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THESIS ABSTRACT

Prion protein (PrP) is the only factor known to be essential in the pathogenesis of the 

transmissible spongiform encephalopathies (TSEs) or prion diseases. The cellular 

isoform (PrPc), a GPI-anchored sialoglycoprotein of unknown function, has an 

identical primary structure to the disease-associated conformer (PrPSc). Thus, animals 

are tolerant to PrPSc and TSEs do not trigger a classical immune response. Vaccine 

development for human TSEs requires elucidation of the immunodominant human T 

cell epitopes within PrP. Further, successful immunotherapy requires that the 

function of PrPc in lymphocytes is understood, as therapeutic targeting of prion 

protein risks interfering with immune function.

Peripheral blood leukocytes from healthy donors were cultured with PrP sequence 

peptides to elicit proliferative and cytokine responses. Responses were seen to 

peptides clustered around the position 129 polymorphism and the C-terminus, in 

accordance with a predictive algorithm. The substitution of methionine by valine at 

position 129 altered both epitope immunogenicity and cytokine profile.

Studies in murine T cell activation models demonstrated transcriptional and late 

surface protein upregulation of PrPc. Memory T cells expressed higher PrPc levels 

than naive cells and there was also a strong correlation at both protein and 

transcriptional levels between expression of PrPc and the regulatory T cell marker, 

Foxp3. Embryonic deletion of Pm p  did not lead to deficits in T cell conjugation, 

proliferation or cytokine production, although memory cell numbers were slightly 

reduced. In PrP'7' mice regulatory T cells developed normally but may have enhanced 

suppressor function. However, neither PrP ablation nor anti-PrP monoclonal 

antibodies altered the phenotype o f T cell mediated autoimmune disease.

These findings demonstrate that tolerance to PrP is not complete in humans and raise 

the prospect of generating protective immunity through vaccination. However, PrPc 

is a potentially important memory, regulatory and T cell activation antigen, 

therapeutic disruption of which may precipitate immunopathology.
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CHX Cycloheximide
CJD Creutzfeldt Jakob Disease
Con A Concanavalin A
CNS Central Nervous System
c.p.m. Counts per minute
CSF Cerebrospinal Fluid
CWD Chronic Wasting Disease
DAF Decay Accelerating Factor
DC Dendritic Cell
DMSO Dimethyl Sulphoxide
DP Double Positive
EAE Experimental Autoimmune Encephalomyelitis
EDTA Ethylenediaminetetraacetic Acid
EEG Electroencephalogram
ER Endoplasmic Reticulum
FACS Fluorescence Activated Cell Sorter
FCS Fetal Calf Serum
FDC Follicular Dendritic Cell
FFI Fatal Familial Insomnia
GPI Glycophosphatidylinositol
GSS Gerstmann Straussler Scheinker
HEL Hen Egg Lysosyme
HIV Human Immunodeficiency Virus
HLA Human Leucocyte Antigen
HSC Haematopoietic Stem Cell
i/c intracerebral
IFN Interferon
IL Interleukin
i/p intraperitoneal
LAT Linker for Activation of T cells
LCMV Lymphocytic Choriomeningitis Virus
LPS Lipopolysaccharide
mAb Monoclonal Antibody
mRNA Messenger RNA
MHC Major Histocompatibility Complex
MS Multiple Sclerosis
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MBP Myelin Basic Protein
NK Natural Killer
NMR Nuclear Magnetic Resonance
OPRI Octapeptide Repeat Insertion
ORF Open Reading Frame
OVA Ovalbumin
PBMC Peripheral Blood Mononuclear Cell
PBS Phosphate Buffered Saline
PCR Polymerase Chain Reaction
PHA Phytohaemagglutinin
PK Proteinase K
PLP Proteolipid Protein
PMA Phorbol Myristate Acetate
PML Progressive Multifocal Leukoencephalopathy
Pmp Gene encoding murine PrP
PRNP Gene encoding human PrP
PrP Prion Protein
PrPc Cellular isoform of PrP
PrPSc Scrapie (disease associated) isoform of PrP
recPrP Recombinant PrP
RT-PCR Reverse Transcriptase PCR
sCJD Sporadic CJD
SEA Staphylococcal Enterotoxin A
SEB Staphylococcal Enterotoxin B
SP Single Positive
TCR T Cell Receptor
tg transgenic
TGF Transforming Growth Factor
TLR Toll Like Receptor
TNF Tumour Necrosis Factor
Treg Regulatory T cell
TSE Transmissible Spongiform Encephalopathy
UK United Kingdom
UV Ultra Violet
vCJD variant CJD
VSV Vesicular Stomatitis Virus
WHO World Health Organisation
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IMMUNOGENICITY AND IMMUNE FUNCTION 
OF THE CELLULAR PRION PROTEIN

CHAPTER 1 INTRODUCTION
The prion diseases or transmissible spongiform encephalopathies (TSEs) are 

invariably fatal neurodegenerative diseases that include Creutzfeldt-Jakob disease 

(CJD) and kuru in humans, scrapie in sheep and goats, chronic wasting disease 

(CWD) in deer and elk and bovine spongiform encephalopathy (BSE) in cattle 

(Collinge, 2001).

The central player in the pathogenesis of prion disease is prion protein (PrP), a highly 

conserved 32-kDa GPI-anchored sialoglycoprotein expressed in neurons, glia and a 

variety of non-neuronal tissues. According to the protein-only or prion hypothesis 

(Griffith, 1967), the key event in TSE aetiology is the conversion of normal, cellular 

PrP (denoted PrPc) to an alternate conformation (PrP^) (Prusiner, 1982) characterised 

by increased (3-sheet content, resistance to proteases and detergent insolubility 

(McKinley et al., 1983). This is an entirely post-translational modification in which 

the primary sequence of the protein is not altered (Stahl et al., 1993). The resultant 

pathological agent, termed the “prion”, or “protein-only infectious particle” is 

proposed to consist entirely or largely of PrPSc.

Prions can be generated sporadically, as a result of an as yet uncharacterised 

stochastic event causing PrPc to PrPSc conversion, or by dominant mutations in the 

gene encoding PrP (PRNP in humans), producing mutant PrPc that is hypothesised to 

more readily undergo spontaneous conversion to PrPSc. However, uniquely among 

neurodegenerative disorders, prion disease can also be caused through infection with
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exogenous prions; the latter inducing host-encoded PrPc to undergo conformational 

change, via seeding or template-directed refolding (Jackson and Clarke, 2000).

Although this last process occurs most efficiently within species, for example 

transmission of sheep scrapie, or kuru due to human endocannibalism, it has become 

increasingly clear that inter-species transmission of prions is possible and poses a 

genuine health risk to humans. This has been most dramatically demonstrated in the 

UK where BSE contamination of beef and beef products has caused the subsequent 

death o f -160 people from variant CJD (vCJD) (Hill et al., 1997;Bruce et al., 

1997;Collinge et al., 1996).

The relationship between prion infection and the immune system is complex. The 

lack of a clear immune response in prion disease is assumed to be due to tolerance to 

PrP50. Further, the immune system actually contributes to pathogenesis by amplifying 

prion “load” in lymphoid compartments thereby facilitating efficient neuroinvasion 

(reviewed in Aguzzi, 2003). This process is at least partly dependent on expression of 

PrPc by immune cells (Brown et al., 1999a).

Because prion diseases arise by structural changes in a single protein, PrP is an 

attractive target for therapeutic intervention. This could be achieved using 

compounds that specifically bind PrPc or PrP80 or by gene silencing of PRNP. 

Alternatively, host immune mechanisms could be adapted to block prion conversion 

or clear abnormal protein. However, because the constitutive function of PrP in the 

lymphoid system, as in the CNS, remains obscure it is not yet clear how therapies 

directly or indirectly targeting PrPc will affect immune function. Further, uncovering 

the role of PrPc in the immune system may provide novel insights into the peripheral 

pathogenesis of prion disease and immune function generally.
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In the work presented in this thesis, I have attempted to define the immunogenic 

regions of human PrP and thus consider the prospects for active immunotherapy and 

prophylaxis against human prion disease. In tandem I have sought to characterise the 

expression and function of PrP within the immune system itself in order to predict 

possible side effects of anti-prion therapeutics and to evaluate PrPc as a therapeutic 

target in immune-mediated diseases.

1.1 Clinical features of human prion diseases

Human prion diseases can be categorised into those that occur sporadically, those due 

to dominant mutations in PRNP, and those due to infection by exogenous prions. 

Although these classes have distinct aetiologies, their clinical features show a degree 

of overlap; for example some PRNP mutations cause diseases indistinguishable from 

classical sporadic CJD, while the inherited prion disease fatal familial insomnia can 

also occur sporadically. Phenotypic heterogeneity is to a certain extent a reflection of 

differences in the distribution of neuropathology. However, all prion diseases share a 

common set o f neuropathological features: neuronal loss and vacuolation, spongiform 

degeneration, astrogliosis, and the presence of abnormal PrPSc as plaques or fine 

granular staining on immunohistochemistry, as well as proteinase K (PK)-resistant 

bands on Western blot of brain homogenate (Ironside, 1998).

1.1.1 Sporadic prion diseases

1.1.1.1 Classical CJD

Sporadic CJD (sCJD) occurs with a uniform worldwide incidence of approximately 

one case per million per year. Classical forms of sporadic CJD present as a rapidly 

progressive syndrome characterised by dementia, ataxia and myoclonus (Zerr and
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Poser, 2002). The average age of onset is 60 years and average time from onset to 

death is 5 months (Johnson, 2005). Additional features, such as pyramidal and extra- 

pyramidal signs, may also be present. The diagnosis is usually made by a 

combination of clinical assessment, EEG and CSF examination. EEG shows 

characteristic “pseudoperiodic” complexes in the majority of patients (Steinhoff et al., 

2004). CSF analysis is usually normal except for raised levels of certain neuronal and 

glial proteins. In particular, a raised 14-3-3 is highly predictive of sCJD given an 

appropriate clinical presentation (Zerr et al., 2000). Neuroimaging may show 

enhanced signal in the caudate and putamen but is often non-specific (Tschampa et 

al., 2005). In rare circumstances a brain biopsy is required to confirm the diagnosis.

1.1.1.2 Variants of sporadic CJD

sCJD can give rise to a number o f atypical presentations. Disturbed visual perception 

or cortical blindness is the presenting feature of the “Heidenhain” variant, which 

accounts for 4-20% of cases of sporadic CJD (Kropp et al., 1999;Rabinovici et al., 

2006;Cooper et al., 2005). More rarely, sCJD may present as a phenotype 

indistinguishable from fatal familial insomnia. This syndrome has in the past been 

labelled as the “thalamic variant” of CJD, but is now referred to as sporadic fatal 

insomnia (Gambetti et al., 2003). It accounts for approximately 2% of cases of 

sporadic CJD.

1.1.2 Inherited forms of prion disease

These are caused by dominant mutations in the prion gene PRNP, on chromosome 20. 

Over 30 different mutations have been reported, the majority being either point 

mutations or expansions in the N-terminal octapeptide repeat region (OPRI). Cases of
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inherited prion disease are rare; in the UK only ~ 85 deaths from inherited forms of 

prion disease have been reported since 1990 (http://www.cjd.ed.ac.uk/figures.htm).

A remarkable feature of inherited prion diseases is the wide variety of phenotypes that 

result from mutations in the same gene. Many point mutations and some OPRI cases 

are associated with syndrome identical or similar to sCJD. However, notable 

phenotypic exceptions to this are Gerstmann Straussler Scheinker syndrome, most 

commonly caused by the P 102L mutation, which characteristically manifests as a 

slowly progressive cerebellar ataxia, and fatal familial insomnia (FFI), initially 

described in association with the D178N mutation. FFI presents with sleep 

disturbance, stuporous episodes with hallucinations, autonomic dysfunction and 

seizures. Features generally associated with sCJD, such as myoclonus, may also be 

present. Neuropathological examination reveals distinctive neuronal loss and 

astrogliosis in the thalamus (Gambetti et al., 2003).

Interestingly, the correlation between genotype and phenotype is not straightforward 

with considerable diversity in age o f onset and clinical features within pedigrees 

(Mead, 2006). In particular, the codon 129 polymorphism may influence the 

phenotype. With respect to the D178N mutation, where methionine is encoded at 

position 129 of the mutant allele this may cause FFI whereas the identical mutation on 

a 129V allele is more likely to cause a classical CJD phenotype (Goldfarb et al.,

1992). However, this association is not absolute and other as yet unidentified factors 

also contribute to determining the clinical phenotype. For example a proportion of the 

phenotypic variation observed in cases of P102L GSS may be due to variable 

involvement of the wild-type PRNP allele (Wadsworth et al., 2006).
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1.1.3 Infectious forms of prion disease

1.1.3.1 Kuru

The archetypal infectious human prion disease is kuru, which is seen solely among the 

Fore tribes of Papua New Guinea. The disease probably originated as a case of 

sporadic CJD, which was then serially propagated by endocannabilism. The 

traditional practice of the Fore was to consume recently deceased members of the 

tribe at funeral feasts. The entire body was consumed at such events, irrespective of 

the mode of death. In general, male members of the tribe ate the muscle meat, while 

women and children consumed neural tissue. This led to an epidemic of kuru across a 

range of villages in which women and children were preferentially affected. During 

the epidemic, kuru was the leading cause of death among women in some affected 

villages. The disease was observed by missionaries and subsequently by the 

Australian colonial government in the 1950s. The practice of endocannibalism was 

linked to the epidemic and actively discouraged by the administration from the 1950s. 

This led to a sharp decline in the incidence of the disease. Of note, however, 

occasional cases were still occurring among the Fore in the late 1990s and early 

2000s, at least 40-50 years after the cessation of cannibalism (Collinge et al., 2006).

The clinical syndrome of kuru is characterised by progressive ataxia leading to 

paralysis, progressive obtundation, coma and death. At post mortem, florid PrPSc 

containing amyloid plaques referred to as “kuru plaques” are seen in the brain in the 

majority of cases (Collins et al., 2001). The extraneural tissue distribution of PrPSc 

and infectivity in kuru has yet to be fully elucidated.

The average incubation period of kuru was about 12 years, although age stratified 

incidence is bimodal, with a peak in the second decade of life among 129MMs and a
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peak in middle age among 129MVs (Cervenakova et al., 1999) (J Beck, unpublished 

observations). Thus, incubation time is directly influenced by the PRNP codon 129 

polymorphism. This is significant because affected 129MM women usually died 

before or during their reproductive years, whereas 129MV women usually succumbed 

to kuru only in middle age. In addition, 129MVs were generally less susceptible to 

kuru, with several female “long survivors” still alive decades after multiple exposures 

to prion infected material. Thus, the impact of the codon 129 polymorphism on 

disease susceptibility was so strong that kuru significantly altered the prevalence of 

the two alleles in the population. This is the strongest example of balancing selection 

ever documented in human history and has led to the proposal that the unexpectedly 

high global prevalence of the 129V allele is due similar epidemics of prion disease in 

many other populations in human pre-history to which MV heterozygotes would have 

been relatively resistant (Mead et al., 2003). However, this study remains contentious 

and its interpretation of the worldwide frequencies of codon 129 genotypes has been 

challenged (Soldevila et al., 2006;Kreitman and Di Rienzo, 2004).

1.1.3.2 Iatrogenic CJD

Until the appearance of variant CJD, the principal mode of prion infection seen in 

developed countries was iatrogenic. In a now infamous mishap, deep brain electrodes 

unwittingly used on a patient with CJD subsequently infected two further individuals 

despite robust conventional sterilisation between each procedure. In a “proof of 

principle” experiment, the electrodes were ultimately used to transmit CJD to a 

chimpanzee (Bernoulli et al., 1977). Further outbreaks of iatrogenic CJD have been 

caused by use of infected dura mater grafts and cadaveric growth hormone with
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occasional cases due to contaminated neurosurgical instruments, comeal transplants 

and gonadatropin (Brown et al., 2000).

The clinical syndrome of iatrogenic CJD depends on the strain of the inoculum and 

the route of infection. Prions delivered straight to the brain give rise to a classical 

CJD phenotype usually within 2 years o f exposure. Peripheral infection, such as with 

growth hormone, typically gives rise to a longer incubation period and is associated 

with a phenotype closer to that of GSS.

1.1.3.3 Vertical transmission

The age distribution of sporadic CJD means that pregnant women will only very 

rarely be affected. However, two cases of iatrogenic CJD and one of sCJD presenting 

during pregnancy have been documented (Bernoulli et al., 1977;Lane et al., 

1994;Tamai et al., 1992). In no cases has CJD transmitted to the child (Lane et al.,

1994). This is in accordance with data from non-human primates experimentally 

infected with prions, in which vertical transmission did not occur (Amyx et al., 1981). 

Maternal transmission has long been proposed as a mechanism underlying the 

propagation of scrapie in affected sheep herds. Despite the demonstration o f PrPSc in 

ovine placenta (Race et al., 1998), direct evidence for transplacental transmission is 

lacking. Similarly, there is no direct evidence that BSE is transmitted from heffer to 

calf. Studies in mice suggest that although vertical transmission is technically 

feasible, it occurs as low efficiency (Castilla et al., 2005) likely at least in part due to 

the inherent resistance of immature mice to prion infection (Iema et al., 2006). The 

wider tissue distribution of PrPSc and younger age range in vCJD has raised concerns 

that this disease may transmit vertically. However, no such cases have yet been 

reported, although an unusual type of cerebral palsy has been documented in a child
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bom to a woman with symptomatic vCJD during pregnancy (Isaacs et al., manuscript 

in preparation).

1.1.3.4 Variant CJD

The massive epidemic of BSE in UK cattle, estimated to have involved 2 million 

bovines, led to fears that bovine prions might have entered the food chain and infected 

humans. These concerns were justified when, in the mid-1990s, a novel prion disease 

termed variant CJD (vCJD) was identified in young adults (Will et al., 1996). This 

disease has to date affected approximately 190 people worldwide. The clinical and 

pathological features of variant CJD are distinct from classical CJD, supporting the 

notion that it is a novel entity with a strong temporal relationship with, and 

physicochemical similarities, to BSE (Will et al., 1996;Collinge et al., 1996).

Variant CJD is characterised by a neuropsychiatric prodrome, with prominent 

depression and other psychological features. Indeed, many patients initially come 

under the purview of psychiatrists. After several months, progressive cognitive 

decline ensues, accompanied by ataxia and often additional features such as chorea, 

pyramidal signs and severe pain (Spencer et al., 2002). The EEG in vCJD does not 

typically show periodic complexes, and CSF markers used in the diagnosis of 

sporadic CJD are not reliably elevated. MRI is, however, a useful adjunct to clinical 

diagnosis; the “pulvinar sign” being present in the majority of individuals (Zeidler et 

al., 2000) although this finding is not entirely specific to vCJD.

An important feature of vCJD is that PrPSc accumulates in peripheral tissues, notably 

those of the lymphoreticular system such as tonsil and appendix (Wadsworth et al.,

2001). This is most likely a reflection of the presumed peripheral route of entry and
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the tissue tropism of the particular prion strain that causes vCJD. The presence of 

abnormal PrP has not been demonstrated to have a clinically deleterious effect on the 

function of these tissues, which remain grossly anatomically normal. PrPSc can, 

however, be detected by high sensitivity immunoblot in tonsils from vCJD patients 

with 100% sensitivity and specificity (Hill et al., 1999;Wadsworth et al., 2001). 

Proponents of tonsil biopsy argue that it should be included in the routine work up of 

suspected vCJD cases. However, this opinion is not universally held; the procedure is 

invasive, carries an operative risk and requires special infection control measures.

The current WHO guidelines for diagnosis of vCJD do not afford tonsil biopsy the 

status of a “gold standard” diagnostic test; this can still only be provided by brain 

biopsy (www.who.int/bloodproducts/TSE-manual2003.pdf). In practice, however, a 

patient would be unlikely to have a brain biopsy to confirm a diagnosis of vCJD 

unless a tonsil biopsy was unavailable or contraindicated.

In rodent models where prions are delivered via a peripheral route (in practise almost 

always intra-peritoneal or oral) PrPSc can be detected in the lymphoreticular system 

several weeks before neuroinvasion occurs. The speed with which prions disseminate 

around the body following BSE infection in humans has not yet been determined and 

it is unknown how long prior to the onset of clinical symptoms PrP80 can be detected 

in peripheral tissues. Large series of tonsil and appendix specimens taken at routine 

surgical procedures from otherwise healthy people have been anonymously screened 

for the presence of PrP80 (Hilton et al., 2004;Frosh et al., 2004). These have revealed 

only very small numbers of potentially infected individuals. However, there are 

methodological limitations to the present studies, and a larger scale screen has been 

commissioned by the UK Department of Health.
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If large numbers of people are harbouring sub-clinical vCJD prions in peripheral 

tissues, this has two important implications:

1) Further clinical cases of vCJD might occur. Experience from the kuru epidemic 

indicates that the average incubation time of oral human-to-human transmission is of 

the order o f 10 years (with an upper limit o f 40 years or longer (Collinge et al.,

2006)). However, experimental models have demonstrated that in the presence of a 

species barrier, incubation time is significantly prolonged. Thus the first 160 cases of 

vCJD might merely be drawn from a particularly susceptible section of the 

population, with larger epidemics to follow.

2) Secondary transmission of vCJD may occur via blood transfusion, surgical and 

endoscopic instruments, organ donation and possibly through vertical transmission. 

Indeed, three cases of blood transfusion-related transmission have already been 

documented (Peden et al., 2004;Llewelyn et al., 2004)(Wroe et al., submitted).

Very little is known about factors governing susceptibility to vCJD. A small cluster 

was detected in Leicestershire and there is a trend towards increasing incidence in the 

northern UK, both perhaps explained by regional patterns of meat consumption 

(Cousens et al., 2001). The only definite association is PRNP codon 129 genotype. 

All cases of clinical vCJD thus far have occurred in individuals drawn from the ~

40% of the UK population that is 129 methionine homozygous. It remains unclear 

whether any 129MV or W  individuals will be affected by primary infection with 

BSE, although two appendix specimens found by Hilton and colleagues to contain 

PrPSc were recently reported to have come from 129VV individuals (Ironside et al., 

2006).
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With respect to secondary transmission of vCJD, possession of one or more PrP 129V 

alleles may offer less protection than against BSE. One of the cases of transfusion- 

related infection occurred in a 129MV heterozygote (Peden et al., 2004). However, 

this individual died of unrelated causes, and PrPSc was not detected in the CNS. Thus, 

it remains unknown whether any peripherally infected 129MV or 129W  individuals 

(~ 50% and 10% of the UK population respectively) will progress to clinical disease 

within their natural lifespan.

Studies in transgenic mice homozygous for 129V or heterozygous for 129MV human 

PrP demonstrate that the presence of 129V PrP has a powerful dominant negative 

effect on susceptibility to BSE (Wadsworth et al., 2004;Asante et al., 2006;Bishop et 

al., 2006). In contrast, vCJD prions are able to cause neuropathology in 129W  and 

129MV hosts. However, in all these experiments disease was initiated by direct 

intracerebral inoculation of vCJD brain homogenate. Thus, the modifying effects of 

codon 129 genotype on the peripheral phase of BSE or vCJD infection have not yet 

been characterised.

A further consideration pertaining to individuals with one or two 129V alleles is 

whether primary BSE or secondary vCJD infection will propagate as a distinct strain 

on this genetic background that might not immediately be recognised as vCJD.

Indeed, there has been a gradual rise in the number of cases of sCJD in the UK and 

some other countries in parallel with the emergence of vCJD (Glatzel et al., 2002) 

(Ladogana et al., 2005). Studies of vCJD infection in transgenic mice expressing 

human 129V PrP alone or both human 129V and 129M PrP suggest that a distinct 

neuropathological and possibly clinical entity may occur on these genetic 

backgrounds (Wadsworth et al., 2004;Asante et al., 2006). However, other
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researchers have not replicated this finding (Bishop et al., 2006). Current 

controversies notwithstanding, it remains prudent to assume that vCJD may induce a 

modified clinical phenotype in 129MV heterozygotes and 129W  homozygotes. 

However, despite some differences in PrPSc strain type, the clinical phenotype of 

sCJD is not significantly altered by PRNP genotype nor is it clear that 129MV and 

W  individuals with kuru developed a distinct neurological syndrome.

1.2 Host immune responses to prion infection

The major neuropathological hallmarks of prion disease are spongiform degeneration, 

neuronal loss, astrogliosis and extracellular PrPSc deposition in the form of amyloid 

plaques. These severe degenerative changes occur without triggering a classical 

immune response, either within the CNS or in the periphery. The response of the 

brain to prion infection has been characterised instead as one of “atypical 

inflammation”, dominated by an unusual pattern of microglial activation, pro- 

inflammatory signalling and cytokine release (Perry et al., 2002)

1.2.1 Microglial activation

Microglial activation is one of the earliest responses to prion infection. Microglia are 

attracted to sites o f PrPSc inoculation within a few days via a CCR-5 dependent 

mechanism (Marella and Chabry, 2004). Glial-derived markers such as L-selectin 

and myeloid recruitment factors are elevated in mouse scrapie within a few weeks of 

intracerebral prion inoculation (Lu et al., 2004). Although microglial activation can 

be detected prior to overt neuronal death (Williams et al., 1997) it appears that it is 

nonetheless an inflammatory reaction to early synaptic degeneration (Cunningham et 

al., 2003) rather than a protective response driven by recognition of PrPSc. Later in
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the pre-clinical course a number of immune related genes are upregulated, but again 

this is likely to contribute further towards pathology rather than being a beneficial 

immune response by the CNS (Xiang et al., 2004).

1.2.2 Cytokine profiles in prion disease

Pro-inflammatory cytokines including TNF-a and IL-1J3 have been raised in CSF 

from two series of patients with CJD (Sharief et al., 1999;Van Everbroeck et al.,

2002), although only IL-8 was significantly increased in a recent study (Stoeck et al., 

2005b). Similarly, they are upregulated in some (Campbell et al., 1994;Kordek et al., 

1996;Williams et al., 1997;Kim et al., 1999;Schultz et al., 2004), but not all (Walsh et 

al., 2001;Cunningham et al., 2002) experimental models. With the exception of IL- 

1(3, these are probably late responses to neurodegeneration (Baker et al., 1999;Brown 

et al., 2003). Thus, although an acute phase response can be demonstrated in prion 

infected brain (Cunningham et al., 2005) this may be mediated by pathways 

independent of cytokine release. Further, mice deficient in pro-inflammatory 

cytokines or their receptors either have normal (Mabbott et al., 2000) or modestly 

prolonged (Schultz et al., 2004) incubation times following intracerebral inoculation, 

suggesting that cytokine release is generally an ineffectual or harmful response to 

prion infection.

The major anti-inflammatory signal that has been detected in scrapie-infected brain is 

TGF-pi, although this is also not upregulated until late in the disease (Tashiro et al., 

1998;Baker et al., 1999;Cunningham et al., 2002;Brown et al., 2003), and may in fact 

contribute towards pathology (Cunningham et al., 2002). Recently, reduced levels of 

TGF-p2 have been detected in CSF from CJD patients (Stoeck et al., 2005b). 

Interestingly, IL-10'A mice have accelerated disease following intracerebral or
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intraperitoneal infection, suggesting that the brain attempts an anti-inflammatory 

response which can defer but not eliminate the neurotoxic effects of prion infection 

(Thackray et al., 2004a). Raised IL-10 levels have been detected in the CSF of 

patients with sporadic CJD (Stoeck et al., 2005a) but not in the brain in murine 

scrapie (Cunningham et al., 2002;Brown et al., 2003).

1.2.3 Complement components in prion disease

Complement protein C 1 q has been reported to coat PrPSc amyloid plaques (Kovacs et 

al., 2004) (reviewed in Mabbott, 2004) and be upregulated in murine scrapie 

(Dandoy-Dron et al., 1998;Dandoy-Dron et al., 2000;Riemer et al., 2000;Brown et al., 

2004), raising the intriguing question as to whether the innate immune system can 

recognise conformational epitopes produced by polymerized self-proteins. Indeed,

C3-inhibited, APP transgenic mice have acceleration of Alzheimer-like pathology 

(Wyss-Coray and Mucke, 2002). However, whether complement actually has a 

protective role in prion disease is unclear. Amyloid plaques are not an invariable 

feature of TSE neuropathology and may not in themselves be neurotoxic (Jeffrey et 

al., 2004). Furthermore, neither C lq '7' mice nor those unable to form the terminal 

membrane attack complex have accelerated disease following intracerebral 

inoculation (Klein et al., 2001;Mabbott et al., 2001;Mabbott and Bruce, 2004). 

Moreover, there is no evidence that complement is activated by the presence of PrPSc 

in the lymphoid system; rather, it appears that complement proteins including C lq  

and C3b assist in the process of peripheral prion replication (Klein et al., 

2001;Mabbott et al., 2001).
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1.2.4 Cellular immunity

Cerebrospinal fluid from patients with CJD is typically acellular (Jacobi et al., 2005), 

suggesting that neutrophil or lymphocyte ingress to the CNS is not a major feature of 

the disease. There have been reports of T cell infiltration in the brain parenchyma in 

some experimental prion diseases and patients with vCJD (Betmouni et al., 

1996;Lewicki et al., 2003). However, this is most likely a non-specific effect of rapid 

neurodegeneration, microglial activation and increased CNS MHC class I and II 

(Duguid and Trzepacz, 1993) and chemokine receptor expression (Burwinkel et al., 

2004;Lee et al., 2005). T cells isolated from the brains of mice with scrapie did not 

secrete IFN-y or TNF-a or demonstrate cytotoxic activity when cultured with APCs 

pulsed with PrP sequence peptides (Lewicki et al., 2003), suggesting that even if these 

infiltrates do represent expansion o f specific anti-PrP clonal populations, they have 

been rendered anergic.

1.2.5 Lymphoreticular phase of prion disease

In variant CJD, sheep scrapie and most rodent models, prions accumulate in the 

secondary lymphoid organs, typically within follicular dendritic cells (FDCs) o f the 

spleen and lymph nodes (Kitamoto et al., 1991 ;McBride et al., 1992;Bruce et al.,

2001; Wads worth et al., 2001). Although alterations in splenic morphology have been 

detected (McGovern et al., 2004), splenic lymphocyte numbers and distribution are 

not altered (Davies et al., 2004), local macrophages are not activated and no systemic 

inflammatory response is generated (Xiang et al., 2004). A neurotoxic fragment of 

PrP (a peptide consisting of residues 106-126) can elicit in vitro changes in leucocyte 

migration, calcium levels and membrane viscosity (Diomede et al., 1996;Le et al., 

2001) and activate dendritic cells (Bacot et al., 2003), but there is no evidence that
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PrPSc produces such effects in vivo. Prions invading via the oral route, as in BSE 

infection of humans, are able to survive proteolytic degradation in the gut and pass 

through the intestinal lumen seemingly without immune hindrance. Where in the gut 

prion entry occurs remains unclear, with evidence in favour of elements within 

Peyer’s patches such as lymphocytes and FDCs (Bergstrom et al., 2006;Beekes and 

McBride, 2000;Heggebo et al., 2000;Heggebo et al., 2002;Herzog et al., 2004) or M 

cells (Heppner et al., 2001a;Prinz et al., 2003b) but also for the 37/67 kDa Laminin 

receptor on enterocytes (Morel et al., 2005). Whichever is the case, the relatively low 

efficiency of oral infection in experimental models suggests that natural defences 

against prions may exist in the gut (Prinz et al., 2003b).

In experimental prion disease generated by intraperitoneal (i/p) injection of prions, 

PrPSc cannot be detected between days 1 and 4 post-inoculation (Beringue et al.,

2000), and infectivity is lost in spleens of PrP'7' mice within a few weeks of i/p 

inoculation (Blattler et al., 1997;Kaeser et al., 2001), suggesting that host mechanisms 

exist which are capable of degrading PrPSc, albeit with less efficiency than the process 

by which PrPSc converts endogenous PrPc. However the nature of these processes 

remains unknown, although an anti-PrP antibody response is not thought to be the 

mechanism by which PrP'7' mice clear a prion inoculum (Kaeser et al., 2001). Splenic 

tingible body macrophages may be able to ingest PrPSc (Jeffrey et al., 2000) and 

depleting macrophages led to a transient increase in PrPSc levels in the spleen 

(Beringue et al., 2000). It has been reported that myeloid dendritic cells can degrade 

PrPSc when co-cultured with an infected neuronal cell line (Luhr et al., 2002), possibly 

via cysteine proteases (Luhr et al., 2004). However, it is unclear whether the net 

contribution of dendritic cells during the peripheral phase of prion infection is 

protective or contributory. Intestinal dendritic cells are able to take up PrPSc and may
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transport it to lymphoid organs (Huang et al., 2002). Furthermore, CD205+ DCs have 

been observed to migrate into the CNS from 120 days following i/p scrapie 

inoculation (Rosicarelli et al., 2005).

1.2.6 Failure of immune defence against prion infection

The failure of the adaptive immune response in prion infection is presumed to be due 

to sequence homology between PrP80 and PrPc (Basler et al., 1986), whereby PrP^ is 

seen as self protein. Moreover, the structural changes underlying PrPc to ^  

conversion do not appear to generate any novel immunogenic B cell epitopes, as 

antibody production has never been detected in infected animals (Porter et al., 

1973;Kasper et al., 1982). Rodent scrapie infection does not itself appear to 

downregulate cellular immune responses (Garfm et al., 1978;Kingsbury et al., 

1981;Kasper et al., 1982) although PrP 106-126 induces migration of immature 

dendritic cells but arrests movement of mature DCs (Kaneider et al., 2003). T cells 

recognising peptides presented by MHC on the surface of immature DCs are rendered 

anergic (reviewed in Steinman et al., 2003), and this could contribute to the tolerising 

of T cells to PrPSc. Indeed, since there is not a clear correlation between thymic PrPc 

expression and tolerance to PrP (Polymenidou et al., 2004), peripheral mechanisms 

maintaining tolerance to PrPc and Sc may exist. Furthermore, although recombinant 

PrP can be degraded by the 20S proteasome, fewer fragments derive from the 

structured C terminus than from the unstructured N terminus (Tenzer et al., 2004). 

The protease-resistant core o f PrPSc is largely C-terminal, suggesting that MHC 

presentation of products from this region will be particularly inefficient.

The lack of any effective immune response is reinforced by the observation that 

immunosuppressed individuals are not at increased risk of prion disease.
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Furthermore, early animal studies indicated that activating the immune system, with 

mitogens or concomitant viral infection, actually enhances the efficiency of prion 

pathogenesis (Dickinson et al., 1978;Ehresmann and Hogan, 1986). Conversely, 

splenectomy prolongs incubation time (Kimberlin and Walker, 1989;Fraser and 

Dickinson, 1978). More recent work has demonstrated that peripheral prion 

accumulation is largely dependent on PrP-expressing splenic FDCs (Brown et al., 

1999a;Montrasio et al., 2000), although following high dose i/p challenge non-stromal 

splenocytes and FDCs may harbour infectivity even if they do not express PrPc 

(Kaeser et al., 2001). Thus, the relative resistance of neonatal mice to peripheral 

prion infection is most likely due to a combination of absent FDC PrPc expression 

and lack of lymphoid follicular differentiation during the first 1 -2 weeks of life (Iema 

et al., 2006). FDC accumulation o f prions in turn requires an intact B cell 

compartment (Klein et al., 1997), although this is dependent not on B cell expression 

of PrP, but of trophic factors that sustain FDC differentiation (Klein et al., 1998). The 

exact role of T cells in prion pathogenesis is unclear. They are not required for 

effective peripheral amplification in rodent models (Klein et al., 1997). However, 

whether under certain naturally occurring conditions they are able to effect an 

immune response and clear infection is not known.

PrPSc accumulates to high titres in organs undergoing chronic inflammation, although 

mice with organ-specific inflammation are not more susceptible to infection per se 

(Heikenwalder et al., 2005;Seeger et al., 2005). This has implications for secondary 

transmission of prions via blood products, surgical instruments and organ donation. 

This effect may be due to increased local expression of PrPc in the affected organ or 

because inflammation influences levels of co-factors that facilitate peripheral PrPc to 

Sc conversion, such as complement. However, perhaps more likely is that the
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inflammation generated in the models used by Heikenwalder and co-workers induced 

differentiation of local FDCs from stromal precursors thus generating 

lymphofollicular foci of the kind in which PrPSc is known to accumulate in the spleen. 

Nonetheless, recent data suggest that when such forms of inflammation occur 

naturally they are also associated with increased PrP^ accumulation (Ligios et al.,

2005).

Over-expressing PrP in T or B cells in mice otherwise deficient in PrP does not 

permit accumulation of infectivity in lymphoid organs (Raeber et al.,

1999b;Montrasio et al., 2001). However, these experiments do not model the effects 

of varying lymphocyte PrP expression in a system that can fully support peripheral 

prion replication. Furthermore, lymphocyte PrPc levels in humans are higher than in 

mouse models in which the roles o f the various components of the immune system in 

prion propagation have been studied (Liu et al., 2001;Holada and Vostal, 2000;Li et 

al., 2001). Thus, it remains possible that increased PrPc expression levels in B and T 

(or other) cells, due concomitant infection or inflammation, may influence 

susceptibility to prion infection in humans.

An additional hazard of concomitant infection is that this may activate tissue-resident 

macrophages and dendritic cells which may then “capture” and transport incoming 

prions to the spleen with greater efficiency (Marsh, 1981). Indeed, although PrPc 

expression within lymphoreticular tissues is required for efficient peripheral 

replication, capture and transportation of prions from the site of entry to the spleen 

may be efficiently performed by mobile cells or microparticles irrespective o f their 

own PrP expression status. Thus, priming of dendritic cells, macrophages or 

lymphocytes, or induction of increased exosome release, by simultaneous
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inflammatory stimuli may drastically increase susceptibility following peripheral 

prion inoculation.

The extent to which an effective immune response may protect humans against prion 

infection is unknown. The major determinant of susceptibility to vCJD is methionine 

homozygosity at codon 129 of PRNP. However, since this accounts for ~ 40% of the 

UK population, other genetic and environmental factors are likely to be at play.

Initial work suggesting that expression o f HLA-DQ7 may be protective against vCJD 

(Jackson et al., 2001a) was not confirmed when repeated on a larger sample (Pepys et 

al., 2003). An HLA-mediated effect would most likely be dependent on MHC- 

restricted presentation of peptidic fragments of foreign or self PrPSc, and the extent to 

which the human immune system can do this is unknown. Although a small study in 

Japan suggested HLA-DQw3 as a susceptibility allele for sporadic CJD (Kuroda et 

al., 1986), this has not been replicated (Jackson et al., 2001a). In mice, early data 

suggesting a role for MHC alleles in determining incubation times (Kingsbury et al., 

1983) was not replicated in later studies (Mohri and Tateishi, 1989;Lloyd et al.,

2001;Stephenson et al., 2000;Manolakou et al., 2001).

1.2.7 Summary

In summary, there is considerable evidence that the host immune system is unable 

effectively to distinguish PrPSc from PrPc, and that the principal response of the CNS 

to prion infection is a deleterious pro-inflammatory reaction to on-going 

neurodegeneration. Indeed, the specificity of this response is questionable as similar 

changes, including microglial activation, atypical cytokine profiles, complement 

activation and T cell infiltration, have all been detected in Alzheimer disease 

(reviewed in McGeer and McGeer, 2003). This is unsurprising given that
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endogenously generated PrPSc has 100% self sequence and PrP sequence is highly 

conserved between mammals, making the triggering of a T or B cell response through 

recognition of foreign or host-generated PrPSc as non-self highly unlikely. This 

situation is compounded by the fact that there is almost certainly repeated exposure to 

animal PrPc in the diets of omnivorous and carnivorous mammals, generating 

heightened tolerance. Furthermore, the resistance of PrPSc to proteolysis reduces the 

likelihood of peptidic fragments being presented to T cells by MHC class I or II. The 

tantalising prospect of studying prion pathogenesis in a system in which PrP is 

entirely foreign has not been realised as PrP' ' mice are completely unable to 

propagate the disease (Weissmann et al., 1993;Prusiner et al., 1993;Manson et al., 

1994b).

1.3 Strategies in immunotherapy of prion disease

1.3.1 Stimulating innate immunity

There are conflicting data on whether pharmacological activation of the innate 

immune system is of benefit in prion disease. A promising result obtained by 

administration of CpG oligodeoxynucleotides to peripherally infected mice (Sethi et 

al., 2002) was most likely due to disruption of the splenic FDC differentiation 

necessary to support prion accumulation, rather than a specific anti-PrP effect. More 

worryingly, when given to mice for 20 days CpG oligodeoxynucleotides caused 

haemorraghic ascites and hepatic necrosis (Heikenwalder et al., 2004). Furthermore, 

Toll-deficient mice have normal incubation times following intraperitoneal infection, 

suggesting that at least this element of the innate immune system does not have a 

major role in pathogenesis (Prinz et al., 2003a).
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1.3.2 Blocking lymphoreticular amplification

TNF-a and lymphotoxins have been implicated in sustaining differentiation of FDCs, 

the cell population required for peripheral PrP80 amplification. Deleting or blocking 

the effects of these factors can prolong incubation time in experimental models 

following peripheral but not central prion inoculation (Montrasio et al., 2000;Mabbott 

et al., 2000;Mabbott et al., 2002). Indeed, neonatal mice in which FDC differentiation 

has yet to occur are ~ 100-fold less susceptible to peripheral prion infection than 

mature mice (Iema et al., 2006). Whether such interventions could be used as post- 

exposure prophylaxis in humans is unclear, as the required length of treatment and 

long-term side-effects remain to be established. Furthermore, it is clear that 

particularly after high-dose inoculation, prions can bypass FDCs and achieve 

neuroinvasion via other routes (Aucouturier et al., 2001;Shlomchik et al., 2001;Prinz 

et al., 2002;01dstone et al., 2002;Race et al., 2000). Similarly, although manipulation 

of dendritic cells and macrophages, which may be able to clear PrPSc, appears 

attractive, the extent to which this would be effective once the disease has entered the 

CNS is unclear.

1.3.3 Passive immunisation

Antibodies against PrP were initially raised in rabbits by immunisation with 

preparations enriched for scrapie infectivity (Bendheim et al., 1984;Bode et al., 1985). 

Attempts to generate antibodies against scrapie fibrils in mice proved more difficult 

and raised sera reacted only to non-murine sequence (Kascsak et al., 1987). 

Identification and cloning of PrP in the mid-1980s (Prusiner et al., 1984;Oesch et al., 

1985;Basler et al., 1986) allowed antibodies to be generated by immunisation with 

synthetic protein or peptides (Barry et al., 1988;Harmeyer et al., 1998). PrP knockout
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mice subsequently proved to be a useful tool for raising antibodies against PrP from a 

range of species (Prusiner et al., 1993;Krasemann et al., 1996;Williamson et al.,

1996).

However, neither these nor antibodies raised in PrP+/+ animals can distinguish PrPc 

from PrP^. Attempts to generate PrPSc-specific antibodies have been confounded by 

the 100% sequence homology between it and PrPc and have therefore relied on the 

former having a structural epitope not present in PrPc. However, although antibodies 

that recognise PrP50 but not PrPc have been described these have been low affinity 

IgMs (Korth et al., 1997), or were raised against simple structural motifs that are most 

likely present in other proteins (Paramithiotis et al., 2003), limiting their in vivo 

specificity and therapeutic potential. An alternative approach based on PrPSc having 

an affinity for PrP involves grafting PrP sequence corresponding to the putative 

binding site onto an existing antibody (Moroncini et al., 2004). Although such 

antibodies recognise PrPSc and not PrPc it seems likely that they will also bind other 

proteins and produce off-target effects if used in vivo. Furthermore, it is not clear that 

the proteinase K resistant material recognised by these antibodies is the only or major 

neurotoxic species. Ligating this entity with antibody may therefore prove ineffectual 

or drive the equilibrium between pathogenic and more benign forms of PrPSc in a 

deleterious direction. For all the above reasons anti-prion effects have largely been 

reported for antibodies that bind both PrPc and PrPSc.

Anti-PrP antibodies were initially shown to clear neuronal cells of prion infectivity 

(Enari et al., 2001 ;Peretz et al., 2001). Subsequently, mice were protected from 

peripheral prion inoculation by constitutive transgenic expression of anti-PrP 

antibodies (Heppner et al., 2001b). The most spectacular result in this field was
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achieved when mice repeatedly treated with high dose anti-PrP were completely 

protected from disease following peripheral prion infection (White et al., 2003). 

Similar results were obtained whether the antibodies had initially been raised to 

recombinant PrP in a  (analogous to PrPc) or (3 (analogous to PrPSc) conformation. 

Therapy targeting the initial inoculum would likely have to be administered within the 

first few days following exposure. However, in this study treatment was begun 7 or 

30 days following prion infection, suggesting an effect on host-encoded PrPc or PrPSc. 

A more modest effect was achieved by low dose antibody administered immediately 

after infection and therefore primarily directed against the initial inoculum 

(Sigurdsson et al., 2003). However, in all these studies the antibodies had no effect 

against prions inoculated directly into the brain or after onset of clinical signs or the 

results of administering the antibodies under these conditions were not reported.

Although the exact mechanism o f action is unknown, these observations suggest that 

anti-PrP antibodies ligate PrPc and block its conversion to PrP^, either by steric 

hindrance of refolding or by blocking a binding site for incoming PrP or a necessary 

co-factor. Alternatively anti-PrP may bind PrPSc, unveiling it as foreign and enabling 

clearance mechanisms (such as uptake by dendritic cells able to degrade PrP^) via its 

Fc receptor. Clearly, peripherally administered antibodies cannot penetrate the CNS 

or the necessary clearance mechanisms do not operate in this immunologically 

privileged site. However it is not clear whether achieving CNS penetration by 

antibodies will be beneficial. Intracerebral administration of anti-PrP mAbs 

recognising epitope 95-105 to mice resulted in acute neurodegeneration (Solforosi et 

al., 2004). Interestingly, this was not observed with mAbs against epitope 133-157. 

Because this neurotoxic effect requires crosslinking of PrP by bivalent IgG, this could 

be overcome by use of small monovalent miniantibodies (Donofrio et al., 2005).
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1.3.4 Active immunisation

The principal obstacle to establishing durable protective immune responses to prions 

is tolerance to PrP. Unlike neural antigens to which tolerance can be spontaneously 

or experimentally broken such as myelin basic protein (MBP) and P-amyloid (A(3), 

PrPc is expressed in the thymus and throughout the lymphoid system. The most 

likely consequence of this pattern of expression is deletion of auto-PrP reactive T cell 

clones in the thymus by negative selection. However, peripheral mechanisms of 

control are also likely to be involved as there is not a clear relationship between 

thymic PrPc expression level and tolerance to PrP (Polymenidou et al., 2004) and T 

cell tolerance to PrP can be broken in wild-type mice with appropriate adjuvants. 

Intriguingly, no such mechanisms have been demonstrated; in particular the deletion 

of regulatory T cells as an adjunctive strategy to vaccination has not been reported. 

The lack of any known disease caused by anti-PrP autoimmunity and the absence o f a 

classical immune response to the presence of PrPSc in the periphery or the CNS 

further suggests that tolerance to PrP is extensive.

Generating anti-PrP antibodies and T cell responses (Bainbridge and Walker, 

2003;Gregoire et al., 2004;Khalili-Shirazi et al., 2005) in PrP' ' mice is relatively 

straightforward, although caution is required in predicting immunodominant epitopes 

from PrP' ' systems as PrP processing and presentation and the responding T and B 

cell repertoire will differ when PrP is a ubiquitously expressed self, as opposed to 

entirely foreign, antigen (Gregoire et al., 2005). Unsurprisingly, breaking tolerance in 

wild-type models has proved more difficult. PrP is highly conserved between 

different mammals, although occasional non-conserved sequence may be recognised 

as non-self and trigger a Thl response (Stoltze et al., 2003).
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However, protection against established prion infection, even if confined to the 

periphery, will require breaking of tolerance to self-PrP. The standard test of efficacy 

in anti-prion therapeutics in rodent models is incubation time following peripheral or 

intracerebral scrapie inoculation. A key factor limiting the applicability of such 

studies is whether vaccine delivery begins before or after exposure to prions. Most 

studies have examined the effects o f vaccination prior to peripheral transmission. 

Generally, the degree of protection against experimental scrapie afforded by 

immunisation protocols has been disappointing. Sigurdsson and colleagues achieved 

a delay in incubation time o f 16 days in CD-1 mice when immunised with 

recombinant murine PrP prior to peripheral scrapie infection and 12 days when 

immunised 24 hours after scrapie inoculation. However, there was a correlation 

between anti-PrP antibody titre and protection (Sigurdsson et al., 2002). A similar 

degree of protection was provided by immunisation with the neurotoxic PrP peptide 

105-125 prior to oral infection (Schwarz et al., 2003). Vaccination of hamsters with 

PrP peptides 119-146 or 142-179 ameliorated intracerebral pathology but did not 

significantly extend incubation time (Magri et al., 2005). In this study peptide 105- 

128 was not as effective as the two more C-terminal fragments.

PrP sequence peptides selected principally on the basis o f putative MHC binding 

motifs elicited strong T cell and IgG responses in mice and rats after immunisation in 

CFA (Souan et al., 2001b;Souan et al., 2001a). Further, vaccination with these 

peptides led to a reduction in PrPSc level in prion-infected tumours grafted onto the 

backs of mice. However, the generalisability of this finding is limited as presumably 

T cell and antibody entry into these lesions is unimpeded by a blood brain barrier. 

Indeed, when C57BL/6 mice were inoculated with scrapie following immunisation 

with these peptides, there was no protective response additional to the administration
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of CFA alone (Tal et al., 2003). Immunisation with CFA alone extended incubation 

time after intraperitoneal and intracerebral infection by 19 and 24 days respectively. 

Why CFA should provide modest protection following peripheral or central prion 

inoculation is unknown.

Recently, DNA immunisation with a PrP expressing construct fused to a lysosome 

targeting signal was shown to induce anti-PrP antibody and CD4 and CD8 responses 

in wild-type mice, although the immunogenic epitopes within the vaccine (which 

consisted of the entire murine Pm p  ORF) were not elucidated (Femandez-Borges et 

al., 2006). The vaccine delayed onset of clinical scrapie following i/c inoculation 

from 57 to 138 dpi. However, whereas control mice remained alive for 10 further 

weeks before succumbing to terminal scrapie, vaccinated animals had an accelerated 

course progressing from early scrapie to terminal disease within 2 weeks. Thus, the 

protective effect of vaccination may not have been an immune mediated reduction in 

PrPSc or infectivity but an alteration in the ability of the brain to tolerate prion 

infection.

Because many prion diseases are spread via the oral route, mucosal vaccination may 

be an effective preventive strategy. Nasal vaccination with recombinant mouse PrP 

conferred only marginal protection against oral prion infection in BALB/c mice (Bade 

et al., 2006). A more promising result was obtained by oral vaccination with 

Salmonella expressing a PrP construct, but nevertheless only 30% of mice were 

protected against prion infection via oral gavage (Goni et al., 2005). This result may 

relate to genetic differences between outbred CD-I mice. Alternatively, since 

protection correlated with fecal anti-PrP IgA titre it is possible that vaccine delivery 

or in vivo expression of the PrP construct was sub-optimal in most animals.
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Why vaccination strategies have thus far failed to provide robust protection in 

standard scrapie challenge models is unclear. A drawback of antibodies raised against 

recombinant PrP (rec-PrP) or synthetic PrP peptides is that they may not recognise 

native cell-surface PrPc (Polymenidou et al., 2004;Gregoire et al., 2005;Heppner and 

Aguzzi, 2004). It may be that epitopes present in rec-PrP are obscured when PrPc 

adopts its native conformation. Alternatively, critical structural epitopes for 

protection may not be present in recombinant PrP, or production of antibodies against 

protective epitopes may require T cell help that is absent under ordinary 

circumstances in PrP+/+ animals. Indeed, in PrP'7' mice, sera raised against PrP 

peptides 23-52, 98-127 and 143-172 recognised cell surface PrP, whereas antibodies 

generated in an identical manner in wild type animals exhibited no native PrPc 

binding (Gregoire et al., 2005). Furthermore, the antibody response in PrP+/+ mice 

was dominated by the IgG2b sub-class, with relatively little IgGl production 

compared to PrP'7' animals (Gregoire et al., 2005).

In the study by Schwarz and colleagues, modest protection was provided by 

immunisation with PrP 105-125, whereas antibodies raised to PrP 159-211 by 

immunisation with recombinant PrP 90-230 were ineffectual. Vaccination with PrP 

31-50 and 211-230 was ineffective against scrapie (Tal et al., 2003), despite these 

peptides having produced antibody responses in a previous study (Souan et al.,

2001b). In contrast anti-PrP mAb 6H4, shown to be effective when expressed 

transgenically, recognises the epitope 144-152, and ICSM18 and ICSM35, raised to 

recombinant PrP in PrP'7' mice and which block PrP80 replication after passive 

transfer, recognise epitopes 143-153 and 93-105 respectively. Fab D18, the most 

effective antibody at clearing PrPSc from infected N2a cells in the study by Peretz and 

colleagues, binds PrP in the region 132-156. Comparing the effects of antibodies with
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different epitopes is difficult as absolute quantitation of serum anti-PrP levels is not 

provided in the papers by Schwarz and Tal. Thus any lack of efficacy may simply be 

due to a poor B cell response. However, it may be that antibody-based therapeutics 

will only work in vivo if particular PrP epitopes are targeted.

At present it is not clear which part o f the PrP sequence provides the most 

immunogenic T cell epitope. In C57BL/6 mice, immunisation with peptides spanning 

residues 158-172 with CpG induced IFN-y producing responders as effectively as in 

P rP '' animals, whereas other peptides were ineffectual (Gregoire et al., 2005). This 

epitope can also induce IL-4 production, albeit less efficiently than IFN-y, in wild 

type mice after immunisation with CpG (Rosset et al., 2004). The cytokine profiles 

induced by stimulation of T cells from wild type animals following immunisation 

with PrP have not otherwise been addressed.

In the studies by Souan and colleagues robust ex vivo T cell responses were produced 

by immunisation with peptides 131-150 and 211-230 in NOD (H2g7) and C57BL/6 

(H2b) mice and 211-230 in A/J (H2a) mice, whereas PrP 182-202 and 211-230 

produced T cell responses in Lewis rats (Souan et al., 2001b;Souan et al., 2001a). 

Interestingly, a rat T cell line responsive to 182-202 was found to be predominantly 

CD4+ with 16% expressing V pl6. However, a minority of animals immunised with 

PrP 182-202 developed hair loss and severe skin inflammation 8 to 12 months post­

immunisation (Souan et al., 2001a).

To facilitate non-autoinflammatory T cell help and generate appropriate antibodies, 

the optimal immunogen may need to contain two (or more) epitopes and adjuvants to 

“fine tune” the T and B cell responses separately. However, given the diversity of 

MHC and TCR repertoire between species it is likely that immunodominant T cell
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epitopes will differ between humans and rodents. Attempts at protection through 

adoptive transfer o f anti-PrP T cells, which would be most easily generated in PrP A 

animals, have not been reported.

Lack of efficacy due to low anti-PrP titre, poor binding to native PrPc or irrelevant 

specificity may be partially overcome through novel vaccination strategies such as 

using PrP-displaying retroviruses, although this technique did not produce an efficient 

anti-PrP IgM to IgG switch in PrP+/+ mice (Nikles et al., 2005). A variety of 

adjuvants have also been employed (reviewed in Heppner and Aguzzi, 2004). Anti- 

PrP antibodies have also been generated by immunising wild-type mice with novel 

vaccines consisting of PrP cross-linked to a heat shock protein (Koller et al., 2002), 

two identical 13-mer PrP sequence peptides complexed with tetanus toxoid fragments 

(Bainbridge et al., 2004) and a complex o f 8 identical 10-mer peptides from human 

PrP sequence linked by series of branching lysine residues (Arbel et al., 2003). 

However, none of these protocols has yet been shown to provide protection in vivo.

An alternative strategy is to use PrP80 or recombinant PrP refolded in vitro into an 

amyloidogenic conformation (p-recPrP) as an immunogen. This does not circumvent 

tolerance mediated by primary PrP sequence, but may provoke a direct B cell 

response to a conformational epitope not present in PrPc or recPrP in its native 

conformation (a-recPrP). When used as an immunogen in PrP ; mice (3-recPrP 

produces a Thl-skewed T cell response and antibodies predominantly of the IgG2b 

subtype, whereas a-recPrP elicits a Th2 response with production of IgG 1 antibodies 

(Khalili-Shirazi et al., 2005). Studies on the efficacy of vaccination with recPrP in a 

or (3 conformation are ongoing in our laboratory.
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Using CpG oligodeoxynucleotides rather than Freund’s as an adjuvant may also 

enhance Thl responses to PrP peptides in PrP+/+ animals (Rosset et al., 2004). 

However, it remains unclear whether a T cell response is a pre-requisite to protection 

against prions and if so, whether a Thl or Th2 skewed response is preferable. As in 

the recent A(3 vaccine trial, inducing a T cell response may cause catastrophic 

autoimmune side effects (see below) and it is proposed that a Th2 dominant response 

is less likely to produce a T cell driven inflammatory autoimmune syndrome (Gelinas 

et al., 2004).

Although the exact mechanism by which anti-A(3 immunotherapy clears amyloid 

plaques in AD is unclear, there appears to be a consensus that anti-prion 

immunotherapy will require induction of anti-PrP antibodies, irrespective of the 

underlying T cell response. Indeed, some immunisation protocols may be able to 

induce anti-PrP antibodies without triggering a T cell response (Rosset et al., 2004). 

However, it is not yet clear which IgG subclass offers most effective protection, 

although in the study by White et al, anti-PrP mAbs of the IgGl or IgG2b type had 

similar efficacy when administered passively (White et al., 2003).

1.3.5 Strain interference

P-recPrP represents a more tractable immunogen than PrP80, as the latter carries risks 

of transmitting prion disease and has not yet been purified to the exclusion of other 

proteins. Nonetheless, there has been interest in using prion strains of low 

pathogenicity as prophylactic agents against more virulent agents. The intriguing but 

as yet unexplained phenomenon of “strain interference” involves establishing 

infection with a prion strain with a prolonged incubation time that then mediates 

protection against subsequent infection by a more pathogenic strain (Dickinson et al.,
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1972;Dickenson et al., 1975;Manuelidis, 1998;Bartz et al., 2004). If the incubation 

time of the initial “slow” strain exceeds the natural lifespan of the animal this could 

provide complete protection against superinfection by more pathogenic “fast” strains 

(Manuelidis and Lu, 2003). It is not known whether this effect is due to priming of 

the immune system, appropriation o f all available PrPc (or some other necessary co­

factor) by the slow strain or direct interference of one strain by the other. Attempts to 

resolve this using immunodeficient mice have so far been inconclusive (Manuelidis 

and Lu, 2003). O f note, the protective effect is enhanced if administration of the slow 

strain precedes that of the fast by several weeks (Dickinson et al., 1972). The recent 

recapitulation of this phenomenon in cultured GT1 cells (Nishida et al., 2005) 

suggests that protection is mediated within individual infected cells. Whatever the 

underlying mechanism, safety considerations mean that this phenomenon does not 

currently represent a realistic preventive or therapeutic strategy in humans. Indeed, 

concerns remain that recombinant PrP may under some circumstances be able to 

initiate prion disease (Legname et al., 2004), possibly limiting its use as a vaccine. 

Nevertheless, an understanding o f the molecular events underlying strain interference 

could assist development o f novel anti-prion therapeutics.

1.3.6 Potential hazards of breaking tolerance to PrP

The dangers, if  any, of breaking tolerance to PrP remain unclear. The only adverse 

side effect of anti-PrP vaccination so far reported is dermatitis with mononuclear 

invasion and destruction of hair follicles in rats several months after immunisation 

with PrP 182-202 (Souan et al., 2001a). PrPc is expressed in skin (Lemaire-Vieille et 

al., 2000;Ford et al., 2002b) but whether this reaction was the result of specific 

breakdown of tolerance to dermal PrP is unclear. As demonstrated in the A(3 vaccine 

trial (see below), breaking tolerance to neural proteins implicated in
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neurodegeneration is clearly not without risk. Rats immunised with (3-synuclein 

developed autoimmune encephalomyelitis and uveitis due to activation of auto­

reactive T cell clones (Mor et al., 2003) and EAE was induced in C57BL/6 mice by 

vaccination with Ap (Furlan et al., 2003). In contrast, rodents have been immunised 

with a-synuclein and other neural antigens without obvious side effects (Masliah et 

al., 2005;Mor and Cohen, 2006). The expression pattern o f PrP is much wider than 

these proteins, suggesting that autoimmune side effects will not be restricted to the 

CNS but could involve a systemic inflammatory syndrome.

However, if properly regulated T cell responses in neurodegenerative diseases may be 

beneficial rather than destructive. According to the theory of “protective 

autoimmunity” (Schwartz and Kipnis, 2005), infiltration of the CNS by T cells primed 

to recognise myelin antigens can be beneficial, through mechanisms such as cytokine 

and neurotrophin release, microglial activation and clearance of amyloid. This has 

been exploited in models of Alzheimer (Frenkel et al., 2005) and Parkinson (Benner 

et al., 2004) disease and spinal cord (Hauben et al., 2000), optic nerve (Moalem et al.,

1999), motor nerve (Angelov et al., 2003) and head injury (Kipnis et al., 2003). 

However, there are no published data on such techniques in prion disease.

1.3.7 Immunotherapy in humans -  lessons from Alzheimer 

Disease

The degree to which humans are tolerant to PrP is unknown. It seems likely that anti- 

PrP T cells will undergo deletion due to PrP expression in the thymus and repeated 

exposure to animal PrP in food may further enhance tolerance. However, the 

demonstration of T cell responses to the predominantly neuronal protein APP and its 

amyloidogenic Ap 1-40 or 1-42 peptide fragments (Trieb et al., 1996;Giubilei et al.,
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2003;Monsonego et al., 2003;Baril et al., 2004), suggests that tolerance to PrP may 

also not be complete, although it is likely to be tighter. The importance of defining T 

cell epitopes in self proteins that are used as vaccines was dramatically illustrated 

when 6% of AD patients in a clinical trial o f Ap vaccination developed 

meningoencephalitis presumed to be driven by auto-aggressive T cell invasion of the 

CNS (Orgogozo et al., 2003;Nicoll et al., 2003). The cause of this side effect is not 

entirely clear, and may relate to a Thl-dominant response driven by the adjuvant QS- 

21 (Gandy and Walker, 2004;Cribbs et al., 2003). However, an option for future 

vaccine development in AD may be to focus on the N-terminal fragment of Ap that 

contains the B cell epitope but from which the immunodominant C-terminal T cell 

epitope has been deleted (Schenk, 2002).

The effects of generating an anti-PrP T cell response in humans are unknown; this 

may be necessary to elicit a protective response or conversely produce catastrophic 

autoimmune side effects. Whichever is the case, defining the immunodominant 

epitopes, if any, of PrP in humans, and characterising the immune response to them, 

must be a priority.

1.3.8 Summary

Despite the clear success of passive immunisation, attempts at generating active 

immunity have been of limited efficacy and have concentrated on pre- rather than 

post-exposure prophylaxis. Further, even passive immunotherapy has been effective 

only in abrogating prion infection before CNS penetration has occurred, limiting its 

applicability for symptomatic disease. This reflects both tight tolerance to PrP and the 

inability of immune effector cells and components to penetrate the CNS. Future work 

will need to focus on the mechanisms by which tolerance to PrP is maintained and the
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development of strategies to break this without precipitating adverse autoimmunity. 

Delivery of safe anti-prion agents, be these antibodies, T cells or drugs, to the CNS is 

an absolute priority for drug development in this field.

1.4 Function of PrPc in the immune system

1.4.1 Structure and function of PrP

Prion protein is encoded by a single gene composed of two exons (three in mice), the 

entire open reading frame being contained within exon 2. The prion gene (PRNP in 

human, Pm p  in mice) is found on human chromosome 20, with the synteneic region 

on mouse chromosome 4.

Newly synthesised PrP is trafficked to the ER where the N-terminal signal peptide 

(residues 1-22) is cleaved. Further post-translational modifications include 

attachment of the GPI-anchor after cleavage of the C-terminal signal peptide, 

formation of a disulphide bond linking residue Cys 179 to Cys 214 and addition of 

oligosaccharide chains at Asn 180 and/or Asn 197 (Ermonval et al., 2003). The 

number of sites at which these sugar groups are added determines whether the final 

PrP molecule is un-, mono- or diglycosylated; all three glycoforms are present albeit 

at variable ratios in tissues where PrP is expressed. PrP then enters the Golgi 

apparatus where modifications to the carbohydrate moieties are made. It is then 

mostly trafficked to the cell surface where its GPI anchor allows it preferentially to 

enter lipid raft domains.

The conformation of the cellular isoform was first established by NMR measurements 

made on the recombinant mouse protein (Riek et al., 1996). Since then NMR 

measurements on recombinant proteins from several species (James et al., 1997;Zahn
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et al., 2000;Calzolai et al., 2004;Lysek et al., 2005;Calzolai et al., 2005;Gossert et al.,

2005) have shown that they have essentially the same conformation. The mature PrPc 

species consists of an N-terminal region of about 100 amino acids which is 

unstructured in the isolated molecule and a C-terminal segment, also around 100 

amino acids in length.

Within the unstructured region there is a segment of five repeats of an eight-amino 

acid sequence (the octapeptide-repeat region) which has a tight binding site for a 

single Cu2+ ion with a dissociation constant (Kd) of 10'14M (Jackson et al., 2001b). A 

second tight copper site (Kd = 10‘13M) is present downstream of the octapeptide- 

repeat region but before the structured C-domain (Jackson et al., 2001b). The 

remaining -100 amino acids at the C-terminus is folded into a series of three a - 

helices and a small two-strand P-sheet and is stabilised by the disulphide bond (Riek 

et al., 1996).

Much effort has been devoted to identifying potential binding partners and ligands for 

PrPc. A variety of techniques have been employed, including yeast-2-hybrid systems 

(Spielhaupter and Schatzl, 2001) and proteomics-based approaches (Strom et al.,

2006). Thus far putative PrPc ligands include Synapsin lb, grb2, Pintl, Caveolinl, 

CK2, STI1, Bcl-2, Laminin and Laminin receptor, glycosaminoglycans, N-CAM, 

GFAP, Bip, Hsp60, Nrf2, aplpl and nucleic acids (reviewed in Lee et al., 2003).

From this list it is clear that either the principal receptor for PrPc remains obscure or 

PrP is a nodal point in a variety of cellular pathways with multiple binding partners 

and functions.

PrPc is highly expressed in the CNS, and as this is the major site of prion pathology 

most interest has focussed on defining the role of PrPc in neurons. Strangely for a
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highly conserved protein, PrPc appears to be functionally redundant as P rP '' mice 

have a grossly normal neurological phenotype (Bueler et al., 1992;Prusiner et al., 

1993;Manson et al., 1994a), even when neuronal PrPc is knocked out post-natally 

(Mallucci et al., 2002). In neurons, PrP is clustered at the synapse (Sales et al., 

1998;Herms et al., 1999), and this has led to speculation that it may play a role in 

neural transmission. Indeed, P rP '' mice have subtle abnormalities in synaptic 

transmission (Collinge et al., 1994;Colling et al., 1996;Mallucci et al., 2002), 

hippocampal morphology (Colling et al., 1997), circadian rhythms (Tobler et al.,

1996), cognition (Coitinho et al., 2003;Criado et al., 2005) and seizure threshold 

(Walz et al., 1999). Other postulated neuronal roles for PrPc include copper-binding 

(Brown et al., 1997;Jackson et al., 2001b), as an anti- (Kuwahara et al., 1999;Bounhar 

et al., 2001;Chiarini et al., 2002) and conversely, pro-apoptotic (Paitel et al., 2002) 

protein, as a signalling molecule (Mouillet-Richard et al., 2000;Spielhaupter and 

Schatzl, 2001) and in supporting neuronal morphology and adhesion (Mange et al., 

2002;Santuccione et al., 2005).

An important consideration is whether PrPc has a single function in all tissues in 

which it is expressed, or whether it has multiple tissue-specific roles. If the major role 

of PrPc in neurons relates to neurotransmission, the protein must have additional 

functions as PrPc is expressed in many non-excitable cells, including glia (Moser et 

al., 1995;Brown et al., 1998), and in numerous lymphoid and non-lymphoid organs 

(Bendheim et al., 1992;Ford et al., 2002b). Functional heterogeneity in PrPc could be 

mediated by different glycosylation patterns between tissues. For example, in human 

PBMCs the unglycosylated form is underrepresented (Li et al., 2001).
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1.4.2 Expression of PrPc during lymphoid and myeloid ontogeny
/-•

Although the precise function o f PrP in the immune system remains obscure it is 

clear that PrP expression during lymphoid and myeloid differentiation is regulated. In 

mice, fetal thymocyte PrPc expression is high at day 15 of gestation, and declines 

thereafter (Kubosaki et al., 2001). However, post-natal PrP expression remains higher 

on thymocytes, particularly CD4‘ CD8' cells than on mature murine splenocytes 

(Kubosaki et al., 2001 ;Liu et al., 2001). Interestingly, mice with 50-fold over- 

expression of lymphoid PrP undergo premature thymic atrophy in which thymocyte 

maturation appears arrested at the CD4‘ CD8' stage and y8 cells are overrepresented 

(Jouvin-Marche et al., 2006). However, secondary lymphoid organs in these mice do 

not seem to be affected.

PrP expression has been detected in bone marrow haematopoietic stem cells and may 

define a particular population of murine haematopoietic stem cells with long term 

repopulation potential (Zhang et al., 2006). Human CD34+ stem cells in bone marrow 

express PrP, but this is downregulated when these cells undergo granulocyte 

differentiation as monitored by acquisition of CD 15 (Dodelet and Cashman, 1998). 

Similarly, CD43+ Gr-1+ granulocyte precursors in murine bone marrow express PrPc, 

unlike mature neutrophils (Liu et al., 2001).

In contrast, myeloid differentiation leads to upregulation of PrP. Maturation of 

murine CD14+ monocytes by culture with IFN-y leads to upregulation of PrPc within 

24 hours (Diirig et al., 2000) and maturation of human monocytes to DCs upregulates 

PrP (Burthem et al., 2001).

Studies in mice show a trend towards downregulation of PrP with lymphoid 

maturation, and murine T lymphocyte expression during quiescence is low (Liu et al.,
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2001). PMA stimulation of murine bone marrow cells to induce B cell maturation 

leads to a reduction in surface PrPc expression (Liu et al., 2001), although suppression 

of PrP in lymphoid maturation is usually less than on granulocyte differentiation. 

However, in humans and sheep, which unlike mice are susceptible to naturally 

occurring prion diseases, PrP expression on mature blood and lymphoid cells remains 

high although unlike those of humans, ovine platelets do not express PrP (Herrmann 

et al., 2001;Halliday et al., 2005). Indeed, in humans lymphocytes from umbilical 

cord blood express lower levels of PrPc than those from adults (Li et al., 2001) with 

levels increasing further with ageing (Politopoulou et al., 2000).

1.4.3 PrPc expression in mature immune cells

PrPc has been detected on T and B lymphocytes, NK cells, platelets, monocytes, 

dendritic cells and follicular dendritic cells (Burthem et al., 2001;Li et al., 

2001;Cashman et al., 1990;Barclay etal., 1999;Dodelet and Cashman, 1998;Antoine 

et al., 2000;Durig et al., 2000;Holada and Vostal, 2000;Politopoulou et al., 

2000;Herrmann et al., 2001;Brown et al., 1999a;Thielen et al., 2001). As with mice, 

PrPc expression on human erythrocytes and granulocytes is absent or low in 

comparison to myeloid and lymphoid cells (Cashman et al., 1990;Barclay et al., 

1999;Dodelet and Cashman, 1998;Antoine et al., 2000;Holada and Vostal, 

2000;Herrmann et al., 2001).

PrP expression increases during human NK cell differentiation, with particularly 

high levels on CD56+ CD3+ NKT cells (Diirig et al., 2000). PrPc expression may be 

somewhat higher in peripheral blood T cells than in B lymphocytes, while CD8+ cells 

express slightly more PrPc than CD4+ cells (Diirig et al., 2000;Politopoulou et al.,
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2000). It has also been reported that PrPc expression is higher in CD45RO+ memory 

compared to CD45RA+ naive T lymphocytes (Li et al., 2001).

In mice, mitotic lymphocytes and those circulating to non-lymphoid organs have 

higher PrP expression than resting splenocytes (Ford et al., 2002b). A study of 

PBMCs from sheep showed that PrPc expression is higher in CD21+ cells, proposed 

to be B cells that circulate within secondary lymphoid tissues, than in other B 

lymphocytes (Halliday et al., 2005). Conversely, human tonsillar T and B 

lymphocytes appear to have lower PrPc expression than peripheral blood cells, an 

effect that is not due to increased intracellular sequestration of PrPc (Antoine et al., 

2000).

Gene expression microarrays have revealed murine Prnp also to be upregulated in 

certain types of regulatory T cell (Huehn et al., 2004), via a Stat 6-dependent 

mechanism during IL-4 driven ThO to Th2 differentiation (Chen et al., 2003), and in 

CD8+ memory T cells (Goldrath et al., 2004). Hence, PrPc may be more important in 

certain types of functionally differentiated lymphocyte with particular cytokine 

profiles and homing properties.

1.4.4 PrP expression during T cell activation

PrPc is upregulated within a few hours in T cells following mitogenic activation with 

Con A, PHA or anti-CD3 antibodies (Cashman et al., 1990;Mabbott et al., 1997;Li et 

al., 2001;Kubosaki et al., 2003). This effect is not modulated by extracellular copper 

levels (Kubosaki et al., 2003). Cashman and colleagues detected a rise in surface PrP 

by FACS after 6 hours culture of human PBMCs with Con A. PrP levels plateaued at 

a 3.5-fold increase after 3 days and remained constant for 7 days of culture. Similar 

results were observed in murine splenocytes activated with Con A (Mabbott et al.,
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1997). Interestingly, upregulation of PrP on human tonsillar and peripheral blood 

lymphocytes does not occur on activation with PMA/Ionomycin, suggesting that 

signalling via elements of the TCR may be required to induce changes in PrP 

transcription (Antoine et al., 2000). In contrast to the relative ease of PrP 

upregulation in T cells, treatment with LPS does not increase PrPc expression on B 

cells (Kubosaki et al., 2003). Thus although the functional significance of increased 

PrP expression in activated T cells remains unclear, PrP is not a universal lymphoid 

activation antigen.

Intracellular pathways linking T cell activation with increased PRNP mRNA have not 

been characterised. Regulation o f PRNP expression in vivo is poorly understood.

The PRNP promoter does not contain a TATA box, but a GC-rich region with SP1 

transcription factor binding sites reminiscent o f housekeeping genes is present (Basler 

et al., 1986;Bredesen et al., 1989;Fischer et al., 1996). Recently, sequencing and in 

silico analysis has identified putative binding sites for transcription factors NF-IL6, 

MyoD, MZF-1, MEF2, O ctl, M yTl and NFAT (Mahal et al., 2001;Premzl et al., 

2005). Heat shock elements identified in the PRNP promoter (Mahal et al.,

2001 ;Shyu et al., 2002) have been shown to interact with HSTF-1 and heat shock 

increases Pm p  mRNA and protein levels in neurons (Shyu et al., 2002). Mechanisms 

that constitutively degrade PRNP mRNA, and which may be inhibited by cell 

activation have not been elucidated.

1.4.5 Lymphoid and myeloid PrP expression and prion disease 

pathogenesis

The inducibility of PrPc expression in lymphocytes and myeloid cells is of importance 

to the pathogenesis of orally transmitted prion diseases such as vCJD, as these cells
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are present at possible sites of entry, such as tonsil and gut-associated lymphoid 

tissue. Scrapie resistant sheep have been reported to have fewer PrP expressing 

microglia and CD 14 monocytes in peripheral blood (Herrmann et al., 2006). Further, 

PrPc expression in PBMCs may be higher in scrapie susceptible sheep than in those 

with resistant genotypes (Halliday et al., 2005), although this is not a universal finding 

(Thackray et al., 2004b). In rodent models, infectivity has been recovered from 

splenic T and B cells and DCs, although not consistently from circulating 

lymphocytes (Kuroda et al., 1983;Raeber et al., 1999a;Aucouturier et al.,

2001 ;Aucouturier and Camaud, 2002). An activated lymphocyte, DC or monocyte 

carrying increased surface PrPc as a result of concomitant infection or inflammation 

might be more readily infected than a PrP low naive cell. Adenoviral infection and 

mitogens have been demonstrated to reduce incubation time in mice experimentally 

inoculated with scrapie, although the mechanisms underlying this effect have not been 

fully elucidated (Dickinson et al., 1978;Ehresmann and Hogan, 1986).

One possible clue is provided by inoculation of mice with immune complexes or 

vesicular stomatitis virus, which increases PrP immunoreactivity in germinal centres 

of the spleen, ascribed to increased surface PrPc on FDCs (Lotscher et al., 2003). 

However, total spleen Pm p  mRNA was not increased when measured by real-time 

RT-PCR. Post-transcriptional processing of PrP in lymphoid cells is not well 

understood and it is unclear what mechanisms could account for a significant increase 

in surface PrP without de novo transcription. Indeed, near-complete inhibition o f PrP 

upregulation on cell activation in the presence of cycloheximide has been observed 

(Diirig et al., 2000). Platelets can increase surface PrPc expression ~ 2.5-fold within 2 

hours of activation (Holada et al., 1998), probably by redistributing PrPc from alpha- 

granules to the cell membrane (Starke et al., 2005). However, surface PrPc levels
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decline thereafter (Holada et al., 1998), presumably because the short half life of 

surface PrP means that it is removed before de novo translation can compensate. 

Moreover, such rapid “degranulation” mechanisms have not been demonstrated for 

PrPc in lymphoid cells and are unlikely to account for the changes described by 

Lotscher and colleagues, which were observed some days following viral or immune 

complex inoculation.

Discrepancies between Pm p  mRNA and protein levels have previously been noted 

(Ford et al., 2002a), suggesting that post-transcriptional or translational processing of 

PrPc may differ between different cell populations and in response to as yet 

unidentified signals. However, in the experiment by Lotscher and colleagues 

although germinal centre PrPc staining increased by approximately 6 -fold, total 

spleen PrPc was only 2-fold increased. Indeed, it seems most likely that immune 

recognition of conventional pathogens will activate host cells to upregulate PrPc at the 

transcriptional level in the same manner as crude mitogens. Nevertheless, the 

possibility remains that viruses and other immune stimuli can induce changes to post- 

transcriptional processing of PrP mRNA or protein in lymphoid cells that significantly 

alter surface PrPc availability.

Another possible explanation for the increased PrP in this model is that the effect of 

viruses or immune complexes is to activate macrophage or dendritic cell migration to 

the spleen resulting in increased “delivery” of PrP (and presumably other host 

proteins) to FDCs. Such a phenomenon may explain the decrease in incubation time 

produced by inoculating hamsters with vaccinia virus 2  hours prior to i/p scrapie 

infection (Marsh, 1981). This was associated with increased infectivity in splenic 

macrophages, which following vaccinia-induced activation may have collected the
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prion inoculum and transported it to the spleen with greater efficiency than in non­

vaccinia treated animals (Marsh, 1981).

Whatever the explanation for the increased germinal centre PrPc described by 

Lotscher, this phenomenon was dependent on C lq  expression. FDCs may use surface 

C lq  to assist in trapping of immune complexes. Therefore C lq  may be required for 

downstream activation induced effects on PrP expression. However, since both 

macrophages and FDCs can produce C lq  (Schwaeble et al., 1995) this does not 

conclusively identify the ultimate source of the increased PrPc. Nonetheless, a 

possible sequence of events involves FDCs trapping prions via a complement- 

dependent mechanism and then being permissive to PrPSc accumulation due to their 

own PrPc expression. Any condition that upregulates the rate limiting factor in this 

process is likely to increase susceptibility to prion infection.

1.4.6 Localisation of PrP in T cells

The localisation of PrPc in lipid rafts in neurons (Vey et al., 1996;Naslavsky et al., 

1997;Madore et al., 1999) has attracted considerable interest as a means of identifying 

functions and binding partners o f PrP. Available evidence suggests that the 

microdomain environment in which PrPc is found in lymphocytes is similar to that in 

neurons. Fluorescence microscopy and gold immunolabelling reveals that PrP is 

present on the cell surface of lymphocytes in clusters (Mattei et al., 2004;Stuermer et 

al., 2004). When T cell lysates are subjected to sucrose density gradient 

centrifugation, PrP is largely found in the Triton insoluble fraction (Mattei et al., 

2002;Stuermer et al., 2004). In human CEM T cells PrPc co-localises and co- 

immunoprecipitates with ganglioside GM3 (Mattei et al., 2002), and to a lesser extent
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GM1 (Hugel et al., 2004) and with Fyn, but not Src (Mattei et al., 2004). In Jurkat 

cells PrPc co-immunoprecipates with Reggie-1, Fyn and Lck (Stuermer et al., 2004).

Following activation with anti-CD3 and anti-CD28 PrPc co-immunoprecipitates with 

Zap70 (Mattei et al., 2004). In Jurkat lymphocytes PrPc has been seen to co-localise 

with CD3 in caps induced by hypothermia (Wurm et al., 2004). However, although 

PrP accumulates at sites of T cell-DC contact during MHC-peptide stimulation, it 

does not co-localise with CD3, LFA-1, CD43, LAT or Thy-1 (Ballerini et al., 2006). 

Thus, these observations might reflect a non-specific clustering effect of activation on 

lipid raft components rather than a specific role for PrPc within the immune synapse.

In neurons, PrPc is endocytosed from the cell surface within minutes, and enters early 

endosomes, from whence a large proportion is quickly recycled to the cell surface 

(Sunyach et al., 2003). Endocytosis and recycling of PrPc appears to be a rapid 

process in which PrP molecules cycle through the cell with a transit time of ~60 

minutes. A fraction of the endocytosed PrP is transported to other organelles, such 

as late endosomes, and degraded (Peters et al., 2003). Indeed, during each passage, 

up to 5% of the internalised PrPc undergoes proteolytic cleavage near residue 110 

(Harris et al., 1993). Pulse chase labelling experiments have shown that the half life 

of PrPc in murine splenocytes is similar to that in neurons; about 1.5-2 hours (Parizek 

et al., 2 0 0 1 ).

These observations raise the possibility that PrP may exert some intracellular 

function through being constitutively endocytosed (reviewed in Harris, 2003;Prado et 

al., 2004;Campana et al., 2005). Interestingly, internalisation of a recombinant PrP- 

Fc fusion protein by monocytes (via a PrP N-terminal dependent pathway), leads to 

increased tyrosine phosphorylation o f Syk and Pyk2 and activation of ERK1 and 2
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and Akt kinase (Krebs et al., 2005). Incubation of T cells for >10 minutes with anti- 

PrP mAbs results in internalisation of a large proportion of surface PrPc (together 

with reggie-1 and reggie-2) into limp-2 positive endosomes (Stuermer et al., 2004). 

However, to what extent and via what mechanism constitutive endocytosis of PrPc 

occurs in lymphocytes is not clear. Caveolae are not present in lymphocytes, 

implying that PrP internalisation would require clathrin-mediated endocytosis or 

other clathrin-independent mechanisms. Being GPI-anchored, PrPc would likely have 

to associate with a transmembrane protein in order to interact with adaptor proteins 

required for clathrin-mediated endocytosis. Presumably, rapid internalisation of PrPc 

would affect the type of signal that it could transduce and its ability to contribute to 

protein-protein and cell-cell interactions at the cell surface.

A further mechanism of PrPc trafficking that may apply in lymphocytes is release into 

the extracellular milieu or onto other cells. PrP has been detected in secretory 

granules of epithelial cells in a number of tissues (Fournier et al., 2000). PrPc appears 

to be constitutively shed from lymphocytes (Parizek et al., 2001) and endothelial cells 

(MacGregor et al., 1999;Starke et al., 2002) and from activated platelets in exosomes 

and microvesicles (Perini et al., 1996;Robertson et al., 2006), which may explain the 

presence of soluble PrPc in the plasma (MacGregor et al., 1999;Volkel et al., 2001a). 

Microparticles bearing PrP immunoreactivity are shed from T cells undergoing V P-16 

induced apoptosis (Gidon-Jeangirard et al., 1999) and from apoptotic endothelial cells 

(Simak et al., 2002;Starke et al., 2002). Recently, PrPc and PrPSc have been identified 

in exosomes released from epithelial and neuroglial cell lines in vitro (Fevrier et al., 

2004), revealing a possible novel pathway of prion spread. PrPc molecules have 

previously been shown to transfer between cells, although this required PMA or Con 

A activation of the donor or recipient cells and cell-cell contact (Liu et al., 2002).

59



Whether PrPc shed from lymphocytes in soluble form, exosomes, or other 

microparticles mediates some function in the immune system is unclear. However, it 

should be noted that only one third of PrPc present is human blood is contained on or 

within its cellular components (MacGregor et al., 1999), the remainder is split into 

soluble and microparticle-associated PrPc.

1.4.7 Effects of PrPc ligation in lymphocytes

An alternative approach to elucidating the function of PrPc has been to mimic the 

effects of a putative PrP ligand by cross-linking surface PrPc with anti-PrP antibodies. 

Using this technique neuronal PrPc was demonstrated to activate Fyn in a caveolin-1 

dependent mechanism (Mouillet-Richard et al., 2000). In lymphocytes, this can 

induce clustering of PrP in caps containing Thyl, reggie-1, reggie-2, CD3, F-actin, 

fyn, lck, LAT and GM1, increased release of reactive oxygen species (ROS) and 

increased phosphorylation of Src family kinases (but not Fyn) and ERK1/2 (Schneider 

et al., 2003;Hugel et al., 2004;Stuermer et al., 2004). The effects on ROS may be 

mediated by NAPDH oxidase and those on ERK1/2 by NAPDH oxidase and MEK1/2 

(Schneider et al., 2003). Cross-linking PrP in CEM cells modulates ionophore- 

induced calcium entry and intracellular release (Hugel et al., 2004). Furthermore, in 

Jurkat cells PrPc cross-linking alone induces calcium fluxes, although less marked 

than those produced by anti-CD3 (Stuermer et al., 2004). However, these 

experiments have been conducted in vitro over short time periods and the long-term 

effects of such treatment are not known.

These effects seem generally stimulatory, yet anti-PrP antibodies can also block 

activation of human T cells by Con A (Cashman et al., 1990) or anti-CD3 (Li et al., 

2001) and murine TCR tg T cells by MHC-peptide (Ballerini et al., 2006).
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Interestingly, some of these effects may be epitope specific; for example, anti-PrP 

mAbs block anti-CD3-induced proliferation only when certain PrP epitopes are 

targeted (Li et al., 2001). They may also be mitogen specific as Cashman and 

colleagues reported that inhibition of PHA-induced proliferation with anti-PrP was 

not as reproducible as for Con A stimulation (Cashman et al., 1990).

The mechanism by which these blocking effects occur remains unknown. PrPc is 

present in or near the immunological synapse and shows enhanced co-localisation 

with the TCR in lipid rafts, upon cross-linking (Stuermer et al., 2004). It also co- 

localises with MHC class II in DCs (Burthem et al., 2001). Thus, the blocking effects 

of anti-PrP could be mediated via the T cell or APC. Indeed, in a mixed lymphocyte 

reaction, anti-PrP inhibited proliferation when PrP expression was restricted to either 

DCs or T cells (Ballerini et al., 2006). This effect was maintained when Fab was used 

in place of total IgG to eliminate PrP cross-linking and reduce the degree of steric 

hindrance (Ballerini et al., 2006). Thus, the effects of anti-PrP on T cell activation 

may not be simply be due to mechanical interference but mediated via destabilisation 

of the immune synapse or altered signalling.

The relationship between these observations and the normal function of PrPc remains 

unclear. Most of these experiments involved cross-linked surface PrPc even though 

there is no evidence that any potential PrP ligand need be polyvalent. Similar effects 

have been observed upon cross-linking of other GPI-anchored proteins (Ilangumaran 

et al., 2000), thus may not inform on the specific function of PrPc.

1.4.8 Immunological phenotype of PrP''' mice

PrP A mice have been reported to have normal MHC class I and II expression, DC 

maturation and numbers of haematopoietic stem cells, CD4+, CD8 + and B cells
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(Bueler et al., 1992;Kubosaki et al., 2001;Ballerini et al., 2006;Zhang et al., 2006), 

suggesting that they are not grossly immunodeficient. Spontaneous tumours or 

greater susceptibility to infections than PrP+/+ mice have not been reported. Further, 

PrP*7' mice have proved a useful tool for production of anti-PrP mAbs of all major IgG 

classes by immunisation with PrPSc or recPrP (Prusiner et al., 1993;Krasemann et al., 

1996;Williamson et al., 1996;Khalili-Shirazi et al., 2005), suggesting that they are 

able to mount effective B cell responses and provide T cell help where appropriate.

Based on these data it is perhaps unsurprising that PrP"u mice kept in pathogen-poor 

facilities do not spontaneously develop immunopathology; this may become manifest 

only following focused immunological challenge such as infection or immunisation. 

Published data on in vivo immune responses in P rP 7' animals is limited. Mice lacking 

both PrP and its downstream partial homologue Doppel have grossly normal CD 8  

expansion following LCMV infection and specific antibody production after infection 

with LCMV or VSV (Genoud et al., 2004).

However, there is a lack of consenus from knockout experiments as to whether PrPc 

is required for optimal T cell activation in vitro. In the initial report of the Zurich I 

PrP knockout mouse, splenocyte proliferation to Con A was normal (Bueler et al.,

1992), whereas Mazzoni recently described reduced proliferation to Con A and PHA 

in Zurich I splenocytes (Mazzoni et al., 2005). Splenocytes from the knockout line 

derived in Edinburgh were reportedly hyporesponsive to Con A (Mabbott et al.,

1997); conversely, Liu and colleagues reported normal responses to Con A and plate- 

bound anti-CD3 in T cells from the same strain (Liu et al., 2001). Kubosaki and 

colleagues reported delayed IL-2 mRNA upregulation in PrP'7' splenocytes treated 

with Con A only when this was done in the presence of a copper chelator (Kubosaki
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et al., 2003). Recently another group reported normal proliferation to Con A in P rP '' 

splenocytes, but a deficient IFN-y response to Con A and PMA/Ionomycin that was at 

least partially corrected by transfection of PrP'7' cells with Pm p  (Bainbridge and 

Walker, 2005).

In an attempt to resolve these discrepancies, Ballerini and co-workers studied mixed 

lymphocyte reactions in which PrP was deleted from either the T cells or DCs 

(Ballerini et al., 2006). Interestingly, PrP' ' T cells responded normally to PrP+/+ DCs, 

whereas PrP 7' DCs were less efficient than PrP+/+ DCs at stimulating PrP+/+ T cells. 

Thus, discrepancies in the literature on PrP' ' T cell proliferation may relate to the 

degree to which this was dependent on APC-T cell conjugation. Interestingly, in 

Ballerini’s experiment, PrP+/+ T cells cultured with PrP'7' DCs made equivalent 

amounts of IL-2 even though proliferation was poor. This suggests that the role of 

PrP in DCs in this context is to facilitate T cell mitosis downstream of IL-2 

production.

Absence of PrP may affect other mature immune functions. In zymosan induced 

peritonitis, the leukocyte infiltrate in PrP'7' mice contained more monocytes and 

significantly fewer neutrophils than in wild type animals (de Almeida et al., 2004). 

Based on work in PrP'7' mice or cells derived from them, PrPc has been proposed to 

down-regulate phagocytosis by macrophages (de Almeida et al., 2004) but also to be 

involved in the phagocytic machinery used by Brucella abortus to invade 

macrophages (Watarai et al., 2003), although this finding has been challenged (Fontes 

et al., 2005).

Perhaps the most striking abnormality thus far detected through use of PrP knockout 

mice is that PrP'7' HSCs display impaired self-renewal, albeit after multiple rounds of
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transplantation into lethally irradiated PrP+/+ recipients (Zhang et al., 2006). That PrP 

may be required for cell growth under harsh conditions is supported by gene 

expression microarray data suggesting that it is upregulated in CD8 + cells undergoing 

homeostatic proliferation upon transfer into lymphopaenic mice (Goldrath et al., 

2004). The molecular programme underlying lymphoid repopulation is remarkably 

similar to that of memory differentiation, in which increased Prnp and surface PrP 

expression have also been observed (Goldrath et al., 2004;Li et al., 2001). Moreover, 

PrP+/+ TCR tg T cells transferred into peptide challenged PrP'7' mice showed reduced 

numbers of mitoses (Ballerini et al., 2006). Thus, the role of PrP in T cell expansion 

and differentiation may be mediated either by the cell itself or supporting populations 

from other lineages. However, the mechanisms underlying these observations remain 

elusive. If PrP'7' lymphocytes, or PrP+/+ cells in a PrP null environment, suffer 

premature senescence, via what pathway is this mediated? Is there failure of specific 

signalling proteins known to be activated by PrP cross-linking, or is a separate 

mechanism involved?

Although studies to date have revealed subtle immunological abnormalities in PrP'7' 

mice, none has yet involved post-natal knockout of lymphoid PrP. In a Cre-lox 

dependent, conditional Prnp deletion model developed by Mallucci and co-workers, 

PrP deletion was restricted to neurons only (Mallucci et al., 2002). In the 

tetracycline-responsive system used by Tremblay and colleagues, although adult mice 

remained well for >380 days following doxycycline-mediated suppression of PrP 

expression, neuronal PrP expression was not entirely abolished and lymphoid PrP 

expression prior to and following doxycycline treatment was not reported (Tremblay 

et al., 1998). Therefore, a compensatory mechanism operating in lymphocytes,
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myeloid cells and their precursors in all PrP' ' mice thus far generated cannot be 

excluded.

A detailed molecular analysis of the downstream effects of PrP deletion has not been 

undertaken. Gene expression arrays in PrP' ' fibroblasts showed changes in 

expression of a number of genes, with marked downregulation of lipid raft protein 

CD44 and certain signalling molecules (Satoh et al., 2000). However, such studies 

have not been performed in lymphocytes.

1.4.9 PrP ablation versus ligation

In reviewing the available data on PrPc function in the immune system, it is worth 

considering that embryonic deletion and antibody ligation of PrP are not necessarily 

modelling similar processes. There is increasing evidence that GPI-anchored proteins 

have signalling functionality in lymphocytes, principally through association with Src 

family non-receptor tyrosine kinases (Ilangumaran et al., 2000), with which PrP is 

known to associate. While loss of PrP alone may alter lipid raft composition and 

obviate any PrP-specific function, it is unlikely to impede the ability of other lipid raft 

components to signal via these pathways. Anti-PrP treatment is likely to induce 

additional effects, through disruption of protein-protein interactions in lipid rafts or 

excessive signalling via PrP, and possibly disrupting or enhancing key pathways 

shared with other GPI-anchored proteins. This is supported by discrepancies between 

the effects on T cell physiology of embryonic PrP deletion compared to anti-PrP mAb 

administration (Ballerini et al., 2006). Similarly, embryonic deletion of Thy-1 

produces different effects on immune function to treatment of cells with anti-Thy-1 

antibodies (Haeryfar and Hoskin, 2004).
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1.4.10 Summary

A definitive function for PrPc in the immune system, as in neurons, remains to be 

established. PrPc appears to be robustly upregulated in T cell activation but its 

expression in T cells is not a pre-requisite for proliferation. Rather, PrPc may be 

important in mediating pro-survival signals in cells undergoing multiple mitoses in 

stressful conditions, such as lymphopaenia or rapid memory cell expansion. Detailed 

analysis of immune responses in PrP'7' mice should provide further insights into the 

role of PrPc but may require generation of conditional knockout models.

A greater understanding is also required of the effects of targeting PrP in the 

periphery as part of a therapeutic strategy as the consequences of ligation may be 

distinctly different from the phenotype produced by genetic ablation. Anti-prion 

agents that bind surface PrPc may induce considerable changes in T cell physiology 

by disrupting lipid raft constituents, enhancing or blocking PrP signalling or 

endocytosis or by labelling bound cells or soluble PrP for elimination. Cross-linking 

surface PrPc in T cells induces striking physiological changes reminiscent of T cell 

activation, but has also been shown to interfere with mitogenic activation. Thus it 

remains unclear whether PrP targeting will predispose the immune system to over­

activation or hyporesponsiveness. Furthermore, preferential deletion or senescence of 

p rpWgh jmmune cens may disrupt immune homeostasis. If high PrPc expression is a 

particular characteristic of HSCs required for long term renewal, or specialised 

lymphocytes such as memory and regulatory cells, the effects on immune function 

may be profound. Interference in the function of key components in the immune 

system may cause severe immunopathology rendering such therapies unsuitable for 

long term use, despite the fact that anti-PrP therapy following peripheral exposure 

may need to be life-long. To date, immunisation with self-PrP or transgenic
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expression of anti-PrP antibodies (Heppner et al., 2001b) have not been reported to 

cause immunopathology in mice. However, as discussed above, dermatitis with 

mononuclear cell invasion and destruction of hair follicles has been described in 

Lewis rats several months after immunisation with PrP 182-202 (Souan et al., 2001a).

GPI-anchored proteins such as the Campath-1 antigen (CDw52) have either proved 

tractable therapeutic targets in themselves or modifiers of agents directed against 

other cell surface constituents (Nagajothi et al., 2004). Thus, interest in the immune 

function of PrPc extends beyond its role in prion disease. As an activation antigen 

and lipid raft component it may be a potential target for immunomodulatory therapy 

in other diseases. Further, PrP upregulation has been detected in a number of tumour 

lines (Du et al., 2005;Liang et al., 2006;Diarra-Mehrpour et al., 2004) and implicated 

in tumour invasion and metastasis (Pan et al., 2006). Because of the intense interest 

in PrP as the central mediator of prion diseases, many of the tools for studying the 

contribution of this protein to immune function are readily available. A serendipitous 

benefit of the tragedy of BSE and vCJD may be a lasting contribution to immunology 

and immunotherapeutics.

1.5 Conclusions and Aims

PrP represents an attractive target for therapeutic intervention in prion disease because 

it is the only substrate that is known to be essential for pathogenesis. Immunotherapy 

offers certain advantages over conventional therapeutics because the toxic effects of 

standard pharmaceuticals are avoided, and active vaccination may provide lifelong 

protection or a cure. However, there are certain obstacles to the development of 

active immunisation against prion disease. Principally it will be necessary to break 

tolerance to PrP. This has not been straightforward in animal models, and results of
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protection studies in rodents have thus far been disappointing. Critically, the extent of 

tolerance to PrP in humans has never previously been considered, either as a marker 

of susceptibility to CJD or in relation to vaccine development.

Despite being subject to intense scrutiny, the normal function of PrP has yet to be 

definitively established. Work to date has not included a thorough description of the 

expression of the protein in specialised subsets of T lymphocyte. However, anti-PrP 

based therapeutics, if administered systemically, are likely to disrupt the physiological 

function of cells that express high levels of PrP. Thus, further work is required to 

characterise the expression and function of PrP within the immune system.

In the work presented here I have attempted to bring closer the goal of active 

vaccination against human prion disease by characterising the auto-PrP T cell 

repertoire in healthy individuals. In tandem I have studied the expression of PrP in T 

lymphocytes and the effects of PrP deletion and ligation on the immune system to 

better understand the function of the protein and predict the effects of it being 

therapeutically targeted.
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CHAPTER 2 MATERIALS AND METHODS

2.1 Generic materials and methods

2.1.1 Human volunteers

Healthy human volunteers (n=28) were recruited to take part in the experiments 

described. All participants gave full informed consent. All work described here using 

human subjects was approved by the Hammersmith Hospital Research Ethics 

Committee (protocol 2003/6663).

2.1.2 Mice

Prnp'1' mice were originally made by Charles Weissman on a C57BL/6 x Svl29 

background as described (Bueler et al., 1992). Two lines derived from the original 

Zurich I mouse were used here. The “F5” colony had been crossed onto the FVB/N 

background for 5 generations, and was housed in the MRC Prion Unit facility. These 

mice had been assessed by Charles Rivers as >96% homologous with wild type 

FVB/N (E Asante, personal communication). The “F10” colony used for some 

experiments had been crossed onto the FVB/N background for 10 generations and 

assessed by Charles Rivers Maxblast testing as being >99% FVB/N (E Asante, 

personal communication). Five breeding pairs of F10 mice were transferred to the 

animal facility at the Hammersmith Hospital for the work described here. All mice 

from the first litters produced by the transferred mice were tail biopsied and 

genotyped as below to confirm their knockout status. All experiments on PrP 7* mice 

used wild-type FVB/N mice (originally obtained from Harlan, UK) kept in the 

Hammersmith Hospital facility as controls. In all experiments comparing PrP 

knockout with wild-type mice age matched adult mice were used.
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In some experiments wild-type C57BL/6 mice (originally obtained from Harlan, UK) 

from the Hammersmith facility were used. For EAE induction with PLP, female SJL 

mice were purchased from commercial suppliers (Harlan, UK) and kept in the 

Imperial College facility. Splenocytes or purified T cells from FVB/N mice carrying 

a human HLA-DR1 transgene (Altmann et al., 1995) were used in two experiments 

studying the biological effects of anti-PrP antibodies. Double transgenic C57BL/6 

HLA-DR15 and MBP-TCR (line 7) mice were originally made in the Altmann 

laboratory as described (Ellmerich et al., 2005). These mice are prone to spontaneous 

autoimmune demyelination. However, all mice used here were free from clinical 

disease (score 0) at the time of sacrifice. All mice were housed in accordance with 

institutional and UK Home Office requirements.

2.1.3 Peptides

A library of 14-mer peptides overlapping by 7 amino acids spanning residues 23 to 

225 of the human PrP sequence, plus a 13-mer consisting of residues 219 to 231 were 

synthesised by the Advanced Biotechnology Centre (ABC) (Imperial College London, 

UK). The two peptides spanning the M/V polymorphism at position 129 were 

synthesised in both alternate forms; 129-methionine and 129-valine. Peptides were 

dissolved in PBS or DMSO. Peptides were coded 1 (most N-terminal) to 29 (most C- 

terminal). Peptide codes, positions, sequences and the number o f donors with whose 

PBMCs each peptide was cultured in the first round of assays in Chapter 3 are shown 

in Table 2.1.

For EAE induction in SJL mice, a peptide corresponding to mouse PLP 139-151 was 

synthesized by the ABC. For EAE induction in FVB/N mice and for in vitro 

activation of splenocytes from line 7 mice, a peptide corresponding to mouse MBP
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85-99 was synthesized by the ABC.

P e p t i d e P o s i t i o n S e q u e n c e N o . o f  
d o n o r s

1 2 3 - 3 6 KKRPKPGGWNTGGS 1 4

2 3 0 - 4 3 GWNTGGSRYPGQGS 1 4

3 3 7 - 5 0 RYPGQGSPGGNRYP 14

4 4 4 - 5 7 PGGNRYPPQGGGGW 1 4

5 5 1 - 6 4 PQGGGGWGQPHGGG 1 5

6 5 8 - 7 1 GQPHGGGWGQPHGG 1 5

7 6 5 - 7 8 WGQPHGGGWGQPHG 1 5

8 7 2 - 8 5 GWGQPHGGGWGQPH 1 5

9 7 9 - 9 2 GGWGQ PHGGGWGQG 1 5

1 0 8 6 - 9 9 GGGWGQGGGTHSQW 1 5

1 1 9 3 - 1 0 6 GGTHSQWNKPSKPK 1 7

1 2 1 0 0 - 1 1 3 NKPSKPKTNMKHMA 1 7

1 3 1 0 7 - 1 2 0 TNMKHMAGAAAAGA 1 8

1 4 1 1 4 - 1 2 7 GAAAAGAWGGLGG 2 0

1 5 1 2 1 - 1 3 4 WGGLGGYMLGSAM 2 1

1 6 1 2 8 - 1 4 1 Y M L G S A M S R P IIH F 2 1

1 7 1 3 5 - 1 4 8 S R P I IH F G S D Y E D R 2 0

1 8 1 4 2 - 1 5 5 GSDYEDRYYRENMH 2 0

1 9 1 4 9 - 1 6 2 YYRENMHRYPNQVY 1 9

2 0 1 5 6 - 1 6 9 RYPNQVYYRPMDEY 1 9

2 1 1 6 3 - 1 7 6 YRPMDEYSNQNNFV 1 9

2 2 1 7 0 - 1 8 3 SNQNNFV HD CVN IT 1 9

2 3 1 7 7 - 1 9 0 H D C V N IT IK Q H T V T 1 8

2 4 1 8 4 - 1 9 7 IK Q H TV TTTTK G EN 1 9

2 5 1 9 1 - 2 0 4 TTT K G E N FTE T D V K 2 0

2 6 1 9 8 - 2 1 1 FTETD V K M M ER W E 1 8

2 7 2 0 5 - 2 1 8 M M ER W EQM CITQ Y 2 1

2 8 2 1 2 - 2 2 5 QM CITQYERESQAY 2 0

2 9 2 1 9 - 2 3 1 ERESQAYYQRGSS 2 1

1 5 V 1 2 1 - 1 3 4 * WGGLGGYVLGSAM 2 0

1 6 V 1 2 8 - 1 4 1 * Y V L G S A M S R P IIH F 2 0

Table 2.1 Codes, positions and sequences of human PrP peptides 

and number of donors with whose PBMCs each peptide was cultured in the 

first round of assays in Chapter 3. * denotes peptides with valine at 

position 129.
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2.1.4 Isolation of human PBMCs

PBMCs were isolated from anticoagulated blood by density gradient centrifugation 

over Histopaque-1077 (Sigma-Aldrich, Dorset, UK), according to the manufacturers 

instructions. All samples were processed within one hour of venesection. The buffy 

coat was extracted by aspiration with a Pasteur pipette and washed three times in 

PBS. PBMCs were resuspended in tissue culture medium and counted by eosin 

exclusion prior to downstream application. In some cases PBMCs were suspended in 

“freeze medium” (90% fetal calf serum, 10% DMSO) and stored at -80°C prior to 

use.

2.1.5 Preparation of single cell suspensions from lymphoid organs

Mice were sacrificed by CO2 intoxication or cervical dislocation. Under asepsis, 

spleens and where relevant, thymus and peripheral lymph nodes (axillary, inguinal 

and mesenteric) were dissected from freshly culled animals. Organs were placed 

directly into HL-1 (Cambrex) or RPMI (Invitrogen) culture medium. Single cell 

suspensions were made by extruding cells from spleens by needle dissection or by 

mashing tissues through a 70 pm filter. In some experiments splenocytes were 

suspended for up to 5 minutes in red cell lysis buffer (0.15 M NH4 CI, 100 mM 

KHCO3 , 100 pM Na2 EDTA.2 H2 0 ). Splenocytes were washed and resuspended in 5 

ml medium for counting by Eosin exclusion.

2.1.6 Preparation of murine PBMCs for downstream applications

Blood was aspirated by cardiac puncture immediately following sacrifice. Blood 

samples were anticoagulated with heparin, washed and then incubated for 5 minutes 

with red cell lysis buffer. Cells were washed again and resuspended in 5 ml medium 

for counting by Eosin exclusion.
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2.1.7 DNA extraction from mouse tail biopsies

Tail biopsies were digested by overnight incubation at 55°C in 400 pi tail lysis buffer 

with 1 ug/ml Proteinase K. 1.5 ml tubes containing tail digests were placed on ice and 

160 pi Protein precipitation solution (Promega) was added per tube. After five 

minutes on ice tubes were spun for 5 minutes at maximum speed in a bench-top 

microcentrifuge. Supernatants were transferred to fresh 1.5 ml tubes and 450 pi 

isopropranol added per tube. Tubes were shaken to precipitate DNA after which 

tubes were spun as before. Supernatants were discarded and pellets air dried for 30 

minutes. 200 pi 75% ethanol was added per tube and tubes spun as before. 

Supernatants were discarded and pellets air dried before being dissolved in 200 pi TE 

buffer per tube. DNA samples were then kept at 4°C.

2.1.8 Confirmation of Prnp knockout status by PCR

The PCR for discrimination between wild-type Prnp and the Zurich I PrP' ' knockout 

construct was previously designed in the MRC Prion Unit as a duplex reaction with a 

common forward primer (P10), a wild-type mouse Prnp reverse primer (P4) and a 

neomycin cassette reverse primer (P3). Primers were purchased from Sigma and had 

the following sequences:

P3: ATT CGC AGC GCA TCG CCT TCT ATC GCC 

P4: CCT GGG AAT GAA CAA AGG TTT GCT TTC AAC 

P10: GTA CCC ATA ATC AGT GGA ACA AGC CCA GC

Tubes for polymerase chain reaction were set up on ice with a final reaction volume 

of 2 0  pi as follows:

2.5 pi lOx buffer
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2.5 pi 15 mM MgCl2 

1.25 pi 2% Tween 

5 pi dNTPs 

0.125 pi Taq 

1 (j.1 10 pM P3 primer 

1 pi 100 pM P4 primer 

1 pi 50 pM P10 primer 

1 pi DNA

Polymerase chain reaction was then performed on a PTC-100 thermocycler (Peltier) 

with cycle conditions as follows:

(1) 94°C for five minutes

(2) 94°C for 30 seconds, then 58.5°C for 45 seconds, then 72°C for 90 seconds

(3) repeat (2) 33 times

(4) 72°C for 10 minutes

PCR products were run out on a 1.5% agarose gel at 110-120V for 40 minutes and 

visualised by Ethidium bromide fluorescence under UV light. Hyperladder I (Bioline) 

was used as a size marker. Knockout bands were identified as an ~ 800 bp band, 

readily discriminated from the larger (~ 1000 bp) wild type Prnp band (Figure 2.1).
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1 2 3 4 5 6 7 8 9  10

1000bp—̂
800bpJ

Figure 2.1 PCR to discriminate Pmp'1' from wild-type mice 

Lane 1, Hyperladder I; lanes 2-7 , sam ples from Prnp'h mice; lane 8, 

sample from heterozygous Prnp+/' mouse; lane 9, sample from FVB/N 

wild-type mouse; lane 10, H20.

2.1.9 Mitogens and antigens

The following were used as mitogenic stimuli: SEA (Sigma), SEB (Toxin 

Technologies), Concanavalin A (Sigma), PMA (Sigma) and Ionomycin (Sigma). Hen 

egg lysosyme (HEL) and ovalbumin (OVA) were purchased from Sigma. Mouse 

spinal cord homogenate was made by homogenising spinal cords from freshly culled 

adult FVB/N and 129/Sv x B6 mice into PBS, followed by freezing to -80°C and 

lyophilisation. Lyophilised material was then dissolved in PBS at 20 mg/ml.

2.1.10 Negative selection of murine T and B lymphocytes

Splenocytes were suspended at lx l0 8/ml in PBS with 0.1% BSA (Sigma). T or B 

cells were negatively selected using the appropriate kit for “untouched” T or B 

isolation (Dynal) according to the manufacturer’s instructions. Purity o f isolated T 

and B cells was determined by flow cytometry to be > 96%. For the functional Treg 

assay the “untouched” CD4+ T cell isolation kit (Dynal) was used.
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2.1.11 In vitro culture of human and murine cells

After counting, cells were placed in 96-well plates at indicated densities, except for 

line 7 activation studies where 24-well plates were used. Antigens, mitogens, 

antibodies and/or inhibitors were added as described for individual experiments. 

Human PBMCs were cultured in RPMI (Invitrogen,) or IMDM (Cambrex) 

supplemented with 5% non-autologous human AB serum (Cambrex), 1% L-glutamine 

(Invitrogen) and 1% Penicillin-Streptomycin (Invitrogen), or in HL-1 serum-free 

medium (Cambrex) supplemented with 1% L-glutamine and 0.5% Penicillin- 

Streptomycin. Murine splenocytes or lymphocytes were cultured in HL-1 

supplemented as above except where stated. All incubations were performed at 37°C 

with 5% CO2 .

2.1.12 Antibodies

In-house anti-PrP mouse IgGl monoclonal ICSM18 (D-Gen Ltd) was used for in vivo 

EAE studies and in vitro blocking studies. A mouse IgGl mAb without murine 

antigen specificity from the MOPC21 clone (Sigma) was used as a control in 

functional assays and in vivo studies. Functional grade anti-CD3 and anti-CD28 for in 

vitro T cell activation were purchased from eBioscience. Biotinylated anti-mouse 

CD25 (clone 7D4) was purchased from BD for the Treg isolation protocol.

For flow cytometry, ICSM18 was FITC-conjugated using the FluoroTag-FITC kit 

(Sigma) according to the manufacturer’s instructions. FITC-conjugated mouse IgGl 

(eBioscience) was used as a control for ICSM18-FITC. Other fluorophor-conjugated 

antibodies (and isotype controls) were purchased from eBioscience as follows. FITC- 

conjugated: anti-mouse CD4, anti-mouse Qa2, anti-mouse Thy 1.2. PE conjugated: 

anti-human CD44, anti-human CD62L, anti-mouse CD4, anti-mouse CD25, anti­
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mouse CD44, anti-mouse CD45RB, anti-mouse CD62L, anti-mouse CD69, anti­

mouse 0X40, anti-mouse ICOS, anti-mouse Foxp3. PECy5 conjugated: anti-human 

CD4, anti-mouse CD4, anti-mouse CD8 . APC conjugated: anti-mouse Foxp3, anti­

mouse CD25. Fluorophor-conjugated antibodies (and isotype controls) were also 

purchased from BD as follows: FITC-conjugated: anti-mouse CD3. PE conjugated: 

anti-human CD4, anti-mouse 1 ^ .  PECy5 conjugated: anti-human CD8 , anti-human 

CD25.

2.1.13 Flow cytometry

All analytical flow cytometry was performed on single or double-laser FacsCalibur 

machines (Becton Dickinson) and data was analysed using CellQuest software. At 

least 10,000 events were acquired in each assay. For analysis, an initial gate was 

drawn around viable lymphocytes using forward (FSC) and side (SSC) scatter 

characteristics. Further gates were then applied to identify CD4+ or CD8 + cells. 

Expression of markers of interest was then defined using dot plots or histograms. For 

analysis of PrP expression, the geometric mean values for PrP and an isotype control 

(measuring auto-fluorescence and non-specific binding) were obtained. PrP 

expression was defined as the difference between these two values (A geometric 

mean). In some experiments, cells were split into PrPh,gh and low populations. In 

human PBMCs, PrP expression is not normally distributed but bimodal with PrPhlgh 

and low peaks, facilitating discrimination between populations on a histogram (Figure 

2.2). In murine lymphocytes, PrP expression has a single peak. The cut off between

p rp high a n d  *ow murine lymphocytes was determined using a FITC-conjugated IgGl 

antibody control for ICSM18. Quadrants were applied to a dot plot of isotype 

antibody binding against that of the antibody for the T cell marker of interest (eg. 

CD62L). The horizontal bar was applied at a point on the FL1 axis such that < 1% of
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cells were above the line. When the quadrants were applied in the same position for 

plots of ICSM18 binding against the same T cell marker, cells above the line were 

considered PrPh'8h and those below PrPlow.

For analysis of purity of negatively isolated T and B cells, dot plots of CD3 against 

MHC class II binding were constructed. For analysis of purity of CD4+ CD25+ and 

CD4+ CD25' cells, dot plots of CD4 against CD25 binding were constructed. 

Quadrants were then applied to ascertain the proportions of single and double positive 

and negative cells in each sample.
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Figure 2.2 Flow cytometry histogram of human PBMCs 

Cells are labelled with FITC-conjugated anti-PrP (grey line) or isotype 

control (filled black line). Two peaks of PrP staining are seen , 

corresponding to PrPhiQh and low populations.

2.1.14 RNA extraction from murine splenocytes

Cells were lysed in Trizol (Invitrogen), using 1 ml for >1x106 cells and 100 pi per 

lx l0 5 cells for samples containing less than lxl0 6 cells. After lysis, samples were 

stored at -80°C pending RNA isolation. After thawing, 200 pi chloroform (BDH) was

‘1 1 nn  |
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added per 1 ml Trizol. Tubes were shaken for 15 seconds and left at room 

temperature for 2-3 minutes. Samples were then spun for 15 minutes at 12,000 g in a 

bench-top centrifuge at 4°C. This separated the sample into a lower red, phenol- 

chloroform phase and a colourless upper phase. The latter was transferred to a fresh 

tube to which 500 pi isopropranol was added per 1 ml Trizol. Samples were left at 

room temperature for 10 minutes and then spun for 10 minutes as above. The 

supernatant was discarded and the RNA pellet washed with 1 ml 75% ethanol per 1 

ml Trizol. After vortexing briefly samples were spun at 7,500 g for 5 minutes as 

above. The supernatant was removed and the pellet air dried for 10-15 minutes, after 

which it was dissolved in 30 pi RNase-free water (Sigma) by incubation at 55-60°C. 

Samples were stored at -80°C until further use.

2.1.15 Confirmation of RNA concentration, purity and integrity

RNA concentration and nucleic acid/protein ratio was analysed using a Nanodrop 

spectrophotometer (Nanodrop). A minimum ratio of 1. 6  was accepted. RNA was 

diluted to 60-200 ng/ml. RNA samples were run on 1.5% agarose gel and visualised 

by Ethidium bromide fluorescence under UV light to confirm the presence of intact 

18S and 28S ribosomal bands without genomic DNA contamination.

2.1.16 cDNA preparation

This was performed on ice in a 50 pi reaction volume consisting of the following 

reagents:

5x RT buffer (Invitrogen) 1 0 pi

50 pM random primers (Invitrogen) 2.5 pi

100 mM dNTP mix (Amersham Biosciences) 2.5 pi
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50 mM MgCb (Bioline) 5 pi

100 mM DTT (Invitrogen) 5 pi

40 U/pl RNase OUT (Invitrogen) 2.5 (J.1

200 U/|j.l Super Script III RNase HRT (Invitrogen) 1.25 pi

250 pg RNA 1.25-5 pi

RNase free water 12-16.25 pi

After mixing, samples were incubated on a PTC-100 thermocycler (Peltier) at 50°C 

for 50 minutes, followed by 85°C for 5 minutes before being cooled to 4°C prior to 

immediate use or storage at -20°C.

2.1.17 Quantitative real time polymerase chain reaction

Quantitative analysis of Pmp, Foxp3 and 18S transcript levels was performed using 

Taqman assays on an Mx3000P real time PCR system (Stratagene). PCR primers 

with TaqMan MGB probes (FAM dye-labeled) for Pm p, Foxp3 and 18S were 

obtained (Applied Biosystems). Values for each transcript were obtained by running 

monoplex PCR reactions (in triplicate) for each sample. Reactions were set up on ice 

in a 2 0  pi volume as follows:

TaqMan universal PCR master mix (Applied Biosystems) 10 pi

20x “Assays-on-Demand” mix {Pmp, Foxp3 or 18S) (Applied Biosystems) 1 pi 

cDNA 2 pi

RNase free water 7  pi

PCR cycling conditions were as follows:

(1) 50°C for 2 minutes

(2) 95°C for 10 minutes
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(3) 95°C for 15 seconds followed by 60°C for 1 minute

(4) 49 repeats of (3)

2.1.18 Standard curves for RT-PCR primers

Standard curves were constructed by running PCR reactions on a series of 5-fold 

serial dilutions of cDNA. The PCR amplification signal was expressed as a AR value, 

reflecting the intensity of reporter dye emission for each sample at the end of each 

cycle minus baseline signal during the initial PCR cycles. The threshold was set at a 

AR of 2411.55 (in the linear region of AR against cycle number in a semi-log plot). 

Efficiencies of the PCR reactions for Pmp, Foxp3 and 18S were compared by plotting 

cycle number at which the threshold value was obtained (Cj) against log (dilution). 

Efficiencies of the Pm p  and 18S standard curves were 99.7% and 98% respectively, 

while the Foxp3 PCR had an efficiency of 76.6%.

2.1.19 AACt method for relative quantitation of Pmp transcription

Mean C j values for Pm p  and 18S were obtained for each experimental sample. The 

abundance of Pmp  transcript in each sample was then calculated relative to 18S 

quantity using the AACt method. 18S is a housekeeping gene expressed at high levels 

that is proposed not to alter significantly with cell activation. It can therefore be used 

as an indicator of the number o f cells that were represented in each sample and thus 

allow comparison of Pmp  (or any other gene of interest) expression between samples 

in which the exact starting amount of cDNA cannot be calculated with accuracy. For 

each sample the amount of Pm p  transcription was first normalised to its 18S value 

using the equation:

ACt {Pmp) = C j {Pmp) -  C j {18S)
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One sample (So) was then used as a “baseline” value, typically, a timepoint 0  sample 

in an activation assay or a CD4+ CD25' sample in the regulatory T cell study. Pm p  

transcription in all other experimental samples (Sx) was then calculated relative to this 

value using the equation:

Pvnp ( S \ ) := 2"(ACt -

2.1.20 Standard curve method for quantitation of Foxp3 

transcription

Because the efficiencies of the Foxp3 and 18S real time reactions were divergent, the 

AACt method could not be used to calculate relative Foxp3 abundance. Instead, 

relative transcript quantities for each sample were calculated from Cj values using the 

standard curve equation for each primer. Foxp3 expression in each sample was then 

normalised to 18S expression, allowing direct comparison between samples.

2.1.21 Statistical analysis

All statistical analysis was performed using GraphPad InStat (GraphPad Software, 

San Diego, CA, USA). The following tests were used: ‘t’ test, paired ‘t’ test,

ANOVA with Bonferroni or Tukey-Kramer post-test correction, Mann-Whitney U 

test. Where appropriate, results were compared as two by two contingency tables 

using Fisher’s exact test. All line graphs and bar charts were initially constructed 

using Microsoft Excel. All error bars represent standard deviations unless stated 

otherwise.
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2.2 Specific methods for experiments in chapter 3

2.2.1 Culture of human PBMCs with PrP sequence peptides

After isolation and washing PBMCs were cultured in RPMI, IMDM, or HL-1 medium 

supplemented as above. PBMCs were suspended in flat-bottomed 96 well plates at a 

density of 5x 105 cells per well in 200 pi culture medium. PrP peptides were added to 

triplicate wells at a final concentration of 50 pg/ml. Control wells contained cells and 

tissue culture medium only. Where peptides were dissolved in DMSO, triplicate 

wells containing the same final concentration of vehicle were used as controls. In the 

first round of assays, sufficient PBMCs were harvested from 14 donors for all 31 

peptides to be tested. For the remaining 7 donors, PBMCs were cultured with 

selected peptides. Each peptide was cultured with PBMCs from at least 14 donors 

(Table 1).

96 well plates were incubated for 6  days at 37°C, 5% CO2 and were then pulsed 

overnight with 1 pCi [3H]-thymidine per well. Plates were harvested and counted 

with a p-counter (Wallac, Turku, Finland). Stimulation indices (S.I.) were obtained 

by dividing the mean counts per minute in the peptide treated triplicate wells by the 

mean counts per minute (c.p.m.) in the relevant control triplicates. A response was 

considered positive when the S.I. was >2 and the c.p.m. in at least two of the three 

peptide treated wells were > 2  x the mean of the control wells.

2.2.2 Cytokine quantification

For the initial cytokine analysis, unused PBMCs were frozen at -80°C until required. 

After thawing, cells were washed and cultured in supplemented IMDM as above with 

or without PrP peptides at 50 pg/ml. In the extended cytokine analysis, fresh ex vivo 

PBMCs were used. On day 6 , 100 pi of culture medium was removed from each well
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and replaced with 100 pi of new medium containing 1 pCi [3H]-thymidine. Aspirated 

100 pi culture medium samples from triplicate control and peptide treated wells were 

pooled and stored at -20°C. After overnight incubation, plates were harvested and 

peptides eliciting positive responses identified as above. Cytokine levels were then 

quantified in culture medium from control and positive peptide treated wells using the 

Cytometric Bead Array (CBA) Human Thl/Th2 cytokine kit II (BD Biosciences, 

Oxford, UK), according to the manufacturer’s instructions. CBA assays were 

provided as a service by the Imperial College London flow cytometry core or 

performed by Dr Rebecca Ingram in the Altmann laboratory.

2.2.3 PRNP codon 129 allele discrimination and HLA-typing

DNA was extracted from whole EDTA-anticoagulated blood using the Nucleon kit 

(Amersham Biosciences, Little Chalfont, UK).

HLA typing was performed by the Oxford Radcliffe Hospitals Transplant 

Immunology Laboratory by polymerase chain reaction with sequence-specific primers 

(PCR-SSP) using a 192 primer mix modification of the Phototyping set for HLA- 

A,B,Cw,DRBl,DRB3/4/5 and DQB1 (Bunce et al., 1995). PCR conditions were also 

modified as previously described (Bunce et al., 1999).

PRNP codon 129 genotype was determined by real time PCR using allele 

discrimination on an ABI SDS 7000 thermal cycler (Applied Biosystems, Foster City, 

CA, USA) using standard conditions. Amplification primers were as follows: forward 

5’-tea gtg gaa caa gcc gag taa g-3’, reverse 5’-cat agt cac tgc cga aat gta tga t-3’ and 

allele discrimination probes were 129M 5’-6-FAM-cgg eta cat get gg-MGB-3’ and 

129V 5’-VIC-cgg eta cgt get gg-MGB-3’.
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2.2.4 In silico HLA binding prediction

The TEPITOPE algorithm (Vaccinome, Kearny, NJ, USA) predicts epitopes that may 

be able to bind up to 25 HLA-DR molecules offering a wide cross-section of human 

HLA class II specificities. The amino acid sequence of human PrP 23-231 (129M and 

129V) was entered into TEPITOPE using standard protocols (Bian et al., 2003;Bian 

and Hammer, 2004). Stringency was set at 3% and sequences of 9-mer epitopes were 

obtained.

2.3 Specific methods for experiments in chapter 4

2.3.1 Activation of wild-type FVB/N splenocytes

Splenocytes prepared from four 13 week old female FVB/N mice were placed in 

round bottomed 96-well plates in supplemented HL-1 medium at a density of 3xl05 

cells per well. Anti-CD3 and anti-CD28 were added to certain wells at 0.6 pg/ml and 

2 pg/ml respectively. Control (non-activated) wells contained cells and medium 

alone. Plates were incubated at 37°C, 5% CO2 for indicated periods.

2.3.2 Preparation of activated FVB/N splenocytes for flow 

cytometry

Plates were spun down and cells resuspended in 100 pl/well RPMI supplemented with 

1% FCS. ICSM18-FITC, anti-CD25-APC, anti-CD69-PE and anti-CD4-PECy5, or 

isotype controls were added to wells. Plates were incubated at 4°C for 30 minutes, 

washed in PBS and resuspended in 200 pl/well Fix/Perm buffer (eBioscience) for at 

least 30 minutes at 4°C. Cells were washed in Permeabilisation buffer (eBioscience) 

prior to analysis by flow cytometry.
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2.3.3 Activation of DR15/anti-MBP-TCR transgenic (line 7) 

splenocytes

Splenocytes prepared from adult line 7 mice were placed in 24-well plates in 

supplemented HL-1 medium at a density of 2x l06/ml. MBP 85-99 peptide was added 

to certain wells at 2 pg/ml while control wells contained cells and medium alone. In 

some experiments, Cycloheximide (Sigma) was added to wells at 10 pg/ml. Plates 

were incubated at 37°C, 5% CO2 for indicated periods. Cells were then harvested by 

repetitive pipetting at indicated timepoints for RNA extraction or flow cytometry.

2.3.4 Preparation of activated line 7 splenocytes for flow 

cytometry

Cells were placed in FACS tubes (approximately 5x10s cells per tube) and washed in 

PBS, usually supplemented with 0.1% BSA. ICSM18-FITC, anti-CD4-PE or anti- 

CD4-PECy5, anti-CD69-PE, anti-CD25-PE, anti-ICOS-PE, anti-OX40-PE, anti- 

CD44-PE, anti-Qa2-FITC or anti-Thyl.2-FITC or isotype controls were added.

Tubes were incubated at 4°C for 30-40 mins and then washed in PBS. Cells were 

then analysed immediately or treated with CellFix (Becton Dickinson) and stored at 

4°C for up to 24 hours pending analysis by flow cytometry.

2.3.5 Comparison of proliferation, cytokine production and 

conjugation between PrP+/+ and 'h splenocytes

Splenocytes from three wild-type FVB/N and three PrP"7' F5 (five generations crossed 

to FVB/N) mice (all males age 9-10 weeks) were prepared in parallel for in vitro 

experiments as described below.
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2.3.6 Footpad immunisations of FVB/N PrP+/+ and  ̂mice

Ovalbumin (OVA) and hen egg lysozyme (HEL) were emulsified in CFA at a 

concentration of 1 mg/ml. 50 pi of emulsion was injected into the left footpad as 

below. Four FVB/N PrP+/+ and five F10 (ten generations crossed to FVB/N) PrP'7' 

mice (all females age 9 weeks) received OVA. Four FVB/N PrP+/+ and four F10 PrP'

7‘ mice (all males age 12-18 weeks) received HEL. 10 days later, mice were sacrificed 

by cervical dislocation and the left popliteal nodes dissected aseptically and placed in 

RPMI. Single cell suspensions were made by mashing lymph nodes through 70 pm 

cell strainers. After counting by eosin exclusion cells were placed in round-bottomed 

96 well plates in supplemented HL-1 at a density of 3xl05 cells per well with HEL or 

OVA at indicated concentrations as described below.

2.3.7 Stimulation of FVB/N PrP+/+ and *  splenocytes or 

lymphocytes

Cells were cultured in 96-well plates in supplemented HL-1 at a density of 3x105 cells 

per well with mitogens (SEA, SEB, Concanavalin A, PMA/Ionomycin, anti-CD3 & 

CD28) or antigens (HEL or OVA) at indicated concentrations (three wells per 

concentration). After 48 hours, 50 pi of culture medium was aspirated from each 

well. Aspirates from triplicate wells were pooled and frozen at -20°C pending 

cytokine analysis with the CBA mouse Thl/Th2 cytokine kit I (BD Biosciences, 

Oxford, UK) by the Imperial College flow cytometry service. Wells were topped-up 

with 50 pi HL-1 containing 1 pCi [3H]-thymidine and incubated overnight before 

being harvested for, or frozen pending, analysis of isotope uptake with a P-counter.
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2.3.8 Staining of FVB/N PrP+/+ and T and B cells with fluorescent 

dyes

T and B cells were isolated with beads as described. T cells were suspended at 

5xl06/ml in HL-1 medium containing 1 pM CFDA (Molecular Probes). B cells were 

suspended at 5xl06/ml in HL-1 medium containing 10 pM Snarf-1 (Molecular 

Probes). Cells were incubated at 37°C for 30 minutes, then washed in HL-1 medium. 

CFDA-stained cells were rested for 1 hour at 37°C, 5% CO2 prior to further use.

2.3.9 T and B cell conjugation with superantigen

CFDA-stained T cells and Snarf-1-stained B cells at were mixed at a ratio of 1:2 in 

HL-1 medium to a total cellular density of 5xl06/ml. Staphylococcal enterotoxin A 

(SEA) (Sigma) was added at a final concentration of 5 pg/ml. Cells were incubated at 

37°C, 5% CO2 in the dark for 2-6 hours as indicated. At the end of incubation an 

equal of volume of 2x CellFix (BD) was gently laid over the cell suspension. Tubes 

were placed at 4°C for 15 minutes, then washed in PBS. Pellets were gently 

resuspended in FACSFlow (BD) for detection by flow cytometry.

2.3.10 FACS detection of T-B cell conjugates

Gating was applied to eliminate dead cells and non-lymphocytes. CFDA-stained T 

cells were detected in the FL-1 channel (green) and Snarf-1-stained B cells in the FL- 

2 channel (red). Conjugates were seen as a double positive population (figure 2.3). 

The efficiency of conjugate formation was measured as a percentage of total acquired 

T cells ie. total number of conjugates/(total number of conjugates + total number of 

unconjugated T cells) xlOO.
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Figure 2.3 Flow cytometry dot plots of mixed T cells and B cells 

with (B) and without (A) superantigen. CFDA-stained T cells are bright in 

the FL1 channel (lower right quadrants) while Snarf-1 stained B cells are 

bright in the FL2 channel (upper left quadrants). In the presence of 

superantigen an appreciable number of T-B cell conjugates are formed, 

detected as double positive events (B, upper right quadrant).

2.4 Specific methods for experiments in Chapter 5

2.4.1 Assessment of CD4+, CD8+ and Treg numbers in FVB/N PrP+/+ 

and y mice

Thymi and inguinal, axillary and mesenteric lymph nodes were dissected from four 

FVB/N PrP+ + and four F I0 PrP'7' mice (all males age 10 weeks). Spleens were 

dissected from four further mice of each genotype (all males age 11-12 weeks). 

Inguinal and axillary nodes from individual mice were pooled. Single cell 

suspensions were made by mashing organs through 70 pm cell strainers. After
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washing and counting by eosin exclusion cells were placed in round bottomed 96-well 

plates in RPMI supplemented with 1% FCS at a density of lx l0 6 cells per well. Anti- 

CD4-FITC, anti-CD25-PE, anti-CD8-PECy5 or isotype controls were added to each 

well. Plates were incubated for 30 minutes at 4°C. After washing 200 pi Fix/Perm 

solution (eBioscience) was added to each well. Plates were incubated overnight at 

4°C. After washing, cells were resuspended in permeabilisation buffer (eBioscience) 

containing 0.5 pg Fc-block (eBioscience) per well. After incubation at 4°C for 15 

minutes, anti-Foxp3-APC or isotype control was added to each well. Plates were 

incubated at 4°C for a further 30 minutes prior to washing and analysis by flow 

cytometry.

2.4.2 Assessment of memory cell numbers in spleens from PrP+/+ 

and *  mice

lxlO6 splenocytes from eight FVB/N PrP+/+ and eight F10 PrP' " mice (all males age 

11-22 weeks) were placed in FACS tubes or wells of a round bottomed 96-well plate. 

Anti-CD4-FITC, anti-CD8-PECy5, anti-CD44-PE, anti-CD45RB-PE, anti-CD62L-PE 

or isotype controls were added and cells incubated at 4°C for 40-45 minutes. After 

washing cells were immediately analysed by flow cytometry or treated with CellFix 

(BD) and stored at 4°C overnight prior to analysis.

2.4.3 Correlation of expression of PrP with memory markers and 

CD25 in C57/BL6 splenocytes

5x105 splenocytes from three adult female C57BL/6 mice were placed in FACS tubes. 

ICSM18-FITC, anti-CD4-PECy5, anti-CD8-PECy5, anti-CD25-PE, anti-CD44-PE, 

anti-CD45RB-PE or isotype controls were added and tubes incubated at 4°C for 30-45 

minutes. Splenocytes from a further three adult female mice were treated identically

90



but stained with ICSM18-FITC, anti-CD4-PECy5 and anti-CD62L-PE. After 

washing cells were analysed immediately by flow cytometry.

2.4.4 Analysis of PrP expression in human PBMCs

Cryopreserved PBMCs from three donors were thawed, washed and resuspended in 

IMDM supplemented as above for counting by eosin exclusion. 4 x 105 cells were 

placed in FACS tubes, to which anti-CD4-PE or -PECy5, or anti-CD8-PECy5, plus 

anti-CD44-PE, antiCD62L-PE or anti-CD25-PECy5 (or isotype controls), plus 

ICSM18-FITC (or isotype control) were added. Tubes were incubated at 4°C for 45 

minutes followed by washing in PBS supplemented with 0.1% BSA and immediate 

acquisition on a flow cytometer.

2.4.5 Expression of PrP in Tregs in FVB/N mice

lx l 06 splenocytes from four 10-13 week old FVB/N mice were placed in wells of a 

round bottomed 96-well plate in RPMI supplemented with 1% FCS. ICSM18-FITC, 

anti-CD4-PECy5, anti-CD25-APC or isotype controls were added. Cells were 

incubated at 4°C for 30 minutes. After permeabilisation with FixPerm solution 

(eBioscience) cells were kept overnight at 4°C. After washing, anti-Foxp3-PE or 

isotype control was added to each well and cells further incubated at 4°C for 30 

minutes. Cells were washed and analysed immediately by flow cytometry.

2.4.6 Isolation of CD4* CD25+ and CD4* CD25* splenocytes for 

comparison of Pmp and Foxp3 expression

Splenocytes from six 12-20 week old female C57BL/6 mice were suspended at 

lx l0 7/ml in PBS with 0.1% BSA. Anti-CD4-PECy5 and anti-CD25-PE were added 

and cells incubated at 4°C for 30-45 minutes. After washing, cells were resuspended
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in FACS sort buffer (Ca2+/Mg2+-free PBS supplemented with 1 mM EDTA, 25 mM 

HEPES, 1% FCS) at lx l0 7/ml. FACS sorting was provided as a service by the MRC 

CSC flow cytometry core. Briefly, after gating round lymphocytes by FSC and SSC 

characteristics, CD4+ cells were identified by fluorescence in the FL3 channel. Gates 

were drawn around CD25+ and CD25' fractions, distinguished by high or low 

fluorescence in the FL2 channel, respectively. These were then collected 

simultaneously into separate tubes. Retrieved cells were dissolved in Trizol and RNA 

extracted as described above.

2.4.7 Functional studies of PrP+/+ and *'* FVB/N murine Tregs

These experiments were performed in collaboration with Dr Oliver Garden in the 

Regulatory T cell Laboratory, Hammersmith Hospital, Imperial College. Briefly, 

single cell suspensions were made as above from spleens of 6-12 week old PrP+/+ and 

‘/‘ FVB/N mice. CD4+ cells were negatively isolated using beads (Dynal) according to 

the manufacturer’s instructions. These were further fractionated into CD25+ and 

CD25' populations by incubation with biotinylated anti-CD25 followed by 

Streptavidin MicroBeads (Miltenyi Biotech). CD4+ CD25+ T cells were then 

positively selected from CD4+ CD25' cells on MiniMACS magnetic columns 

(Miltenyi Biotech). The purity o f retrieved cells was determined by flow cytometry to 

be > 84% for CD4+ CD25‘ cells and > 92% for CD4+ CD25+ cells. There was no 

significant difference in the purity of PrP+/+ compared to PrP'7' cells. Purified CD4+ 

CD25+ T cells ( lx l0 5/well) were cultured, in 96-well round-bottomed plates, with 

CD25' T cells at indicated ratios in the presence of Epoxy DynaBeads (1 bead/5 cells; 

Dynal) coated with anti-CD3 and anti-CD28 mAb. After 3 days, incorporation of 

tritiated thymidine over 16 hours was measured as above.
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2.5 Specific methods for experiments in chapter 6

2.5.1 Inhibition of MHC-peptide induced proliferation with ICSM18

Splenocytes from 16 week old line 7 mice were seeded onto a 96-well plate at a 

density of 3xl05 cells per well. MBP 85-99 peptide (2 pg/ml) was added to half the 

wells. Either anti-PrP monoclonal antibody (ICSM18) or a murine IgGl control 

antibody were added to triplicate wells at 50, 10, 2 and 0 pg/ml. The plate was 

incubated as above for 48 hours, followed by overnight thymidine pulsing for 

assessment of proliferation.

2.5.2 Inhibition of SEB induced proliferation with ICSM18

Splenocytes from a 7 week old male DR1 tg mouse were placed onto a round 

bottomed 96-well plate at a density of 3x105 cells per well in RPMI supplemented 

with 10% fetal calf serum (Invitrogen), 1% L-glutamine and 1% Penicillin- 

Streptomycin. SEB (1 pg/ml) was added to each well. ICSM18 or mouse IgGl 

control mAb was added to quadruplicate wells at 100, 10, 1, 0.1, or 0 pg/ml. The 

plate was incubated as above for 48 hours, followed by overnight thymidine pulsing 

for assessment of proliferation.

2.5.3 Inhibition of anti-CD3 and anti-CD28 induced proliferation 

with ICSM18

T cells were isolated using beads (Dynal) from the spleen of a 7 week old male DR1 

transgenic mouse. Cells were placed onto a round bottomed 96-well plate at a density 

of lx l0 5 cells per well. Anti-CD3 (0.01 pg/ml) and anti-CD28 (0.1 pg/ml) were 

added to each well. ICSM18 or mouse IgGl control mAb was added to triplicate 

wells at 10, 1, 0.1, 0.01, or 0 pg/ml. The plate was incubated as above for 48 hours,
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followed by overnight thymidine pulsing for assessment of proliferation.

2.5.4 Induction of Experimental Autoimmune Encephalomyelitis

An emulsion was prepared by mixing 2 mg/ml PLP 139-151 or MBP 85-99 or 20 

mg/ml mouse spinal cord homogenate with an equal volume of Complete Freund’s 

Adjuvant (Sigma) supplemented with 1 mg/ml M. Tuberculosis and M. Butyricum 

(Difco Microbiology, Detroit) in an 8:1 ratio. The mixture was vortexed for 30 

minutes, then sonicated for 30 minutes. Mice received 100 pi emulsion 

subcutaneously to opposite flanks on days 0 and 7. 200ng Pertussis toxin (Sigma) 

was administered intraperitoneally on days 0, 2, 7 and 9. From day 9, mice were 

monitored daily by weighing and scoring for signs of EAE. Mice were sacrificed 

where body weight fell 20% below initial weight for 24 hours, or where mice had an 

EAE score of 4 for 3 consecutive days.

2.5.5 Treatment of mice with ICSM18 following EAE induction

Mice received 250 pg ICSM18 or IgGl isotype control antibody (Sigma) 

intraperitoneally on post induction days 2, 4, 8 and 15 (early treatment) or 6, 8, 10, 12 

and 14 post induction (late treatment).

94



CHAPTER 3 IN  SILICO AND IN  VITRO 
DETERMINATION OF THE IMMUNODOMINANT T 
CELL EPITOPES IN HUMAN PRP

3.1 Introduction

As discussed, a notable feature of TSE infection is the lack of a classical immune 

response, either in the brain or in the periphery, where PrPSc may accumulate in the 

early stages of the disease (Aucouturier and Camaud, 2002). The “blindness” of the 

immune system to the pathogenic agent is most likely due to its inability to 

distinguish PrPSc from PrPc which is a ubiquitously expressed cell-surface 

sialoglycoprotein (Stahl et al., 1987) of uncertain function (Lasmezas, 2003). The 

remodelling event, by which PrPc to PrPSc conversion occurs, involves no change in 

primary structure producing a pathogenic species consisting entirely of self-sequence 

(Stahl et al., 1993).

The degree of tolerance to PrP in humans, and whether this might influence 

susceptibility to prion disease, is not known. PrPc is expressed in the thymus and 

animals are tolerant to PrP under normal circumstances, suggesting that most T cells 

recognising PrP epitopes undergo thymic deletion. There is no clear HLA association 

in sporadic CJD, although small patient numbers have precluded large-scale 

association studies, and an initial report that HLA-DQ7 might protect against vCJD 

was not confirmed when repeated on a larger sample (Jackson et al., 2001a;Pepys et 

al., 2003). Whether some individuals are capable of initiating an immune response 

against foreign or self-generated PrPSc remains unknown.

The widespread contamination of beef and beef products with BSE suggests that a 

substantial proportion of the UK population has been exposed to bovine prions.
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Although only ~ 160 people have so far been diagnosed with vCJD in the UK, the 

number of individuals who are incubating sub-clinical or carrier states (Hill et al., 

2000) of the disease remains unknown. The possibility of further peaks of vCJD 

incidence coupled with the risks of secondary transmission, mean that there is an 

urgent requirement for effective anti-prion therapeutics. Indeed, concern that vCJD 

prions may be transmissible via blood transfusion appears to have been realised 

(Llewelyn et al., 2004;Peden et al., 2004)(Wroe et al., submitted).

Recent developments in Alzheimer disease have demonstrated that immunotherapy 

may be effective in neurodegenerative diseases characterised by protein misfolding by 

raising an immune response against the key pathogenic protein species (Schenk et al., 

1999;Hock et al., 2003). The major obstacle to effective immunisation against prion 

infection is tolerance to PrP. Several strategies have been employed to counter this, 

thus far with limited success in experimental models (Schwarz et al., 2003;Goni et al., 

2005;Magri et al., 2005;Sigurdsson et al., 2002;Bade et al., 2006). Whether such a 

vaccine should incorporate a T cell epitope or simply stimulate a B cell response 

against PrP is unknown. Breaking T cell tolerance to self-proteins as a therapeutic 

strategy may be a pre-requisite to an effective response, but can also be hazardous, as 

demonstrated in a recent Alzheimer disease vaccination trial (Orgogozo et al., 

2003;Nicoll et al., 2003).

Furthermore, full length recombinant PrP may not be an appropriate immunogen in 

humans due to concerns that de novo prion infectivity may be generated by such 

molecules (Legname et al., 2004). Immunogenic peptide fragments of PrP represent a 

safer alternative for vaccine development. Therefore, rational design of an anti-prion 

vaccine requires knowledge of the dominant linear T and B cell epitopes in PrP, yet

96



these have not previously been studied in humans. Studies in PrP knockout mice, in 

which PrP is entirely foreign, indicate that antigenic processing of, and immune 

responses to, PrP will occur where tolerance is obviated (Bainbridge and Walker, 

2003;Gregoire et al., 2004;Khalili-Shirazi et al., 2005). Further, wild type mice will 

generate T cell responses against ovine (Stoltze et al., 2003) and even murine PrP 

where it is administered with appropriate adjuvants (Rosset et al., 2004;Souan et al., 

2001b).

In the work presented here, I analysed the T cell response of healthy volunteers to 

peptides representing the human PrP sequence to identify potential T cell epitopes. I 

demonstrate that T cell tolerance to PrP is not complete and propose that there are 

distinct immunogenic regions in PrP that could be exploited for vaccine development.

3.2 Results

3.2.1 In silico epitope prediction

When the full length human PrP (residues 23-231) sequence with either methionine or 

valine at position 129 is analysed by TEPITOPE at a stringency of 3%, the 

programme generates 13 predicted 9-mer epitopes (Table 3.1). Interestingly, a 

number of these span the position 129 polymorphism. In contrast, the N-terminal 

region of PrP from positions 23 to 109 is not predicted to generate any HLA-binding 

epitopes.
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P r e d i c t e d
e p i t o p e

P o s i t i o n H L A  DR 
a l l e l e  ( s )

MKHMAGAAA 1 0 9 - 1 1 7 B l *  0 1 0 1  

B l * 0 1 0 2  

B l * 0 8 0 4  

B l * 1 3 0 7

W G G L G G Y M 1 2 1 - 1 2 9
[ 1 2 9 M ]

B l * 0 3 0 1

VGGLGGYML 1 2 2 - 1 3 0
[ 1 2 9 M ]

B l * 0 1 0 1

B l * 0 1 0 2

VG G LG GY V L 1 2 2 - 1 3 0
[ 1 2 9 V ]

B l * 0 1 0 1

B l * 0 1 0 2

B 5 * 0 1 0 1

LG G YM LG S A 1 2 5 - 1 3 3
[ 1 2 9 M ]

B l *  0 8 0 2  

B l *  0 8 0 4  

B l * 0 8 0 6  

B l * 1 5 0 1  

B l * 1 5 0 2

L G G Y V L G S A 1 2 5 - 1 3 3
[ 1 2 9 V ]

B l *  0 8 0 2  

B l * 0 8 0 4  

B l *  0 8 0 6  

B l * 1 5 0 1  

B l * 1 5 0 2

YML GSA MSR 1 2 8 - 1 3 6
[ 1 2 9 M ]

B l * 0 3 0 1

Y V L G S A M S R 1 2 8 - 1 3 6
[ 1 2 9 V ]

B l *  0 3  0 1

L G S A M S R P I 1 3 0 - 1 3 8 B l * 0 1 0 2  

B l *  0 4  0 2  

B l * 0 7 0 1

MHRYPNQVY 1 5 4 - 1 6 2 B l * 1 5 0 1

B l * 1 5 0 2

Y S N Q N N F V H 1 6 9 - 1 7 7 B l *  0 4  0 5

F V H D C V N I T 1 7 5 - 1 8 3 B l * 0 3 0 1

B l * 0 4 2 1

V K M M E R W E 2 0 3 - 2 1 1 B l *  0 3  0 1  

B l * 1 3 0 5  

B l * 1 3 2 1

Table 3.1 Epitopes from the human PrP sequence predicted by TEPITOPE

98



3.2.2 T cell proliferation assay

PBMCs from 21 healthy donors were then cultured with up to 29 peptides spanning 

the full length of human PrP 129M. Proliferative responses were considered positive 

where the S.I. was >2 (Figure 3.1 A). Positive responses were seen to peptides 

spanning residues 23-36 (peptide 1), 107-120 (peptide 13), 114-127 (peptide 14), 121- 

134 (peptide 15), 128-141 (peptide 16), 170-183 (peptide 22), 177-190 (peptide 23), 

184-197 (peptide 24), 191-204 (peptide 25), 198-213 (peptide 26), 205-220 (peptide 

27), 212-227 (peptide 28), 219-231 (peptide 29).

Altogether there were 22 positive responses out of 513 peptide assays, elicited by 13 

out of the 29 peptides (44.8%). The most immunogenic peptides were 14 and 15, to 

which respectively 4/20 (20%) and 4/21 (19%) donors made responses (Figure 3 .IB). 

Overall, 21 of the positive responses (95.5%) were clustered in two regions of the 

protein: 107-141 (peptides 13 to 16) and 170-231 (peptides 22 to 29) (Figure 3 .IB and 

C). These peptides accounted for 236 of the 513 total assays (46%) of which 8.9% 

were positive, whereas in the remaining 277 stimulations using peptides outside these 

two regions, there was only one positive response, to peptide 1. Thus peptides within 

regions PrP 107-141 or 170-231 were significantly more immunogenic than those 

spanning the rest of the protein sequence (Fisher’s exact test p < 0.0001). Indeed, no 

responses at all were generated by peptides 2 to 12, covering approximately 40% of 

the PrP sequence (Figure 3.1A-C).
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Figure 3.1 Results of human PBMC stimulations with PrP peptides

A. Stimulation indices (S .I.) for each peptide (arranged in N to C-terminal 

order) elicited by 7-day culture with fresh ex vivo PBMCs from up to 21 

donors. Each point represents the S.I. for an individual donor for that 

peptide. S.I. < 2 (grey) is considered negative; >2 (black) is considered 

positive.

B. Percentage of donors responding to each peptide. All but one positive 

response occurred within two regions, 107-141 and 170-231.



C. Linear representation of human PrP aligned to the position of the N- 

terminal residue of peptides in A and B and demonstrating the principal 

regions of the protein. I, II and III correspond to the C-terminal a-helices  

and CHO to glycosylation sites.

Interestingly, 8 of the 10 epitopes predicted by TEPITOPE from the human PrP 129M 

sequence were represented among the 13 peptides that elicited responses in vitro. 

Thus, putative epitopes generated in silico had high predictive value for in vitro 

responses. In agreement with the TEPITOPE predictive algorithm, the N-terminal 

region of PrP was not immunogenic, with the exception of a single response to PrP 

23-36. Overall, peptides spanning epitopes generated by TEPITOPE accounted for 9 

out of the 22 responses to PrP 129M sequence (40.9%), although none of the 

synthesised peptides completely spanned PrP 169-177.

Responses to one or more peptide were seen in 9 out of 21 donors. However, positive 

responses were not evenly distributed among donors (Figure 3.2). The majority of 

responding individuals generated responses to between 5.0 and 14.9% of the peptides 

with which their PBMCs were challenged, while 2 responded to >15%.
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Figure 3.2 Percentage of peptides to which donors made positive 

responses

Most responders generated responses to 5.0-14.9%  of peptides, while 2 

out of 21 responded to >15.0% .

In addition, PBMCs from 20 of the donors were cultured with peptides spanning PrP 

121-134 and 128-141 with Valine at position 129. Only one response was positive 

out of 40 individual peptide assays. This was to peptide 16V (Figure 3.3A and B). 

Positive responses were generated to peptide 15 by 4 out of 21 donors compared to 0 

of 20 donors challenged with peptide 15V. Thus the epitope PrP 121-134 appeared to 

be more immunogenic with methionine at position 129 compared to valine, although 

this observation did not achieve statistical significance (Fisher’s exact test p = 0.11).
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Figure 3.3 Results of stimulations with 129V-spanning peptides

A. Stimulation indices for peptides spanning position 129V elicited by 7- 

day culture with fresh ex vivo PBMCs from 20 donors. Each point 

represents the S.I. for an individual donor for that peptide. S.I. < 2 

(grey) is considered negative; >2 (black) is considered positive.

B. Percentage of donors responding to 129V-spanning peptides. There was 

one positive response to peptide 16V.

3.2.3 Role of PRNP codon 129 genotype

Four o f the 10 MM homozygotes and 5 o f the 8 MV heterozygotes responded to one 

or more peptide (Table 3.2). No responses were made by any o f the 3 W  

individuals. Responses to 129M spanning peptides were seen in 3/8 129MV 

heterozygotes and 1/10 129MM homozygotes (Fisher’s exact test p = 0.27). The 

single response to a 129V-spanning peptide was in an MM donor.
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D o n o r HLA-DR HLA- PRNP NO. O f P e p t i d e s N o . O f P e p t i d e s
DQ 129 p e p t i d e s

a s s a y e d
e l i c i t i n g
p o s i t i v e
r e s p o n s e s

129V
p e p t i d e s
a s s a y e d

e l i c i t i n g
p o s i t i v e
r e s p o n s e s

A 4 / 5 2 ,
1 3 / 5 3

8, 6 MM 29 1 ,  13 2

B 4 / 5 3  , 
7 / 5 3

2 , 8 MV 29 2

C 4 / 5 2 ,
1 3 / 5 3

8, 6 MV 29 1 5 ,  2 7 ,  
29

2

D 4 / 5 2 ,
1 3 / 5 3

8, 6 MM 29 2 4 ,  2 5 ,  
2 6 ,  28

2 16V

E 1 4 / 5 2 ,  
1 1 / 5 2

7 , 5 MV 16 1 5 ,  1 6 ,  
27

2

F 1 / 5 1 ,
15

5 MV 12 2

G 1 3 / 5 2 7 , 6 MM 16 2
H 1 0 3 / 5 2 ,

17
2 , 7 MV 29 1 4 ,  27 2

I 1 3 / 5 2 ,
17

2 , 6 MM 29 14 2

J 1 3 / 5 1 ,
1 5 / 5 2

6 MM 6 0

K 8 / 5 1 ,
1 5 / 5 2

4 , 6 MV 29 1 4 ,  2 2 ,  
23

2

L 4 / 5 2  , 
1 1 / 5 3

8 , 7 MM 29 2

M 7 / 5 3 N ,
7 / 5 3

9, 2 MV 24 2

N 1 7 / 5 2 ,
1 1 / 5 2

2 , 7 MV 17 15 2

0 1 7 / 5 2 ,  
11

2 , 7 W 29 2

P 1 / 5 3 ,
4

7 , 5 W 29 2

Q 4 / 5 1 ,
1 5 / 5 3

6 , 8 MM 29 2

R 1 7 / 5 1 ,
1 5 / 5 2

2 , 5 MM 29 2

S 7 / 5 2  , 
1 1 / 5 3 N

7 , 9 MM 29 2

T 1 4 / 5 2 ,
1 7 / 5 2

2 , 5 MM 16 1 4 ,  1 5 ,  
22

2

U 7 / 5 3  , 
9 / 5 3

2 W 29 2

Table 3.2 HLA class II and PRNP genotypes and assay results for each

donor
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3.2.4 Role of HLA type

Responses to peptides were seen in individuals with a range of HLA genotypes (table 

3.2). The sample size was too small to allow an association with any particular 

genotype to emerge. However, responses to peptide 114-127 were only seen in 

individuals expressing HLA-DR52 (4 out of 15 DR52+, 0 out of 6 DR52', Fisher’s 

exact test p = 0.28).

3.2.5 Cytokine profiles

The highest number of positive responses to PrP peptides was made by PBMCs from 

donor D. Cryopreserved PBMCs from this donor were cultured with peptides 24, 25, 

28 and 16V to which this individual had previously made a response, as well as 

peptides 15, 16 and 15V. Positive responses, as judged by S.I. > 2, were seen to 

peptides 16, 24, 25, 28 and 16V, with negative responses to 15 and 15V. Despite 

similar stimulation indices, cytokine production elicited by in vitro culture differed 

between PrP peptides. Whereas peptides 16 and 28 elicited very strong IL-4 and IL-6 

responses, peptides 24, 25 and 16V did not induce strong cytokine production (Figure 

4A i, iii, iv). These responses were associated with modest IFN-y secretion (Figure 

4A ii) and there was no significant TNF-a, IL-2 or IL-10 response to any of the 

peptides (data not shown). Interestingly, peptide 16 elicited a distinct cytokine profile 

compared to its 129V polymorph, 16V.
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Figure 3.4 Cytokine profiles associated with PrP peptides

A. (i) Stimulation index and (ii) Interferon-y (IFN-y), (iii) IL-4 and (iv) IL- 

6 secretion in response to 6-day culture of cryopreserved PBMCs from 

donor D with indicated PrP sequence peptides.

B. A secretion (peptide-treated minus untreated control) of (i) IFN-y, (ii) 

IL-4, (iii) IL-6 and (iv) IL-10 in response to 6-day culture of fresh ex vivo 

PBMCs from five donors with indicated PrP sequence peptides.
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Further cytokine analysis of responses was then undertaken to obtain a more 

comprehensive understanding of the nature and functionality of responses to PrP 

epitopes. Responses to the peptide panel were analysed by repeat culture of PBMCs 

from three of the individuals shown in Table 3 (donors A, N and T), as well as an 

additional seven donors. Positive responses to one or more peptides were observed in 

5 of these additional assays. In accordance with previous observations, there were no 

positive responses to N-terminal peptides other than PrP 23-36, confirming the lack of 

immunogenicity within this region. Again only modest IFN-y production was 

observed (Figure 4B(i)) and no significant quantities of TNF-a or IL-2 were detected 

(data not shown). There was once again considerable heterogeneity in cytokine levels 

produced in response to different peptides. Peptides 16 and 28 induced high levels of 

IL-6, and to a lesser extent IL-4, as well as low levels of IL-10 (Figure 4B(ii)-(iv)). A 

similar pattern of IL-6 and IL-4 release was seen in response to peptide 27, although 

this peptide did not stimulate any IL-10 production. Peptide 16V was again divergent 

from its PrP 129M variant in being IL-4 and IL-6 silent (Figure 4B(ii)-(iv)). The 

majority of the other peptides were associated with production of IFN-y, IL-4, IL-6 

and IL-10 at low levels.

3.3 Discussion

A notable feature of vCJD is the accumulation of PrPSc in lymphoreticular tissues 

including tonsil, appendix and terminal ileum (Wadsworth et al., 2001;Joiner et al.,

2005). Extra-neural PrPSc has also been detected, albeit at lower titres, in some cases 

of sporadic CJD (Glatzel et al., 2003). Despite this, no systemic acute phase or 

immune response has been detected in any human prion disease or experimental 

model (Aucouturier and Camaud, 2002;Cunningham et al., 2005). Although T cells
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have been detected in prion infected brain, lymphocytes from scrapie infected mice 

have not been demonstrated to possess anti-PrP cytolytic activity or secrete cytokines 

on stimulation with PrP peptides (Lewicki et al., 2003). Thus, the “atypical 

inflammation” (Perry et al., 2002) that ensues in the prion infected CNS is largely 

secondary to rapid neurodegeneration. The failure of adaptive immunity against 

prions during the lymphoreticular and neural phases of the disease has been ascribed 

at least partly to T cell tolerance to PrPc, a ubiquitously expressed self protein with 

which PrPSc has 100% sequence identity. However, the extent of tolerance to PrP in 

humans has not previously been studied.

To my knowledge this is the first time that human auto-reactive T cell responses to 

PrP have been examined. I found that a significant minority of individuals made 

responses to PrP peptides and that these reproducibly cluster between residue 107 and 

the C-terminus. The peptides that elicited responses were remarkably close to those 

identified using an epitope prediction algorithm. This combined in silico and in vitro 

approach suggests that despite being a self protein to which tolerance is assumed to be 

robust, human PrP is an antigen that is tractable to epitope discovery techniques and 

hence rational vaccine design.

The major predisposing factor for vCJD is methionine homozygosity at codon 129 of 

PRNP. However, since this genotype accounts for 40% of the UK population and to 

date ~ 160 people have been affected by vCJD in the UK, other susceptibility factors 

must be involved. An initial report postulating that HLA-DQ7 might confer 

protection against vCJD (Jackson et al., 2001a) was not confirmed when repeated on a 

larger but not completely overlapping sample (Pepys et al., 2003). With the current 

small number of affected cases, firm conclusions about HLA association will be
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difficult to draw unless any protective effect is extremely strong. In this study, T cell 

responses to PrP peptides were seen in individuals with a variety of HLA genotypes, 

suggesting that the ability to generate protective immunity may not be restricted to 

particular HLA types, although only individuals expressing HLA-DR52 responded to 

PrP 114-127.

Of particular interest, however, is the finding that the polymorphic residue 129 resides 

within a major human T cell epitope, with nearly 20% of donors making a response to 

PrP 121-134. Moreover, my data is highly suggestive of PrP 121-134 with 

methionine at position 129 being more immunogenic than PrP 121-134 with 129- 

valine.

Whether the ability to induce an immune response against this region of PrP might be 

protective against prion disease remains unclear. My data suggest that PRNP 129MV 

or W  individuals are preferentially able to induce a response to 129M-containing 

sequence although the current study was not sufficiently powered to demonstrate this 

conclusively. If confirmed this might provide a basis for differential susceptibility to 

infectious BSE prions. Furthermore, even among MM homozygotes there must be 

additional susceptibility factors. The possibility that some individuals are able to 

mount an effective immune response against invading PrPSc, by HLA-restricted 

presentation of peptidic fragments corresponding to the immunogenic epitopes 

identified in this study, cannot be excluded.

Incomplete tolerance to neuronal proteins is not an unexpected finding. Healthy 

individuals without multiple sclerosis routinely have T cell responses to myelin 

antigens (Davies et al., 2005). Further, a number of studies have demonstrated T cell 

reactivity to APP or Ap peptides (Trieb et al., 1996;Giubilei et al., 2003;Monsonego
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et al., 2003;Baril et al., 2004). However, unlike APP, PrP is highly expressed within 

the immune system itself, where it has been proposed to play a role in T cell 

activation (Cashman et al., 1990;Mattei et al., 2004).

Although the mechanisms underlying tolerance to PrP have not been fully elucidated, 

in PrP " mice where PrP expression is directed to specific organs by insertion of PrP 

transgenes under specific promoters, tolerance is readily induced by targeted 

expression in lymphocytes and other extra-neural tissues (Polymenidou et al., 2004). 

Expression of PrPc is higher in human lymphocytes compared to those of rodents 

(Holada and Vostal, 2000). Consequently, I anticipated that T cell tolerance to PrP in 

humans would be tighter than to other neural proteins, most likely due to PrPc 

expression in the thymus and other lymphoid organs and repeated exposure to animal 

PrP in food. However, I found T cell responses to PrP peptides in a significant 

proportion of the subjects in the study, suggesting that auto-PrP reactive clonal 

deletion may not be complete. Despite this, there is no evidence for autoimmune 

disease in these individuals due to spontaneous breakdown of tolerance to PrP, 

analogous to the presence of anti-myelin T cell responses in healthy individuals.

Thus, for certain epitopes in some individuals, peripheral suppressor mechanisms 

such as regulatory T cells or low affinity antigen presentation may help maintain 

tolerance to PrP. Indeed, Polymenidou and colleagues found no relationship between 

the ability of mice to produce antibodies to PrP and thymic PrPc expression level, 

implying a role for peripheral tolerance mechanisms (Polymenidou et al., 2004).

Although tolerance to PrP has been successfully broken in rodents, this has generally 

required use of powerful adjuvants or novel immunisation strategies (reviewed in 

Heppner and Aguzzi, 2004). T cell responses have been demonstrated to a variety of
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self-PrP sequence epitopes in rodents (Table 3.3). Systematic studies by Aucouturier 

and colleagues suggest that the only significantly immunogenic epitope of self-PrP in 

C57BL/6 mice resides within PrP 158-172 (Gregoire et al., 2005;Gregoire et al., 

2004;Rosset et al., 2004). However, peptides spanning 158-172 did not induce a 

significant antibody response in vivo. In this model, the major B cell epitope was 98- 

127. In contrast, another group used a variety of PrP sequence peptides selected on 

the basis of putative MHC binding motifs to elicit both strong T cell and IgG 

responses in rats and C57BL/6, NOD and A/J mice (Souan et al., 2001b;Souan et al., 

2001a).

S e q u e n c e R e s p o n d e r  
l y m p h o c y t e  
s p e c i e s / s t r a i n

R e f e r e n c e

Mo 3 1 - 5 0 C 5 7 B L / 6 ( S o u a n e t a l . , 2 0 0 1 b )

Mo 1 3 1 - 1 5 0 N O D ,  C 5 7 B L / 6 ,  A / J ( S o u a n e t a l . , 2 0 0 1 b )

Mo 1 5 1 - 1 7 0 C 5 7 B L / 6 ( S o u a n e t a l . , 2 0 0 1 b )

Mo 1 5 6 - 1 7 2 C 5 7 B L / 6 ( G r e g o i r e e t a l . ,  2 0 0 4 )

Mo 1 5 8 - 1 7 2 C 5 7 B L / 6 ( R o s s e t e t a l . ,  2 0 0 4 )

Mo 1 5 8 - 1 7 2 C 5 7 B L / 6 ( G r e g o i r e e t a l . ,  2 0 0 5 )

Mo 1 8 2 - 2 0 2 NOD ( S o u a n e t a l . , 2 0 0 1 b )

Mo 2 1 1 - 2 3 0 N O D ,  C 5 7 B L / 6 ,  A / J ( S o u a n e t a l . , 2 0 0 1 b )

R a 1 1 8 - 1 3 7 L e w i s  r a t ( S o u a n e t a l . , 2 0 0 1 a )

R a 1 8 2 - 2 0 2 L e w i s  r a t ( S o u a n e t a l . , 2 0 0 1 a )

R a 2 1 1 - 2 3 0 L e w i s  r a t ( S o u a n e t a l . , 2 0 0 1 a )

Table 3.3 T cell responses induced by native PrP immunisation

in wild-type PrP expressing animals

The relevance for humans of epitopes revealed by rodent studies is constrained by the 

considerable sequence diversity between human and rodent MHC class II. My data 

suggest that human PrP 158-172 does not contain a T cell epitope although the 

immunogenic regions I identified do have some overlap with those described by 

Souan and colleagues. Similar proteolytic processing of PrP between species may
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account for reduced tolerance towards certain common regions. The structured C- 

terminal portion o f PrP is underrepresented among human proteosome digests (Tenzer 

et al., 2004), thus it may be less frequently presented during thymic T cell selection, 

allowing some escape o f T cells recognising C-terminal epitopes.

Cytokine responses to PrP peptides were heterogeneous, being characterised either by 

striking induction of IL-6, and to a lesser extent IL-4, or a weak mixed cytokine 

response. Importantly, epitopes spanning the residue 129 polymorphism were 

associated with distinct patterns o f cytokine production. Responses to PrP 128-141 

[129M] were consistently associated with high levels o f IL-6 and IL-4 production 

which were absent in the responses to PrP 128-141 [129V]. This is the first time that 

the residue 129 polymorphism has been implicated in determining the quality o f the 

immune response to PrP.

IL-6 can be produced by T cells, but is also released by monocytes and B cells (Naka 

et al., 2002) which will also be present in a PBMC culture. Could PrP peptides drive 

IL-6 expression by non-T cells in culture? PrP 106-126 has previously been 

demonstrated to induce IL-6 production by human monocyte-derived dendritic cells 

(Bacot et al., 2003). Furthermore, in sporadic CJD, plasma IL-6 levels may be 

elevated (Volkel et al., 2001b). However, where peptides induced very high levels o f 

IL-6 production this was coupled to IL-4 release, suggesting that whatever its source, 

IL-6 was driving a Th2 dominant T cell response. Indeed, IL-6 is required for IL-4 

production by T cells undergoing ThO to Th2 differentiation (Rincon et al.,

1997;Diehl et al., 2002). The overall pattern o f cytokine responses suggests that PrP 

128-141 [129M] and 205-225 may be able to drive a Th2 differentiated response, PrP
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23-36 and 128-141 [129V] give rise to a limited Thl response while other PrP 

epitopes are associated with a weak ThO profile.

It is still not clear to what extent a primed T cell response to PrP can protect against 

prion infection. Vaccination o f A/J mice with PrP 31-50 or 211-230 in CFA led to a 

reduction in PrPSc level in prion-infected N2a tumour grafts (Souan et al., 2001b). 

However, when C57BL/6 mice were inoculated with scrapie following immunisation 

with these peptides, there was no protective response additional to the administration 

o f CFA alone (Tal et al., 2003).

Other vaccination studies have tended to concentrate on generating anti-PrP antibody 

responses (Sigurdsson et al., 2002;Schwarz et al., 2003;Magri et al., 2005;Bade et al.,

2006). However, anti-PrP antibodies raised by vaccination or administered passively 

(White et al., 2003) have thus far only been effective against disease restricted to 

extra-neural tissues, presumably due to poor blood brain barrier penetration. 

Activation o f other components o f the immune system, especially those capable o f 

safe CNS penetration may therefore be a pre-requisite to effective immunotherapy.

The dangers, if any, o f breaking tolerance to PrP are uncertain. The only adverse side 

effect o f anti-PrP vaccination so far reported is dermatitis with mononuclear cell 

invasion and destruction o f hair follicles in Lewis rats several months after 

immunisation with PrP 182-202 (Souan et al., 2001a). The importance o f defining T 

cell epitopes in self proteins that are used as human vaccines was dramatically 

illustrated when 6% of AD patients in a clinical trial o f Ap vaccination developed 

meningoencephalitis driven by T cell invasion o f the CNS (Orgogozo et al., 2003). 

The cause of this side effect is not entirely clear, and may relate to a Thl-dom inant 

response driven by the adjuvant QS-21 (Cribbs et al., 2003). However, an option for
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future vaccine development in AD may be to focus on the N-terminal fragment o f Ap 

that contains the B cell epitope but from which the immunodominant C-terminal T 

cell epitope has been deleted (Schenk, 2002).

These unexpected adverse effects demonstrate that mouse models with homogeneous 

MHC class I and II expression, and/or incomplete recapitulation o f human expression 

patterns o f the target autoantigen, may not be sufficient to model the effects of 

breaking tolerance to self proteins in humans. This study suggests that the 

immunodominant auto-epitopes in human PrP reside between residue 107 and the C- 

terminus, and that the residue 129 polymorphism quantitatively and qualitatively 

influences the immune response to PrP. Furthermore, PrP epitopes recognized by 

donor T cells ex vivo were closely matched to predicted epitopes based on known 

HLA binding motifs. The optimal model for assessing a vaccine based on these 

sequences would be one with humanised PrP and HLA class II expression, such as a 

double transgenic mouse. Whether a robust T cell response to these epitopes will 

result in harmful autoimmunity or be a prerequisite for protection from prion disease 

remains to be determined. However, elucidation o f these immunodominant epitopes 

should help refine rational vaccine design for human prion diseases.
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CHAPTER 4 EXPRESSION AND FUNCTION OF THE 
CELLULAR PRION PROTEIN IN T CELL ACTIVATION

4.1 Introduction

Constitutive expression o f PrPc has previously been documented in human peripheral 

blood lymphocytes and, albeit at a lower level, in mouse thymocytes and lymphocytes 

(Holada and Vostal, 2000;Liu et al., 2001;Li et al., 2001). However, it is also clear 

that levels of PrPc in the lymphoid system are not static and change in response to cell 

activation or maturation. In particular, work from a number o f groups has 

demonstrated that PrPc expression is highly inducible during T cell activation 

(Cashman et al., 1990;Mabbott et al., 1997).

In the work described here I have re-examined the kinetics o f PrP expression during T 

cell activation. I have determined the speed and magnitude o f PrP upregulation at 

both transcriptional and surface protein levels in response to specific peptide-MHC 

stimulation o f T cells. I have also addressed the question as to whether upregulation 

o f surface protein on T cell activation is a general feature o f GPI-anchored proteins or 

a specific property o f PrPc . Using both specific MHC-peptide and polyclonal T cell 

activation, I have investigated the temporal relationship between PrPc upregulation 

and that o f other classical activation markers.

Despite being robustly upregulated in T cell activation, it is far from clear that PrPc 

has a functional role in activation, with conflicting reports in the literature on the 

proliferative response o f PrP‘ ‘ lymphocytes to mitogens. To resolve these difficulties 

I stimulated splenocytes from PrP+/+ and mice with a variety o f mitogens to assess 

proliferative potential and measured cytokine production in cells cultured with the T 

cell mitogen Concanavalin A. I also examined whether including a phase o f in vivo T
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cell activation reveals any difference in the antigen-specific T cell response in P rP '' 

mice. Finally, because PrPc has been claimed to accumulate at the immunological 

synapse (Ballerini et al., 2006) and to co-localise both with MHC class II and the 

TCR (Burthem et al., 2001;Stuermer et al., 2004), I examined whether the efficiency 

of superantigen induced T cell-APC conjugation is affected by the absence o f PrPc .

The findings presented here raise important questions about the role o f PrPc in the 

immune system and the possible effects o f ligating or ablating lymphoid PrPc as part 

o f a therapeutic strategy.

4.2 Results

4.2.1 PrPc, CD69 and CD25 upregulation in activated CD4 

splenocytes

I stimulated splenocytes from FVB/N mice with soluble anti-CD3 and anti-CD28 and 

observed the expression o f PrP, CD69 and CD25 in CD4+ lymphocytes during the 

first 72 hours o f activation. The first marker to be upregulated was CD69, with 

approximately 70% of CD4 cells expressing this marker within 4 hours o f activation, 

rising to over 80% by 24 hours and over 90% by 48 hours (Figure 4.1 A). This was 

followed by CD25, which was expressed by ~ 25% of CD4+ cells after 8 hours 

stimulation, ~ 50% after 24 hours stimulation and universally expressed by 48 hours 

(Figure 4 .IB). PrP expression was measured using the delta geometric mean (see 

Section 2.1.13). PrP was first significantly elevated from baseline by 24 hours with 

an approximately 9 -10-fold increase in expression at 72 hours compared to starting 

basal levels and non-activated cells cultured in parallel (Figure 4.1C).
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Figure 4.1 PrP, CD25 and CD69 expression in activated T cells 

Surface expression of CD69 (A), CD25 (B) and PrP (C) in murine CD4+ 

cells stimulated with anti-CD3 and anti-CD28. In activated cells, PrP is 

first significantly elevated from baseline at 24 hours (ANOVA with 

Bonferroni multiple comparisons post test) (C). PrP expression at 24 

hours is higher in cells co-expressing CD25 (ANOVA with Tukey-Kramer 

multiple comparisons post test) (D). In fresh ex vivo splenocytes, PrP 

expression is higher in cells co-expressing CD69 (paired t test) (E).

At 24 hours the rise in PrP expression was greater in the CD69+ CD25+ population, 

compared to the CD69+ CD25‘ population (Figure 4 .ID). Thus, I concluded that PrPc 

is an activation antigen, but that it is more slowly upregulated than CD69 and CD25



following CD3 and CD28 ligation. Further, PrP upregulation proceeds faster with, 

but is not dependent on, co-expression o f CD25.

There was no appreciable change in expression o f PrP or CD25 in non-activated cells 

cultured in parallel (Figure 4.1B-C). CD69 expression did vary somewhat in non­

activated cells, perhaps reflecting the ease with which this marker can be upregulated 

(Figure 4.1 A). However these changes were modest and not sustained. Interestingly, 

PrP expression was slightly higher in CD4+ CD69+ compared to CD4+ CD69' cells 

immediately ex vivo (Figure 4 .IE), suggesting that T cells constitutively expressing 

CD69, perhaps as a result o f activation in vivo, have higher basal PrP expression.

4.2.2 Transcriptional and translational upregulation of PrP in TCR 

tg CD4 lymphocytes

To characterise the expression o f PrP during a more physiological model o f in vitro T 

cell activation I used splenocytes from transgenic mice expressing human HLA-DR15 

and a TCR specific for MBP 85-99 (line 7). Approximately 97% o f the mature CD4+ 

lymphocytes from these animals carry the transgenic TCR and recognise this myelin 

epitope (Ellmerich et al., 2005). Ex vivo culture with a peptide spanning this 

sequence therefore results in uniform activation o f T cells via conjugation with MHC 

class II expressing APCs. When cultured with MBP 85-99 (2 pg/ml) I saw 

reproducible increases in Prnp mRNA from line 7 splenocytes as measured by real 

time RT-PCR (Figure 4.2A). Mean Prnp expression rose 6-fold in the first 8 hours of 

culture, although due to variability between experiments it was only first significantly 

increased compared to baseline at 24 hours. However, Prnp expression at 8 hours 

was significantly greater in activated compared to non-activated cells. By 48 hours, 

Prnp expression was on average ~50-fold increased compared to baseline.
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Figure 4 .2  PrP mRNA and surface protein expression during T cell 

activation

Prnp expression in TCR tg splenocytes stimulated with MHC-peptide (A). 

Prnp levels are significantly elevated compared to unstimulated cells at 8 

hours (paired t test) and compared to ex vivo levels at 24 hours (log 

transformed values ANOVA with Bonferroni multiple com parisons post 

test). At 48 hours Prnp levels are ~ 5 0  tim es greater than baseline (log 

transformed values ANOVA with Bonferroni multiple comparisons post 

test). Surface PrP expression in CD4+ cells activated with specific MHC- 

peptide (B). Levels were first significantly elevated over baseline at 24  

hours (ANOVA with Bonferroni multiple comparisons post test).

These changes were reflected in surface PrP levels, which demonstrated an upwards 

trend at 8 hours and were first significantly increased at 24 hours (Figure 4.2B). 

Interestingly, after this initial lag phase o f ~ 8 hours, surface PrP increased in a 

broadly linear fashion with a ~20-fold increase on baseline expression detectable at 96 

hours.

As a control, splenocytes from line 7 mice were cultured in medium alone. No 

significant changes in surface PrP were seen (Figure 4.2B). However, some changes
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in Prnp level were documented (Figure 4.2A). These were marginal during the first 

24 hours o f in vitro culture, with a significant but small increase by 48 hours.

4.2.3 PrP upregulation in activated line 7 TCR tg CD4 lymphocytes 

co-expressing classical activation markers

To analyse the distribution of the increased PrP expression I compared PrP with 

activation markers CD69, CD25, ICOS and 0X 40 in TCR tg cells cultured for 48 

hours with or without MBP 85-99. Despite robust increases in the percentage of 

CD4+ T cells classed as PrPhlgh (from ~ 5% in non-activated cells to ~ 50% after 

activation), relatively few cells expressed these inducible markers in response to 

activation in this model (CD69 13.3%, CD25 8.2%, ICOS 8.6%, 0X 40 15.1%).

Indeed, appreciable numbers o f CD4+ T cells not expressing CD25, CD69, ICOS or 

0X 40 on peptide stimulation also upregulated PrP levels (Figure 4.3A). However, 

co-expression o f these markers was associated with more efficient PrP upregulation 

(Figure 4.3A). This was particularly marked for 0X 40 and CD25, with a less marked 

effect for CD69 or ICOS co-expression. Thus, although only a minority o f cells that 

became PrPhlgh also expressed other activation markers (Figure 4.3B), those that did 

so, particularly 0X 40 and CD25, were more likely to show increased PrP levels. 

Further, PrP expression levels in activated CD4+ OX40+ cells were significantly 

greater than in activated 0X 40’ cells (Figure 4.3C).
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Figure 4.3 Correlation of PrP expression with other activation antigens 

(A) Comparison of percentage of cells with high PrP expression between  

CD4+ cells that do or do not co-express CD69, ICOS, CD25 or 0X 40 after 

specific MHC-peptide stimulation for 48 hours. Cells that co-express these  

markers on activation are more likely to be PrPhi9h. P values obtained 

using paired t test. In this model only a minority of activated PrPhigh cells 

co-express these other markers (B). On activation, CD4+ cells co­

expressing 0X40 have higher surface PrP levels than 0X40' cells (paired t 

test) (C). (D) Comparison of ICOS, CD69 and CD44 expression between  

PrpNgh ancJ low cej|s cu|t;urecj without stimulation for 48 hours. A 

significantly higher percentage of the PrPhigh cells also expressed CD69, 

CD44 and ICOS (paired t test) compared to PrPlow cells. (E) Comparison of
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Prphigh ce || numbers between CD4+ CD44+ and CD44' populations after 48  

hours activation.

4.2.4 CD4* T cells constitutively expressing activation and 

memory markers are enriched with PrPh,gh cells

Where splenocytes were cultured for 48 hours without peptide, only ~ 5% o f CD4+ T 

cells expressed high levels of PrP. However, of the PrPhlgh cells a significantly higher 

percentage also expressed CD69, CD44 and ICOS compared to PrPlow cells (Figure 

4.3D). This suggests that, as with the wild type cells examined above, CD4+ T cells 

forming the in vivo “activated-memory” pool may be enriched with a PrPhlgh 

population.

4.2.5 CD44* memory cells do not preferentially increase PrP 

expression on T cell activation

In contrast to the activation markers described above, after peptide stimulation the 

percentage o f CD4+ cells that are PrPhlgh did not differ between CD44+ and CD44‘ 

populations (Figure 4.3E). Thus, it appears that although PrP expression and memory 

status correlate during quiescence, the upregulation o f PrP induced by activation 

occurs at least as efficiently in the naive CD4+ lymphocyte population.

4.2.6 Upregulation on T cell activation is not a general property of 

GPI-anchored proteins

One possible explanation for the rise in PrP expression is that this is a general feature 

o f GPI-anchored proteins during T cell activation and not a specific property o f PrPc .

I therefore compared surface PrP expression with that o f the GPI-anchored proteins 

Thyl and Qa2 during ex vivo stimulation o f line 7 splenocytes. Although there was a
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~ 30% increase in surface Qa2 after 48 hours, this was much less than the > 7-fold 

increase observed for PrP, while there was no appreciable change in the level o f Thy 1 

(Figure 4.4). After correcting for multiple comparisons, only the change in PrP 

expression was significant. Thus, it appears that the robust upregulation o f PrP during 

T cell activation is specific and not brought about through general redistribution of 

GPI-anchored proteins.

10_  P<0.001

P>0.05
P>0.05

Qa2 Thy1PrP

0.H

Figure 4.4 Change in surface expression of PrP, Qa2 and Thyl on T cell 

activation

Only PrP expression is significantly increased by activation (log 

transformed values, ANOVA with Bonferroni multiple comparisons post 

test) when line 7 splenocytes are activated for 48 hours in vitro.

4.2.7 Surface PrP upregulation requires de novo protein synthesis

To ensure that the increased surface PrP seen on T cell activation required de novo 

protein synthesis, I conducted the ex vivo stimulation in the presence o f the ribosomal 

toxin Cycloheximide. This almost completely inhibited the increase in PrP seen at 24 

hours, even though Prnp upregulation was not entirely abolished (Figure 4.5A-B).
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This implies that surface changes in PrP in activated lymphocytes are dependent on 

new protein synthesis and cannot be mediated by cycling o f pre-formed protein to the 

surface.
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Figure 4.5 Inhibition of PrP upregulation by Cycloheximide 

(A) Surface PrP in CD4+ cells stimulated with MHC-peptide for 24 hours 

with or without Cycloheximide (CHX). (B) Prnp mRNA levels in activated 

(A) and non-activated (NA) splenocytes cultured for 24 hours with or 

without CHX.

4.2.8 Comparison of PrPc expression in lymphoid and circulating 

CD4+ cells

These experiments were performed using CD4+ splenocytes. However, I wondered 

whether these might differ from circulating PBMCs with respect to PrP expression. A 

comparison of surface PrP demonstrated that line 7 CD4+ splenocytes have 

marginally higher PrP expression than their counterparts in the peripheral blood 

(Figure 4.6), although this was not statistically significant (paired t test).
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Figure 4.6 Comparison of PrP expression between circulating and splenic 

CD4+ T cells

4.2.9 PrP*7* lymphocytes demonstrate normal proliferation and 

cytokine production

Having observed robust PrP upregulation in activated lymphocytes, I then determined 

the extent to which PrP is required for lymphocyte proliferation and cytokine 

production. Splenocytes from wild type FVB/N mice and PrP'7' mice crossed for 5 

generations into the FVB/N strain (F5 colony) were cultured with Con A, SEA, SEB, 

anti-CD3 and anti-CD28 and PMA and Ionomycin. Over a range of concentrations, 

there were no consistent differences in proliferation between PrP+/+ an d '7' splenocytes 

(Figure 4.7A-E). The only significant difference was the response to 0.5 pg/ml Con 

A, which was slightly higher in PrP'7' splenocytes (ANOVA with Bonferroni multiple 

comparisons post test, p<0.01). I then measured cytokine levels in culture medium 

from Con A stimulated splenocytes. Apart from an excess of IL-2 produced by PrP'7' 

cells in response to 1 pg/ml Con A, there were no differences in cytokine levels 

(Figure 4.8A-E).
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Figure 4.7 Proliferation of PrP+/+ and v' splenocytes in response to 

mitogens.

The only statistically significant difference after 64 hours stimulation was 

the response to 0.5 pg/ml Con A, which was slightly higher in PrP 7' 

splenocytes (ANOVA with Bonferroni multiple comparisons post test).
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Figure 4 .8  Cytokine production in PrP+/+ and 7' splenocytes cultured with 

Con A

Responses were not significantly different except for greater IL-2 

production by PrP7' cells in response to 1 pg Con A (ANOVA with 

Bonferroni multiple comparisons post test) (E).
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4.2.10 PrP’1' lymphocytes have normal ex vivo responses to 

antigens following immunisation

These observations were made in vitro and may have missed an essential role played 

by PrPc in vivo. I therefore repeated an ex vivo proliferation assay, but preceded this 

with an in vivo step. PrP' ' mice crossed for 10 generations into the FVB/N strain and 

wild type FVB/N mice were immunised in the footpad with 50 pg HEL or OVA in 

CFA. 10 days later, mice were sacrificed and lymphocytes from draining (popliteal) 

nodes were restimulated with the same antigen. After a 3 day incubation period, 

proliferation of PrP+/+ and PrP' ' lymphocytes was equivalent (Figure 4.9A-B). Thus, 

I concluded that PrP is not required for full T cell activation either in vitro or in vivo.
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Figure 4 .9  Proliferative responses of PrP+/+ and 7' lym phocytes to recall 

antigens
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Proliferation of popliteal lymph node lymphocytes from PrP+/+ and 7'

FVB/N mice immunised in the footpad with OVA (A) or HEL (B), 

restimulated in v itro  with the sam e antigen at indicated concentrations.

4.2.11 Absence of PrP does not affect T cell-APC conjugation

If PrPc indeed plays a role in the immune synapse, lack of expression might be 

expected to influence T cell-APC conjugate formation. I modelled this in a 

polyclonal system by using the superantigen SEA to cross-link the TCR V|3 chain 

with MHC class II on APCs. T and B cells (as a source of APC) from wild type 

FVB/N and F5 PrP 7' mice were purified. T cells were labelled green with CFDA and 

B cells with the red dye Snarf 1. Upon addition of SEA, T and B cell conjugates were 

detected by flow cytometry as red-green double positive events. I saw no significant 

difference in the proportion of PrP+/+ o r _/' T cells conjugating to syngeneic B cells in 

the presence of SEA (Figure 4.10); around ~ 10% of T cells in each group formed 

conjugates at 2 and 4 hours. PrP+/+ cells showed slightly, but not significantly, greater 

de-conjugation at 6 hours, perhaps reflecting quicker downregulation of the TCR or 

MHC class II.
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Figure 4 .10  PrP+/+ and 7‘ T cell-B cell conjugation induced by SEA 

T and B cells were mixed at a 1:2 ratio with or without SEA (5 M9/ml) fo r 

indicated time periods.

4.3 Discussion

The principle function of T cells is to become activated in response to specific antigen 

presented by MHC on an APC. The major effects of this are cytokine production and 

cell division, followed by apoptosis. This process is complex, with multiple proteins 

involved in the cascade of signalling following TCR engagement. The multiplicity of 

genes involved in T cell activation has recently been glimpsed using microarray 

technology (Hess et al., 2004;Chtanova et al., 2005). Some microarray experiments 

have detected increased PrP transcripts during T cell differentiation (Chen et al., 

2003;Goldrath et al., 2004) and direct measurement of surface PrP by FACS has 

shown it to be upregulated on T cell activation (Cashman et al., 1990;Mabbott et al., 

1997). However, the exact role of PrP in T cell function remains obscure. The aim 

of the experiments described in this chapter has been to confirm and extend existing 

observations of the expression and function of PrPc expression during T cell 

activation. This has facilitated prediction of what model systems might be required to
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firmly establish the function of PrPc and the effects of targeting it as part o f a 

therapeutic strategy.

Although the kinetics of PrP expression during T cell activation have been partially 

elucidated in human and mouse lymphocytes, the precise relationship between Prnp 

transcription and PrP translation during this process has not been determined.

Further, the relationship between PrP upregulation and expression of other activation 

markers has not previously been studied. Moreover, with the exception of recent 

work by Ballerini and colleagues (Ballerini et al., 2006), previous studies have 

employed polyclonal activation using non-specific mitogens. Thus, observed effects 

will have been modified by the presence of cells of differing proliferative potential 

and by activation of non-T cells in the culture. In the work described here, I sought to 

resolve these outstanding questions using a combination of polyclonal and 

monoclonal stimulation of murine T lymphocytes. I then asked whether T cell 

activation would proceed normally in the absence of PrP, an issue on which there is 

conflicting published data.

I followed PrP mRNA and surface protein levels for the first 48 and 96 hours 

respectively of activation in TCR transgenic cells. These cells represent an essentially 

monoclonal population that is specifically activated via the TCR by peptide presented 

by MHC class II on B cells and DCs in the splenocyte culture. Although necessarily 

conducted in vitro this more closely resembles physiological T cell activation as it 

obligatorily involves MHC-peptide-TCR conjugation and allows analysis of a clonal 

population of cells responding identically to their cognate epitope.

In these experiments PrP mRNA increased 6-fold after 8 hours of activation, with 

surface PrP on CD4+ cells increasing to a similar degree after 24 hours. The overall
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increase in PrP mRNA was approximately 50-fold at 48 hours, with surface protein 

increasing 20-fold by 96 hours. This difference may be accounted for by degradation 

of mRNA prior to translation, or trafficking of PrP to cell compartments other than 

the surface membrane.

The kinetics of surface PrP upregulation in the line 7 TCR tg model were similar to 

those observed with polyclonal stimulation of wild type murine CD4+ cells, with 

significant increases only detectable after 24 hours, followed by further rises up to at 

least 72-96 hours. PrP upregulation does not therefore appear to be dependent on 

specific MHC-peptide-TCR signalling but at a minimum may require non-specific 

TCR stimulation. Indeed, others have not been able to demonstrate PrP upregulation 

when cells were treated with PMA (Antoine et al., 2000). Thus, it appears that 

peptide-MHC, anti-CD3 and Con A will reliably upregulate PrP, whereas PMA may 

not be so effective. This suggests that upregulation of PrP is linked to T cell signalling 

events upstream of protein kinase C and calcineurin.

A potential limitation of this work is that I performed the quantitative PCR using only 

one internal control, 18S. Endogenous control genes may be subject to changes in 

expression level during T cell activation. However, work by others in the Altmann 

laboratory has shown that 18S expression, to a far greater extent than either HPRT or 

GAPDH, remains stable during T cell activation (S Ellmerich and G Kagaba, 

unpublished observations), and it has been reported that 18S, in contrast to GAPDH 

and |3-actin, remains a reliable indicator of cell number during T cell activation (Bas 

et al., 2004)). An additional concern is that in these experiments total 18S and Pm p  

were measured, whereas only the T cells were activated. Granulocytes, for example, 

do not express as much PrP as lymphoid cells. An artefactual elevation in Pm p  could
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then be generated by a change in the proportion of cells in culture over time.

However, this would have to be an enormous change in cell populations over a 48 

hour period, which is unlikely. Moreover, the vast majority of non red cells in a 

mouse splenocyte culture are B and T lymphocytes which have similar PrP expression 

levels. These concerns could have been addressed by including a second endogenous 

control that was specific for T cells, such as CD2. However, we had not been able to 

optimise the CD2 real time primers prior to performing these experiments. 

Alternatively, we could have purified T cells and added back irradiated B cells as 

APCs.

In addition, Pmp  mRNA estimations were made on the total culture, whereas I only 

studied surface PrP expression on CD4+ T cells. Thus a certain amount of the 

increase in Pmp  mRNA may have been accounted for by upregulation in non-CD4 

cells, such as CD8+ or NK lymphocytes. However, approximately 35% of 

splenocytes from line 7 mice are CD4+, while only about 15% are CD8+ (Ellmerich et 

al., 2005). Furthermore, although CD8+ lymphocytes from line 7 mice do proliferate 

in response to MBP 85-99 in vitro, the degree of proliferation is approximately 10- 

fold less than that induced in CD4+ cells, and requires IL-2 supplementation 

(Ellmerich et al., 2005), which was not used here.

Finally, I also saw changes in Pm p  expression in cells that were cultured ex vivo 

without peptide stimulation. This might be because Pmp  transcription is modestly 

altered by changes in the cell’s external milieu, such as the transition from the spleen 

to ex vivo culture in serum free medium. Indeed, the Pmp  promoter may contain a 

heat shock element (Mahal et al., 2001;Shyu et al., 2002) and other transcription 

factor binding sites through which such a signal could be mediated. Alternatively,
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mRNA stabilisation mechanisms may be altered during preparation of the culture. 

However, these changes are not of the same magnitude as those induced by T cell 

activation and do not lead to appreciable increases in surface PrP expression.

This work demonstrates that under identical activation conditions, other GPI-anchored 

proteins are not robustly upregulated. Thus, PrP upregulation cannot be explained by 

non-specific effects of T cell activation on GPI synthesis and trafficking. The kinetics 

of PrP mRNA upregulation and the specificity of surface PrP upregulation suggest 

that PrP levels during T cell activation are regulated via specific preformed 

transcription factors. Indeed, the PRNP promoter contains a putative NFAT binding 

site (Premzl et al., 2005) and PrP mRNA expression is increased during ThO to Th2 

differentiation (Chen et al., 2003), a process that is dependent on induction of 

NFATc2 expression by IL-6 (Diehl et al., 2002).

The observed increase in surface PrP is dependent on de novo synthesis, as activation 

in the presence of cycloheximide blocked surface upregulation, a phenomenon 

previously observed in monocytes/DCs that upregulate PrP in response to IFN-y 

(Dtirig et al., 2000). Thus, although release to the surface of preformed PrPc has been 

demonstrated in activated platelets (Holada et al., 1998), such mechanisms can be 

discounted as likely sources of increased surface expression in activated T cells.

Interestingly, the dynamics of this process in our models were different from those 

reported by Cashman and colleagues (Cashman et al., 1990). This group measured 

specific PrP mRNA using semi-quantitative Northern blotting in human PBMCs and 

found reduced PRNP signal compared to a-actin after 2 days stimulation with Con A. 

Using FACS they first noticed an increase in surface PrP after 6 hours, whereas I did 

not detect significantly increased surface PrP until 24 hours. The presence of a lag
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phase might reflect a longer signalling pathway in our models, which require TCR 

ligation and signalling that may take 2-4 hours to optimise. Alternatively, murine T 

cells may differ from human PBMCs in their speed of intracellular signalling, as I did 

not see faster surface upregulation following anti-CD3 and anti-CD28 compared to 

MHC-peptide stimulation. However, my results are in general agreement with those 

of Cashman, Mabbott and others in observing PrP upregulation over a matter o f hours 

rather than minutes. Cashman described stabilisation of surface PrP expression level 

by 72 hours with levels remaining elevated for a further 4 days. I did not continue in 

vitro stimulation for this period, but saw no slowing in the rate of upregulation up to 

96 hours in the line 7 experiments.

Surprisingly, the relationship of PrPc expression to that of other activation markers 

has not previously been studied. Following anti-CD3 and anti-CD28 stimulation of 

wild type CD4+ splenocytes, PrP was upregulated more slowly than CD69 or CD25. 

In this model nearly all CD4+ cells had become CD69+ prior to upregulation of PrP. 

PrP upregulation proceeded in both CD25 positive and negative cells at 24 hours, but 

was significantly greater in CD25+ cells. These observations place PrP as a late T cell 

activation antigen. In the line 7 stimulation experiments PrP level was positively 

correlated with co-expression o f CD69, CD25, ICOS and 0X40. However, in this 

TCR tg model, relatively few activated CD4+ cells expressed these well characterised 

antigens, whereas PrP was robustly upregulated. Thus, it appears that co-expression 

of other activation markers is not a pre-requisite to upregulation of PrP.

Consequently, PrP may be of particular use in studying genetically modified cells that 

have lost the propensity to upregulate conventional activation markers.
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The dissociation of proliferation and PrP upregulation from CD25, CD69, ICOS and 

0X 40 expression in the line 7 experiments raises interesting questions about TCR 

function in this model. T cells in this system have a human V(3 transgene which may 

be able to mediate some but not all of the normal signals that follow TCR ligation.

The failure of CD25 upregulation, for example, suggests that activated T cells in this 

model may be relatively insensitive to, and poor producers of, IL-2. This in turn 

might underlie a failure of T cell regulation in these auto-immune encephalomyelitis 

prone animals (Malek and Bayer, 2004). Although PrP upregulation proceeds faster 

in CD25+ T cells, substantial increases were also observed in the absence o f CD25 

expression, in both wild-type and TCR tg cells. Thus, PrP is regulated by different 

mechanisms than those controlling other activation markers.

An important consideration is whether PrP upregulation during T cell activation is a 

necessary event for this process to be fully completed, or merely a consequence of it 

without any functional significance for proliferation. I attempted to address this issue 

using PrP knockout mice. These lines were initially generated to test the prion 

hypothesis -  that cellular PrP is necessary for prion replication and pathogenesis. 

However, they also provide an opportunity to study the effects of deleting PrP and 

thus inform on the function of the protein. The two most widely used PrP'7' mice were 

made using slightly different approaches (reviewed in Weissmann and Flechsig,

2003). The first described was the Zurich I mouse (Bueler et al., 1992) followed by 

the Edinburgh P m p f~ strain (Manson et al., 1994a). Interestingly, the Zurich I 

construct retains the 5’-UTR and first two codons of Prnp. This explained why we 

detected Pm p  mRNA in samples from our PrP'7' mice using the Applied Biosystems 

assays-on-demand Pmp  primers (G Kaur, unpublished observations), which hybridise 

within the 5’-UTR (exactly where remains proprietary information). Applied
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Biosystems supply a 25bp context sequence that lies between the hybridisation points 

of the forward and reverse primers. This was synthesised and used as an internal 

primer to amplify the product from the Prnp real time RT-PCR. Sequencing of this 

amplicon showed it to be identical to Pm p  mRNA positions 87-118, which are 

retained in the Zurich I construct (G Kaur, unpublished observations). Thus, I was 

unable to use splenocytes from our PrP* ' mice as a negative control for the qPCR 

detection method.

The neuronal phenotype of P rP '' mice has been extensively characterised. However, 

relatively little work has been undertaken on the function of the immune system in the 

absence of PrP. This consists largely of polyclonal ex vivo stimulation of 

lymphocytes, and results have been conflicting. More recently some groups have 

used PrP deficient mice or cell lines to model more complex processes such as 

peritonitis or intra-cellular parasitosis (de Almeida et al., 2004;Watarai et al., 

2003;Fontes et al., 2005). Such work has also produced comparatively modest, and 

indeed conflicting, results. Although Lindquist’s group recently demonstrated 

impaired regenerative potential in PrP' ' haematopoietic stem cells, this was brought 

out by extensive manipulation o f these cells under extremely harsh in vivo conditions 

(Zhang et al., 2006).

In the first round o f experiments presented here, I used splenocytes from PrP'7' mice 

descended from the orginal Zurich I line. This colony had been subject to only five 

generations of crossing into the FVB/N strain, and therefore cannot be considered 

totally isogenic to wild type FVB/N mice. However, it can be used for elucidation of 

major phenotypic differences. Initially, I stimulated splenocytes from these and wild 

type FVB/N mice with a range of agents capable of polyclonal stimulation -  anti-CD3
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and CD28, Con A, PMA/Ionomycin, SEB and SEA. In addition, I measured cytokine 

levels in the culture medium of cells stimulated with the highest concentrations of 

Con A. These experiments did not reveal any clear differences between PrP+/+ an d ' ' 

splenocytes. If anything, P rP '‘ mice made slightly better proliferative and IL-2 

responses to Con A, in contrast to previous reports of hyporesponsiveness (Mabbott et 

al., 1997;Bainbridge and Walker, 2005). Our data are generally consistent with those 

of Bueler et al, who in reporting the phenotype of the initial Zurich I mouse, describe 

normal responses to Con A stimulation (Bueler et al., 1992).

Although not essential for mitogen-induced proliferation I wondered, based on the 

localisation of PrP in lymphocyte lipid rafts and its co-immunoprecipitation with key 

proximal signalling molecules (Mattei et al., 2002;Mattei et al., 2004;Hugel et al., 

2004;Stuermer et al., 2004), if PrPc was implicated in function of the immunological 

synapse. This is a reorganisation of molecules immediately surrounding the TCR- 

MHC interaction that facilitates signalling between T cell and APC (Dustin, 2005). 

Successful immunological synapse formation is contingent on conjugation between an 

individual T cell and APC. As a model for this I used MHC class II presentation by B 

cells of the superantigen SEA to T cells. T-B cell conjugation caused by SEA was 

identical between PrP deficient and wild-type cells. Although the superantigen- 

induced immunological synapse may differ in some respects from conventional 

MHC-peptide-TCR ligation, it is similar in being integrin dependent (Morgan et al., 

2001). Ballerini and colleagues recently reported that despite its presence at the 

synapse during antigen-driven T-DC conjugation, PrP did not co-localise with 

integrin LFA-1, nor with CD3, CD43, LAT or Thy-1 (Ballerini et al., 2006).
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A number of caveats may be pertinent to evaluation of the experiments comparing 

PrP+/+ and lymphocytes described here. First, it is possible that the F5 PrP'7' mice 

are not sufficiently homologous to the FVB/N strain to allow genuine comparison. 

Thus, differences due to absence of PrP may be obscured by differences due to non­

identical genetic background. Second, as with prior work on PrP and T cell 

activation, cells were stimulated with non-specific mitogens that activate a variety of 

cells and a selection of T cell clones. Third, a protein’s effects may only be mediated 

in vivo where its natural ligand is available. Thus experiments performed in vitro to 

detect effects of specific protein ablation may produce false negative results.

I sought to overcome these limitations by using the newly available F10 colony 

established by the MRC Prion Unit. This consists of PrP'7' mice that have been 

backcrossed with the FVB/N strain for 10 generations. Using these animals I repeated 

the proliferation experiment using a specific antigen and introducing an in vivo 

priming stage by immunising mice in the footpad with the same antigen 10 days prior 

to lymphocyte harvesting. Once again, no difference in ex vivo proliferation could be 

demonstrated.

My failure to demonstrate a significant effect of embryonic PrP deletion on T cell 

conjugation, proliferation or cytokine production brings into question whether the 

previously reported hypoproliferation in PrP'7' lymphocytes is really due to loss of 

PrP. The only group to have found a deficit in Zurich I mice was Mazzoni and 

colleagues (Mazzoni et al., 2005). However, this work was performed on mice >10 

generations backcrossed onto a BALB/c background. Further, Mabbott and 

colleagues’ data on the Edinburgh 129/Ola PrP'7' mouse (Mabbott et al., 1997) could
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not be replicated by Liu et al (Liu et al., 2001). There are a limited number of 

explanations for these conflicting results:

1) All differences between PrP+/+ an d ' '  mice so far reported are due to inadequate 

matching of knockout and control strains.

2) Some mouse strains, eg. FVB/N can compensate for the loss of PrP, whereas others 

eg. BALB/c cannot. This might reflect differing basal levels of PrPc expression in T 

cells.

3) P rP '' T cells have normal proliferative potential but PrP A APCs are deficient at 

providing co-stimulatory signalling. Thus, only experiments in which T cell 

activation is largely or entirely APC-dependent will demonstrate differences between 

PrP+/+ and ';' lymphocytes. This hypothesis is supported by recent work by Ballerini 

and colleagues (Ballerini et al., 2006) but can only be fully resolved by crossing a 

TCR tg line onto a PrP' ' background.

4) Proliferation of individual effector P rP '' lymphocytes is normal, but differences are 

due to altered ratios o f T and non-T cells or naive, memory and regulatory T cells due 

to an effect of PrP deletion on cell ontogeny or survival.

5) Proliferation of individual effector PrP' ' lymphocytes is normal, but differences are 

due to altered function o f regulatory T cells.

In conclusion, embryonic deletion of PrP does not significantly alter basic T cell 

functions, such as conjugation with APCs, proliferation and cytokine production. In 

work presented elsewhere in this thesis, I have attempted to address the remaining 

unresolved questions in points (4) and (5) above, namely to determine whether PrP is
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important in the ontogeny and function of key sub-classes of T cell -  those mediating 

immunological memory and regulation.

Finally, what can we say about the function of PrPc in T cell activation from this 

work? The fact that it is not significantly upregulated until several hours of activation 

suggests that it is not required for the most proximal events. This is supported by my 

failure to demonstrate a role for the protein in T cell-APC conjugation, proliferation 

or cytokine production. What more distal processes might require PrPc? The 

majority of T cells undergo apoptosis following activation. PrPc has been implicated 

in both pro- and anti-apoptotic pathways in neurons (Kuwahara et al., 1999;Bounhar 

et al., 2001;Chiarini et al., 2002;Paitel et al., 2002;Paitel et al., 2003). Preliminary 

work suggests that PrP'7' T cells do not show major alterations in propensity to 

activation-induced cell death (data not shown), however this requires formal 

validation. Alternatively, an immune response may fail if effector cells prematurely 

enter senescence. There is evidence that PrP'7' HSCs show reduced repopulative 

potential (Zhang et al., 2006) and that PrP+7+ T cells undergo fewer mitoses when 

antigen challenged in PrP'7" hosts (Ballerini et al., 2006). Prnp is modestly 

upregulated during CD8+ T cell repopulation of a lymphopaenic compartment 

(Goldrath et al., 2004). Thus, PrPc may be implicated in the medium to long-term 

requirement of T cells and other effector and supporting immune cell populations to 

remain “replication” competent in situations of physiological stress. Further 

manipulation of PrP'7' animals and development of conditional knockout models will 

assist in validating this hypothesis.

These data also suggest that gene silencing of PRNP is unlikely to have a major effect 

on the proximal arms of the T cell response to activation, although embryonic deletion
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cannot entirely model the effects of post-natal knockdown. However, we can be less 

certain about the effects of antibody or drug targeting of PrPc . Agents that 

preferentially bind PrP11'8*1 cells and label them for removal may have a devastating 

impact on the immune response. Alternatively, they may result in blockade or 

augmentation of PrPc-mediated signalling. Fully predicting the effects of this 

requires elucidation of the normal function of the protein, or at least modelling the 

effects of ligating it with a putative ligand. To date, experiments in this area have 

been limited to short term in vitro treatment of lymphocytes with anti-PrP mAb. 

Longer term and in vivo administration of anti-PrP mAbs and other PrP-specific 

compounds will be required to determine the effects on immune function and 

consequently, the safety of such agents.
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CHAPTER 5 EXPRESSION AND FUNCTION OF PRPC 
IN MEMORY AND REGULATORY T CELLS

5.1 Introduction

As already discussed, PrPc is constitutively expressed in mammalian lymphoid cells 

and can be induced to increase its expression by T cell activation. However, little is 

known about how constitutive expression levels vary between mature lymphocyte 

subclasses. The aim of the work presented here was to further investigate the 

distribution and function of PrPc expression within different populations of T 

lymphocyte. By dissecting out expression patterns I hoped to shed more light on the 

putative role of the protein. In addition, characterising the exact way in which the 

immune system uses PrPc will help design anti-prion therapies. For example, as 

discussed earlier, drugs that specifically or non-specifically bind the normal prion 

protein may interfere with its function. The extent to which this will precipitate 

immunopathology depends on which elements in the lymphoid system express the 

highest amounts of PrP or are particularly functionally dependent on PrPc expression.

Furthermore, one possible explanation for the previously reported hyporesponsiveness 

of PrP 7' splenocytes to mitogens is that researchers have not been comparing identical 

cell populations. Swift proliferative responses to antigenic stimulation are provided 

by memory cells, whereas regulatory T cells can suppress this proliferation. Thus, 

changes in the relative numbers or function of these classes of lymphocyte might bias 

an experiment where the readout is proliferation of a population of unfractionated 

lymphocytes.
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5.1.1 Specialisation of peripheral lymphocytes into memory cells

Lymphocyte maturation occurs in the thymus, where TCR expression is determined 

and T cells with potentially autoreactive specificities are deleted. A major marker of 

maturation is the co-expression of CD4 and CD8 antigens, followed by 

downregulation of one of these, leaving single positive CD4 and CD8 cells. These 

mediate helper functions via MHC class II restricted antigen presentation (CD4+), or 

cytotoxic activity in response to peptides presented by MHC class I (CD8+).

However, once in the periphery, further differentiation of mature T cells can occur. 

Following initial exposure to antigen, naive T cells proliferate to expand the pool of 

effector cells. After this response, a proportion of cells avoid activation induced cell 

death to become memory cells. These are primed for rapid helper or cytotoxic 

functions on repeat exposure to their cognate antigen. Memory differentiation 

involves changes in surface expression of a number of key markers, in particular 

upregulation of CD44 and, in certain subsets, downregulation of CD62L. In mice 

downregulation of CD45RB occurs, whereas human memory T cells switch CD45 

isoform from RA to RO. To provide effective defence, memory cells must patrol 

potential sites of repeat encounter with antigen, such as major peripheral organs, sites 

of injury, and lymph nodes. This gives rise to further differentiation, for example 

CCR7+ central memory cells circulate between secondary lymphoid organs while 

CCR7‘ effector memory cells patrol peripheral non-lymphoid tissues (Sallusto et al., 

1999).

One group has reported higher surface PrP expression in CD45RA+ compared to 

CD45RO+ PBMCs (Li et al., 2001). However, it is not clear that these cells were co­

stained for CD4, although non-specific fractionation techniques were employed. 

Thus, non T cells may have been included in either the RA+ or RO+ populations,
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potentially skewing the results. Further, T cells bearing other phenotypic memory 

markers have not been examined for PrP expression.

5.1.2 Regulatory T cells

The possible existence of naturally occurring T cells with the capacity to suppress 

auto-immunity was raised in the 1970s by Penhale, who reported spontaneous 

thyroiditis in thymectomised rats that could be abrogated by transfer of lymphocytes 

from healthy donors (Penhale et al., 1976). Later workers including Sakaguchi and 

Mason extended the range of organ specific auto-immune diseases that could be 

induced in rodents by thymectomy in early post-natal life and further observed that 

disease reversal required transfer o f a subset of CD4+ cells (Fowell and Mason, 1993). 

These phenomena were subsequently linked to loss and then reconstitution of a 

population of CD4+ T cells that develop in, and then exit, the thymus and 

constitutively express CD25 (reviewed in Sakaguchi, 2005). A similar population has 

been identified among human PBMCs. These cells, termed regulatory T cells (or 

Tregs) have been shown to efficiently suppress effector T cell functions, including 

proliferation and cytokine release, both in vitro and in vivo. However, the exact 

mechanism by which this is mediated remains unclear, with conflicting data on the 

necessity of cell-cell contact or anti-inflammatory cytokines. The phenotypic 

identification of Tregs has been assisted by the discovery that they express the 

forkhead family transcription factor Foxp3, the only major class of T cell to do so.

Microarray analysis has revealed PrP to be transcriptionally upregulated in certain 

classes of regulatory T cell (Huehn et al., 2004). However, PrP expression in 

regulatory T cells has not been directly determined. The identification of CD25 and 

Foxp3 as Treg markers has facilitated identification and isolation of constitutive
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regulatory T cells using flow cytometry or bead-based techniques. This provided an 

opportunity to define PrP expression in regulatory T cells and to assess the ontogeny 

and function of Tregs in PrP" ' animals.

5.2 Results

5.2.1 PrP*7' mice have essentially normal numbers of CD4* and 

CD8+ T cells

First, I assessed the relative numbers of CD4+ and CD8+ cells in wild type and PrP"' 

mice (10 generations crossed to FVB/N) in spleen, peripheral (inguinal and axillary) 

and mesenteric lymph nodes. No major differences in CD4+ and CD8+ numbers were 

seen (Figure 5.1 A-C), although P rP '' mice had a slightly higher percentage o f CD8+ 

cells in peripheral lymph nodes, producing a marginally reduced CD4:8 ratio (Figure 

5. ID). In thymus, relative numbers of double negative, double positive and single 

positive cells were equivalent (Figure 5.1G-H). However, I found that more PrP' ' 

CD4+ CD8+ thymocytes expressed CD25 than the equivalent population in PrP+/+ 

mice. CD25 is expressed by a proportion of double negative immature thymocytes; 

failure to downregulate this marker during the double positive stage may indicate 

arrest or delay in T cell maturation. However, numbers of CD4+ CD8+ CD25+ cells 

were small and final numbers of mature single positive cells were similar, suggesting 

that there is not a significant problem with thymocyte maturation in PrP' ' mice. I 

concluded that PrP'7' mice have grossly unpeturbed lymphoid ontogeny.
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Figure 5.1 Relative numbers of CD4+ and CD8+ T cells in PrP+/+ and 7' 

mice

CD4+ and CD8+ T cell numbers in peripheral (A) and mesenteric (B) lymph 

nodes and spleen (C) from PrP+/+ and FVB/N mice. PrP7' mice had 

slightly higher proportion of CD8 cells in peripheral lymph nodes (t test)

(A), producing a reduced CD4:8 ratio (Mann-Whitney test) (D). CD4:8 

ratios in mesenteric nodes (E) and spleen (F) were identical. In thymus, 

percentages of double negative, single positive cells (G) and double
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positive (H) and were equivalent. (I) More PrPv'CD4+ CD8+ thymocytes 

expressed CD25 than the equivalent population in PrP+/+ mice (t test).

5.2.2 Surface PrPc expression level correlates with memory T cell 

markers

I then examined PrPc expression in wild-type murine splenocytes and human PBMCs 

to determine which cells harboured the highest expression levels. Splenocytes from 

adult C57BL/6 mice were stained for CD4, for a selection of memory markers and for 

PrP. The cut-off between PrP “low” and “high” populations was determined by an 

isotype control for the anti-PrP mAb. The proportion of cells in each group 

expressing phenotypic memory markers was then determined. I found that PrP11'811 

cells are highly enriched with respect to expression of a memory phenotype 

(CD62Llow, CD44high, CD45RBlow), whereas PrPlow cells represent a more 

heterogeneous population with a mixture of memory and naive cells (Figure 5.2A). 

Further, a direct comparison of PrP expression between CD62Llow and hlgh subsets 

revealed this to be significantly higher in the CD62Llow (memory) population (Figure 

5.2B). Interestingly, in these fresh ex vivo cells, only a minority of those with a 

memory phenotype were PrPhlgh, although this was higher than the proportion of non­

memory cells with high PrP expression (Figure 5.2C). Thus, in mice the small PrPhlgh 

CD4+ fraction represents a highly selected subpopulation of the memory cell pool; 

whether PrPhlgh and PrPlow memory cells are functionally different remains unclear.
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Figure 5.2 Correlation of PrP expression with memory T cell markers 

(A) Comparison of memory marker expression between PrPlow and high 

C57BL/6 CD4+ cells. The PrPhigh population has a significantly greater 

proportion of cells with a memory phenotype (ANOVA with Bonferroni 

multiple comparisons post test). (B) PrP expression is significantly higher 

in the CD4+ CD62Llow compared to the CD62Lhigh population (paired t test). 

(C) Proportion of cells in memory and naive populations with high PrP 

expression. Only a minority of cells with a memory phenotype were 

PrPh,g\  although for each memory marker this was higher than the 

percentage of PrPh,gh naive cells (ANOVA with Bonferroni multiple 

comparisons post test).
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5.2.3 PrPc expression in human CD4* and CD8* T cells correlates 

with the CD44high but not the CD62Llow memory phenotype

I then assessed PrPc expression in human memory T lymphocytes. PBMCs from 

healthy donors (n=3) were stained for CD4 or CD8, CD44 or CD62L and PrP. After 

gating on viable CD4+ or CD8+ populations, cells were split into CD44 or CD62Lhlgh 

and low. The mean PrP expression in each group was determined and the ratio of 

expression in memory to naive cells calculated. CD44hlgh CD4+ and CD8+ memory 

cells expressed about twice as much PrP as CD44low naive cells (Figure 5.3A-B). 

However, CD62L downregulation did not correlate with PrP expression (Figure 5.3A- 

B). Thus, in humans the CD44 memory antigen correlates with PrP expression, as 

already reported for CD45 isoforms (Li et al., 2001), whereas CD62L and PrP 

expression are not related.

Using ICSM18 to detect surface PrP in human T lymphocytes, two peaks 

corresponding to PrPlow and hlgh populations are frequently visible (see Figure 2.2). 

The proportion of PrPhlgh cells in the three donors studied ranged from 20-42% for 

CD8+ cells and from 15-38% for CD4+ cells. The CD4+ and CD8+ PrPhigh fractions 

are overwhelmingly CD44hlgh (>90%) compared to the PrPlow population (Figure 

5.3C-D). However, as in mice, the CD4+ and CD8+ PrPhlgh populations do not contain 

all the CD44high cells. Thus, they represent a selected memory cell sub-population of 

uncharacterised functional significance. In contrast, CD62L expression does not 

differ substantially between PrPhlgh an d low populations (Figure 5.3C-D), in keeping 

with the results above.
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Figure 5.3 Correlation of PrP with memory markers in human PBMCs 

Ratio of surface PrP expression between memory and naive CD4+ (A) and 

CD8+ (B) PBMCs from three human donors. High expression of CD44 is 

associated with significantly greater PrP expression, whereas CD62L levels 

do not correlate with PrP expression (log transformed values, one sam ple 

t test). Comparison of memory marker expression between PrPl0W and high 

CD4+ (C) and CD8+ (D) PBMCs. The PrPhigh fractions contain significantly 

greater numbers of CD44high cells compared to the PrP,ow population (t 

test), whereas numbers of CD62L|0W cells do not differ between the two 

groups.
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5.2.4 PrP'1' mice have reduced numbers of memory T cells

Because high expression of PrP appeared to be a property of memory cells in mice 

and humans, I then examined whether PrP deficient animals had normal numbers of 

memory T cells. Splenocytes from wild type and PrP' ' mice (10 generations 

backcrossed to FVB/N) were stained for CD4 or CD8 and for memory markers CD44, 

CD62L and CD45RB. I found that P rP '' mice had slightly but significantly fewer 

CD4+ T cells expressing high levels of CD44 and low levels of CD62L, with no 

difference in numbers of CD45RBlow cells (Figure 5.4A). Similarly, P rP '' mice were 

slightly deficient in CD8+ CD44hlgh lymphocytes, although there was no significant 

difference in the numbers of CD8+ CD62Llow cells (Figure 5.4B). Thus, I concluded 

that PrP may be required for the maintenance of a full memory T cell compartment, 

although it is not essential for memory T cell development.

■  PrP**
□  PrP-'-

CD44CD62L CD45RB
high low low h*9h ,ow

Figure 5.4 Relative numbers of memory cells in PrP+/+ and 7' mice 

Comparison of percentage of CD4+ (A) and CD8+ (B) splenocytes  

expressing phenotypic memory markers between PrP+/+ and 7* FVB/N 

mice. PrP7' mice have significantly fewer CD4+ T cells expressing high 

levels of CD44 and low levels of CD62L (ANOVA with Bonferroni multiple
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comparisons post test), with no significant difference in numbers of 

CD45RBlow cells (A). PrP7' mice are deficient in CD8+ CD44high 

lymphocytes (ANOVA with Bonferroni multiple comparisons post test), 

with no significant difference in the numbers of CD8+ CD62Llow cells (B).

5.2.5 Correlation of PrP and CD25 expression in CD4* T cells

The reduced numbers of memory cells among P rP '' splenocytes offers one 

explanation as to why some investigators have reported reduced proliferation in 

mitogen stimulated P rP '' splenocytes. An alternative explanation is that PrP7' mice 

harbour different numbers or altered function of suppressor cells. I thus sought to 

characterise the expression of PrP in regulatory T cells and to determine if their 

number and function were normal in PrP deficient animals. I initially observed that in 

C57BL/6 mice the ~ 10% of CD4+ splenocytes constitutively expressing CD25 

contained more PrPh,gh cells than the CD4+ CD25* effector pool (Figure 5.5A). I also 

observed in two human donors that the 0.5% of CD4+ cells with the highest CD25 

expression had ~ 50-75% higher PrP expression than CD25low and negative cells 

(Figure 5.5B).

5.2.6 CD4* CD25+ Foxp3+ Tregs express high levels of surface PrP

To examine the relationship between PrP expression and regulatory cell phenotype 

more directly, I used flow cytometry to identify regulatory T cells from spleens of 

wild-type FVB/N mice by staining for surface CD25 and intracellular Foxp3. 

Approximately 7% of CD4+ splenocytes expressed these two markers. I co-stained 

for PrP and calculated PrP expression level as the delta geometric mean. I observed 

approximately 10-fold higher surface PrP expression in CD4+ CD25+ Foxp3+ T regs 

than in non-regulatory CD4+ T cells (Figure 5.6).
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Figure 5.5 Correlation between PrP and CD25 in CD4+ lymphocytes

(A) PrP expression in CD4+ CD25' and CD4+ CD25+ C57BL76 splenocytes. 

A significantly greater proportion of CD4+ CD25+ cells are PrPhigh (t test).

(B) PrP expression in CD4+ CD25' and CD4+ CD25+ PBMCs from two 

human donors.
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Figure 5.6  Correlation of PrP with CD25 and Foxp3 in murine splenocytes  

Comparison of PrP expression between CD4+ CD25‘ Foxp3' and CD4+ 

CD25+ Foxp3+ T cells from FVB/N mice. Cells with a Treg phenotype have 

significantly higher surface PrP expression (t test).
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5.2.7 PrP is transcriptionally upregulated in Tregs

To confirm these findings at the transcriptional level, 1 used FACS sorting to separate 

CD4+ T cells from C57BL/6 mice into CD25 positive and CD25 negative fractions. I 

then determined FoxpS and Prnp mRNA expression in these two populations by real 

time RT-PCR. The effective separation o f Tregs from other T cells using this method 

was validated by finding that the CD4+ CD25+ fraction contained ~ 100 times more 

Foxp3 mRNA than the CD4+ CD25' population, suggesting that I had indeed 

discriminated Tregs from effector cells (Figure 5.7A). I then found that Prnp 

expression was ~ 4.5-fold higher in CD4+ CD25+ cells than in CD4+ CD25' cells 

(Figure 5.7B). Thus, I concluded that Prnp is preferentially expressed by Tregs.

Figure 5.7  Expression of Prnp and Foxp3 in murine CD4+ splenocytes 

Analysis by real tim e RT-PCR of Foxp3 (A) and Prnp (B) transcription in 

CD4+ CD25' and CD4+ CD25+ splenocytes from C57BL/6 mice. The CD4+ 

CD25+ fraction contains significantly more Foxp3 and Prnp mRNA than the 

CD4+ CD25' population (Mann-Whitney test).
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5.2.8 PrP''' mice have normal numbers of Tregs and Foxp3 

expression levels

These data raise the question as to whether Treg ontogeny or function will be affected 

by the absence of PrP. Using flow cytometry, I determined the percentage of CD4+ 

CD25+ Foxp3+ cells in thymus, spleen, mesenteric and non-mesenteric lymph nodes 

from PrP+/+ and ~,m mice. I found no deficit in Treg number in P rP '' mice, indicating 

that these cells do not require PrP for their thymic development or maintenance in the 

periphery (Figure 5.8A). The level of Foxp3 expression was also no different 

between PrP+/+ an d _/' mice, although in both strains CD4+ CD25+ thymocytes 

expressed slightly higher Foxp3 than peripheral Tregs (Figure 5.8B).

Spleen Peripheral M esenteric Thymus Spleen Peripheral M esenteric Thymus
LNs LNs LNs LNs

Figure 5.8  Regulatory T cell numbers and Foxp3 expression in PrP+/+ and 

7‘ mice

(A) Percentage of CD4+ CD25+ Foxp3+ Tregs in thym us and peripheral 

lymphoid tissues from PrP+/+ and 7‘ FVB/N mice. (B) Foxp3 expression  

levels determined by flow cytom etry in CD4+ CD25+ Foxp3+ Tregs in 

thymus and peripheral lymphoid tissues from PrP+/+ and 7' FVB/N mice.
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5.2.9 PrP* Tregs have enhanced suppressor function

Finally I determined whether Treg function would be affected by embryonic deletion 

of PrP. CD4+ lymphocytes were purified from spleens of PrP+/+ and ‘ " mice and 

further split into CD25+ and CD25" fractions. CD4+ CD25' cells were stimulated with 

anti-CD3 and anti-CD28 coated beads in the presence of an increasing number of 

syngeneic or congeneic CD4+ CD25+ cells. This resulted in almost complete 

suppression of proliferation at high ratios of regs:effectors (Figure 5.9A-D). 

Interestingly, PrP' ' T regs had greater suppressive capacity than PrP+/+ T regs, 

irrespective of the genotype of the effector population (Figure 5.9E-F). This suggests 

a further explanation for the hyporesponsiveness of P rP '' lymphocytes to certain 

mitogens. Thus, I concluded that PrPc may have an important role in controlling 

excessive suppression by Tregs; conversely, deletion of PrP may enhance the function 

of Tregs where this is beneficial, such as in averting autoimmunity.
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Figure 5.9  Functional assay of PrP+/+ and 7‘ Treg suppression  

Suppression of anti-CD3 and anti-CD28 mediated proliferation of CD4+ 

CD25' T cells by co-culture with increasing numbers of CD4+ CD25+ Tregs. 

Irradiated Tregs (Irr) have no suppressor function. (A) Syngeneic culture 

of PrP+/+ CD4+ CD25' with PrP+/+ CD4+ CD25+ cells. (B) Congeneic culture 

of PrP+/+ CD4+ CD25' with PrP7' CD4+ CD25+ cells. (C) Syngeneic culture 

of PrP7' CD4+ CD25' with PrP7' CD4+ CD25+ cells. (D) Congeneic culture 

of PrP7' CD4+ CD25' with PrP+/+ CD4+ CD25+ cells. (E-F) Proliferation 

shown as percentage of maximal response (CD4+ CD25' cells cultured
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alone), dem onstrates that PrP7* Tregs have enhanced suppressor function 

irrespective of genotype of CD4+ CD25' effector cells.

5.3 Discussion

This work confirms and extends previous observations on the expression of PrP by 

memory T cell subsets. Using flow cytometry, I demonstrated that PrP expression in 

murine CD4+ and CD8+ memory cells defined by high expression of CD44, low 

expression of CD45RB or low expression of CD62L is significantly higher than in 

naive cells with the converse phenotypes. In addition, high CD44 expression 

correlates closely with high PrP expression in human CD4+ and CD8+ PBMCs. This 

confirms a previous observation regarding differential expression of PrP between 

CD45RA and RO expressing PBMCs (Li et al., 2001). However, in humans CD62L 

expression does not correlate with PrP levels. Why this memory marker is different 

from CD44 and CD45 isoforms in humans but not mice remains unclear. One 

possibility is that specific memory markers are dependent on PrP for their expression, 

and that this varies by species. Interestingly, deletion of PrP results in marked 

downregulation of CD44 in mouse fibroblasts and brain tissue (Satoh et al., 2000). 

Another possibility is that CD62L downregulation alone correlates poorly with 

memory cell status in human PBMCs. Certainly, the relationship between CD62L 

expression and CD8+ memory cell differentiation is a complex one, in which surface 

CD62L is initially lost but then regained once antigen clearance has been achieved 

(reviewed in Gourley et al., 2004). Furthermore, CD62L is a lymph node homing 

receptor associated with the central memory phenotype (Sallusto et al., 1999). Thus it 

is likely that memory lymphocytes will be present in both CD62Llow and hlgh fractions,
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perhaps explaining why human CD62Llow cells do not clearly have higher PrP 

expression.

These observations raise important questions about the function of PrP. Why should 

memory cells upregulate this protein? The role of memory cells involves complex 

trafficking and signalling, in which PrP could play a part, perhaps as an adhesion or 

signalling molecule. When does PrP upregulation occur? Do certain cells upregulate 

PrP after they have differentiated into memory lymphocytes? Or is it a reflection of 

previous activation, following which PrP is not downregulated? If so, it appears that 

only a proportion of memory cells maintain high PrP levels while the majority return 

to low constitutive expression.

Thus, the situation is complex in that although the PrPhlgh T cell compartment is very 

highly enriched with memory lymphocytes, there are memory T cells that maintain 

low constitutive PrP expression. It remains unclear exactly which memory cells 

require high PrP and whether they are functionally different from their PrPlow 

counterparts. Analysis of PrP expression in memory cells in different organs and 

functional studies of PrPhlgh and low memory T cells would address this issue. It may 

be that PrP behaves similarly to CCR7 and CD27 in that it is only expressed by 

certain memory cells with particular functions and homing properties.

I sought to address this question by studying memory cell numbers in PrP' ' mice. 

Overall numbers of CD4+ and CD8+ T cells were not consistently different. However, 

we found that P rP '' mice had a slight but significant deficiency of CD4+ CD44hlgh, 

CD4+ CD62Llow and CD8+ CD44hlgh memory cells. As in previous studies, relative 

numbers of thymocyte classes were similar to wild type, suggesting that PrP does not 

play an indispensable role in thymic ontogeny and lymphocyte maturation. The
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deficiency in memory cell number suggests, however, that PrP is important in 

directing peripheral lymphocyte homeostasis. No such effect is seen with respect to 

regulatory T cells, numbers of which were equal in PrP+/+ and ' '  mice, as discussed 

below.

A marker that was upregulated in parallel with PrP would help determine whether it is 

loss of the PrPhlgh memory population seen in wild type animals that accounts for the 

slightly reduced memory cell numbers in PrP’7* mice. This modest deficiency does 

not appear to be sufficient to cause immunodeficiency in a pathogen-poor 

environment. However, more robust manipulation of PrP' ' mice and adoptive transfer 

of memory lymphocytes into congeneic hosts may reveal such an altered phenotype.

How might PrPc contribute to lymphocyte homeostasis and maturation in the 

periphery? Memory T cells are derived from responding clones following an immune 

response. Whether they are randomly selected or pre-determined to avoid AICD 

remains controversial. However, Fas-mediated AICD is the essential mechanism by 

which non-memory lymphocytes are deleted at the close of an effector response. An 

inability to resist Fas-mediated apoptosis would lead to a deficiency of memory 

lymphocytes. PrP'7' neurons are more susceptible to Bax-mediated cell death 

(Bounhar et al., 2001 ;Roucou et al., 2003). However, there is no published work on 

the relationship between Fas and PrPc in lymphocytes.

Another possibility is that PrP'7' naive cells are less able to differentiate into memory 

cells because they are defective in certain aspects of activation. Memory cells are 

generated from the pool of activated lymphocytes following an immune response; if 

fewer daughter cells are generated, then fewer memory cells will result (Hou et al.,

1994). As described in Chapter 4 above, PrP'7' cells proliferate normally in response
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to short term polyclonal activation in vitro. I was not able in the work described here 

to fully ascertain the effects of PrP deletion on the size of specific antigen-driven 

clonal expansion, although the HEL and OVA immunisation experiments suggest that 

this is normal. However, it may be that after repeated rounds of stimulation in vivo, 

Prp-/- j  ceus are jess efficient at continued cell division. This hypothesis might be 

addressed by comparing telomere length in mature CD4+ or CD8+ lymphocytes from 

age-matched PrP+/+ an d ' ’ mice. Such “exhaustion” of cell division could also explain 

the gradual failure of PrP'7' haematopoietic stem cells on multiple rounds of adoptive 

transfer into myeloablated PrP+7+ hosts (Zhang et al., 2006).

Interestingly, the molecular programme underlying haemostatic proliferation in 

lymphopaenia is very similar to that involved in memory cell differentiation (Goldrath 

et al., 2004). Indeed, Prnp mRNA is modestly upregulated in CD8+ memory cells and 

progressively upregulated in naive CD8+ cells entering a lymphopaenic host (Goldrath 

et al., 2004). Thus, via a common but as yet undetermined mechanism, PrPc may be 

important both to situations where multiple mitoses are required to repopulate an 

immunodeficient compartment and in maintenance of a memory pool in 

immunocompetent hosts. This might be further elucidated by studying the mature 

lymphocyte population generated on repopulating a lymphopaenic host with naive 

PrP 7' CD4 or CD8 lymphocytes.

A further consideration that may underlie a deficit in memory cell formation is 

whether lymphocytes mature normally in the absence of PrP. In PrP"7' mice, I 

observed a statistically significant increase in the numbers of DP thymocytes 

continuing to express CD25. The biological significance of this result is unclear. 

Although numbers of mature T cells may differ slightly between PrP+7+ and '7' mice, I
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did not find any gross perturbation of thymocyte maturation as numbers of single and 

double positive cells were equivalent. The persistence of CD25 expression in a small 

number of cells through the double positive stage may imply a block on forward 

maturation, or the persistence of immature cells that under normal circumstances 

ought to be disposed of, presumably via apoptotic cell death. However, the 

proportions of CD25+ double positive thymocytes were extremely small; 0.48% 

versus 0.93%. Thus this seems unlikely to signal a genuine failure of thymic 

maturation. In contrast, mice with ~ 50-fold overexpression of lymphoid PrP have 

thymic abnormalities characterised principally by premature involution and 

interrupted thymocyte maturation at the CD4' CD8' CD44' CD25+ (DN3) stage 

(Jouvin-Marche et al., 2006). On balance, my data and that of Zhang and Jouvin- 

Marche suggest that PrP may be involved in a negative feedback loop in thymic 

differentiation but supply a positive signal in peripheral differentiation.

A further mechanism that could explain the reduced numbers of memory T cells in 

PrP'7" animals is that trafficking of these cells to the spleen is PrP dependent. This 

could have been resolved by comparing memory cell numbers in peripheral lymph 

nodes and among circulating PBMCs. Alternatively, an effect of PrP deletion may be 

downregulation of surface memory cell markers, rather than failure of memory cell 

differentiation. As previously mentioned, PrP deletion results in reduced CD44 

expression in fibroblasts and brain (Satoh et al., 2000). The same effect may apply to 

T cells, resulting in an apparent loss of memory cell numbers. The loss of CD44 

expression from a proportion of memory cells may in itself affect function as CD44 is 

important for lymphocyte adhesion and homing. I did, however, also observe a 

reduction in CD4+ CD62Llow memory cells, arguing against a selective effect of PrP 

deletion on CD44 expression.
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This work is the first in which PrP expression has been directly quantified in 

regulatory T cells. Using CD25 and Foxp3 staining to identify Tregs by FACS, I 

demonstrated a 10-fold increase in surface PrP expression compared to non-regulatory 

CD4+ splenocytes. Further, using real time RT-PCR in cells split by FACS sorting 

into CD4+ CD25+ and CD4+ CD25' fractions, I demonstrated that cells bearing a 

regulatory phenotype have increased Prnp mRNA. One possible criticism of this 

experiment is that the CD4+ CD25+ fraction may have contained numerous activated 

effector cells, which also upregulate Prnp. However, I and others have observed that 

among fresh ex vivo splenocytes from untreated wild type mice the percentage of 

CD4+ CD25+ cells expressing Foxp3 is > 80% (data not shown). In other words, the 

vast majority of CD4+ CD25+ cells in such conditions are genuine regulatory T cells 

and not activated effectors. Further, I confirmed that the sorted CD4+ CD25+ fraction 

was predominantly a regulatory T cell population by comparing FoxpS expression 

with that in the CD25' pool.

Thus, I propose that PrPc can be considered a marker of regulatory T cells, although 

unlike Foxp3 it is not exclusively expressed at high levels by Tregs. PrPc therefore 

has more in common with CD25, GITR, CD40 and CTLA-4, in that it is both an 

inducible marker in activated effector T cells and constitutively expressed by Tregs. 

The precise function of PrPc in regulatory T cells, as in memory cells, remains 

unclear.

I attempted to resolve this by examining Treg number and function in PrP'7' mice, in 

which regulatory T cells have not previously been characterised. I found that PrP 7' 

mice have normal numbers of regulatory T cells in spleen, mesenteric nodes and non-
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mesenteric lymph nodes. Furthermore, Foxp3 expression level as measured by flow 

cytometry did not differ between PrP+/+ and '7' Tregs.

Most interesting was the observation that PrP' ' Tregs have greater suppressive 

capacity than wild type Tregs. This was an unexpected finding, as we had 

hypothesised that the increased Prnp expression in Tregs would be important in 

sustaining their suppressive function. However, it is becoming increasingly clear that 

Treg function is finely controlled and subject to numerous modifying signals, such as 

TLR-8 signalling (Peng et al., 2005). Thus, PrPc may be required to avoid excessive 

suppression, which if unchecked might result in inadequate control of infections and 

failure to reject tumours. The latter does not appear to be a spontaneous feature of 

PrP'7' mice; however, the former has not been tested using a wide range of pathogens. 

Aguzzi and co-workers reported normal CD8+ expansion and antibody production 

after VSV and LCMV infection in mice lacking PrP or both PrP and Doppel (Genoud 

et al., 2004), however full data on the lethality of these infections in PrP'7' mice was 

not given. Another group has reported modest changes in leukocyte infiltrate during 

zymosan induced peritonitis (de Almeida et al., 2004), although the implications of 

this for mouse survival are unclear. Work on viral infection of PrP'7' neurons has not 

considered the role of systemic immunity in handling these pathogens (Thackray and 

Bujdoso, 2002;Baj et al., 2005).

A possible criticism of our data is that the PrP+7+ Treg fraction may not have been as 

pure as the 7‘ population. Failure to remove contaminating effectors from the Treg 

fraction would result in reduced suppressive potential. We checked the purity of all 

fractions used in this experiment, and this was equivalent between PrP+7+ and '7' 

preparations. However, this experiment will require repetition to confirm these initial
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results. Further studies of PrP deletion and reintroduction in the regulatory T cell 

compartment are also required to determine the physiological importance of this 

observation.

These data offer two further explanations for the previously reported 

hyporesponsiveness of P rP '' lymphocytes to mitogens. First, PrP' ' mice may be 

slightly deficient in memory T cells. Second, their Tregs may have better suppressive 

function than those of PrP+/+ mice. These differences may be better compensated for 

in some strains of mice than others. We made these observations in FVB/N PrP' ' 

mice yet, as shown in the previous chapter, these mice have normal proliferative and 

cytokine responses. Ideally, these observations should now be confirmed in PrP'7' 

mice in which hypoproliferation to mitogens has been documented, ie. those made on 

or bred onto a 129/Ola or BALB/c background.

How might PrPc both control the activity of Tregs and contribute to the maintenance 

of memory T lymphocytes? Could PrPc mediate a pro-survival signal into memory 

lymphocytes and also an inhibitory signal into Tregs? This question could be 

definitively answered if the natural ligand of PrPc is identified. One possible 

candidate is the adaptor protein Grb2 (Spielhaupter and Schatzl, 2001), postulated to 

have a binding site involving PrP residues 100-109 (Lysek and Wuthrich, 2004).

Grb2 is intimately involved in linking proximal events following T cell activation 

with distal signalling pathways, and in particular shows an affinity for LAT (Norian 

and Koretzky, 2000;Zhang et al., 2000;Clements et al., 1999). LAT is a key player in 

T cell activation that also negatively regulates T cell homeostasis (Malissen et al., 

2005) and has recently been shown to be important in development of Tregs 

(Koonpaew et al., 2006). It is conceivable therefore, that loss of PrPc may lead to

166



subtle alterations in lymphocyte signalling affecting both Treg function and long term 

memory lymphocyte viability via a common mechanism. Although direct evidence of 

a relationship between LAT and PrP is lacking, treatment of lymphocytes with anti- 

PrP mAbs results in formation of surface “caps” into which LAT mobilises (Stuermer 

et al., 2004). Further, preliminary experiments suggested that tyrosine 

phosphorylation of LAT is reduced in polyclonally activated PrP 7' splenocytes (data 

not shown), although this requires confirmation.

Because of its expression and possible function in regulatory and memory T cells 

PrPc may be an attractive target for immunomodulatory therapy in diseases 

characterised by excessive immune activation such as autoimmunity or transplant 

rejection. Manipulation of regulatory T cells is being developed as a means of 

treating a variety of autoimmune diseases. Further work is required to see if treating 

these cells with anti-PrP mAbs, for example, enhances their suppressive function.

This represents another possible explanation for the reported ability of anti-PrP mAb 

to block T cell activation in vitro.

From these observations can the effects of ligating PrPc in vivo be predicted? An 

extreme possibility is that Tregs and a sub-population of memory T cells will be 

targeted for destruction, especially if a depleting antibody is used. This could result in 

major, potentially life-threatening immunopathology. Loss of memory cells is more 

likely to produce immunodeficiency whereas depletion of Tregs will induce 

autoimmunity. However, some perturbations of the immune system, such as HIV 

infection or treatment with lymphocyte depleting antibodies, can trigger both 

opportunistic infection and autoimmunity (Zandman-Goddard and Shoenfeld, 

2002;Coles et al., 2006).
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Another possibility is that the normal function of PrPc will be disrupted. This might 

result in excessive suppression of immune responses leading to uncontrolled 

infections and tumours. Alternatively, PrP signalling may be enhanced, producing the 

reverse effects. As discussed earlier, using currently available PrP'7 mice to model 

these effects has its limitations, as these mice are kept in pathogen-poor environments 

and may have been able to adapt to germline PrP depletion. Further, excessive 

signalling or “gain of misfiinction” effects of PrP ligation cannot be predicted using 

these animals.

These constraints notwithstanding, it may still be possible to use existing tools such as 

anti-PrP mAbs and PrP'7' mice to determine the role of PrP during a major 

immunopathological challenge in vivo. In the final set of experiments presented in 

this thesis, I studied the effect of PrP ligation or depletion on immune function in an 

archetypal autoimmune disease model, experimental autoimmune encephalomyelitis 

(EAE).
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CHAPTER 6 MODIFYING ROLE OF PRP IN A 
MODEL OF AUTOIMMUNE DISEASE

6.1 Introduction

The upregulation of PrPc in activated T cells and those with memory and regulatory 

function raises the question as to whether ligation of PrP in such cells may modulate 

the immune response. As discussed, PrP co-localises with numerous proteins 

associated with T cell signalling and activation, and antibodies directed against 

surface PrP have myriad effects in vitro including suppression of T cell activation 

(Hugel et al., 2004;Stuermer et al., 2004;Schneider et al., 2003;Li et al.,

2001;Ballerini et al., 2006;Cashman et al., 1990). In the work described here, I first 

attempted to confirm previously published observations on the blocking effects of 

anti-PrP mAbs on T cell activation in vitro.

Further, aside from their ability to block peripheral prion replication (White et al., 

2003), the effects of anti-PrP administration in vivo have not been considered in 

detail. Indeed, little is known about the in vivo effects of anti-PrP antibodies on 

immune function. This is o f major interest for two reasons. First, anti-PrP mAbs are 

envisaged as therapeutic agents in the treatment of prion infection, thus it is important 

to model their biological effects in vivo. Second, the upregulation of PrP in cells 

mediating immune memory, regulation and effector responses suggests that 

manipulation of lymphoid PrP expression or function may have potential as a 

therapeutic strategy in other diseases.

In the work described here I attempted to characterise the effects of PrP ligation in 

vivo, using an archetypal autoimmune disease, experimental autoimmune 

encephalomyelitis (EAE). EAE has been used as a model of autoimmune
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demyelination for over 50 years. It is usually initiated by raising a T cell response 

against myelin antigens by immunisation with self proteins in adjuvant, or adoptive 

transfer of anti-myelin T cells. These then cross the blood brain barrier and initiate an 

inflammatory response in the CNS characterized by a cellular infiltrate, extensive 

destruction of myelin, oedema and axonal and ultimately neuronal loss. EAE has 

principally been developed as a model of multiple sclerosis and as such has been 

instrumental in demonstrating the essential relationship between auto-aggressive T 

cell clones and inflammatory demyelination. Important phenomena such as epitope 

spread have also been characterized using this model. However, recently EAE has 

been criticized as being a rather poor model of MS which, it is claimed, is a more 

complex multiphasic disease in which non-inflammatory or secondary 

neurodegeneration occurs which cannot be resolved with immune based therapies 

(Chaudhuri and Behan, 2004;Sriram and Steiner, 2005). These concerns 

notwithstanding, I chose to study the role of PrP in EAE pathogenesis because it is a 

well characterized T cell driven disease with which the Altmann laboratory has 

considerable experience (Boyton et al., 2005;Ellmerich et al., 2005;Takacs et al., 

1997;Elliott et al., 1996). I initially sought to modulate a well characterized form of 

EAE using anti-PrP mAbs. Finally, I induced EAE in PrP'A mice to assess whether 

disease phenotype would be altered in the absence of PrP.

6.2 Results

6.2.1 ICSM18 specifically inhibits MHC-peptide but not anti-CD3 

driven T cell proliferation

Anti-PrP antibodies have previously been reported to block stimulation of human 

PBMCs with anti-CD3 and Con A (Cashman et al., 1990;Li et al., 2001) and to
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disrupt allogeneic mixed lymphocyte reactions and MHC-peptide driven murine T 

cell proliferation (Ballerini et al., 2006). I stimulated splenocytes from line 7 TCR tg 

mice with MBP 85-99, in the presence of ICSM18 or an isotype control. This 

demonstrated firstly that neither ICSM18 nor the IgGl isotype were immunogenic 

(Figure 6.1 A). I found that ICSM18 specifically inhibited T cell activation but only at 

a high concentration (Figure 6.1 A).

To determine if ICSM18 had a general inhibitory effect on T cell activation I next 

examined its effects on SEB-induced proliferation of splenocytes from FVB/N mice 

carrying a human DR1 transgene. Dendritic and B cells from these animals express 

human DR1, for which SEB has a higher affinity than native murine MHC class II. In 

contrast to MHC-peptide induced T cell proliferation, both ICSM18 and the control 

isotype antibody were able to inhibit SEB-induced activation (Figure 6 .IB). Thus, the 

mechanism of action of anti-PrP may differ according to the mitogenic agent used, 

with a specific role only in obviating MHC-peptide driven proliferation.

Finally, to assess whether the specific effect of ICSM18 could be mediated in the 

absence of APCs, I stimulated purified T cells from DR1 tg FVB/N mice with anti- 

CD3 and anti-CD28 in the presence of ICSM18 or an isotype control. Again,

ICSM18 did not have a specific effect (Figure 6.1C), suggesting that it may only be 

able specifically to disrupt T cell activation that is entirely APC dependent. Both 

antibodies had a strong suppressive effect at the same concentration (10 pg/ml), 

suggesting that the mechanism of suppression in this experiment was competing out 

or steric inhibition of the anti-CD3 mAb.
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Figure 6.1 Effect of anti-PrP mAb on T cell proliferation 

(A) Effect of indicated concentrations of ICSM18 and IgG l isotype control 

on proliferation of TCR tg splenocytes cultured with specific peptide (A) or 

with medium alone (NA). ICSM18 specifically inhibits T cell activation at 

50 pg/ml (ANOVA with Bonferroni multiple comparisons post test). (B) 

Effect of indicated concentrations of ICSM18 or IgG l isotype control on 

activation of DR1 tg splenocytes with SEB (1 pg/m l). (C) Effect of 

indicated concentrations of ICSM18 or IgG l isotype control on activation 

of T cells with anti-CD3 (0 .01  pg/m l) and anti-CD28 (0 .1  pg/m l).

172



6.2.2 ICSM18 administration does not alter the phenotype of EAE 

induced by immunisation of SJL mice with PLP 139-151

Next I attempted to demonstrate an immunosuppressive effect of ICSMI8 in vitro, by 

administering it to mice with EAE. EAE was induced in SJL mice by immunisation 

with PLP 139-151. ICSM18 or an isotype control antibody was administered to mice 

either early in the disease course (Figure 6.2A-B) or after a delay (Figure 6.2C-D). 

Neither protocol resulted in any modulation of disease incidence or severity as 

assessed by body weight and clinical score (Figure 6.2A-D).
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Figure 6.2  Effects of anti-PrP mAb on PLP 139-151-induced EAE in SJL 

mice

(A) Mean EAE score and (B) body weight in mice receiving "early" mAb 

treatm ent (days 2, 4, 8 and 15 post induction). (C) Mean EAE score and 

(D) body weight in mice receiving "late" mAb treatm ent (days 6, 8, 10, 

12, 14 post induction). Error bars indicate S.E.M.
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6.2.3 EAE induction in PrP*7* mice results in only minor alterations 

in phenotype

Finally I tested whether the phenotype of EAE would be modified by the complete 

absence of PrP. On the basis of their shared H2q MHC class II allele with the SWR 

strain I assumed that MBP 85-99 was the immunodominant MBP epitope in FVB/N 

mice (Cross et al., 1991), which have previously been shown to be susceptible to 

disease induced by whole MBP (Baker et al., 2000). However, I was unable to induce 

disease by immunizing PrP+/+ and PrP"7" FVB/N mice with MBP 85-99 in CFA (data 

not shown). Instead, I used whole mouse spinal cord homogenate emulsified in CFA. 

This induced only mild self-limiting clinical disease in 2/10 PrP+/+ and 2/11 PrP"7" 

mice. Interestingly, the two sick PrP"7" animals developed signs earlier and had higher 

maximum scores than the two sick PrP+7+ mice (Table 6.1). However, with such small 

numbers of affected animals it is not possible to determine whether this result reflects 

a genuine role for PrP in protecting against EAE or is a chance finding.
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P r P +/t 2 / 1 0 1 6 ,  1 9 1 ,  1 9 % ,  6%

P r P ' 7" 2 / 1 1 1 4 ,  1 4 1 . 5 ,  2 8 % ,  1 1 %

Table 6.1 Incidence and severity of EAE in PrP+/+ and PrP'7' FVB/N mice 

immunised with m ouse spinal cord hom ogenate
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6.3 Discussion

In the work presented here, I sought to utilise my and others’ observations on PrP 

expression in activated T cells to modulate T cell function. Initially I attempted to 

confirm work in which T cell activation was blocked by anti-PrP antibodies (Cashman 

et al., 1990;Li et al., 2001;Ballerini et al., 2006). I found that ICSM18 had a specific, 

if modest, inhibitory effect on MHC-peptide driven clonal T cell expansion.

However, I also found that both ICSM18 and the IgGl isotype control could inhibit 

SEB induced proliferation in HLA-DR1 tg splenocyte cultures.

Further, in contrast to previous studies, ICSM18 had no specific effect on T cells 

activated with anti-CD3. The use of purified T cells in this experiment eliminates the 

possibility of an inhibitory effect on T cell activation being mediated via B cells or 

other APCs. The ability of both ICSM18 and an IgGl with no specificity for mouse 

antigens to inhibit anti-CD3 induced proliferation may simply reflect competing out 

of the stimulating antibodies by any IgGl antibody added to the culture at sufficient 

concentration. The absence of B cells may also have decreased the efficacy of soluble 

anti-CD3 by preventing cross-linking, facilitating its interference by ICSM18 or the 

isotype control mAb.

These data suggest firstly that the specific inhibitory effects of anti-PrP may be APC 

dependent and therefore not adequately modelled using systems in which the mitogen 

is relatively APC independent. Secondly, anti-PrP may have a specific effect only on 

certain types of immunological synapse or stimulation. Thus, ICSM18 could 

specifically suppress proliferation of TCR tg mouse splenocytes activated with MHC- 

peptide, but not superantigen-mediated proliferation, which is also entirely dependent 

on T cell-APC conjugation.

175



These data are in partial agreement with Ballerini and colleagues, who recently 

reported the ability of anti-PrP mAb SAF83 to block proliferation in a mixed 

lymphocyte reaction whether PrP was present on both T cells and DCs, on DCs alone, 

or on T cells alone (Ballerini et al., 2006). Similar findings were also reported for 

MHC-peptide stimulation of TCR tg T cells, as performed here. Although statistical 

analysis is not provided, inspection of Ballerini’s figures suggests that SAF83 was 

most effective where PrP was expressed on both APC and T cell. Thus, blockade of 

PrP may be particularly effective when APC-T cell conjugation is required for T cell 

stimulation, as in peptide-MHC-TCR interactions, and relatively ineffective when 

APCs are not involved, as in stimulation with anti-CD3 or mitogens.

These data imply an important role for PrP at the immunological synapse albeit only 

where T-APC conjugation is mediated by MHC-peptide-TCR binding. However, as 

discussed in Chapter 4 above, although PrP may accumulate at the immunological 

synapse during T cell activation, its loss does not affect the stability o f B-T cell 

conjugation. A specific role for anti-PrP in disrupting MHC-peptide driven T cell 

proliferation therefore requires that the effects of ligation of surface PrP are distinct 

from those of embryonic deletion, ie. observed in vitro effects of anti-PrP mAbs may 

be due to alteration rather than loss of PrP function. How then might ligation of 

surface PrP interfere with T cell activation if not through non-specific effects such as 

steric hindrance of the mitogen or mechanical interference with conjugation? First, 

anti-PrP may have a specific effect on destabilising the immune synapse, via 

secondary downregulation of key adhesion or signalling molecules on either the T cell 

or the APC. Ballerini and colleagues documented accumulation of PrP at sites of T 

cell-DC contact but were unable to resolve its localisation to the centre or periphery 

of, or complete exclusion from, the immunological synapse (Ballerini et al., 2006).
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An explanation for the lack of co-localisation of PrP with CD3, LFA-1, CD43, LAT 

or Thyl in this work is that anti-PrP itself is responsible for disrupting interactions 

between these molecules and PrP with critical effects on the integrity of the synapse. 

Second, even if T cell-APC conjugation proceeds normally in the presence of anti- 

PrP, the myriad changes in T cell physiology induced by anti-PrP treatment may be 

inhibitory rather than stimulatory. For example, recruitment of signaling proteins 

such as LAT and Fyn by antibody-bound PrP may sequester them away from the T 

cell activation pathway where they are key players. Anti-PrP may also induce an 

inhibitory signal in APCs, perhaps resulting in downregulation of key co-stimulatory 

molecules. Third, all inhibitory effects of anti-PrP antibodies thus far reported may 

be due to triggering of apoptosis, as has been demonstrated in neurons (Solforosi et 

al., 2004).

That ICSM18 required a much higher concentration than SAF83 to achieve 

suppression may be due to differences in cell density and TCR avidity between 

experiments. Alternatively, the lack of a major effect in my in vitro blocking 

experiments may reflect a need for mAb cross linking. Although the presence of 

bystander B cells in the line 7 splenocyte culture should have facilitated this, use of 

plate-bound rather than soluble ICSM18 may have increased its efficacy. However, 

the necessity for PrP crosslinking has recently been challenged by Ballerini and 

colleagues who successfully inhibited T cell proliferation using monovalent anti-PrP 

Fabs (Ballerini et al., 2006).

Alternatively, the epitope recognised by ICSM18 (PrP 143-153) may not efficiently 

mediate a suppressive signal in T cells. I could have excluded an epitope specificity 

issue by repeating this experiment with a range of anti-PrP mAbs recognising
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different parts of the PrP sequence. However, Ballerini and colleagues reported that 

both SAF83 (which has a poorly defined binding site said to be a structural epitope 

located within PrP 126-164) and whole and Fab fragments of SAF61 (which 

recognises PrP142-153) could inhibit allogeneic mixed lymphocyte reactions 

(Feraudet et al., 2004;Ballerini et al., 2006).

Biological effects of PrP mAbs have previously been demonstrated to be epitope- 

specific. A mAb recognising a C-terminal epitope was able to block anti-CD3 

induced T cell proliferation whereas one possessing an N-terminal binding site was 

less effective (Li et al., 2001). Similarly, antibodies recognizing PrP 95-105 caused 

neuronal apoptosis on direct inoculation into mouse brain, whereas anti-PrP 133-157 

did not (Solforosi et al., 2004). These studies raise important questions about whether 

PrP’s normal signaling pathway is mediated by a ligand binding to particular domains 

of the protein. This might result in onward signaling via PrP itself or through 

stabilization of a ligand allowing it to interact with an adjacent molecule. Various C- 

terminal regions of PrP have been proposed as key binding sites for incoming PrPSc or 

the elusive “protein X” proposed to be the essential co-factor in PrPc to PrPSc 

conversion (Piening et al., 2006). Deletion of residues 32-80 from PrP does not 

abolish its ability to generate PrP^ and clinical disease (Fischer et al., 1996). In 

contrast, the minimum regions of PrPc required to mediate its normal function are 

unknown. However, Zhang and colleagues recently found that transfection of PrP'7' 

stem cells with Pmp  could improve their long term proliferative potential, whereas 

introducing truncated PrP with a deletion of residues 23-72 had no effect (Zhang et 

al., 2006).
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ICSM18 is able to block peripheral prion accumulation in vivo (White et al., 2003), 

for which it presumably must bind native PrPc or PrPSc. I thus sought to use it to 

modulate effector T cell function in vivo. For this I chose to study EAE, a model of 

autoimmune demyelination caused by auto-aggressive anti-myelin T cells. Such cells 

are clonally expanded and activated in vivo by immunisation with self myelin 

antigens. I studied PLP-induced disease in SJL mice, a well characterised EAE 

model. I was not able to modify disease by treatment with intraperitoneal ICSM18. 

This may reflect poor penetration of appropriate tissues, inadequate dosing or the 

severity of the disease model, rather than a complete lack of biological effect. Again, 

epitope selection may be critical, PrP 143-153 being unable to induce an immune 

modifying signal. Antibodies recognising other regions of PrP may produce an effect 

and this experiment could usefully be repeated using a range of anti-PrP mAbs, doses 

and schedules. At the present time, however, the ability of anti-PrP mAbs to 

modulate immune function in vivo remains to be demonstrated.

Finally, I attempted to induce EAE in FVB/N mice to test whether the pathogenesis of 

this archetypal autoimmune disease caused by autoaggressive T cells was modified in 

the absence of PrP. A potential difficulty in interpreting data from these experiments 

is that the critical steps in EAE pathogenesis occur in different tissues, principally 

lymphoid and neural, many of which express PrPc. For example, autoimmune 

destruction of myelin is a pre-requisite for clinical disease. Yet, PrP is expressed in 

the brain at high levels and has been reported to associate, at least in vitro, with the 

key myelin protein aB-crystallin (Sun et al., 2005). Thus, any alteration in the 

phenotype of EAE in PrP'* mice could not necessarily be ascribed to absence of PrP 

in T cells.
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Hitherto, only one group has reported the successful generation of disease in the 

FVB/N strain, using whole Guinea pig MBP (Baker et al., 2000). FVB/N mice 

express the H2q allele, as do SWR mice in which the immunodominant MBP epitope 

is 87-99 (Cross et al., 1991). Thus I assumed that MBP 85-99 would induce EAE in 

FVB/N mice. However, it proved not to be encephalitogenic using our protocol, 

which has previously produced robust disease in a number of EAE models. Using 

whole mouse spinal cord homogenate I was able to induce mild disease in a minority 

of animals of both genotypes. Despite a hint of more aggressive disease in P rP '' mice 

there was no significant difference in incidence, progression or severity of disease 

between PrP+/+ and ’ ’ mice. Indeed, based on the observed enhanced suppressor 

phenotype of PrP'7' Tregs (Chapter 5 above) one might expect EAE in P rP '' mice to 

run a more benign course.

These results demonstrate that using appropriate techniques, EAE can be induced in 

FVB/N mice, albeit with a mild phenotype. EAE has been extensively studied in a 

range of animals and there is limited benefit in creating new models in previously 

neglected and generally resistant mouse strains. However, the frequently explosive 

onset and high mortality of traditional EAE models has led some critics to liken these 

more to the human disease Acute Disseminated Encephalomyelitis (ADEM), than to 

MS. Thus, there has been some interest in generation of milder phenotypes which run 

a more chronic course, and the model created here may merit further investigation for 

this reason.

Using FVB/N mice, I was not able to demonstrate any significant modulation of 

disease in the absence of PrP. This suggests that the protein does not play a major 

role in pathogenesis, at least in this strain. Demonstrating phenotypic differences
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between PrP+/+ and 'A mice has been a challenging task for other investigators. In a 

recent paper, differences in haematopoietic stem cells only emerged after 2-3 rounds 

of transplantation into lethally irradiated recipients (Zhang et al., 2006). A similarly 

harsh stress may be required to bring out a defect in mature T cell function. My data 

can only hint at a survival disadvantage in EAE due to embryonic loss of PrP; this 

may require a model that generates more robust disease to emerge fully. One 

approach would be to cross P rP '' mice onto a more EAE-susceptible strain, such as 

SJL or C57BL/6. Alternatively, other immunological stresses such as infection, toxic 

shock, or alternative types of autoimmune disease may be required. In summary, it 

remains to be demonstrated that PrPc is an important player in the various steps in 

EAE pathogenesis or that ligating it via mAbs holds any promise as a therapeutic 

application in T cell mediated demyelinating diseases.
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CHAPTER 7 DISCUSSION
Despite only modest effects in experimental models, the prospects for active 

immunisation against prion infection remain promising. The prion hypothesis, 

although highly reductive, is an extremely powerful paradigm for the development of 

treatment models because it identifies a single protein as key to the pathogenesis of 

the disease. In this context, the challenge is to break tolerance to PrP so that effector 

elements of the host immune system can recognise PrPc and/or PrPSc, thereby 

blocking prion replication and allowing clearance of PrPSc.

I have demonstrated here for the first time that tolerance to autologous PrP in humans 

is not complete and that distinct regions of the protein contain auto-epitopes. This 

work brings closer the prospect of a vaccine against human prion disease. An 

important consideration in taking forward this work is whether raising a T cell 

response against PrP is an absolute requirement for protection or will, as in the case of 

A(3 vaccination, precipitate catastrophic autoimmunity. Thus far only one side effect 

of immunisation with autologous PrP has been reported (Souan et al., 2001a). 

However, rodents express lower levels of lymphoid PrP than humans. Thus, the 

effects of PrP ligation by antibody or cytotoxic attack on PrP expressing cells could 

be profound. In addition, the diversity of human HLA haplotypes contrasts with the 

restricted repertoire offered by inbred mouse strains. Experiments in isogenic animals 

will never predict the full range of immune responses to particular antigens that might 

occur in humans. The appropriate model for taking forward my observations will 

therefore be one with humanised MHC and PrP expression. In particular, any model 

used to test vaccination must recapitulate human lymphoid expression levels of PrPc. 

The tools to generate such a model are readily available. Once constructed, a logical 

approach would be to immunise mice with whole protein and selected peptides to
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generate a T cell response, and then to test the ability of any protocol to delay 

peripheral and subsequently central prion pathogenesis.

An important consideration in taking forward this work is whether current models for 

developing anti-PrP based immunotherapy are actually capable of translation into 

clinically useful therapeutics. With respect to human health, the clinical scenarios in 

which anti-PrP therapy might be required are:

1) Individuals who have been exposed to prion-infected material eg. blood 

transfusion, who remain asymptomatic

2) Individuals with pre-symptomatic dominant mutations in PRNP

3) Individuals with symptomatic CJD of any cause

For patients in the first category, blocking of peripheral prion replication will be 

sufficient. Clearly, development of a vaccine is preferable to repeated doses of 

antibody, as the latter will be more invasive, expensive and carry the risk of anti­

idiotype reactions and generation of neutralising antibodies. The development of 

adjunctive strategies to slow peripheral prion accumulation and neuroinvasion will 

also be beneficial. These might include blocking cytokines that facilitate FDC 

differentiation, blocking key complement factors such as C lq  or C3, or interfering 

with macrophage or dendritic cell migration between sites of prion entry and 

secondary lymphoid organs.

Where in the periphery might primed anti-PrP T cells or antibodies have an effect? 

The principal obstacle to T cell-based therapies is that T cells can only see a pathogen 

when it is presented as an MHC-restricted peptidic fragment. However, any cell that 

can digest PrPSc to the degree that it can process peptides for MHC presentation will
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most likely have destroyed infectivity in the process. It is precisely those cells that 

are capable of capturing antigens in their intact form that appear to propagate prions 

in the periphery ie. FDCs and probably myeloid DCs (reviewed in Mabbott and 

MacPherson, 2006). Unless some MHC class II presentation of PrP occurs, it seems 

unlikely that these cells will trigger a T helper response. Similarly, MHC class I 

presentation would be required for these cells to be recognised as infected by CD8+ T 

cells and appropriately dealt with.

More promising is the possibility of using primed T cells to trigger an anti-PrP 

antibody response. However, as Aucouturier’s group has demonstrated, the B cell 

repertoire in PrP+/+ animals is profoundly biased against inducing anti-PrP antibodies 

(Gregoire et al., 2005). The extent to which breaking T cell tolerance will assist this 

has only been assessed in one published protection study, which reported a correlation 

between anti-PrP T cell response, antibody production and delayed disease onset 

(Femandez-Borges et al., 2006). Researchers reporting vaccination trials in rodent 

scrapie models should be expected to address the question of whether an anti-PrP T 

cell response has been triggered and if so whether this qualitatively and quantitatively 

affects the anti-PrP antibody repertoire.

So why have active immunisation protocols thus far produced only modest protective 

effects? The ability of anti-PrP monoclonal antibodies to suppress prion replication 

when transgenetically expressed (Heppner et al., 2001b) or administered passively 

(White et al., 2003), suggests that the prion hypothesis is valid in attempting 

immunotherapy ie. that PrPc is the fundamental substrate of the pathological agent 

and that ligating it should block infection. If this is true, then active vaccination 

strategies are failing because the titre or specificity of anti-PrP antibodies produced
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are insufficient to completely suppress prion replication. In the study by White and 

colleagues, ICSM18 or 35 was given at a dose of 2mg (approximately lOOmg/kg) 

twice a week -  a high dose compared to many mAb-based regimes used to treat 

disease in experimental mouse models of Alzheimer disease, autoimmunity or cancer 

(for examples, see (Levites et al., 2006;Lee et al., 2006;Wilcock et al., 2006;Zhang et 

al., 2003;Theien et al., 2001)). This work has not been replicated, either by the 

original researchers, or any other group. When it is, it will be necessary to define the 

minimum dose required in mice to achieve protection, and whether this differs 

according to the prion strain and inoculum size. Whether an equivalent dose would 

be tolerated in humans remains unknown.

ICSM18 and 35 have been demonstrated, here and elsewhere (Polymenidou et al., 

2004;Khalili-Shirazi et al., 2005), to bind PrP in its native state, eg. on the surface of 

lymphocytes or neuronal cell lines. In contrast, most active immunisation protocols 

are limited in failing to show whether antibodies produced can recognise native PrPc. 

Such assays should be a minimum requirement for any vaccination regime. There is 

ample evidence that the anti-PrP antibody repertoire in PrP+/+ animals is 

fundamentally different compared to PrP" ' mice (Gregoire et al., 2005), and therefore 

the production of antibodies with affinity for native PrP in PrP+/+ animals should not 

be taken for granted.

Attention must also be given to the epitope specificity of antibodies generated by 

immunisation protocols. Protective effects may be epitope specific, although both 

ICSM18 and 35, recognising PrP 143-153 and 94-105 respectively, are protective 

(White et al., 2003). Further, the side effect profile of anti-PrP based therapies may
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also depend on which part o f the protein they target, and whether they achieve cross- 

linking of PrP.

Although the relationship between epitope specificity, protection and side effect 

profile has begun to be addressed for anti-PrP antibodies, no such analysis can yet be 

provided for T cell responses. This is a major gap in the literature and a block to 

further development of active vaccination. Hitherto, only one group has reported 

cytokine responses to stimulation with PrP peptides, albeit in mice (Rosset et al., 

2004;Gregoire et al., 2005). In this work, I have shown that PrP epitopes 128-141 

[129M] and 212-225 may be able to elicit Th2 dominant T cell responses in humans 

while others generate limited Thl or ThO responses, suggesting that the immune 

repertoire does not respond to all parts of the PrP sequence in the same way. This has 

important implications for vaccinology, as a Thl cytokine response is more likely to 

result in harmful cytotoxicity and inflammation, as suggested by the recent trial of A(3 

vaccination in Alzheimer disease.

For patients in categories 2 and 3, blockade of CNS prion accumulation will be 

essential. Direct intracerebral inoculation of anti-PrP mAbs may be an appropriate 

rescue therapy for symptomatic individuals, provided that the consequent neuronal 

apoptosis observed in animal models (Solforosi et al., 2004) is avoided. However, to 

achieve protection against intracerebral inoculation or established or latent CNS 

disease through active vaccination represents an unprecedented challenge. Can 

human and mouse studies of A(3 vaccination provide any clues as to the mechanism of 

action of vaccines targeting CNS proteins? Currently it remains unclear whether 

protective effects seen in APP-tg mice were mediated by direct CNS penetration of 

primed T cells or antibodies, or whether all beneficial effects were mediated by
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peripheral mechanisms, such as by generating a sink for Ap in the systemic 

circulation (DeMattos et al., 2001).

Since the initial work of Schenk and colleagues (Schenk et al., 1999) numerous 

groups have attempted to resolve the mechanism of action of Ap vaccination.

Initially it was proposed that anti-Ap antibodies had been raised that entered the CNS 

and targeted Ap plaques for clearance via phagocytosis (Schenk et al., 1999;Bard et 

al., 2000). However, Ap clearance in vaccinated APP tg mice is not abrogated when 

these are crossed onto a FcR-y* ' background in which phagocytosis of immune 

complexes is deficient (Das et al., 2003b). Although not disproving a role for 

antibodies raised by immunisation in clearance of Ap, this work suggests that this 

may be mediated via FcR-independent mechanisms. Indeed, direct application of anti- 

Ap Fab-ffagments to APP-tg mouse brain resulted in plaque clearance with similar 

efficacy to full-length antibody (Bacskai et al., 2002). Thus, antibodies may merely 

be required to disrupt plaque architecture (Solomon et al., 1997), thereby facilitating 

non-specific clearance mechanisms. This could equally be achieved by 

amyloidophilic compounds without requiring breakdown of tolerance to Ap.

Early studies of Ap vaccination proposed that protective effects were independent o f a 

T cell response. However, plaque clearance has been observed in immunisation 

experiments in which a T cell response against Ap was raised, but antibody 

production did not occur, implying a direct therapeutic effect of a cellular response 

against the target antigen (Monsonego et al., 2006). The cases of 

meningoencephalitis seen following Ap vaccination in humans demonstrate that 

unwitting induction of cellular immunity is much more likely when this is applied to a 

species with HLA heterogeneity. Indeed, considerable heterogeneity in Ap epitopes
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has been demonstrated between inbred mouse strains with different MHC class II 

alleles (Das et al., 2003a;Monsonego et al., 2006). Hence the importance of defining 

T cell epitopes in humans prior to attempting immunisation experiments, as I have 

done for PrP in the work presented here.

These concerns raise the issue of whether the influx of antigen-specific T cells into 

the CNS following vaccination against neuronal proteins is always undesirable, or 

conversely can enhance clearance provided that the response is appropriately 

regulated. This will be determined by the efficacy and safety of such cells entering 

the CNS and undergoing clonal expansion in an environment in which the normal 

mechanisms of immune regulation may not apply. The occurrence of PML due to JC 

virus reactivation in patients taking Natalizumab (Berger and Koralnik, 2005), 

probably due to blockade of JC-specific T cells traversing the blood brain barrier 

suggests that pathogen-specific T cells patrol the CNS and prevent infection. Indeed, 

immunocompromised individuals with a CD4+ T cell deficit, such as those with HIV 

infection, are at increased risk of CNS infections and tumours. Thus, T cells with 

specificities for antigens present within the CNS are most likely present within this 

compartment in humans without necessarily inducing damaging inflammation.

What factors might determine whether a cellular immune response against an auto­

antigen will be protective or pathogenic? Recent work has suggested that the relevant 

parameters determining the safety of the cellular response to Ap vaccination include 

the expression level of the target antigen in the CNS, the presence of a high affinity T 

cell epitope in the immunogen (which is itself dependent on the genetic background 

of the recipient) and a pro-inflammatory signal, such as IFN-y, within the CNS 

(Monsonego et al., 2006). When these conditions are fulfilled, the risks of an
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encephalitic response to immunisation are heightened. Indeed, a microarray analysis 

of pre-immunisation PBMCs from patients in the Ap vaccine trial suggested that 

altered expression of a number of genes involved in inflammatory pathways was 

associated with subsequent development of meningoencephalitis (O'Toole et al.,

2005). The HLA types of the 6% of patients who developed encephalitis following 

Ap vaccination have not been revealed.

The quality of the cellular immune response is absolutely critical because T cells 

cannot distinguish normal self from misfolded or aggregated protein in the absence of 

any change in primary sequence. Thus directing the helper and cytotoxic arms to a 

non-inflammatory response is critical. In contrast, antibodies can potentially 

recognise novel structural epitopes in self proteins. However, do misfolded or 

aggregated self proteins really generate neo-epitopes which the immune system, 

appropriately primed, can recognise as non-self?

There is evidence that naturally occurring anti-Ap antibodies are present in human 

serum (Hyman et al., 2001 ;Mruthinti et al., 2004;Moir et al., 2005). Further, 

vaccination with Ap increases anti-Ap titres although such antibodies do not appear to 

cross the blood brain barrier with great efficiency (~ 15% of patients vaccinated with 

Ap had detectable anti-Ap in the CSF) (Bayer et al., 2005;Gilman et al., 2005). Sera 

obtained following vaccination with Ap exhibit binding to extracellular Ap in situ 

which is abrogated by pre-absorption with aggregated ApM2 (Hock et al., 2002). 

Furthermore, immune sera do not bind native APP, or denatured APP, C-terminal 

derivatives of APP and Ap, or synthetic mono-, di- or trimeric Api_42 (Hock et al., 

2002). Naturally occurring human anti-Ap antibodies can disrupt Ap fibrillisation 

and abrogate neurotoxicity in vitro, and clinical response in the AN-1792 trial
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correlated with antibody production (Gilman et al., 2005), particularly where high 

titres of antibodies capable of binding native Ap were generated (Hock et al., 2003).

However, although asserted for aggregated forms of Ap, evidence in other 

amyloidoses for the existence of structural neo-epitopes to which the human B cell 

repertoire can respond is limited. Indeed, with respect to prion disease, it has proved 

extremely difficult to generate PrP^ specific antibodies even in PrP'7' mice. Thus the 

likelihood of these being engineered in a PrP expressing system seems remote. 

Vaccination protocols must therefore assume that cellular and humoral arms of the 

immune response will target the normal protein and screen recipient animals carefully 

for adverse effects in both the periphery and the CNS.

Some authors have asserted that where the target protein is constitutively expressed 

immunisation might generate a persistent inflammatory process, in contrast to 

vaccination against conventional pathogens in which effector arms of the immune 

system can “stand down” once the agent has been cleared (McGavem, 2006). 

However, it is quite clear from my and others data that healthy individuals harbour T 

cells that recognise self epitopes without developing autoimmune disease (Danke et 

al., 2004). Nonetheless, a major challenge in vaccinating against self proteins, as 

envisaged for prion, Alzheimer and other neurodegenerative diseases, will be 

achieving immunological homeostasis post-vaccination.

Ultimately, the CNS, however primed, needs actively to degrade the abnormal 

protein. As discussed, extracellular deposits can be cleared by appropriately primed 

microglia. More problematic is the clearance of intraneuronal proteins. PrPSc can be 

deposited as extracellular amyloid plaques, but these are not an invariable feature. 

Clinical disease probably requires intraneuronal accumulation of PrPSc, as PrP
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deficient neurons remain undamaged even when surrounding astrocytes accumulate 

high titres of PrP80 and infectivity (Mallucci et al., 2003). Indeed, in infected 

neuronal cells PrPSc may be associated with particular cytoplasmic organelles 

(Kristiansen et al., 2005). Targeting intracellular self-protein aggregates is an 

unprecedented challenge. Vaccination against a-synuclein and Huntingtin has been 

reported and may offer promise, although the underlying mechanisms of action have 

not been elucidated (Masliah et al., 2005;Miller et al., 2003).

However, debate remains as to whether breaking tolerance to the key pathogenic 

protein is required for immunotherapy in neurodegenerative disease. Clearance 

dependent on a T cell (but not a B cell) response has been demonstrated following 

mucosal vaccination of APP-tg mice with glatiramer acetate (GA), rather than Ap 

(Frenkel et al., 2005). Recently it has been proposed that the protective effects of GA 

in AD models are mediated by induction of IL-4 producing T cells that cause an 

alteration in microglial morphology facilitating plaque clearance (Butovsky et al.,

2006). These authors argue that breaking T cell tolerance to Ap is not desirable, and 

that inducing “protective autoimmunity” (Moalem et al., 1999) by altering the T cell 

response to myelin antigens through use of GA and similar compounds can enhance 

innate clearance mechanisms. These strategies, developed in isogenetic rodent 

models, must surely also carry the risk of initiating EAE when translated to humans, 

in whom the phenotype of potentially autoagressive anti-myelin T cells entering the 

CNS, and the risk o f epitope spread, will be much less predictable. Nevertheless, T 

cells that secrete trophic factors and stimulate clearance of damaged cells may 

represent a means by which lymphocyte influx into neural tissues may be beneficial 

without targeting the pathogenic protein directly.
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The second part of this thesis was concerned with elucidating the normal function of 

PrPc in the immune system. I considered this an important objective because

(i) the lymphoid system is well characterised and therefore offers a tractable model 

for uncovering general aspects of PrP biology

(ii) therapies targeting PrP in the periphery might impact on immune function, 

especially if considered for long term prophylaxis or treatment

(iii) characterising the role of PrP in the lymphoid system might shed light on 

immune biology generally and offer novel insights into immune function and therapy 

for autoimmune and infectious diseases.

What can we say definitively about the expression and function of PrPc in T cells 

based on data presented here and elsewhere? First, it can be considered an activation 

antigen. I have shown here that the upregulation of PrP in T cell activation cannot be 

due simply to redistribution of pre-synthesised protein, but is associated with, and 

dependent on, increased mRNA abundance, either through upregulated gene 

expression or (less likely) RNA stabilisation. Second, its upregulation is delayed 

relative to that of CD69 and CD25, placing PrPc as a late activation antigen. 

Experiments in genetically modified T cells in which induction of classical activation 

markers is inefficient suggest that the mechanisms initiating Pmp  upregulation are 

dissociated from those controlling other activation genes including IL-2Ra (CD25). 

The identification of an NFAT binding site in the Prnp promoter suggests that this 

transcription factor could mediate PrP upregulation during T cell activation. Indeed, 

increased Pmp  mRNA has been detected during ThO to Th2 differentiation (Chen et 

al., 2003), a process that is NFAT dependent (Diehl et al., 2002).

192



Third, high PrPc expression is a feature of memory cells with a CD44hlgh, CD45RBlow 

or CD62Llow phenotype in mice and a CD44high or CD45RO+, but not a CD62L,0W 

phenotype in humans. Fourth, PrP is relatively highly expressed by regulatory T 

cells. Finally, PrP is not essential for T cell ontogeny, regulatory and memory 

specialisation, conjugation, proliferation or cytokine production, at least in the FVB/N 

mouse strain. Further hypotheses about lymphoid and myeloid PrPc function touched 

on this work remain to be proven; first that PrP may be functionally important in 

controlling the suppressive capacity of Tregs; second that it plays a role in 

lymphocyte homeostasis by influencing a cell’s propensity to differentiation or 

repeated mitoses.

Why does it matter whether or not PrP is differentially expressed during T cell 

activation? PrP expression levels, at least in the CNS, correlate with disease 

susceptibility in experimental models. Several groups have reported a decrease in 

scrapie incubation time in mice treated with mitogens or infected in parallel with 

viruses (Dickinson et al., 1978;Ehresmann and Hogan, 1986;Marsh, 1981). The 

mechanisms behind these observations have not been characterised, but one 

possibility is that systemic inflammation due to conventional infection increases 

lymphoid PrPc expression, thus rendering the animal more susceptible to peripherally 

inoculated prions. With respect to vCJD, it is generally assumed that risk factors 

other than methionine homozygosity at codon 129 of PRNP must be genetic. 

However, environmental factors such as concomitant viral infection at the time of 

BSE exposure could be powerful determinants of susceptibility and partially explain 

the geographical variation in vCJD incidence in the UK. Those concomitantly 

infected with (for example) upper respiratory tract viruses or enteric pathogens may 

be exquisitely susceptible to propagating an incoming prion infection simply because
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they have upregulated PrPc as part of their immune response to the conventional 

pathogen. Alternatively, conventional infection may increase susceptibility by 

upregulating co-factors for prion replication (such as DC migration or complement). 

These hypotheses cannot readily be tested as no model currently exists in which 

lymphoid or myeloid PrP expression is dissociated from neuronal expression such that 

the former can be varied in a controlled way while the latter remains stable at wild- 

type levels. Yet this is likely to represent the situation in humans being exposed to 

BSE and other exogenous prions via peripheral routes.

That blood contains prion infectivity has been demonstrated in animal models 

(Cervenakova et al., 2003;Hunter et al., 2002;Bons et al., 2002;Brown et al., 

1999b;Holada et al., 2002;Casaccia et al., 1989), and in three transfusion related 

incidents in humans (Llewelyn et al., 2004;Peden et al., 2004)(Wroe, et al. submitted). 

Whether individuals with vCJD become more infectious when their circulating T cells 

are activated by inflammation or conventional infection remains unclear, but could 

potentially be modelled in rodents. The relative ease of PrPc upregulation in 

lymphocytes may also therefore have implications for the secondary spread o f vCJD 

among humans. Indeed, surgical instruments, a possible vector for iatrogenic 

transmission, are most likely to be used on individuals undergoing a systemic 

inflammatory response, thus heightening PrPc expression in lymphoid tissues.

Embryonic deletion of PrPc seems to have relatively minor effects on immune 

function. However, ligating it may induce an abnormal signal ie. a gain of 

misfiinction, which might interfere with normal immune functions, such as T cell 

activation. More dramatically, targeting cells that preferentially express high levels of 

PrPc for removal may result in deletion of key populations of activated, memory and
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regulatory T cells, as well as mature myeloid cells. The consequences of this could be 

catastrophic. There is an urgent need to model this by treating wild type animals with 

deleting and non-deleting anti-PrP antibodies for long periods of time and during 

various immune challenges. Unfortunately, such experiments fell outside the time 

and budgetary constraints of this project.

The identification of PrPc expression on haematopoietic cells with long term 

regenerative potential has been proposed as a means of enriching such cells prior to 

transplantation (Zhang et al., 2006). I did not have the opportunity within this project 

to assess whether memory or regulatory cells expressing high levels of PrP had 

different properties from those expressing low PrP. However, this merits further 

investigation and might identify PrPc as a marker for other classes of cell with 

potential therapeutic applications. Indeed, the protective effects of adoptive transfer 

of regulatory T cells in autoimmune diseases such as EAE (Kohm et al., 2002) and 

diabetes (Tang et al., 2004;Tarbell et al., 2004) and the improved tumour surveillance 

mediated by Treg depletion (Lizee et al., 2006), suggest that this cellular population 

will be a key target for therapeutic development in coming years.

In this work, as elsewhere, proving a definitive function for PrPc has been difficult.

To what extent being GPI-anchored determines the function of PrPc remains unclear. 

GPI-anchored proteins are enormously functionally diverse, encompassing adhesion 

molecules (NCAM, LFA-3), enzymes (acetylcholinesterase, caeruloplasmin), 

receptors (folate receptor) and elements of the immune response including MHC 

constituents (Qa2) and complement regulators (DAF). The GPI-anchor is probably 

more critical for localisation rather than signalling as it is unclear how specific signals 

might be mediated via common GPI moieties. However, some GPI-anchored proteins
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can also function in soluble or transmembrane forms, suggesting that the GPI-anchor 

is not always essential for function. PrP is probably not exclusively GPI-anchored; 

soluble PrP is released into the extracellular milieu and a minority of cell surface 

molecules may exist in a transmembrane form (Harris, 2003). P rP '' mice into which 

exclusively transmembrane PrP is re-introduced do not display overt neurological 

abnormalities, although their immunological phenotype has not been reported 

(Stewart et al., 2005). Where transmembrane PrP is expressed alongside wild-type 

PrP a neurodegenerative phenotype is induced, but again, the implications for 

lymphoid PrP expression and function remain unknown (Stewart et al., 2005). 

Similarly, mice expressing only non-GPI-anchored PrP have an altered clinical and 

neuropathological phenotype following scrapie infection, but the effects of this 

modification on PrP function have not been explored (Chesebro et al., 2005). Thus 

the centrality of the GPI-anchor to PrP function (as opposed to pathogenicity) remains 

to be proven.

An interesting feature of research into PrPc is that multiple binding partners of PrP 

have been identified and yet there is no consensus on the exact role of the protein.

The constitutive endocytosis of PrP suggests that it may be able to transduce a signal 

by being internalised with a bound cargo; alternatively, PrP may bind a ligand and 

stabilise it at the cell surface to allow it to interact with a signalling molecule.

Perhaps PrP has no specific role but participates in multiple pathways. The fact that 

many proteins seem to bind PrPc may represent an adaptive mechanism for limiting 

the availability of cell surface or soluble forms of PrP to prionogenic ligands, be they 

PrPSc or the putative protein X. However, dissociating normal ligand interactions of 

PrP from those required for prion conversion will be a challenging task in the
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absence of a definitive function for the protein which can be measured in a simple 

assay.

These doubts notwithstanding, it is clear from the association of PrPc with 

functionally distinct T cells populations that immune function might be modified by 

therapies directly or indirectly targeting PrPc. This is of immediate concern with 

respect to therapies for prion disease. However, a more distant application o f this data 

would be in developing anti-PrP agents as a means of controlling T cell function in 

the treatment of diseases characterised by immune dysregulation. At a minimum, 

anti-PrP antibodies will selectively detect activated, memory and regulatory T cells, 

due to their higher surface PrPc expression. Whether such agents will actually alter T 

cell physiology by mediating a signal through PrPc or by blocking PrPc signalling, 

remains unclear. Further work is required to fully elucidate the effects of PrP ligation 

in disease models.

The high degree of evolutionary conservation of PrP sequence has led some 

researchers to propose that its function is likely also to be phylogenetically ancient 

and perhaps predate the advent of adaptive immunity. The presence of an octapeptide 

repeat region with the capacity to bind copper has been interpreted as evidence for 

PrP being a component of the innate immune system, able to “pattem-recognise” 

harmful substances, such as bacterial or viral nucleic acid and proteins, free radicals 

and metal ions. According to this hypothesis, PrPc has overlapping functions with the 

Toll-like receptors, perhaps explaining why PrP' ' mice lack a discemable immune 

phenotype (McBride, 2005). However, the fact that PrPc expression is considerably 

higher on cellular components of the adaptive immune response (eg. lymphocytes)
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than those of the innate immune system (eg. neutrophils) suggests that PrP postdates 

the evolution of these basic immune defences.

In the absence of a definitive function for PrP, we can but speculate on why it has 

been so tightly conserved during evolution. It has been argued that large-scale 

prehistoric epidemics of prion disease, to which heterozygotes would have been 

relatively resistant, could be the driving force behind balancing selection in favour of 

methionine/valine heterozygosity at codon 129 of PRNP (Mead et al., 2003). 

However, another hypothesis is tenable; that polymorphic variants of PrPc effect 

different functions in the face of a common, but lethal, conventional pathogen. This 

could be mediated at the neuronal level if the pathogen is neurotropic or by 

differential function of 129M and V PrPs within the immune system during the host 

response to systemic infection. Recent data on herpes simplex and poliovirus 

infection of PrP'7' neurons is therefore intriguing (Thackray and Bujdoso, 2002;Baj et 

al., 2005). The availability of mice expressing human PRNP with methionine and/or 

valine at position 129 (Bishop et al., 2006;Asante et al., 2006) will facilitate 

modelling the effect of this polymorphism on immune function.

Although the physiological function of PrPc remains obscure, it is clear that PrPc 

expression is regulated during lymphocyte activation and differentiation, and is a 

particular property of regulatory and memory T cells. Furthermore, PrPc ligation by 

antibody has been shown to produce myriad effects on T cell physiology. The 

consequences for the immune system of therapeutics deliberately or accidentally 

targeting PrPc may therefore be profound. At present it is impossible to predict 

whether these effects will produce harmful autoimmunity or render the recipient 

immunocompromised (or both), although data from rats immunised with self-PrP
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peptides suggest the former (Souan et al., 2001a). Whether such side-effects will 

outweigh the potential benefits in a disease that is relentless, lethal, and currently 

untreatable remains to be seen. However, recent experience in pre-clinical trials 

(Suntharalingam et al., 2006), and in Alzheimer disease (Orgogozo et al., 2003) and 

Multiple Sclerosis (Berger and Koralnik, 2005) suggest that we embark on novel 

immunotherapeutics with caution. In the case of prion disease, the era of effective 

immune-based therapy is some way off, with the exception of passive transfer of anti- 

PrP antibodies to peripherally exposed individuals. It seems prudent that alongside 

the development of much needed anti-prion therapies we further define the function of 

this extraordinary protein, and model the effects of breaking tolerance to it.
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APPENDIX: PUBLICATIONS ARISING FROM WORK 
IN THIS THESIS
J D Isaacs, R J Ingram, J Collinge, D M Altmann, G S Jackson. The human prion 

protein residue 129 polymorphism lies within a cluster of epitopes for T cell 

recognition. Journal o f Neuropathology & Experimental Neurology, 2006, 65:1059- 

68 .

J D Isaacs, G S Jackson, D Altmann. The role of the cellular prion protein in the 

immune system. Clinical & Experimental Immunology, 2006, 146:1-8.
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