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Abstract

The whole of the thesis is motivated by a particular problem from the food-sorting
industry in which grains of food, typically rice, flow down chutes. As they fall down
the chute, the grains form a rapidly moving mono-layer. This project starts with
a discrete model treating individual grains based on partcle dynamics without air
resistance. Single grains and then many grains are addressed, and the methodology
used includes large computations describing the particle paths, velocities and other
key features accompanied by analysis. Much of the thesis thereafter is concerned
with the development of a continuum model for the chute flow of grains, inspired
by the clusters and voids seen in the above computations and hased on analogies
with the Lighthill-Whitham model of traffic flow. The crucial difference here is
that the flow is not uni-directional and so a multi-valued flow-density relation is
required. The introduction of such a law yields complex and rich flow behaviours.
The mathematical interest is in solving hyperbolic and parabolic partial differential
equations, incorporating shocks and fans into analytical and numerical solutions of
the governing equation. in asymptotic methods used in analysis of particular limits,
especially those relating to clashing or separation of grains, and in seeking steady
state solutions for the density profile. Finally, air eflects are studied. In particular,
local viscous or inviscid effects in the gaps between grains are investigated, followed

by the subsequent interaction effects on many grains.
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Chapter 1

Introduction

The present study involves modelling, analysis, computations and experimental work
and is related to multi-particle interactions, granular flow, traffic low and fluid
dynamics. These and the layout of the thesis are described later in the chapter after
the aim and direct motivation from industry are described.

The aim of this thesis is to find a suitably accurate mathematical model for the
nearly two-dimensional, gravity-driven, rapid flow of a monolayer of grains down
an inclined chute. This is directly motivated by a problem from the food-sorting
industry, in particular from a company that manufactures machines for the sorting of
food, Sortex Ltd. Many food stuffs can be sorted with these machines, including rice,
coffee beans, carrots, peas and strawberries. The majority of machines manufactured
by Sortex however are employed in the sorting of rice grains. The attention of the
project, therefore, is focused solely on rice.

In the particular food-sorting process developed by Sortex, grains fall from a
hopper and are subsequently moved along by a vibrator tray. At the end of the
tray the grains fall on to an inclined chute, down which they are accelerated due to
gravity. They quickly form an apparent two-dimensional monolayer upon the chute.
Shortly after the grains have fallen from the bottom of the chute they pass an optical
system that can detect defective grains. A grain is considered to be defective if it
is, for example, of the wrong size, shape or colour. Foreign bodies, such as small

shards of glass, can also be detected. If the optical system detects a defective grain,
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a powerful jet of air is fired from at least one ejector in an array of ejectors, and the
grain is knocked into a reject bucket by the force of the impact. A schematic diagram
of the process is shown in figure 1.1. Studies of the ejector and jet properties are in
the theses by Westwood and Wilson [56], [63].

The chute is approximately 30cm wide and a metre in length. The grains exit
the chute with a vertical velocity of the order of 4 — 5ms™!. The dimensions of a
typical grain of rice are a width of 1 — 3mm and a length of 5 — 7Tmm. The mass
has a magnitude of roughly 10~ %kg.

Particular difficulties arise as the grains fall off the chute, since they are not
uniformly distributed. In fact, the distribution of grains at the bottom of the chute
is typically clustered and inhomogeneous. As a consequence, the air jet can, and
usually does, remove other grains of rice surrounding the reject grain. These grains
may not themselves be defective. This erroneous ejection of surrounding grains is
a source of inefficiency in the food-sorting process; the grains in the reject bucket
sometimes must be sorted through again to reduce waste.

Currently, the optical system can be configured to yield an increased sorting
performance, but if a high level of sorting is required a chute with channels must be
used. These ‘channelised’ chutes align the grains with the ejectors and improve the
uniformity of the product feed. There is however a concomitant reduction in the
mass of grains that can be sorted in a given time (known as the ‘throughput’).

Understandably, Sortex would like to remove this problem as much as possible
whilst maintaining a high throughput of grains in these machines. Such a devel-
opment in chute design would take the industry forward and perhaps make Sortex
world leaders (or help maintain their position as world leaders) in the food-sorting
industry. ‘

The remit of this project, therefore, is to try to find a suitable mathematical
model for a chute flow of grains in order to increase knowledge and understanding of
the underlying physics so that the above ejection problem can be reduced as much
as possible.

An interesting aspect of this thesis is in the modelling itself. For such a chute

17
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flow of grains, which perhaps can be thought of as a rapid, sparse granular flow or
alternatively as a suspension flow, there is no ‘grand theory of everything’ to apply.
That is to say, there is no analogue to, for example, the Navier-Stokes equations that
applies to all granular or particle-laden flows which we can study in an appropriate
limit; rather, we must model the process from first principles.

A standard approach in granular mechanics is to postulate some so-called ‘con-
stitutive relations’ that are crucial to the granular flow [6], [8], [26], [29], [47], [50].
These studies often address the particle forces alone, neglecting the multiphase na-
ture of granular materials, especially for rapid flows [8]. The constitutive relations
typically focus on the shear forces and stress tensors obtained from the particle-
particle collisions, and the notion of granular temperature is often introduced as an
analogue to kinetic theories of ideal gases. Particle collisions can be dealt with by
either hard disk models or soft particle molecular dynamics simulations [40], [55].
The former model collisions using Newton’s law of restitution [46]; the latter try
to obviate problems associated with inelastic collapse by using a ‘spring-dashpot’
model. ‘Inelastic collapse’ is the name given to the phenomenon of a particle under-
going an infinite number of collisions in a finite time [9], [40], [65], and occurs only
in hard disk models. Inelastic collapse can cause difficulties when one is attempting
to model granular phenomena with hydrodynamic analogies [11], [18].

Together with the theory, computational simulations often are of use when study-
ing granular flows [39], [53]. Modern computations can be massive (up to nearly
ten thousand particles [54]) and often demonstrate that pattern formations arise
within granular flows. This can be due to the development of clustering or of shear-
banding [16]. The observation of patterns in computational work has been of great
significance [41]. In the pharmaceutical industry for instance drugs are mixed in
rotating drums. Obviously a homogeneous mixture is required so that the dosage is
constant within each tablet. Computational simulations show that after a certain
number of revolutions, shear-banding can spontaneously occur, leading to an inho-
mogeneous mixture. This structure will then disappear, only to return later. We

can see consequently that a computational model of the flow is of great importance
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in this case.

Usually problems in granular mechanics deal with phenomena such as avalanches,
lahars (landslides), pharmaceutical processes, powders in rotating drums, chute flows
and so on (16], [41], [47]. In particular, there are some well developed theories of
chute flows [6], [19], [26], [39], [50]. Typically, even for sparser rapid granular flows,
enduring particle contacts are significant and the flows can be many particles deep.
The rapid monolayer which we study is believed to be atypical for a granular flow.
Enduring contacts are not thought to be as significant here. For this reason, a
conventional granular flow theory as described above may not be appropriate for a
model of this chute flow.

On the other hand, suspension flows tend to be concerned with sparser grain flows
where the interstitial fluid is important for the grain dynamics [12], [23], [30], [61],
[62], such as in the study of aeolian or fluvial transport [59]. These studies are
concerned with issues such as entrainment, which are believed to be less important
aspects of chute flows, such as those of interest to us. One major aspect of the chute
monolayer is that the dynamics is thought to be driven by the frequent, binary
impacts of the grains. Hence the Sortex problem seems to lie between the arenas of
suspension flows and granular flows.

Mathematical modelling of discrete phenomena by partial differential equations is
a technique successfully employed in studies of traffic and pedestrian flows [17], [21],
[22], [38], [42], [57], [58]. In fact, research on granular phenomena and research on
traffic problems have a large overlap: see for example [64]. Perhaps the most well
known theory is the celebrated Lighthill and Whitham model of traffic flow [38], [57],
[58]. This theory explains well experienced behaviours of traffic, including density
waves in traffic, shock waves as vehicles approach congestion and traffic jams at
intersections. Another example is Hughes’ description of pedestrian flows [21], [22].
He uses a Lighthill-Whitham type model for pilgrims crossing the Jamarat bridge
in Mecca. His work suggests a method of safely placing barriers in order to prevent
the crushing of pilgrims, which has in the past led to a number of deaths. It is the
theory of Lighthill and Whitham that we try to develop for the chute flow later in
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this thesis.

Prior to developing this model, however, we first study the simpler problem of
a single grain falling through a chute. This is done in chapter 2. The aim of this
chapter is to determine whether an analytical model can be utilized for a simple
particulate problem with a substantial number of collisions. We find that indeed it
can. In this case to obtain a continuous approximation we assume that the particle
collisions with the wall are asymptotically perfectly elastic and that the chute is
narrow. Also in this chapter, a short calculation is presented which shows that at
the bottom end of the chute the boundary layer around a falling grain is of the order
of the grain size. Thus we might expect air effects to become a significant aspect of
the flow.

Having investigated the one particle problem, chapter 3 deals with a large compu-
tational simulation of the many-grain flow. Initially, a simple computational model
is introduced. The trajectories of the particles are governed by simple ballistic laws.
Conservation of momentum and Newton’s law of restitution are used to determine
the velocities at collisions. Collision detection is considered in this chapter and we
use a method similar to that of Louge [39], rather than an event-driven algorithm
of the type discussed by Sigurgeirsson et al. [53]. The velocities of the grains are
assumed to have only horizontal velocity fluctuations, hence there is no vertical in-
teraction between particles. Air effects and friction are also ignored and only binary
collisions are allowed. The effect of changing the coefficient of restitution is inves-
tigated. An encouraging comparison between the results and data from Sortex is
observed, despite the simplifications. Following this, a commercially available code,
PFC2D, is used to investigate more complex effects, such as vertical interactions
and the effects of chute geometry, and the combination of the two. In all the compu-
tations we find that clusters and voids are a key feature, especially for those which
neglect vertical interactions.

Chapter 4 discusses possible analytical models for the chute flow. We mention that
statistical physics approaches seem to be attractive, especially when the chute flow

is compared to an ideal gas. Analogues to kinetic theories have been used for chute
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flows in the past for conventional granular flow problems [50]. However, some of the
assumptions of statistical mechanics are readily broken in practice. In particular,
the mean free path is of the order of the particle size and there is a continual input
of energy into the system. A simple statistical analysis is attempted, however, but
it appears not to be of great value. Furthermore, some of the assumptions of the
analysis also fail, and so this model is abandoned. We note in passing that mean field
theory, lattice-gas automata and random walk theory may be appropriate statistical
techniques of value. A full study of statistical methods is beyond the scope of this
thesis, as we prefer to concentrate on the continuum modelling.

In chapter 5 we develop a theory for a chute flow based on an analogy with the
Lighthill and Whitham model of traffic flow. As the model is developed from first
principles, it is sensible to start relatively simply. We therefore consider only a
one-dimensional model. However, the one-dimensional computational simulation of
chapter 3 does produce encouraging results, so we hope that the continuum model
may do so also. We write down a conjectured partial differential equation for the
density of regions of particles which move left and right across the chute. The density
is a function of time and position across the chute. As time increases, the particles
are considered to fall down the chute. The partial differential equation is a hyperbolic
kinematic wave equation. As such, discontinuities arise in the solution. We aim to
include these discontinuities in a description of the clusters and voids which arise on
the chute. Of course, a two-dimensional model would be one improvement to make.
We show the two-dimensional equations in brief and show that the one-dimensional
solution would emerge anyway, as the grains fall down the chute.

One novel aspect of the present model is that the wave-speed and the flux are
multi-valued ‘functions’ of the density; for a particular value of the density there
is a positive and a negative value of the flux. This allows the regions of particles
to move leftward or rightward across the chute. Since the wave-speed is defined
to be the rate of change of the flux with respect to the density, it too is multi-
valued. In traffic inodels, by contrast, the flow is usually uni-directional and so

those models do not have the multi-valuedness feature. The formation of clusters
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and voids relates mathematically, and directly, to the branch switches between the
positive and negative values of the flux. The inclusion of the branch switches in the
model gives rise to many interesting features. The flux-density relation is known as
the ‘fundamental diagram’ or ‘fundamental curve’. The strengths and weaknesses
of the proposed fundamental diagram are then discussed.

After postulating the model, we solve the ensuing partial differential equation
for certain simple initial conditions. The solutions are found by a method of char-
acteristics. Shocks and expansion fans must sometimes be incorporated into the
solution, and we also discuss these. Remarks are made about conservation of mass
and conditions on the entropy.

More general solutions are then sought in chapter 6, focusing in this chapter
particularly on one-way flows in which solutions remain always on one branch of
the fundamental diagram. In order to find general solutions numerically an artificial
viscous dissipation term is added. That changes the character of the equation from a
hyperbolic to a parabolic one. The discontinuities are consequently ‘smoothed out’.
This is a standard method in traffic flow theory [43], | [67]. The parabolic equation
is referred to throughout the thesis as ‘the continuum equation’.. A finite difference
scheme is employed to find solutions which replicate closely those found from the
inviscid analysis in chapter 5.

We then extend the analysis to seek solutions that do not mimic the (fairly simple)
analytical results of chapter 5. In particular, an asymptotic solution valid at small
time is compared to the results from the numerics. There is a satisfactory agreement
between the two.

Chapter 6 concludes with an examination of the steady states of the one-way
flow. A special case in which the densities at each boundary are nearly equal is
examined analytically. Other general solutions are difficult to compute accurately
as inaccuracies seem to be introduced at the point in the scheme where the direction
of the upwind differencing changes sign.

In chapter 7 two-way flows are examined for which the grains can move to and

fro across the chutes. This necessitates the incorporation of branch-switching in the
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solutions to the continuum equation. For such solutions to be found we argue that,
as a consequence of the introduction of the viscous dissipation term, the fundamental
diagram must be changed near its endpoints. Explicitly, local viscous regions in the
neighbourhood of the endpoints of the fundamental diagram permit solutions to
smoothly switch branches. These local viscous effects are investigated analytically
first at the low density branch switch and second at the high density branch switch.

In the former case, a similarity equation valid at small time is derived. The
equation is solved by a Runge-Kutta technique, but a series solution is required
through zero density since a singularity exists there. Smooth behaviour through the
branch switch is found to exist. An alternative method is to find solutions that are
asymptotically close to an exact solution of the equation. Crucially, this reveals that
a large region of low density can evolve, mimicking the formation of a void on the
chute. Furthermore, analysis shows that a separating region must have zero density
at its minimum, as may be expected from physical intuition. Some solutions lead to
an asymmetric density profile and these have minima which can move temporally.
This observation has ramifications for the steady state solutions discussed later.

For the large density case, a small viscous layer is introduced which is valid for
order one times, This yields a partial differential equation for the local density. The
equation is inverted and solved by a finite difference method. Smooth curves which
emulate the evolution of a cluster are shown to exist.

Steady states for the two-way flow are then examined. A simplified but represen-
tative version of the fundamental diagram is used to capture the main features of
the flow. The continuum equation is written in terms of polar co-ordinates so that
branch switching may be incorporated while avoiding problems associated with the
bi-valued fundamental diagram. A few steady states are found, but the number of
restrictions on the initial condition prevents us from finding very many significantly
different steady states. It is demonstrated that the problem is not over-prescribed,
despite the number of restrictions on the initial condition. We observe that appar-
ent steady states can be found in which sinusoidal-type solutions can be joined to

constant solutions. These relate to the asymmetric minima mentioned above, which
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move. We find, however, that such solutions have a t2 growth at order one times
at the ‘junctions’ and thus do not form valid steady state solutions, in the sense of
a steady state being a large-time limit. Hence they are ultimately dismissed. Some
steady states can be found analytically.

In chapter 8 an investigation of air effects on the grain flow is undertaken. We
start with an analysis of the viscous effects between two grains, the separation
between grains being small relative to their length. The viscous effects prevent the
grains from touching, in line with the results in [44]. Following this, the interaction
effects between many grains separated by small lubricating layers is researched. The
stability of the array is investigated. Inviscid effects between two flat grains are then
investigated. In this case grains are now able to touch. However, the interaction
between many grains separated by small inviscid layers seems to have the same
qualitative behaviour as the viscous case, with both yielding algebraic growth of
small disturbances, and hence relatively weak instability.

The main body of the thesis then finishes with concluding remarks in chapter 9.

Finally, there are seven appendices: four of the appendices examine in more detail
points made in the text; one discusses related experimental work involving the author
concerning a measure of chute performance; another appendix concerns an argument
for determining the boundary conditions at the chute walls in the inviscid model
by a method of characteristics; the final appendix presents in summary form the

industrial recommendations for Sortex Ltd.
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Chapter 2

One particle in a chute

One aim of this thesis is to find a suitable mathematical model for a chute flow of
grains. However, it is sensible to start with a very simple case to see if this yields
an analytical solution before undertaking the full problem.

We therefore consider in this chapter the trajectory of only one particle falling
down a chute under gravity. As it falls, the particle bounces from side to side
off the walls. The aim is to find the equations that govern its motion after each
bounce. We obtain a set of difference equations which provide an iterative scheme
for calculating the particle’s motion. Taking the limit of the coefficient of restitution
tending to unity then produces differential equations for the motion. The solution of
this continuous approximation can be compared to the numerics from the iterative
scheme and thus the validity of the differential equations can be tested.

For the sake of simplicity at this stage, there are many assumptions in the current
model, the main ones being as follows. First, it is assumed that the chute is vertical;
second, that the grains are round and we assume that consequently no rotation is
induced at a collision; third, that there is no frictional or drag force between the
grain and the chute; fourth, drag forces or other air effects are not included until
section 2.3. A more realistic collision model would have to reconsider these and
perhaps other points.

To start with, then, we have the following simple equations of Newtonian particle
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motion,

mij = —mg, (2.1)

and

mi = 0. (2.2)

Here y is the distance down the chute, x is the distance across the chute, g is the
acceleration due to gravity (g ~ 9.8 ms™2 as the chute is assumed to be vertical in the
current chapter) and ¢ is the time between collisions. A dot denotes differentiation

with respect to time. Equations (2.1) and (2.2) give the solutions
12, .+
Yn+1 = —59t° + Uzt + Yn, (2.3)

and

where u and v are the moduli of the horizontal and vertical velocity components
respectively. The subscript n represents a quantity at the instant of the n** bounce,
a superscript plus sign indicates a quantity immediately after a collision and a su-
perscript minus sign indicates a quantity immediately before a collision.

At the collision the velocities are assumed to change as follows:
vy =g, (2:5)

and

ul = éu,, (2.6)

where é is the coefficient of restitution and takes a constant value between 0 and
1. Equation (2.6) is Newton’s empirical law of restitution [46]. If é = 1 then the
collision is perfectly elastic and the particle conserves all its energy. Energy is lost
in a collision if é # 1 and so in this case a particle will return with its relative
velocity reduced in magnitude. In particular, if é = 0, the collision is imperfect,
the particle loses all its energy during the collision and it coalesces with the chute
wall. Note that there is no minus sign in (2.6) because for the moment we are only

considering the modulus of the horizontal velocity. The horizontal velocity is always
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considered to be positive and the modulus signs have been dropped. The vertical
velocity component remains unchanged at a collision.

The time between each collision is the time taken to cross the chute:

Tn4l —Tn O
i e ey 2.7
ub ud @7

where o has been defined as & = 2,41 — z,, and is the chute width.

Thus, on substitution into (2.3), we obtain:

2
1 o -[ a
yn+1 = ——2- (—’uz) + ‘Un (—-‘“l;t) + yn- (2-8)

Clearly, we can also obtain an equation for the vertical velocity of the particle

immediately prior to a collision,

- ga -
’Un+1 = —u—;f—*_vn (2.9)

As there is no acceleration in the horizontal direction, the horizontal velocity imme-
diately prior to the (n+ 1) collision is equal to the horizontal velocity immediately
after the nt* collision. Hence

Un, =uf (2.10)

Therefore the set of discrete difference equations governing the behaviour of the

particle in the chute is:

Upny1 = = 4y, (2.12)
n+1
and )
1 o _ (0
Ynt1= =59 | = + v, ( — ) + Yn. (2.13)
un+1 un+1

Here o is the horizontal distance between each collision, corresponding to the width
of the chute. Given the initial values of (u~v~,y~) as (Up, Vp, Yo) respectively we

find that after m collisions the general solutions are given by

ur, = Uge™, : (2.14)
vp = -3 (e7m 4+ ™) 1 1, (2.15)
0




and

- 1 QX m 2 9 1 m4l | z-m+2 & —mel
=g | — - hnd Vc —_—a ™ Yy. (2.16
Y 59 (er ) +( Ts [e +é ]+ 0 er + Y. (2.16)

2.1 Obtaining the differential equations and their solu-

tions

Here we consider the case of near-perfect collisions, for which we require é >~ 1,

together with a narrow chute so that « is small. So we can expand é as

say, in the limit

where F is an O(1) constant.
Subtracting u, from both sides of equation (2.11) and employing the above ex-

pansion we obtain:

If we take the limit as @ — 0 and write o = dh (the later being a small incremental

distance in the horizontal) then we simply see the above as

du

= = —Eu. (2.17)

Similarly, equation (2.12) is seen to become

dv g
= (2.18)
Finally,
dy lga v
T 2R +u. (2.19)
The boundary conditions are
u=wug at h=0, (2.20a)
v=1pat h=0, (2.20b)
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and

y=0at h=0. (2.20c)

The solutions to the continuous differential equations derived above are straightfor-

ward and are as follows.

u = uge~E, (2.21)
v =1+ %% (1-eB*), (2.22)

and

_ vowkE + 9 Eh _ g(aF +2) (2Eh | 9 (aE —2) — dugnoE

2.23
2E? iETE © e (2.23)

Now it is possible to remove the factor of g from the solution (2.23) if we make

the following transformation:

U Uoe
°V=vag| |, (2.24)

Yo Voc

where ug. and vy, are the quantities to be used in a calculation. Consequently the

solutions are now written as

u = /agugee Eh, (2.25)
v = \/aguo: + 7_(% (1 - BEh) N (226)

and

_ vocuocE+1 pp (aE +2) (2Eh | (aE — 2) — daugcvg E
oauf B2 4E20u?, daul E? '

(2.27)

2.2 Comparison between the results from the continu-

ous and discrete equations.

We now compare the solutions of the ordinary differential equations (2.25), (2.26)
and (2.27) with the results from the difference equations (2.11), (2.12) and (2.13)
in order to test the validity of the continuum approach. In truth, the difference
equations are the equations which ‘correctly’ describe the behaviour of the particle

and the ordinary differential equations are a continuous approximation to this.
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We plot the solutions for u and v as functions of y from the differential equations
for typical parameters. We also calculate numerically the position and velocity
of the grain at each collision using the iterative scheme implied by the discrete
equations. The data is used to plot u;, and v, as functions of y,. The solutions are
then compared graphically to assess the validity of the continuous approximation.
To put this on a firmer quantitative basis, the error between the two methods is
calculated after the final collision.

To find u and v as functions of y from the continuum approach, h must first be
eliminated from the solutions. We can write h as a function of y and substitute this
into the solutions for u and v for typicalvparameters. (By typical parameters we
mean simple representative values of ug,, vg. and a.)

We observe that equation (2.27) is quadratic in e®t. Thus the solution is

oEh _ 4o (vocuocE + 1)

2(2+aE)
\/16 (avoctocE +1)2 + 4 (2 + aE) ((aE ~ 2) — 4avpcugcE — 4E2aud,y)
i 2(2+ aE) '
(2.28)
Now if we choose ug, = 715, Voo = —-71; as typical values for the non-dimensional

velocities at h = 0 (because of (2.24), so that the dimensional velocities are O(1) in
magnitude, which seems to be approximately correct, at least for an initial investi-
gation), and if we put E = 1, (2.28) reduces to

__V2+a)((2+a)-4y)
et =¥ 2+a) '

(2.29)

Since e > 0 the positive root must be taken here.
Substituting into equations (2.25) and (2.26) for u and v we obtain the solutions

as functions of y:
u= Vi(2t ) 2.30
V2+a)(2+a)-4) (230)

and

V9@ +a)((2+a) - 4y)
v= - Tt a) . (2.31)
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Figure 2.1: Graph showing the difference between the analytical solution for u with
a = 0.1 and the numerics after ten bounces. The solid line is the solution from the

iterative scheme and the dotted line is the solution from the differential equation.

Figure 2.1 shows the continuous and discrete solutions of u(y) for o = 0.1. (For
the discrete solutions u(y) is actually a plot of u, versus y,). This involves only
ten impacts, but there is clearly a good match between the two results. In fact the
error between the value of u from the differential equation and the value from the
discrete equation (which can be considered to be the ‘true’ value) at the end of the
computation is only 2.08%.

Figure 2.2 shows the solutions for v(y) from the two methods for a = 0.1. Again,
a good match between the results is observed. The error between the two values at

the end of the simulation is 2.04%.

2.3 Some brief remarks on air effects

If drag is included between the grain and the air (we still assume that there are no

frictional or drag forces between grain and chute), the governing equation for the
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Figure 2.2: Graph showing the difference between the analytical solution for v with
o = 0.1 and the numerics after ten bounces. The solid line is the solution from
the iterative scheme, whereas the dotted line is the solution from the differential

equation.
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particle’s motion in the vertical direction (2.1) is modified to
mi} = mg — Amg? (2.32)

where ) is a positive constant that determines the magnitude of the drag force.
This is the amplitude-squared law of drag, which assumes a sufficiently large flow
rate or grain-based Reynolds number. Our concern will tend towards this case of
higher flow rates. An alternative for lower grain-based Reynolds number is a linear
term, —Aymy say [32]. It has also been assumed here that || < |g|, which seems
sensible for the current industrial application as observation does indeed indicate
that horizontal velocities are significantly less than vertical velocities in the chute.
We mention finally here that we have not considered the z-momentum equation but
we anticipate that similar terms would arise there.

To continue, then, the particle will fall at terminal velocity when the drag balances
with gravity and the acceleration is zero. An expression for terminal velocity can

thus be found by putting § = 0 to obtain

|2
i=1/%. (2.33)

Denoting the terminal velocity as v, we see
r=Z v (2.34)
The governing equation therefore becomes

j=g9- 23 (2.35)
ve

This is a classical problem of Newtonian dynamics but let us note below the details

a little. To solve the above equation, let ¢ = § to obtain

2

v,

/ e gy = / 2gdy + c, (2.36)
Ve — 4 "

where ¢ is a constant of integration. Integrating reveals

—v2In|v - g| =29y +c. (2.37)
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If the particle starts at rest at y = 0 then ¢ = —v2In |[v2|. Hence

_2
g =1} (l—e 'R}) (2.38)
i.e.
02 2
U (2.39)
'Ug

For terminal velocity to be reached, we require 2gy >> vg so that %:7 — 1 then. The
limiting case is 2gy = v2. Typical values in the industrial setting (see chapter 1) are
roughly y ~ 1m and g ~ 10ms™—2, so v, = O(4.5)ms™*.

Further, the chute-based global Reynolds number of the flow is Re = %‘i where L
is the chute length, V is the terminal velocity and v = 1.5x107*m 25 is the viscosity
of air. Thus Re ~ 3 x 10% and therefore the dimensional boundary layer thickness
d = O(Re"%L) ~ 5mm. This means that the global boundary layer thickness is
of the order of the grain size, and so we might expect air effects to be a significant
aspect of the chute flow.

On the other hand the grain-based or local Reynolds number of the flow is Rey =
E%Y- where L, is the length of a rice grain, for instance. That is Ly ~ 5 X 10~3m.
Thus the local Reynolds number is Re;, ~ 150, which is a moderate value, lying
somewhere between the large or small regimes. The local dimensional boundary
layer thickness is 4y = O (Reg_%Lg) ~ 0.4mm, which nominally is small relative to

the grain size. Air effects will be dealt with at the end of the thesis in chapter 8.

2.4 Summary

We have seen that the problem of a bouncing grain falling down a chute, which is an
inherently discrete process, can yield to a continuum approach. This encourages a
view that an analytical model may be of use for a simple particulate problem and we
hope that the same will be true for the fully developed chute flow. However, before
tackling the problem of finding a suitable continuum model for the chute flow (which
is begun in earnest in chapter 5) we wish to examine more thoroughly the physical
processes at work on the chute. In order to do this, a computational simulation of

the flow is developed in the next chapter.
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Finally we have demonstrated in this relatively short chapter that air effects may
be a significant aspect of the flow, since the boundary layer thickness is of the order

of the grain size. We shall return to a study of the air effects in chapter 8.
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Chapter 3

Computational simulations of

chute flow

Prior to developing continuum or statistical models of the chute flow, we wish to gain
more understanding of the physical and impact processes occurring on the chute. In
order to do this, we directly compute in the present chapter the trajectories of all
the particles in a representative large group as they fall down the chute. We aim to
find the velocities and positions of the particles as they exit the chute, and in some
sense solve the complete problem. It is then possible to compare these numerics with
the data provided by Sortex. Asking if the computational model exhibits any of the
observed behaviour seen in reality may enable us to see if the model has captured
any of the important processes which occur upon the chute. Thus we may obtain

some insight into the physics of chute flow.

3.1 Binary collision model

We start with the most basic of models. We assume that there is no air resistance,

that there is no friction between the particles and the chute and between particles,

that all particles are spherical and of equal mass, that no rotation is induced at colli-

sions, that restitution acts only in the normal direction, and that only collisions between pairs of part:

(called binary collisions). Therefore the positions and velocities of the it* particle
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at the (n + l)th time-step are given by the following simple ballistic equations (cf.

chapter 2):
Tin+1 = Uinl + Tin, (3.1)
Yin+1 = —%9t2 + Vint + Yin, (3.2)
Uint1 = Uisn, (3.3)
and
Vipt1 = —gt + Vip. (34)

In the above, z, y, u and v are the horizontal and vertical co-ordinates and the
horizontal and vertical velocity components‘ respectively; ¢t is a fixed time-step and
g = 9.81 ms~2 is the acceleration due to gravity. Note that equation (3.3) simply
states that the horizontal velocity is unchanged at each time-step since there is no
acceleration in the horizontal direction.

If we find that a collision occurs (see test below) within a time-step then the
velocities of the colliding particles must be changed accordingly. To find the correct
equations we consider a collision between the i** and j** particles. Conservation of
momentum Yyields:

Uin + Ujn = Ui + Ujin (3.5)
and

Vin + Vjn = Vin + Ujn, (36)

where a bar denotes a quantity after a collision. Newton’s empirical law of restitution
[46] also applies at collisions. If two particles collide so that the line between particle
centres (i.e. the normal direction to the point of contact) forms an angle 6 to the

horizontal, restitution states that in the normal direction
]

(i n — @j,n) cos(8) + (Vs,n — Ujn) SIn(0) = & (ujn — uin)cos(0) + & (vjn — vin) sin(6),
(3.7)

and in the tangential direction the velocities do not change so,

(ai,n - ﬂj,n) Siﬂ(@) - ('Ui.n - 17j,'n) COS(G) = (’U,,',n - Uj'n) sin(9) - (’U,',n - ’Uj.n) COS(G)

(3.8)
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That is to say, the speed of retreat of the particles along the normal direction to the
point of contact is the speed of approach along the normal direction to the point of
contact reduced by a factor €, known as the coefficient of restitution, which takes a
constant value on the interval [0,1]. This is a consequence of energy losé at collisions
in general (due to heat exchange during impacts, and so on). If € = 1 then energy is
conserved at a collision and the speed of separation is equal to the speed of approach.
Otherwise energy is lost in a collision and particles separate less quickly. In the case
é = 0 all energy is lost and the particles stick together, or coalesce.

Solving equations (3.5) and (3.7) and equations (3.6) and (3.8) simultaneously

gives
1 . .
Tip = 7 (1 + &) (ujn — (Uin — ujn) cos (20) — (Vi — vj,n)sin (20)) +
(B—8&) uin (3.9)
1
Ujm = i (14 &) (tin + (Uin — ujn) cos (20) + (v;n — ;) sin (20)) +
(3- &) ujn] (3.10)
_ 1 . .
Din= ) [(1+ &) (vjn + (vi;n — vj,n) cos (20) — (uin — ujn)sin (20)) +
(3-é)uvin] (3.11)
and

Bin = 7 [(1+6) (vim ~ (vin — v3) c05 (26) + (i — ) sin (26)) +

(3—¢&)vjn] (3.12)

as the new velocities following the collision during the n** time-step.

3.2 Computational algorithm

The equations of section (3.1) which govern the particle dynamics on the chute

are now used in a computation to produce a first simulation of the flow for many
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particles. In particular, we can plot the particle trajectories and find the distribution
of particle positions and velocities as the particles exit the chute. A brief overview

of the algorithm is as follows.
1. Specify the initial conditions.

2. Advance the particles to their new positions and find their new velocities using

equations (3.1) - (3.4).
3. Check for collisions.

4. If particles are found to be colliding, change their velocities in accordance with

equations (3.9) - (3.12).
5. Go back to 2). Or

6. Stop when particles have exited the chute and save their positions and veloci-

ties.

We expand on this description in a little more detail as follows. Initially, particles
are placed evenly on a horizontal line at the top of the chute. The particles are
disks of one millimetre. They are given arbitrary horizontal velocity fluctuations,
but the vertical velocity component is chosen initially to be zero. In the first cases,
the horizontal velocities are of the form u;o = (—1) x 0.01sin(z; ), but later we
choose random values. There are 150 particles in each simulation.

The algorithm for detecting collisions works in the following way. At each time-
step the distance between particle centres is calculated for all possible particle pairs.
If this distance is less than the particle diameter the particles are deemed to be
colliding. Note that this means the particles are actually overlapping (albeit only
slightly) at a collision, which is unphysical. To avoid this problem a method was
tried in which a variable time-step was used in order to exactly determine the time at
which the particles just touch. However, that typically required a continual reduction
in the time-step. If the initial time-step is small then after a few such reductions

the computer reads the time-step as being identical to zero and so the exact point
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Figure 3.1: Plot showing the final particle distributions for two different time-steps.
We see only a small difference between the results and therefore state that the
‘overlap’ weakness is reduced if the fixed time-step is small. The particles have

dropped down the entire chute (i.e. 1m).

of collision cannot be located. Instead, we require the time-step to be fixed and it

is hoped so small that no collisions are accidentally missed by advancing too far.

Choosing a small time-step also minimises the overlap problem. We checked that

the results are robust to this (seemingly small) flaw by running the program for a

particular fixed time-step, then re-running the program again with the same initial

conditions but with a smaller fixed time-step and checking that the results have

not changed significantly. When this is done, see figure 3.1 below, we see negligible,
change in the results.

Others have used similar algorithms in the study of granular flows. See, for
example, a computer simulation of Louge [39] which investigates a theory of Jenkins’
[26] concerning the boundary conditions for flat, frictional granular flows. Louge also
has to negotiate the problem of overlap. He ran his simulation until each particle has

experienced an average of ten collisions. The time-step is then readjusted so that
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the mean overlap does not exceed a given tolerance. This is optimised by running
simulations with decreasing values of the tolerance until all results of interest become
insensitive to further reductions. ‘

On the other hand, researchers such as Sigurgeirsson and Stuart [53] avoid the
problem entirely by using an event-driven algorithm. In this method the time to
possible next collisions is calculated and the computation is advanced by the small-
est time. Thus the exact point of collision is located and there is no risk of missing
collisions. However, for this method to be used it must always be possible to de-
termine the time to the next collision. ‘We fear that this may not always be the
case, especially for more complex models which may include non-linear effects. As
we wish to write a program that would be able to deal with quite complex cases we
opt for the former method.

A fundamental test of the code, where we check some results against a simple

analytical case, is discussed in Appendix A.

3.3 Preliminary results

We start with an investigation of the effect of changing the coefficient of restitution
é. In simulations for this study, periodic initial conditions were chosen for the
horizontal velocity fluctuations. Such an initial condition is found to provoke, or
seems to provoke, the clustering phenomenon, explained below.

We examine figures 3.2 - 3.4 illustrating the particle trajectories on the chute for
varying values of the coefficient of restitution for the same periodic initial conditions,
i.e. uip = (—~1)'x0.01sin(z). Each line is a path of a particular particle on the chute.
The chute has been chosen to have a width of 0.3m and a length of 1m, as in the
Sortex machines (chapter 1).

It seems that as the coefficient of restitution is reduced the distribution of particles
may become ever more inhomogeneous: the particles apparently form into clusters,
separated by voids, by the time they exit the chute. A suggested mechanism for

this is as follows. As particles collide they lose energy. The energy loss is directly
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the previous case except there are slightly more apparent clusters and, on average,

fewer particles in each one.
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related to the coefficient of restitution; as € — 0, energy loss increases. Consequently
particles separate with a much reduced velocity. Another particle may collide with
one of the particles in this pair; there would now be three ].:»articles in a small region
separating slowly. Thus groups begin to form. After many collisions this might lead
to the apparent clusters seen in the figures. If é is larger it may take a longer time to
form these groups, as not as much energy is lost in each collision, and so the particle
distribution might be more homogeneous as the particles exit the chute. If, however,
é is very small the particles will tend to fall in small coalesced groups; two particles
will collide and in effect form a coalesced pair. Almost all the horizontal velocity
component will be lost, (if the particle velocities are initially opposite and small in
magnitude, which is true for neighbouring particles in the current simulation) and
the pair will fall almost vertically through the chute. From here on these two particles
will not have a sufficiently large horizontal velocity component to experience further
collisions with other particles. Hence for very small coefficients of restitution we
tentatively suggest the possible clustering may be less pronounced than for medium
values. Further investigation of the apparent clustering phenomenon is presented in
Appendix B.

We must also be aware of the issue of ‘inelastic collapse’ in the model, i.e. the
phenomenon of a particle undergoing an infinite number of collisions in a finite
time [29], [40]. (The classic example is the case of a bouncing ball: the height of
the top of the bounce becomes smaller and smaller with increasing time but only
asymptotically approaches zero). Inelastic collapse occurs as a consequence of using
a ‘hard-disk’ model. The assumption was made that the particles were rigid when the
collisional rule was given in equations (3.7) and (3.8). However, Zhou and Kadanoff
[65] have shown this only to be a significant issue when é < 7 — 4v/3 ~ 0.072 for
one-dimensional systems and our model, for the moment at least, considers particle
collisions only on horizontal lines. Since the coefficient of restitution for grain-
grain collisions in reality is seen to be around 0.25 — 0.5 we need not be concerned
about this. (Of course, there are alternative models for dealing with particle contact

collisions, such as the so-called ‘spring-dashpot’ system [40], [47]).
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The conjectured clustering phenomenon also leads us to ask about what may hap-
pen if there are more than two bodies involved in a collision. This may at first seem
likely in a large group of particles. Hence we develop our own empirical law for
three-body collisions (although other authors have considered this, e.g. Constantin,
Grossman and Mungan [9]). We consider three particles, particles 1, 2 and 3. We
split the three-body collision into a series of binary collisions until the particles es-
cape (again this may be an infinite number of collisions if inelastic collapse occurs
instead; so wé remain outside this regime). However, the results are found to be
dependent on order - a sequence starting with particle 1 hitting particle 2 does not
yield the same result, in general, as collisions where the first collision is between
particles 2 and 3. Thus we find the result for both sequences and take the average
of the final velocities as our empirical law. However, when simulations are run it
is found that in practice three-particle collisions are extremely rare and are thus of
negligible effect, and so there is no great need for the inclusion of our new empirical
law in the code. The reason for this could be that the horizontal velocity fluctuations
within a proposed cluster are so small that the particles tend to fall together just
as one coalesced mass. Figure 3.5 shows the typical reduction in horizontal velocity
fluctuations from the initial values. At first, the amplitude of the velocity fluctua-
tions has a magnitude up to the order of 0.01, but at the bottom of the chute the
amplitude is roughly half this value, on average. One small flaw with the averaging
approach, described above, is that it could enhance energy loss. A better approach
in the future may be to randomly select between the two options each time.

We now move on to examine the final particle distributions for varying initial
density and compare them with Sortex images. To produce images from the author’s
code, the initial condition is changed so that particles start with random horizontal
velocity fluctuations. The particles are evenly spaced along a line at the top of
the chute. We plot the final positions and then re-run the simulation for another
batch of particles. We plot the final position of these particles exactly one particle
diameter above those of the previous batch, and so on. Thus this picture is not a

‘true’ image of many particles coming off the chute and, importantly, there is no
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vertical interaction between each batch, which is perhaps an over-simplification.

However, Sortex images are actually produced in somewhat the same way. Sortex
engineers take an image of one line of particles as the particles exit the chute and then
take another image and scan that above the previous one, and so on. Therefore,
even in a Sortex image, one is not looking at particles falling off the chute, but
rather a sequence of snap-shots of particles as they come off the chute. Hence these
Sortex images and the computer generated images from the present code make for a
reasonably fair comparison. (Although there is no vertical interaction between the
lines of images that make up the Sortex ‘photograph’, this interaction has existed
upon the chute and therein lies an important difference between our computation
and reality). In the code we vary the density by first sending down 150 particles
evenly spaced on a line, then we change to 100 and ﬁnaily only 50 grains.

Observe that the densities used in the computation do not directly correspond to
the densities in each of the corresponding Sortex images. Rather the comparisons are
only meant as a guide; they show at most a very informal if encouraging agreement
between the present model and the real-life Sortex results, and indeed they could
be illusory. That is to say, we are not discussing flows of the same density, we
are only comparing examples of dense flows from simulation and experiment, then
comparing sparser flows, and so on. Such a comparison, however, is over-simplistic
as we compare a distribution of points to a distribution of finite sized grains; this is
a weak point and in view of this all comparisons must be made cautiously.

Some general agreement between the model and Sortex images is possibly ob-
served. The density distributions appear to be inhomogeneous in all cases. In the
high density case there appear to be few voids and the size of each void seems roughly
to be of the correct magnitude as seen in the Sortex image. The number of such
voids in our picture and the Sortex image also seems to be of the same order. There
also appear to exist regions of very high density where grains are tightly packed
together and this also is perhaps a common feature of both images.

In the medium density picture we again see apparently the same common general

features described above. The conjectured voids perhaps are slightly larger and
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Figure 3.7: Sortex image of high density flow.
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Figure 3.9: Sortex image of medium density flow.
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Figure 3.11: Sortex image of low density flow.
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perhaps slightly more numerous, but in general the picture appears not to have
changed much.

The low density case is again potentially encouraging if no more. Some isolated
grains are appearing in the picture, the possible clusters do not seem to be as tightly
packed and the possible voids appear to be larger and frequently occurring,.

In conclusion, the model appears to capture perhaps the creation of inhomoge-
neous density distributions by the physics of clustering and energy loss. This seems
to be a potentially important feature of chute flows. Indeed, we are not the first
to make this observation, see [2], [29], [47] and references therein. Questions of
inelastic collapse and many-particle contacts have arisen and seem to be relatively
unimportant for the parameter regime of interest to Sortex (at least in one dimen-
sion). Finally, the model, albeit simplistic (as described in a previous pafagraph),
shows some possibly encouraging agreement with reality.

We should re-emphasise that a question remains about how the distributions of
rice differ from a random placement of grains on a plane. The question is of signif-
icance to Sortex. Indeed, the author undertook a preliminary investigation of the
issue whilst working at Sortex, of which a brief summary can be found in appendix
C and more detailed reports can be obtained on request. The investigations were
an initial attempt to tackle the issue, a complete analysis of which is outside the
realm of the present thesis. We reiterate here the weakness of comparing compu-
tational distributions of points with experimental distributions of finite-sized grains
and (although subsequently in section 3.4.1, see figure 3.17, computational results
with finite sized discs are presented) we state again that all comparisons must be

made cautiously.

3.4 Inclusion of more complex effects

It is desirable to include more complex effects in the simulation, such as interactions
in the vertical and effects due to the chute geometry. In particular, we wish to

have a physically realistic computational simulation with which we can investigate
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pertinent aspects of the flow. Recall from chapter 1 that the wish is to reach a
uniform flow which will reduce the erroneous ejection of grains surrounding a reject
particle. Methods of statistically measuring the clustering (in order to determine
if there is any improvement to the flow) were investigated by the author during a
period of experimental work undertaken at Sortex Ltd. and these investigations are
discussed in appendix C.

To enable us to accurately model the full flow, we utilize a commercially available
code (from Itasca) called ‘PFC2D’. This code allows easy simulation of complex
granular phenomena using a programming language called ‘FISH’ alongside useful
internal routines. With this code it is relatively simple to include wall/grain friction,
change the grain density, alter wall shape and investigate other relevant properties.
First, this code is used to replicate the earlier results found from the simulations us-
ing the author’s code, before an investigation of more complex effects is undertaken.

A number of parameters must be set in the PFC2D code for both the wall prop-
erties and the ball properties. For the walls and the balls, the normal and tangential
shear stiffness is arbitrarily set at a value of 1 x 108N m™! to ensure that they are
sufficiently stiff. This is the recommended value in PFC2D for a wall. The balls are
also set to have an arbitrary density of 1000kg m=3, i.e. about the density of water.
This may or may not be suitable for rice. Friction between balls is set to zero and
the acceleration due to gravity is chosen as 8.5m s~2 as the chute typically slopes
at an angle of 60° to the horizontal. The coefficient of restitution between balls has
to be set by choosing a critical damping ratio. In order to make sure that this ratio
corresponds to a value of é ~ 0.4, as in the author’s computations, we must set the
‘notension’ function to ‘on’ and pick the normal viscous damping parameter as 0.35.
Finally, in each experiment the balls start along a horizontal line at the top of the

chute with initial velocities specified as described below.

3.4.1 Results

As mentioned above, we initially employ the commercial code to run a simulation of

the same type as that in the author’s code in order to compare with previous results.
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PFC2D 3.00

Step 202000 15:18:51 Wed Jan 26 2005

View Size:
X: -3.1500-001 <=> 1.5000-002
Y: -1.2090+000 <=> -8.410e-001

Wall
Ball

itasca Consulting Group, Inc. Minneapolis]
LMinneacolis, Miohesola USA

Figure 3.12: The above figure shows the end result of a simulation in which particles
enter the chute with horizontal velocity fluctuations only (as in the author’s code).
They then fall under gravity and collisions also occur. We observe a clustered

structure which is very similar to the results previously produced.

That is to say, we run a simulation in which one line of particles falls through a chute
with only random horizontal velocity fluctuations. Again, friction, air effects and so
on are neglected. There are fifty particles in the simulation.

Figure 3.12 shows the end result of one simulation. The picture is qualitatively
the same as before, with a clustered structure being observed.

Having confirmed that the PFC2D code seems to yield results consistent with the
established code, we move on to include more complex effects in the model. Vertical
velocity fluctuations are now included in the initial condition. The vertical velocity
fluctuations are random in magnitude, but the velocity is always downward (i.e. we
exclude particles moving up the chute). Further to this, a second ‘batch’ of particles
enters the chute after an arbitrary time delay.

As a consequence of the vertical velocity fluctuations, particle interaction between
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Figure 3.13: In the above figure, vertical velocity fluctuations have been included in
the initial condition. Further to this, a second ‘batch’ of particles enters the chute
after a time delay. As a consequence of the vertical velocity fluctuations particle
interaction between the two batches occurs resulting in situations with the above

character. Only the lower half of the chute is shown.

the two batches occurs. The faster particles from the second batch catch up the
slower particles from the first batch and (more) collisions take place. This may be
why there appears to be more clustering toward the top of the distribution. There
also appears to be a banded structure: a slight gap is perceived between the fast
and the slow particles. We observe that a clustered structure is still apparent and
the distribution of grains is not homogeneous, see figure 3.13.

The effect of chute geometry is now introduced into the simulation. Four different
chute shapes are examined: a straight chute, a chute that widens, a chute that
tapers and a chute that has a bend. Only a pair of particles with random horizontal
velocity fluctuations are placed in the chutes at first. (Vertical velocity fluctuations

are again neglected for this simulation).
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Figure 3.14: We now move on to a preliminary investigation of chute-shape effects.
First, we simply place a pair of particles at fixed positions with random horizontal
velocities into four chutes of different shape. The first chute has a part where it
widens and the end result appears to be very similar to the straight chute. The
second chute narrows part way down. This seems to create a vertical displacement
of the particles. Third is the straight chute for which the results have already been
studied more fully. Finally, there is a chute with a bend. Here the particles are seen

to be much further up the chute than in the preceding examples.

Figure 3.14 shows the final positions of the two particles. In the chute which has
a widening the results are much the same as for the straight chute. The second
chute, which tapers, seems to create a vertical displacement of the particles. In the
chute with the bend it appears that the particles take much longer to fall through
the chute as the particle pair is still near the middle of the chute at the time when
the other particles are exiting.

Next, many particles are placed in these chutes. In this simulation vertical velocity

fluctuations have again been neglected. Note that as the first chute is narrow at
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Figure 3.15: Many particles are placed in the chutes. The different particle be-

haviours are discussed in the text.

the top only half as many particles can enter this chute. The end result is again
qualitatively similar to the straight chute except that there are fewer particles and
all of them are in a region near the centre of the chute. The second shape, namely
the tapered chute, splits the grains into two groups. The particles that start at
the centre cluster together, as usual, through collisions with neighbouring particles.
They then fall straight through the middle region of the chute without colliding with
the walls and thus go ahead of the other particles. These other particles are involved
with collisions at the walls that slow their fall and cause them to move toward the
centre of the chute. This causes them to be displaced vertically. Here they undergo
further particle-particle collisions. Hence a second cluster of particles evolves higher
up the chute. In the fourth chute all particles hit the sloping right-hand wall which
slows their fall and disperses them slightly. See figure 3.15 for clarification.

For the final investigation concerning the chute geometry we include vertical veloc-

ity fluctuations (cf. figure 3.13). The effect of this seems to be a vertical dispersion
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Figure 3.16: In the final computation on chute shape effects, vertical velocity fluc-

tuations are added. The different behaviours are described in the text..

of the particles in the widening chute, in the straight chute and in the tapered
chute. For the chute with the bend, the vertical velocity fluctuations seem not to
significantly alter the previously observed behaviour. We refer to figure 3.16.

In the above simulations we have quite systematically introduced more complexity
into the computational simulations. We at first included vertical velocity fluctua-~
tions, then added the effects of changing the chute shape, and then combined the
two. We find that clustering is a key feature of all the flows, especially those that
neglect vertical velocity fluctuations. A brief investigation of chute shape effects
demonstrated that none of the changes in geometry appeared to give significantly
more uniform distributions.

As a final experiment, we return to the straight chute and this time allow sixteen
batches of interacting grains to fall down the chute. Both horizontal and vertical
velocity fluctuations are included. There are now 944 particles in total. This sim-

ulation is perhaps most similar to a chute flow on a Sortex machine. Figure 3.17
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Figure 3.17: A final simulation in which 16 batches of interacting grains fall through
the chute. Only the final portion of the chute is depicted and the particles are shown

as they exit the chute.

shows the particles as they exit the chute. The main features to note are the possi-
bly clustered nature of the particles (some of the apparent clusters are quite large
and dense) and the fact that particles seem to form high density regions near the
walls. Returning to the comments made at the end of section 3.3, it may perhaps
be more useful to compare this figure, showing a distribution of finite-sized discs,
to the experimental results in figures 3.7, 3.9 and 3.11, which show distributions of

finite-sized rice grains.
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3.5 Summary

In this chapter, computational simulations of chute flow have been studied. Initially
a simple code developed by the author was used to demonstrate that clustering is
a key feature of flows in the absence vertical velocity fluctuations. These results
appeared to agree qualitatively with results from Sortex machines.

Next, a commercially available code PFC2D was used to include more complicated
effects. This included the introduction of vertical velocity ﬂuctuaﬁons. Clustering
was still seen to be a key feature, although perhaps to a slightly lesser extent than
previously.

An investigation into chute shaping effects was also undertaken. None of the
adaptations to the shape appeared to significantly improve the uniformity of the

particle distributions.
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Chapter 4

Analytical models of chute flow

In the previous chapter we employed computational simulations of chute flows of
grains in order to deepen our knowledge of the important physical processes. We
observed that clustering is a key feature and that a fairly simple simulation, neglect-
ing vertical interactions, appeared to capture the crucial aspects of the flow. We now
wish to develop in this chapter accurate analytical models of the grain ﬂov? which will
also demonstrate the appropriate behaviour. There are two main avenues of study
when tackling particulate flow problems analytically: one is statistical mechanics,

and the other continuum mechanics.

4.1 Statistical mechanics

Statistical mechanics seems (initially at least) to be a desirable method of studying
granular and particle-laden flows. The idea of following every particle’s motion to
determine the physical properties of a system, as in computational methods (e.g.
in chapter 3), is perhaps very inelegant by comparison. Rather, using probabilistic
methods has historically been seen to be a very powerful method of describing many
complex systems macroscopically, consider for example the kinetic theory of gases.
Indeed, discussing granular flows using kinetic theory has been attempted with some
success in the past [50].

It must be noted however that there are some important differences between an
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ideal gas and a granular flow, differences which some scientists would argue make
this approach untenable [15]. First, particulate Systems are highly inelastic and
energy is lost at each collision. Second, the mean free path of a particle in a typical
flow is of the order of particle size. Third, the rice-grain case is itself different from
the traditional granular case (the latter flow is characterised by a rapidly moving
monolayer without enduring contacts). Finally, in our system, the particles are
continually accelerating due to gravity and hence there is a continual input of energy.
Thus some assumptions of the kinetic theory o_f gases and statistical mechanics are
readily broken in practice. ‘

Yet the use of probabilistic methods and statistics remains very appealing and
there have been suggestions that the study of lattice gas cellular automata may be a
powerful way forward here [45]. In the latter particles are followed along a lattice as
opposed to particle distributions in Lattice-Boltzmann methods. We do not however
examine these methods in this thesis.

It is possible, nevertheless, to examine here a very simple probabilistic method
of determining the final velocity distribution of the particles as they exit the chute.
Suppose that two particles, particle 1 and particle 2, undergo a series of IV collisions
with each other. Let o = lg—'i and 3 = —1-?_,:9 Using equations (3.9) and (3.10) it is

possible to show that after one collision

@y, + 1t = (a+ B) (u1,0 + u2,0) (4.1)

and
1,1 — 172’1 = (a - ﬂ) (’u,l,o - 'ltz,o) . (4.2)

(Recall that velocities are denoted u;, where ¢ is the particle number and n is the

collision number). Therefore after N collisions:

N + Az, = (a+ B)Y (w10 + uzp) (4.3)

and

an —Go,n = (o= B)N (u10 — ugp) - (4.4)
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Hence the final velocity of the first particle after NV collisions is

N N
a+ : o -
ULN = L—-zﬁ—)— (u1,0 + u20) + L‘aﬂ (u1,0 — u2,0) (4.5)
which, in terms of é, can be written as
1-¢éN 14&N
ULN = (———2—-—)’1141,0 + -(——2——)'11,2,0. (4.6)

The above is true only if particle 1 continually collides with particle 2. However,
particle 1 will in reality collide with other particles. These particles will be in a
small neighbourhood of particle 1. So qualitatively we may expect their behaviour
to be roughly the same, as seen from the computation. That is to say, we expect
the velocity fluctuations of neighbouring particles in a small region to be of the
same order. Thus we assume that all collisions that particle one undergoes can be
approximated as if particle one has been continually colliding with only one other

particle. In general we can write the final velocity of the it® particle as

1—éM 1+ &M
Ui, N; = ( ) )Uz',0+ ( ) )'U'i+1,0‘ (4.7

Therefore, provided we can find an approximation for N;, the expected number of
collisions for the 1** particle as it falls through the chute, we can obtain an expression
for the average velocity distribution as the particles exit the chute.

Now we state that
,
N; = / P, (t) dt (4.8)
0

where P, (t) dt is the probability that the it* particle undergoes a collision within a
time dt. Also 7 is the length of time a particle spends on the chute. The problem is
now reduced to finding a suitable expression for P; (t), which is a probability density
function.

If we try, as a first approximation, P; (t) = p, the packing density, generally poor
results are seen except in areas where the particle density is sparse and each particle
has undergone few collisions. See figure 4.1 for example. Moreover, the model lacks
spatial symmetry: each particle acts only on the particle to its left and is acted on

by the particle to its right, which does not seem to be sensible.
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Figure 4.1: Graph showing difference between first approximation for velocity dis-

tribution at the bottom of the chute (dashed line) and the actual distribution (solid
line). The initial distribution was u; = 0.1 * cos (0.1¢). Agreement is only seen in

regions where the density was seen to be sparse. (The y-axis is the velocity of the

particle, the x-axis is the particle number).
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Note also that the above approximation would be poor for the case of random
velocities in the initial conditions. This is owing to the assumption that neighbouring
particles have velocities of the same order. Clearly, in the random case, there would
be no reason for this. Since Sortex suggest that random velocity fluctuations are
the most sensible initial conditions the assumption is violated and this approach, it
is felt, has to be abandoned.

Another statistical approach is that of mean field theory. The idea here is to fix
the number of particles and their initial velocities and run the computer simulation
M times for random initial positions. We can then ensemble average over the M
different sets of initial conditions to extract (v (x)), their average velocities. This is
given by

(v (x)) = > v within (x + d2x) . (4.9)

M realisations

We can then say that (v (x)) is the velocity of the mean field which can now be
treated as a continuum. We must check that total momentum is conserved. Inter-
actions of particles with the continuum must then be included to obtain a set of
differential equations governing its motion.

An alternative is to fix the number of particles and their velocities and average
over M configurations to find the average positions. If we do this, however, we
find the average particle distribution is simply a uniform distribution of particles
spread evenly across the bottom of the chute. This seems to miss all the rich
behaviour of clustering found in the computation. Therefore the mean-field approach
is discontinued here.

Finally, if a representative particular trajectory is examined its path is reminiscent
of a random walk - it continually moves downward, but it changes its horizontal di-
rection at seemingly random intervals. It is a possibility, therefore, that the statistics

of random walks may be a useful tool for tackling the problem in the future.
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4.2 Continuum mechanics

Continuum models also offer a powerful way to tackle particulate flow problems such
as suspension flows [12], [23], [30], [61], traffic and pedestrian flows [21], [22], [38]
and aspects of granular flows e.g. [19]. Here the particulate nature of the problem is
essentially ignored, or can be overlooked, by addressing larger macro-scale behaviour
and assuming that quantities such as density are continuous. It is then possible to
write hydrodynamic-like equations that govern the overall particulate motion. Some
of these models have been used with great success. For example, Hughes [21] used a
continuum theory of pedestrian flows to suggest a method of safely placing barriers
to try to prevent tragic events as pilgrims cross the bridge of Jamarat in Mecca,
and Lighthill and Whitham [38] used a continuum theory of kinematic waves to
describe traffic flow. Their results are very interesting and explain well experienced
phenomena such as traflic jams at traffic lights and density waves in moving vehicular
flow.

However, not everyone agrees that continuum models are sensible. Some may
argue that it is not sensible to ignore the particulate nature of such flows as one
may miss some important local or global physics of the flow in doing so. Importantly,
Du, Li and Kadanoff [11] have shown that hydrodynamical descriptions of particles
can break down in certain one-dimensional systems, as equipartition of energy is
violated. Their colleagues, nonetheless, have been developing a useful description of
granular hydrodynamics in two dimensions [18].

In this thesis we choose to use a continuum method to describe the chute flow
analytically. In fact, we try to develop the Lighthill-Whitham theory of traffic flow
to produce a description of a chute flow. This is undertaken in the next chapter and

is expanded further in chapters 6 and 7.
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Chapter 5

The ‘inviscid’ continuum model

In this chapter, we propose a continuum model for a chute flow of grains. An ar-
gument is presented for extending the Lighthill-Whitham model of traffic flow to
cover the chute flow. Strengths and weaknesses of the argument are described. In
particular, the continuum model we propose requires the introduction of a funda-
mental relation between the flux ¢ and the density p, and the physical mechanism
underlying the particular fundamental diagram requires discussion and appraisal.
We follow through the implications of the present flux-density relation in detail. We
cannot deny that the model omits many factors, and as such is incomplete, as would
be any first model.

The continuum model which we develop below and in subsequent chapters is based
around ideas generated from Lighthill and Whitham’s study of traffic flow [38] using
the theory of kinematic waves explained by Whitham [57], [58]. It is assumed that
the density of rice grains p forms a continuum. Obviously this is not the case
in reality as only discrete grains of rice exist, but the continuum view may provide a
useful macroscopic description of the rice flow. In particular, this assumption may
be justified in certain circumstances, outlined below.

As a consequence of the physics of the chute flow (for example, random jostling,
random collisions and clustering) and with support from the computational results
presented in chapter 3, it is argued that a state can evolve where grains form into

large coalesced masses. Each mass moves as if it is one body with a particular
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velocity distribution and each has a large number of particles in it. The density of
each mass may be different in each case. As there are large numbers of particles,
the density of each mass could take any value. When the chute flow is in this state
there are sudden jumps in density between each cluster and there can also be voids,
as supported by the results in chapter 3. These aspects can be explained by the
shocks or expansion fan structures found in the continuum model. The analysis
here starts at some point down the chute where the clustered (shock-fan) structure
has evolved, or rather is about to evolve, and the continuum model is justified.
Furthermore, here a smooth piecewise continuous density distribution at the start
will break within a finite time (or distance down the chute) into a shock-wave or fan,
as in Whitham [57], [58]. Hence the model mimics the change of a smooth initial
density distribution into a non-smooth one. Finally, we shall see that discontinuous
cases can be the simplest cases for analysis and hence form a suitable starting point.

It is further assumed that grains move essentially along horizontal lines
(the 2 direction) with a flow rate ¢ which descend the chute under gravity.
In reality, vertical interactions could be an important mechanism in the flow, but
calculations with the 1D horizontal-line assumption achieve physically reasonable
results according to chapter 3, in particular section 3.3. The one-dimensional model
is found to contaiﬁ rich and complex behaviour which may serve to guide or en-
courage the use of a 2D model later. We shall present below, in passing, the 2D
equations and shall observe that the 1D solution would emerge anyway as the grains
fall down the chute.

By conservation of mass the continuity equation is:

where a subscript ¢ denotes -(% and a subscript z denotes -(%—. If ¢ is taken to be

dependent only on p, (5.1) becomes

pt+ qppz = 0. (5.2)

We make this assumption to keep the wave problem simple as a first approximation;

this may also be justified on physical grounds (see below) and the strength of the

69



assumption is addressed in section 5.2. Also, if

dz
qp = -d—t (5.3)
then (5.2) states that the total derivative
4 _y, (5.4)

dt —
Now let us call g, = c(p), the wavespeed. Hence the density is constant along

straight lines (the ‘characteristics’) given by
z=c(p)t+ zo (5.5)

where zg is a constant of integration representing an initial position for z. The

resultant equation for the flow is

pt+c(p) pz = 0. (5.6)

Therefore, an initial density distribution p = f (z) at t = 0 determines in principle
how the density evolution with time via the characteristics. To determine c(p) we
claim that q is related to the density p by ¢ = Q (p) say and then c(p) = Q' (p) where
the prime denotes differentiation with respect to the argument. (We shall shortly
discuss the validity of choosing a particular ¢ = Q(p) relation). We must also
initially specify ¢ along each characteristic. The values (p, ¢) in the initial condition
thus determine a unique value of ¢ which in turn determines the gradient of the
characteristic. The flux and the density are then constant along the characteristic,
that is to say, both g and p are propagated along the characteristics. The initial
conditions in the current chapter are piecewise-constant as these provide a fairly
basic starting point for the analysis.
As an aside, we remark that one improvement would be to make the model two-

dimensional. Briefly, the 2D equation would be

pt + c1(p)pz + c2(p)py = 0. (5.7)

Examining the orders of magnitude in the equation as y — oo and seeking a solution

independent of y reveals equation (5.6), i.e. the 1D model.
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We propose below a particular Q(p) relation for the chute flow. Immediately
following this, the validity of the proposition is discussed with regard to its strengths
and weaknesses. Note that, borrowing from traffic flow theories, the Q(p) curve is

known as the fundamental diagram or fundamental curve.

If p = 0 there can be no flow, so then ¢ = 0 trivially. Further, it is argued
that there is no flow for a maximum value pps of the density, corresponding to a
jamming’ of grains across the chute where each grain is touching the neighbouring
grain or wall and hence, within some interval of = at least, there is no room for any
grain to move relatively across the chute. In between g takes a single maximum
at some value of the density pr. However, the rice can travel in both directions
(unlike the traffic flow case) and hence g can also take negative values (of the same
magnitude by virtue of symmetry) for each value of p. That is to say, there are
two branches of the fundamental diagram, one which describes leftward moving
grains, and the other rightward moving grains, and so the flux-density relation is
necessarily double-valued. Finally, the @ (p) curve on each branch is expected to
pass through inflexion points relatively near the cusps, which lie at the zero-q end
of the branches, as explained in the following paragraph. See also figure 5.1. Where
the positive branch and the negative branch approach the maximum and minimum
values of p, the curves meet at a cusp, as we shall soon see.

The reasoning for the cusps and hence inflexion points is so that the wavespeed
remains finite and smooth as the solution passes through the endpoints and switches
branches. To see this consider putting p = f(u) where yu = % is a similarity variable.

The governing equation becomes

(c—uw)f' =0 (5.8)

so p = c is allowed (as too, then, are expansion fans). Next, at the high density
endpoint (the reasoning applies equally to the zero density endpoint) consider having

locally
q = £8(pm — p)" (5.9)
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Figure 5.1: Sketch of the fundamental diagram, including the cusps at ¢ = 0 and

inflexion points relatively nearby.

with the unknown power n > 0 and the constant 8 being non-zero. Then

¢ = F0n(pm — p)", (5.10)
S0
= FBn(pm — p)" . (5.11)
Rearranging yields
1
p=pm— ()7, (5.12)
Bn

Consequently if ;l—l_-f = M with M an even integer then the wave-speed smoothly
varies as the density passes through a maximum. In particular, if n = % we see that
M = 2 and the density p = pp, — (%‘%)2, which would be expected to be the most
general case. Similar reasoning for a cusp also applies at the low density end. The
fundamental curve’s upper branch is therefore concave upwards at its endpoints.
Accordingly, for there to be a maximum ¢ in between, inflexion points must be
produced between the maximum and the end points. Including an inflexion point
also allows mass-conserving shock-fan structures, as we shall see later, which allow
physically acceptable descriptions of clashing and separating regions to develop. We
should refer also in passing to the discussion of viscous effects on branch switching
in chapter 7.

Concerning strengths and weaknesses, and in particular the present pro-
posed fundamental diagram, in pedestrian and traffic flows there are obvious phys-

ical reasons why people or cars slow down with increased density (over-crowding,
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driver nervousness and so on) whereas it is difficult to argue totally why, for exam-
ple, a densely packed region of grains may move more slowly than a sparser region
as in the cases here. This difficulty could be countered, perhaps tentatively, that
when the density is low the grains may have small horizontal velocities because col-
lisions are unlikely and so there is slim chance of any horizontal velocities being
induced. At large densities, however, collisions are likely to be more numerous and
thus grain speeds would reduce. In the extreme case of a blockage the grains would
come to a complete stop and may become packed at the jammed density. Thus a
situation arises in which the density influences the flux, or vice-versa, and the view
that ¢ = Q(p) appears to be justified (at least as a first approximation). Further,
owing to these simple arguments a shape of such a fundamental curve, similar to the
one proposed above, seems to be suggested. Alternatively, we could argue that such
a choice of fundamental diagram is appropriate for certain physical situations, such
as with colliding or separating grains on a chute. It may be of significance here that
at a collision the grains can be considered to instantaneously change velocity at the
point of touching, and so the flux of the grains is zero when the density is maximal,
exactly as in the present proposed fundamental diagram. Other situations, such as
with a highly dense region moving on an otherwise empty chute should be covered
by another fundamental diagram, but such a situation may be unlikely to develop in
practice because high densities seem more likely to arise when grain speeds are slow.
It is also worth mentioning that as clusters and voids were the key feature of the
computational results in chapter 3, and as collisions and separations are believed to
be the crucial mechanism behind the formation of clusters and voids, then this as-
pect of the flow may be the most pertinent part to consider in an initial model. Some
of the above criticisms may also apply to the theory when it is applied to traffic flow
(for example a densely packed region of cars on an otherwise empty highway will
not in reality have ¢ = 0, they may accelerate away and diffuse). Given the above
setting we continue with the present 1D formulation, perhaps especially relevant to
colliding and separating grains (rather than being appropriate for an entire chute

flow), and examine the outcome.
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Interesting aspects arise in the model because Q (p) is smoothly varying on each
branch and so the characteristics generally intersect or diverge within a finite time
if p and ¢ vary on each characteristic. Intersections are a significant feature since
at intersections the density would be implied as multivalued. Such an apparent
contradiction is resolved by the formation of a ‘shock’ (see Whitham [57]). On one
side of the shock the density takes one value, p; say, and on the other side a different
value p; yielding macroscopically a sudden jump across the shock. The shock wave
travels with velocity

v=2"_9 (5.13)
P2 — pP1

which is the gradient of the chord between (p1,¢1) and (p2,g2) on the fundamental
curve.

Diverging characteristics create an area devoid of information about the density
potentially but lead to an ‘expansion fan’. The aim in what follows is to employ the
shock wave and expansion fan structures as mechanisms to obtain inhomogeneous
density distributions upon the chute and provide some further explanation of clusters

and voids when grains are colliding or separating.

5.1 Analytical solutions of the continuum model

In this section a number of simple analytical solutions to the continuum equation
are illustrated. In this way, we see that it is possible to build increasingly complex
solutions to the continuum model which have desired features such as clusters and
voids. These have been seen to be potentially crucial from the preceding computa-
tions in chapter 3. In theory it is possible to determine any solution analytically by

examining the characteristics, together with the shocks and fans.

5.1.1 Shock waves

Let us consider an example in which there are two adjacent regions of constant
density, one with density p; and the other with density ps. The corresponding values

of the flux are ¢; and go respectively. If we allow p; < ps < prthen0 < ¢; < g2 < gp.
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Figure 5.2: This figure highlights the values of p;, 1, p2, g2 for the example of the

shock wave outlined in subsection 5.1.1. The respective slopes are ¢; and co.

Recall that pr and gr are the respective values of the density and the flux at the
extrema of the fundamental curve (here extrema is used in the calculus sense of the
word). It is possible to choose this arrangement such that ¢; > cz: see figure 5.2
for clarity. (Recall that ¢ = 5% and that ¢ is the gradient of each characteristic.
Hence the gradient of each characteristic is equal to that of to the tangent to the
fundamental curve at the corresponding value of (p,q)). Furthermore, if the region
of density p; is allowed to lie ‘underneath’ the region of density p2, as depicted in
figure 5.3, then the characteristics are seen to intersect in the z — ¢ plane. As has
already been stated, the density will be multivalued at such an intersection since
the density is a different constant along each intersecting characteristic. This is
physically unacceptable. The solution is to replace the intersecting points with a
shock, i.e. a sudden jump in the density. In this way, we see that the correct z — ¢
diagram for this case is as in figure 5.4, in which two regions of constant density
are separated by a shock. The corresponding evolution of the density profile is as in
figure 5.5. Both regions are moving rightward (as ¢ > 0) and there is a translating

shock between the two regions.
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P1
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Figure 5.3: The characteristics in the first example described in subsection 5.1.1

appear to intersect in the z — ¢ plane. This is physically unacceptable.

HOCK

p2
P1

Figure 5.4: The solution (continuing from figure 5.3) is to replace the intersecting

points by a shock wave; a sudden jump in the value of the density.
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Increasing time

P1

Figure 5.5: The corresponding density profile is shown above as it evolves over time.

The two regions translate rightwards, separated by a shock.

5.1.2 Expansion fans

Again let us consider an example in which there are two adjacent regions of constant
density, one with density p; and the other with density ps, where the corresponding
values of the flux are ¢; and g, respectively. However, now we suppose that ¢; > 0,
g2 < 0 and p; < p2 < prr. Here prr and gy respectively are the values of the
density and flux at the inflexion point on the left. Similarly, prg and q;p are the
values of the density and flux at the inflexion point on the right. Thus ¢; > 0,
¢z < 0 and |e1| > |eg], see figure 5.6. (If prr < p1 < p2 < pr then the solution is
a little more complex as we shall see in a later example in subsection 5.1.3). The
region with density p; is allowed to lie above the region with density ps, as in figure
5.7. Observe that such an arrangement corresponds to the two regions moving apart
since ¢ > 0 in the upper region and g < 0 in the lower region. In the z — ¢t diagram,
there is seen to be a region devoid of characteristics. .Consequently, there appears
to be no information about the density evolution here, yet we know that the regions
are separating. The problem can be resolved by the introduction of an expansion
fan.

An expansion fan is a region of characteristics which all start from the same
point, but their gradient continuously changes from the value of the gradient of the

characteristic in the upper region to the gradient of the characteristic in the lower
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(p17 ql)
P2, 42)

Figure 5.6: This figure highlights the values of p;, ¢i1, p2, g2 for the example of the

‘fan’ outlined in subsection 5.1.2.

P1

/iD N

Figure 5.7: A plot of the £ — t plane reveals a region devoid of any characteristics,
and hence any information about the density. Yet we know that the regions are

separating.
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Figure 5.8: Continuing from figure 5.8, it is seen that the problem can be resolved

by the introduction of an expansion fan.

region. Hence the void region is now replaced by a ‘fan’ of characteristics whose
gradients decrease monotonically. As the gradient varies through this fan, so must
the density. See figure 5.8. The continual change in the gradient corresponds to
moving from the point (p;,q;) on the upper branch of the g(p) curve to the point
(p2,q2) via the cusp at (0,0). Notice that the characteristic at the centre of the fan
has zero slope and thus the point of zero density is stationary.

Therefore the fan in this case corresponds to a gradual decrease in the density and
a reduction in flux to a stationary central point with zero density, this is followed by
a gradual increase in the density accompanied by an increase in magnitude of the
flux, which is now negative.

The expansion fan has allowed the density to switch branches. The physical
interpretation of this is indeed a separation of the two regions. Figure 5.9 illustrates
the evolution of the corresponding density profile to highlight the physics.

Expansion fans can similarly be used to describe parts of clashing regions. Con-
sider two regions of constant density with pa > p1 > prr and ¢1 > 0 and g2 < 0.
Now ¢; < 0 and ¢3 > 0 since p; and ps lie toward the large density end of the
fundamental diagram, as in figure 5.10. Allowing the p; region to lie underneath

the pg region will result in an = — ¢ plot of the characteristics that is qualitatively
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z — T
Figure 5.9: The corresponding evolution of the density profile shows that the ex-

pansion fan has captured the physical process of separation.

(pl,ql)

P2, (I2)

Figure 5.10: This figure highlights the values of p;, ¢1, p2, g2 for the example of a

fan in a colliding region.

similar to that in the example above. Such an arrangement corresponds to clashing
of grains. Again there will be a region devoid of characteristics where an expansion
fan can be introduced.

However, in this example, monotonically decreasing the gradient of the character-
istics in the fan corresponds to moving along the fundamental diagram from (p, g2)
to (p1,q1) via the cusp located at (par,0). Observe that the characteristic at the
centre of the fan has zero slope and thus the point of maximal density is stationary.

Thus, moving through the fan from ps to p; allows the density to switch branches
from the lower branch to the upper branch while passing through a point of maxi-
mum density. Hence the fan describes a region where the density smoothly increases
to the maximum and then smoothly decreases out again to a region of constant den-

sity. That is to say, the fan describes a ‘hump’ of large density at the location where
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Figure 5.11: The corresponding evolution of the density profile makes the point that

the expansion fan has captured the physical process of collision.

we know that grains are colliding. Figure 5.11 shows the evolution of the density
profile to highlight this point.
The expansion fan structures can be described analytically [57]. The characteris-

tics satisfy equation (5.5) which is
z =c(p)t+ . (5.14)

Each characteristic in the fan crosses the x-axis at the same point, hence zg is the
same constant for each one. Therefore we can rearrange (5.5) to find the gradient

of each characteristic in the fan as

(p) = =222 (5.15)
Therefore the complete solution for the wave speed is
1, o < R,

c=4{ 58, <BHR g, (5.16)
c2, R < e,

5.1.3 Shock-Fan-Shock structures

In both of the above examples we have seen that the expansion fan structures appear
to describe well the physics of separating and colliding grains and that a shock can
describe a sudden jump in the density. Hence the shock and fan structures seem
to be able to allow the sort of behaviour in the continuum model that has been
observed in other methods, such as the computations in chapter 3.

We now examine some more complex examples that include a mixture of shocks

and fans.
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(p2,q2)

(p1,q1)
Figure 5.12: This figure highlights the values of p;, g1, p2, g2 for an example

including a mix of shocks and fan in a colliding region.

Consider two regions of constant density, the upper region with pr < p; < psr
and ¢; < 0 and the lower region with pr < p2 < prr and g2 > 0. Thus ¢; > 0 and
¢z < 0. See figure 5.12 .

If the characteristics are plotted in the z — ¢ plane there will again be a region
devoid of characteristics which we intuitively expect to describe a clashing region.

One simply might expect the resolution of this problem to be again an expansion
fan between (p1,q:1) and (p2, ¢2), but the solution this time is a little more involved,
as follows. Since p; and p; are to the left of the inflexion point pr they are located on
points of the fundamental curve that are concave. Consequently, the characteristics
in an expansion fan would not monotonically decrease from ¢; to c;. Hence an
expansion fan cannot be immediately plotted.

Instead, consideration indicates that there must be a shock from p; to pr_ and
a shock from p9 to pry, where pr_ is the point where a chord drawn from (p1,q1)
is tangent to the fundamental curve. Similarly, pr4 is the point where a chord
drawn from (p2,¢2) is tangent to the fundamental curve. Both pr_, pry > prr,
clearly. See figure 5.13 . An expansion fan can now be drawn between pyr_ and pry.
Observe that such a shock-fan-shock structure will still conserve mass and satisfy
the appropriate entropy conditions: see section 5.3.

The plot of the characteristics in the x — ¢ diagram for this situation is shown in

82




pr-
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Figure 5.13: This figure displays the values of p1, qi, p2, q2, pr—, pr+ for an

example including a mix of shocks and fan(s) in a colliding region.

figure 5.14 and figure 5.15 depicts the time evolution of the density profile. There
is a region of constant density moving leftward, then a shock to a fan where there
is a high density region, then there is a shock down to a region of constant density
moving rightward. It is possible to see how these structures could build a picture of
the grains on the chute similar to those seen in the Sortex images in figure 3.6, for
example.

‘Shock-Fan-Shock’ structures, as we shall call them, can arise in other situations.
Consider p1, po given in the above example, but now with ps lying in the upper region
and p; lying in the lower region. At first sight, it seems that the characteristics are
intersecting and so the solution ought to be a shock. However, if a line were drawn
through the intersecting points, the gradient would not be equal to the gradient of
the chord between (p;, ¢1) and (p2, g2); the chord would not have the required speed
U (and hence such a shock would not conserve mass - see section 5.3).

Examining the above arrangement more carefully, we see that the two regions are
separating. Therefore the solution is required to switch branches via the cusp at
the origin. The problem is avoided by the introduction of two shocks to the points
pra— and pr2+. The point pra— is the place on the fundamental curve where the
gradient cro_ is tangent to a chord drawn from p; such that pro— < prr. Similarly,

the point pr24 is the place on the fundamental curve where the gradient cra4 is
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T shock, pr—

Fan
P2

P1

shock, pr+
Figure 5.14: The figure shows the characteristics for the shock-fan-shock structure

described in the text.

x z | z
Figure 5.15: The corresponding evolution of the density profile is shown for figure

5.14.
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(p2:q2)

Figure 5.16: This figure highlights the values of p1, g1, p2, g2, pr2-, pr2+ for an

example including a mix of shocks and fan in a separating region.

tangent to a chord drawn from p; such that prey < prr. See figure 5.16 for details.
An expansion fan can now be drawn between pro_ and pro+ that switches branches
through the cusp at zero density. Figure 5.17 shows the characteristics.

The time evolution of the density profile for this example is sketched in figure
5.18. There is a region of constant density moving leftward adjacent to a leftward-
translating shock down to small densities. Then there is a fan through zero density
that is next to a rightward-moving shock that jumps to large densities. We reiterate
that it is possible to see how these structures could build a picture of the grains on

the chute similar to those seen in the Sortex images such as figure 3.6.

5.1.4 Merging shocks

In this example there are three density regions moving downwards and separating.
One possible set of initial conditions for this to occur is shown in figure 5.19. This
seemingly results in the characteristics overlapping from each region so two separate
shock waves must pass through the points of overlap between these regions (as seen
in figure 5.20). A consequence of this is that the two shock waves merge and the
region of density ps ceases to exist. Ultimately only two regions of discrete density
exist, one with density p; and the other with density p2, and there is a sudden jump

in density between the two parting regions.
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Figure 5.17: The figure shows the characteristics for the shock-fan-shock structure

in the case of separating grains described in the text.

"L

Figure 5.18: A sketch of the time evolution of the density profile for the example of

a shock-fan-shock structure when grains are separating.

1
P3

Figure 5.19: Plot showing positions of (g, p) co-ordinates for example 5.1.4.

86




z final shock

P

——{

P3
Figure 5.20: Sketch of the characteristics for example 5.1.4: all regions are moving
downwards and separating from each other. Initially shock waves (indicated by
heavy lines) exist between each region, b\;t as time increases the ps region is reduced
in size. Eventually this region is ‘swallowed up’ entirely, the shocks merge and we

are left with two discrete density regions that are moving apart.

5.1.5 Another example with three discontinuous regions

It is useful to consider another example with three discontinuous density regions to
show the complexity of possible solutions. Let us consider three regions of differing
density with p;, po and p3 as given in figure 5.21. These are chosen such that
P11 < p1 < pr with corresponding ¢; > 0; p2 > prr with corresponding g2 > 0; and
p3 > prr with corresponding ¢3 < 0. We also draw attention to the point pr; which
is the point where a chord drawn from (p1,q1) is tangent to the fundamental curve
on the upper branch. Observe that p;; < pry < prg and the chord is the shock s;.

These three regions are allowed to lie in the x — t plane such that the region of
density p3 lies above the region of density p, which in turn lies above the region
of density p;. Thus we observe that there is an area of colliding grains between p3
and p and consequently an expansion fan is required here. A fan is also required at
the bottom of the py region to a density with value pr4. This is required to satisfy
the entropy condition, see section 5.3. The characteristic with density pr4 coincides
with the shock s; where there is a jump down to density p;. Consequently the z —¢
plane is as shown in figure 5.22 and a schematic representing the evolution of the
density profile is shown in figure 5.23.

We mention here that there is some further analysis in appendix D concerning
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Figure 5.21: The important values of p;, p2, etc. are shown on the fundamental

diagram for example 5.1.5.

p3
fan

.

P2

fan

——

‘Sl

Figure 5.22: This figure shows the construction of the z — ¢ diagram for example
5.1.5. The region of p; lies at the bottom. There is a shock, s;, and a fan between
the p; and py regions. A now familiar expansion fan structure occurs in the colliding

region between p and p3.
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Figure 5.23: This figure shows a sketch of the the evolution of the density profile

corresponding to figure 5.22. Density is on the vertical axis, position across the
chute is along the horizontal axis. A shock exists between p;, on the left of the
chute, and the small fan to the region of density p;. A ‘hump’ of high density exists
in the colliding region between p; and p3. As time increases the two fans spread

out. The shock on the left persists for all time.
how to determine the characteristics at the chute walls.

5.2 Appraisal

If the fundamental diagram proposed at the beginning of this chapter is taken to
give the flux-density law for a chute flow of grains the above sections show that the
inherent discontinuities in the model (the shocks and fans and combinations of the
two) can perhaps describe the formation of clusters, voids and sudden jumps in the
density during collisions and separations. Hence we can construct descriptions of
significant parts of a chute flow including regions of colliding or separating grains.
However, we do not claim that the fundamental diagram must describe the entire
chute flow. The approach has also been an empirical one: we have seen that the
results can describe some situations seen on chutes in reality, although the original

physical arguments per se remain open to question.

5.3 Remarks on mass conservation and entropy

The shock wave must travel with velocity (5.13) as a consequence of mass conser-
vation. The supporting argument from LeVeque, which properly determines the
shock speed from the properties ‘within’ the shock, rat:,her than from approaching
the shock externally, as in Whitham’s analysis [57], [34] is as follows. The integral

form of the conservation law is used to determine the shock speed at any time in
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terms of the states p;(t) and po(t) immediately to the left and right of the shock,
respectively. Suppose that the shock speed is a constant U over a very short time
interval from t; to t; + At; the integral form of the conservation law (5.1) states
that

z1+AT T1+Az
/ p(z,ty +At)dz—/ pl(z,t))dx =
T

1 1

t1+At t1 44t
[ ateenya- / a(p (@1 + Az, ) dt. (5.17)

t1
Since p and q are essentially constant along each edge x; + Az and t; + At this
becomes

Dxpy — Dzpy = Atg(p1) — Atg(p) + O (AF?). (5.18)

If the shock speed is U then Az = —UAt¢ (if U < 0); therefore

—UAtps + UAtpy = Atg(p1) — Atq (p2) (5.19)

. and hence

y = 1(p2) — a(p1)
p2— P

which is identical to equation (5.13). Therefore all the solutions outlined above do

(5.20)

indeed conserve mass.

The presence of shocks can also be determined by Oleinik’s entropy condition.
See again LeVeque [34] and Morgan, Baines and Sweby [42]. The condition is as
follows. If R is defined to be

R= %ps) —alp)

5.21
P+ =P ( )

where p; is the value of the density on the right-hand side of the discontinuity, and
if L is defined to be
1= =)~ alp)
p——p
where p. is the value of the density on the left-hand side of the discontinuity, then

if

, (5.22)

R<UZL (5.23)
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is satisfied for all p € [p_, p+| then the entropy condition is satisfied and the discon-
tinuity is a shock.

It can be verified that Oleinik’s entropy condition is in fact satisfied for all the
shocks in the previous examples, including those in the shock-fan-shock structures

developed above also satisfy the entropy condition [42].
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Chapter 6

The ‘viscous’ continuum model

for grains in one-way flow

6.1 Introduction

The preceding chapter showed that if mass is conserved on the chute then equation
(5.6) must be satisfied. After postulating a form of the relation between the density
and the flow rate we proceeded to solve the equation using a method of characteris-
tics. The structure of the characteristics sometimes led to the need for shock waves
and expansion fans, which resulted in inhomogeneous density distributions. Only
examples that have discontinuous initial conditions have so far been investigated.

Obviously we wish to find the long-term density distributions for an arbitrary
set of initial conditions, and in particular we would like to solve the problem for
a continuous initial density distribution. However, owing to the shock wave and
expansion fan structures, it is difficult to do this in general, both analytically and
computationally.

In the present chapter, we attempt to find such solutions; in particular, we consider

those which remain always on one branch of the fundamental diagram. That is to

say, this chapter concerns only those situations in which grain movement is uni-directional.

Solutions which require a branch switch, i.e. in which grains move both to and fro,
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are dealt with in chapter 7. We seek numerical solutions there by considering the
continuum equation in polar co-ordinates.

First in this chapter we try to find uni-directional solutions by solving the contin-
uum equation with a simple finite difference scheme. Those solutions which emulate
inviscid results such as translating shocks and expansion fans are sought. Following
this we analyse an asymptotic solution valid at small times for a smooth initial con-
dition. The chapter ends with a search for steady state solutions which remain on

one branch.

6.2 Viscous model and numerical scheme

One standard way to compute general solutions to equations of the above form,
whilst avoiding any problems associated with the inclusion of shocks and fans, is
to add an artificial viscous dissipation term vp,,, with v a small parameter. This
changes the nature of the partial differential equation from a hyperbolic equation to a
parabolic one, and also all discontinuities can be ‘smoothed out’ in principle. Indeed,
this is the conventional method used in traffic flow problems [43], [57). Whitham [57]
discusses at length the validity of such an approach and shows that in the limit of
the viscosity v tending to zero the solutions do in fact asymptote toward the familiar
shock and fan structures seen for the inviscid equation. Furthermore, in traffic flow
problems there are outright physical arguments to include a viscous smoothing of
the shocks, such as the notion of driver awareness.

In addition to the possible computational benefit, physical arguments for includ-
ing viscous dissipation involve in particular the inclusion of air effects. As grains
approach each other in collisions effects of air cushioning could perhaps reduce the
importance of impacts in the model and thus make the density distribution more ho-
mogeneous. In fact, air effects are investigated in detail in chapter 8. Another line of
argument is that including a viscous dissipation term is comparable to including the

next term in a Taylor expansion of the flux. Thus the flux is now identical to g — vp,.

The consequences of introducing viscous dissipation into the continuum model dur-
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ing collisions and separations in a two-way flow are thoroughly examined in chapter
7.

It suffices to say for now that we modify equation (5.6) to

Pt + CPs = Vpgz, (6.1)

where v is a small positive constant, in order to find some general solutions for
the density in a one-way flow. Equation (6.1) is of central importance here and
is referred to frequently throughout the rest of the thesis. We shall refer to this
equation hereinafter as the ‘continuum equation’. We state again that if v is small,
which is the case of most concern, solutions to the continuum equation (6.1) may
approximate well solutions to the inviscid equation (5.6).

As an aside, we briefly mention (echoing a similar remark in chapter 5) here that

if the work were extended to 2D then the relevant equation would be

pr+c1(p)pz + c2(p)py = V (Pzz + Pyy) (6.2)

and again examining the orders of magnitude as ¥ — oo and seeking a solution
independent of y would yield the 1D equation (6.1) above.
Equation (6.1) is solved numerically by a finite difference scheme as follows. The

derivative with respect to time is discretized as

Pi(s_tpi ' (6.3)

where p; is the value of the density at the i spatial station at the current time, 7;
is the density at the i** spatial station at the previous (known) time, and 4t is the
time step.

Upwind or downwind differencing is used for the spatial first derivative, depending

on the sign of ¢(p) at the i** station:

pn fii%ﬂ-;lﬂ, if ¢(5;) < 0, (6.4a)
pp & 5’*_“5-:-:_1 if e(7:) > 0, (6.4b)

where dz is the step length in the spatial direction; we take &t significantly smaller

than 2. Each term in the spatial derivatives is evaluated at the known time level.
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Finally the second derivative with respect to z is discretized as

Pi+1 — 2pi + pi1
i ( 552 : (6.5)

This results in equations of the form

(6.6)

&=

Mp=

where M is a tri-diagonal matrix. By substituting the discretized forms of the

derivatives into (6.1) it is specifically found that the elements on the lower diagonal

are given by
1
—_—— 6.7
if ¢(p;) <0, or
_ep) 1
(-5~ mr) (6:70)
if ¢(p;) > 0; the elements on the diagonal are given by
1 c(p) 2
( % oz T (61:)2) (6.8a)
if ¢(p;) < 0, or
1 clp) | 2
( 5T o T (ax)2) (6.8b)
if ¢(p;) > 0; and the elements on the upper diagonal are given by
ep) 1 ‘
( S (6z)2) (6.9a)
if ¢(p;) < 0, or
1

if ¢(p;) > 0. The matrix M is inverted by Gaussian elimination and each p; can
subsequently be found. Thus the scheme is of the implicit type. This can be repeated

over many time steps to find each particular solution.

6.3 Solutions to the continuum model

The author has demonstrated that the code can be used to reproduce well known

results for particular expressions for the wave speed ¢ (such as ¢ = 0 giving the heat
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equation, ¢ = p giving Burgers’ equation, and so on), and these tests can be obtained
on request. We can therefore be reasonably confident that the code provides accurate
solutions. Thus we move on to find numerical solutions to the continuum model of
interest here, i.e. those which remain on one branch. Thus we specify boundary
conditions for p(zr,t), p(zRr,t) at the left z; and right g boundaries respectively
and an initial condition p(z,0) across the chute at t = 0.

An appropriate flux-density relation must first be specified for the continuum
model. We propose two versions: both are equally valid for the one-way flows with
which this chapter is concerned, but the second one leads to simpler analysis in

section 6.4. The first one is

+p4, 0<p<],
9= x(ap*+cp+ep?+cap+c) 1<p<I10, (6.10)
£ (pm — p)?, 10< p < pm.

where for now ppr = 15; ¢, cg, ...c5 are constants chosen to ensure that the function
matches smoothly and also that there is a maximum (or minimum on the lower
branch) at an arbitrary point in the interval p € [0, pps], and + obtains the upper
or lower branch respectively. The fundamental diagram for this density-flux law is
shown in figure 6.1; it captures the main features required that were elucidated at
the start of chapter 5. As we consider only uni-directional grain movement we choose
the positive branch without loss of generality. This law is used in the computational
analysis immediately below with which we try to emulate the inviscid solutions.
The second flux-density relation, used below in the asymptotic analysis of section

6.4 for the sake of simplicity, is
3 _ 1 _ (3
qg=typ2e™?, so c= typie” 37°) (6.11)

where v = 1 for convenience and we choose the positive (upper) branch. The funda-
mental diagram is shown in figure 6.2. Clearly there is no maximum density here,
but one-way solutions require no branch switch anyway. Otherwise, the fundamental
diagram displays the required features elucidated upon in chapter 5.

Initially, the code is used in an attempt to emulate some of the analytical results
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Figure 6.1: The fundamental diagram used in the computation.
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Figure 6.2: The fundamental diagram used in the asymptotic analysis of section 6.4.
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seen in chapter 5. Recall that these solutions were for discrete, discontinuous input,
as these formed a simple starting point for the analysis. We attempt to approximate
such initial conditions in the code, although of course it is not particularly desirable

to start the computation with discontinuous input.

6.3.1 Emulating a translating shock

For the first example we try to mimic the translating shock type of solution seen in
subsection 5.1.1. We repeat that the solution in 5.1.1 is for the inviscid hyperbolic
equation (5.6), whereas the numerical solutions we seek here are for the parabolic
p.d.e. (6.1). If, however, v is taken to be sufficiently small, the numerical solutions
to (6.1) may approximate well the inviscid solutions to the hyperbolic equation.
(The effect of vp,, is to smooth out the discontinuities in the hyperbolic equation;
if v is sufficiently small then there is sufficient smoothing to allow the computation
to run and thus produce seemingly ‘sharp’ solutions, while avoiding any associated
problems with discontinuities). In this example, v = 0.0001.

The initial condition used for this example is

2, r <4,
p(z,0) = 255 L2 4<z<5, (6.12)
3, z > 5.
and the boundary conditions are
p(0,t) = 2, _ (6.13a)
p(15,¢) = 3. (6.13b)

Hence there are two regions of constant density, both with ¢ > 0 (i.e. the density
is fixed on the upper branch), and there is a smooth transition between the two
regions; this approximates the discontinuous input leading to a translating shock
type of solution in subsection 5.1.1.

Figure 6.3 shows the solution obtained at times ¢t = 0.5, 1, and 1.5. As time

increases, the ‘jump’ between the two near-constant regions steepens considerably
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2 & s 8 10 z
Figure 6.3: Figure showing the solution at ¢ = 0.5, 1, and 1.5 for the example in
subsection 6.3.1. The initial condition is the smoothest thick black line. As time
increases, the ‘jump’ between the two near-constant regions steepens considerably
and translates leftward, mimicking a translating shock. The solution is shown at

times t = 0.5, 1, and 1.5.

and translates leftward, mimicking well a translating shock. (For the analogous
inviscid problem with discontinuous input, it is easy to determine that a leftward

translating shock is the correct solution).

6.3.2 Emulating an expansion fan

For the second example, we try to replicate an expansion fan type of solution seen

in subsection 5.1.2. Again we put » = 0.0001. The initial condition is

13, T < 2.5,
p(x,0) = ¢ 2e-1000z-25* L 11 25< <3, (6.14)
11, x> 3.
The boundary conditions are
p(0,t) = 13, (6.15a)
p(5,t) = 11. (6.15b)
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Figure 6.4: The figure shows the initial condition and two solutions, one at ¢t = 0.1
and the other at t = 0.2. As time increases, the ‘jump’ between the twb near-constant
regions flattens considerably and spreads rightwards across the chute, mirroring well

an expansion fan.

Hence initially there are two regions of constant density, each now with ¢ < 0 (i.e.
the density is on the lower branch), and a smooth, yet steep, transition between
the two regions, approximating the discontinuous input leading to an expansion fan
type of solution in subsection 5.1.2.

Figure 6.4 shows the initial condition and the solution obtained at times t =
0.1 and 0.2. As time increases, the ‘jump’ between the two near-constant regions
flattens considerably and spreads rightwards across the chute, resembling an expan-
sion fan. (Again, in the analogous inviscid problem with discontinuous input, it is

easy to determine that such an expansion fan is the correct solution).

6.3.3 Solutions involving a branch switch and further comments

It is desirable to seek solutions involving a branch switch in order to replicate some
of the more complex solutions seen in chapter 5, such as those in subsection 5.1.3.
Moreover, it might allow us to model collisions or separations or allow us to find

general solutions to the continuum model. With the current code, however, the sign
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of the flux ¢ must be specified artificially in the initial condition and ¢ cannot be
changed as p changes. It is impossible, therefore, to include both branches of the
fundamental diagram in the scheme, where we solve solely for p(z,t).

In chapter 7 we return to the branch-switch problem, after first considering neces-
sary adaptations to the fundamental diagram in the light of the viscous dissipation
term, and attempt to solve the continuum equation in polar co-ordinates to allow
the solution to freely move around the fundamental diagram. In the remainder of
the current chapter other uni-directional solutions are sought. In the next section,
an asymptotic solution to the continuum equation for a smooth initial condition is
examined, which is valid at small times. Following this, steady states are sought.
The steady state can be regarded approximately as the density profile as the grains

reach the bottom of the chute.

6.4 An asymptotic solution to the continuum equation

Here we find an asymptotic and a numerical solution for the non-constant smooth ini-
tial condition p (z,0) = z and the boundary conditions p (x = 0,t) = 0 and p(z = 11,t) =
z1, and then we make comparisons. Strictly, the asymptotic part is for asymptoti-
cally small time, but it is anticipated to be useful for comparisons with the numerical
part over a finite range of early times. The motivation for so-doing is to find a so-
lution which remains on one branch which does not mimic the discontinuous input
used in the inviscid model, thus extending the types of solution obtained. The sub-
sections 6.4.1 - 6.4.4 below cover the core, the inner layer, the outer layer and the
resulting comparison in turn. For this analysis the flux-density law is as given in

equation (6.11).

6.4.1 Core expansion

First consider an expansion in the core (where z is of order unity) for asymptotically

small time. Let

p=po(z)+tpr(z) +2pa(z) + ... ; (6.16)
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we refer to the end of this subsection for a note on why non-integer powers have

been neglected. The initial condition
plz,t=0)==zx ' (6.17)

gives

po =1Z. (6.18)

In the above ¢ has also been expanded as
c=70C + 1t + ... (6.19)

Substituting the expansion for p into equation (6.11) results in

3
¢ =80+ tey + ... = (o + tp1)? elPorter) (5 —(po+ tp1)) + .. (6.20)
SO
1 3
G = vpge " (5 - Po) : , (6.21)
Hence
(p1+ 2tp2) + (8o + t&1) (0 + tph) = v (pg + tpf) + O (¢%) (6.22)

upon substitution into equation (6.1). At O (1) in equation (6.22) we see
p1 + Copy = vy (6.23)

hence
1 .. (3
p1 = —yxie T (§ - .1:) (6.24)

after substituting for pg and ¢y3. Observe that p;(z) does not satisfy the boundary

condition p;(z = z;,t) = 0. Therefore, in the core we have
l z 3 2
p=z—qzie™" (5 -2 t+0(t?). (6.25)

It is worth recording that only integer powers of t are involved in the core. For, if
p = po(z) +t"pr(x) + ... with r non-integer instead of (6.16), then ¢ = ¢ +t7¢ + ....
(with & o p,) and so substitution into (6.1) yields p, = 0. Hence the term p, is

absent, in effect, as is &;.
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6.4.2 Inner-layer expansion

At small time an inner layer must be introduced so that the left-hand boundary
condition at z = 0 is satisfied for all time. (Although equation (6.25) satisfies
the left-hand boundary condition up to O (t2), it does not do so at higher orders).
Balancing terms in equation (6.1), with the local ¢(p) behaviour going as p%, we
obtain the orders

_/to_ + 'yp%g = u%. (6.26)
Noting that y and v are order one constants (in fact, we have chosen y = 1 earlier and
when we compare the asymptotic result to the numerical result we choose v = 1.)

and that p ~ z, we guess that the first and the third terms must balance in order to

introduce an effect distinct from that in the core. Hence the inner variable is chosen

to be
z
t2
Now the expansion implied is
5
p=go(n)+tig(n)+tiga(n) +.... (6.28)

It can be seen that these powers must be chosen by putting p = go + t"g1 + t™¢g2
with 0 < n < m and substituting into equation (6.1). After finding the derivatives

in terms of 7 by using the chain rule and a little further manipulation we arrive at

nt" gy + mt™ gy - % (t"gy +t™gh)

m—-n
+tgh (1 +

) t7% (t"g; + t™gh)
_Y
Tt

Here a prime denotes differentiation with respect to 7 and we have also found the

(t"g] +t™gy). (6.29)

local ¢ (p) relation, ¢ ~ p%, to be
c=tzgf +tM2 %?'91 2 (6.30)

and go = 0 as we see that this is a valid solution to (6.29) if the leading order terms

are included. At O (t"~!) an ordinary differential equation for g; is thus obtained:

vgy + gg{ -ng =0 (6.31)
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and we can see that if n = % then g; = Constant x 7 is one solution and that this
matches as required with the core. At the next order the terms of order t™~! and
%% must balance. Since n = % we obtain m = g—.

Therefore, substituting (6.28) into equation (6.1), we ultimately reach

1
1 1 5.1 n , tin,
—t3 Ztigy — ——qgl —
2 91+4 92 2t_12_91 292
1 tgy -1
+t7 (t%gf + —g—ggl ’) (t1g) +tigs)
=1;-(t%g’{+t§gg). (6.32)

By including terms of O (t'%) we find that we are required to solve

1
Vgl + 29l — =1 =0 (6.33)
2 2
subject to
g1(0)=0 (6.34)

and, to match with the core where py = z,
1
t2g1 (n — oo) ~ po. (6.35)

Note again that one solution is

91 = Bn (6.36)

where B is a constant. To find the other solution first differentiate equation (6.33)
with respect to 7 to yield
i

m " _

2
Multiplying by an integrating factor e® and integrating once gives
" 22
gl = Ae_ 4v (6-38)
where A is a constant of integration. Hence

n 2
g=A / e~ % dij. (6.39)
o0
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The lower bound can be chosen at liberty and so we pick infinity for convenience.

The full solution to equation (6.33) is, therefore,

n
g1 = A/ Idi + Bn
0
where

] 2
IE/ e~ % di.

(e o]
Note that at n = 0, g; = 0 as required, and also that, from (6.35),
00 f, 2
t%gl (n— o0)= Bt%n + At3 / / e"%dﬁ ~Z
. JO  Joo

must be satisfied, i.e.

1 N el i 2
t2gy (7)—->oo)=Bx+At'2'/ / e wdij~zx.
0

oc

(6.40)

(6.41)

(6.42)

(6.43)

Consequently, we must choose A=0, so that an O (t%) term is not driven into the

core, and we must also choose B = 1; the necessary absence of non-integral powers

of t in the core was shown just after (6.25). Therefore

g1 =1.

(6.44)

Moving on to O (ti) in equation (6.32) we find that we are required to solve

7] 5
Vﬂ+é%—zm=n-

[~

First, for the particular integral, try

5
2,

92pr = A

Substituting into equation (6.45) reveals

2.3
gep1 = 15’/’7 .

For the complementary functions

5
Vﬂ+g%—zm=0
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(6.48)



must be solved. The general solution is subject to the boundary conditions
g92(0)=0 (6.49)

and

tigs (n — 00) =0, (6.50)

so that an O (t%) term is not driven into the core; again see just after (6.25).
Just below we provide a numerical solution to this equation, by employing the
Runge-Kutta method. A second method of solution, found by a general integral

transform of the form: »
RCF = /C "¢ (w) dw (6.51)
is presented in appendix E. A third method of solution, kindly noted by Professors

Kerr and Please, can be found by making the substitution

02 (n) = e B h(n). (6.52)

The subsequent differential equation is that of a Parabolic Cylinder Function, which
can be rescaled into one of the standard forms of Abramowitz and Stegun [1]. Known
properties of these functions can then be used to obtain the required behaviour.

First, we examine a series solution to equation (6.48) in order to show that a
n’:’ + h.o.t solution can exist at large n before we go on to search for it with the
Runge-Kutta scheme. It is possible that the 77% term alone, when added to g;, might
show the right trends as the solution passes from layer to core. The g (0) condition
in the Runge-Kutta scheme must be changed until the solution is Sufﬁciently close
to the 77% growth at large 7.

Put

RCF ~ Ao'n% + A" + .. (6.53)

into equation (6.48) to obtain

LY
4

Aln

Aon% +vAn(n-1)n""2 + -—Z—n" - gAm" +...=0. (6.54)

Balance the first, third and fourth terms to get n = % Then

15UAO
4

= A (6.55)
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Figure 6.5: Plotted above are numerical solutions (solid black lines) to equation
(6.45) for many different initial conditions for g5. The dashed line is a plot of —-17%,
the series solution. We see that if we choose g5 (0) = —0.965 in the computation

then the solution asymptotes to the series solution.

must be satisfied so equation (6.54) holds true up to O (n%) Matching the n% term
with the particular integral (6.47), in order to satisfy the boundary condition (6.50),

gives
4

Ay = — — .56
0 5 (6.56)

and
A1 = —1; (6.57)

S0

9268 ~ —Vl% + o (6.58)

Now solve equation (6.45) by a Runge-Kutta scheme. The initial conditions are
92(0) =0 (6.59)

and the value for gj (0) that gives a solution which asymptotes to —77% is chosen.
We use the numerical scheme 25.5.18 in Abramowitz and Stegun [1]. We require the
separatrix, in effect.

Figure 6.5 reveals that if g5 (0) = —0.965 is chosen then the solution asymptotes to

the series solution (6.58). Consequently the solution for g; is given by the numerical
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scheme with the initial conditions g, (0) = 0 and g5 (0) = —0.965. Unfortunately

this solution cannot be written in a neat closed form.

6.4.3 Outer-layer expansion

Since the core expansion does not satisfy the right-hand boundary condition p (z;) =
z; an outer-layer expansion must also be introduced near £ = z;. In this region the

similarity variable

= (6.60)
tz
is appropriate and p is expanded as
p =1+ L3 +tFy (£) + 2F; (€) + ... (6.61)

We need to find an expression for the wave speed ¢ near the point = z;. Substi-

tuting a Taylor expansion for ¢ about z = z; reveals that

1 3
c= -Z—Lf e " —zxle™™ + O(t). (6.62)
Also ¢ is expanded as
c=7Cg+té + .. (6.63)
50
3 1 3
ép = Exfe"" —xie . (6.64)

Once again, if the relevant expansions are substituted into equation (6.1) we reach

1 1 & 71 2 s
—-172 —— 2
St R+ 2th - 2 (¢t +eRy+t Fl)

1

+ (6o + téy) (-1) (¢ + tFy + 2F)
t2

= (tF5 +F). (6.65)

At O (t°1)
£ & _
5= 5= 0 (6.66)
is immediately satisfied. More interestingly, at O (1), the solution to
VR + SR~ Fo= iy (6.67)
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must be found subject to

Fo(0)=0 (6.68)

and, in view of the core in subsection 6.4.1
Fy~ —pyas € — —00. (6.69)

First we note that one complementary function is Fy = £2 4+ 2v. Also observe
that a particular integral is Fo,, = —Co. The other complementary function can be
found by putting

Fpo=(8+2w)H (6.70)

and solving for the resultant equation for H:

£(€2+10v)

"
B+ @ T

H' =0. (6.71)
Use an integrating factor,

£( §2+ 10V) 5 |
= / 2v £2+2v) / 2 (g2+2V)d5+ / w—zyd& (6.72)

Evaluating the integrals leads to

IF =

2
3 Zyz” +2In|€? +2v|. (6.73)

Consequently, after integrating once, we find that

(&)
H =A%~ 6.74
(€2 + 20)? e
where A is a constant of integration. Now try a solution of the form
C 2

where C and D are constants. By substitution it is seen that equation (6.74) can

be satisfied if

2vD
C = N (6.76)
and .
Ae~3\/v
D= R (6.77)



Hence, the general solution for Fj is

pooa et ® €2 VIR ()

4uv 81}%

] +B(24+20) —¢&.  (6.78)

Using the matching condition (6.69) we see that

1 A2 +2w) /T (-5=
—z2e™™ (g—x1)= lim ( ( V)\/?( W—)+B(£2+2u)—éo

{——o0 81/%
(6.79)

To prevent the right hand side from diverging we choose

A 7

L (3 R
S )= .
zie ™™ 5 T ¢o (6.81)

which we know to be true already from equation (6.64).

so we are left with

Finally, the initial condition (6.68) gives

A_Séou\/E
T2+ T

(6.82)

and so

_ 8¢uy/e ge"%e'ﬁ N (€* +2v) /TExf (E%)

¢ove T (g2 _a
+ 5= er v Ve (€2 +2v) — &. (6.83)
Thus we have now determined (at least) the leading order terms for the expansions

" in the inner, core and outer layers.

6.4.4 Comparison with finite difference solution

It is now possible to compare the asymptotic solution to a numerical finite difference
solution obtained as in section 6.2.
Figure 6.6 shows the density as a function of position at a fixed small positive

time {. Although a very close agreement is seen between the two solutions the result
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Figure 6.6: Plotted above is p as a function of z at a fixed time, t = 0.1. The
solid black line and the solid grey line are the numerical and two term asymptotic

solutions, respectively. See also figures 6.7 and 6.8.

is not necessarily conclusive since neither solution has deviated very far at all from
- the initial condition.

One alternative approach is to plot the value of the derivative of the density with
respect to position at the origin for varying time, as in figure 6.7. A reasonably close
agreement is seen for small time, exactly as one would expect. Figure 6.8 shows a
close-up of the small time region and again a fairly close agreement is seen between
the two results. The difference between the finite difference result and the small-
time asymptotic result may be due to the value of g5(0) coming from a Runge-Kutta
scheme only to an accuracy of three decimal places. (The numerical accuracy of the
finite difference scheme has been established by finding the solution on a number of
different grids. It appears to remain the same for each grid, as we would hope).

Alternatively, figure 6.9 shows the percentage error between the value of %5 0
from the numerical scheme and from the two-term asymptotic result up to ¢ = 0.01.
The error is fairly small. Therefore, we can be reasonably confident that we have
found an asymptotic solution to equation (6.1) for a particular example in which
the initial condition does not replicate any of the inviscid solutions obtained earlier

and which remains on one branch for all time.
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Figure 6.7: An alternative check between the numerical and the small-time-
asymptotic result is to plot the derivative of the density with respect to x at the

origin for a range of times. Above, the dashed line gives the values of g-g

z=0
from the numerical scheme and the solid line gives the values from the asymptotic

scheme. (See also the close-up in figure 6.8). The agreement is seen to be fairly
close for approximately t < 0.05, exactly as one would expect (or hope) for small

time asymptotics.

6.5 Steady state solutions

Steady states are sought now for solutions which remain on one branch of the fun-
damental curve. Steady states may be related to the final density profile obtained
near the end of the chute before ejection takes place and they are thus of interest to
Sortex.

First, a particular steady state is sought in which the density at the left boundary
PL = pr, where pp is the density at the right boundary. This case yields to analysis
and hence numerical solutions can be verified. Other steady states are then sought,

but we find that the numerics can be unreliable, the reasons for which are considered.

6.5.1 Seeking a steady state with p, ~ pp

First, a steady state is computed in which the densities at the boundaries (p; and

pr) are asymptotically close, specifically p;, = pr — € with € small. In this case an
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Figure 6.8: Here a close-up in the small time region of the value of g§ 0
varying time is shown. Again, the dashed line gives the values from the numerical
scheme and the solid line gives the values from the asymptotics. There is reasonable
close agreement between the two solutions. A possible source for the discrepancy
is discussed in the text. Note that the computation was calculated on a grid with
the spatial step-length and temporal step-length given by éz = 10~2 and 6t = 10~

respectively.

Percentage
error

-0.8

Figure 6.9: The percentage error between the value of édf o for the asymptotic
I==
result and the numerical result is shown up to ¢t = 0.01. It is relatively small (less

than 1%) throughout.
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approximate analytical solution can be found, thus providing a way to check the
subsequent numerical results. The approximate‘analytic solution is as follows.

As pp, and pg are asymptotically close, the wave-speed ¢ can be assumed to be
constant along the range [pr, pr]. That is, ¢ = ¢(pr) = co with ¢y constant. Hence

from (6.1) the equation for the steady states is given by

dp d?p
L=y 84
Gz Va2 (6:84)
This is easily solved to obtain
p=A+ Bed® (6.85)
where A and B are constants of integration. The boundary conditions are
plzL) = pL (6.86a)
and
p(ZR) = pR. (6.86b)
This yields
_ (oL — pr)e¥ %~
A=pL m (6.87a)
and
_ _(pL=pR)
B= P (6.87b)

The steady state is also computed by a Runge-Kutta method. A basic fourth-order
accurate scheme [14] is used to solve (6.84) with

dp
priak (6.88a)
and
dg o
et (6.88b)

where v = 1, ¢g = —1 and for the present computational run éz = %.

In figure 6.10 the analytical result and the result from the Runge-Kutta scheme
are plotted. The discrepancy between the solutions is seen to be small. Thus we
can be reasonably certain that a steady state to the continuum equation has been

found.
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Figure 6.10: This figure shows a steady state for the case when p; ~ pgr and ¢o
remains approximately constant. Both the analytic solution and the Runge-Kutta

solution are plotted. Virtually no difference is observed between the solutions.

6.5.2 Other steady states

An attempt to find other steady state solutions that always remain on one branch
was also made. Time-marching solutions from the finite difference scheme were
computed to large times and compared to numerical solutions of the steady state
equation (6.84), found by a trapezoidal method. The difference between the results
from each scheme, however, was marked. An error seems likely to have arisen in
the finite difference scheme at the change in sign of the windward differencing. For
reasons of brevity, we do not include the computations but they can be obtained from
the author on request. Perhaps the results could be re-examined in the future with
use of a compact differencing scheme. Such steady states could evolve in principle,
nevertheless, as outlined below.
The continuum equation (6.1) can be integrated in z to give

d [°R

G el = viplz (6.89)
where f: LR pdz is identical to the total mass. The flux ¢ — vp; is non-zero at the
boundaries, in general, since these solutions remain on one branch and do not have

p = pum at the boundaries. (We shall see that this is not so in the two-way case,
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investigated in section 7.5 in the next chapter). Consequently, % f: LR pdz # 0 in
general. Therefore in principle the mass can evolve with time, starting from its
initial value and approaching the steady state value. Therefore, a steady state may
evolve in such cases. (Again, we shall see in the next chapter in section 7.5 that this
is not so for the case of multivalued fluxes and the steady state there may not be
reached). In passing, we mention that (6.89) provides a method of checking mass

conservation numerically in time by using the calculated total flux at the boundaries.

6.6 Summary

In this chapter we have attempted to find solutions to the viscous continuum model

that remain on one branch for all time, for which the grain movement is uni-directional.

The motivation was to extend from the inviscid solutions found in the preceding
chapter to more general cases which do not start with discontinuous input. In order
to find such solutions, an artificial viscous dissipation term was added, which has
the effect of smoothing out the discontinuities. Thus numerical solutions may then
be found more easily. Importantly, this results in a parabolic equation and the flux
now changes to ¢ — vp;.

First a finite difference scheme was employed to find solutions which replicate
those in the preceding chapter. This is possible, provided that the parameter v
is small. Second, an asymptotic solution, valid at small time, was found for a
smooth initial condition that did not replicate the initial conditions for the inviscid
equation. Third, we examined steady state solutions for this uni-directional case. A
steady state was obtained for the case of the densities at the two boundaries being
asymptotically close, but other steady states were more difficult to compute. This
is possibly due to an error arising at the change of sign of the windward differencing
in the finite difference scheme.

In the next chapter, we wish to extend this still further and obtain solutions to
the viscous continuum model for which the grains are able move to and fro. As the

fundamental diagram then is not single-valued, this necessitates finding the solution
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by expressing the density and the flux in different terms, such as polar co-ordinates.
Prior to finding such steady states we first invéstigate the requirement of changing
the fundamental diagram; in particular, local viscous laws at the endpoints are
investigated. Changes in the local curvature of the fundamental diagram allow the

solution to switch branches more easily.
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Chapter 7

The ‘viscous’ continuum model

for grains in two-way flow

7.1 Introduction

The solutions of the continuum equation (6.1) have been limited so far to the inviscid
case, for which the initial conditions were restricted to discontinuous input, or to
the case when solutions remain on one branch. We now aim to compute solutions
for cases involving colliding and separating grains, which need to switch between
branches on the @ (p) curve. In order to avoid problems associated with the double-
valued fundamental diagram we solve for the density and ¢ (no longer the flux) as
functions of polar co-ordinates.

Prior to doing this we re-investigate the nature of the fundamental diagram. In
particular, in chapter 5 we determined that the two branches of the fundamen-
tal diagram must meet at cusps at the endpoints. Such geometry/discontinuity is
required if the wavespeed is to change smoothly during the branch switch in the
inviscid model, but in the viscous parabolic governing equation such discontinuities
are found to be incompatible with the viscous dissipation term. Consequently, the
local ¢ ~ p% relation should be altered for the viscous case.

We wish to determine whether the new ¢ = Q(p) relation produces physically
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sensible results or not. Even though the ¢ = Q(p) law may not have been deter-
mined itself by a complete physical argument, we may nevertheless gain some insight
into the behaviour of the system. Guessing such laws, examining the outcome and
subsequently discussing the validity of the particular fundamental diagram is in the
tradition of traffic flow theory. In fact, many different fundamental diagrams exist
as empirical models of traffic flow and there is discussion in the literature about
which one is best [7]. As this is a novel approach for chute flows, there is currently
no such discussion in the literature; so we shall choose this law, however arbitrary
it may seem, and examine its implications. Obviously, we do not claim that this is
‘the law’ for chute flow, but it is rather a first model for the viscous case.

On changing the fundamental diagram locally at the endpoints, we suggest below
that the local behaviour near the origin (or maximum) must be g ~ p% (or ¢ ~
(pm — p)%) and then we examine if a valid solution exists. To repeat, although this
may not necessarily be driven by physics it may yield some understanding of the
behaviour of the system. The suggested behaviour above can actually be put on
surer ground by considering that as the solution passes through a minimum, as it
may do in separating regions, p ~ 2. Balancing terms in equation (6.1) thus reveals
immediately that ¢ ~ z, i.e. ¢ ~ p% as just above. A similar relation applies near a
maximum.

Therefore in sections 7.2 and 7.3 the consequences of this new law in the vicinity of
the p = 0 and p = pps cusps respectively are considered. In the former case we find
a similarity solution valid at small time, and in the latter case, for small viscosity,
a local viscous region is introduced. In both cases the new viscous fundamental
diagram indeed allows physically sensible solutions to evolve. Steady states and
solutions at large time are then sought in terms of polar co-ordinates in sections 7.4

and 7.5.
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7.2 Viscous separation

7.2.1 Similarity equation and local behaviour.

We find a similarity equation valid at small time to examine the local behaviour
of the solution near the origin. This is near a density minimum; analogous work
applies near a maximum. Branch-switching at the origin physically relates to grain
separation. We have g ~ pé, soc=q = é—p‘% and substituting into the (6.1) we
obtain the ordering

where ¢ is an order one constant arising from the local form of the flux-density law.
Balancing terms in p we see that z ~ t7 and hence p ~ t. This is acceptable since
the density is small in a separating region. Therefore the similarity variable n = ﬁ-
and the form p = tf () hold locally.

Substituting into the continuum equation (6.1) we have %f =f- %t‘% f, %g =
t3 f', and %@ = f” where a prime denotes differentiation with respect to n. (Positive
cp is chosen when the flux g is greater than zero. Here locally f' > 0. Conversely,
the negative cg is chosen when the flux g is less than zero, where f’ < 0 locally).

Also putting
Co

f3

cr~ :}:cop‘% =4

]

(M

t
we obtain

vf" — (i%—g) flmf=0 (7.1)
as the nominal small-time equation near the density extremum. As the purpose
here is to describe separating grains we examine the case when the density passes
through a minimum. It is shown in the next subsection that f = 0 necessarily
at a minimum. Thus equation (7.1) is to be solved in subsection 7.2.3 subject to
f(k) = f'(k) = 0, where = k is the location of the minimum. Also f is expected

to grow proportionally to n? at large |n|.
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7.2.2 Core behaviour

Approximating the behaviour away from the extremum, in the core, we put

[N

¢~ tcop”
and expand
p = po(z)+tp1 (z) +p2 (x)
and on substitution into (6.1) we obtain
p1+ 2tps £ co (po + tp1) T (g + 1) = v (ol + to) + O(£).
Now if we assume that, for some positive constant A,
po = Az?,

which is the most general form for a minimum (separating grains) local to the origin,

then at leading orders we find

P = 2\ (/\%I/:F co) , (7.2)
and .
—c2 £ couA3
Therefore approximately
1
3
p=Az? + 2\ (/\'é'vq:co) - tlcﬁ—:—;"—’i- +O(%). (7.4)

Hence if 22 ~ ¢ then the three leading terms become O (t) and the series is no longer
asymptotic. This reinforces the earlier similarity equation in section 7.2.1 where the
similarity variable is n = t~3. Moreover, if A = c3v~2 then the O (t) and the O (t?)
terms are zero and so the expansion may still be valid. Therefore a simple crossover
between branches may be possible with A = c3v~2.

If we can find a solution to equation (7.1) that is valid for all # then it may
be possible to have a p';' law in the viscous case. We shall discuss how it might

correspond to the physics of separation. First of all,
f=Ty? (7.5)
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is an exact solution if

Other solutions are found below in the form
f=Tn*+ef (7.6)

with € small, as studied in subsection 7.2.5, and in numerical form as described next.

7.2.3 Solving equation (7.1) by a Runge-Kutta method

There are two cases to be examined here. One is where the minimum of f is zero, in
which case we need a series solution through the minimum so the numerical scheme
does not blow up. The second case is where the minimum has f non-zero: the series
in this case is not regular. The latter might be dismissed by a physical argument
(the density must be zero at the centre of a separating region) but an analysis is
presented for completeness. The series are helpful in the subsequent numerical study.

First put f = F? so equation (7.1) becomes

VFF”+F,(UF,:FCO+%(IC+S)F)_%F2=0 (1.7)

where we have defined s = n — k and f' = 0 at n = k. Above a prime denotes
differentiation with respect to s.

We mention here that having k non-zero allows the minimum, which cannot then
be at the origin, to move with speed & = %—t'%. Thus the solution has a fixed
minimum point at £ = 0 only if £k = 0 (we shall see later that this corresponds
to the exact solution f = I'n?). We are free to choose k in the local problem; it
is actually determined by the global solution across the whole chute. Since t < 1
slower movements correspond to k& — 0, in effect, and faster movements can be
roughly approximated by |k| becoming large.

Expand

F=Fy+sF +s*F+ ... (7.8)

which implies that
F' =F +2sF + ...
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Now f' =0 at 5 = k implies that 2FF’ = 0 at s = 0 which results in
R =0.

Therefore, if Fy # 0 we must have F; = 0. (We shall continue with this choice for
now, but we shall soon see that we must re-expand (7.8) with F; # 0 and Fy = 0).

Hence the expansion (7.8) becomes
F = Fy+ s*Fy + s*F3 + O(s%) (7.9)
Substituting (7.9) into equation (7.7) results in

v (Fo+ s*Fy + s3F3) (2F, + 6sF3)

+ (25F, + 35°F3) (1/ (25F + 35 F3) F g + -;- (k+3) (Fo+8*F + 331«“3))

1
-5 (Fo+ R+ $F) =0+ 0(s%) (7.10)
so at leading order we obtain
1
WEREF, - EF(? =0 (7.11)
giving
F-—OorF—-E(l (7.12)
0= 2= aw .

So this leads to either Fy = 0, implying that f = 0 at the minimum, or to a series
for the case when f = Fy at the minimum.

Second, then, is the case where f = 0 at the minimum, so that Fy = 0. We must
re-expand

F=sF +8*F 4+ $*F3 4+ s'Fy + O(s%) (7.13)

about s = 0. On substitution into equation (7.7) we see

(sF1 + 82F2 + S3F3 + S4F4) (2F2 + 6sF3 + 1282F4)

+ (Fl + 25F, + 352F; + 4s°F4 — -cl-/‘l + Ls;’Tk) (sFy + s*Fo + $*F3 + s4F4)) *

! (SF1 + 32F2 + S3F3 + 84F4)2 =0+ 0(35)

(F] + 2s8F5 + 382F3 + 433F4) - —I;

(7.14)
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where we have chosen ¢y to be positive since the gradient of f is positive and so we

must be on the upper branch of the @ (p) curve. At leading order we obtain
A
2l (F1 - 7) =0 (7.15)

implying
o
FL== 1
1= (7.16)
if F; # 0. (The F} = 0 case is considered in the section incorporating equations

(7.29) to (7.32) below, it relates to the case in which f # 0 at the centre of a

separating region and is ultimately dismissed). At O (s),

k o
4" F + §;F1 =0 (7.17)
S0
B=- k F (7.18)
LR R )
At O (s?),
9F F3 + 6F2 + g—]EFgFl =0 (7.19)
which eventually leads to
k2
Finally, at O(s3),
_ 1 hE, k_, 2FF3k
E= 16F, <20F2F3 + % + -’-/-Fz + ” (7.21)‘
resulting in
1 (KBF kR
So
o 2 k 3 k? a1 (K k 5
F=—|s-§—+4+8——-8s"—|—-—= : . .
” (3 "5 T 02 me \es  12) TO) (7.23)

Similarly, we need to find the series solution to the left of s = 0. Substituting s = —L

changes equation (7.7) to

§ _ 2
FF" 4 (F’ + -‘UQ - (k2VL) F) F-E_g (7.24)
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where a prime now denotes differentiation with respect to L. We now expand F as
F=-LF + L*F - L*F3 + L*Fy + ... (7.25)

Comparing terms in like powers of L results in the series solution

__ 2k g3 K a1 (KK
F= U(L+L8V+L96U2+L256 5~ o)t (7.26)

to the left of the minimum. In fact, any number of terms in the series can be
deduced.

We can now use the above series in s (equation (7.23)) to march from the minimum
to the right to some positive value s = d, say (i.e. n =k + a) to give us f and f’
here. (Recall f = F? and f’ = 2FF’). Similarly we can use the series in L (equation
(7.26)) to find the values of f and its first derivative at some L = b, b > 0 which is to
the left of the minimum (7 = k — L). Hence we have the starting conditions for two
Runge-Kutta schemes; one starting at 7 = k + a and solving equation (7.1) shooting
forward to some large positive 7, and the other starting at 7 = k — b and solving
equation (7.1) shooting backward to some large negative 7. To solve equation (7.1)

by a Runge-Kutta scheme we put

fl=g (7.27)

=1 L 0,
re3((+3-1)0-) -

and use the numerical method 25.5.18 in Abramowitz and Stegun [1]. Note we

and

choose +¢p if f/ > 0 and —¢p if f' < 0 because cg > 0 on the upper branch where
locally at the origin f' > 0 and vice versa.

Third, we return to the option where the minimum f # 0i.e. Fy # 0 and F; = 0.
Recall equation (7.9) is the pertinent expansion in this case, which led to equation
(7.10) and at leading order Fy = %‘} in (7.12). We shall see that the series in this
option is not regular and furthermore it results in the unphysical condition that
f # 0 at the centre of a separating region, and this option is therefore ultimately

dismissed. Continuing to O (s) with this choice results in
6vFyF3 F 2F5cq + FoFgk = 0. (7.29)
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Thus

_ Fok 260
F= 2 T (7.30)

Note that for f/ > 0, ¢g > 0 and vice versa. The shape of the solution is concave

upwards; to the right of the minimum f has a positive slope. Hence

Fok: 200

B=-gm t

(7.31)

Therefore, the expansion to the right of the minimum is

2
_ SRk L @
F=F (1+4V+S ( 24I/2+ 121/2F0>)' (7.32)

Again, the series must also be found to the left of the minimum. As before it is
possible to make the substitution s = —L and consequently we are required to solve

equation (7.24) once more, this time with the expansion
F=Fy+L?F, - L3F3 + .... (7.33)

Similarly, comparing like powers of L and noting that to the left f has negative slope

forcing ¢y < 0 leads to the series solution

L k co
F=F (1 +Zp (___2 . FO)) . (7.34)
Writing this in powers of s reveals
‘ 2
- Sog(-k __w
F=F (1+4u+s ( YR 121/2F0))' ;(7'35)

The central point here is that the third term in (7.32) differs from the third term
in (7.35) in the sign of ¢p. The series about the minimum is therefore not regular
if Fo # 0, which is unacceptable as we are seeking a smooth solution. An inner-
inner region would be required if the series solution were non-regular, within which
more knowledge of the local physics would be required, possibly concerning ‘jump
conditions’ for example. This solution also has f non-zero at the minimum and so can
be dismissed by physical arguments. Altogether therefore the minimum must occur
with f = 0 and series (7.23) and (7.26) can be used in conjunction with a Runge-
Kutta method, as explained above, to find solutions of (7.1). These correspond to
the density to being zero at the centre of a separating region, agreeing perhaps with

physical intuition.
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-20 -10 10 20

Figure 7.1: A solution to equation 7.1 where the minimum occurs at (7, f) = (1,0).
A series solution has been used to enable passage through the minimum. See en-

largement in figure 7.2. The step size in this example is h = 0.001.

7.2.4 Solutions

The first solution we find is for the values a = b = 0.1 and k = 1, corresponding to
the minimum being located at (7, f) = (1,0). A series expansion is used to find the
solution between n = [0.9, 1.1] and then two Runge-Kutta schemes are used to shoot
forwards or backwards from the end points of the series. Figure 7.1 shows that the
density relatively rapidly increases to large values to the left of the minimum yet
increases to a smaller value to the right of the minimum: the density distribution
is asymmetric either side of the minimum. Figure 7.2 shows an enlargement of the
solution near the minimum, highlighting the series solution through the minimum
and showing that it matches well with the solutions from the Runge-Kutta schemes.
Four terms have been used in the series expansion in this case. Although this
may seem a surprisingly small number, when the number of terms in the series is
changed to check the numerical accuracy the solution remains virtually the same.
The solution f ~ 7% to equation (7.1) in the limit 7 — +o0 can be used to check
if the numerical solutions display the correct behaviour. Thus figure 7.3 shows a
plot of the solution divided by n?, and as 7 increases to large positive and negative

values the curve in figure 7.3 apparently tends to a constant as expected.
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T o585 oos 0.95 1,05 1.1 1.15

Figure 7.2: Closely examining the minimum in figure 7.1 reveals the series solution

(thin line) is seen to match well with the numerical solution (heavy line). In this

case, the series solution goes to O (s*).

U~

n -20 -10 ! 10 20

Figure 7.3: Above we plot ;;Q and see that this appears to tend to a constant for

large values of 7. Therefore the numerical solution appears to asymptote to 1° at

large 17 as expected.
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Figure 7.4: Plotted above is the full solution for three different step lengths; h =
0.0001, A = 0.001, and h = 0.01. All three appear to coincide virtually exactly.

Figure 7.5 shows an enlargement of the solutions near the origin.

The numerical accuracy of the above solution was further checked. The step-
length was made shorter or longer to check the grid-dependence of the solution.
Also the number of terms in the series expansion was changed, and the interval of 5
in which the series is applied, to make sure the solution is not dependent on either.
Finally, the length of the series can be changed to further ensure the result has no
dependence on this as well. Figures 7.4 to 7.10 investigate these aspects, and the
solution does indeed remain virtually the same in all cases.

A number of other solutions can be found where the minimum is located at dif-
ferent points. These solutions have quantitatively different behaviour from the one
found above. For example, the solution shown in figure 7.11 has the minimum placed
at (n,f) = (0,0). Again, a four-term series expansion is used to find the solution
through the minimum and then the Runge-Kutta scheme is used to find the solutions
from the end-points of the series which are located at n = —0.1 and n = 0.1. In this
case, the analytical solution is exactly f = I'n? with I = c2v~2 which is symmetric
about the origin: see figure 7.13. Therefore this case corresponds to the situation
where grains separate into regions of equal density.

Another example is to find the solution when the minimum is placed at (7, f) =

(—2,0), as shown in figure 7.14. Again we see an asymmetric solution; to the left
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Figure 7.5: This plot shows the solution near the minimum for three different step

lengths; A = 0.0001, A = 0.001, and h = 0.01. All three coincide and consequently

all three match well with the series expansion through the minimum.

1200

1000

800

400

200

n

——

-20 -10

10 20

Figure 7.6: Plotted above is the full solution for three different lengths of the series

expansion. A series expansion is used to find the solution between n = [0.9,1.1],

n = [0.99,1.01] and n = [0,2] in each case. All three appear to coincide virtually

exactly. Figures 7.2, 7.7 and 7.8 show an enlargement of the solutions near the

origin.
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Figure 7.7: Shown above is an enlargement of the solution near the minimum when

a series expansion with four terms is used between n = [0.99,1.01].

U

-2 -1 1 2 3
Figure 7.8: Shown above is an enlargement of the solution near the minimum when

a series expansion with four terms is used between n = [0,2].
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-20 -10 10 20

n

Figure 7.9: Plotted above is the full solution for two cases: one with a two-term
series expansion and the other with a four-term series expansion. Both solutions are
virtually the same. Figure 7.10 shows an enlargement of the two-term solution near

the origin.

n

0.8 0.85 0.9 0.95 1.05 1.1 1.15

Figure 7.10: Shown above is a close-up of the solution near the minimum when a

series expansion with two terms is used between 7 = [0.9,1.1]. c.f. figure 7.2
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Figure 7.11: The solution to (7.1) for when the minimum is located at the origin.
A step size of h = 0.001 was used and a four term series expansion was used to find
the solution through the minimum. An enlargement of this region is shown in figure

7.12. The grains separate into two regions of equal density.

n

0.1 0.2
Figure 7.12: Once more, the series expansion allows the solution to pass through

the minimum.
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1.25

-20 -15 -10 -5 S 10 15 20
Figure 7.13: The solution in figure 7.11 is divided by n? and is equal to a constant
everywhere. This is the exact solution, f = I'y? with I' = 3v=2 = 1.

of the minimum f increases only to relatively small values, whereas to the right of
the minimum the solution increases relatively rapidly to large values of f. We pay
particular note to the way in which the curve seems to tend to a small constant
for a large distance to the left of the minimum before beginning to increase. This
can be explained analytically as in 7.2.5 later. Once more the series expansion is
shown enlarged, in figure 7.15, and is seen to sensibly take the solution through
the minimum and match well with the solutions from the Runge-Kutta schemes.
Also figure 7.16 shows that the numerical solution does indeed display the expected
behaviour as 7 — *oo.

Before a physical interpretation of the results is given, and before conclusions are
drawn about the local viscous ¢ (p) law for grains separating at low density, we move

on to seek analytical solutions.

7.2.5 Analytical solution

A solution is now sought in the form

F=T*+ef+.., (7.36)
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-20 ETI 10
Figure 7.14: The solution to (7.1) when the minimum is located at (7, f) = (-2,0).
Again we see an asymmetric solution; to the left of the minimum f increases only to
relatively small values, whereas to the right the solution rapidly increases to large
values of f. The solution appears to have a large region where f remains constant,
a feature to which reference is made in section 7.2.5. For the above solution a step
size of h = 0.001 was again used, as was a four term series expansion through the

minimum. The solution near the minimum is enlarged in figure 7.15.

n

-2.2 -2.1 -1.9 -1.8

Figure 7.15: An enlargement near the minimum of the solution in figure 7.14 is
shown. The thin line is the series expansion through the minimum and the thicker

lines are the solutions from the Runge-Kutta schemes.
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-20 -10 10
Figure 7.16: The solution divided by 172‘ tends to a constant for large values of 7, as

expected from looking at equation (7.1) in this limit.

which from (7.1) yields

v (ZF +ef") - (:i:co (Fnz)_% (1 ~ 22{;2) — g) (2Fr)+ef’)

- (I‘n2 vef+ ) =0. (7.37)

Thus, at leading order, the equation

1
T2
oTw — (i“’lnl ‘- '2—’) (2Tp) — T =0 (7.38)

has to be satisfied, resulting in

r= (23)2 (7.39)

where we have used the fact that (7%)2 = |n|. The result (7.39) agrees with what

we had earlier in (7.5).

At O (€) the differential equation

w1 Vo ny\ v 7
(21 — = = 4
g (n 2) I+ (172 1) f=0 (7.40)
is obtained. Since for small 7 the equation can be approximated as

vir Yy Lo, 7.41
f 77f 772f (7.41)
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it can be seen by substitution that locally
f~ Ay + Bylnp for small 7. (7.42)

Consequently,

f~Tn?+e(An + Bylny) . (7.43)

Notice that if n = O (¢) then the first term is O (€?), as is the second term to
within a logarithm. The value of B depends on the behaviour in an inner region
studied below, where two types (I, IT) of solution are found. Type I leads clearly
to the requirement B = 0 and we have that mainly in mind. If B is non-zero on
the other hand then € in (7.36) can be replaced by ﬁ, to account for the change
Inn — Ine+ O(1) in the logarithmic term when 7 becomes €€ with £ ~ 1 in the inner
region, and the following working remains unaltered.

Type L. In the inner region
n=ef and f=€e2F(£)+.. | (7.44)

with £, F of order unity and

df / af
— =¢F" and — = F", 7.45
giving, from equation (7.1),
vE" — (j:-—c"l- - 5) eF — 2F =0 (7.46)
eFz 2

where a prime denotes differentiation with respect to £&. Consequently, at leading

order the nonlinear ordinary differential equation

vF" £ X F =g (7.47)
F32
must be solved.
Integrating once gives
vF' ¥ c(,F% =k (7.48)

where k; is a constant of integration. Then we multiply by % and solve the resulting
equation,

= (k1 + 2c0F%) %, (7.49)
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for £ as a function of F' and invert.

Consider

/ ar
14 “——_"_"1" I.
. kl + 2CoF§

Letting u = £ F % and then making the substitution s = k1 + 2cou gives

I=+2 1-’%ds.

2¢5

Hence, the solution for £ is

Etky= é (k1 +2¢F% — kyln Ik1 + 2o F}

) (7.50)

where ko is another constant of integration.

It can be seen from (7.50) that at large |¢| the asymptote F' ~ d1£%+ daélné +O(€)
is self-consistent, with d; = (%’l)2 and dp o« k;. The contribution d or k; here plays
a key role.

We are now required to invert this solution to find F (£) and then match F with
the outer region where the f (1) solution is valid. Two solution types are found: one
(I) in which the shape of the solution is parabolic, and the other (II) in which the
log branch can be included and the solution has a large region where F tends to a
constant.

Type I has k1 = 0 and the solution for F' simply follows as
- (%)? 2
F= (V) (€ + k)2 (7.51)

Continuing to match this solution with the outer-layer of (7.43) yields

¢ (%)2 (€+k2)® ~Tn? +edn (7.52)
with B = 0. That is,
(%) 2”2 + Zenk, (‘?)2 +é (%9)2 ky ~ Tn? + Aen + ... (7.53)
Therefore,
(%)2 n? =TIn?, (7.54)



which we know to be true already since I' = (%1)2 Also, from the order epsilon
term,

A= 2kT | (7.55)

and the €2T'ky term must balance with the undetermined O (€2) term on the right-
hand side.
Hence,

f =Tn%+e(2kTn) + O (€2) (7.56)

and
—2r(n 2
F=c¢ 1"(6 +k2) . (7.57)

This solution is therefore seen to correspond to an origin shift.

Let us now consider what happens if k; is non-zero. Recall from equation (7.50)
that £ grows like F3 for large F. In order for £ to be a smooth function of F valid
for all £ the solution in the small F' region must connect the two branches of the
+VF and —VF curve. Therefore there must somewhere exist a turning point with
—g; infinite. Since

dF ’
2 k
B _ 2% (1905 201 (7.58)
dF2 v ki £2¢yF?

is to be infinite, at such a turning point

1 k1

Fi=3—. .5
= Fom (7.59)

However, for this value of F%, £ (F) is singular. In consequence a solution with a
minimum of F at finite £ does not exist if k; is non-zero and if B =0. So k; =0
for this particular shape of the £ (F) curve. See figure 7.17.

Type I1. An altogether different type of solution, which includes a log branch, is
valid if the shape of the £ (F') curve is of the form of that sketched in figure 7.18. We
now wish to see if the log branch in the inner region allows a single-valued solution.
The log branch is to send f toward zero at the end away from the inner region (where
¢ is large and negative), and then it is possible to match this with f as 7 ~ ¢! into

an outer region.
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+F3

—F3

Figure 7.17: Sketched above is §(F %) For a smooth solution the +F? branches
(solid lines) must be connected and so there must exist a turning point with gf- = 00.

This cannot be satisfied if k; # 0 and B = 0.

In this case ¢g > 0 since F/ > 0. Hence equation (7.50) can be written as

17 - 1 ~ 2 1
= — (- 2 — 2|} - .
€= ( fy + 2¢F% + Byln |y + 2¢0F l) ks (7.60)
~ a 1 7
= — . X s F'3 — ki - — i — .
where k; ki1 and k; > 0. Therefore, as F e £ oo with f; 0

That is to say, the inclusion of the log branch allows a long flat inner-region where
F (essentially the density) tends to a constant. The solution is sketched in figure
7.18.

The solution in the inner region must now be matched with the outer solution as
n — O (e7!). We match with n = O (¢7!) because the inner solution has a long, flat
region with £ — —oo as has just been demonstrated. Far to the left, after the region
of small density, f starts to increase to large values (as this makes sense physically
for a separating region). Consequently, f’ < 0 here and so ¢y < 0. Therefore, the
—cp case is chosen and putting ( = en is appropriate, corresponding to ¢ = ¢~2(.
As the solution leaves the inner region and enters the n = O (¢7!) region f = €2F
must still be satisfied. Let f ~ €2F (¢) in this region.

Note also that scale e~! has been chosen because the solution must increase to
large values far to the left with F" parabolic, to match with the parabolic behaviour

in the outer region. If ¢! is chosen then equation (7.62) below is satisfied, which
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Figure 7.18: Sketched above is F' as a function of £. It is possible for F to tend to
a constant at one end if the log term is included. This may then match with f as

n — O(epsilon™1).

eventually results in a quadratic solution for F' as required. Thus equation (7.1) can
be written as

4. coe? C€2 ot 2F

evF" — ——T T = F'—e¢*F =0 (761)
where a prime denotes differentiation with respect to (.

At leading order the solution to

Co C\ & &
0 42 - F= .62
( 71 + 2) FF—-F=0 (7.62)
must be found. Multiplying by di% and a little rearranging gives
Ao1dl ¢ F—2
I—= — —— =cgF % 7.63
Y B (7.63)
Integrating once yields
Fi¢=—co+CF (7.64)

after a minimal amount of manipulation; C is a constant of integration. The resulting

equation is simply a quadratic for £ % and the standard formula reveals

Pt o $EVCE 0 (7.65)

Squaring shows that

. 2 2
F=C +2Cco:i;é;/c +4Cco_ (7.66)
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The solution must now match with I'y? as { — —oco and with Litlz' as ( — 07. As
: 0

¢ — —oo we must choose the positive square root so the solution is non-trivial. The

matching condition then results in

2 ¢ 2
€= '+ .. (7.67)
Since ¢ = en then,
2
e4g—2 =Tn?+.. (7.68)

Therefore C' can be found By matching with the (as yet undetermined) O (64) on
the right-hand side of (7.68). As { — 0~, matching requires that

k? co
2f1 _ 2 .
€ 2c3 “c? (7.69)

SO

k= @ (7.70)

A solution of type Il is allowed, then, and the constants can be found by matching
as above. In fact, a numerical example of this type of solution was seen in figure

7.14.

7.2.6 Physical interpretation of solutions and conclusions.

By modifying the fundamental diagram to include a representative local viscous law
we see that physically sensible solutions are obtained for the case of separating grains
at low density for small times and order one viscosity.

In the solutions presented above the condition f = 0 must be satisfied at the
centre of the separating region. That is, the density must always be zero in the
centre of the separating region. This agrees perhaps with physical intuition and also
fits well with results from the idealised inviscid case.

Furthermore, the solutions can be asymmetric about the origin. This corresponds
to grains moving apart, possibly at different speeds, into regions of differing density.
It is important that the continuum model allows this kind of solution as it was seen

in numerical simulations where clusters of different sizes develop.
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We found both analytically and numerically that a large region of low density can
evolve between two separating regions: see ﬁgme 7.14 and the discussion at the end
of section 7.2.5. Again, one would expect this to occur for some cases of separating
regions and also we recall that numerical simulations had some large regions that
were devoid of grains.

Finally, an origin shift of the centre of the separating region was possible i.e. the
grains do not have to separate about a fixed point, which is also a physically sensible
result.

Consequently, it seems reasonable to conclude for cases of separating grains that
the ¢ ~ p% law from the inviscid case can be changed locally to a viscous g ~ p%
law.

The question of whether the same be done for colliding grains at the other end of

the @ (p) curve in the neighbourhood of p = p,, is investigated in the next section.
»

7.3 Viscous clashing

7.3.1 Introduction

Cases which drive the solution to the high density end of the Q (p) curve and the
branch switch there are now considered. We investigate the possibility of introducing
a similar viscous Q(p) law at the high density endpoint. The earlier stated qualifi-
cations about the empiricism of the approach also apply here. Branch-switching at
the high density endpoint physically corresponds to colliding grains.

A viscous region of small size € < 1 is therefore introduced in the neighbourhood of
p = pa, where pps denotes the maximum (jammed) density. Here ¢ = te (par — p)’:r
locally. This matches into the inviscid part of the curve where ¢ = + (pas — p)%
locally: if p ~ ppr — € then g ~ €3 in both regions and therefore they match. Also
c=¢q ~ e2. These power laws are chosen by the same reasoning as in section 7.1.

In the inviscid analysis, the wavespeed c is close to zero in the vicinity of pps. The
p = pym point itself is stationary. The flux ¢ is also small in this neighbourhood.

Hence, if a particular region has an initial density close to pas the characteristics will
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not travel far from this point. Therefore the viscous part is valid for a small region

near p = pp; so x << 1. We wish also to ﬁbnd solutions for order one time. (N.B.

in the separating case a solution valid for order one viscosity and small time was

found. Conversely, we seek here solutions valid for all time but only small viscosity).

Therefore we choose the scalings ¢t ~ 1 and z << 1 alongside p ~ ¢, ¢ ~ € and
1

c~E2.

Balancing these terms in the continuum equation (6.1),

Pt + COz = VPgy, (7.71)

yields in terms of orders of magnitude

S e

+

Rl &

(7.72)

[}
8 | Do

Therefore z ~ €7 and v ~ ¢.
Note that v ~ € is clearly a central case. If ¢ were smaller, then the q ~ p% law
would hold true for almost all (g, p) and we have seen in previous cbmputations that

this poses a difficulty.

7.3.2 Derivation of the equation for the high density viscous region

Given the above scalings, we now put

r=v2X, (7.73a)

p = py — VP, (7.73b)

¢c=v3C, (7.73¢)

¢=v3Q, (7.73d)

where X, P, C and Q are all order one. It is important to note that ¢ = ‘ai% =

%%—E%, ie. ¢= -—uégg and therefore C = —%%. Now % = I/_%z)ay and 2y =

T

v"lg%;;. So equation (7.71) becomes

P, +CPx = Pxx. (7.74)
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Letting ¢ be a representative linear combination of the viscous and inviscid laws

results in )
1 3
g==%(Acom - )2 +Blom—p)t), (7.75)

where A and B are (positive) constants. Hence

€ _ 3
c=i(—A5wM—p>%—§BmM—pﬁ), (7.76)
ie.
C=+ (—gp-% - %EP%) . (7.77)

Choosing A =2 and B = % without loss of generality (the validity of this is quickly

outlined in appendix F) gives
1 1
P.F (P7#+ P¥) Px = Pxx. (7.78)

As a consequence of the multi-valued wavespeed, we do not solve (7.78) but in-
stead invert and solve the equation for @ (z,t) with P = P (Q). Since the P = P (Q)
relation is single-valued and general solutions may be found more easily. This ap-
proach, and the approach of section 7.3.4, is reminiscent to that of Li et al. [37] in
which the authors examine the intrusion of normal pressure gradients in near-wall
dynamics of transitional-turbulent boundary layers.

We have

C=x (P-% + P%) . (7.79)
Therefore

Q== (2P% + gP%) + constant. (7.80)

Since @ = 0 at p = pyy, i.e. at P = 0, the constant is equal to zero. Consequently,

since we take positive @ on the upper branch and negative @ on the lower branch,
1, 2.3
2P% + §P2 =|Q|, (7.81)
a relation which needs to be inverted. Let Asinhf = P3. Then

3Asinhd + Nsinh®0 = g 1Q]. (7.82)
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We require the left-hand side to be equal to Asinh39 = 3Asinhf + 4Asinh3g. This
requires A = A and A3 = 4A. Therefore A3 — 44 = 0 implying that A=0or A = 2.
Taking A = 2 to avoid triviality yields

2sinh3 = g Q] (7.83)
Therefore, after a little manipulation,
.o f1. .13
P = 4sinh gsmh 1 |l - (7.84)

Writing the partial derivatives in (7.74) as P, = Q:Pg, Px = QxFPg and Pxx =
QxxFPgo+(Q ;\()2 Pgq and further noting that C = —Qp, gives

a1Q; — Qx = a1Qxx + a2 (Qx)* (7.85)

as the equation for Q(X,t), where a; and a3 are Py and Pgq respectively. Explicitly

o= 8@ ( Ssinh [i lQ|]) \ (7.86)

V1+ 2%

and
) 2 -
ay = —————"=sinh (-3-smh [ !QI])
)

1 2. . _.[3 |
+mcosh (gsmh [ZIQIJ) (7.87)

Observe that a; and ag have discontinuous higher derivatives. In terms of P(X), P

and at least its first two derivatives are continuous.

7.3.3 Numerical solution of equation (7.85)
Equation (7.85) is discretized as
w [ Qi Qi—Qi\ (Qix1—- Qi
T 20X

i -2 s+ Qi —i "_i— 2
—a (Q+1 5}632 Q: 1)+a2(Q+125XQ 1) (7.88)
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where a; and ‘az are evaluated at the known time-step, as is the (Q:,)2 term. A
bar denotes the quantity at the known time;step, while absence of a bar denotes a
quantity at the unknown time-step. The subscript i denotes the quantity at each
spatial grid-point. The solution is then found by a usual finite-difference method.

Solutions are found on a number of grids to ensure they are accurate. The grid
sizes used are (0X,dt) = (1071,1073), (1072,107%) and (10~3,1077). Figure 7.19
shows a solution for the above three grid sizes. There is excellent agreement between
all three. All other solutions are found on a grid of (6 X, 6t) = (1072,1075).

Figure 7.20 shows solutions for the case in which two regions collide symmetrically
about a central point located at £ = 0.25. Note in all solutions that we plot p,, — P
versus X to show the local change in the density through the clashing region. The
viscosity has a value of v = 0.001. As time increases the hump shape spreads
across the domain tending to produce a region of maximum (jamming) density. The
boundary conditions in this case are consistent with a continual input of grains at a
fixed density. The solutions were found for times of t = 0.1, 1.0 and 10.0.

Figure 7.21 shows solutions in which two regions collide asymmetrically about
a particular point. Again the boundary conditions are consistent with a continual
input of grains at a fixed density. The viscosity in this example has a value of
v = 0.1. Solutions are plotted at times of ¢ = 0.1, 1.0 and 10.0. Again a hump forms
and spreads across the chute over time. In this case the growth of the hump is not
isotropic; the density increases to higher values more rapidly to the left of the initial
point of collision.

The boundary conditions used just are tentative however, namely Q(X,t) = Qy,,
Q(XRg,t) = Qr, with Q, Qg arbitrary non-zero constants. In the next section we
find the correct boundary conditions which correctly match solutions to equation

(7.85) into an inviscid expansion fan.

147



PR o ]

pm — P

Figure 7.19: The plot shows the local deviation in the density (pps — P) near the
maximum at a time ¢ = 0.1 for a number of different grids. The grid sizes used
are (0X,0t) = (1071,1073), (1072,107°) and (1073,1077). There is good agreement
between all three curves. Recall that here, and in figures 7.20 and 7.21, P = L’-’-"ifﬁl
and X = ﬁ with v small. Here v = 0.001.
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Figure 7.20: This figure shows local deviation of the density against position for a

solution to equation (7.85) for various times. The initial condition was for grains
to be continually colliding symmetrically about a particular point. A hump of large

density appears and this spreads and increases over time. Here v = 0.001.
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pm — P
Figure 7.21: Another solution to equation (7.85) for various times is plotted above.
In this example the initial condition was for grains to continually collide asymmet-
rically about a particular point. Again, a hump appears and spreads over time but
the density increases to higher values more rapidly to the left of the initial point of

collision. Here v = 0.1.
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7.3.4 Finding the appropriate boundary conditions which correctly

match the viscous clashing region with the inviscid bulk

We seek a similarity solution to equation (7.74) as | X| tends to infinity, i.e. as the
solution leaves the viscous clashing region and enters the inviscid bulk, in order
to find the more appropriate boundary conditions for the numerical scheme (7.88).
From equation (7.85) we see that we must balance TP, % and 3?7 as Q ~ P? and
| X| — oo.

One choice could be % ~ 7’3;, but this results in P ~ X2, This is a contradiction.
As X increases, the solution should leave the inviscid region, so P should tend to
large values, making ViP =0 (1). Another choice is to balance % ~ % We wish
this balance to hold true for all time, so t is order one. Therefore P ~ X2 and
Q~ X3.

Hence the solution of equation (7.74) is required at large X and order-one time

with P ~ X% and Q ~ X3. In this limit C ~ P2 must be taken since this is

appropriate in the inviscid region. Therefore we seek the solution to
P, ¥ PiPx =0. (7.89)

(As we shall see, the solution to this equation does in fact lead to the required
P ~ X? and Q ~ X3 behaviour.)
Put P =12 s0

re Frrg = 0. (790)

Let r = (t—tp)™f(n) withn = %—;tf}%l Balancing terms from the partial differential
equation for r yields r ~ % Therefore,
X (t=to)™(X — Xo)

= e (7.91)

and hence

n-1=m. - (7.92)

Finding the derivatives in terms of 7 in the standard way and substituting into (7.90)

reveals the similarity equation
mf—-nnf' Fff =0 (7.93)
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where a prime denotes differentiation with respect to 7.

Now notice that the choice of n = 1 = m = 0 gives

f(Ff-n)=0 ' (7.94)

so f'=0or f = Fn. For this choice of n, the f = Fn solution leads eventually to

_ (X = Xp)?
b= (t — to)?

which is the exact form of the expansion fan solutions we met previously (since this

(7.95)

locally gives C' ~ 2;— cf. equation (5.16)). Moreover, (7.95) is an exact solution to
equation (7.89). Recall that @ ~ P3. Thus

_ (X - X0)

Q= (t - to)3

(7.96)

is the large X solution to equation (7.74) which matches into the expansion fan
solutions which are obtained for colliding grains in the inviscid bulk. We have
chosen the negative root so that initially @ is positive on the left of the chute and
Q is negative on the right of the chute. This ensures that a clashing region occurs.

Therefore, if we wish to find a solution to equation (7.85) that matches into an

expansion fan then the appropriate boundary conditions are:

- 3 ‘

QX = x1,0) = -2, (7.972)
_ 3

QX = Xn,0) = -0k (7.97b)

In the computation we have arbitrarily chosen X¢ = 0"and tp = 1, a choice which
will be discussed later in this section. Furthermore, X and Xp are the locations of
the left-hand and right-hand edge of the viscous colliding regign.

Therefore we now solve equation (7.85) by the numerical scheme (7.88) subject
to the boundary conditions (7.97). We choose Xy = —15 and Xg = 15. Also, a
grid size of (6X,dt) = (10‘.2, 107%) is used again and the viscosity has the value
v = 0.001.

Figure 7.22 shows solutions for p(z,t) at various times (n.b. we show the plots in

terms of the global co-ordinates p(z,t), not the local coordinates P(X,t)). As time
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Figure 7.22: A solution is plotted for the initial condition in which grains do not
continually collide, but instead match into an expansion fan. The hump spreads and
increases over time and appears to be heading to a constant equal to the maximum

(jamming) density.

increases, the hump spreads across the chute and the density increases. It appears as
though the hump is tending to a constant equal to the maximum (jamming) density.
At both sides of the plot there is a ‘lip’ that rises to a significantly higher density.

The presence of the ‘lips’ may appear peculiar at first, but it seems likely to be a
consequence of imposing the arbitrary boundary conditions (7.97) on the problem.
We recall that in the computation we set {5 = —1, the idea being that the time-
marched solution would tend toward the asymptotic form (7.95). The time-marched
solution does indeed appear to head toward an asymptote of the same form but
with a different value of ty, and it then veers away from that asymptote ‘at the
last moment’ in order to satisfy the particular boundary condition which we have
imposed. Hence the ‘lips’ occur at the sides of the plot.

Such a view concerning the asymptote is supported by figures 7.23, 7.24 and

7.25. First, figure 7.23 shows solutions at t=2 for various values of ty. Each curve
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has roughly the same trend in the core but the ‘lips’ at the sides vary for each
value of to. Figure 7.24 shows two time-marched solutions at ¢ = 2, one with
(XL, XRr) = (—15,15) and the other with (X1, Xg) = (—30,30). (computed on the
same grid) and both have to = —1, alongside two plots of the asymptote (7.95), one
with tg = —1 and the other with tg = 0. Regardless of the two different boundary
conditions in the numerical scheme, both time-marched solutions appear to lie very
close to the asymptote with {5 = 0 (as well as to each other, as a check on grid
effects). Similarly, figure 7.25 shows three time-marched solutions at t = 2, one
with tg = —1, another with {3 = —0.2 and a third with {5 = —0.5 (all three have
(XL, Xgr) = (-15,15)), alongside two plots of the asymptote (7.95), one of which has
to = 0 and the other has tg = —1. Once more, regardless of the boundary conditions
in the numerical scheme, all three time-marched solutions appear to lie very close to
the asymptote which has 5 = 0. Thus the solutions do indeed have the asymptotic
form (7.95) with a particular (small) value of t; that seems to be independent of
the value set in the boundary condition. The bulk or core of the solution develops
its asymptote by itself, in a sense, a feature which is in line with the underlying
characteristics of the inviscid limit being directed outwards with slope % > 0 for
X >0 and %(- < 0 for X < 0 from (7.89). The ‘lips’ would not occur if suitably
adjusted boundary conditions were imposed of course, but the latter are unknown in
advance and determining the corresponding value of g is nontrivial; see for example
a similar problem in Li et al. [37]. For small ¢t the behaviour is similar to that of

section 6.4; viz. there is a discontinuous start with matching between several layers.

7.3.5 Interpretation of solutions and conclusion

The introduction of a local viscous Q(p) law at the high density cusp of the funda-
mental diagram has produced physically sensible results. Recall that in the previous
numerical simulations of chapter 3 areas of densely packed grains were observed.
This behaviour has also been seen in images provided by Sortex. In the solutions

found above, we observe the growth of dense regions, symmetrically and asymmet-
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Figure 7.23: This figure shows the occurrence of the ‘lips’ for various values of tg:
A has tg = —1, B has tg = —0.5 and C has ty = —0.2. See the full discussion in the

text.

rically, for a number of reasonable boundary conditions. Consequently, we can be
fairly confident that the introduction of such a viscous law allows solutions to be
found which are congruous with our understanding of the behaviour of grains in-
volved in collisions.

The continuum model has now been seen to produce what are felt to be qualita-
tively sensible results for three special cases: the bulk inviscid behaviour from chap-
ter 5, viscous separation and viscous clashing (at least for the cases investigated so
far). In the last two cases, the fundamental diagram is modified as a consequence of
the introduction of the introduction of the viscous dissipation term. Although this
fundamental diagram cannot be entirely supported by physical arguments, physi-
cally sensible results are nevertheless obtained. The modifications therefore appear
to be admissible. The next step is to develop a computational procedure for the
continuum equation (6.1) for general cases which might involve any combination of

the above three cases.
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p
Figure 7.24: This figure shows two time-marched solutions (solid lines A and
B) at t=2, alongside two asymptotes (dashed lines). Curve A corresponds to
the computation which has (X, Xgr) = (—15,15) and curve B to the one with
(XL, XRr) = (—30,30). The value of 3 on the asymptote is shown adjacent to each

curve. See the discussion in the text.
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P
Figure 7.25: This figure shows three time-marched solutions (solid lines A, B and
C) at t=2, alongside two asymptotes (dashed lines). Curve A corresponds to the
computation which has tg = —1, curve B to the one with tg = —0.5 and curve C to
the one with tg = —0.2. The value of ¢y on the asymptote is shown adjacent to each

curve. See the discussion in the text.
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7.4 A general computational procedure

The problem of branch switching can be avoided in many cases by writing the con-
tinuum equation in terms of polar co-ordinates. In so doing here, however, we choose
to simplify the flux-density relationship because solving for the original fundamental
diagram would lead to too complicated a function, as a first step. For simplicity we
choose the fundamental diagram to be circular as an approximation to the ‘proper’
fundamental diagram determined in the preceding section. Although the motivation
for doing so is to make the mathematics more tractable, we should obtain behaviour

qualita:tively similar to that of the complete model. Consequently,
g = asin () (7.98)

and

p=a(l+cos(6)) (7.99)

where a is the radius of the circle with a = £ and 6 is the angle, a function of
position and time. Hence p; = pybs, pr = pgfs, and prz = pabex+tpoo (93)2. Note that
po = —asin () and pgg = —acos (). Finally note that ¢ = 5% = ggf, = —cot ().

Therefore the continuum equation (6.1) becomes
0; — cot (6) 85 = v, + v cot (0) (6;)2, (7.100)

a partial differential equation for the unknown function € (z,t). It is assumed that
f(x,t) is a well behaved smooth function of = and t. It is tempting to think that when
sin(6) is small boundary-layer like behaviour may occur. This is not so, however, as
outlined in subsection 7.5.2.

We now solve this equation by a finite difference scheme. There are a number
of different ways in which the equation can be discretized, depending on which
terms are treated as unknown for the current time-step. Numerous schemes have
been tried, but the one which appears to be most stable is the one in which the
cot (9) terms and the (f;)? term are evaluated at the previous time-level. Upwind
or downwind differencing is chosen depending on the sign of cot(6) at the previous

time-level.
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Observe that at switching, where sin(8) = 0, in effect the time derivative and
the second derivative in z vanish from equatibn (7.100). This leaves, in view of the
smoothness of the function, _

0, (v, +1) =0. (7.101)

Therefore if # is an integer multiple of 7 then we must impose either the condition

6,;=00r0,=~-};.

Which to choose? The former condition, §, = 0, forces
0(z,t) to be maximal in x when sin(f) = 0 and the density is either zero or at the
jamming density, pn,. If 6(z,t) were to be at a maximum at these points then the
density would approach the branch switch but would not actually be able to switch
branches. In order to switch branches §(z,t) must continually increase so that the
density and the flux can ‘circulate’ around the fundamental diagram. Hence 6, =0
is the inappropriate condition to impose and we must enforce 8, = -;{-. To ensure
the latter does not introduce any discontinuities in the gradient, the initial condition
is always chosen to satisfy it. Although this may seem as though there are too many
boundary conditions, the problem is in fact not over-prescribed: see the discussion
in section 7.5.1.

We employ the code to seek solutions up to large times and compare to the
steady state solutions. The steady state may be regarded approximately as the
density profile at the end of the chute. In section 7.5, large time solutions are
sought which have p = pys at the boundaries z; and rgr with p¢|u7m = 0-. This is
in order to ensure that the flux ¢ — vp, = 0, which is the general condition at the
boundaries (the condition we apply is actually a special case of this). If p = pu is
chosen then g = 0 is immediately satisfied and so p, = 0 must also hold true at the
boundaries. Observe that p = 0 could also be chosen to ensure g = 0, but this choice
is not investigated here as consequence of an argument from the inviscid model, see
appendix D. The argument itself may have certain strengths and weaknesses, as
discussed in the appendix, but in any case we do not study the p = 0 boundary
condition in this thesis. Unfortunately, only a small number of solutions could be

found despite a relatively large effort.
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7.5 Steady states and solutions at large times

It is possible to examine the steady states analytically. The continuum equation can
be written as '

Pt + Qz = Vpgz. (7.102)

Since the steady-state solution is being sought, the p; term is now taken to be zero.

Integrating the remaining terms once yields
q="Vvp; —cC1 (7.103)

where ¢; is a constant of integration which must necessarily be zero for the total
flux to be zero, as mentioned below. Recall that in the present specific case g(p) is

circular and so

- |
i/ PM _(,_PM)?
g=+y/5 (p : ) , (7.104)

where ¢ is a circle of radius 2£(= a), centred at 2.

We consider only the case where the density profile is flat when ¢ = 0, to ensure
the flux is zero across the boundaries. If p = pps = 2a then 8 = nr with n an even
integer from equation (7.99). Therefore pg = 0 and thus p, = 0, provided 0, is
finite (since p, = pgfy). The case of 6, being infinite would result in non-zero flux
at the boundaries. We have now from (7.103) that ¢; = 0. In other words, for zero
flux at the boundaries we require ¢ — vp, = 0, since ¢ = 0 also at the boundaries
(so that the density is maximal there) we therefore must necessarily satisfy p; = 0
and hence ¢; = 0. (For non-zero flux at the boundaries refer to subsection 6.5.2
in chapter 6, which deals with steady states for one-way flows away from the chute

walls). Therefore,

2 2 ,
5 M
Vpe = i\/—f- - (p-— %-) . (7.105)

Integrating, we can find that

p=a<1+sin (x _U”")) (7.106)

if the positive root is taken, or

p=a (1 + cos (f-iu-x—l)) (7.107)
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Figure 7.26: In the above figure, the solution is plotted together with the initial
condition. The solution is shown at ¢ = 0.5,1.0,...,4.5,5.0 and all curves appear
to coincide with each other and with the initial condition. The initial condition is

therefore seen to persist for all time, as one might expect.

if the negative root is taken, where zo and x; are constants of integration. The
positive and negative roots correspond respectively to ¢ > 0 and ¢ < 0 and hence
to the two branches of the fundamental diagram. Also p = constant is a solution.
Owing to the fact that ¢ =0 at p = pps and at p = 0 we see that p=ppr and p=0
could also be valid solutions. This is discussed further in subsection 7.5.2.

Steady states are now sought by time-marching, utilizing the finite difference
scheme outlined at the beginning of the chapter. In each example, the viscosity
takes the value v = 1. In the first instance, to test the code, the steady state is
chosen to be the initial condition; it is found to persist for all time, as one might
expect, see figure 7.26. This offers some encouragement about the accuracy of
the numerical scheme. Next, an initial condition is chosen which resembles the
steady state, but is slightly perturbed, or kinked, in two locations either side of
the branch switch. Figure 7.27 shows the initial condition. Figure 7.28 shows the
solution at ¢ = 0.01,0.05,0.1,0.2,0.5 and 1. There is an artificial shift in the origin
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Figure 7.27: The initial condition shown here resembles the steady state except for

being slightly kinked, although smooth. See also figure 7.28.

of each solution so that a proper comparison can be made. The kink is seen to
disappear as time increases and then a steady state seems to appear. The apparent
steady state resembles the sinusoidal steady state found in the analysis (7.106),
(7.107). The solution at t = 0.1 has been found on three grid sizes in order to
investigate the numerical accuracy. Figure 7.29 shows this solution on grids of size
(6x,6t) = (V2 x 0.01,0.000001), (/2 x 0.01,0.000002) and (v/2 x 0.01,0.0000005).
Some slight differences in solution can be seen to the right of the origin, but in
general the agreement is quite close. Hence we can be reasonably confident in the
accuracy of the numerical scheme. Unfortunately, it has not been possible to find
any other steady states of this sort, in spite of a concerted hunt for them. One reason
for this seems to be that a steady state with conserved mass will not evolve unless
the initial condition starts with a precise mass. This is elaborated on immediately
below.

The total mass M is given by

TR
M=/ pdx (7.108)
33
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Figure 7.28: The solution that develops from the initial state of the previous figure
is shown at t = 0.01,0.05,0.1,0.2,0.5 and 1. The kink disappears and a steady state
appears to be reached which resembles the sinusoidal steady state found analytically.

There is an artificial origin shift in each solution to aid ease of comparison.

-l3 -12 -.1 1 2 3 T
Figure 7.29: This figure shows the solution at ¢ = 0.1 on grid sizes of (6z, t) = (V2%
0.01,0.000001), (v  0.01,0.000002) and (v/Z x 0.01,0.0000005). There is generally

good agreement between each solution.
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if there are walls located at z = z, and = zg. For the steady state with p, =0
at the walls we know that k
q = Vpq, (7.109)

from (7.103), and

q___i\/f:ﬂ_. (,,_%"1)2_ (7.110)

It is possible to split the domain into two regions, one region with ¢ < 0 and
p € [Pm,0] on z € [zL,0] and the other with ¢ > 0 and p € [0, pm] on z € [0,zR).
Integrating (7.109) produces

dr = —v (7.111)
I AmW%~@—%f

and
TR 0
/ dm=u/ 2 dp . (7.112)
: o\~ (- %)
This results in o .
2 . 12 2
7 = —p [——sm 1(—— -z )} 7.113
(g, =~ |—sin™ (= (o~ ) N (7.113)
and
2 . (2 P\ \ 17"
I)5” = v | —sin 1(-—— - = )] . 7.114
[z]o [pm o (P 2 ) . ( )

Evaluating the above two expressions yields

zp = —-L (7.115)
Pm
and
2R = L. (7.116)
Pm
Therefore the period of the steady-state is very precise, namely %’”—:’. Hence the mass
is precisely defined as e
M= / e (7.117)
~om
Next consider that
o [*r
5 | Pl a@R) = 45) = Velems = VPelomy . (T118)
L
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from integrating equation (6.1). Now g(zr) = q(zL) = Vpzlyeyy = VPzlpey, =0
because there is no flux across the walls. Therefore '
g [*R
P /zz, pdz = 0. (7.119)
Therefore if the mass in the initial condition is not equal to the steady state mass
M, then a steady state with conserved mass may not be able to evolve - an issue
that remains unresolved. Perhaps this is why so few steady states have been found.
Finding steady states that are significantly different from each other which start
with this precise mass, satisfy the boundary conditions and which also satisfy the
0, = —% condition seems to be a difficult problem. Some other solutions have
been found, but these are seemingly discontinuous solutions of the sort discussed in
subsection 7.5.2 below. Although these may well exist, we seek smooth solutions of
the kind demonstrated in sections 7.2 and 7.3 i.e. those that are smooth through

the branch switch.

7.5.1 Remarks on the boundary conditions

We note that both the gradient and the value of the density are fixed at each wall in
the above cases. The problem at first sight seems over-prescribed because there seem
to be four boundary conditions for a second-order problem. This is not the case,
however. The restriction occurs because we must force 8, = —--,]; whenever 6 = nr
and 0 must take these values at the boundaries for the density to be maximal there.
Consequently, since 8, is finite, p, = 0 also holds at the walls. (The alternative case,
with 6, infinite and p, # 0, leads to non-zero flux at the walls). To demonstrate
that the problem is not over-prescribed we show in the current subsection that a
solution that smoothly marches forward in time does exist.

Let p= pm — (t —t0)f(n) + ... as t — td withn = E;—:f;)—%— Substituting into the
continuum equation with the local form of ¢ ~ £cg(pm — p)‘% (since p is close to

Pm) vields the nonlinear ordinary differential equation

vf" — (i

N3

) ff-Ff=0 (7.120)

e
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for f (n) (this happens to be the same equation as (7.1) studied in section 7.2). This
must be solved subject to A

a

f(0) =0, _ (7.121a)

and

f(0)y=0 (7.121b)

so that p = pys and p; = 0 at the boundaries.
Near the wall, the solution of (7.120) expands in the form

F=fan™ + frn™ + ... (7.122)

for small n with 0 < n < m. Substituting into equation (7.120), and manipulating

a little, produces

vn(n — 1) fun®2 + vm(m — 1) fru™ 2 — (iconlfn 2-1, Qmim comfm m_i_l
‘ 2 i
:Fcoﬂfmfn m-g-1 comfmnzm_ g --fn ~ mf,;mm)
2f2 2 f,?

= fo" = fm™ =0+ ... (7.123)

Let n = 2, to obtain what we might expect to be the most general result,

2
20 fy + vm(m 1) f™ 2 — (i————c"f 2 4 QS s

52 3
y _ o™ 2 _ m
:F———q’f’;‘fz g2y 20m §mn2m Y= fan® = 5 ™
f22 2f22

— o — fa™ =04 .... (7.124)

Therefore, balancing the O(1) terms reveals that

1
2w fy F2c0f7 =0; (7.125)
hence
fo= (V) . (7.126)



The possible remaining balances for m are m = 0,1 or 2. The first two would violate
the ordering chosen earlier, however, and the last would only add to the fo term.

Therefore, if f’ (0) = 0, the above argument implies that we must have the ezact

solution
f= (9”2)2772 (7.127)
of (7.120) and so
P = Pm — (%’-)2332 + (7.128)

Thus the wall-layer here is trivial as it is, in effect, identical to the solution in the
core at small z.

In fact, in the core, we have a regular time expansion where
p = po(z) + tp1(z) + t2pa(z) + ... . (7.129)
The leading order term is prescribed by the wall layer near x = 0 and is, at small z,
b 2
PO = pm — —5T. (7.130)
We also expand the wave-speed as
¢ = Colz) +téy(z) + ... (7.131)

for small x, where ép(z) can be determined from the fundamental diagram. Placing

these expansions in the continuum equation (6.1) gives
p1+ 2tpa + (&0 + té1) (pg + toy) = vpy + vplit + ... . (7.132)

Hence, at leading order,

p1+ Copg = v (7.133)

which can easily be solved to obtain, for small x,

243, ct
p1+ ;"2"001' = —';. (7134)

We found earlier that the wall-layer is trivial, since the solution there is exact

and all terms are O(1). Consequently, to avoid a contradiction, we must satisfy
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P1, P2, - Pn, ... = 0. (Otherwise, at some point in time a balance would be required
between the z2 term and an O(t") term, and a wall layer would have to be intro-
duced). Therefore »

& =vzt, " (7.135)

in order to prevent a non-trivial wall layer.

We recall that ¢ = g%, so &g+ té) = -32% +t§% and hence ¢y = gﬁ%. Asz — 0
the wall is approached. At the wall p = p,,,. The fundamental diagram has infinite
gradient at maximum density. Therefore, as £ — 0, &y — oo. Consequently the
behaviour of ¢y determined in equation (7.135) is entirely acceptable and so a viscous
wall-layer is avoided.

In summary, having p, = 0 enables a solution to develop which does not have
any viscous wall-layers and thus is regular in z, t locally. (In principle a steady
state might evolve at large times). In that sense, the problem appears not to be

over-prescribed.

7.5.2 More remarks on the steady state solution

Observe that p = 0 and p = pps are perfectly valid special solutions to the steady
equation (7.103). There therefore seems to be an entire set of solutions to (7.103)
where (7.106) can be used for any part and either of the special solutions can be
used for any other part. It appears at first that these solutions could then be placed
together, ensuring that the function is continuous, allowing any number of steady
solutions to be ‘stitched together’ in this manner.

Solutions of this sort, however, do not form an acceptable steady state (in the
sense of a steady state being a large-time limit) as the solution would not stay
intact at the matching points if it were marched forward in time. The reason is
as follows. In section 7.2.3 we saw that local to a minimum if a region with local
curvature A\z? say matches with a region uz? say, with x4 # ), then there exists an
intermediate region with z = kt? with k non-zero. (An example is A # 0 and pu = 0,
corresponding to a solution of form (7.106) matching with p = 0). Thus as time

increases to order one values and beyond a t7 spatial growth will occur at the point
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of matching. This can only be avoided if k¥ = 0 for which A = p # 0 necessarily,
eliminating the possibility of the stitching—together of solutions as described above.

The same line of argument applies at a maximum.

7.6 Concluding remarks

In chapters 5, 6 and 7 we have attempted to develop a continuum model for the
flow, including colliding and separating grains.

Chapter 5 in particular deals with the inviscid (bulk) model and we initially found
solutions with discontinuous input, these being cases that yield relatively easily to
analysis. In chapter 6, we attempted to extend the number of solutions to other
cases. To obviate problems associated with the discontinuities present in the model,
we added an artificial viscous dissipation term so that the governing equation is
parabolic. We focused in this chapter solely on problems in which grain movement
is uni-directional so that no branch-switching occurred. Hence we used a finite
difference scheme to obtain numerical solutions that imitate those found in chapter
6. Following this, an asymptotic solution valid at asymptotically small times was
obtained. Some steady state solutions were then presented.

Finally, in the present chapter 7 we extended the work still further to encompass
a two-way flow in which grains can move to and fro. In order to find such solutions,
the fundamental diagram is modified so its curvature is convex outwards at the end-
points. It was determined that such an alteration still allows physically reasonable
descriptions of separating and clashing grains to develop. A general computational
procedure was then employed to find solutions in terms of polar co-ordinates and
the unknown function f(z,t), thus avoiding concerns about the multi-valued fun-
damental diagram since 6(z,t) is single-valued. Again some steady state solutions
were found, as these might correspond to the density profile of grains as they exit
the chute, but it was difficult to find very many such solutions. In fact, a steady
state with conserved mass may not always be able to evolve, an issue that remains

unresolved.
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Chapter 8

Air effects

Air effects in the full chute flow have so far been entirely neglected in both the
computational simulations and the continuum modelling. However, air effects are
potentially of great significance, as we saw for the single grain in chapter 2, and so
they are examined in this chapter.

As discussed throughout the thesis, the ideal situation for Sortex is for a uniform
ordered array of grains to fall down the chute in a manner such that each grain is
aligned with an ejector. Ideally, the grains would be evenly spaced and uniformly
oriented. We wish to determine in the current chapter whether such an array of
grains is stable to the effects of the air flow. If the idealised array is unstable to air
effects then a chute design that would produce a uniform grain distribution must
also tackle problems associated with the unstable aerodynamics. Therefore a study
of the air effects between grains and the air effects on arrays of grains is crucial to
the industrié,l setting.

Some of the specific situations discussed in order to gain insight into possible
behaviour are, for example, air effects between two flat grains, effects between two
grains with curvature included, effects between unbounded arrays of grains and
effects between arrays of grains bounded by chute walls. As we found in chapter 2
that the grain-based Reynolds number is Re, = O(150), i.e. a moderate Reynolds
number not clearly in the low or high regimes, we therefore discuss in the current

chapter both viscous and inviscid effects, as described below.
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First, lubrication effects a.fe considered. These are significant when the separation
between grains is relatively small and may be‘important during collisions, for exam-
ple. We start with a study of the viscous effects between only two grains. It is found
that grains cannot actually touch when viscous effects alone are included (other
physics must be included to describe collisions, such as molecular forces). Next, the
viscous air effects are investigated for an array of grains and the subsequent stability
of the grain array is considered.

Lubrication theory has been seen to be crucial in other similar situations. For ex-
ample, Ishikawa and Pediey [25] examined such effects on micro-organisms known as
‘squirmers’. The orientation of the squirmers changes dramatically as they approach
each other in the limit when viscous effects dominate. An engineering example is
given by Korobkin and Ohkusu [31]. They studied the impact of two circular plates,
one of which is floating on a thin liquid layer. As the plates come together the
air flow is of major importance and air cushion effects perhaps explain some of the
dynamic responses in the system. Smith, Li and Wu [52] have also investigated air
cushioning effects in the gap between an almost inviscid fluid and a solid wall and
once more the important physics is seen to depend predominantly on the lubrication
effects in the air.

Hinch and Leal [20], [33] have examined the rheology of particle suspensions in
Newtonian fluids. Their work relates in particular to effects of Brownian motion,
especially rotary Brownian motion, on the suspensions of spheroids. As Brownian
motion is pertinent only to the dynamics of small particles (when the dynamics of
the fluid at the molecular level cannot be neglected) we anticipate that such effects
are not di.rectly relevant here.

Hinch and Leal have also co-authored research with Russel and Tieffenbruck [49]
on the motion of rods falling vertically near a wall and this is more directly relevant to
the current chapter. They employed slender body theory and a mixture of analysis,
numerics and experiment to study the dynamics of a falling rod at low Reynolds
number. Essentially, they demonstrate that two motions can occur, dependent on

the initial angle of inclination of the rod, one type being a ‘glancing’ motion and
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the other a ‘reversing’ motion. Their research also notes that contact cannot occur
between the rod and the wall when lubrication theory is applied to the case of close
approach. _ 7

Second, inviscid air effects are studied. Initially we examine again the effects
between only two grains. The absence of viscosity modifies the grain dynamics, as
might be expected. This is followed by an investigation of the inviscid effects on an
array of grains without walls. Surprisingly, the dynamics is somewhat similar to the
viscous case.

Recent research on air effects of interest here include those by Andersen, Pesavento
and Wang [3], [4]. They investigate the dynamics of freely falling particles in a quasi-
two-dimensional flow at large Reynolds number. This has application to cards falling
through air. They find that the cards exhibit fluttering or tumbling motions with a
possibly chaotic transition between the two motions. Interestingly they find that a
card falling with its edge downward is always an unstable configuration, whereas a
card falling with its broadside downward is stable.

Other aerodynamic effects could be investigated, such as the motion of the grains
near the walls of the chute. This may have similarities to the study of fluid motions
between cars and the ground by Jones and Smith {27]. They studied the boundary
layer equations in the limit when lubrication theory is valid and also in an inviscid
limit in the presence of a moving wall.

Research on impacting spheres, the hydrodynamics of spheres moving in the pres-
ence of wall and particle-wall collisions and so forth can be found in, for example,
the theoretical studies by Eames et al. [13], Leweke et al. [35] and the experimental
work by Joseph [28] and co-workers and references therein.

Finally, it is pertinent to mention here that other aspects of the aerodynamics in
the food-sorting process have been subject to a number of studies [51], [56], [63].
These include the swirl-flow effects and turbulent boundary layer through the ejector

ducts, and the flow from the ejector nozzle arrays.
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8.1 Viscous air effects between two grains

We first examine the effects due to the air between only two grains when their sepa-
ration is small relative to their length. Initially the grains are simply modelled as two
flat plates. Throughout the rest of this chapter we consider only two-dimensional
grains for simplicity. Following this, a more realistic shape that includes some cur-
vature is studied.

However, the problem is formulated in the same way in both cases, and is illus-
trated in figure 8.1. Suppose there are two grains separated by a small gap. Let the
upper surface of the lower grain be located at y = f and the gap height between
the grains be h = h(z,t) = g(z) + 7(¢). Observe that Writing h(z,t) in this way
restricts the grains to certain types of motion. For example, this does not allow the
orientation of the grains to change. The lower surface of the upper grain is located
at y = f + h. In the gap the force acting on the grains is due to the pressure of the
air, p. Outside of the gap the air is at atmospheric pressure, pg, and for convenience
po is taken to be the zero pressure level. If the lower grain has rﬁass my and the
upper grain a mass my then

. a
ma (f+7) = /apda: (8.1)

and

mlf'"=—/ pdzx | (8.2)

—a

from Newton’s second law, where a dot denotes differentiation with respect to time.
The length of each grain is 2a with one end placed at £ = —a, the other at x = a
and the centre of the grain at x = 0. We further assume that there is no normal

pressure variation within the gap so
— =0. (8.3)

Finally, as we have assumed the gap between grains is relatively small, lubrication

theory is a valid approximation. (The reduced Reynolds number, aRe must be small,
U*Hx

v

where Re =

and a = -ﬁ—‘ represents a slope factor. Note that U* is a typical velocity in the

is the air-flow Reynolds number, based on separation distance,
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Figure 8.1: A schematic diagram showing the formulation of the air effects problem
for two grains. The upper surface of the lower grain is located at y = f, the height of
the gap is h and the pressure in the gap is p. Separation between grains is assumed

to be small so that lubrication theory is valid.

gap, H* is the height of the gap, L* >> H* is the length of a grain and v* is the
viscosity of the air). Of course, in three dimensions the air between two rice gains
that collide in the configuration shown could escape sideways not lengthways, and
the diameter of the rice would be an important length scale, but here we keep to

the two-dimensional model. Thus

(h3p:c)x = vh: (8.4)

(see [44], for example) where « is a constant proportional to the viscosity of the air.

Derivation of Reynolds’ equation

Equation (8.4) is in fact Reynolds’ equation. The derivation of this equation is
sketched out here.

Consider a gap between a grain and a flat wall where the height of the gap is
small relative to the length of the grain. The grain approaches the wall with a
downward velocity of V' and we assume that there is no horizontal motion of the
grain. Furthermore, the wall is stationary. The grain has a typical length of I(= 2a)
and its surface is located at y* = h*(z,t). (An asterisk denotes a dimensional
quantity). The height of the air gap is scaled as [0 with § << 1.

We assume that the pressure and viscous forces balance and that there is no

pressure variation in the vertical direction. Using the Navier-Stokes and continuity
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equations for the air, and noting that conservation of mass suggests uj

u} is the horizontal velocity component of the air, allows us to write
Uz + vy =0,

—Pz + Uyy =0,
and

0=—-py

~ %— , where

(8.5)

(8.6)

(8.7)

after suitable non-dimensionalisation. The boundary conditions state that there is

no slip along the wall and the shear forces in the air match those at the grain’s

surface, i.e.

u=v=0o0ony=0

and

u=0, v="hsony=h(z,t).
Thus it is possible to solve equation (8.6) and obtain
ldp
= ——y(y - h).
53y —h)
Integrating the continuity equation from y = 0 to y = h yields

h(z,t)
/ Ugdy + hy = 0.
0

Writing the integral as

h(z,t) d h{z,t) oh
f U dy = / udy — a ly=h
0

and substituting equation (8.9) for u reveals

e d [1dph®
/0 “’y“"ﬂ[zdzﬁ]

Finally, substituting this into equation (8.10), results in

d [dp 3| _
da:[ h]—’yht

where 7 is a constant. This is Reynolds’ equation for a lubricating layer.
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(8.12)
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Note that in the case of a moving wall the boundary conditions must be modified
to ’

u=-U, v=00ny=0 » (8.14a)

and

u=0,v=hony=h (8.14b)

where U is the speed of the (leftward) moving wall. It is assumed that U does not
vary along the length of the wall.
Consequently, the solution to equation (8.6) is now

_ldp Uy

After performing the same manipulations as above, we find that an extra term is
generated in Reynolds’ equation:

U
(h®ps)z = Yhe — lz‘hx- (8.16)

8.1.1 Grains modelled as two flat plates

As mentioned above, we first simply model the grains as flat plates. This reduces
h{z,t) to 7(t) only, with 7(0) = k where k is a positive constant. (If, for a flat plate,
we wrote h(z,t) = g(z) + 7(t), g(z) would add a constant only). That is, k is the

initial gap height. Consequently the equation from lubrication theory, (8.4), is now
T3pgz = V. (8.17)
Integrating, and assuming the pressure is symmetric about z = 0, yields

Tyt _
p= / ;gxd:c. (8.18)

-a

Eliminating f from equations (8.1) and (8.2) produces

- 1 1 a
_ (.m_l + E;) / pia. (8.19)

Substituting equation (8.18) into equation (8.19) results in an equation for the height

a X J
= (_1. + _1_) / [ / ng] dz. (8.20)
my m2) J g(J-aT
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Performing each integration, we obtain an ordinary differential equation for 7:

BF+ A =0 (8.21)
where
23 (1 1
A= —— | —+—]1. 8.22
3 (ml + mz) 7 (8.22)

Although it is possible to solve equation (8.21) to find 7(¢), an analysis of the phase
plane (7, 7) provides more easily, perhaps, insight into the possible dynamics. The

boundary conditions for equation (8.21) are
T(0) =k (8.23a)

7(0) =« (8.23b)
" where o is the rate of change of the gap height at ¢t = 0 and is a (positive or negafive)
constant.
Phase plane analysis

Integrating equation (8.21) once with respect to time gives

) A
T= DY) +A (8.24)

where A is a constant of integration. From (8.23a) and (8.23b) it is easy to find that

A
A=a- Eﬁ (825)
SO
F= -’é\- (72 -k?) +a (8.26)

Note that physically we require 7 > 0. » Also observe that 7+ = 0 when 7 =
\/’X(T—%E’ZT Consequently trajectories that cross the 7 axis exist only when 2k%a <
A, otherwise T is always positive.

It is now possible to determine the phase plane. Figure 8.2 shows a sketch of the
phase plane. The dynamics depend upon the initial conditions, but from the phase

plane we see that qualitatively there are only four different types of behaviour.

177



\\&,

Figure 8.2: A sketch of the phase plane shows the different dynamical behaviours as

described in the text. The circles highlight the equilibrium points and the arrows
show the direction of movement along each trajectory. Grains can separate to a
fixed distance, collapse to a fixed distance or separate indefinitely depending on the

initial condition.
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First, if @ = 0 then the initial condition will be located exactly at one of the
equilibrium points. Therefore the grains will remain stationary for all time.

Second, if the initial condition has o > 0, then one of two events can occur. If
2k?c < X then the grains will move apart to a constant separation. .This corresponds
to moving along a trajectory in the phase plane to an equilibrium point. Since %j—_ is
always negative (which can be seen from equation (8.26) with 7 > 0) the value of 7
at an equilibrium point will always be greater than the initial value of 7 (provided «
is positive). Alternatively, if the trajectory has no root (i.e. if 2k?a > A) and o > 0
then the grains will continue to separate for all time. This is sensible: if the initial
value of the separation speed is sufficiently large the grains will continue to separate.
This can be justified by examining equation (8.26); as 7 — 00, 7 — a — 2—;0\7 which is
positive since 2k2c > A. Viz. there exists an asymptote for 7 at large times, namely
.

Finally, if the initial condition has o < 0 then 2k%a < ) is always satisfied and
the trajectories will always have a root. Owing to the fact that 5’; is. always negative
the value of 7 at an equilibrium point (viz. at the root) will be less than the initial
value of 7 if &« < 0. Therefore in this case grains will move toward each other but
never meet. They will come to rest at a finite positive separation. This is because
viscous forces will dominate at small gap heights and the pressure response will not -
allow the grains to touch. This is the expected response - see for example [52].

Thus we have determined all the different dynamic behaviours for two grains when
they are modelled as flat plates. If « is sufficiently large and positive at ¢+ = 0 then
the grains will continually separate. If o is small and positive the grains will separate
to a constant distance. If « is initially negative then the grains will move toward
each other, but they can never touch.

At first sight it may seem rather worrying that the inclusion of air effects does
not allow grain-grain impacts, especially in light of all the prior. computational and
continuum modelling. However, other workers [44] have found that if appropriate

physics is included when grain separation is small enough, for example molecular

. forces such as the Van der Waals force, grain impacts can occur.
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Figure 8.3: Schematic diagram showing the initial gap height between two grains

when curvature is included.

8.1.2 Viscous air effects for more realistic grain shapes

The previous analysis was done with the rather crude assumption that each grain
is a flat plate. We now wish to investigate whether more realistic shapes, especially
those with non-zero curvature, have any important effect on the dynamics.
We now have
h(z,t) = g(z) + 7(t) (8.27)

with g(x) # 0. To introduce some curvature into the model, we choose g(z) = z?

as a representative initial profile of the gap height. The equation for the pressure

(8.18) now becomes

foatE
= dz. 8.28
P ‘/—a ((] +7 )3 ( )
The initial conditions on 7(t) are
T(0) =k (8.29a)
and
7(0) = o (8.29b)

where k > 0 so that initial gap height is as depicted in figure 8.3 and the initial rate
of change of the gap height is o, which can be positive or negative.

Evaluating

p:/ -(—’g—tﬂj—gdxl (830)
—a(Zi+T

we find that the pressure is

_ 7 11
P="q ((aZ + 7-2)2 (22 + 7_)2) . (8.31)

180



Hence, an ordinary differential equation for 7 is

.. my + mg e N1 1 1
Tz(___...)/ .4_< N 2)(1::: (8.32)
mims -a (a®+72)° (22+7)°/
The integral on the right hand side can be written as
o 1 1 z?
- - . 8.33
/_., ((a2 +7)? [r(r +a?)  T(r+ w2)2D (&3

The first two terms can be integrated immediately, and the third is evaluated by

parts with 4 = z and v/ = F—T-%m Consequently,

o (Mtme)(_afa o (e
T—( mims )(4(a2+7-)2 473 tan (\/;’_-)> (8.34)

Equation (8.34) is an ordinary differential equation for 7(t) subject to initial

conditions (8.29a) and (8.29b). However, rather than solving explicitly for 7(t), we
choose to examine the dynamics by phase plane methods.

First, integrating (8.34) yields
;= my + mg _ ya _
T\ myma 4(a2 + )

Hin(er2) - [3)) 0 0

where we have used the standard formula for the integral of tan~!z as given by

Abramawitz and Stegun [1]. From equations (8.29a) and (8.29b) C is easily deter-

mined to be
_ o (mtma\ [ _ya v @\, v . e
o=« (mm)( T2+ F) 4a1“(1+k)+2¢,;m (\/E))

Some typical curves in the phase plane are shown in figure 8.4. Note that the

T < 0 region is unphysical in this section, since this corresponds to overlapping
grains. Essentially, there are two types of curve: those which cross the 7 axis and
those which do not.

On a curve of the former type three eventualities can occur.

1. If 7(0) = O then the grains remain stationary.
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Figure 8.4: The phase plane is shown for the case of curved grains. Note that the
7 < 0 region is unphysical. The curves are much the same as the case for flat grains,
and so apparently there are no extra effects owing to the curvature. There are two
main types of motion; curves (1) that do not cross the 7 axis, and (2) curves that

do.

2. If 7(0) = a < 0 then the particle separation will decrease until the particles

are at a constant separation.

3. If 7(0) = a > 0 then the particle separation increases until the particles are at

a constant separation.

On curves which do not cross the T axis, there is only one possible type of motion.
In this case 7(0) = « > 0. This means that the grains will separate forever, and at
infinity will move apart at a constant velocity. This can be justified by noting, from
equation (8.34), that 7+ — C as 7 — oo.

The dynamics, then, are seen to be much the same as for the case of flat grains.
There is no apparent extra behaviour owing to the curvature of the grains. Perhaps
this is to be expected, since in the neighbourhood of the points where grains would

touch the grains are locally flat. In none of the cases do the grains touch.
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Figure 8.5: A schematic diagram showing a section of an array of grains. The upper

=f“

surface of the nt? grain is located at y = f,,, the height of the n** gap is h, and the
pressure in the gap is p,. Separation between grains is assumed to be small so that

lubrication theory is valid.
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8.2 Viscous air effects for an array of N grains

For an array of N grains the problem formulation is much the same as the two-grains
case and is depicted in figure 8.5. Once more, the force on each grain balances with
the pressure difference across it. The n** grain with the position of its upper surface
given by y = fn(x,t), the pressure on its upper surface given by p,(z,t) and the
pressure on its lower surface given by p,_; thus satisfy
. a

mfn = . (=Pn + Pr-1) dz - (837)
from Newton’s second law. Here m is the mass of each grain, 2a is the length of
each grain and z is the distance along the length of each grain. A dot denotes

differentiation with respect to time, ¢t. If h, is the height of the gap between each

grain, and is a function of x and ¢, then the shape of each grain is determined by

frt1 = fa— hn = s(z) (8.38)

where s(z) is some representative function for the shape. However, in this section
we restrict our study to the case of flat grains so that h, = h,(t) only. Finally,
assuming the gap between each grain is small, lubrication theory holds true there.
Hence,

h?tp’n:cw = 7hn (8.39)

where v is a constant that is proportional to the viscosity of the air (see [44]). For
the next pair of grains along in the array, equation (8.37) becomes
. a
Mmfot1 = Y (=Pn+1 + pn) dz. (8.40)
Using equation (8.38) (with s(z) effectively equal to zero) we see that .this can be
written as

a
m (f,. + hn) = [ (=Pnt1+pn)dr. (8.41)
—-a
Substituting (8.37) into the above equation yields
. 1 [e
hn = E ('pn+1 + 2p, — pn—l) dz. (8.42)

-a
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Therefore equations (8.39) and (8.42) yield a set of N coupled equations for the
pressure in each gap, pn, and the height of each gap, hx.

From here, we find a symmetric steady solution and then linearly perturb about
that solution. In this way, we may gain a useful insight into the physics of the
problem, particularly about the physics of stability.

To find the symmetric solution, fix f,=0 and choose py = p2 = ... = Pp = ...pN
so that all the pressures are equal. Thus h, = 0 from equations (8.38) and (8.40).
Consequently, h, = k, where k is a constant. Therefore the equation from lubrication
theory reduces to

A Prgsz = 0. (8.43)

e[ (8)

where A is a constant of integration. Therefore,

Hence

A

and if p,, is symmetric about x = 0 (the centre of each grain) then A = 0. So p, is
then also a constant. This solution is denoted as p, = p, and hy, = hn = k.

To perturb about this solution, let
Pn = Pn + €Pp(z,t) + ... (8.46a)

and

h=h,+eHp(t) + ... (8.46b)

where € << 1 measures the amplitude of the small perturbations.

Substitution into (8.39) produces
(fzn + eHn)s (Pn + €Pn)y, = evH,, + higher order terms. (8.47)

At leading order we find

h3p,.. =0 (8.48)
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for which we know the solution already. Then at O(e)
(3E§Hnﬁnrz + E?zpnzz) = ')'Hn‘ (8.49)

A little manipulation leads to

X
1/ . I |
P [ (’yHn:v ~ 3h2 Hofn, + cl) dz (8.50)

where C](t) is a function of ¢ only. If the perturbed pressure is also symmetric about
z =0 then C; = 0.
Substituting the expressions (8.46a) and (8.46b) for the perturbed pressure and
gap height into equation (8.42) results in
= .. 1 [
hpn +€eH, = m/. (—Pn+1 — €Ppy1 + 2P + 2€Py, — Pn—1 — €Pp_1)dz.  (8.51)
So at O(e)

. 1 i
H, = E (—Pn+1 + 2P, — Pn—l) dz. (8'52)

—a

Thus equations (8.50) and (8.52) yield a set of N coupled but linear equations for
the perturbed pressure in each gap, P,, and the perturbation to the height of each
gap, Hp.

We now seek solutions of the form
H, = Hpe® (8.53)

and

P, = Be® (8.54)

with the constant q complex in general, H, constant and P, = P,(z).
Placing these into equation (8.50) yields
b et = [ L (nof.ePs - 302 . e®5. ) dz
P@et = [ = (vaFne®z — 3R2 Hoe®py, ) da. (8.55)
—a n
Substituting for the flat plate solution, with both the pressure and the perturbed

pressure symmetric about the origin, results in

z? - a?)

Bo(z) = .Z_giIn ( - (8.56)
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(after performing the integration).
Substituting the forms of P, and H, into equation (8.52) and integrating reveals
2 7 1 [ 5 3 &
Pla== | (~Prosr(@) +2Pa(0) - Pos(2)) do. (857)
—-a

Hence, using (8.56) and integrating yields

. 2a3~q
2

H,=—
THn = "3003

(—ﬂnH +2H, - 1?1,,_1) . (8.58)
Thus the H,, are governed by the equation
¢*H, =Tq (ﬁn+1 ~2H,+H -1) (8.59)

where I' = '3?—:5% which is a positive constant.

As an aside, we note that equation (8.56) is roughly P, x —H, (Observe z €
(—a,a), hence the minus sign). Also we observe that g°H,, o H,. Furthermore, the
right-hand-side of equation (8.57) is reminiscent of a discretized second derivative.
Consequently, equation (8.57) can loosely be thought of as an x %%ﬂ;. It is well-
known that the heat equation is stable to perturbations of the form P o« e (if
P, = DPy,). Thus intuitively we expect the gap height and pressure to be stable
to spatially oscillatory perturbations. Furthermore, this strongly hints at a possible
numerical scheme for determining the pressure in each gap - see subsection 8.2.1.

To allow us to investigate the stability of some simple perturbations, we choose

to write

H, =¢eM (8.60)
and

P, = &(z)e? . (8.61)
with A complex in general and ¢ independent of n. Thus equation (8.56) becomes

ge/\n - l‘!ge)\n ($2 — (12)
k3

. (8.62)

and (8.59) becomes
q2ce)\n =TqC (CA(n+1) _ 26"" + ez\(n-l)) (8.63)
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i.e. unforced modes exist if

P (e)‘ —24 e"\) (8.64)
which is
¢? = 4T'gsinh? (%) . (8.65)
Taking here the non-trivial solution only implies that
YA
q = 4T'sinh 5 (8.66)
Therefore
H, = Huexp <4Fsinh2 (%) t) (8.67)
for some A.

If ) is real then the perturbation will always grow since 4I'sinh? (3) ¢ > 0 for all
time. The case of A being real, however, corresponds to a shift in position in each
grain, since H, = e*. The gap between each grain will be consecutively larger or
smaller as n increases, depending on the sign of A\, and grows without bound as n
increases. |

On the other hand, if A is purely imaginary, put A = iA. Then

H, = H.exp (4I‘smh2 ( )\) t) (8.68)
We recall that '
sinh? (%) = —sin? (%) (8.69)
therefore
H, = Hpexp ( —4Tsin? ( ) ) (8.70)

Thus the perturbation now decays since —4I'sin? (§)t < 0 for all t. Observe that
imaginary A corresponds to a spatially oscillatory perturbation with A akin to a
wavenumber (since in this case H, = eA"). This is in full agreement with our
intuitive expectations described above.

Similarly note that the perturbed pressure is
P, = P,exp (41"sinh2 (3) t) (8.71)
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or
P, = P,exp (—4Fsinh2 (-/23) t) (8.72)

depending on whether A€ Ror A € C.

8.2.1 Computing an example: an array of ten grains

In the previous section it was observed that a suitable numerical scheme could be
used to find the perturbed pressures in each gap based the right hand side of equation
(8.57) being reminiscent of a second derivative. We elaborate on this here.

We reiterate that equation (8.56) is roughly P, o< —H, and ¢*H, o« H,. Thus
equation (8.57) can be thought of as

. 1 [

—Q
If the above equation is discretized so that P represents the pressure in the nt* gap

at the i*" time then

Pi+l - PT"L 2a i i g
o —n = 2 (P, — 2P+ PLy) (8.74)

where 6t is a small increment in time.

Hence, given an initial condition for the pressure perturbation, it is easy to calcu-
late the size of the perturbation in each gap a small time later. Thus it is possible
to compute the perturbed pressures as a function of time. Indeed we do so, and the
results are presented below.

The height perturbations are also calculated alongside the pressure. Recall that

B, « —H,. Hence we calculate H, in discretized form as
H*' = H: — 5tP: ' (8.75)

and an initial condition for the height perturbations is chosen arbitrarily.

A simple case is examined first in which the perturbation to the pressure alternates
between two constants: in the first gap the pressure perturbation is P,(0) = 1, in
the second gap P(0) = 3, in the third P3(0) = 1 and so on. In figure 8.6, which

shows the temporal evolution, we see that the perturbed pressures settle to positive
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Figure 8.6: The pressure perturbations in each gap for a simple arbitrary initial
condition in which the pressures are initially perturbed by alternate constants, P =
1 and P = 3. The perturbations settle to positive constant values after ¢ « 5.
The curves are labelled according to which gap the solution corresponds to. At
sufficiently large ¢ the pressures are seen to be distributed linearly in n: that result
is independent of the initial condition (according to the end of this section and also

another arbitrary case in figures 8.8, 8.9).

constant values after # « 5. This corresponds to all grains separating with a constant
speed, as described below.

The height perturbations for this pressure perturbation are shown in figure 8.7.
The initial condition for the height perturbation is Hi(0) = 1, 772(0) = 3, 7/3(0) = 1
and so on so that the gap height also alternates between two constants. At increased
times the perturbations appear to grow linearly in time.

In each figure the curves are labelled according to which gap the solution corre-
sponds to. In every case the pressures and gap heights at large times appear to be
distributed linearly in n. This is commented on at the end of this section.

In the second example the pressure is perturbed by a small positive random value.
Once again the perturbations settle to constant values, in this case at around ¢ « 15,
and the gap heights appear to grow linearly, see figures 8.8 and 8.9.

Finally, here, in figure 8.10, the pressure is perturbed alternately between P = *1

in each gap. Again the pressure perturbations settle to constant values after 5
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Figure 8.7: The height perturbations of each gap corresponding to the simple initial
condition of figure 8.6 in which the pressures are perturbed by alternate constants,
P = 1and P = 3. The perturbations appear to grow linearly in time. The curves are
labelled with the number, n, corresponding to the gap that the particular solution

corresponds to. The heights are also seen to be distributed linearly in n.

_—~

1 5 10 15 20 ¢l

Figure 8.8: In this second example the pressure is perturbed by a small positive
random value. Once again the perturbations settle to constant values, in this case

at around 7 « 15.
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Figure 8.9: The height perturbations of each gap corresponding to the simple initial
condition of figure 8.8 in which the pressures are perturbed by random amounts.

Again, the perturbations appear to grow linearly in time.

and the perturbed gap heights appear to grow linearly with time, see figure 8.11.

Thus in each example we have seen that the pressure perturbations do not grow
or decay exponentially, but settle to constant values after a finite time. Hence the
flow disturbances do not grow exponentially nor do they stabilize to zero pressures.
Similarly, the height disturbances in each gap neither grow exponentially nor de-
cay. Another behaviour is evident, in which the pressures asymptote to non-zero
constants and the heights grow algebraically with time. This can be explained as
follows.

As motivated by the computational results above, we examine the possibility that

Hn{t) —ant as t —»00. On substitution into (8.50) we obtain

(8.76)

after recalling that pnx = Ci = 0 for the symmetric case. Therefore each Pn asymp-
totes to a constant at any given point x E [—a, a] as t —oo0.

Thus the algebraic growth of H(t) and the asymptotic behaviour of each Pn seen in
the computations above can be reconciled with the analysis. This algebraic growth
of H (¢t) will dominate over the neutrally stable normal modes behaviour previously
described. Hence the linearisation will break down as |Hl ~ e-1 and some other

behaviour will be subsequently observed.
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Figure 8.10: In the final example the pressure is perturbed alternately by +1. Once

more the perturbations settle to constant values, in this case at around ¢ « 5.

20

-20

Figure 8.11: The height perturbations of each gap corresponding to the simple initial
condition in which the pressures are perturbed by alternate constants, P = = 1. As

in the above cases, the perturbations seem to grow linearly in time.
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We remark here that if linear growth of H(t) occurs then, also,

must be satisfied, as seen from equation (8.52). That is,

0 = Jon+1 2vay, | Yop—1

3 T T3 n3
h‘n+1 h’n hn—l

(8.78)

Hence, if all h,’s are identical then all a,’s are identical or each a, is the average
of its neighbours. Therefore distributions of P;(n) and of H;(n) that are linear in i
are also acceptable solutions, and it is these which are observed as time increases in

the computations above.

8.3 Inviscid air effects

Having examined viscous air effects, inviscid effects are now investigated. In the
first instance, we restrict ourselves to the case of inviscid effects between only two
grains. A

The governing equations are determined as follows (see Smith, Li and Wu for
some related details [52]). Consider a body falling toward a surface with downwards
velocity V. Its lower surface is located at y = h*(z*,t*), where an asterisk denotes a
dimensional quantity. Velocities are conserved at the interface between the air and

the body’s surface, hence
oh* SOh

% +u D" v. (8.79)
The Navier-Stokes equation for the air, in the horizontal, is
ou* . ou* LOu'\  Op

p2(6t* +u 5:;;—}—'0 6y*> = "5 | (8.80)

where po is the density of the air, since viscous forces essentially vanish. In the
vertical g% = 0. Finally, the continuity equation is
ou*  Ov*
_—t == 0. 8.81
ox* = Oy* (8.81)
Also note that g is the acceleration due to gravity, p; and u; are respectively the

density and viscosity of the falling body, u2 is the viscosity of the air. The typical
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horizontal length scale of the falling body is [, and the gap between the falling body
and the surface is 6/ with § << 1, so the gap is small relative to the length of the
grain. »

We observe that, from the continuity equation, the typical horizontal velocities in
the air scale as u ~ 'o‘; Therefore v* can be non-dimensionalised as v* = -”:%i‘-/-.
Crucially, v* ~ uz. The other quantities can be non-dimensionalised as ¢* = %t,
z* =lz, u* = ¥, y* = I6h and h* = [?5h.

Thus the kinematic condition in non-dimensional form is
hy + (uh)z = 0. (8.82)

If we further assume that V' = constant and v = u(z,t), and scale the pressure as

p* = pzif,;p then the Navier-Stokes equation becomes
Up + Uly = —Py. (8.83)

If we assume that the grains are flat then A = h(t) only and equation (8.82) is

now

Now let u = 2U(t) so equation (8.83) is
zU + zU? = —py, (8.85)
where a dot denotes differentiation with respect to ¢, and equation (8.84) is
h+Uh=0. (8.86)

Therefore

S

U=-— (8.87)

By symmetry, and from typical pressure responses seen in these types of fluid

problems, we might expect the pressure response to be parabolic:

p=p+z*P(t) (8.88)
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where p is a constant. Therefore equation (8.85) is
U+U?=-2P. (8.89)

Substituting equation (8.87) produces

" SN\ 2
B [k
P=or- (E) . (8.90)

Consider that at = a, i.e. at the end of the grains, the air is at atmospheric

pressure. Therefore, from equation (8.88), we obtain
7= —-aP(t). (8.91)

Hence,

/a pdz = /a (2% — a®)P(t)dz = —Cy P(t) (8.92)

-a
. oy 3
where C, is a positive constant, namely C; = ig——.
Newton’s second law is

a

mh = pdz, (8.93)

—a

since it is assumed that the only force is due to the air pressure. Hence
mh = C1P(t). (8.94)
On substitution into (8.90) we discover that

" .\ 2
mh = C, [2—’;— - (%) ] , (8.95)

which is an ordinary differential equation for h(t).

Putting b = G(h) yields h = G%%:. This reduces (8.95) to a first order o.d.e. for
G(h): \
Ci1G\ dG G

1 ig . 261
G dh ~ h(2hm+ )

Rearranging yields
(8.97)
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Integrating, via partial fractions, produces

AR2
¢=—2"2 (8.98)
(h+ %) |

2m

ie.
h= ——4-”13-—2. (8.99)
(h+ £2)
Although it is possible to solve equation (8.99) to find ¢(h), we prefer to deduce
the dynamics by a phase plane analysis. First note that
_ h(0) (h(0) + £2)°

A= hO? (8.100)

so A > 0 if 4(0) > 0 and vice versa. Next, observe that if h << % then h ~ A2,
Conversely, if h >> 2%"; then A ~ A. At h =0, h = 0 and h is symmetric about
h = 0. Finally, we draw attention to the fact that A < 0 is unphysical, since this
corresponds to overlapping grains.

Therefore, the phase plane is as sketched in figure 8.12. The arrows indicate the

direction of motion with increasing time. There are three possible behaviours:
1. Trivially, if A = 0 then the grains do not separate or coalesce,

2. If A > 0 then the grains separate for all time, asymptotically at a constant

speed,

3. If A < 0 then the grains approach each other and touch at a finite time.

8.4 Inviscid air effects on many grains

The inviscid air effects on an array of many grains are now investigated. The problem
is formulated in a way similar to that in section 8.2, and figure 8.5 is again a suitable
schematic diagram. The equations in each air gap are now as follows: the inviscid

horizontal momentum equation from the Navier-Stokes equation,

Ouy, Oun, 3 Opn

'—aT -+ un—5; = —a—;, (8.101)
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Figure 8.12: A sketch of the phase plane for two grains acting under inviscid air
effects. The arrows indicate the direction of motion with increasing time. There are

three possible types of motion, as described in the text.

the kinematic condition,

Ohy, o}
¢ T 5g Wntha) =0; (8.102)
Newton’s second law,
a
Mmfn= [ (Pn-1— Pn)dz; (8.103)

—Q

and a function governing the shape of each grain,
fn(z,t) = fao1(z,t) + hn1(z, t) + s(z). (8.104)

We note again that the normal pressure satisfies gg = 0.

The grains are assumed to be flat so that h,, = hy(t) only. (If we wrote h(z,t) =
g(z) + h(t), g(z) would add a constant only). Thus the kinematic equation can be

simplified to
Ouy,
Br

We further assume that u = zU (t), this being a way to examine some simple solu-

hp + hp—== = 0. : (8.105)

tions for which the equations are now separable. Therefore, the simplified Navier-

Stokes equation (8.101) can be written as

2U, + 2U2 = -—%’i—" (8.106)
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and the kinematic equation produces

Un - . (8~107)

. . 2 . 2
_hn hn hn\ _  Opn
x [ I + (hn) ‘| + (H) = "B (8.108)

If the pressure response is also assumed to be parabolic then

Hence we arrive at

Pn = Pn + T2 P, (t), (8.109)
where P, is a constant. Hence
Opn _
and therefore (8.108) is
. N
hp hn
- — | = —=PF,(1). : 1
A, + (hn) P, (t) (8.111)
Since the pressure is atmospheric at = +a we find f, = —a%P,(t). Consequently
Pn = (2% — a?)P,(t). Therefore
a
(p'n—l — pn)dz = CIPn—-l(t) - CIPn(t) (8'112)

—a

where once again C, is a positive constant and C; = 4—‘53. This yields
Mfpn = CrPn_1(t) — C1Pyo(t). (8.113)
From equation (8.104) we obtain

fn-{-l = fn“l'ﬁn | (8.114)

and from (8.103)
.. a
Mfpy1 = / (Pn — Pnt1)dz. (8.115)
-a
Therefore,
a
mho = [ (=as + 20 = pasr)da, (8.116)
—a ,
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after substituting for (8.103). Ultimately, this yields

b = —Ci [Paca(t) = 2Py() + Prys(8)]. (8117)

Equations (8.111) and (8.117) are two coupled ordinary differential equations for
hn(t) and P,(t). Equation (8.111) is nonlinear. It is desirable to investigate the
stability of the array. In order to do this, we will utilize standard linear stability
analysis and the method of normal modes.

We shall denote the basic solutions (which are determined shortly) to this problem

as P and h. Perturbations

Po(t) = Bo(t) + eBy(t), €<<1, By(t) = 0(1) (8.118)
and |
hn(t) = hn(t) + €hn(t), € << 1, hn(t) = O(1) (8.119)

are made about these solutions.
Substituting the perturbed pressure and height into equation (8.111) and per-

forming the appropriate expansions yields

n

2h,, f h2

n

=-B, —eB, + O(e%). (8.120)

At leading order it is found, as we may expect, that

° 2N 2
h hr -

2] = —P,, (8.121)
2hn, hr

which is the equation for the basic flow.

Then, at O(¢) we see

hoho b ios i -
_n_z’_l_zt_ + 2hyhyphy — 2h2h, = —R3P,. (8.122)

2
_hné.‘. +
Similarly, at the same order, we find from equation (8.117) that

mhy, = —C, (Pn_l _2B, + 13,,+1) . (8.123)
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The basic solutions P, and Bn will be determined later. For the moment the

general case is adhered to and normal modes of the form

Ba(t) = e®P, (8.124a)
and

Fin(t) = e%hy, (8.124b)

are sought. In general, ¢ is complex and P, and h,, are constants.

Equation (8.122) is thus

~ 272 - ‘ PR : aa 3
i (—121‘— + Lotn | oghahn mz) = -h3F, (8.125)

and equation (8.123) is

~ -~

mq2l:zn = - (Pn—l - 2P, + 1:5"_'_1) . (8.126)

Now we substitute for the basic flow solution. Observe that if h, = k, where k
is an arbitrary constant then equations (8.111) and (8.117) are satisfied provided
P, = 0. Therefore fzn = k and ﬁn = ( is an acceptable solution for the basic flow.

Consequently equation (8.125) is

z 252 z
b (—g—zl—c-) = —k3B,. (8.127)

Now we seek solutions of the form h, = (e*" and P, = £ in order to investigate

basic motions of the grains. Equation (8.126) is now

mq*¢ = —Ci€sinh? (%) (8.128)

and equation (8.125) is further reduced to

2.2
¢ (__‘1 2’“ ) = —k3¢. (8.129)
It is therefore possible to determine that
2
% - —;’— (8.130)



and eliminating both ¢ and ¢ from (8.128) produces a quadratic equation for g:

mg® = %1-]3—2sinh2 (-;—) . (8.131)

Rather surprisingly, the only solution (apart from a special case considered below)
is ¢ = 0. As a consequence, the normal mode analysis fails and the perturbations
seem to neither grow nor decay.

Consider this point a little further. After substituting for the basic flow solution,

equation (8.122) can be written as

hn = 2kP,. (8.132)

On substitution into equation (8.123) this yields

2%mB, = -C, (Pn_l 2P, + Pm) (8.133)
i.e.

i o . R

P, = —'(-'m (Pn-l + Pn+1) . (8134)

The linearisation allows  to be eliminated from (8.123) and we find that each P is
a weighted average of the pressure in the neighbouring gaps. On consideration, this
is consistent with ¢ = 0. If ¢ = 0 then Pn = 1§m where Ign is an order one constant.
Thus 15,1 could correspond to the right hand side of (8.134).

Observe that ¢ = 0 also implies £ = 0 through equation (8.130) (leaving ¢ unde-
fined). Hence P, = Fz’n = 0 for all n. Therefore we find 71,, =0, so

hn = At + B, (8.135)

where A and B are constants of integration.

Therefore there is no exponential growth or decay of the gap height between
grains. There is, rather, an algebraic growth in the gap height similar to that found
for the viscous problem without walls. Physically this relates to a ‘drifting’ of the
grains over time. This drifting would occur for finite times up to t ~ ™!, after

which some unknown behaviour would occur.
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As an aside we consider the special case of non-zero q. In this instance, we find

from equation (8.131) that the wavenumber A is precisely defined as

A =sinh™! ([-2%] %) . (8.136)

Hence we obtain

ol
P.(t) = texp {Sinh'l ( % 2) n+ qt} (8.137)
and o
hin(t) = Cexp {sinh’l ( fn—k 2) n+ qt} (8.138)
for arbitrary ¢ € C with k, m € R.
If we write ¢ = ¢ + iy we find
inh~ (2812
B(t) = £etes ™ (1% )e"”. (8.139)
Similarly, ;
) " inh- (213
fn(t) = Cete () o (8.140)

We observe, therefore, that for the g # 0 case there appears to be three eventualities,

as follows.

1.If ¢ = 0 and ¥ # O then h,(t) and P,(t) are purely oscillatory and the

amplitude of the oscillations increases with n.

2. If ¢ # 0 and ¥ = O then hy(t) and B,(t) grow exponentially with increasing

time. The growth is more rapid for increased n.

3. If ¢ # 0 and 9 # O then h,(t) and P,(t) are again oscillatory, but the oscilla-

tions blow up as time increases. The blow up is larger for increased n.

These behaviours are different from any seen in the viscous case and are peculiar to

the inviscid case.
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8.5 Summary

In this chapter we have investigated some of the air effects acting upon the grains.

First, viscous effects between two flat grains were examined. It was found that
the grains would be unable to collide owing to lubrication effects.

Second, viscous effects were again examined but this time some representative cur-
vature of the grains was included. The qualitative behaviour remained unchanged.
This can be understood by recalling that locally to a point of impact the grains
would be flat.

Third, the viscous effects in an array of N grains were investigated in the absence
of walls. A normal modes approach suggested that the array could be stable to
oscillatory perturbations. However, a computation demonstrated that there is a
solution that has linear growth in the perturbed height, with the perturbed pressure
tending to a constant. This was found to be compatible with the analysis. The
linear growth will dominate over the normal modes behaviour until a finite time of
order e}, after which some other unknown behaviour would come into play.

Inviscid effects were then researched. Initially, we returned to the case of only two
flat plates. A phase plane analysis revealed that two non-trivial behaviours exist:
either the grains separate for all time, asymptotically at a constant speed, or the
grains coalesce after a finite time.

Finally, inviscid effects between an array of grains in the absence of walls were
studied. Similar behaviour to the viscous case was seen to occur. That is to say,
there was a linear growth in the perturbed gap height with equal pressures in each
gap. This corresponded to a drifting of the grains for a finite time (t = O(e™ 1)),
after which some other, as yet undetermined, behaviour would dominate the flow.
In an aside we briefly examined a special case with behaviour that was different to
the viscous case.

Some questions of interest that remain unanswered are as follows. First, for
the viscous analysis when walls are present, it would be satisfying to determine

analytically the value of a for which the air-grain flow regains stability. Second,
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in the examples in which we demonstrated that the grains ‘drift’ up to t = O(e™1)
the large time behaviour is undetermined. We do not know if these motions will
lead ultimately to instabilities or not. Finally, only certain sorts of grain motions
have been allowed in the formulation of the problems in this chapter. It would be

of interest, for example, to research how changes in grain orientation would affect

the stability.
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Chapter 9

Concluding remarks

9.1 Overview

In this thesis we have developed a potential mathematical model for a chute flow of
grains. This was motivated by a particular problem from the food-sorting industry
(Sortex Ltd). As there is no existing ‘grand unified theory’ of chute flows, we
have necessarily advanced a relatively simple and basic model for the grain flow.
Nevertheless, the model has yielded some complex and interesting results of both a
mathematical and practical nature.

In particular, a main new feature in this thesis is the extension of the Lighthill-
Whitham theory of traffic flow to the chute flow. This involves the introduction
of a multivalued flux-density relationship and also a multivalued wave-speed. The
strengths and weaknesses of the fundamental diagram in this thesis have been dis-
cussed. Such a law generates many new interesting problems, and much of the thesis
has been concerned with this. Problems of especial mathematical interest have been
the inclusion of shocks and fans into the analytical and numerical solutions of the
governing equation, the modification of the fundamental curve to include viscous
branch switching, the impact that this has on solutions relating to separation and
clustering of grains, and the search for general solutions and steady states of the
governing equation. We mention here specifically that the problem of finding steady

states computationally was not a trivial one.
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Prior to developing the continuum theory for the chute flow, we investigated a
basic case of one particle in a chute. Following this, a la.rgé computation of the many-
grain flow was undertaken. This revealed that clustering is indeed a key feature of
the grain flow.

The thesis ended with an analysis of air effects on the grain flow. We demon-
strated that viscous effects prevent grains from touching, both for flat and curved
grains. Then an original study of the interaction effects on an array of grains was
undertaken. We observed that in the absence of the walls the array is neutrally
stable and a ‘drifting’ of the grains occurs. This dominates over the stable normal
modes behaviour. Inviscid effects were also researched. Grains are able to touch if
viscosity is ignored. Surprisingly perhaps, the interaction effects within an inviscid
array demonstrate a similar qualitative behaviour to that observed for the viscous

case, including the finding of marginal instability.

9.2 Summary discussions of each chapter

We present here a more detailed discussion of the results from each chapter.

In chapter 2 we showed that a continuous approximation yields a fair agreement
with the inherently discrete problem of one particle bouncing down a chute, when
compared to results from an iterative scheme. The approximation was to take the
coefficient of restitution close to unity in a narrow chute. Air effects on a single
falling grain were also addressed and notably we observed that the boundary layer
is of the order of the grain size.

A computational simulation of the many-grain flow was expounded in chapter 3.
First, a simple code was developed by the author. This used simple ballistic laws
for the particles’ motion and neglected air effects. Binary collisions only were con-
sidered. Collisions were detected by an ‘overlap’ method. Clustering is seen to be a
key feature, and is dependent on the coefficient of restitution. The results from the
simulation appeared to agree qualitatively with those provided by Sortex.

More complex effects of vertical interactions between particles and effects of chute
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geometry, and the combination of the two, were studied with the aid of a commer-
cially available code called PFC2D. Clustering is still a key feature for these flows,
but perhaps less so for those which include vertical interactions.

Chapter 4 briefly discussed possible analytical methods that may be of use when
studying chute flows. A short probabilistic analysis was presented, but appeared
to generate poor results. The value of continuum modelling in other problems of a
particulate nature, such as in traffic or pedestrian flows, was also addressed.

In chapter 5 the continuum modelling for the chute flow was begun in earnest.
An analogy to the Lighthill-Whitham model was utilized. Most notably, our model
involved the introduction of a multi-valued fundamental diagram for the flux-density
relationship. This in turn generated a multi-valued wave speed for any given density.
The basic features of the fundamental diagram were postulated by basic physical
concerns. In particular, the fundamental curve was symmetric about the p-axis
and the two branches met at cusps at zero and maximum density. The strengths
and weaknesses of the fundamental diagram in the thesis have been discussed. In
particular, we point out that the flux-density relation in this thesis may be especially
relevant to colliding or separating grains, but by no means should it be expected to
describe the entire chute flow.

We solved the resultant hyperbolic kinematic wave equation by a method of char-
acteristics. Shocks and fans must sometimes be incorporated in the solutioné. In the
results presented in this chapter, only discontinuous input was considered, as this
formed a basic starting point for the analysis. Some quite complex solutions were
contrived which incorporated a series of shocks and fans as the solution switched
branches. These were seen to describe well the clusters and voids on the chute. The
chapter ended with some remarks on mass conservation and entropy.

More general solutions were sought in chapter 6 focusing solely, however, on cases
which remain always on one branch of the fundamental diagram. In order to find
solutions numerically, an artificial viscous dissipation term was added to change the
equation from a hyperbolic to a parabolic partial differential equation. (Actually

there is also some physical support for including such a term). This had the effect
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of ‘smoothing out’ the discontinuities so that problems associated with shocks and
fans did not occur within the computation. This modified equation was called ‘the
continuum equation’.

We solved the equation by a finite difference scheme to replicate closely the evo-
lution of expansion fans and translating shocks found in the inviscid analysis in
chapter 5. The analysis was then extended from solutions with, or mimicking, dis-
continuous input and instead we attempted to solve the continuum equation for a
smooth initial condition. We found an asymptotic solution valid at small time and
compared this to the result from the finite difference scheme, a satisfactory measure
of agreement being observed.

Steady state solutions for the one-way flow were then examined. We found ana-
lytically a steady state for the case of the densities at the boundaries being nearly
equal. Others were sought numerically but the code appeared to be very sensitive
when checked against solutions to the steady governing equation. We suspect that
the sensitivity may arise from inaccuracies introduced at the change in direction of
the upwind differencing.

Two-way flows, for which the grains can move to and fro across the chute, were
examined in chapter 7. First, viscous branch switching was discussed. As the gov-
erning equation is now a parabolic partial differential equation, we argued that the
nature of the fundamental curve should be changed in a small viscous region near the
branch switches. The aim was to find solutions that can smoothly switch branches
by changing the local curvature at the branch switches.

Initially, we addressed the branch switch at the zero density end of the funda-
mental diagram. We found a similarity equation for low densities valid at small
times. This was in fact a nonlinear ordinary differential equation that corresponds
to separating regions. The equation is singular at zero density, so we found a series
solution locally. Runge-Kutta schemes were then employed to find the density either
side of this minimum, showing that smooth solutions can indeed exist. In particular,
we found that the density must always be zero in the centre of a separating region

and that symmetric and asymmetric solutions can exist. This corresponds to voids
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forming between regions of the same or differing density. The minima in the asym-
metric solutions can move in time, a property which has ramifications for the steady
state solutions mentioned below. Separately, an analysis yielded solutions that are
asymptotically close to a simple exact solution. Thus we demonstrated that a large
region of low density can evolve, which mimics the evolution of a large void and
agrees with the Runge-Kutta findings.

Following this, we examined the branch switch at maximum density. Here we
introduced a small viscous layer valid to order one times and found the appropriate
scalings for the density, the flux and the wave-speed. This resulted in a partial
differential equation for the local density which was inverted and solved by a finite
difference scheme, in order that the dependent variable in the partial differential
equation was single-valued. Smooth symmetric and asymmetric solutions indicative
of the evolution of high density clusters were found to exist.

Thus we demonstrated that changing the fundamental diagram to include local
viscous regions allowed smooth solutions to form which incorporated branch switch-
ing. We therefore attempted to find steady state solutions and solutions at large
times that have a smooth branch switch. In order to do this, we solved the contin-
uum equation in polar coordinates for a simplified (circular) fundamental diagram,
to capture the essential features of the two-way flow. A few steady states could be
found analytically and numerically, but although we demonstrated that the problem
is not over-prescribed it was difficult to find very many solutions that were signifi-
cantly different. Some solutions can be found which join together the sinusoidal-type
solution with a constant solution; however, we find that such solutions have a t2
growth at order one times at the ‘junctions’ and thus do not form valid steady state
solutions, in the sense of a steady state being a large-time limit. Hence they were
ultimately dismissed.

Finally, in chapter 8, the effect of the air on the grain flow was researched. First
we examined viscous effects between two grains in the case of the separation between
grains being relatively small. We assumed that the dominating force is the pressure

in the air between the grains and that lubrication theory is valid there. We found
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the well-known result that the viscosity prevents the grains from touching, if other
effects are neglected. We included some representative curvature and the same
qualitative result was seen to hold true. We then examined the viscous air effects for
a large array of many grains separated by lubricating layers. A normal mode analysis
revealed that such an array could be stable to spatially oscillatory perturbations.
A computation however, accompanied by some analysis, demonstrated that a linear
growth in the height of the gaps could occur, at least for order one times. This
dominates over the stable behaviour mentioned above. Thus the grains are observed
to ‘drift’ over time. Inviscid effects were then addressed. The governing equations
in this case were a reduced form of the Navier-Stokes equations accompanied by a
kinematic condition. Initially, we returned to the case of two flat grains and noted
that the grains can now touch during impacts. When the stability of a large array of
grains separated by small inviscid layers was investigated, we observed a behaviour
qualitatively similar to that in the viscous case. That is to say, a linear growth in
the perturbations was again seen for order one times, corresponding to a drifting of

the grains.

9.3 Suggestions for future work

We finish the main body of the thesis with some suggestions for future work.

One extension could be to further develop the computational simulations of chap-
ter 3. This could include research on other modifications to the chute shape, perhaps
in the plane of the falling grains. Other effects to be studied could be friction be-
tween grains, friction between grains and the chute, surface roughness and so on.
Non-spherical particle shapes could also be included. This would make the numerics
significantly harder as spin must be included and collision detection between parti-
cles is no longer trivial. A three-dimensional simulation could also be developed. A
rigorous quantitative measure of the clustering might be considered.

Some statistical methods were discussed in chapter 4. These may form problems

of interest for future work. In particular, the lattice gas automata technique could
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be used to model the grain dynamics and the statistics of random walks could be
applied.

Concerning chapter 7 the non-smooth solutions could perhaps be investigated
further. Questions of interest are, for example: ‘For how long spatially will the
flat regions persist?’ and ‘How do the flat and sinusoidal regions match at large
times?’. Also, the computation in this chapter could be changed to incorporate
a compact difference scheme, as opposed to the standard finite difference scheme
we have employed. This might obviate problems associated with the change in
directional windward differencing and produce more robust solutions. Furthermore,
the simplified fundamental diagram we have used in these computations could be
adapted to be more realistic and perhaps more similar to the one originally described.
It would be interesting to find the steady states in this case. Finally here, the
relationship between mass conservation and the difficulty of finding solutions at
large times could be examined further.

Concerning the final chapter, it would be of interest to find the large time be-
haviour of the viscous and inviscid arrays that were observed to drift with time. In
particular, over a larger (nonlinear) time scale, do they remain marginally unstable
or do they become strongly unstable? Chute walls could be included in the calcu-
lations for the viscous and inviscid arrays, indeed some preliminary work has been
undertaken for the former case and an interesting dependence of the stability on the
angle of inclination of the grains to the wall seems to exist. We hope to examine this
fully in a future paper. Finally, here, different grain motions could be investigated,
especially those which permit the orientation to change.

More generally, it is greatly appealing to extend the continuum model to two
dimensions and thus include interactions between sets of falling particles. Chapters
5 - 7 could be repeated for such a theory where the two dimensional equations (5.7)
and (6.2) would now be relevant. This model would perhaps be more applicable
to the industrial setting and it would be fascinating to study the extra effects in

themselves.
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Appendix A

A simple test of the

computational simulation

It is possible to find an exact expression for the velocity of a particle in a simplified
case of the many-grain chute flow. We can compare this to the velocity found in a

corresponding simulation as a way of checking whether the code is correct.

A.1 Velocity of the leftmost particle

Consider a very simple configuration of particles in the chute. Suppose that particles
enter the top of the chute evenly spaced along the line y = 0. Furthermore, suppose
that all particles have zero initial velocity with the exception of one particle at the
far right-hand end of the chute (named the ‘renegade’ particle) which has a finite
horizontal velocity component directed toward its neighbour. All particles except
the renegade will initially fall vertically through the chute. The renegade will follow
a parabolic trajectory for some time. At the first collision, the renegade will collide
with its neighbouring particle. This particle will now have a horizontal velocity
component and the horizontal velocity component of the original renegade will have
been reduced. We call the leftmost particle that has a parabolic path ‘the leftmost
particle’. (In reality this is not the leftmost particle, that would be the vertically

falling particle at the other far end of the chute). A plot of the leftmost particle is
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Figure A.1l: The parabolic trajectories are the path of the ‘leftmost particles’

shown for clarity in figure A.1.
It is possible to determine analytically the velocity of the leftmost particle at each

collision. Call i, the velocity of the leftmost particle at the n? event. Then we see

that
i = L84, (A1)
2
from equation (3.10), since all other u;’s are initially zero. Thus at the n** collision,
1 A\ N
4, = ( *2'6> a1 (A.2)

We can plot this expression for the velocity of the ‘leftmost particle’ against
the results from the simulation. To do so, we simply choose the initial conditions
in the code to arrange the particles in the configuration described and record the
appropriate velocity. We find that there is a very close agreement, see figure A.2.

This adds some weight to the view that the code produces accurate results.
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Figure A.2: Plot showing velocity of the leftmost particle against number of col-
lisions. The points are the data from the simulation, and the line is the analytic

solution found above. We see very close agreement.
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Appendix B

Detailed study of clustering

In this appendix we consider clustering a little more thoroughly.

Choosing a periodic velocity distribution will provoke the clustering phenomenon
as there will be regions where all the particles are moving toward a fixed point and
regions where all the particles separate from a fixed point. Clusters and voids will
begin to form around these points. We can locate these points simply as the roots of
the horizontal velocity component: roots across which the velocity is decreasing are
the points where clusters form, while roots across which the velocity is increasing are
the points where voids form. If é = 0 then particles will coalesce at the point where
clusters form and create one large particle of ever-increasing mass. Thus it is possible
to find the distance between successive coalesced particles on the chute for different
initial conditions, provided é = 0. Furthermore, we can also find a correction for
this separation distance for non-zero é. We can compare this theoretical value to
one estimated from the numerics to determine whether the suggested mechanism for
clustering is indeed the correct one.

Consider an initial velocity distribution of the form
w; = Acos (k1) (B.1)

where u; is the particle velocity for the it* particle. The amplitude of the velocity

is A and k is the wave number. Recall that the particles are initially evenly spaced
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along a horizontal line; the horizontal co-ordinate, x, of the it* particle is given by
z; =(—1)d (B.2)

where d is the particle separation. Hence,

u; = Acos (lc (1—;-@3)) , (B.3)

2nd
P

and the wavelength, A, is

A= (B.4)

Let us also define m as
2

A

If we wish one wavelength of the velocity to exactly coincide with the particle

m

positions we must choose m = 1 so that A = d. Thus all the particles will have the
same velocity and will not collide with each other. Consequently there will be no
clusters. If, however, we choose m = 2 then A = 2d and so there will be pairs of
particles moving toward each other, see figure B.1. Hence we expect evenly spaced
clusters to form with a separation, denoted Agyster, €qual to 2d.

Furthermore, if m = 3, then every third particle is going rightward, and the two
particles in between are going leftward. Hence the first collision is between the
rightward moving particle and the neighbouring leftward moving particle. Following
this we will have a coalesced particle still moving rightward heading toward the
remaining leftward moving particle. These will collide to form a coalesced particle
composed of the three initial particles and there will be no further collisions. In this
situation the separation between clusters is Acjyster = 3d.

The case for m = 4 is a little more involved. In this situation the velocity dis-
tribution coincides with the particles so that one particle is moving rightward, the
next is stationary, the third is moving leftward and the final one is stationary again
before the pattern is repeated. Thus the final state is a cluster of three particles
centred on the second particle, called a triplet, followed by the fourth particle which
is stationary and on its own, the singlet. See figure B.2 for clarity. Here we define

Acluster @8 the distance between successive triplets and so Agyster = 4d.
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Figure B.1: Sketch showing cluster formation for m = 2. The particles represented
by a square are moving rightward, the particles represented by a circle are moving
leftward. Thus clusters form in the positions depicted by a hexagon. We expect to

see the separation between clusters to equal 2d in this case.

218



A
\

4d

Figure B.2: Sketch showing cluster formation for m = 4. The top line depicts the
initial particle positions and their velocities. A zero above a particle denotes that
it is stationary. The triplets form in the positions depicted by the large circles. We

expect to see the separation between triplets to equal 4d in this case.

Unfortunately it is problematic to go further than m = 4 since for higher values
of m it becomes difficult to define clusters; the situation becomes ever more complex
involving singles, pairs and triplets and so on. Consequently, we stop here and
compare the theoretical value of Agyser to the one obtained from the numerics,
Aobs:

To calculate Ays we measure the distance between the centres of ten clusters at
the end of the corresponding simulation and find the average. It must be noted that
this method is rather subjective since it is a little awkward to find the centre of
each cluster. Also, in the above analytics we calculated Acpster for € = 0. It is not
possible to run the computation for this value of &, so instead we obtain A,, for
é = 0.01.

The results presented in table B.1 are quite close for each value of m. This mech-

anism seems therefore to be useful in describing the physical process of clustering.
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Table B.1: Table of results in which predicted values of the separation between

clusters, Acuster, are compared to those from the computation. We see fairly good

agreement.
Comparison of Agyster t0 Aops
m | Aduster Aobs
1 - -
2 | 0.0040 0.0039
3 | 0.0060 0.0057
4| 0.0080 | 0.0075

B.1 Further results concerning clustering

In the computation above we obtained values of A, for small €, as opposed to é = 0
which was the value used in the analysis. Now we obtain a correction to the analysis
for the m = 2 case for non-zero é.

At a collision the particle velocities are changed in accordance with equations
(3.9) and (3.10). After the collision we see that two particles 1 and 2 would separate
with a velocity given by

8y — U = —€(u1 — ug) (B.6)

for non-zero é. Rather than coalesce, the two particles will actually have separated
by a distance given by s:
s = —é(uy — ug)t, (B.7)

where ¢t is the time spent in the chute. Consequently, A.uster i reduced by this

!

cluster where

distance and the new value is A
A::lu.ster = Acluster — é(ul - ’Uq)t. (BS)

Applying the above correction, the new value for the separation between clusters
is \ = 0.00399. This is only marginally closer to the computed value Ayps =

cluster

0.0039. (N.B. the computed value itself is only a rough approximation anyway;
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recall that it is difficult to locate the centre of the clusters when making the required
measurement of Agps).

We observe that u; —ug = 2A, for the case of m = 2, where A was the amplitude of
the velocity. Therefore the correction, s, is s = 2éAt. If the time spent on the chute
ist = O(1) then s = O(éA). Furthermore, consider that Ayysier = md = O (d).
Therefore if s ~ Aguster then the clustering structure will break down. Particles
from one cluster will have separated so much they will have entered the neighbouring
cluster. Thus the final particle distribution will look homogeneous (see figure 3.2,
for example). Therefore if ;
2

é~

(B.9)

then the clustering phenomenon will disappear, for the case of m = 2. For typical

values in the computation we find that this value is around é = 0.4.
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Appendix C

Experimental work

In chapter 3, section 3.4, we employed nearest neighbour distributions in order to
measure the clustering on the chutes. This is a naive approach, used simply as a
guide. Some experimental work however was undertaken at Sortex Ltd, the purpose
of which was to find a more rigorous quantitative measure of the clustering. We
briefly discuss this work here. (Complete reports of this work are available from the
author on request).

First, we review the work on nearest neighbour distributions. We define a quantity

C as

c=2\/Na ((n) - 2\/1N/_1) (C.1)

where N4 is the number of particles per unit area, 7 is the mean nearest neighbour
distance and (7) is the average of the mean nearest neighbour distance after many

trials. For a random (Poisson) distribution the mean nearest neighbour distance is

the Poisson mean[48],
1

i : = —
( )P01sson 2VNa

If the particles are uniformly distributed, then the mean nearest neighbour distance

(C.2)

is simply

1
(M) uniform = N (C.3)

Therefore ¢ can be used to quantify the clustering from a nearest neighbour distri-

bution as follows. If the distribution is uniform then ¢ = 1 from equation (C.3);
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Figure C.1: Particles A and B are touching and yet C is the nearest neighbour of B.
If particle B is ejected it is likely that A would be ejected too, rather than the nearest

neighbour C. In this instance, finding the nearest neighbour has been fruitless.

if the distribution is random then ¢ = 0 from equation (C.2); if the distribution is
clustered then (1) < '\771V,T [48] and so ¢ < 0. This quantity is calculated for each
nearest neighbour distribution.

We find that both for synthetic and for real data the quantity ¢ gives ambiguous
results for the clustering. Nevertheless, it seems likely from the experimental data
that the particle distributions at the bottom of straight chutes are random.

Nearest neighbour distributions, moreover, would perhaps seem to be a poor clus-
tering measure for ellipsoidal particles. When a particle is ejected, its surrounding
particles and particles touching it are usually ejected as well. This is the root of
the inefficiency of the machines. It could happen that two grains of rice, A and
B say, are touching end-to-end along their major axes and that a third grain C is
neighbouring the particles and not touching the grains. Yet this particle (C') could
be found as the nearest neighbour. See figure C.1, for example. In this case it is
fruitless to find the nearest neighbour, as the touching particle is perhaps more likely
to be erroneously ejected.

Another measure of the clustering was consequently investigated and this is re-
viewed below.

The general idea for the new method is to place a grid of boxes over an image of
the product feed. The number of grains in each box is counted and the standard
deviation in particle number per box is found. If the feed is uniform, a small standard
deviation is expected whereas if the feed is clustered, a large standard deviation is

expected.
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The standard deviation in particle number per box is defined as

N

§= ’ﬁ'l__I Z (xn — 3—3)2, (04)

n=1
where N is the total number of boxes, z, is the number of particles in the nt®
box and Z is the average number of particles per box. The standard deviation is
measured for twenty trials of each experiment and the signal, m, is the average:
1 X
m = -5-6 Z Si, (C5)
i=]
where, s;, is the standard deviation at the ith trial. The noise in the measurement

is defined to be the standard deviation in s;,

D
. 2
noise = 4 | 75 E (8i —m)°. (C.6)

i=1
Finally, we define a ‘discriminant’ between two feeds A and B as
_ mapa —mp
~ noise A + noise B’

(.7

If trial A gives a significantly more uniform flow than trial B, in terms of uniformity
of feed, then d is large and negative, and if the converse is true then d is large and
positive.

The discriminant was tested first on synthetic data and in each case the expected
results were seen, i.e. the discriminant correctly ‘identified’ the chute with the
most clustering. When tested on data from experiment the discriminant was again
seen to be a useful measure of clustering. Therefore we can conclude that the
discriminant may be able to suggest which chutes yield the better performance in
terms of uniformity of feed.

In summary, the experimental work undertaken by the author at Sortex Ltd.

reveals that

1. the nearest neighbour distributions may not be a useful measure of clustering,

especially for ellipsoidal particles; and

2. the discriminant d, defined above, is a useful factor in comparing chute per-

formances.
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Appendix D

(GGrain-wall interactions in the

inviscid model

We propose an argument to find the relevant analytical solutions that incorporate
shocks and fans interacting at the chute walls. The physical boundary condition
must be for there to be no flux across a wall, which implies that either p = 0 or
p = par at the wall. As yet, both seem equally valid. However the argument in the
current appendix forces p = ppr. If a particle collides with a wall then its velocity
can be considered to instantaneously change direction at impact. The magnitude of
the rebound velocity depends on the value of the coefficient of restitution between
the grain and the wall. As the flux ¢ is propagated along a chdracteristic, this must
change at the wall due to the fact that the particle rebounds. Therefore the gradient
of the characteristic must change. If the incoming characteristic has ¢ > 0 say, then
the outgoing characteristic must have ¢ < 0. The magnitude of ¢ along the outgoing
characteristic is then determined by the value of the coefficient of restitution. Two
cases are considered: first, the case when the coefficient of restitution é = 0; second,
the case when the coefficient of restitution é = 1. The former case corresponds to
totally inelastic collisions in which colliding grains lose all their energy upon impact
and coalesce; the latter case corresponds to totally elastic collisions in which colliding

grains do not lose any energy at an impact. We shall see in both cases that p = pas
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Figure D.1: A sketch of the fundamental curve and the key values for the case of

clashing at walls when é = 0. The two shocks are also shown.

is forced at the boundaries, consistent with the no-flux condition across the walls.

In theory, intermediate values of é could also be dealt with.

D.1 Caseone: é=0

If é = 0, all grains will coalesce upon collision. This is analogous to a queue forming
at a traffic light. Suppose we start with incoming grains flowing freely toward a wall
at some value p = p;. Then we start with characteristics of slope c(p;). At the end
of this region there are no incoming particles, so there is the appropriate shock fan
structure down to zero density. (There is not a continual input of grains). At the
wall particles coalesce, thus p = pp. Hence there is another shock-fan structure
between p; and pp. Figures D.1 and D.2 illustrate this well.

Observe that at t = t3 the two shocks merge and form a third shock between the
two expansion fans. As this shock translates, it weakens over time (the gradient of
the shock tends to zero). Thus, the density profile asymptotes to two expansion fans
separated by a stationary shock.

Thus a picture of the evolution of the density profile can be obtained. See figures
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- Shock weakens
over time
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Figure D.2: The characteristics are plotted in the z — ¢ plane. The characteristics
describing the incoming region of constant density can be seen adjacent to and above
the shock-fan structure down to zero density. There is also a shock-fan structure
after the point where the first characteristic intersects the wall, which describes the
coalescing grains there. These two shocks intersect at ¢ = t3 after which a single

shock separates the two fans. This shock weakens over time (viz. its gradient, and

therefore its speed, decrease over time).
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Py

Figure D.3: Initially there is a region of constant density moving toward the wall.

P
Pj
S1 t=1
PT1
fan T

Figure D.4: At t = t; the grains just reach the wall. A leftward translating shock

exists adjacent to a fan from pr; to p = 0.

D.3-D.7.

D.2 Case two: é =1

If ¢ = 1, an incoming grain will collide at the wall and reverse its direction. If
we have an incoming particle with (p,q) = (p;,q;) then upon a collision with a
wall it will instantaneously change its direction and have (g,p) = (—gj;,p;). Thus
when the incoming characteristic intersects with the wall its gradient will instantly
switch from c(p;) to —c(p;). This ‘reflected’ characteristic will in turn intersect
with the next incoming characteristic. The sign of ¢ is different on each of these

characteristics, hence the familiar shock-fan-shock structure is required to describe

228



PM_fan
Pre s
Py
5 t=ty
T
fan

Figure D.5: As the grains coalesce at the wall, a region of maximum density is

formed. A rightward and leftward moving shock expunge the region of constant
density.
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PT1
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Figure D.6: The two shocks, s; and s, have merged to form one rightward translat-

ing shock. There is a high density fan next to the wall, and a low density fan next
to the shock.

229



Shock|moves almost t=1ty4
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Figure D.7: Eventually the shock will come to rest. The final profile is a high density
region next to the wall that protrudes on to the chute for a certain distance. Then
there is a discontinuous jump to a low density region which becomes ever more

sparse.

this clashing region.

As the colliding grains are moving away from the wall there will be a shock-fan
structure down to zero density located at the wall. The upper shock from the shock-
fan-shock structure describing the clashing of the reflected and incoming grains
will then enter the expansion fan at the wall and weaken. As a consequence, the
expansion fan down to zero density, which is located at the wall, will vanish and be
replaced entirely with the g > 0 half of the expansion fan from the clashing region.
See figures D.8 and D.9.

Now note that in reality the characteristics (*) and (**) will be infinitesimally
close for the incoming c(p;) particles. As they coincide this case becomes identical
to the é = 0 case because the shock-weakening and vanishing of the fan at the wall,
described above, happen instantaneously. This is made clear in figure D.10.

Therefore, by examining two extreme cases, we have seen that the correct con-
dition at chute walls is for the density to be maximal, i.e. p = p, at boundaries.
For values of é in between zero and one, we assume that this is still the case. This
appears to be reasonable since the cases of fully inelastic and fully elastic collisions

yield the same result.
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Figure D.8: A plot of the fundamental curve and the key values for the case of

clashing at walls when é = 1. The shocks are also shown.

c(pj)

c(p;)

x

Figure D.9: The characteristics are plotted in the x — ¢t plane.
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Wall t

c(pj)

z
Figure D.10: In reality the characteristics (*) and (*x) will coincide, so the picture

above (figure D.9) is in fact identical to the é = 0 case, as seen here.

Recall that in the above examples the density of the incoming grains satisfied
p < pr. As a consequence, the characteristic describing this region intersects the
wall. However, if we had chosen p > pr the characteristic for the incoming grains
would not have intersected with the wall. There would seemingly be a region devoid
of characteristics adjacent to the wall. The solution in this case is to introduce an
expansion fan and treat the wall as another incoming region of grains by a method
of images. Hence there would be a horizontal characteristic running alongside the

wall once again describing a stationary region of maximum density.
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Appendix E

One method of solving the
ordinary differential equation

5
for the O(t%) correction to the

density in the inner-layer.

In chapter 6.4, section 6.4.2, we mention a method to find the complementary func-
tions of

vgy + -ggé - -j:gz =yt (E1)
The method is to seek a solution to the homogeneous equation in the form of a

complex integral.

Such a solution has the form

Pcp = /Ce“’%(w)dw (E.2)
where C is an arbitrary contour and ¢(w) is an unknown function [24]. On differ-

entiation with respect to n we find that

Gocp = /(; we"p(w)dw
and

92cr =/Cw2e"”7¢(w)dw.
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Substituting into the homogeneous form of the ordinary differential equation (E.1),

in order to find the complementary function, reveals that

2w n w ) w _
u/cw e '7¢(w)dw+§/cwe ¢(w)dw — Z/Ce T$(w)dw = 0. (E.3)

Integrating the second term by parts yields

a2 oW wé wn 1 wn d
v | w ¢>(wdw+[—-—e ] ——/e —(wé)dw
/C ) 2 c 2Jc dw )
_3 eVTp(w)dw = 0. (E.4)
4Jc
If we choose a contour such that [%‘Zew”]’c = 0 then the ordinary differential equa-
tion

1d 5
g — o= (wg) - 74 =0 (E.5)

must also be satisfied. That is,

¢ + (—w - 2w> ¢ =0, (E.6)

where a prime denotes differentiation with respect to w. Utilizing an integrating

factor of I = e% In(w)-w? wo obtain

T 2

¢ =Aw eV, (E.7)

where A is a constant of integration. Now consider [#e’”"] o= [ﬁ'—”z,—-—g-ewz“Lw"]

0. If C is the semi-infinite contour w € [0,100) or w € (—ioco,0] then

C

100
Goop = le-/ wEew Fungy, (E.8a)
0
and
B [° .
Qcra = "2-/ w_%ew2+w'7dw (ESb)
—1i00

are complementary functions of (E.1), where we take only the finite part (FP) of

the integrals, i.e.

A [i® _ 2,2
Rer = 5/ {w‘%e"’z*“" — w1 [1 + wn + wzﬂ ] }dw (E.9a)
0
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and

B 0 2,2
J2cp2 = ’5/ {w_%8w2+wn —w e’ [1 +wn + il ]}dw, (E.9b)

—ioo 2
where the principal parts of the integrand in (E.8a), (E.8b) have been removed. We
can demonstrate the validity of removing these parts by showing that (E.9a) does
indeed satisfy the homogeneous version of the ordinary differential equation (E.1)
as follows. (Of course, the same argument applies equally well to (E.9b)).

Differentiating the homogeneous version of (E.1) three times gives
o N, Ly
G"+-G'+-G=0, (E.10)
2 4
where G = g5/, .(n). To solve for G(n) we again seek a solution of the form

G= / e™ f(t)dt (E.11)
C
implying
/ {t2 + gt + i-} e f(t)dt =0 (E.12)
C

on substitution into (E.1). This is an exact differential of the form a‘l; {e”'th(t)} if
h=(+ 1) F(t) and h = £ f(t). Therefore h = tiet” and hence f = 2t~ %¢!". Thus

2 2
G= / —el gt (E.13)
cVt
is a solution provided that
[eﬂ‘“”té]c =0. (E.14)

One contour could be C; =t € [0,ic0) (and the other C2 =t € (—ic0,0]) so that
gy = A/ioo 1 et*+mt gt (E.15)
2cF1 o Vi : :

Now, this is a well-defined finite solution as the integral is indeed convergent; it
could be integrated numerically, say, and hence ga.., (7) would be obtained. It is
demonstrated next that this solution is consistent with (E.9a).

Integrating (E.15) once with respect to 7 gives
" i [ 3 12
o =A / {3+ L at)} o, (E.16)
0
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where a(t) corresponds to a constant of integration. We must take care to ensure

that the integral is still convergent so, without loss of generality, we write
1" N -3 t24nt -3 42
92cp1 = A/ {t zet Tt —t72e +&(t)}dt. (E.17)
0
Similarly, we carefully integrate twice more to find

100 2 P 2
. n a(t)n
J2cr = A/ {t—%€t2+nt iy t—%et2 + ——(2)
0

—nt~de’ +b(tn — 3 +o(t) bt (B.18)

ie.
100 242 2
- ¢ -
G2 = A/ {t‘%etz"'”t —tzet [1 +nt + 22—] } dt + a% +bp+e (E.19)
0
where @, b and € are constants which must be chosen so that the homogeneous
version of equation (E.1) is satisfied. To determine their value, then, we integrate

(E.10) three times to give in turn:

1 -
9" + g—gé” - 7% =&, (E-20a)
m, N 3, - 7
9o + 592 - Zgz =an -+ b, (E20b)
and
5 s :
g+ ggé -4%= a% +bn+¢, (E.20c)

where @ o @, b ox b and & « & The right hand side of each must be equal to zero in

order for the homogeneous equation to be satisfied. Therefore @ = b = & = 0. Thus

_ fioo 242
G20 = A / {t‘%e‘“’"‘ —t 3¢ [1 +nt+ 5’-2—-] } dt, (E.21)
0

which is exactly the same as (E.9a). Hence the finite parts of (E.8a), (E.8b), namely
(E.9a) and (E.9b), are indeed valid complementary functions of the ordinary differ-

ential equation (E.1).
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Appendix F

The local wavespeed-density
relation at the lwarge-density
endpoint of the viscous

fundamental diagram

In chapter 7, equation (7.77) gives the local wavespeed-density relation C(P) at the
large-density endpoint of the viscous fundamental diagram. It is asserted that it is
possible to choose A = 2 and B = % without loss of generality. The truth of the
assertion is demonstrated here.

Put P=aP, C =fC, t =+t and X = 6X. Substituting into (7.74) yields

1= Brs 14
P+ 50P; = 5 Pex (F.1)
and into (7.77) yields
BC =+ (-gp—%a—% - 3_2%%&%) . (F.2)

In order to obtain (7.78) we must therefore choose

yl=p5"1=6"2 (F.3)
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and

in (F.1), and

A
2ﬂa%

1

=1 and 3322 =1 (F.4)
in (F.2). Therefore equations (F.3) and (F.4) give four equations for the four un-
knowns «, B3, v and ¢ and hence a = -3%, 8 = %(%)5’ ¥ =

4A
Therefore ‘without loss of generality’ means essentially puttin
Yy g

3 end 5= 3($)*.
P= 3%13, (F.5a)
3 /B\? .
t= g—é~, (F.5¢)
2 /A\? -
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Appendix G

Recommendations to Sortex Ltd

In the main body of this thesis, we have developed a mathematical model of a chute
flow of grains. This model has necessarily started from first principles, as there is
no existing ‘grand theory of everything’ for granulaf phenomena. Consequently, the
results obtained thus far are of limited practical use, as it would be unreasonable
to include all the effects of geometry, the air, ellipsoidal shapes etc. into one model
or simulation at this stage. A model of such complexity would perhaps be required
to accurately describe the flow for engineering purposes. As we have seen, the
mathematics of even the one-dimensional model yields some complex behaviours,
and a steady state (which can loosely be thought of as the density profile at the end
of the chute) is difficult to compute even here. If other effects were to be included,
the problem would perhaps become increasingly complex, if not intractable. It would
be very interesting, nonetheless, to try to progressively develop the model further in
the future.

Four results of practical engineering/industrial importance arising from this thesis

are described below.

1. In chapter 3 an investigation of chute shaping effects shows that, of the ge-
ometries studied, there is no noticeable improvement on the performance of a

straight chute.
2. The creation of clusters and voids (see chapters 3, 5, 7 and appendix B) in the
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flow of the grains appears to be a common phenomenon in the model results as
well as in the industrial chute settings, encouraging further modelling aimed

at cluster eradication.

. A study of the air effects in chapter 8 demonstrates that a uniform flow dis-

tribution of grains arranged in a manner that would be ideal for reducing the

ejection problem is almost certainly unstable.

. Although designing a chute that would align the grains in such a fashion would

seem to be of limited promise, design alterations of the air effects can be
considered in future work with a view to stabilising the grain flow instead,

enabling the efficiency of the machines to be increased.
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