000005315:CUG triplet repeat, RNA-binding protein 1 [Source:RefSeq_peptide;Acc:NP_571688];

NM_212761.1_2 2.34 2.34 ENSDARG00000009978:ictacaldn [Source:RefSeq_peptide;Acc:NP_997926];

NM_152955.1_3prime500bases117 1.85 2.84 2.34 ENSDARESTG00000012272 dachshund a (dacha),

NM_131193.1_3prime500bases146 2.37 2.37 eyes absent homolog 1 (eyal),

NM_199217.1_3pri me500bases 187 2.60 2.21 2.41 four and a half LIM domains (fhl),

NM_001003980.1_3pri me500bases380 2.29 2.56 2.43 ENSDARG00000002330:LIM homeobox 8 [Source:RefSeq_peptide;Acc:NP_001003980];

NM_131761.1_3prime500bases338 2.40 2.48 2.44 ENSDARG00000009447:ATP synthase, H+ transporting, mitochondrial F0 complex, subunit c (subunit 9)

NM_131807.1_3prime500bases404 2.45 2.45 ENSDARG00000008434:bd2-like [Source:RefSeq_peptide;Acc:NP_571882];

NM_182855.1 _3prime500bases382 2.57 2.36 2.46 ENSDARG00000040030 transforming growth factor, beta receptor II (tgfbr2),

NM_131360.1_3prime500bases428 2.49 2.49 ENSDARG00000041430:bone morphogenetic protein 2b [Source:RefSeq_peptide;Acc:NP_571435];

NM_131077.1_3prime500bases386 2.52 2.52 ENSDARG00000008796:hairy-related 5 [Source:RefSeq_peptide;Acc:NP_571152];

NM_201496.1_3prime500bases413 2.53 2.53 ENSDARG00000031915:Hypoxia-indudble factor 1 alpha inhibitor (EC 1.14.11.16) (Hypoxia- indudble factor asparagine hydroxylase).

NM_131802.1_3pri me500bases421 2.54 2.54 ENSDARG00000011683:HHGP protein [Source:RefSeq_peptide;Acc:NP_955812];

zfp36l 1 _3pri me500bases67 2.83 2.28 2.55 ENSDARG00000016154

NM_201309.1_3pri me500bases 192 2.31 2.82 2.56 suppressor of fused homolog (Drosophila) (sufu),

NM_131283.1_3prime500bases432 2.61 2.61 ENSDARG00000039228rforkhead box B1.1 [Source:RefSeq_peptide;Acc:NP_571358];

NM_001003982.1_3prime500bases262 2.61 2.61 ENSDARG00000029830;myogenic factor 6 [Source:RefSeq_peptide;Acc:NP_001003982];

BC056835.1_3prime500bases399 2.64 2.64 ENSDARG00000040266 SRY-box containing gene 31,

NM_131759.1_3prime500bases434 2.65 2.65 ENSDARG00000036516:hemoglobin beta embryonic-1 [Source:RefSeq_peptide;Acc:NP_571834];

CF943713.1_3prime500bases61 2.65 2.65 ENSDARG00000003001 CB1077 5- similar to Myosin Vb,

NM_199522.1_3prime500bases430 2.67 2.67 ENSDARG00000034539:ras homolog gene family, member E [Source:RefSeq_peptide;Acc:NP_955816];

DIG0161_670 2.83 2.83 ENSDARG00000017389:hypothetical protein LOC405860 [Source:RefSeq_peptide;Acc:NP_998089];

NM_131461.1_3prime500bases418 2.87 2.87 endothelium-specific receptor tyrosine kinase 2 (tie2),

NM_131682.2_3prime500bases18 2.89 2.89 ENSDARG00000041945:Aminolevulinate, delta-, synthetase 2 (Fragment). [Source:Uniprot/SPTREMBL;Acc:Q5RIZ3];
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NM_131679.3_3prime500bases168 2.72 3.25 2.99 ENSDARG00000006640:eomesodermin homolog [Source:RefSeq_peptide;Acc:NP_571754];

NM_131881.1 _3pri me500bases266 2.83 3.16 3.00 ENSDARG00000002601 Iroquois homeobox protein 7 [Source:RefSeq_peptide;Acc:NP_571956];

CA854263.1_3prime500bases122 2.88 3.11 3.00 ENSDARG00000043457:Hypothetical protein (Fragment). [Source:Uniprot/SPTREMBL;Acc:Q5XJ10];

NM_131348.2_3prime500bases39 3.00 3.00 ENSDARG00000014125rfriend leukemia integration 1 [Source:RefSeq_peptide;Aec:NP_571423];

NM_130923.1_3prime500bases410 2.44 3.59 3.01 microphthalmia-associated transcription factor a (mitfa),

NM_199276.1_3prime500bases122 2.91 3.21 3.06 ENSDARG00000028462:H1 histone family, member X [Source:RefSeq_peptide;Acc:NP_954970];

NM_199431.1_3prime500bases312 3.01 3.19 3.10 ENSDARG00000041703:ribosome binding protein 1 homolog (dog) [Source:RefSeq_peptide;Aec:NP_955463];

NM_173283.3_3prime500bases165 3.32 2.90 3.11 ENSDARG00000014947:insulin-iike growth factor binding protein 1 [Source:RefSeq_peptide;Aec:NP_775390];

NM_198911.1_3prime500bases435 3.22 3.22 ENSDARG00000020235:septin 9 [Source:RefSeq_peptide;Acc:NP_944593];

NM_182940.2_3prime500bases403 2.40 4.13 3.26 ENSDARG00000036515 hemoglobin alpha embryonic-1 (hbael),

DIG0228_268 3.32 3.32

NM_201503.1_3prime500bases263 3.92 2.95 3.43 ENSDARG00000012395:matrix metalloproteinase 13 [Source:RefSeq_peptide;Acc:NP_958911];

NM_131323.1_3prime500bases422 3.70 3.31 3.50 ENSDARG00000042291 :Homeobox protein Dlx6a (DLX-6). (Source:Uniprot/SWISSPROT;Acc:Q98877];

NM_131204.1_3prime500bases136 3.07 3.99 3.53 ENSDARG00000019949:heat shock protein 47 [Source:RefSeq_peptide;Acc:NP_571279];

NM_214723.1_3prime500bases352 3.55 3.55 ENSDARG00000039007:enolase 3, (beta, muscle) [Source:RefSeq_peptide;Acc:NP_999888];

NM_131262.1_3pri me500bases 166 4.00 3.38 3.69 ENSDARG00000030110:Myoblast determination protein 1 homolog (Myogenic factor 1). [Source:l)niprot/SWISSPROT,Acc:Q90477];

NM_130970.1_3prime500bases144 4.63 2.79 3.71 ENSDARG00000003971-.Insulin gene enhancer protein ISL-2 (Islet-2). [Source:Uniprot/SWISSPROT;Acc:P53406];

NM_180965.3_3prime500bases316 3.63 4.20 3.91 ENSDARESTG00000019581 daudin g (ddng),

NM_131273.1_3prime500bases426 3.93 3.93 ENSDARG00000007641 :muscle segment homeobox E [Source:RefSeq_peptide;Acc:NP_571348];

NM_153673.1_3pri me500bases417 4.49 4.49 ENSDARG00000008433 unc-45 homolog B (C. elegans) (unc45b),

NM_181735.1_3pri me500bases304 5.37 6.62 5.99 ENSDARG00000019659:forkhead box 11 [Source:RefSeq_peptide;Acc:NP_859424];

NM_205569.1_3prime500bases115 4.50 7.58 6.04 ENSDARG00000031683:v-fos FBJ murine osteosarcoma viral oncogene homolog [Source:RefSeq_peptide;Acc:NP_991132];

NM 153666.1 3prime500bases311 6.82 6.58 6.70 ENSDARG00000011785:T-box 24 [Source:RefSeq peptide;Acc:NP 705952];
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Appendix 2
Genes in rab5a2 morpholino injected embryos that changed more than 3 fold compared to controls at shield stage
Gene Name Fold Change Av Description
NM_131052.1 _3prim e500bases417 0.07 0.07 0.07 ENSDARG00000006939:T-box transcription factor TBX6 (T-box protein 6).

NM _130933.1_3prim e500bases429 0.07 0.07 zic family m em ber 1 (odd-paired homolog, Drosophila) (zic1),

NM_214692.1 _3prim e500bases406 0.10 0.09 0.09 m em brane protein, palmitoytated 1 (mpp1

NM_131110.1 _3pri m e500bases292 0.14 0.15 0.14 ENSDARG00000011166:Carbonic anhydrase  (EC 4.2.1.1) (C arbonate dehydratase).

N M_194392.1_3pri m e500bases 194 0.16 0.18 0.15 0.17 EN SDARG00000040216:trophoblast glycoprotein-like [Source:Ref5eq_peptide;Acc:NP_919373];

NM_131778.1 _3prim e500bases132 0.21 0.14 0.17 ENSDARG00000002795:myeloid ecotropic viral integration site 3 [Source:RefSeq_peptide;Acc:NP_571853l;

NM_131893.1_3prim e500bases348 0.20 0.20 ENSDARESTG00000004657

LTP4 0.20 0.20

NM_130967.1_3pri m e500bases2  78 0.27 0.15 0.21 ENSDARG00000025641 :GLI-Kruppel family m em ber GLI2a [Source:RefSeq_peptide;Acc:NP_571042];

NM_001002332.1_3prim e500bases404 0.20 0.22 0.21 EN SDA RG00000007024:zgc:92414[Source:RefSeq_peptide;A cc:NP_001002332];

NM_131576.1_3prim e500bases2 0.23 0.20 0.21 ENSDARG00000007277:m yogenic factor 5 [Source:RefSeq_peptide;Acc:NP_571651];

NM_152980.1 _3prim e500bases185 0.19 0.26 0.23 ENSDARG00000031855:m acrophage stimulating 1 (hepatocyte growth factor-like) [Source:RefSeq_peptide;Acc:NP_694512];

NM _131108.1_3prim e500bases390 0.23 0.23 0.23 ENSDARG00000036830:type I cytokeratin, enveloping layer [Source:RefSeq_peptide;Acc:NP_571182];

NM_001007454.1_3prim e500bases299 0.23 0.24 0.23 ENSDARG00000027699:zgc:101612[Source:RefSeq_peptide;A cc:NP_001007455];

NM_131716.1 _3pri m e500bases434 0.23 0.23 ENSDARG00000020708:midkine-related growth factor b [Source:RefSeq_peptide;Acc:NP_571791];

NM_130973.1 _3pri m e5 00bases361 0.23 0.24 0.24 ENSDARESTG00000005532

NM _131509.1_3prim e500bases430 0.24 0.24 keratin 4  (krt4),

NM_173288.1 _3prim e500bases371 0.16 0.32 0.24 ENSDARG00000040666:mki67 (FHA dom ain) interacting nucleolar phosphoprotein (human) - like [Source:RefSeq_peptide;Acc:NP_775395];

NM _131109.1_3prim e500bases25 0.25 0.25 ENSDARG00000036292:caudal type hom eo box transcription factor 4  [Source:RefSeq_peptide;Acc:N P_571184];

NM _131163.1_3prim e500bases115 0.30 0.20 0.25 ENSDARG00000039694:Beta-2-microglobulin precursor. [Source:Uniprot/SWISSPROT;Acc:Q04475];

NM_131729.2_3prim e500bases151 0.17 0.35 0.26 OTTDARG00000006320:si:dkey-197d18.1:Novel_CDS

NM _131209.1_3prim e500bases394 0.24 0.29 0.26 protocadherin 8 (pcdh8),

NM_001001950.1_3prim e500bases137 0.27 0.27 ENSDARG00000009849:zic family m em ber 3 heterotaxy 1 (odd-paired homolog, Drosophila) [Source:RefSeq_peptide;Acc:NP_001001950];

N M_201495.1_3pri m e5 00bases221 0.24 0.30 0.27 Rab14

NM_201513.1 _3prim e500bases433 0.27 0.27 ENSDARG00000042539;tyrosine 3-monooxygenase/tryptophan 5-m onooxygenase activation protein, theta polypeptide

NM _200659.1_3prim e500bases358 0.27 0.27 ENSDARG00000025948:mutL homolog 1, colon cancer, nonpolyposis type 2 [Source:RefSeq_peptide;Acc:NP_956953];

CF673299.1_3prim e500bases366 0.30 0.25 0.28 ENSDARESTG00000014248 clone CB926 5- similar to G em -associated protein 5

NM_212567.1 _3prim e500bases8 0.28 0.28 ENSDARG00000024204:minichromosome m ain tenance protein 3 [Source:RefSeq_peptide;Acc:NP_997732];

NM_200111.1_3prim e500bases156 0.34 0.23 0.29 ENSDARG00000017748:hypothetical protein LOC378998 [Source:RefSeq_peptide;Acc:NP_956405];

NM_131342 .2_3prim e500bases296 0.27 0.31 0.29 ENSDARG00000019995:bone m orphogenetic protein 4 [Source:RefSeq_peptide;Acc:NP_571417];

NM _001003882.2_3prim e500bases425 0.29 0.29 ENSDARG00000008237:seryl-tRNA sy n th e tase  [Source:RefSeq_peptide;Acc:NP_001003882];
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NM_173261.1_3prime500bases339 0.28 0.32 0.30

NM_131092.1_3prime500bases291 0.29 0.31 0.30

NM_001003875.1_3prime500bases285 0.31 0.30 0.31

DIG0410_1903 0.31 0.31

NM_183074.1_3prime500bases334 0.31 0.30 0.31

NM_131320.1 _3prime500bases353 0.34 0.28 0.31

NM_131482.1 _3prime500bases380 0.35 0.28 0.31

C D808440.1_3pri me500bases215 0.31 0.32 0.32

NMJ 31363.1_3prime500bases153 0.32 0.32 0.32

NM_131128.1 _3prime500bases396 0.33 0.33

NM_194371,2_3prime500bases155 0.34 0.33 0.33

NM_130955.1 _3prime500bases324 0.35 0.35 0.31 0.33

CB923492.1 _3prime500bases387 0.36 0.33 0.34

NM_001012246.1_3prime500bases23 0.35 0.35

NM_153660.1_3prime500bases190 0.36 0.34 0.35

NM_131063.1_3pri me500bases24 0.43 0.29 0.36

NM_212797.1 _3prime500bases426 0.36 0.36

AF339031.1 _3prime500bases363 0.36 0.36 0.36

NM_201331.1 _3pri me500bases423 0.36 0.36

CF417004.1_3prime500bases377 0.36 0.36

NM_198876.1 _3prime500bases405 0.37 0.37

CB333812.1_3prime500bases133 0.33 0.42 0.37

NM_177984.1_3prime500bases24 0.35 0.40 0.37

NM_131690.1_3pri me500bases388 0.29 0.48 0.38

NM_194369.1_3prime500bases417 0.38 0.38

NM_131455.1_3prime500bases385 0.43 0.34 0.39

NM_173221.2_3prime500bases432 0.39 0.39

DIG0123_592 0.39 0.39

NM_131139.1_3prime500bases322 0.36 0.42 0.39

NM_131876.2_3prime500bases270 0.45 0.33 0.39

NM_213103.1_3prime500bases427 0.39 0.39

CK445313.1_3prime500bases394 0.32 0.47 0.39

NM_131027.1_3prime500bases413 0.41 0.37 0.39

NM_131882.2_3prime500bases379 0.43 0.37 0.40

ENSDARG00000010948:kinesin family member 11 [Source:RefSeq_peptide;Acc:NP_775368];

ENSDARG00000035095: on e-eyed pinhead [Source:RefSeq_peptide,Acc:NP_571167];

ENSDARG00000037931 :U 1 small nuclear ribonucleoprotein polypeptide A [Source:Re#Seq_peptide;Acc:NP_001003875];

ENSDARG00000042503:ventrally expressed dharma/bozozok antagonist [Source:RefSeq_peptide;Acc:NP_898897]; 

ENSDARG00000023188:lymphocyte cytosolic plastin 1 [Source:RefSeq_peptide;Acc:NP_571395]; 

ENSDARG00000005645:roundabout homolog 3 [Source:RefSeq_peptide;Acc:NP_571557]; 

cDNA clone CB473 5

ENSDARG00000045102:sine oculis homeobox homolog 3b [Source:RefSeq_peptide;Acc:NP_571438]; 

ENSDARG00000012076:Apolipoprotein A-l precursor (Apo-AI) (ApoA-l). [Source:Uniprot/SWISSPROT;Acc:042363]; 

ENSDARG00000010124:Sp5 transcription factor-like [Source:RefSeq_peptide;Acc:NP_919352];

ENSDARESTG00000012353 Delta D

ENSDARG00000004713:hypothetical protein LOC550434 [Source:RefSeq_peptide:Acc:NP_001017739]; 

ENSDARG00000035748:fibroblast growth factor 19 [Source:RefSeq_peptide;Acc:NP_001012246];

ENSDARESTG00000012343

ENSDARG00000035998:Sonic hedgehog protein precursor (SHH) (VHH-1). [Source:Uniprot/SWISSPROT;Acc:Q92008]: 

ENSDARG00000019747:3-beta-hydroxysteroid dehydrogenase [Source:RefSeq_peptide;Acc:NP_9979€2];

ENSDARG00000008487hypothetical protein. [Source:Uniprot/SPTREMBL;Acc:Q503T6];

ENSDARG00000012369:retinol dehydrogenase 10 [Source:RefSeq_peptide;Acc:NP_958488];

ENSDARG00000036999 clone CB800 5- similar to Zygotic DNA replication factor MCM6b

ENSDARG00000018971:UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 5 [Source:RefSeq_peptide;Acc:NP_942577]; 

CB159 5- similar to Epiplakin

ENSDARG00000013853:LIM domain only 4 [Source:RefSeq_peptide:Acc:NP_817093]:

ENSDARG00000019856:ATPase, Na+/K+ transporting, alpha 1b polypeptide [Source:RefSeq_peptide;Acc:NP_571765]; 

ENSDARG00000037563:CD99 antigen-like 2 [Source:RefSeq_peptide;Acc:NP_919350];

ENSDARG00000014017:Ribonudeoside-diphosphate reductase large subunit ( (Ribonucleotide reductase protein R1 class I). 

ENSDARG00000013839:aldehyde dehydrogenase 3 family, member D1 [Source:RefSeq_peptide;Acc:NP_775328];

ENSDARG00000041755

ENSDARG00000025372:anti-dorsalizing morphogenic protan [Source:RefSeq_peptide;Acc:NP_571951]; 

ENSDARG00000045902:hypothetical protein LOC406376 [Source:RefSeq_peptide;Acc:NP_998268];

ENSDARG00000004017 clone CB1089 5- similar to sperm associated antigen 1 

ENSDARG00000002952:smoothened homolog [Source:RefSeq_peptide;Acc:NP_571102];

ENSDARG00000022476
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BU492951.1_3prime500bases183 

NM_131285.1 _3prime500bases429 

NM_001001811.1_3prime500bases418 

NM_201176.1_3prime500bases372 

NM_130932.1_3prime500bases430 

NM_200228.1_3prime500bases99 

NM_131557.1 _3prime500bases429 

NM_199211.1_3prime500bases380 

NM_001007768.1_3prime500bases425 

NM_131414.1 _3pri me500bases435 

NM_001005390.1_3prime500bases12 

NM_131250.2_3prime500bases406 

NM_130946.1_3pri me500bases316 

NM_174861.2_3prime500bases259 

NM_131511.1 _3prime500bases250 

NM_130918.1 _3prime500bases156 

NM_131822.1 _3prime500bases414 

NM_212770.1 _3pri me500bases 190 

NM_199545.3_3prime500bases397 

NM_131066.1 _3prime500bases239 

NM_001003501.1_3prime500bases284 

DIG0166_2731

NM_183072.1_3prime500bases189 

N M_213118.1 _3pri me500bases 147 

NM_199949.2_3prime500bases413 

NM_131884.2_3prime500bases139 

NM_130960.1_3prime500bases226 

NM_198817.1 _3prime500bases426 

CF416995.1_3pri me500bases416 

NM_212612.1 _3prime500bases264 

NM_183343.1_3prime500bases271 

NM_200080.2_3prime500bases345 

DIG0408_1690

NM_200297.1_3prime500bases253

0.40 0.40

0.40 0.40

0.40 0.40

0.40 0.40

0.41 0.41

0.41 0.41

0.41 0.41

0.45 0.38 0.41

0.42 0.42

0.42 0.42

0.42 0.44 0.43

0.43 0.43

0.48 0.39 0.43

0.42 0.44 0.43

0.42 0.44 0.43

0.41 0.45 0.43

0.44 0.44

0.44 0.44 0.44

0.44 0.44

0.39 0.50 0.44

0.43 0.46 0.44

0.44 0.44

0.40 0.49 0.45

0.49 0.41 0.45

0.45 0.45

0.43 0.47 0.45

0.43 0.47 0.45

0.42 0.48 0.45

0.42 0.49 0.46

0.41 0.51 0.46

0.36 0.56 0.46

0.42 0.50 0.46

0.47 0.47

0.47 0.47

233

ENSDARG00000035835:hypothetical protein LOC437013 [Source:RefSeq_peptide;Acc:NP_001002740]; 

ENSDARG00000045569:forkhead box B1.2 [Sou rce:RefSeq_pep tide ;Acc:NP_571360];

ENSDARG00000036440:SRY-box containing gene 3 [Source:RefSeq_peptide;Acc:NP_001001811];

ENSDARG00000017775:similar to ATP synthase, H+ transporting, mitochondrial F0 complex, subunit c (subunit 9) isofbrm 3 

ENSDARG00000006355 creatine kinase, muscle (ckm),

ENSDARG00000013973:peroxisomal biogenesis factor 3 [Source:RefSeq_peptide ;Acc:NP 956522]; 

ENSDARG00000035831:GATA-binding protein 6 [Source: RefSeq_peplide;Acc:NP_571632];

ENSDARG00000030700:CTP synthase [Source:RefSeqj)eptide;Acc;NP_954681];

ENSDARG00000016864:hypothetical protein LOC493608 [Source:RefSeq_peptide;Acc:NP_001007769]; 

ENSDARG00000040346

ENSDARG00000035329:calpain, small subunit 1 [Source:RefSeq_peptide;Acc:NP_001005390]; 

ENSDARG00000043643:Homeobox protein OTX1 (ZOTX1). [Source:Uniprot/SWISSPROT;Acc:Q91994]; 

ENSDARG00000010355:wnt8-like protein 2 [Source:RefSeq_peptide;Acc:NP_001018637]; 

ENSDARG00000019268:gastrulation brain homeobox 1 [Source:RefSeq_peptide;Acc:NP_777286]; 

ENSDARG00000014673:frizzled 9 [Source:RefSeq_peptide;Acc:NP_571586];

ENSDARG00000015116:frizzled homolog 8a [Source:RefSeq_peptide;Acc:NP 571629];

ENSDARG00000035563:nocA related zinc finger 1 [Source:RefSeq_peptide;Acc:NP_571897]; 

ENSDARG00000005185;carboxypeptidase N, polypeptide 1 [Source:RefSeq_peptide;Acc:NP_997935]; 

ENSDARESTG00000009422 glutamate dehydrogenase 1b (gludlb),

ENSDARG00000044163:snail homolog 1a [Source:RefSeq_peptide;Acc:NP_571141];

ENSDARG00000012341 :zgc;92451 [Source:RefSeq_peptide;Acc:NP_001003501];

ENSDARG00000014323:hypothetical protein LOC436960 [Source:RefSeq_peptide;Acc:NP_001002687]; 

ENSDARESTG00000016845 thioredoxin reductase 1 (txnrdl),

ENSDARG00000014243:SRY-box containing gene 2 [Source:RefSeq_peptide;Acc:NP_998283]; 

ENSDARG00000044521:eukaryotic translation elongation factor 1 beta 2 [Source:RefSeq_peptide;Acc:NP_956243]; 

ENSDARG00000045369:CCAAT/enhancer binding protein beta [Source:RefSeq_peptide;Acc:NP_571959]; 

ENSDARG00000019920:lefty1 [Source:RefSeq_peptide;Acc:NP_571035];

ENSDARESTG00000016981 starmaker (stm)

CB791 5- similar to Cytochrome P450

DEAD (Asp-Glu-Ala-Asp) box polypeptide 5 (ddx5),

ENSDARG00000037593:prickle-like 2 [Source:RefSeq_peptide;Acc:NP_899186];

ENSDARG00000029086:keratin 8 [Source:RefSeq_peptide;Acc:NP_956374];

ENSDARG00000036820:monoglyceride lipase [Source;RefSeq_peptide;Acc:NP_956591];



NM_200703.2_3prime500bases423 

NM_131251.1_3prime500bases2 35 

NM_199543.1_3prime500bases70 

NM_205567.1_3prime500bases270 

NM_131851.1_3prime500bases133 

NM_131637.1 _3pri me500bases240 

CF416991.1_3pri me500bases421 

NM_130908.1_3prime500bases107 

NM_212636.1_3prime500bases290 

CF673281.1_3prime500bases425 

NM_130934.1_3pri me500bases362 

NM_207048.1 _3prime500bases204 

NM_200042.1 _3prime500bases0 

CF673300.1_3prime500bases47 

NM_205702.1_3prime500bases229 

NM_131146.2_3prime500bases230 

DIG0131_1438 

golgb 1 _3prime500bases306 

NM_212602.1_3prime500bases425 

map3k4_3prime500bases366 

NM_182855.1_3prime500bases391 

CF673278.1_148

NM_131207.1_3prime500bases102 

NM_173244.1_3prime500bases425 

NM_131205.1_3prime500bases434 

DIG0144_634

NM_131221.1 _3prime500bases428 

NM_173219.1_3prime500bases185 

NM_199433.1 _3pri me500bases434 

NM_198824.1 _3prime500bases417 

NM_131404.1_3prime500bases5 

NM_131300.1_3pri me500bases373 

NM_131079.1_3prime500bases285 

NM_001003774.1_3prime500bases342

0.47 0.47

0.46 0.50 0.48

0.51 0.45 0.48

0.48 0.48

0.45 0.51 0.48

0.50 0.47 0.49

0.49 0.49

0.48 0.50 0.49

0.46 0.53 0.49

0.47 0.52 0.50

0.48 0.52 0.50

0.55 0.46 0.50

0.62 0.39 0.50

0.54 0.47 0.51

0.51 0.51

0.48 0.53 0.51

0.51 0.51

0.51 0.51

0.52 0.52

0.54 0.51 0.52

0.52 0.52

0.52 0.52

0.53 0.51 0.52

0.52 0.52

0.52 0.52

0.53 0.53

0.53 0.53

0.47 0.60 0.53

0.54 0.54

0.57 0.51 0.54

0.54 0.54

0.55 0.55

0.55 0.55 0.55

0.54 0.56 0.55

ENSDARG00000013627 golgi reassembly stacking protein 2 (gorasp2),

ENSDARG00000011235:Homeobox protein OTX2 (ZOTX2). [Source:Uniprot/SWISSPROT;Acc:Q91981];

ENSDARG00000025147:Cd63 antigen [Source:RefSeq_peptide;Acc:NP_955837];

ENSDARG00000006603:cysteine and glycine-rich protein 1 [Source:RefSeq_peptide;Acc:NP_991130];

ENSDARG00000041341:SRY-box containing gene 32 [Source:RefSeq_peptide;Acc:NP_571926];

ENSDARG00000014047:Claudin-iike protein ZF4A22 (Claudin-7). [Source:Uniprot/SWISSPROT;Acc:Q9YH92];

OTTDARG00000002123:add1 :Novel_CDS 

OTTDARG00000002166:zgc:55628: Novel_CDS 

ENSDARG00000035720

ENSDARESTG00000018874 clone CB967 5- similar to Filamin A,

ENSDARESTG00000012572 hematopoietically expressed homeobox (hhex),

ENSDARESTG00000012052

ENSDARG00000034443:hypothetical protein LOC336959 [Source:RefSeq_peptide;Acc:NP_956336];

ENSDARG00000009569 clone CB882 5- similar to Transcriptional enhancer factor TEF-5

ENSDARG00000033999:Cytochrome P450 26A1 (EC 1.14.-.-) (Retinoic add-metabolizing cytochrome) (P450RAI) (Retinoic add 4-hydroxylase). 

ENSDARG00000058538:hypothetical protein LOC323048 [Source:RefSeq_peptide;Acc:NP_997799];

ENSDARESTG00000025521

ENSDARG00000011127:AHA1, activator of heat shock 90kDa protein ATPase homolog 1, like [Source:RefSeq_peptide;Acc:NP_997767]; 

ENSDARG00000039153:Hypothetical protein (Fragment). [Source:Uniprot/SPTREMBL;Acc:Q5BJ15);

ENSDARG00000040030

ENSDARG00000013040 done CB964 5- similar to adaptor-related protein complex AP-3, beta 1 subunit,

ENSDARG00000007944:LIM homeobox 1b [Source:RefSeq_peptide;Acc:NP_571282];

ENSDARG00000024904:TAL1 (SCL) interrupting locus like [Source:RefSeq_pepMe;Acc:NP_775351];

ENSDARG00000029079

ENSDARG00000040543:LOC407680 protein (Fragment). [Source:Uniprot/SPTREMBL;Acc:Q6NW88];

ENSDARG00000015790:ATPase, Na+/K+ transporting, beta 3a polypeptide [Source:RefSeq_peptide;Acc:NP_571296];

EIMSDARG00000045679:meiosis-specific nudear structural protein 1 [Source:RefSeq_peptide;Acc:NP_955465];

ENSDARESTG00000013713

ENSDARG00000042750:Proliferating cell nudear antigen (PCNA). [Source:Uniprot/SWISSPROT;Acc:Q9PTP1J; 

ENSDARG00000011956:Homeobox protein Dlx4a (DLX-8). [Source:llniprot/SWISSPROT;Acc:Q98879];

ENSDARESTG00000005674

ENSDARG00000015123:zgc:101000[Source:RefSeq_peptide;Acc:NP_001003774l;
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NM_130943.1_3prime500bases110 

NM_131112.1 _3prime500bases408 

NM_001007282.1_3prime500bases238 

NM_001012263.1_3prime500bases63 

BU808676.1_3prime500bases100 

NM_131290.1_3prime500bases274 

NM_131516.1 _3prime500bases368 

NM_214731.1 _3prime500bases116 

DIG0345J024

NM_152953.2_3prime500bases421 

NM_201586.1_3prime500bases434 

NM_212690.1_3prime500bases326 

NM_200059.1_3prime500bases52 

NM_001008615.1_3prime500bases182 

NM_131668.3_3prime500bases390 

N M_130937.1 _3pri me500bases293 

NM_199521.2_3prime500bases181 

NM_131874.1_3prime500bases111 

NM_212777.1 _3pri me500bases 148 

NM_131685.1 _3prime500bases48 

N M_181559.1_3pri me500bases48 

NM_200025.1_365 

NM_182871.1 _3prime500bases170 

NM_200583.1_3prime500bases141 

NM_200099.1_3prime500bases116 

NM_205585.1_3prime500bases190 

N M_201099.1 _3pri me500bases418 

NM_131114.1_3prime500bases186 

BU670726.1_3prime500bases263 

NM_131058.1 _3prime500bases378 

NM_131417.1 _3pri me500bases247 

CF673276.1_3prime500bases105 

NM_201206.1_3prime500bases257 

BU670702.1_3prime500bases280

0.47 0.63 0.55

0.55 0.55

0.55 0.55

0.55 0.55

0.58 0.53 0.55

0.56 0.55 0.55

0.56 0.56

0.51 0.60 0.56

0.56 0.56

0.56 0.56

0.56 0.56

0.47 0.65 0.56

0.56 0.56

0.55 0.57 0.56

0.56 0.56

0.51 0.63 0.57

0.62 0.52 0.57

0.54 0.61 0.57

0.58 0.58

0.58 0.58 0.58

0.58 0.58

0.58 0.58

0.55 0.62 0.58

0.61 0.56 0.58

0.58 0.59 0.59

0.59 0.59

0.59 0.59

0.59 0.59

0.64 0.55 0.59

0.59 0.59

0.53 0.65 0.59

0.56 0.63 0.60

0.60 0.60

0.66 0.54 0.60

ENSDARG00000018383:frizzled-related protein [Source:RefSeq_peptide;Acc:NP_571018];

ENSDARG00000044774:POU domain, class 5, transcription factor 1 (POU domain protein 2). [Source:Uniprot/SWISSPROT;Acc:Q90270J; 

glutathione peroxidase 4a (gpx4a),

ENSDARG00000036126:fibroblast growth factor receptor-like 1b [Source:RefSeq_peptide;Acc:NP_001912263];

ENSDARESTG00000018543 done CB477 5- similar to Cysteine proteinase 

ENSDARG00000021032:forkhead box D3 [Source:RefSeq_peptide;Acc:NP_571365];

ENSDARG00000002768:Parvalbumin beta. [Source:Uniprot/SWISSPROT;Acc:Q9l8VO];

ENSDARG00000039675:dapper homolog 1, antagonist of beta-catenin (xenopus) [Source:RefSeq_peptide;Acc:NP_999896]; 

ENSDARG00000040815:hypothetical protein LOC325958 [Source:RefSeq_peptide;Acc:NP_956027];

ENSDARESTG00000017250

ENSDARG00000042728:phospholipase A2-activating protein [Source:RefSeq_peptide;Acc:NP_997855];

ENSDARG00000017514:ribosomal protein S3A [Source:RefSeq_peptide;Acc:NP_956353];

ENSDARG00000041065:heat shock protein 1 [Source:RefSeq_peptide;Acc:NP_001008615];

ENSDARG00000013144:ATPase, Na+/K+ transporting, beta 1a polypeptide [Source:RefSeq_peptide;Acc:NP_571743]; 

ENSDARG00000034894:Wnt-5 protein precursor. [Source:Uniprot/SWISSPROT;Acc:Q92050];

ENSDARG00000030871:Ubiquitin ligase Siahl (EC 6.3.2.-) (Seven in absentia homolog 1) (Siah-1). [Source:Uniprot/SWISSPROT;Acc:Q7ZVG6]; 

ENSDARG00000035622:X-box binding protein 1 [Source:RefSeq_peptide;Acc:NP_571949];

ENSDARG00000025071:bromodomain containing 8 [Source:RefSeq_peptide;Acc:NP_997942];

ENSDARG00000018259:ATPase, Na+/K+ transporting, alpha 3b polypeptide [Source:RefSeq_peptide;Acc:NP_571760]; 

ENSDARG00000039128:glutamine synthetase 1 [Source:RefSeq_peptide;Acc:NP_853537];

ENSDARG00000037071:ribosomal protein S26 [Source:RefSeq_peptide;Acc:NP_956319];

ENSDARG00000037677:fibroblast growth factor 24 [Source.RefSeq_peptide;Acc:NP_878291];

ENSDARG00000013475:chaperonin containing TCP1, subunit 4 (delta) [Source:RefSeq_peptide;Acc:NP_956877]; 

ENSDARG00000012000:dynein light chain (10.3 kD) (dlc-1) [Source:RefSeq_peptide;Acc:NP_956393];

ENSDARG00000035521 :secreted frizzled-related protein 1 [Source:RefSeq_peptide;Acc:NP_991148];

ENSDARG00000035320:similar to heterogeneous nudear ribonudeoprotein L [Source:RefSeq_peptide;Acc:NP_957393];

ENSDARG00000036141

ENSDARG00000010946:cystathionine-beta-synthase [Source:RefSeq_peptide;Acc:NP_0Q1014367];

ENSDARG00000007329:T-box gene 16 [Source:RefSeq_peptide;Acc:NP_571133];

OTTDARG00000007314:si;ch211-132p20.4:Novel_CDS 

ENSDARESTG00000010586 done CB960 5- similar to Nudeolar RNA helicase II,

ENSDARG00000011626:COX15 homolog, cytochrome c oxidase assembly protein [Source:RefSeq_peptide;Acc:NP_957500]; 

ENSDARG00000003509 CB407 5- similar to SPT:Q8UW4 ATP-binding cassette transporter 1
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NM_194388.1_3pri me500bases354 0.59 0.61 0.60 ENSDARG00000036700:tubulin, alpha 1 [Source:RefSeq_peptide;Acc:NP_919369];

NM_131287.2_3prime500bases377 0.56 0.64 0.60 ENSDARG00000041345:SRY-box 17 [Source:RefSeq_peptide;Acc:NP_571362];

NM_199536.2_3prime500bases255 0.59 0.61 0.60 ENSDAREST G00000007995

NM_173236.1_3prime500bases247 0.60 0.60 ENSDARG00000015427:histone deacetyiase 1 [Source: RefSeq_peptide;Acc: NP_775343];

NM_131415.1_3prime500bases4 0.59 0.61 0.60 ENSDARG00000017354:eph4ike receptor tyrosine kinase 6 [Source:RefSeq_peptide;Acc:NP_571490];

NM_201514.1 _3prime500bases375 0.56 0.64 0.60 ENSDARG00000037012:solute carrier family 3, member 2 like [Source:RefSeq_peptide;Acc:NP_958922];
NM_131140.1 _3pri me500bases 144 0.61 0.61

NM_205732.1 _3prime500bases414 0.61 0.61

NM_001007761.1_3prime500bases0 0.61 0.61 ENSDARG00000026759:adaptor-related protein complex 1 mu 1 subunit [Source:RefSeq_peptide;Acc:NP_991277];

NM_199995.1_157 0.61 0.61

NM_201576.1_3prime500bases131 0.61 0.61 ENSDARG00000034351 :transgelin 2 [Source:RefSeq_peptide;Acc:NP_963870];

NM_131245.1_3prime500bases275 0.61 0.61 0.61

NM_201325.1_3prime500bases341 0.61 0.61 ENSDARG00000021242:major vault protein [Source: RefSeq_peptide;Acc:NP_958482];

NM_130971.1_3prime500bases0 0.62 0.61 0.62 ENSDARG00000037879:Beta-1,3-N-acetylglucosaminyltransferase lunatic fringe (EC 2.4.1.222) (O-fucosyipeptide 3-beta-N-acetylglucosaminyltransferase).

NM _131069.2_3prime500bases167 0.62 0.62

NM_131860.1_3pri me500bases339 0.62 0.62 ENSDARG00000015472:knypek[Source:RefSeq_peptide;Acc:NP_571935];

BC090314.1_3prime500bases19 0.62 0.63 0.62 ENSDARG00000013575:hypothetical protein LOC503590 [Source:RefSeq_peptide;Acc:NP_001013296];

NM_001003890.2_3prime500bases158 0.59 0.66 0.62 ENSDARG00000020869:polo-like kinase 1 [Source:RefSeq_peptide;Acc:NP_001003890];

NM_131116.2_3prime500bases13 0.63 0.63 ENSDARG00000000175:Homeobox protein Hox-B2a (Hox-B2). [Source:Uniprot/SWISSPROT;Acc:042367];

NM_201475.1_3prime500bases382 0.63 0.63 ENSDARG00000031495:SET translocation (myeloid leukemia-associated) A [Source:RefSeq_peptide;Acc:NP_958883];

NM_131355.1_3prime500bases253 0.63 0.63 ENSDARG00000014943:kinesin family member 23 [Source:RefSeq_peptide:Acc:NP_571430]:

NM_001005919.1_3prime500bases364 0.64 0.63 0.64 ENSDARG00000019848:Ephrin type-A receptor 4a (EC 2.7.1.112) (Tyrosine-protein kinase receptorZEK2) (EPH-like kinase2) (Fragment).

NM_199430.1_3prime500bases422 0.64 0.64 ENSDARG00000036180:cydin B2 [Source:RefSeq_peptide;Acc:NP_955462];

NM_201488.1_3pri me500bases 105 0.64 0.64 ENSDARG00000020468:protein phosphatase 1G (formerly 2C), magnesium-dependent, gamma isoform [Source:RefSeq_peptide;Acc:NP_958896];

NM_194377.2_3prime500bases431 0.64 0.64 ENSDARG00000011665:aldolase a, fructose-bisphosphate [Source:RefSeq_peptide:Acc:NP_919358];

DIG0407_1918 0.64 0.64 ENSDARG00000038547:Semaphorin-4E precursor (Semaphorin-7) (Semaphorin Z7) (Sema-Z7). [Source:Uniprot/SWISSPROT;Acc:Q9YHX4];

NM_152949.1_3prime500bases275 0.62 0.66 0.64 ENSDAREST G00000006863

AY216588.1_3prime500bases143 0.64 0.64 ENSDARG00000023220:Selenoprotein T2 (Fragment). [Source:Uniprot/SPTREMBL;Acc:Q802G4];

BC075970.1_3prime500bases424 0.64 0.64 ENSDARG00000006427:lntestinal fatty add-binding protein. [Source:Uniprot/SPTREMBL;Acc:Q8AX65J;

NM_200076.1_3prime500bases137 0.65 0.65 ENSDARG00000034396:methionine-tRNA synthetase [Source:RefSeq_peptide;Acc:NP 956370);

NM_201491.1_3prime500bases432 0.65 0.65 ENSDARG00000042853:isovaleryl Coenzyme A dehydrogenase [Source:RefSeq_peptide;Acc:NP_958899];

NM_212603.1 _3pri me500bases94 0.65 0.65 ENSDARG00000023330:addic (leucine-rich) nudear phosphoprotein 32 family, member B [Source:RefSeq_peptide;Acc:NP_997768];

AB097826.1_3prime500bases19 0.65 0.65 ENSDARG00000002403:Hypothetical protein YF-9 (Fragment). [Source:Uniprot/SPTREMBL;Acc:Q7T2W2];

BM402093.1_3 0.65 0.65 ENSDARG00000037980:Hypothetical protein (Fragment). [Source:llniprot/SPTREMBL;Acc:Q7SYJ8];
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NM_001002312.1_3prime500bases360 0.66 0.64 0.65 ENSDARG00000041870:intraflagellar transport 172 [Source:RefSeq_peptide;Acc:NP_001002312];
NM_200458.2_3prime500bases36 0.65 0.65 ENSDARG00000003016:eukaryotic translation elongation factor 2, like [Source:RefSeg_peptide;Acc:NP_956752];
NM_201153.1 _3prime500bases426 0.65 0.65 ENSDARG00000046119:ribosomal protein S3 [Source:RefSeq_peptide;Acc:NP_957447];
DIG0366_880 0.66 0.66

CF569085.1_3prime500bases370 0.66 0.66 ENSDARG00000020386 CB939 5- similar to ATP-binding cassette transporter 1,

NM_001009884.1_3prime500bases206 0.66 0.66 ENSDARG00000041895:carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase [Source: RefSeq_peptide;Acc: NP_001009884];
NM_200772.1 _3prime500bases421 0.66 0.66 ENSDARG00000007880

NM_194423.1_3prime500bases225 0.66 0.66 ENSDARG00000029370:ankyrin repeat domain 6 [Source:RefSeq_peptide;Acc:NP_919404];

NM_198914.2_3prime500bases225 0.24 1.74 0.99 ENSDARG00000033170:sulfbtransferase family, cytosolic sulfotransferase 2 [Source:RefSeq_peptide;Acc:NP_944596];
N M_130945.1_3pri me500bases213 1.50 1.50 ENSDARG00000015717:fms-related tyrosine kinase 4 [Source:RefSeq_peptide;Acc:NP_571020];

N M_200103.1_3prime500bases358 1.50 1.50 ENSDARG00000005254:KDEL (Lys-Asp-Glu-Leu) endoplasmic reticulum protein retention receptor 2 [Source:RefSeq_peptide;Acc:NP_956397];

NM_201499.1_3pri me500bases421 1.51 1.51 ENSDARG00000025375:isodtrate dehydrogenase 1 (NADP+), soluble [Source:RefSeq_peptide;Acc:NP_958907];

NM_001004494.1_3prime500bases331 1.52 1.52 ENSDARG00000010511:protein regulator of cytokinesis 1 (prc1), mRNA [Source:RefSeq_dna;Acc:NM_001004494];

NM_131684.2_3prime500bases122 1.52 1.52 ENSDARG00000036815:ATPase, Na+/K+ transporting, alpha 3a polypeptide [Source:RefSeq_peptide;Acc:NP_571759];

NM_205716.1_3prime500bases20 1.53 1.53 ENSDARG00000029911 :cancer susceptibility candidate 3 [Source:RefSeq_peptide;Acc:NP_991279];

DIG0311_361 1.53 1.53

NM_001007774.1_3prime500bases195 1.51 1.57 1.54 ENSDARG00000043631 :BCAS2 protein homolog. [Source:Uniprot/SWISSPROT;Acc:Q5RKQO];

NM_201292.1 _3prime500bases426 1.54 1.54 ENSDARG00000029928:adaptor-related protein complex 3, mu 1 subunit [Source:RefSeq_peptide;Acc:NP_958449];

N M_194418.1_3pri me500bases329 1.54 1.54 ENSDARG00000038227:selenoprotein W, 2b (sepw2b), mRNA [Source:RefSeq_dna;Acc:NM_194418];

NM_131105.2_3prime500bases297 1.56 1.56

NM_201178.1_3prime500bases401 1.56 1.56 ENSDARG00000014577:Rhophilin 2 (GTP-Rho binding protein 2). [Source:Uniprot/SWISSPROT;Acc:Q6TNR1];

NM_199218.1 _3prime500bases428 1.56 1.56 ENSDARESTG00000008073

NM_200318.2_3prime500bases431 1.56 1.56 ENSDARG00000035948:ADP-ribosy!ation factor-like 4 [Source:RefSeq_peptide;Acc:NP 956612];

NM_200078.1_3prime500bases197 1.56 1.57 1.56 ENSDARG00000028514:Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-terminal domain, 2 [Source:RefSeq_peptide;Acc:NP_956372];

NM_198811,1_3prime500bases372 1.57 1.57

cos2.fas_3prime500bases156 1.58 1.56 1.57 ENSDARG00000033099:kinesin family member 7 [Source:RefSeq_peptide;Acc:NP_001014816];

NM_131047.1_3prime500bases235 1.57 1.57 ENSDARG00000043276:calreticulin [Source:RefSeq_peptide;Acc:NP_571122];

NM_212676.1_3prime500bases153 1.58 1.58 ENSDARG00000042533

NM_131100.1_3prime500bases400 1.58 1.58 ENSDARG00000042769;orthopedia protein [Source:RefSeq_peptide;Acc:NP_571175];

BU670740.1_3prime500bases139 1.59 1.59 ENSDARG00000035052 CB457 5- similar to SPT:Q96S59 Q96s59 RanBPM

NM_214759.1_3prime500bases129 1.59 1.59 ENSDARG0O000039150:hypotheticat protein LOC406625 [Source:RefSeq_peptide;Acc:NP_999924];

NM_198978.1_3prime500bases380 1.59 1.59 ENSDARESTG00000016872

NM_199432.1_3prime500bases65 1.57 1.62 1.59 ENSDARG00000039168:hypothetical protein LOC368331 [Source:RefSeq_peptide;Acc:NP_955464];

NM_181663.1 _3prime500bases94 1.60 1.60 ENSDARG00000022987:sizzled [Source:RefSeq_peptide;Acc:NP_858049];
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NM_131233.1_3prime500bases410 

NM_199533.1_3prime500bases407 

CF569098.1_3pri me500bases382 

BU808703.1 _3prime500bases5 

NM_212801.1 _3prime500bases323 

NM 200081.1_3prime500bases230 

N M_212648.1_3pri me500bases409 

NM_131613.1 _3pri me500bases 161 

NM_198871.1 _3prime500bases153 

BM402137.1_3prime500bases375 

NM_131759.1 _3prime500bases434 

NM_212795.1_3prime500bases117 

NM_212572.1 _3prime500bases190 

NM_131282.1 _3prime500bases360 

NM_130923.1 _3prime500bases410 

NM_131227.1_3prime500bases133 

NM_212608.1 _3prime500bases359 

NM_199212.1_3prime500bases100 

NM_200110.1_3prime500bases107 

NM_213348.2_3prime500bases384 

NM_212748.1_3prime500bases192 

NM_194401.1_3prime500bases291 

N M_212664.1_3pri me500bases341 

NM_131246.1_3pri me500bases22 7 

NM_131775.1_3prime500bases4 

NM_131247.1_3prime500bases423 

NM_198805.1 _3prime500bases186 

CF924899.2_42

NM_001007351.1_3prime500bases48 

NM_201465.2_3prime500bases195 

NM_201454.1_3prime500bases258 

NM_131664.1_3prime500bases224 

NM_130954.1_3prime500bases259 

NM_130922.1 _3pri me500basesl 09

1.60 1.60

1.60 1.60

1.60 1.60

1.60 1.60

1.60 1.60

1.71 1.51 1.61

1.61 1.61

1.57 1.66 1.62

1.62 1.62

1.63 1.63

1.63 1.63

1.51 1.75 1.63

1.63 1.63

1.59 1.69 1.64

1.51 1.77 1.64

1.58 1.70 1.64

1.76 1.53 1.65

1.63 1.67 1.65

1.65 1.65 1.65

1.65 1.65

1.81 1.53 1.67

1.55 1.79 1.67

1.67 1.67

1.78 1.56 1.67

1.67 1.67

1.68 1.68

1.58 1.79 1.68

1.69 1.69

1.69 1.69

1.69 1.69

1.60 1.79 1.69

1.57 1.82 1.70

1.70 1.70

1.76 1.65 1.70

ENSDARG00000008867:RAS related protein 1b [Source:RefSeq_peptide;Acc:NP_955827]; 

ENSDARG00000004169 clone CB959 5- similar to Stathmin 

CB516 5- similar to C-ets-1 protein, mRNA sequence

ENSDARG00000039211 :hypothetical protein LOC378987 [Source:RefSeq_peptide;Acc:NP_997966]; 

ENSDARG00000032802:kinectin 1 [Source:RefSeq__peptide;Acc:NP_956375]; 

ENSDARG00000012936:dishevelled 2, dsh homolog [Source:RefSeq_peptide;Acc:NP_997813]; 

ENSDARG00000005315:CUG triplet repeat, RNA-binding protein 1 [Source:RefSeq_peptide;Acc:NP_571688];

ENSDARESTG00000017103 CB193 5- similar to PROSTAGLANDINE D SYNTHASE, 

ENSDARG00000036516:hemoglobin beta embryonic-1 [Source:RefSeq_peptide;Acc:NP_571834]; 

ENSDARG00000022813:Dead end protein 1. [Source:Uniprot/SWISSPROT;Acc:Q7T1H5]; 

ENSDARG00000037846:histocompatibility 13 [Source:RefSeq_peptide;Acc:NP_997737]; 

ENSDARG00000036385rforkhead box A sequence [Source:RefSeq_peptide;Acc:NP_571357]; 

microphthalmia-associated transcription factor a (mitfa),

ENSDARG00000043071:Retinal homeobox protein Rx3. [Source:Uniprot/SWISSPROT;Acc:042358]; 

ENSDARG00000017422:bscv (C20orf3) homolog [Source:RefSeq_peptide;Acc:NP_997773]; 

ENSDARG00000025522:serum/glucocorticoid regulated kinase [Source:RefSeq_peptide;Acc:NP_954682]; 

ENSDARG00000042152:nudix-type motif 4 [Source:RefSeq_peptide;Acc:NP_956404];

ENSDARG00000002131 :CUG triplet repeat, RNA binding protein 2 [Source:RefSeq_peptide;Acc:NP_919382);

ENSDARG00000040004

ENSDARG00000040856:L-lactate dehydrogenase A chain (EC 1.1.1.27) (LDH-A). [Source:Uniprot/SWISSPROT;Acc:Q9PVK5]; 

ENSDARG00000004251:dihydrofolate reductase [Source:RefSeq_peptide;Acc:NP_571850];

ENSDARG00000035139

ENSDARG00000018174:guanine nucleotide binding protein (G protein), alpha inhibiting activity polypeptide a [Source:RefSeq_peptide;Acc:NP_942100]; 

ENSDARG00000040469:hypothetical protein LOC541400 [Source:RefSeq_peptide;Acc:NP_001013545];

ENSDARG00000043495:hypothetical protein LOC492479 [Source:RefSeq_peptide;Acc:NP_001007352];

ENSDARG00000020103:calreticulin like [Source:RefSeq_peptide;Acc:NP_958873];

ENSDARG00000020261 :RAB2, member RAS oncogene family [Source:RefSeq_peptide;Acc:NP_958862];

ENSDARESTG00000014726

ENSDARG00000010791 :deltaA [Source:RefSeq_peptide;Acc:NP_571029];

ENSDARG00000020298:B-cell translocation gene 2 [Source:RefSeq_peptide;Acc:NP_570997];
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NM_131802.1_3prime500bases421 

NM_198980.1_3prime500bases80 

NM_200075.1_3prime500bases326 

NM_130939.1_3prime500bases418 

NM_205728.1_3prime500bases429 

AJ245493.1_3prime500bases233 

ZfKif3a_3prime500bases159 

DIG0206_970 DIG0124_1096 

NM_199683.1_3prime500bases383 

NM_198810.1_3prime500bases2 36 

DIG0351J132

NM_201299.1 _3pri me500bases2 75 

NM_001007120.1_3prime500bases305 

BQ826572.1 _3prime500bases187 

NM_212790.1 _3pri me500bases415 

NM_001001725.1_3prime500bases42 

NM_173222.1_3prime500bases325 

CF417021,1_3prime500bases292 

NM_201577.1 _3prime500bases427 

NM_131184.2_3prime500bases100 

NM_153674.1_3prime500bases325 

N M_214808.1_3pri me500bases249 

NM_199481.1_3prime500bases292 

NM_131848.1_3prime500bases424 

NM_001003980.1_3prime500bases380 

BM402118.1_3prime500bases243 

CF416980.1_3prime500bases316 

CF417024.1_1

NM_130948.1_3prime500bases351 

NM_131271.1_3prime500bases267 

NM_131360.1_3prime500bases428 

NM_201461.1_3prime500bases414 

NM_181766.1 _3prime500bases400 

DIG0203 403

1.71 1.71

1.73 1.73

1.73 1.73

1.74 1.74

1.74 1.74

1.79 1.71 1.75

1.90 1.61 1.76

1.68 1.84 1.76

1.77 1.77

1.80 1.74 1.77

1.77 1.77

1.82 1.72 1.77

1.87 1.67 1.77

1.79 1.79

1.79 1.79

1.79 1.79

1.72 1.86 1.79

1.54 2.06 1.80

1.80 1.80

1.51 2.09 1.80

1.81 1.81

2.00 1.61 1.81

1.83 1.80 1.82

1.82 1.82

1.83 1.83

1.79 1.87 1.83

1.92 1.74 1.83

1.83 1.83

1.83 1.83

1.84 1.84

1.84 1.84

1.77 1.92 1.84

1.85 1.85

1.85 1.85

ENSDARG00000011683:HHGP protein [Source:RefSeq_peptide;Acc:NP_955812];

ENSDARG00000004311 :low density lipoprotein receptor adaptor protein 1 [Souroe:RefSeq_peptide;Acc:NP_945331]; 

ENSDARG00000007665:Similar to RIKEN cDNA 1500019G21 gene [Source:RefSeq_peptide;Acc:NP_956369]; 

cth1 (cth1),

ENSDARG00000040316:GLI-Kruppel family member GLI3 [Source:RefSeq_peptide;Acc:NP_991291]; 

hypothetical protein done sd70

ENSDARG00000006604:Poliovirus receptor-related protein 3 precursor. [Source:Uniprot/SWISSPROT;Acc:Q58EG3]; 

ENSDARG00000041607:Eukaryotic translation initiation factor 4E-1A binding protein (elF4E- 1A binding protein) (4E-BP).

ENSDARG00000025904:glycoprotein, synaptic 2 [Source:RefSeq_pepSde;Acc:NP_958456];

ENSDARG00000034731:homeodomain leudne zipper [Source:RefSeq_peptide;Acc:NP_001007121]; 

cDNA done CB349 5- similar to Complement component C7, mRNA sequence 

ENSDARG00000016424:yippee-like 3 [Source:RefSeq_peptide;Acc:NP_997955];

ENSDARESTG00000002678 intraflagellar transport 88 homolog (ift88),

ENSDARG00000043257:creatine kinase, brain [Source:RefSeq_peptide;Acc:NP_775329];

ENSDARESTG00000021028 CB817 5- similar to ZO-1 MDCK

ENSDARG00000005675

ENSDARG00000028148

ENSDARG00000027397:vang-like 2 (van gogh, Drosophila) (vangl2), mRNA [Source:RefSeq_dna;Acc:NM_153674]; 

ENSDARG00000023520:Fibroblast growth factor-17b precursor (FGF-17b). [Source:llniprot/SWISSPROT;Acc:Q6SJP8]; 

ENSDARG00000037742:cydin G1 (ccngl), mRNA [Source: RefSeq_dna;Acc:NM_199481];

ENSDARG00000004729:transcription factor binding to IGHM enhancer 3a [Source:RefSeq_peptide;Acc:NP_571923];

ENSDARG00000002330:LIM homeobox 8 [Source:RefSeq_peptide;Acc:NP_001003980];

ENSDARG00000014499:hypothetical protein LOC445204 [Source:RefSeq_peptide;Acc:NP_001003598];

ENSDARG00000042428 5- similar to Glutathione S-transfarase 1

ENSDARG00000024746:Novel protein similar to heat shock protein 90-alpha (Hsp90a).ENSDARG00000010478:Heat shock protein HSP 90-alpha. 

ENSDARG00000037995:DVR-1 protein precursor. [Source:Uniprot/SWISSPROT;Acc:P35621];

ENSDARG00000043147:forkhead box D1 [Source:RefSeq_peptide;Acc:NP_571346];

ENSDARG00000041430:bone morphogenetic protein 2b [Source:RefSeq_peptide;Acc:NP_571435];

ENSDARG00000029072:Kruppel-like factor 6 [Source:RefSeq_peptide;Acc:NP_958869];

ENSDARG00000002632
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NM_131348.2_3prime500bases108 

NM_199976.1 _3pri me500bases342 

Rab23_3prime500bases355 

NM_200086.1_3prime500bases368 

NM_131219.1 _3pri me500bases62 

NM_198877.1_3prime500bases272 

NM_131765.1_3prime500bases258 

DIG0118_859

NM_130940.1_3prime500bases425 

DIG0557_1492

NM_201213.1 _3prime500bases388 

AY576808.1 _3prime500bases157 

NM_131641.1 _3prime500bases408 

CF924885.1 _3prime500bases240 

NM_152948.1 _3pri me500bases351 

NM_199278.1_3prime500bases252 

DIG0046_445

NM_182940.2_3prime500bases403 

N M_212994.1 _3pri me500bases261 

N M_131362.1_3pri me500bases419 

NM_212791.1 _3prime500bases423 

NM_212761.1_2

NM_201468.1_3prime500bases429 

NM_001008581.1_3prime500bases 149 

NM_153668,3_3prime500bases276 

NM_201317.1 _3prime500bases349 

NM_131229.1_3prime500bases431 

NC_002333.2_3prime500bases20 

NM 131267.1_3prime500bases432 

NM_131117.2_3prime500bases3 

NM_200295.1_3prime500bases100 

NM_194374.1_3prime500bases181 

NM_001007364.1_3prime500bases393 

NM_131262.1 _3prime500bases166

1.65 2.10 1.87

1.85 1.90 1.87

1.71 2.04 1.87

1.88 1.88

1.88 1.88

1.87 1.90 1.88

1.98 1.81 1.89

1.90 1.90

1.89 1.93 1.91

1.91 1.91

1.74 2.10 1.92

2.10 1.74 1.92

1.93 1.93

2.03 1.84 1.93

1.88 1.99 1.93

1.80 2.10 1.95

1.95 1.95

2.12 1.80 1.96

1.81 2.14 1.97

2.00 2.00

2.01 2.01

2.01 2.01

2.04 2.04

1.83 2.26 2.05

2.25 1.84 2.05

2.11 1.99 2.05

2.06 2.06

1.84 2.28 2.06

2.07 2.07

2.18 1.97 2.07

2.15 2.05 2.10

1.66 2.53 2.10

2.21 2.02 2.12

1.78 2.45 2.12
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ENSDARG00000014125:friend leukemia integration 1 [Source:RefSeq_peptide;Acc:NP_571423];

ENSDARG00000042644:manganese-containing superoxide dismutase precursor [Source: RefSeq_peptide;Acc: NP 956270]; 

ENSDARG00000004151 hypothetical protein LOC553778 [Source:RefSeq_peptide;Acc:NP_001018579];

ENSDARG00000014351 ;ENSDARG00000035957:gemjnin, DNA replication inhibitor [Source:RefSeq_peptide;Acc:NP_956380]; 

ENSDARG00000038386:achaete-scute complex-like 1a [Source:RefSeq_peptide;Acc:NP_571294];

ENSDARG00000042931 :muscle-specific beta 1 integrin binding protein 2 [Source:RefSeq_peptide;Acc:NP_942578]; 

ENSDARG00000043128:claudin e [Source:RefSeq_peptide;Acc:NP_571840];

ENSDARG00000018065:lglon2 [Source:RefSeq_peptide;Acc:NP_001003852];

ENSDARG00000009737:bonnie and Clyde [Source:RefSeq_peptide;Acc:NP_571015];

ENSDARG00000010316:glutaminyl-tRNA synthetase [Source:RefSeq_peptide;Acc:NP_957507];

ENSDARG00000023532:pin2Arf1-interacting protein 1 [Source:RefSeq_peptide;Acc:NP_001013283];

ENSDAREST G00000016274

ENSDARESTG00000025399 done CB1014 5- similar to Q8wux2 Similar to RIKEN cDNA 2510006C20 gene 

ENSDARG00000043658:coxsackie virus and adenovirus receptor [Source:RefSeq_peptide;Acc:NP_694480]; 

ENSDARESTG00000024671

ENSDARG00000010025:hypothetical protein LOC553218 [Source:RefSeq_pepbde;Acc:NP_001020643];

ENSDARG00000036515 

ENSDARESTG00000019878

ENSDARG00000039772:sine oculis homeobox homolog 3a [Source:RefSeq_peptide;Acc:NP_571437]; 

ENSDARG00000039429:adenosine kinase a (adka), mRNA [Source:RefSeq_dna;Acc:NM_212791]; 

ENSDARG00000009978:ictacaldn [Source:RefSeq_peptide;Acc:NP_997926];

ENSDARG00000003920:SET translocation (myeloid leukemia-assodated) B [Source:RefSeq_peptide;Acc:NP_958876]; 

ENSDARG00000040046:hypothetical protein LOC494038 [Source:RefSeq_peptide;Acc:NP_001008581]: 

ENSDARESTG00000010313

ENSDARG00000037773:RlNG1 and YY1 binding protein [Source:RefSeq_peptide;Acc:NP_958474];

ENSDARG00000005541:Wnt inhibitory factor 1 precursor (WIF-1). [Source:Uniprot/SWISSPROT;Acc:Q9W6F9];

Danio rerio mitochondrion, complete genome

ENSDARG00000036097:iroquois homeobox protein 3a [Source:RefSeq_peptide;Acc:NP_571342]; 

ENSDARG00000029263:Homeobox protein Hox-B3a (Hox-B3). [Source:Uniprot/SWISSPROT;Acc:042368]; 

ENSDARG00000007279:golgi membrane protein SB140 [Source:RefSeq_peptide;Acc:NP_956589]; 

ENSDARG00000041217:exportin 6 [Source:RefSeq_peptide;Acc:NP_919355];

ENSDARESTG00000011774 zgc:103652 (zgc: 103652),

ENSDARG00000030110:Myoblast determination protein 1 homolog (Myogenic factor 1). [Source:Uniprot/SWISSPROT;Acc:Q90477];



NM_131875.1_3prime500bases0 

NM_131503.1_3prime500bases104 

NM_131311.1 _3pri me500bases2 74 

NM_200159.1_3prime500bases279 

NM_201493.1_3prime500bases125 

NM_201329.1_3prime500bases116 

NM_201496.1_3prime500bases203 

NM_200882.1_3prime500bases377 

N M_212 815.1 _3pri me500bases352 

NM_214734.1_3prime500bases256 

NM_001001402.1_3prime500bases397 

NM_178297.2_3prime500bases120 

NM_001001399.1_3prime600bases370 

NM_182878.1_3prime500bases422 

CA854263.1 _3pri me500bases 122 

NM_001007038.1_3prime500bases269 

NM_213172.1_3prime500bases365 

NM_130947.1_3prime500bases310 

NM_199217.1 _3prime500bases187 

DIG0565_1528

NM_001004578.1_3prime500bases336 

NM_205750.1_3prime500bases420 

NM_131807.1_3prime500bases404 

NM_213153.1_3prime500bases424 

NM_131077.1_3prime500bases386 

NM_131120.1_3prime500bases395 

NM_131305.1 _3prime500bases415 

NM_131881.1_3prime500bases266 

NM_201332.1_3prime500bases424 

NM_201587.1_3prime500bases206 

NM_199538.1_3prime500bases295 

NM_001002720.1_3prime500bases146 

NM_199532.1_3prime500bases125 

NM_213151.1_3prime500bases351

2.14 2.14

1.80 2.48 2.14

2.16 2.16 2.16

2.17 2.17

2.23 2.23

1.65 2.83 2.24

2.19 2.34 2.26

2.13 2.40 2.27

2.27 2.27

2.28 2.28

2.57 2.01 2.29

1.56 3.02 2.29

2.30 2.29 2.29

2.32 2.32

2.32 2.34 2.33

2.42 2.29 2.35

2.40 2.31 2.35

2.36 2.36

2.32 2.40 2.36

2.38 2.38

2.38 2.37 2.38

2.41 2.41

2.42 2.42

2.42 2.42

2.42 2.42

2.44 2.44

2.44 2.44

2.46 2.43 2.44

2.45 2.45

2.14 2.78 2.46

2.32 2.64 2.48

2.58 2.42 2.50

2.35 2.69 2.52

2.75 2.33 2.54

ENSDARG00000026534:Axin-1 (Axis inhibition protein 1). [Source:Uniprot/SWISSPROT;Acc:P57094];

ENSDARG00000014446:Homeobox protein Dlx2a (DLX-2). [Source:Uniprot/SWISSPROT;Acc:P50574];

ENSDARG00000008238:mannosidase, beta A, lysosomal [Source:RefSeq_peptide;Acc:NP_956453];

ENSDARG00000036291 :nudeobindin 2a [Source:RefSeq_peptide;Acc:NP_958901];

ENSDARG00000034771:RAB13, member RAS oncogene family [Source:RefSeq_peptide;Acc:NP_958486]; 

ENSDARG00000031915:Hypoxia-inducible factor 1 alpha inhibitor (EC 1.14.11.16) (Hypoxia- inducible factor asparagine hydroxylase). 

ENSDARG00000021140:poly A binding protein, cytoplasmic 1 a [Source:RefSeq_peptide;Acc:NP_957176];

ENSDARG00000026797:v-akt murine thymoma viral oncogene homolog 2, like [Source:RefSeq_peptide;Acc:NP_997980); 

ENSDARG00000033971:paired mesoderm homeobox 1a [Source:RefSeq_peptide;Acc:NP_999899];

ENSDARG00000043042:ectodermal-neural cortex (with BTB-like domain) [Source:RefSeq_peptide;Acc:NP_001001402];

ENSDAREST G00000020068

ENSDARG00000005230:signal sequence receptor, beta [Source:RefSeq_peptide;Acc:NP_001001399l;

ENSDARG00000013443:ATPase, H+ transporting, lysosomal, V1 subunit B, member a [Source:RefSeq_peptide;Acc:NP_878298]; 

ENSDARG00000043457:Hypothetical protein (Fragment). [Source:Uniprot/SPTREMBL;Acc:Q5XJ10];

ENSDARG00000044593:ATP-binding cassette, sub-family C (CFTR/MRP), member 4 (abcc4), mRNA [Source:RefSeq_dna;Acc:NM_001007038]; 

ENSDARG00000017602:cydin G2 [Source:RefSeq_peptide;Acc:NP_998337];

ENSDARG00000040836:Wnt-4a protein precursor. [Source:llniprot/SWISSPROT;Acc:P47793];

ENSDARG00000037493:hypothetical protein LOC553785 [Source:RefSeq_peptide;Acc:NP_001018583];

ENSDARG00000014793:zgc:92331 [Source:RefSeq_peptide;Acc:NP_001004578];

ENSDARG00000004305:vang-like 1 (van gogh, Drosophila) [Source:RefSeq_peptide;Acc:NP_991313];

ENSDARG00000008434:bd2-like [Source:RefSeq_peptide;Acc:NP_571882];

ENSDARG00000005464:deoxyribonudease l-like 3 [Source:RefSeq_peptide;Acc:NP_998318];

ENSDARG00000008796:hairy-related 5 [Source:RefSeq_peptide;Acc:NP_571152];

ENSDARG00000014115:Homeobox protein Hox-B8a (Hox-B8). [Source:llniprot/SWISSPROT;Acc:Q8AWZO]; 

ENSDARG00000013125:Homeobox protein Dlxla (DLX-1). [Source:Uniprot/SWISSPROT;Acc:Q98875];

ENSDARG00000002601 Iroquois homeobox protein 7 [Source:RefSeq_peptide;Acc:NP_571956];

OTTDARG00000005626:si:ch211 -150c22.4: Novel_CDS

ENSDARG00000033768:hypothetical protein LOC321203 [Source: RefSeq_peptide;Acc:NP_955832];

ENSDARG00000014013:lamin B receptor [Source:RefSeq__peptide;Acc:NP_001002720];

ENSDARG00000004402:ELOVL family member 6, elongation of long chain fatty adds [Source:RefSeq_peptide;Acc:NP_955826]; 

ENSDARG00000027860:glyoxalase 1 [Source:RefSeq_peptide;Acc:NP_998316];
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DIG0387_631 2.54 2.54

NM_199277.2_3prime500bases279 2.54 2.54 ENSDAREST G00000024128

NM_200106.1_3prime500bases20 2.58 2.58 ENSDARG00000012135:F-box and leucine-rich repeat protein 2 [Source:RefSeq_peptide;Acc:NP_956400];

NM_131682.2_3prime500bases18 2.73 2.54 2.63 ENSDARG00000041945:Aminolevulinate, delta-, synthetase 2 (Fragment). [Source:Uniprot/SPTREMBL;Acc:Q5RIZ3];

NM_131670.1 _3prime500bases344 2.64 2.64 ENSDARG00000042837:ATPase, Na+/K+ transporting, beta 3b polypeptide [Source:RefSeq_peptide;Acc:NP_571745];

NM_131450.2_3prime500bases260 2.83 2.52 2.68 ENSDARG00000020711:Ribonudeoside-diphosphate reductase M2 chain (EC 1.17.4.1) (Ribonucleotide reductase protein R2 class I).

NM_131506.1_3prime500bases351 2.68 2.68 ENSDARG00000005150:T-box 20 [Source:RefSeq_peptide;Acc:NP_571581];

NM_131323.1_3prime500bases422 2.05 3.41 2.73 ENSDARG00000042291 :Homeobox protein Dlx6a (DLX-6). [Source:Uniprot/SWISSPROT;Acc:Q98877];

NM_131679.3_3prime500bases168 2.07 3.47 2.77 ENSDARG00000006640:eomesodermin homolog [Source:RefSeq_peptide;Acc:NP_571754];

NM_131461.1_3prime500bases418 2.79 2.79

NM_130958.1_3prime500bases293 1.64 3.44 3.38 2.82 ENSDARG00000004232:deltaB [Source:RefSeq_peptide;Acc:NP_571033];

NM_153669.2_3prime500bases139 2.39 3.46 2.92 ENSDARG00000019137:translocating chain-associating membrane protein [Source:RefSeq_peptide;Acc:NP_705955];

NM_152956.1 _3prime500bases377 3.26 2.62 2.94 ENSDARG00000034785:dachshund b [Source: RefSeq_peptide;Acc:NP_694488);

NM_173283.3_3prime500bases165 2.25 3.76 3.01 ENSDARG00000014947:insulin-like growth factor binding protein 1 [Source:RefSeq_peptide;Acc:NP_775390];

NM_130975.1 _3prime500bases429 3.04 3.04 ENSDARG00000036192:Paired-like homeodomain transcription factor 2a. [Source:llniprot/SPTREMBL;Acc:Q568C4];

NM_198911,1_3prime500bases435 3.05 3.05 ENSDARG00000020235:septin 9 [Source:RefSeq_peptide;Acc:NP_944593];

NM _182884.1 _3prime500bases422 3.16 2.98 3.07 ENSDARG00000025302-.DIX domain containing 1 [Source:RefSeq_peptide;Acc:NP_878304];

NM_001007371.1_3prime500bases41 3.21 2.93 3.07 ENSDARG00000032640:zgc: 101900 (zgc:101900), mRNA [Source:RefSeq_dna;Acc:NMJ)01007371];

NM_131863.1_3prime500bases281 3.09 3.09

NM_153673.1_3prime500bases417 3.26 2.94 3.10 ENSDARG00000008433

NM_213556.3_3prime500bases194 3.01 3.19 3.10 ENSDARG00000036470:jun B proto-oncogene [Source:RefSeq_peptide;Acc:NP_998721];

zfp36H _3pri me500bases67 3.30 2.95 3.12 ENSDARG00000016154

NM_200551,1_3prime500bases42 3.68 2.61 3.15 ENSDARG00000020143:phenylalanine hydroxylase [Source:RefSeq_peptide;Acc:NP_956845];

NM_173224.1_3prime500bases147 2.96 3.34 3.15 ENSDARG00000033412:Epididymal secretory protein E1 precursor (Niemann Pick type C2 protein homolog) (16.5 kDa secretory protein).

NM_201326.2_3prime500bases287 2.71 3.61 3.16 ENSDARG00000037516

NM 131306.1 3prime500bases355 3.31 3.07 3.19 ENSDARG00000042296:Homeobox protein Dlx5a (DLX-4). [Source:Uniprot/SWISSPROT;Acc:P50576];
NM 212763.1 3prime500bases351
DIG0174_373 1.92 4.13 3.79 3.28 ENSDARG00000027345:epithelial V-like antigen 1 [Source:RefSeq_peptide;Acc:NP_997928];

NM_199276.1_3prime500bases122 3.81 2.90 3.36 ENSDARG00000028462-.H1 histone family, member X [Source: RefSeq_peptide;Acc:NP_954970];

N M_200105.1 _3pri me500bases210 3.13 3.59 3.36 ENSDARG00000026862:fused toes homolog [Source:RefSeq_peptide;Acc:NP_956399];

NM_183071,1_3prime500bases384 3.55 3.24 3.39 ENSDARG00000040344:linker histone H1M [Source:RefSeq_peptide;Acc:NP_898894];

NM_199519.2_3prime500bases22 2.76 4.04 3.40

NM_212796.1 _3pri me500bases2 31 3.60 3.23 3.41 ENSDAREST G00000020670

NM_131687.1_3prime500bases424 3.43 3.43 ENSDARG00000007739:ATPase, Na+/K+ transporting, alpha 1a.2 polypeptide [Source:RefSeq_peptide;Acc:NP_571762];

NM_178298.2_3prime500bases266 3.78 3.08 3.43 ENSDAREST G00000011008
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NM_199522.1_3prime500bases430 3.50 3.50 ENSDARG00000034539:ras homolog gene family, member E [Source:RefSeq_peptide;Acc:NP_955816];

NM_001004602.1_3prime500bases 143 3.28 3.73 3.50 zgc:86701 (zgc:86701),

NM_200109.1_3prime500bases196 3.42 3.61 3.52 ENSDARG00000039527

NM_181331.3_3prime500bases55 3.64 3.64 ENSDARG00000043483:orthodentide homolog 5 [Source:RefSeq_peptide;Acc:NP_851848];

NM_130970.1_3prime500bases144 4.44 3.30 3.87 ENSDARG00000003971 rlnsulin gene enhancer protein ISL-2 (Islet-2). [Source:Uniprot/SWISSPROT;Acc:P53406];

NM_214723.1 _3prime500bases352 3.89 3.89 ENSDARG00000039007:enolase 3, (beta, musde) [Source:RefSeq_peptide;Acc:NP_999888];

N M_131537.2_3pri me500bases37 5 3.91 3.91 ENSDARG00000005395:Homeobox protein Hox-B5b (Hox-B5-like) (Zf-54). [Source:Uniprot/SWISSPROT;Acc:P09013];

NM_201309.1_3prime500bases192 4.17 3.98 4.08

NM_153666.1_3prime500bases311 4.07 4.36 4.22 ENSDARG00000011785:T-box 24 [Source:RefSeq_peptide;Acc:NP_705952];

NM_199431,1_3prime500bases312 4.87 3.88 4.37 ENSDARG00000041703:ribosome binding protein 1 homolog (dog) [Source:RefSeq_peptide;Acc:NP_955463];

NM_152955.1_3prime500bases423 4.95 4.95 ENSDARESTG00000012272

NM_181735.1 _3prime500bases304 3.84 6.44 5.14 ENSDARG00000019659:forkhead box 11 [Source:RefSeq_peptide;Acc:NP_859424];

NM_213241,1_3prime500bases265 5.37 5.37 ENSDARG00000011870:sp8 transcription factor [Source:RefSeq_peptide;Acc:NP_998406];

NM_205569.1_3prime500bases115 5.08 6.20 5.64 ENSDARG00000031683:v-fos FBJ murine osteosarcoma viral oncogene homolog [Source:RefSeq_peptide;Acc:NP_991132];

NM_212654.1_3prime500bases404 5.96 5.77 5.86 ENSDARG00000035986:protein tyrosine phosphatase, non-receptor type 2, like [Source:RefSeq_peptide;Acc:NP_997819];

NM_201316.1 _3prime500bases415 5.98 5.98 ENSDARG00000035913:tyrosyl-tRNA synthetase [Source:RefSeq_peptide;Acc:NP_958473];

N M_131283.1 _3pri me500bases432 6.46 6.46 ENSDARG00000039228:forkhead box B1.1 [Source:RefSeq_peptide-,Acc:NP_571358];

NM_173218.1 _3prime500bases208 3.26 10.85 7.06 ENSDARG00000008937:neogenin 1 [Source:RefSeq_peptide;Acc:NP_775325];

NM_131571.1 _3prime500bases149 7.37 7.37 ENSDARG00000036096:MAD homolog 3 [Source:RefSeq_peptide;Acc:NP_571646];

NM_180965.3_3prime500bases316 8.37 9.43 8.90 ENSDARESTG00000019581
NM 131101.2 3prime500bases423 11.89 11.89
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