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A bstract

T he w hole of the thesis is m otivated by a particular problem from the food-sorting  

industry in which grains of food, typically rice, flow down chutes. A s they fall down  

the chute, the grains form a rapidly moving mono-layer. T his project starts w ith  

a discrete m odel treating individual grains based on partcle dynam ics w ithout air 

resistance. Single grains and then m any grains are addressed, and the m ethodology  

used includes large com putations describing the particle paths, velocities and other 

key features accom panied by analysis. Much of the thesis thereafter is concerned  

w ith the developm ent of a continuum  m odel for the chute flow of grains, inspired 

by the clusters and voids seen in the above com putations and based on analogies 

w ith  the Lighthill-W hitham  m odel of traffic flow. T he crucial difference here is 

that the flow is not uni-directional and so a m ulti-valued flow-density relation is 

required. The introduction of such a law yields com plex and rich flow behaviours. 

T he m athem atical interest is in solving hyperbolic and parabolic partial differential 

equations, incorporating shocks and fans into analytical and numerical solutions of 

the governing equation, in asym ptotic m ethods used in analysis of particular limits, 

especially those relating to clashing or separation of grains, and in seeking steady  

sta te  solutions for the density profile. Finally, air effects are studied. In particular, 

local viscous or inviscid effects in the gaps between grains are investigated, followed 

by the subsequent interaction effects on many grains.
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Chapter 1

Introduction

The present study involves modelling, analysis, computations and experimental work 

and is related to multi-particle interactions, granular flow, traffic flow and fluid 

dynamics. These and the layout of the thesis are described later in the chapter after 

the aim and direct motivation from industry are described.

The aim of this thesis is to find a suitably accurate mathematical model for the 

nearly two-dimensional, gravity-driven, rapid flow of a monolayer of grains down 

an inclined chute. This is directly motivated by a problem from the food-sorting 

industry, in particular from a company that manufactures machines for the sorting of 

food, Sortex Ltd. Many food stuffs can be sorted with these machines, including rice, 

coffee beans, carrots, peas and strawberries. The majority of machines manufactured 

by Sortex however are employed in the sorting of rice grains. The attention of the 

project, therefore, is focused solely on rice.

In the particular food-sorting process developed by Sortex, grains fall from a 

hopper and are subsequently moved along by a vibrator tray. At the end of the 

tray the grains fall on to an inclined chute, down which they are accelerated due to 

gravity. They quickly form an apparent two-dimensional monolayer upon the chute. 

Shortly after the grains have fallen from the bottom of the chute they pass an optical 

system that can detect defective grains. A grain is considered to be defective if it 

is, for example, of the wrong size, shape or colour. Foreign bodies, such as small 

shards of glass, can also be detected. If the optical system detects a defective grain,
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a powerful jet of air is fired from at least one ejector in an array of ejectors, and the 

grain is knocked into a reject bucket by the force of the impact. A schematic diagram 

of the process is shown in figure 1.1. Studies of the ejector and jet properties are in 

the theses by Westwood and Wilson [56], [63].

The chute is approximately 30cm. wide and a metre in length. The grains exit 

the chute with a vertical velocity of the order of 4 — 5ms_1. The dimensions of a 

typical grain of rice are a width of 1 — 3mm and a length of 5 — 7mm. The mass 

has a magnitude of roughly 10~5kg.

Particular difficulties arise as the grains fall off the chute, since they are not 

uniformly distributed. In fact, the distribution of grains at the bottom of the chute 

is typically clustered and inhomogeneous. As a consequence, the air jet can, and 

usually does, remove other grains of rice surrounding the reject grain. These grains 

may not themselves be defective. This erroneous ejection of surrounding grains is 

a source of inefficiency in the food-sorting process; the grains in the reject bucket 

sometimes must be sorted through again to reduce waste.

Currently, the optical system can be configured to yield an increased sorting 

performance, but if a high level of sorting is required a chute with channels must be 

used. These ‘channelised’ chutes align the grains with the ejectors and improve the 

uniformity of the product feed. There is however a concomitant reduction in the 

mass of grains that can be sorted in a given time (known as the ‘throughput’).

Understandably, Sortex would like to remove this problem as much as possible 

whilst maintaining a high throughput of grains in these machines. Such a devel­

opment in chute design would take the industry forward and perhaps make Sortex 

world leaders (or help maintain their position as world leaders) in the food-sorting 

industry.

The remit of this project, therefore, is to try to find a suitable mathematical 

model for a chute flow of grains in order to increase knowledge and understanding of 

the underlying physics so that the above ejection problem can be reduced as much 

as possible.

An interesting aspect of this thesis is in the modelling itself. For such a chute

17
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flow of grains, which perhaps can be thought of as a rapid, sparse granular flow or 

alternatively as a suspension flow, there is no ‘grand theory of everything’ to apply. 

That is to say, there is no analogue to, for example, the Navier-Stokes equations that 

applies to all granular or particle-laden flows which we can study in an appropriate 

limit; rather, we must model the process from first principles.

A standard approach in granular mechanics is to postulate some so-called ‘con­

stitutive relations’ that are crucial to the granular flow [6], [8], [26], [29], [47], [50]. 

These studies often address the particle forces alone, neglecting the multiphase na­

ture of granular materials, especially for rapid flows [8]. The constitutive relations 

typically focus on the shear forces and stress tensors obtained from the particle- 

particle collisions, and the notion of granular temperature is often introduced as an 

analogue to kinetic theories of ideal gases. Particle collisions can be dealt with by 

either hard disk models or soft particle molecular dynamics simulations [40], [55]. 

The former model collisions using Newton’s law of restitution [46]; the latter try 

to obviate problems associated with inelastic collapse by using a ‘spring-dashpot’ 

model. ‘Inelastic collapse’ is the name given to the phenomenon of a particle under­

going an infinite number of collisions in a finite time [9], [40], [65], and occurs only 

in hard disk models. Inelastic collapse can cause difficulties when one is attempting 

to model granular phenomena with hydrodynamic analogies [11], [18].

Together with the theory, computational simulations often are of use when study­

ing granular flows [39], [53]. Modern computations can be massive (up to nearly 

ten thousand particles [54]) and often demonstrate that pattern formations arise 

within granular flows. This can be due to the development of clustering or of shear- 

banding [16]. The observation of patterns in computational work has been of great 

significance [41]. In the pharmaceutical industry for instance drugs are mixed in 

rotating drums. Obviously a homogeneous mixture is required so that the dosage is 

constant within each tablet. Computational simulations show that after a certain 

number of revolutions, shear-banding can spontaneously occur, leading to an inho- 

mogeneous mixture. This structure will then disappear, only to return later. We 

can see consequently that a computational model of the flow is of great importance
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in this case.

Usually problems in granular mechanics deal with phenomena such as avalanches, 

lahars (landslides), pharmaceutical processes, powders in rotating drums, chute flows 

and so on [16], [41], [47]. In particular, there are some well developed theories of 

chute flows [6], [19], [26], [39], [50]. Typically, even for sparser rapid granular flows, 

enduring particle contacts are significant and the flows can be many particles deep. 

The rapid monolayer which we study is believed to be atypical for a granular flow. 

Enduring contacts are not thought to be as significant here. For this reason, a 

conventional granular flow theory as described above may not be appropriate for a 

model of this chute flow.

On the other hand, suspension flows tend to be concerned with sparser grain flows 

where the interstitial fluid is important for the grain dynamics [12], [23], [30], [61], 

[62], such as in the study of aeolian or fluvial transport [59]. These studies are 

concerned with issues such as entrainment, which are believed to be less important 

aspects of chute flows, such as those of interest to us. One major aspect of the chute 

monolayer is that the dynamics is thought to be driven by the frequent, binary 

impacts of the grains. Hence the Sortex problem seems to lie between the arenas of 

suspension flows and granular flows.

Mathematical modelling of discrete phenomena by partial differential equations is 

a technique successfully employed in studies of traffic and pedestrian flows [17], [21], 

[22], [38], [42], [57], [58]. In fact, research on granular phenomena and research on 

traffic problems have a large overlap: see for example [64]. Perhaps the most well 

known theory is the celebrated Lighthill and Whitham model of traffic flow [38], [57], 

[58]. This theory explains well experienced behaviours of traffic, including density 

waves in traffic, shock waves as vehicles approach congestion and traffic jams at 

intersections. Another example is Hughes’ description of pedestrian flows [21], [22]. 

He uses a Lighthill-Whitham type model for pilgrims crossing the Jamarat bridge 

in Mecca. His work suggests a method of safely placing barriers in order to prevent 

the crushing of pilgrims, which has in the past led to a number of deaths. It is the 

theory of Lighthill and Whitham that we try to develop for the chute flow later in
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this thesis.

Prior to developing this model, however, we first study the simpler problem of 

a single grain falling through a chute. This is done in chapter 2. The aim of this 

chapter is to determine whether an analytical model can be utilized for a simple 

particulate problem with a substantial number of collisions. We find that indeed it 

can. In this case to obtain a continuous approximation we assume that the particle 

collisions with the wall are asymptotically perfectly elastic and that the chute is 

narrow. Also in this chapter, a short calculation is presented which shows that at 

the bottom end of the chute the boundary layer around a falling grain is of the order 

of the grain size. Thus we might expect air effects to become a significant aspect of 

the flow.

Having investigated the one particle problem, chapter 3 deals with a large compu­

tational simulation of the many-grain flow. Initially, a simple computational model 

is introduced. The trajectories of the particles are governed by simple ballistic laws. 

Conservation of momentum and Newton’s law of restitution are used to determine 

the velocities at collisions. Collision detection is considered in this chapter and we 

use a method similar to that of Louge [39], rather than an event-driven algorithm 

of the type discussed by Sigurgeirsson et al. [53]. The velocities of the grains are 

assumed to have only horizontal velocity fluctuations, hence there is no vertical in­

teraction between particles. Air effects and friction are also ignored and only binary 

collisions are allowed. The effect of changing the coefficient of restitution is inves­

tigated. An encouraging comparison between the results and data from Sortex is 

observed, despite the simplifications. Following this, a commercially available code, 

PFC2D, is used to investigate more complex effects, such as vertical interactions 

and the effects of chute geometry, and the combination of the two. In all the compu­

tations we find that clusters and voids are a key feature, especially for those which 

neglect vertical interactions.

Chapter 4 discusses possible analytical models for the chute flow. We mention that 

statistical physics approaches seem to be attractive, especially when the chute flow 

is compared to an ideal gas. Analogues to kinetic theories have been used for chute
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flows in the past for conventional granular flow problems [50]. However, some of the 

assumptions of statistical mechanics are readily broken in practice. In particular, 

the mean free path is of the order of the particle size and there is a continual input 

of energy into the system. A simple statistical analysis is attempted, however, but 

it appears not to be of great value. Furthermore, some of the assumptions of the 

analysis also fail, and so this model is abandoned. We note in passing that mean field 

theory, lattice-gas automata and random walk theory may be appropriate statistical 

techniques of value. A full study of statistical methods is beyond the scope of this 

thesis, as we prefer to concentrate on the continuum modelling.

In chapter 5 we develop a theory for a chute flow based on an analogy with the 

Lighthill and Whitham model of traffic flow. As the model is developed from first 

principles, it is sensible to start relatively simply. We therefore consider only a 

one-dimensional model. However, the one-dimensional computational simulation of 

chapter 3 does produce encouraging results, so we hope that the continuum model 

may do so also. We write down a conjectured partial differential equation for the 

density of regions of particles which move left and right across the chute. The density 

is a function of time and position across the chute. As time increases, the particles 

are considered to fall down the chute. The partial differential equation is a hyperbolic 

kinematic wave equation. As such, discontinuities arise in the solution. We aim to 

include these discontinuities in a description of the clusters and voids which arise on 

the chute. Of course, a two-dimensional model would be one improvement to make. 

We show the two-dimensional equations in brief and show that the one-dimensional 

solution would emerge anyway, as the grains fall down the chute.

One novel aspect of the present model is that the wave-speed and the flux are 

multi-valued ‘functions’ of the density; for a particular value of the density there 

is a positive and a negative value of the flux. This allows the regions of particles 

to move leftward or rightward across the chute. Since the wave-speed is defined 

to be the rate of change of the flux with respect to the density, it too is multi­

valued. In traffic models, by contrast, the flow is usually uni-directional and so 

those models do not have the multi-valuedness feature. The formation of clusters

22



and voids relates mathematically, and directly, to the branch switches between the 

positive and negative values of the flux. The inclusion of the branch switches in the 

model gives rise to many interesting features. The flux-density relation is known as 

the ‘fundamental diagram’ or ‘fundamental curve’. The strengths and weaknesses 

of the proposed fundamental diagram are then discussed.

After postulating the model, we solve the ensuing partial differential equation 

for certain simple initial conditions. The solutions are found by a method of char­

acteristics. Shocks and expansion fans must sometimes be incorporated into the 

solution, and we also discuss these. Remarks are made about conservation of mass 

and conditions on the entropy.

More general solutions are then sought in chapter 6, focusing in this chapter 

particularly on one-way flows in which solutions remain always on one branch of 

the fundamental diagram. In order to find general solutions numerically an artificial 

viscous dissipation term is added. That changes the character of the equation from a 

hyperbolic to a parabolic one. The discontinuities axe consequently ‘smoothed out’. 

This is a standard method in traffic flow theory [43], [57]. The parabolic equation 

is referred to throughout the thesis as ‘the continuum equation’. A finite difference 

scheme is employed to find solutions which replicate closely those found from the 

inviscid analysis in chapter 5.

We then extend the analysis to seek solutions that do not mimic the (fairly simple) 

analytical results of chapter 5. In particular, an asymptotic solution valid at small 

time is compared to the results from the numerics. There is a satisfactory agreement 

between the two.

Chapter 6 concludes with an examination of the steady states of the one-way 

flow. A special case in which the densities at each boundary are nearly equal is 

examined analytically. Other general solutions are difficult to compute accurately 

as inaccuracies seem to be introduced at the point in the scheme where the direction 

of the upwind differencing changes sign.

In chapter 7 two-way flows are examined for which the grains can move to and 

fro across the chutes. This necessitates the incorporation of branch-switching in the
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solutions to the continuum equation. For such solutions to be found we argue that, 

as a consequence of the introduction of the viscous dissipation term, the fundamental 

diagram must be changed near its endpoints. Explicitly, local viscous regions in the 

neighbourhood of the endpoints of the fundamental diagram permit solutions to 

smoothly switch branches. These local viscous effects are investigated analytically 

first at the low density branch switch and second at the high density branch switch.

In the former case, a similarity equation valid at small time is derived. The 

equation is solved by a Runge-Kutta technique, but a series solution is required 

through zero density since a singularity exists there. Smooth behaviour through the 

branch switch is found to exist. An alternative method is to find solutions that are 

asymptotically close to an exact solution of the equation. Crucially, this reveals that 

a large region of low density can evolve, mimicking the formation of a void on the 

chute. Furthermore, analysis shows that a separating region must have zero density 

at its minimum, as may be expected from physical intuition. Some solutions lead to 

an asymmetric density profile and these have minima which can move temporally. 

This observation has ramifications for the steady state solutions discussed later.

For the large density case, a small viscous layer is introduced which is valid for 

order one times. This yields a partial differential equation for the local density. The 

equation is inverted and solved by a finite difference method. Smooth curves which 

emulate the evolution of a cluster are shown to exist.

Steady states for the two-way flow are then examined. A simplified but represen­

tative version of the fundamental diagram is used to capture the main features of 

the flow. The continuum equation is written in terms of polar co-ordinates so that 

branch switching may be incorporated while avoiding problems associated with the 

bi-valued fundamental diagram. A few steady states are found, but the number of 

restrictions on the initial condition prevents us from finding very many significantly 

different steady states. It is demonstrated that the problem is not over-prescribed, 

despite the number of restrictions on the initial condition. We observe that appar­

ent steady states can be found in which sinusoidal-type solutions can be joined to 

constant solutions. These relate to the asymmetric minima mentioned above, which

24



move. We find, however, that such solutions have a growth at order one times 

at the ‘junctions’ and thus do not form valid steady state solutions, in the sense of 

a steady state being a large-time limit. Hence they are ultimately dismissed. Some 

steady states can be found analytically.

In chapter 8 an investigation of air effects on the grain flow is undertaken. We 

start with an analysis of the viscous effects between two grains, the separation 

between grains being small relative to their length. The viscous effects prevent the 

grains from touching, in line with the results in [44]. Following this, the interaction 

effects between many grains separated by small lubricating layers is researched. The 

stability of the array is investigated. Inviscid effects between two flat grains are then 

investigated. In this case grains are now able to touch. However, the interaction 

between many grains separated by small inviscid layers seems to have the same 

qualitative behaviour as the viscous case, with both yielding algebraic growth of 

small disturbances, and hence relatively weak instability.

The main body of the thesis then finishes with concluding remarks in chapter 9.

Finally, there are seven appendices: four of the appendices examine in more detail 

points made in the text; one discusses related experimental work involving the author 

concerning a measure of chute performance; another appendix concerns an argument 

for determining the boundary conditions at the chute walls in the inviscid model 

by a method of characteristics; the final appendix presents in summary form the 

industrial recommendations for Sortex Ltd.
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Chapter 2

One particle in a chute

One aim of this thesis is to find a suitable mathematical model for a chute flow of 

grains. However, it is sensible to start with a very simple case to see if this yields 

an analytical solution before undertaking the full problem.

We therefore consider in this chapter the trajectory of only one particle falling 

down a chute under gravity. As it falls, the particle bounces from side to side 

off the walls. The aim is to find the equations that govern its motion after each 

bounce. We obtain a set of difference equations which provide an iterative scheme 

for calculating the particle’s motion. Taking the limit of the coefficient of restitution 

tending to unity then produces differential equations for the motion. The solution of 

this continuous approximation can be compared to the numerics from the iterative 

scheme and thus the validity of the differential equations can be tested.

For the sake of simplicity at this stage, there are many assumptions in the current 

model, the main ones being as follows. First, it is assumed that the chute is vertical; 

second, that the grains are round and we assume that consequently no rotation is 

induced at a collision; third, that there is no frictional or drag force between the 

grain and the chute; fourth, drag forces or other air effects are not included until 

section 2.3. A more realistic collision model would have to reconsider these and 

perhaps other points.

To start with, then, we have the following simple equations of Newtonian particle
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motion,

my  =  -m g ,  (2.1)

and

mx  =  0. (2.2)

Here y  is the distance down the chute, x is the distance across the chute, g is the 

acceleration due to gravity {g ~  9.8 ms~2 as the chute is assumed to be vertical in the 

current chapter) and t is the time between collisions. A dot denotes differentiation 

with respect to time. Equations (2.1) and (2.2) give the solutions

Vn+I =  - \ a t 2 +  V*t +  yn, (2.3)

and

xn+i = u + t  +  xn, (2.4)

where u and v  are the moduli of the horizontal and vertical velocity components 

respectively. The subscript n represents a quantity at the instant of the n1h bounce, 

a superscript plus sign indicates a quantity immediately after a collision and a su­

perscript minus sign indicates a quantity immediately before a collision.

At the collision the velocities are assumed to change as follows:

vZ =  v~ ,  (2.5)

and

u i  =  eu~, (2.6)

where e is the coefficient of restitution and takes a constant value between 0 and

1. Equation (2.6) is Newton’s empirical law of restitution [46]. If e =  1 then the

collision is perfectly elastic and the particle conserves all its energy. Energy is lost 

in a collision if e ^  1 and so in this case a particle will return with its relative 

velocity reduced in magnitude. In particular, if e =  0, the collision is imperfect,

the particle loses all its energy during the collision and it coalesces with the chute

wall. Note that there is no minus sign in (2.6) because for the moment we are only 

considering the modulus of the horizontal velocity. The horizontal velocity is always
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considered to be positive and the modulus signs have been dropped. The vertical 

velocity component remains unchanged at a collision.

The time between each collision is the time taken to cross the chute:

t =  ac"+ 1~ a:n =  “  (2.7)
U n  U Z

where a  has been defined as a  =  xn+\ — xn, and is the chute width.

Thus, on substitution into (2.3), we obtain:

v"+l = - \ 9 ( j k )  + * { i k ) + v "  (2-8)
Clearly, we can also obtain an equation for the vertical velocity of the particle 

immediately prior to a collision,

qa  _ ,
Vn+1 =  - ~ + + v n . (2.9)

un

As there is no acceleration in the horizontal direction, the horizontal velocity imme­

diately prior to the (n +  l ) th collision is equal to the horizontal velocity immediately 

after the nth collision. Hence

u n + 1 =  u t ■ (2 -10)

Therefore the set of discrete difference equations governing the behaviour of the 

particle in the chute is:

“n + l= « “n. (2-H)

«»+! =  — ^ + v » .  (2-12)
u n + 1

and

Jfc.+i =  - \ g  [ - = — I + * > - [ - ¥ — \ + y n. (2.13)
2 \ “n + i/ \ u"+i /

Here a  is the horizontal distance between each collision, corresponding to the width

of the chute. Given the initial values of (u ~ v ~ ,y~ ) as {U^V^Yq) respectively we

find that after m  collisions the general solutions are given by

u m =  U0em , (2.14)

v -  =  - ^ ( e - m +  e - m+1) +  V0, (2.15)
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and

1
Urn 2  &

m +1

2.1 O btaining the differential equations and their solu­

tions

Here we consider the case of near-perfect collisions, for which we require e ~  1, 

together with a narrow chute so that a  is small. So we can expand e as

where E  is an 0 (1) constant.

Subtracting u~ from both sides of equation (2.11) and employing the above ex­

pansion we obtain:

If we take the limit as a  —* 0 and write a  =  Sh (the later being a small incremental 

distance in the horizontal) then we simply see the above as

e =  1 — a E

say, in the limit

a

(2.17)

Similarly, equation (2.12) is seen to become

—  =  - i .
dh u

(2.18)

Finally,
dy_ _  _ 1  ga v 
dh 2 u2 u

(2.19)

The boundary conditions are

u =  uq at h =  0, (2.20a)

v — at h =  0, (2.20b)
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and

y  =  0 at h — 0. (2.20c)

The solutions to the continuous differential equations derived above are straightfor­

ward and are as follows.

u =  uoe~Eh, (2 .21)

V =  V° +  ^ E  i 1 - eE" ) '  (2'22>

and

  vou0E  +  g _Eh g ( a E  +  2) 2Eh , g {aE  -  2) -  Au0v0E ,n nox
V ~  6 ~ 4E*ul 6 +  ' l2'2J)

Now it is possible to remove the factor of g from the solution (2.23) if we make 

the following transformation:

U° \  =  ^  (  U°C )  , (2.24)
Vo J  \  VOc j

where uoc and vqc axe the quantities to be used in a calculation. Consequently the 

solutions are now written as

u =  y/aguoce~Eh, (2.25)

v =  s& gvte +  (I  -  e®k) , (2.26)

and

„ -  <xvqcUQce  +  1 „Eh _  {aE  +  2) 2Eh {aE  -  2) -  4au0cv0cE 
auQCE 2 4E2auQC 4auQCE 2

2.2 Com parison betw een  th e  resu lts from th e  continu­

ous and d iscrete equations.

We now compare the solutions of the ordinary differential equations (2.25), (2.26) 

and (2.27) with the results from the difference equations (2.11), (2.12) and (2.13) 

in order to test the validity of the continuum approach. In truth, the difference 

equations are the equations which ‘correctly’ describe the behaviour of the particle 

and the ordinary differential equations are a continuous approximation to this.

30



We plot the solutions for u and v as functions of y  from the differential equations 

for typical parameters. We also calculate numerically the position and velocity 

of the grain at each collision using the iterative scheme implied by the discrete 

equations. The data is used to plot u~ and v~ as functions of yn. The solutions are 

then compared graphically to assess the validity of the continuous approximation. 

To put this on a firmer quantitative basis, the error between the two methods is 

calculated after the final collision.

To find u and v  as functions of y  from the continuum approach, h must first be 

eliminated from the solutions. We can write h as a function of y  and substitute this 

into the solutions for u and v for typical parameters. (By typical parameters we 

mean simple representative values of Uqc, vqc and a.)

We observe that equation (2.27) is quadratic in eEh. Thus the solution is

Eh _  4a {vqcUqcE  +  1)
e 2 (2 +  aE)

y j  16 (av0cuocE  +  l ) 2 +  4 (2 +  aE) ((aE  -  2) -  4av0cuocE  -  4E 2aulcy)T _____ .
(2.28)

Now if we choose u$c =  vqc =  as typical values for the non-dimensional 

velocities at h =  0 (because of (2.24), so that the dimensional velocities are 0(1) in 

magnitude, which seems to be approximately correct, at least for an initial investi­

gation), and if we put E  =  1, (2.28) reduces to

( 2 .29 )

Since eh >  0 the positive root must be taken here.

Substituting into equations (2.25) and (2.26) for u and v we obtain the solutions 

as functions of y:

u =  _ +  a - (2.30)
y/(2 +  a) ((2 +  a) - 4 y)

and
y/g (2  +  a )((2  +  a ) - 4 y )  /ooiX

W“  (2 + ^ )  ' [ 6 }
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Figure 2.1: Graph showing the difference between the analytical solution for u with 

a  =  0.1 and the numerics after ten bounces. The solid line is the solution from the 

iterative scheme and the dotted line is the solution from the differential equation.

Figure 2.1 shows the continuous and discrete solutions of u(y) for a  =  0.1. (For 

the discrete solutions u{y) is actually a plot of un versus yn). This involves only 

ten impacts, but there is clearly a good match between the two results. In fact the 

error between the value of u from the differential equation and the value from the 

discrete equation (which can be considered to be the ‘true’ value) at the end of the 

computation is only 2.08%.

Figure 2.2 shows the solutions for v(y) from the two methods for a  =  0.1. Again, 

a good match between the results is observed. The error between the two values at 

the end of the simulation is 2.04%.

2.3 Som e brief remarks on air effects

If drag is included between the grain and the air (we still assume that there are no 

frictional or drag forces between grain and chute), the governing equation for the
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Figure 2.2: Graph showing the difference between the analytical solution for v  with 

a  =  0.1 and the numerics after ten bounces. The solid line is the solution from 

the iterative scheme, whereas the dotted line is the solution from the differential 

equation.
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particle’s motion in the vertical direction (2.1) is modified to

my =  mg — X m y2 (2.32)

where A is a positive constant that determines the magnitude of the drag force. 

This is the amplitude-squared law of drag, which assumes a sufficiently large flow 

rate or grain-based Reynolds number. Our concern will tend towards this case of 

higher flow rates. An alternative for lower grain-based Reynolds number is a linear 

term, —A2 m y  say [32]. It has also been assumed here that |±| \y\, which seems

sensible for the current industrial application as observation does indeed indicate 

that horizontal velocities are significantly less than vertical velocities in the chute. 

We mention finally here that we have not considered the ^-momentum equation but 

we anticipate that similar terms would arise there.

To continue, then, the particle will fall at terminal velocity when the drag balances 

with gravity and the acceleration is zero. An expression for terminal velocity can 

thus be found by putting y  =  0 to obtain

This is a classical problem of Newtonian dynamics but let us note below the details 

a little. To solve the above equation, let q =  y  to obtain

(2.33)

Denoting the terminal velocity as ve, we see

(2.34)

The governing equation therefore becomes

(2.35)

(2.36)

where c is a constant of integration. Integrating reveals

—Ug In |ug — q | =  2gy +  c. (2.37)
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If the particle starts at rest at y  =  0 then c =  — v\  In |u21. Hence

q =  (1  -  e ^  ) , (2.38)

i.e.
',2 2 a y

=  1 — e (2.39)
vi
r
,.2'e

.2For terminal velocity to be reached, we require 2gy »  u2 so that K  —> 1 then. The 

limiting case is 2gy =  v2. Typical values in the industrial setting (see chapter 1) are 

roughly y ~  lm  and g ~  10ms-2 , so ve =  0(4 .5)m s-1 .

Further, the chute-based global Reynolds number of the flow is Re — ~  where L 

is the chute length, V  is the terminal velocity and v  =  1.5 x 10-4m -2s is the viscosity 

of air. Thus Re ~  3 x 104 and therefore the dimensional boundary layer thickness 

S =  0(Re~?L)  ~  5mm. This means that the global boundary layer thickness is 

of the order of the grain size, and so we might expect air effects to be a significant 

aspect of the chute flow.

On the other hand the grain-based or local Reynolds number of the flow is Reg =  

where Lg is the length of a rice grain, for instance. That is Lg ~  5 x 10-3m. 

Thus the local Reynolds number is Reg ~  150, which is a moderate value, lying 

somewhere between the large or small regimes. The local dimensional boundary 

layer thickness is Sg =  O ^Reg 1 Lg^ ~  0.4mm, which nominally is small relative to 

the grain size. Air effects will be dealt with at the end of the thesis in chapter 8.

2.4 Sum m ary

We have seen that the problem of a bouncing grain falling down a chute, which is an 

inherently discrete process, can yield to a continuum approach. This encourages a 

view that an analytical model may be of use for a simple particulate problem and we 

hope that the same will be true for the fully developed chute flow. However, before 

tackling the problem of finding a suitable continuum model for the chute flow (which 

is begun in earnest in chapter 5) we wish to examine more thoroughly the physical 

processes at work on the chute. In order to do this, a computational simulation of 

the flow is developed in the next chapter.
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Finally we have demonstrated in this relatively short chapter that air effects may 

be a significant aspect of the flow, since the boundary layer thickness is of the order 

of the grain size. We shall return to a study of the air effects in chapter 8.
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Chapter 3

Computational simulations of 

chute flow

Prior to developing continuum or statistical models of the chute flow, we wish to gain 

more understanding of the physical and impact processes occurring on the chute. In 

order to do this, we directly compute in the present chapter the trajectories of all 

the particles in a representative large group as they fall down the chute. We aim to 

find the velocities and positions of the particles as they exit the chute, and in some 

sense solve the complete problem. It is then possible to compare these numerics with 

the data provided by Sortex. Asking if the computational model exhibits any of the 

observed behaviour seen in reality may enable us to see if the model has captured 

any of the important processes which occur upon the chute. Thus we may obtain 

some insight into the physics of chute flow.

3.1 B inary collision m odel

We start with the most basic of models. We assume that there is no air resistance, 

that there is no friction between the particles and the chute and between particles, 

that all particles are spherical and of equal mass, that no rotation is induced at colli­

sions, that restitution acts only in the normal direction, and that only collisions between pairs of part 

(called binary collisions). Therefore the positions and velocities of the i th particle
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at the (n +  l ) th time-step are given by the following simple ballistic equations (cf. 

chapter 2):

*Et,n+l — ~b •£*,«» (3.1)

(3-2)

'U/itn+1 — î,n> (3.3)

and

Vi,n+1 — 9̂  ~1“ ^i,n• (3.4)

In the above, x , y, u and v are the horizontal and vertical co-ordinates and the 

horizontal and vertical velocity components respectively; t is a fixed time-step and 

g =  9.81 ms~2 is the acceleration due to gravity. Note that equation (3.3) simply 

states that the horizontal velocity is unchanged at each time-step since there is no 

acceleration in the horizontal direction.

If we find that a collision occurs (see test below) within a time-step then the 

velocities of the colliding particles must be changed accordingly. To find the correct 

equations we consider a collision between the ith and j th particles. Conservation of 

momentum yields:

centres (i.e. the normal direction to the point of contact) forms an angle 6 to the 

horizontal, restitution states that in the normal direction

^i,n "b "b (3.5)

and

1H,n "b Vj,n — î,n "b Vj,ni (3.6)

where a bar denotes a quantity after a collision. Newton’s empirical law of restitution 

[46] also applies at collisions. If two particles collide so that the line between particle

and in the tangential direction the velocities do not change so

(uitn -  Ujtn) sin(0) -  (Vi,n -  Vj,n) cos(0) =  (ui)Tl -  uj%n) sin(0) -  {vitn -  vj<n) COS(0)

(3.8)
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T hat is to  say, the speed of retreat of the particles along the normal direction to the  

point of contact is the speed of approach along the normal direction to  the point of 

contact reduced by a factor e, known as the coefficient of restitution, which takes a 

constant value on the interval [0,1]. This is a consequence of energy loss at collisions 

in general (due to  heat exchange during im pacts, and so on). If e =  1 then energy is 

conserved at a collision and the speed of separation is equal to  the speed of approach. 

Otherwise energy is lost in a collision and particles separate less quickly. In the case 

e =  0 all energy is lost and the particles stick together, or coalesce.

Solving equations (3.5) and (3.7) and equations (3.6) and (3.8) sim ultaneously  

gives

rii,n =  -  [(1 +  e) {ujyn -  (tti,n ~  uj>n) cos (2(9) -  (vi>n -  vjyTl) sin (2(9)) +

(3 -  e) Uitn] (3.9)

?>j,n)s in  (20)) +

(3 - & ) U j , n] (3.10)

=  j [ ( l  +  e) (Vj.n +  (Vi,n -  Vjtn) COS (20) -  (tii>n -  Uj,n) sin (20)) +

( 3 - e K n] (3.11)

and

Vj,n =  ~  [(1 +  e) (Vi,n -  (vitn -  vjtn) cos (20) +  («<,„ -  ujjTl) sin (20)) +

(3 — e) Vjin] (3.12)

as the new velocities following the collision during the n th tim e-step.

3.2 C om putational algorithm

T he equations of section (3.1) which govern the particle dynam ics on the chute 

are now used in a com putation to  produce a first sim ulation of the flow for many

-  [(1  +  e )  ( UitTl +  ( Ui tn -  U j tn) COS (20) +  { v i>n -
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particles. In particular, we can plot the particle trajectories and find the distribution 

of particle positions and velocities as the particles exit the chute. A brief overview 

of the algorithm is as follows.

1. Specify the initial conditions.

2. Advance the particles to their new positions and find their new velocities using 

equations (3.1) - (3.4).

3. Check for collisions.

4. If particles are found to be colliding, change their velocities in accordance with 

equations (3.9) - (3.12).

5. Go back to 2). Or

6. Stop when particles have exited the chute and save their positions and veloci­

ties.

We expand on this description in a little more detail as follows. Initially, particles 

are placed evenly on a horizontal line at the top of the chute. The particles are 

disks of one millimetre. They are given arbitrary horizontal velocity fluctuations, 

but the vertical velocity component is chosen initially to be zero. In the first cases, 

the horizontal velocities are of the form =  (—l) 1 * 0.01 sin(rjio), but later we 

choose random values. There are 150 particles in each simulation.

The algorithm for detecting collisions works in the following way. At each time- 

step the distance between particle centres is calculated for all possible particle pairs. 

If this distance is less than the particle diameter the particles are deemed to be 

colliding. Note that this means the particles are actually overlapping (albeit only 

slightly) at a collision, which is unphysical. To avoid this problem a method was 

tried in which a variable time-step was used in order to exactly determine the time at 

which the particles just touch. However, that typically required a continual reduction 

in the time-step. If the initial time-step is small then after a few such reductions 

the computer reads the time-step as being identical to zero and so the exact point
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Figure 3.1: Plot showing the final particle distributions for two different time-steps. 

We see only a small difference between the results and therefore state that the 

‘overlap’ weakness is reduced if the fixed time-step is small. The particles have 

dropped down the entire chute (i.e. lrra).

of collision cannot be located. Instead, we require the time-step to be fixed and it 

is hoped so small that no collisions are accidentally missed by advancing too far. 

Choosing a small time-step also minimises the overlap problem. We checked that 

the results are robust to this (seemingly small) flaw by running the program for a 

particular fixed time-step, then re-running the program again with the same initial 

conditions but with a smaller fixed time-step and checking that the results have 

not changed significantly. When this is done, see figure 3.1 below, we see negligible t 

change in the results.

Others have used similar algorithms in the study of granular flows. See, for 

example, a computer simulation of Louge [39] which investigates a theory of Jenkins’ 

[26] concerning the boundary conditions for flat, frictional granular flows. Louge also 

has to negotiate the problem of overlap. He ran his simulation until each particle has 

experienced an average of ten collisions. The time-step is then readjusted so that
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the mean overlap does not exceed a given tolerance. This is optimised by running 

simulations with decreasing values of the tolerance until all results of interest become 

insensitive to further reductions.

On the other hand, researchers such as Sigurgeirsson and Stuart [53] avoid the 

problem entirely by using an event-driven algorithm. In this method the time to 

possible next collisions is calculated and the computation is advanced by the small­

est time. Thus the exact point of collision is located and there is no risk of missing 

collisions. However, for this method to be used it must always be possible to de­

termine the time to the next collision. We fear that this may not always be the 

case, especially for more complex models which may include non-linear effects. As 

we wish to write a program that would be able to deal with quite complex cases we 

opt for the former method.

A fundamental test of the code, where we check some results against a simple 

analytical case, is discussed in Appendix A.

3.3 Prelim inary results

We start with an investigation of the effect of changing the coefficient of restitution 

e. In simulations for this study, periodic initial conditions were chosen for the 

horizontal velocity fluctuations. Such an initial condition is found to provoke, or 

seems to provoke, the clustering phenomenon, explained below.

We examine figures 3.2 - 3.4 illustrating the particle trajectories on the chute for 

varying values of the coefficient of restitution for the same periodic initial conditions, 

i.e. u^o =  (-1)**0.01 sin(a:). Each line is a path of a particular particle on the chute. 

The chute has been chosen to have a width of 0.3m and a length of lm , as in the 

Sortex machines (chapter 1).

It seems that as the coefficient of restitution is reduced the distribution of particles 

may become ever more inhomogeneous: the particles apparently form into clusters, 

separated by voids, by the time they exit the chute. A suggested mechanism for 

this is as follows. As particles collide they lose energy. The energy loss is directly
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Figure 3.2: Particle trajectories for e =  0.9. The picture is an ‘energetic’ one with 

many collisions. The final distribution is much more uniform here than in other 

cases.
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Figure 3.3: Particle trajectories for e =  0.4. Notice that seemingly particles quickly 

form into large coalesced masses and the final distribution is highly inhomogeneous 

and clustered.
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Figure 3.4: Particle trajectories for e =  0.1. The picture is much the same as in 

the previous case except there are slightly more apparent clusters and, on average, 

fewer particles in each one.
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related to the coefficient of restitution; as e —► 0, energy loss increases. Consequently 

particles separate with a much reduced velocity. Another particle may collide with 

one of the particles in this pair; there would now be three particles in a small region 

separating slowly. Thus groups begin to form. After many collisions this might lead 

to the apparent clusters seen in the figures. If e is larger it may take a longer time to 

form these groups, as not as much energy is lost in each collision, and so the particle 

distribution might be more homogeneous as the particles exit the chute. If, however, 

e is very small the particles will tend to fall in small coalesced groups; two particles 

will collide and in effect form a coalesced pair. Almost all the horizontal velocity 

component will be lost, (if the particle velocities are initially opposite and small in 

magnitude, which is true for neighbouring particles in the current simulation) and 

the pair will fall almost vertically through the chute. Prom here on these two particles 

will not have a sufficiently large horizontal velocity component to experience further 

collisions with other particles. Hence for very small coefficients of restitution we 

tentatively suggest the possible clustering may be less pronounced than for medium 

values. Further investigation of the apparent clustering phenomenon is presented in 

Appendix B.

We must also be aware of the issue of ‘inelastic collapse’ in the model, i.e. the 

phenomenon of a particle undergoing an infinite number of collisions in a finite 

time [29], [40]. (The classic example is the case of a bouncing ball: the height of 

the top of the bounce becomes smaller and smaller with increasing time but only 

asymptotically approaches zero). Inelastic collapse occurs as a consequence of using 

a ‘hard-disk’ model. The assumption was made that the particles were rigid when the 

collisional rule was given in equations (3.7) and (3.8). However, Zhou and Kadanoff 

[65] have shown this only to be a significant issue when e < 7 — 4\/3  «  0.072 for 

one-dimensional systems and our model, for the moment at least, considers particle 

collisions only on horizontal lines. Since the coefficient of restitution for grain- 

grain collisions in reality is seen to be around 0.25 -  0.5 we need not be concerned 

about this. (Of course, there are alternative models for dealing with particle contact 

collisions, such as the so-called ‘spring-dashpot’ system [40], [47]).
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The conjectured clustering phenomenon also leads us to ask about what may hap­

pen if there are more than two bodies involved in a collision. This may at first seem 

likely in a large group of particles. Hence we develop our own empirical law for 

three-body collisions (although other authors have considered this, e.g. Constantin, 

Grossman and Mungan [9]). We consider three particles, particles 1, 2 and 3. We 

split the three-body collision into a series of binary collisions until the particles es­

cape (again this may be an infinite number of collisions if inelastic collapse occurs 

instead; so we remain outside this regime). However, the results are found to be 

dependent on order - a sequence starting with particle 1 hitting particle 2 does not 

yield the same result, in general, as collisions where the first collision is between 

particles 2 and 3. Thus we find the result for both sequences and take the average 

of the final velocities as our empirical law. However, when simulations are run it 

is found that in practice three-particle collisions are extremely rare and are thus of 

negligible effect, and so there is no great need for the inclusion of our new empirical 

law in the code. The reason for this could be that the horizontal velocity fluctuations 

within a proposed cluster are so small that the particles tend to fall together just 

as one coalesced mass. Figure 3.5 shows the typical reduction in horizontal velocity 

fluctuations from the initial values. At first, the amplitude of the velocity fluctua­

tions has a magnitude up to the order of 0.01, but at the bottom of the chute the 

amplitude is roughly half this value, on average. One small flaw with the averaging 

approach, described above, is that it could enhance energy loss. A better approach 

in the future may be to randomly select between the two options each time.

We now move on to examine the final particle distributions for varying initial 

density and compare them with Sortex images. To produce images from the author’s 

code, the initial condition is changed so that particles start with random horizontal 

velocity fluctuations. The particles are evenly spaced along a line at the top of 

the chute. We plot the final positions and then re-run the simulation for another 

batch of particles. We plot the final position of these particles exactly one particle 

diameter above those of the previous batch, and so on. Thus this picture is not a 

‘true’ image of many particles coming off the chute and, importantly, there is no
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Figure 3.5: Graph showing reduction in amplitude of horizontal velocity fluctuations 

for e — 0.5. The solid line is the horizontal velocity component of each particle as 
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at the top of the chute.
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vertical interaction between each batch, which is perhaps an over-simplification.

However, Sortex images are actually produced in somewhat the same way. Sortex 

engineers take an image of one line of particles as the particles exit the chute and then 

take another image and scan that above the previous one, and so on. Therefore, 

even in a Sortex image, one is not looking at particles falling off the chute, but 

rather a sequence of snap-shots of particles as they come off the chute. Hence these 

Sortex images and the computer generated images from the present bode make for a 

reasonably fair comparison. (Although there is no vertical interaction between the 

lines of images that make up the Sortex ‘photograph’, this interaction has existed 

upon the chute and therein lies an important difference between our computation 

and reality). In the code we vary the density by first sending down 150 particles 

evenly spaced on a line, then we change to 100 and finally only 50 grains.

Observe that the densities used in the computation do not directly correspond to 

the densities in each of the corresponding Sortex images. Rather the comparisons are 

only meant as a guide; they show at most a very informal if encouraging agreement 

between the present model and the real-life Sortex results, and indeed they could 

be illusory. That is to say, we are not discussing flows of the same density, we 

are only comparing example? of dense flows from simulation and experiment, then 

comparing sparser flows, and so on. Such a comparison, however, is over-simplistic 

as we compare a distribution of points to a distribution of finite sized grains; this is 

a weak point and in view of this all comparisons must be made cautiously.

Some general agreement between the model and Sortex images is possibly ob­

served. The density distributions appear to be inhomogeneous in all cases. In the 

high density case there appear to be few voids and the size of each void seems roughly 

to be of the correct magnitude as seen in the Sortex image. The number of such 

voids in our picture and the Sortex image also seems to be of the same order. There 

also appear to exist regions of very high density where grains are tightly packed 

together and this also is perhaps a common feature of both images.

In the medium density picture we again see apparently the same common general 

features described above. The conjectured voids perhaps are slightly larger and
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Figure 3.6: Computer generated image of high density flow. Each point represents 

the centre of a grain.

Figure 3.7: Sortex image of high density flow.
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Figure 3.8: Computer generated image of medium density flow. Each point repre­

sents the centre of a grain.

Figure 3.9: Sortex image of medium density flow.
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Figure 3.10: Computer generated image of low density flow. Each point represents

the centre of a grain
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Figure 3.11: Sortex image of low density flow.

0.05

52



perhaps slightly more numerous, but in general the picture appears not to have 

changed much.

The low density case is again potentially encouraging if no more. Some isolated 

grains are appearing in the picture, the possible clusters do not seem to be as tightly 

packed and the possible voids appear to be larger and frequently occurring.

In conclusion, the model appears to capture perhaps the creation of inhomoge- 

neous density distributions by the physics of clustering and energy loss. This seems 

to be a potentially important feature of chute flows. Indeed, we are not the first 

to make this observation, see [2], [29], [47] and references therein. Questions of 

inelastic collapse and many-particle contacts have arisen and seem to be relatively 

unimportant for the parameter regime of interest to Sortex (at least in one dimen­

sion). Finally, the model, albeit simplistic (as described in a previous paragraph), 

shows some possibly encouraging agreement with reality.

We should re-emphasise that a question remains about how the distributions of 

rice differ from a random placement of grains on a plane. The question is of signif­

icance to Sortex. Indeed, the author undertook a preliminary investigation of the 

issue whilst working at Sortex, of which a brief summary can be found in appendix 

C and more detailed reports can be obtained on request. The investigations were 

an initial attempt to tackle the issue, a complete analysis of which is outside the 

realm of the present thesis. We reiterate here the weakness of comparing compu­

tational distributions of points with experimental distributions of finite-sized grains 

and (although subsequently in section 3.4.1, see figure 3.17, computational results 

with finite sized discs are presented) we state again that all comparisons must be 

made cautiously.

3.4 Inclusion o f m ore com plex effects

It is desirable to include more complex effects in the simulation, such as interactions 

in the vertical and effects due to the chute geometry. In particular, we wish to 

have a physically realistic computational simulation with which we can investigate
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pertinent aspects of the flow. Recall from chapter 1 that the wish is to reach a 

uniform flow which will reduce the erroneous ejection of grains surrounding a reject 

particle. Methods of statistically measuring the clustering (in order to determine 

if there is any improvement to the flow) were investigated by the author during a 

period of experimental work undertaken at Sortex Ltd. and these investigations are 

discussed in appendix C.

To enable us to accurately model the full flow, we utilize a commercially available 

code (from Itasca) called ‘PFC2D’. This code allows easy simulation of complex 

granular phenomena using a programming language called ‘FISH’ alongside useful 

internal routines. With this code it is relatively simple to include wall/grain friction, 

change the grain density, alter wall shape and investigate other relevant properties. 

First, this code is used to replicate the earlier results found from the simulations us­

ing the author’s code, before an investigation of more complex effects is undertaken.

A number of parameters must be set in the PFC2D code for both the wall prop­

erties and the ball properties. For the walls and the balls, the normal and tangential 

shear stiffness is arbitrarily set at a value of 1 x 108N  m ~ l to ensure that they are 

sufficiently stiff. This is the recommended value in PFC2D for a wall. The balls are 

also set to have an arbitrary density of 1000kg m~3, i.e. about the density of water. 

This may or may not be suitable for rice. Friction between balls is set to zero and 

the acceleration due to gravity is chosen as 8.5m s~2 as the chute typically slopes 

at an angle of 60° to the horizontal. The coefficient of restitution between balls has 

to be set by choosing a critical damping ratio. In order to make sure that this ratio 

corresponds to a value of e ~  0.4, as in the author’s computations, we must set the 

‘notension’ function to ‘on’ and pick the normal viscous damping parameter as 0.35. 

Finally, in each experiment the balls start along a horizontal line at the top of the 

chute with initial velocities specified as described below.

3.4.1 Results

As mentioned above, we initially employ the commercial code to run a simulation of 

the same type as that in the author’s code in order to compare with previous results.
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PFC2D3.00
Stop 292000 15:18:51 Wed Jan 26 2009

V k w S to  
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Wall
Ball

Itaaca Consulting Group, Inc. MlnnoapolisMinowpgtiT. Mfcmtwa U8A______

Figure 3.12: The above figure shows the end result of a simulation in which particles 

enter the chute with horizontal velocity fluctuations only (as in the author’s code). 

They then fall under gravity and collisions also occur. We observe a clustered 

structure which is very similar to the results previously produced.

That is to say, we run a simulation in which one line of particles falls through a chute 

with only random horizontal velocity fluctuations. Again, friction, air effects and so 

on are neglected. There are fifty particles in the simulation.

Figure 3.12 shows the end result of one simulation. The picture is qualitatively 

the same as before, with a clustered structure being observed.

Having confirmed that the PFC2D code seems to yield results consistent with the 

established code, we move on to include more complex effects in the model. Vertical 

velocity fluctuations are now included in the initial condition. The vertical velocity 

fluctuations are random in magnitude, but the velocity is always downward (i.e. we 

exclude particles moving up the chute). Further to this, a second ‘batch’ of particles 

enters the chute after an arbitrary time delay.

As a consequence of the vertical velocity fluctuations, particle interaction between
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Figure 3.13: In the above figure, vertical velocity fluctuations have been included in 

the initial condition. Further to this, a second ‘batch’ of particles enters the chute 

after a time delay. As a consequence of the vertical velocity fluctuations particle 

interaction between the two batches occurs resulting in situations with the above 

character. Only the lower half of the chute is shown.

the two batches occurs. The faster particles from the second batch catch up the 

slower particles from the first batch and (more) collisions take place. This may be 

why there appears to be more clustering toward the top of the distribution. There 

also appears to be a banded structure: a slight gap is perceived between the fast 

and the slow particles. We observe that a clustered structure is still apparent and 

the distribution of grains is not homogeneous, see figure 3.13.

The effect of chute geometry is now introduced into the simulation. Four different 

chute shapes are examined: a straight chute, a chute that widens, a chute that 

tapers and a chute that has a bend. Only a pair of particles with random horizontal 

velocity fluctuations are placed in the chutes at first. (Vertical velocity fluctuations 

are again neglected for this simulation).
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Figure 3.14: We now move on to a preliminary investigation of chute-shape effects. 

First, we simply place a pair of particles at fixed positions with random horizontal 

velocities into four chutes of different shape. The first chute has a part where it 

widens and the end result appears to be very similar to the straight chute. The 

second chute narrows part way down. This seems to create a vertical displacement 

of the particles. Third is the straight chute for which the results have already been 

studied more fully. Finally, there is a chute with a bend. Here the particles are seen 

to be much further up the chute than in the preceding examples.

Figure 3.14 shows the final positions of the two particles. In the chute which has 

a widening the results are much the same as for the straight chute. The second 

chute, which tapers, seems to create a vertical displacement of the particles. In the 

chute with the bend it appears that the particles take much longer to fall through 

the chute as the particle pair is still near the middle of the chute at the time when 

the other particles are exiting.

Next, many particles are placed in these chutes. In this simulation vertical velocity 

fluctuations have again been neglected. Note that as the first chute is narrow at
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PFC2D 3.00
Step 630880 15:13:31 Tue Jan 25 2005

View Size:
X: -1.890e+000 <*> 9.000»-002 
Y: -1.804e*000 <-> 6.042a-001

Wall
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Itasca Consulting Oraup, Inc.

Figure 3.15: Many particles are placed in the chutes. The different particle be­

haviours are discussed in the text.

the top only half as many particles can enter this chute. The end result is again 

qualitatively similar to the straight chute except that there are fewer particles and 

all of them are in a region near the centre of the chute. The second shape, namely 

the tapered chute, splits the grains into two groups. The particles that start at 

the centre cluster together, as usual, through collisions with neighbouring particles. 

They then fall straight through the middle region of the chute without colliding with 

the walls and thus go ahead of the other particles. These other particles are involved 

with collisions at the walls that slow their fall and cause them to move toward the 

centre of the chute. This causes them to be displaced vertically. Here they undergo 

further particle-particle collisions. Hence a second cluster of particles evolves higher 

up the chute. In the fourth chute all particles hit the sloping right-hand wall which 

slows their fall and disperses them slightly. See figure 3.15 for clarification.

For the final investigation concerning the chute geometry we include vertical veloc­

ity fluctuations (cf. figure 3.13). The effect of this seems to be a vertical dispersion
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PFC2D3.00
Step 1013900 15:27:11 Tue Jan 25 2005

View Size:
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Figure 3.16: In the final computation on chute shape effects, vertical velocity fluc­

tuations are added. The different behaviours are described in the text..

of the particles in the widening chute, in the straight chute and in the tapered 

chute. For the chute with the bend, the vertical velocity fluctuations seem not to 

significantly alter the previously observed behaviour. We refer to figure 3.16.

In the above simulations we have quite systematically introduced more complexity 

into the computational simulations. We at first included vertical velocity fluctua­

tions, then added the effects of changing the chute shape, and then combined the 

two. We find that clustering is a key feature of all the flows, especially those that 

neglect vertical velocity fluctuations. A brief investigation of chute shape effects 

demonstrated that none of the changes in geometry appeared to give significantly 

more uniform distributions.

As a final experiment, we return to the straight chute and this time allow sixteen 

batches of interacting grains to fall down the chute. Both horizontal and vertical 

velocity fluctuations are included. There are now 944 particles in total. This sim­

ulation is perhaps most similar to a chute flow on a Sortex machine. Figure 3.17
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Figure 3.17: A final simulation in which 16 batches of interacting grains fall through 

the chute. Only the final portion of the chute is depicted and the particles are shown 

as they exit the chute.

shows the particles as they exit the chute. The main features to note are the possi­

bly clustered nature of the particles (some of the apparent clusters are quite large 

and dense) and the fact that particles seem to form high density regions near the 

walls. Returning to the comments made at the end of section 3.3, it may perhaps 

be more useful to compare this figure, showing a distribution of finite-sized discs, 

to the experimental results in figures 3.7, 3.9 and 3.11, which show distributions of 

finite-sized rice grains.
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3.5 Sum m ary

In this chapter, computational simulations of chute flow have been studied. Initially 

a simple code developed by the author was used to demonstrate that clustering is 

a key feature of flows in the absence vertical velocity fluctuations. These results 

appeared to agree qualitatively with results from Sortex machines.

Next, a commercially available code PFC2D was used to include more complicated 

effects. This included the introduction of vertical velocity fluctuations. Clustering 

was still seen to be a key feature, although perhaps to a slightly lesser extent than 

previously.

An investigation into chute shaping effects was also undertaken. None of the 

adaptations to the shape appeared to significantly improve the uniformity of the 

particle distributions.
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Chapter 4

Analytical models of chute flow

In the previous chapter we employed computational simulations of chute flows of 

grains in order to deepen our knowledge of the important physical processes. We 

observed that clustering is a key feature and that a fairly simple simulation, neglect­

ing vertical interactions, appeared to capture the crucial aspects of the flow. We now 

wish to develop in this chapter accurate analytical models of the grain flow which will 

also demonstrate the appropriate behaviour. There are two main avenues of study 

when tackling particulate flow problems analytically: one is statistical mechanics, 

and the other continuum mechanics.

4.1 Statistical m echanics

Statistical mechanics seems (initially at least) to be a desirable method of studying 

granular and particle-laden flows. The idea of following every particle’s motion to 

determine the physical properties of a system, as in computational methods (e.g. 

in chapter 3), is perhaps very inelegant by comparison. Rather, using probabilistic 

methods has historically been seen to be a very powerful method of describing many 

complex systems macroscopically, consider for example the kinetic theory of gases. 

Indeed, discussing granular flows using kinetic theory has been attempted with some 

success in the past [50].

It must be noted however that there are some important differences between an
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ideal gas and a granular flow, differences which some scientists would argue make 

this approach untenable [15]. First, particulate systems are highly inelastic and 

energy is lost at each collision. Second, the mean free path of a particle in a typical 

flow is of the order of particle size. Third, the rice-grain case is itself different from 

the traditional granular case (the latter flow is characterised by a rapidly moving 

monolayer without enduring contacts). Finally, in our system, the particles are 

continually accelerating due to gravity and hence there is a continual input of energy. 

Thus some assumptions of the kinetic theory of gases and statistical mechanics are 

readily broken in practice.

Yet the use of probabilistic methods and statistics remains very appealing and

there have been suggestions that the study of lattice gas cellular automata may be a

powerful way forward here [45]. In the latter particles are followed along a lattice as 

opposed to particle distributions in Lattice-Boltzmann methods. We do not however 

examine these methods in this thesis.

It is possible, nevertheless, to examine here a very simple probabilistic method 

of determining the final velocity distribution of the particles as they exit the chute. 

Suppose that two particles, particle 1 and particle 2, undergo a series of N  collisions 

with each other. Let a  — ^  and (3 =  Using equations (3.9) and (3.10) it is 

possible to show that after one collision

Wi.i +  U2,1 =  (a  +  P) (ui,o +  u2,o) (4.1)

and

ui,i — ^2 ,1  =  {a -  (3) (uito -  U2 ,o) • (4.2)

(Recall that velocities are denoted Ui,n where i is the particle number and n is the 

collision number). Therefore after N  collisions:

ui ,n  +  U2,n  =  (a +  P)N (ui,o +  U2,o) (4.3)

and

ui ,n ~ u2,n  =  (oc -  (3)n  (tti,o -  u2fo) • (4.4)
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Hence the final velocity of the first particle after N  collisions is

( a  +  p f  . , ( a - P ) "  .
Ul N = ----- ------ (u10 +  U2,o) H 2 ------ (Ul’0 -  u2,o) (4.5)

which, in terms of e, can be written as

Ul,w = ( L _ f ^ Ul ,0 + ( i + ! ! l  U2i,  (4 .6)

The above is true only if particle 1 continually collides with particle 2. However,

particle 1 will in reality collide with other particles. These particles will be in a

small neighbourhood of particle 1. So qualitatively we may expect their behaviour 

to be roughly the same, as seen from the computation. That is to say, we expect 

the velocity fluctuations of neighbouring particles in a small region to be of the 

same order. Thus we assume that all collisions that particle one undergoes can be 

approximated as if particle one has been continually colliding with only one other 

particle. In general we can write the final velocity of the ith particle as

( l  -  eNi) ( l  +  eNi) , x
Ui,Ni — 2 4" 2 u i+ 1,0* (4-7)

Therefore, provided we can find an approximation for Ni, the expected number of 

collisions for the ith particle as it falls through the chute, we can obtain an expression 

for the average velocity distribution as the particles exit the chute.

Now we state that

Ni =  [ T Pi (t) dt (4.8)
Jo

where Pi (t ) dt is the probability that the ith particle undergoes a collision within a 

time dt. Also r is the length of time a particle spends on the chute. The problem is 

now reduced to finding a suitable expression for Pi (£), which is a probability density 

function.

If we try, as a first approximation, Pi (t) =  p, the packing density, generally poor 

results are seen except in areas where the particle density is sparse and each particle 

has undergone few collisions. See figure 4.1 for example. Moreover, the model lacks 

spatial symmetry: each particle acts only on the particle to its left and is acted on 

by the particle to its right, which does not seem to be sensible.
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Figure 4.1: Graph showing difference between first approximation for velocity dis­

tribution at the bottom of the chute (dashed line) and the actual distribution (solid 

line). The initial distribution was Ui =  0.1 * cos (O.lz). Agreement is only seen in 

regions where the density was seen to be sparse. (The y-axis is the velocity of the 

particle, the x-axis is the particle number).
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Note also that the above approximation would be poor for the case of random 

velocities in the initial conditions. This is owing to the assumption that neighbouring 

particles have velocities of the same order. Clearly, in the random case, there would 

be no reason for this. Since Sortex suggest that random velocity fluctuations are 

the most sensible initial conditions the assumption is violated and this approach, it 

is felt, has to be abandoned.

Another statistical approach is that of mean field theory. The idea here is to fix 

the number of particles and their initial velocities and run the computer simulation 

M  times for random initial positions. We can then ensemble average over the M  

different sets of initial conditions to extract (v (x)), their average velocities. This is 

given by
, , v, 5 >  within (x +  d?x)
v  x) =  —— ---- — ^ 4. 9

M  realisations

We can then say that (v (x)) is the velocity of the mean field which can now be 

treated as a continuum. We must check that total momentum is conserved. Inter­

actions of particles with the continuum must then be included to obtain a set of 

differential equations governing its motion.

An alternative is to fix the number of particles and their velocities and average 

over M  configurations to find the average positions. If we do this, however, we 

find the average particle distribution is simply a uniform distribution of particles 

spread evenly across the bottom of the chute. This seems to miss all the rich 

behaviour of clustering found in the computation. Therefore the mean-field approach 

is discontinued here.

Finally, if a representative particular trajectory is examined its path is reminiscent 

of a random walk - it continually moves downward, but it changes its horizontal di­

rection at seemingly random intervals. It is a possibility, therefore, that the statistics 

of random walks may be a useful tool for tackling the problem in the future.
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4.2 C ontinuum  m echanics

Continuum models also offer a powerful way to tackle particulate flow problems such 

as suspension flows [12], [23], [30], [61], traffic and pedestrian flows [21], [22], [38] 

and aspects of granular flows e.g. [19]. Here the particulate nature of the problem is 

essentially ignored, or can be overlooked, by addressing larger macro-scale behaviour 

and assuming that quantities such as density are continuous. It is then possible to 

write hydrodynamic-like equations that govern the overall particulate motion. Some 

of these models have been used with great success. For example, Hughes [21] used a 

continuum theory of pedestrian flows to suggest a method of safely placing barriers 

to try to prevent tragic events as pilgrims cross the bridge of Jamarat in Mecca, 

and Lighthill and Whitham [38] used a continuum theory of kinematic waves to 

describe traffic flow. Their results are very interesting and explain well experienced 

phenomena such as traffic jams at traffic lights and density waves in moving vehicular 

flow.

However, not everyone agrees that continuum models axe sensible. Some may 

argue that it is not sensible to ignore the particulate nature of such flows as one 

may miss some important local or global physics of the flow in doing so. Importantly, 

Du, Li and Kadanoff [11] have shown that hydrodynamical descriptions of particles 

can break down in certain one-dimensional systems, as equipartition of energy is 

violated. Their colleagues, nonetheless, have been developing a useful description of 

granular hydrodynamics in two dimensions [18].

In this thesis we choose to use a continuum method to describe the chute flow 

analytically. In fact, we try to develop the Lighthill-Whitham theory of traffic flow 

to produce a description of a chute flow. This is undertaken in the next chapter and 

is expanded further in chapters 6 and 7.
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Chapter 5

The ‘inviscid’ continuum model

In this chapter, we propose a continuum model for a chute flow of grains. An ar­

gument is presented for extending the Lighthill-Whitham model of traffic flow to 

cover the chute flow. Strengths and weaknesses of the argument are described. In 

particular, the continuum model we propose requires the introduction of a funda­

mental relation between the flux q and the density p, and the physical mechanism 

underlying the particular fundamental diagram requires discussion and appraisal. 

We follow through the implications of the present flux-density relation in detail. We 

cannot deny that the model omits many factors, and as such is incomplete, as would 

be any first model.

The continuum model which we develop below and in subsequent chapters is based 

around ideas generated from Lighthill and Whitham’s study of traffic flow [38] using 

the theory of kinematic waves explained by Whitham [57], [58]. It is assumed that 

th e  density  o f rice grains p form s a continuum . Obviously this is not the case 

in reality as only discrete grains of rice exist, but the continuum view may provide a 

useful macroscopic description of the rice flow. In particular, this assumption may 

be justified in certain circumstances, outlined below.

As a consequence of the physics of the chute flow (for example, random jostling, 

random collisions and clustering) and with support from the computational results 

presented in chapter 3, it is argued that a state can evolve where grains form into 

large coalesced masses. Each mass moves as if it is one body with a particular
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velocity distribution and each has a large number of particles in it. The density of 

each mass may be different in each case. As there are large numbers of particles, 

the density of each mass could take any value. When the chute flow is in this state 

there are sudden jumps in density between each cluster and there can also be voids, 

as supported by the results in chapter 3. These aspects can be explained by the 

shocks or expansion fan structures found in the continuum model. The analysis 

here starts at some point down the chute where the clustered (shock-fan) structure 

has evolved, or rather is about to evolve, and the continuum model is justified. 

Furthermore, here a smooth piecewise continuous density distribution at the start 

will break within a finite time (or distance down the chute) into a shock-wave or fan, 

as in Whitham [57], [58]. Hence the model mimics the change of a smooth initial 

density distribution into a non-smooth one. Finally, we shall see that discontinuous 

cases can be the simplest cases for analysis and hence form a suitable starting point.

It is further assum ed that grains m ove essen tia lly  along horizontal lines 

(th e  x d irection) w ith  a flow rate q which descend the chute under gravity. 

In reality, vertical interactions could be an important mechanism in the flow, but 

calculations with the ID horizontal-line assumption achieve physically reasonable 

results according to chapter 3, in particular section 3.3. The one-dimensional model 

is found to contain rich and complex behaviour which may serve to guide or en­

courage the use of a 2D model later. We shall present below, in passing, the 2D 

equations and shall observe that the ID solution would emerge anyway as the grains 

fall down the chute.

By conservation of mass the continuity equation is:

Pt +  Qx =  0 (5.1)

where a subscript t denotes ^  and a subscript x  denotes If q is taken to be 

dependent only on p, (5.1) becomes

Pt d- QpPx — 0- (5-2)

We make this assumption to keep the wave problem simple as a first approximation;

this may also be justified on physical grounds (see below) and the strength of the
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assumption is addressed in section 5.2. Also, if

* s !  (5-3)
then (5.2) states that the total derivative

|  =  0. (5.4)

Now let us call qp =  c(p), the wavespeed. Hence the density is constant along 

straight lines (the ‘characteristics’) given by

x =  c (p ) t  +  x o (5.5)

where xq is a constant of integration representing an initial position for x. The 

resultant equation for the flow is

pt +  c (p ) px =  0. (5.6)

Therefore, an initial density distribution p =  /  (a:) at t =  0 determines in principle 

how the density evolution with time via the characteristics. To determine c (p) we 

claim that q is related to the density p by q =  Q (p) say and then c (p) =  Q' {p) where 

the prime denotes differentiation with respect to the argument. (We shall shortly 

discuss the validity of choosing a particular q =  Q{p) relation). We must also

initially specify q along each characteristic. The values (/?, q) in the initial condition

thus determine a unique value of c which in turn determines the gradient of the 

characteristic. The flux and the density are then constant along the characteristic, 

that is to say, both q and p are propagated along the characteristics. The initial 

conditions in the current chapter are piecewise-constant as these provide a fairly 

basic starting point for the analysis.

As an aside, we remark that one improvement would be to make the model two- 

dimensional. Briefly, the 2D equation would be

Pt +  ci (p)px -I- c2(p)py =  0. (5.7)

Examining the orders of magnitude in the equation as y  —» oo and Seeking a solution 

independent of y reveals equation (5.6), i.e. the ID model.

70



We propose below a particular Q(p) relation for the chute flow. Immediately 

following this, the validity of the proposition is discussed with regard to its strengths 

and weaknesses. Note that, borrowing from traffic flow theories, the Q(p) curve is 

known as the fundamental diagram or fundamental curve.

If p =  0 there can be 1 1 0  flow, so then q =  0 trivially. Further, it is argued 

that there is no flow for a maximum value pm of the density, corresponding to a 

‘jamming’ of grains across the chute where each grain is touching the neighbouring 

grain or wall and hence, within some interval of x at least, there is no room for any 

grain to move relatively across the chute. In between q takes a single maximum 

at some value of the density pp. However, the rice can travel in both directions 

(unlike the traffic flow case) and hence q can also take negative values (of the same 

magnitude by virtue of symmetry) for each value of p. That is to say, there are 

two branches of the fundamental diagram, one which describes leftward moving 

grains, and the other rightward moving grains, and so the flux-density relation is 

necessarily double-valued. Finally, the Q(p)  curve on each branch is expected to 

pass through inflexion points relatively near the cusps, which lie at the zero-q end 

of the branches, as explained in the following paragraph. See also figure 5.1. Where 

the positive branch and the negative branch approach the maximum and minimum 

values of p, the curves meet at a cusp, as we shall soon see.

The reasoning for the cusps and hence inflexion points is so that the wavespeed 

remains finite and smooth as the solution passes through the endpoints and switches 

branches. To see this consider putting p =  f{p )  where // =  f  is a similarity variable. 

The governing equation becomes

(c — P ) f  — 0 (5.8)

so p  =  c is allowed (as too, then, are expansion fans). Next, at the high density

endpoint (the reasoning applies equally to the zero density endpoint) consider having

locally

q =  ±(3{pm -  p)n (5.9)
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Figure 5.1: Sketch of the fundamental diagram, including the cusps at q — 0 and 

inflexion points relatively nearby.

with the unknown power n >  0 and the constant (5 being non-zero. Then

c = ^ ( 3 n ( p m - p ) n~l , (5.10)

so

p  =  T0n(pm -  p) n —1

Rearranging yields

P — Pm \jA

(3n

i
n ~  1

(5.11)

(5.12)

Consequently if =  M  with M an even integer then the wave-speed smoothly 

varies as the density passes through a maximum. In particular, if n =  |  we see that 

M  — 2 and the density p =  pm — , which would be expected to be the most

general case. Similar reasoning for a cusp also applies at the low density end. The 

fundamental curve’s upper branch is therefore concave upwards at its endpoints. 

Accordingly, for there to be a maximum q in between, inflexion points must be 

produced between the maximum and the end points. Including an inflexion point 

also allows mass-conserving shock-fan structures, as we shall see later, which allow 

physically acceptable descriptions of clashing and separating regions to develop. We 

should refer also in passing to the discussion of viscous effects on branch switching 

in chapter 7.

C oncerning strengths and w eaknesses, and in particular the present pro­

posed fundamental diagram, in pedestrian and traffic flows there are obvious phys­

ical reasons why people or cars slow down with increased density (over-crowding,
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driver nervousness and so on) whereas it is difficult to argue totally why, for exam­

ple, a densely packed region of grains may move more slowly than a sparser region 

as in the cases here. This difficulty could be countered, perhaps tentatively, that 

when the density is low the grains may have small horizontal velocities because col­

lisions are unlikely and so there is slim chance of any horizontal velocities being 

induced. At large densities, however, collisions are likely to be more numerous and 

thus grain speeds would reduce. In the extreme case of a blockage the grains would 

come to a complete stop and may become packed at the jammed density. Thus a 

situation arises in which the density influences the flux, or vice-versa, and the view 

that q =  Q(p) appears to be justified (at least as a first approximation). Further, 

owing to these simple arguments a shape of such a fundamental curve, similar to the 

one proposed above, seems to be suggested. Alternatively, we could argue that such 

a choice of fundamental diagram is appropriate for certain physical situations, such 

as with colliding or separating grains on a chute. It may be of significance here that 

at a collision the grains can be considered to instantaneously change velocity at the 

point of touching, and so the flux of the grains is zero when the density is maximal, 

exactly as in the present proposed fundamental diagram. Other situations, such as 

with a highly dense region moving on an otherwise empty chute should be covered 

by another fundamental diagram, but such a situation may be unlikely to develop in 

practice because high densities seem more likely to arise when grain speeds are slow. 

It is also worth mentioning that as clusters and voids were the key feature of the 

computational results in chapter 3, and as collisions and separations are believed to 

be the crucial mechanism behind the formation of clusters and voids, then this as­

pect of the flow may be the most pertinent part to consider in an initial model. Some 

of the above criticisms may also apply to the theory when it is applied to traffic flow 

(for example a densely packed region of cars on an otherwise empty highway will 

not in reality have q =  0, they may accelerate away and diffuse). Given the above 

setting we continue with the present ID formulation, perhaps especially relevant to 

colliding and separating grains (rather than being appropriate for an entire chute 

flow), and examine the outcome.
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Interesting aspects arise in the model because Q (p) is smoothly varying on each 

branch and so the characteristics generally intersect or diverge within a finite time 

if p  and q vary on each characteristic. Intersections are a significant feature since 

at intersections the density would be implied as multivalued. Such an apparent 

contradiction is resolved by the formation of a ‘shock’ (see Whitham [57]). On one 

side of the shock the density takes one value, p \  say, and on the other side a different 

value p2 yielding macroscopically a sudden jump across the shock. The shock wave 

travels with velocity

U = S lZ -Sl (5.13)
P2 ~  Pi

which is the gradient of the chord between (pi, 1̂ ) and (p2 > Q2 ) on the fundamental 

curve.

Diverging characteristics create an area devoid of information about the density 

potentially but lead to an ‘expansion fan’. The aim in what follows is to employ the 

shock wave and expansion fan structures as mechanisms to obtain inhomogeneous 

density distributions upon the chute and provide some further explanation of clusters 

and voids when grains are colliding or separating.

5.1 A nalytical solutions o f th e continuum  m odel

In this section a number of simple analytical solutions to the continuum equation 

are illustrated. In this way, we see that it is possible to build increasingly complex 

solutions to the continuum model which have desired features such as clusters and 

voids. These have been seen to be potentially crucial from the preceding computa­

tions in chapter 3. In theory it is possible to determine any solution analytically by 

examining the characteristics, together with the shocks and fans.

5.1.1 Shock waves

Let us consider an example in which there are two adjacent regions of constant 

density, one with density p \  and the other with density p2- The corresponding values 

of the flux are q \ and 9 2  respectively. If we allow p i < P2 < Pf  then 0 < q\ < q2 < qF-
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Figure 5.2: This figure highlights the values of p\, q\, p2 , <?2 for the example of the 

shock wave outlined in subsection 5.1.1. The respective slopes are c\ and C2 .

Recall that pp and qp are the respective values of the density and the flux at the 

extrema of the fundamental curve (here extrema is used in the calculus sense of the 

word). It is possible to choose this arrangement such that c\ > ĉ '- see figure 5.2 

for clarity. (Recall that c =  ^  and that c. is the gradient of each characteristic. 

Hence the gradient of each characteristic is equal to that of to the tangent to the 

fundamental curve at the corresponding value of (p, <7 )). Furthermore, if the region 

of density p\ is allowed to lie ‘underneath’ the region of density p2 , as depicted in 

figure 5.3, then the characteristics are seen to intersect in the x — t plane. As has 

already been stated, the density will be multivalued at such an intersection since 

the density is a different constant along each intersecting characteristic. This is 

physically unacceptable. The solution is to replace the intersecting points with a 

shock, i.e. a sudden jump in the density. In this way, we see that the correct x — t 

diagram for this case is as in figure 5.4, in which two regions of constant density 

are separated by a shock. The corresponding evolution of the density profile is as in 

figure 5.5. Both regions are moving rightward (as q > 0) and there is a translating 

shock between the two regions.
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Figure 5.3: The characteristics in the first example described in subsection 5.1.1 

appear to intersect in the x — t plane. This is physically unacceptable.

IHOCK

Figure 5.4: The solution (continuing from figure 5.3) is to replace the intersecting 

points by a shock wave; a sudden jump in the value of the density.
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Figure 5.5: The corresponding density profile is shown above as it evolves over time. 

The two regions translate rightwards, separated by a shock.

5.1.2 Expansion fans

Again let us consider an example in which there are two adjacent regions of constant 

density, one with density p\ and the other with density P2, where the corresponding 

values of the flux are q\ and <72 respectively. However, now we suppose that q\ >  0, 

<72 < 0 and p\ < P2 < P i l • Here p n  and qj i  respectively are the values of the 

density and flux at the inflexion point on the left. Similarly, pm  and qm  are the 

values of the density and flux at the inflexion point 0 1 1  the right. Thus c\ > 0, 

c-2 <  0 and |ci| > |c2 |, see figure 5.6. (If P 1 L < P 1 < P 2 < P F  then the solution is 

a little more complex as we shall see in a later example in subsection 5.1.3). The 

region with density p\ is allowed to lie above the region with density p2 , as in figure 

5.7. Observe that such an arrangement corresponds to the two regions moving apart 

since q > 0 in the upper region and q <  0 in the lower region. In the x — t diagram, 

there is seen to be a region devoid of characteristics. Consequently, there appears 

to be no information about the density evolution here, yet we know that the regions 

are separating. The problem can be resolved by the introduction of an expansion 

fan.

An expansion fan is a region of characteristics which all start from the same 

point, but their gradient continuously changes from the value of the gradient of the 

characteristic in the upper region to the gradient of the characteristic in the lower
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Figure 5.6: This figure highlights the values of pi, qi, p2 , q2 for the example of the 

‘fan’ outlined in subsection 5.1.2.

Figure 5.7: A plot of the x — t plane reveals a region devoid of any characteristics, 

and hence any information about the density. Yet we know that the regions are 

separating.

78



X

FAN

Figure 5.8: Continuing from figure 5.8, it is seen that the problem can be resolved 

by the introduction of an expansion fan.

region. Hence the void region is now replaced by a ‘fan’ of characteristics whose 

gradients decrease monotonically. As the gradient varies through this fan, so must 

the density. See figure 5.8. The continual change in the gradient corresponds to 

moving from the point (p i , q i ) on the upper branch of the q{p)  curve to the point 

(P2 ,Q2 ) via the cusp at (0,0). Notice that the characteristic at the centre of the fan 

has zero slope and thus the point of zero density is stationary.

Therefore the fan in this case corresponds to a gradual decrease in the density and 

a reduction in flux to a stationary central point with zero density, this is followed by 

a gradual increase in the density accompanied by an increase in magnitude of the 

flux, which is now negative.

The expansion fan has allowed the density to sw itch  branches. The physical 

interpretation of this is indeed a separation of the two regions. Figure 5.9 illustrates 

the evolution of the corresponding density profile to highlight the physics.

Expansion fans can similarly be used to describe parts of clashing regions. Con­

sider two regions of constant density with P2 > Pi > Pi r  and q\ > 0 and <72 < 0. 

Now ci < 0  and C2  > 0 since p \  and p2 lie toward the large density end of the 

fundamental diagram, as in figure 5.10. Allowing the p \  region to lie underneath 

the p2 region will result in an x  — t. plot of the characteristics that is qualitatively
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Figure 5.9: The corresponding evolution of the density profile shows that the ex­

pansion fan has captured the physical process of separation.

Figure 5.10: This figure highlights the values of pi, <7 1 , P2 , <72 for the example of a 

fan in a colliding region.

similar to that in the example above. Such an arrangement corresponds to clashing 

of grains. Again there will be a region devoid of characteristics where an expansion 

fan can be introduced.

However, in this example, monotonically decreasing the gradient of the character­

istics in the fan corresponds to moving along the fundamental diagram from (p2 , 9 2 ) 

to (pi,<7i) via the cusp located at ( p m , 0). Observe that the characteristic at the 

centre of the fan has zero slope and thus the point of maximal density is stationary.

Thus, moving through the fan from p2 to pi allows the density to switch branches 

from the lower branch to the upper branch while passing through a point of maxi­

mum density. Hence the fan describes a region where the density smoothly increases 

to the maximum and then smoothly decreases out again to a region of constant den­

sity. That is to say, the fan describes a ‘hump’ of large density at the location where
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Figure 5.11: The corresponding evolution of the density profile makes the point that 

the expansion fan has captured the physical process of collision.

we know that grains axe colliding. Figure 5.11 shows the evolution of the density 

profile to highlight this point.

The expansion fan structures can be described analytically [57]. The characteris­

tics satisfy equation (5.5) which is

Each characteristic in the fan crosses the x-axis at the same point, hence xq is the 

same constant for each one. Therefore we can rearrange (5.5) to find the gradient 

of each characteristic in the fan as

5.1.3 Shock-Fan-Shock structures

In both of the above examples we have seen that the expansion fan structures appear 

to describe well the physics of separating and colliding grains and that a shock can 

describe a sudden jump in the density. Hence the shock and fan structures seem 

to be able to allow the sort of behaviour in the continuum model that has been 

observed in other methods, such as the computations in chapter 3.

We now examine some more complex examples that include a mixture of shocks

x =  c(p) t +  Xq. (5.14)

(5.15)

Therefore the complete solution for the wave speed is

(5.16)

c2, < c2.



Figure 5.12: This figure highlights the values of pi, <7 1 , P2 , 9 2  for an example

including a mix of shocks and fan in a colliding region.

Consider two regions of constant density, the upper region with p f  < Pi < PlR

and <71 < 0 and the lower region with Pf < P2 <  P lR  and <72 > 0. Thus c.\ > 0 and

C2  <  0 . See figure 5.12 .

If the characteristics are plotted in the x — t plane there will again be a region 

devoid of characteristics which we intuitively expect to describe a clashing region.

One simply might expect the resolution of this problem to be again an expansion 

fan between (pi,<7i) and (p2 , <7 2 ) 1  but the solution this time is a little more involved, 

as follows. Since p \  and P2  are to the left of the inflexion point p m  they are located on 

points of the fundamental curve that are concave. Consequently, the characteristics 

in an expansion fan would not monotonically decrease from c\ to C2 . Hence an 

expansion fan cannot be immediately plotted.

Instead, consideration indicates that there must be a shock from p \  to p r -  and 

a shock from p2 to p r+ , where p r -  is the point where a chord drawn from (pi,<7i) 

is tangent to the fundamental curve. Similarly, p r+  is the point where a chord 

drawn from (p2 ,<?2 ) is tangent to the fundamental curve. Both p r - ,  prr+  > P lR > 

clearly. See figure 5.13 . An expansion fan can now be drawn between p r -  and pr+- 

Observe that such a shock-fan-shock structure will still conserve mass and satisfy 

the appropriate entropy conditions: see section 5.3.

The plot of the characteristics in the x — t diagram for this situation is shown in
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Figure 5.13: This figure displays the values of pi, qi, p2 , #2 , P r-, Pr+ for an 

example including a mix of shocks and fan(s) in a colliding region.

figure 5.14 and figure 5.15 depicts the time evolution of the density profile. There 

is a region of constant density moving leftward, then a shock to a fan where there 

is a high density region, then there is a shock down to a region of constant density 

moving rightward. It is possible to see how these structures could build a picture of 

the grains on the chute similar to those seen in the Sortex images in figure 3.6, for 

example.

‘Shock-Fan-Shock’ structures, as we shall call them, can arise in other situations. 

Consider pi, P2  given in the above example, but now with P2  lying in the upper region 

and pi lying in the lower region. At first sight, it seems that the characteristics are 

intersecting and so the solution ought to be a shock. However, if a line were drawn 

through the intersecting points, the gradient would pot be equal to the gradient of 

the chord between (pi,qi)  and (p2 , <7 2 ); the chord would not have the required speed 

U (and hence such a shock would not conserve mass - see section 5.3).

Examining the above arrangement more carefully, we see that the two regions are 

separating. Therefore the solution is required to switch branches via the cusp at 

the origin. The problem is avoided by the introduction of two shocks to the points 

pr2 -  and PT2+- The point pr 2 -  is the place on the fundamental curve where the 

gradient CT2 -  is tangent to a chord drawn from p\ such that pT2 -  < PlL• Similarly, 

the point PT2 + is the place on the fundamental curve where the gradient c t 2+ is
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shock, pt~

Fan
P2

Pi

shock, prr+

Figure 5.14: The figure shows the characteristics for the shock-fan-shock structure 

described in the text.

x

Figure 5.15: The corresponding evolution of the density profile is shown for figure 

5.14.
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PT2

Figure 5.16: This figure highlights the values of pi, qi, p2 , <7 2 , PT2 -> PT2 + for an 

example including a mix of shocks and fan in a separating region.

tangent to a chord drawn from pi such that PT2+ < Pi l • See figure 5.16 for details. 

An expansion fan can now be drawn between pr 2 -  and pr2+ that switches branches 

through the cusp at zero density. Figure 5.17 shows the characteristics.

The time evolution of the density profile for this example is sketched in figure 

5.18. There is a region of constant density moving leftward adjacent to a leftward- 

translating shock down to small densities. Then there is a fan through zero density 

that is next to a rightward-moving shock that jumps to large densities. We reiterate 

that it is possible to see how these structures could build a picture of the grains on 

the chute similar to those seen in the Sortex images such as figure 3.6.

5.1.4 Merging shocks

In this example there are three density regions moving downwards and separating. 

One possible set of initial conditions for this to occur is shown in figure 5.19. This 

seemingly results in the characteristics overlapping from each region so two separate 

shock waves must pass through the points of overlap between these regions (as seen 

in figure 5.20). A consequence of this is that the two shock waves merge and the 

region of density P2  ceases to exist. Ultimately only two regions of discrete density 

exist, one with density p\ and the other with density P2 , and there is a sudden jump 

in density between the two parting regions.
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X

P2 FAN

Pi

shock, pT2—

Figure 5.17: The figure shows the characteristics for the shock-fan-shock structure 

in the case of separating grains described in the text.

9 0 P

—
--

—

----------------------  X --------- X k .  J

Figure 5.18: A sketch of the time evolution of the density profile for the example of 

a shock-fan-shock structure when grains are separating.

Figure 5.19: Plot showing positions of (q, p) co-ordinates for example 5.1.4.
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• f in a l  sh o c k

Figure 5.20: Sketch of the characteristics for example 5.1.4: all regions are moving 

downwards and separating from each other. Initially shock waves (indicated by 

heavy lines) exist between each region, but as time increases the P2 region is reduced 

in size. Eventually this region is ‘swallowed up’ entirely, the shocks merge and we 

are left with two discrete density regions that are moving apart.

5.1.5 Another example with three discontinuous regions

It is useful to consider another example with three discontinuous density regions to 

show the complexity of possible solutions. Let us consider three regions of differing 

density with pi, p2 and pz as given in figure 5.21. These are chosen such that 

P i l  < Pi < P f  with corresponding q\ > 0; p 2 > p i r  with corresponding </2 >  0; and 

Pz >  P lR  with corresponding q$ <  0. We also draw attention to the point pr+ which 

is the point where a chord drawn from (p \ , q \ ) is tangent to the fundamental curve 

on the upper branch. Observe that p u  < PT+ < P i r  and the chord is the shock si.

These three regions are allowed to lie in the x  — t  plane such that the region of 

density pz lies above the region of density p2 , which in turn lies above the region 

of density p\. Thus we observe that there is an area of colliding grains between pz 

and p2 and consequently an expansion fan is required here. A fan is also required at 

the bottom of the p2 region to a density with value p7 ’+. This is required to satisfy 

the entropy condition, see section 5.3. The characteristic with density pr+ coincides 

with the shock si where there is a jump down to density p\. Consequently the x  — t 

plane is as shown in figure 5.22 and a schematic representing the evolution of the 

density profile is shown in figure 5.23.

We mention here that there is some further analysis in appendix D concerning
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Q

Figure 5.21: The important values of pi, P2 , etc. are shown on the fundamental 

diagram for example 5.1.5.

fan

fan

Figure 5.22: This figure shows the construction of the x — t diagram for example 

5.1.5. The region of p\ lies at the bottom. There is a shock, sj, and a fan between 

the pi and p2  regions. A now familiar expansion fan structure occurs in the colliding 

region between p2  and P3 .
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Figure 5.23: This figure shows a sketch of the the evolution of the density profile 

corresponding to figure 5.22. Density is on the vertical axis, position across the 

chute is along the horizontal axis. A shock exists between pi, on the left of the 

chute, and the small fan to the region of density P2 - A ‘hump’ of high density exists 

in the colliding region between P2 and p .̂ As time increases the two fans spread 

out. The shock on the left persists for all time.

how to determine the characteristics at the chute walls.

5.2 Appraisal

If the fundamental diagram proposed at the beginning of this chapter is taken to 

give the flux-density law for a chute flow of grains the above sections show that the 

inherent discontinuities in the model (the shocks and fans and combinations of the 

two) can perhaps describe the formation of clusters, voids and sudden jumps in the 

density during collisions and separations. Hence we can construct descriptions of 

significant parts of a chute flow including regions of colliding or separating grains. 

However, we do not claim that the fundamental diagram must describe the entire 

chute flow. The approach has also been an empirical one: we have seen that the 

results can describe some situations seen on chutes in reality, although the original 

physical arguments per se remain open to question.

5.3 Rem arks on m ass conservation and entropy

The shock wave must travel with velocity (5.13) as a consequence of mass conser­

vation. The supporting argument from LeVeque, which properly determines the 

shock speed from the properties ‘within’ the shock, rather than from approaching 

the shock externally, as in Whitham’s analysis [57], [34] is as follows. The integral 

form of the conservation law is used to determine the shock speed at any time in
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terms of the states p\(t) and P2 (t) immediately to the left and right of the shock, 

respectively. Suppose that the shock speed is a constant U over a very short time 

interval from t\ to t\  +  At; the integral form of the conservation law (5.1) states 

that

r x i + A x  r x i + A x
/  p (x, ti +  At) dx — / p(x , t \ )  dx =

J x 1 J x  1
r t i + A t  r t i + A t
/  q { p ( x i , t ) ) d t -  q{p(xi  +  Ax, t) )d t .  (5.17)

J t \  J t i

Since p and q are essentially constant along each edge X\ +  Ax and t\  +  At this 

becomes

Axp 2 -  Axpi  =  Atq  (p i ) -  Atq  (p2 ) +  O (At2) . (5.18)

If the shock speed is U then Ax  =  - U A t  (if U < 0); therefore

- U A t p 2 +  UAtpi  — Atq (pi) -  Atq (p2 ) (5.19)

and hence

U =  (5.20)
P2 ~ Pi

which is identical to equation (5.13). Therefore all the solutions outlined above do 

indeed conserve mass.

The presence of shocks can also be determined by Oleinik’s entropy condition. 

See again LeVeque [34] and Morgan, Baines and Sweby [42]. The condition is as 

follows. If R is defined to be

R  s  i M - M  (5 21)
P + ~  P

where p+ is the value of the density on the right-hand side of the discontinuity, and 

if L is defined to be

L S  (5 .2 2 )
P - ~ P

where p _ is the value of the density on the left-hand side of the discontinuity, then 

if

R < U  < L  (5.23)
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is satisfied for all p € [p~ , p+] then the entropy condition is satisfied and the discon­

tinuity is a shock.

It can be verified that Oleinik’s entropy condition is in fact satisfied for all the 

shocks in the previous examples, including those in the shock-fan-shock structures 

developed above also satisfy the entropy condition [42],
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Chapter 6

The ‘viscous’ continuum model 

for grains in one-way flow

6.1 Introduction

The preceding chapter showed that if mass is conserved on the chute then equation 

(5.6) must be satisfied. After postulating a form of the relation between the density 

and the flow rate we proceeded to solve the equation using a method of characteris­

tics. The structure of the characteristics sometimes led to the need for shock waves 

and expansion fans, which resulted in inhomogeneous density distributions. Only 

examples that have discontinuous initial conditions have so far been investigated.

Obviously we wish to find the long-term density distributions for an arbitrary 

set of initial conditions, and in particular we would like to solve the problem for 

a continuous initial density distribution. However, owing to the shock wave and 

expansion fan structures, it is difficult to do this in general, both analytically and 

computationally.

In the present chapter, we attempt to find such solutions; in particular, we consider 

those which remain always on one branch of the fundamental diagram. That is to 

say, this chapter concerns only those situations in which grain movement is uni-directional. 

Solutions which require a branch switch, i.e. in which grains move both to and fro,
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are dealt with in chapter 7. We seek numerical solutions there by considering the 

continuum equation in polar co-ordinates.

First in this chapter we try to find uni-directional solutions by solving the contin­

uum equation with a simple finite difference scheme. Those solutions which emulate 

inviscid results such as translating shocks and expansion fans are sought. Following 

this we analyse an asymptotic solution valid at small times for a smooth initial con­

dition. The chapter ends with a search for steady state solutions which remain on 

one branch.

6.2 V iscous m odel and num erical schem e

One standard way to compute general solutions to equations of the above form, 

whilst avoiding any problems associated with the inclusion of shocks and fans, is 

to add an artificial viscous dissipation term upxx, with v  a small parameter. This 

changes the nature of the partial differential equation from a hyperbolic equation to a 

parabolic one, and also all discontinuities can be ‘smoothed out’ in principle. Indeed, 

this is the conventional method used in traffic flow problems [43], [57]. Whitham [57] 

discusses at length the validity of such an approach and shows that in the limit of 

the viscosity v  tending to zero the solutions do in fact asymptote toward the familiar 

shock and fan structures seen for the inviscid equation. Furthermore, in traffic flow 

problems there are outright physical arguments to include a viscous smoothing of 

the shocks, such as the notion of driver awareness.

In addition to the possible computational benefit, physical arguments for includ­

ing viscous dissipation involve in particular the inclusion of air effects. As grains 

approach each other in collisions effects of air cushioning could perhaps reduce the 

importance of impacts in the model and thus make the density distribution more ho­

mogeneous. In fact, air effects are investigated in detail in chapter 8 . Another line of 

argument is that including a viscous dissipation term is comparable to including the 

next term in a Taylor expansion of the flux. Thus the flux is now identical to q — vpx 

The consequences of introducing viscous dissipation into the continuum model dur­
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ing collisions and separations in a two-way flow are thoroughly examined in chapter 

7.

It suffices to say for now that we modify equation (5.6) to

Pt “I" CPx =  VPxxi (A'l)

where v  is a small positive constant, in order to find some general solutions for 

the density in a one-way flow. Equation (6.1) is of central importance here and 

is referred to frequently throughout the rest of the thesis. We shall refer to this 

equation hereinafter as the ‘continuum equation’. We state again that if v  is small, 

which is the case of most concern, solutions to the continuum equation (6 .1 ) may 

approximate well solutions to the inviscid equation (5.6).

As an aside, we briefly mention (echoing a similar remark in chapter 5) here that 

if the work were extended to 2D then the relevant equation would be

Pt +  c i(p)px +  c2 {p)py =  v (pxx +  pyy) (6.2)

and again examining the orders of magnitude as y  —► oo and seeking a solution 

independent of y  would yield the ID equation (6.1) above.

Equation (6.1) is solved numerically by a finite difference scheme as follows. The 

derivative with respect to time is discretized as

Pi~  Pi ta oX
~ s T  (6'3)

where pi is the value of the density at the ith spatial station at the current time, pi 

is the density at the ith spatial station at the previous (known) time, and St is the 

time step.

Upwind or downwind differencing is used for the spatial first derivative, depending 

on the sign of c(p) at the ith station:

Px «  if c(Pi) <  0, (6.4a)

Px «  if c(Pi) >  0, (6.4b)

where Sx is the step length in the spatial direction; we take 6 t significantly smaller

than Sx. Each term in the spatial derivatives is evaluated at the known time level.
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Finally the second derivative with respect to x is discretized as

Pi+ 1  ~  4- Pi-i
(Sx) 2

This results in equations of the form

(6.5)

U P ^ J t  <6-6)

where M  is a tri-diagonal matrix. By substituting the discretized forms of the 

derivatives into (6 .1 ) it is specifically found that the elements on the lower diagonal 

are given by

(6.7a) 

(6.7b)

(<5z)2

if c(pi) < 0 , or
c(pi) 1

Sx (Sx) 2

if c(pi) >  0 ; the elements on the diagonal are given by

St Sx (Sx) 2

if c(pi) < 0 , or

1 c^ ) +  2 (g>8a)

St Sx (Sx) 2 

if c(pi) >  0 ; and the elements on the upper diagonal are given by

c(pi) 1

Sx (Sx) 2 

if c(pi) < 0 , or
1

+  (6.8b)

(6.9a)

(fa)2 (6'9b)

if c(pi) > 0. The matrix M  is inverted by Gaussian elimination and each pi can 

subsequently be found. Thus the scheme is of the implicit type. This can be repeated 

over many time steps to find each particular solution.

6.3 Solutions to  th e continuum  m odel

The author has demonstrated that the code can be used to reproduce well known 

results for particular expressions for the wave speed c (such as c =  0  giving the heat



equation, c — p giving Burgers’ equation, and so on), and these tests can be obtained 

on request. We can therefore be reasonably confident that the code provides accurate 

solutions. Thus we move on to find numerical solutions to the continuum model of 

interest here, i.e. those which remain on one branch. Thus we specify boundary 

conditions for p(xL,t), p(x,R,t) at the left x i  and right x r  boundaries respectively 

and an initial condition p(x, 0 ) across the chute at t =  0 .

An appropriate flux-density relation must first be specified for the continuum 

model. We propose two versions: both are equally valid for the one-way flows with 

which this chapter is concerned, but the second one leads to simpler analysis in 

section 6.4. The first one is

where for now pM =  15; c\, c2 , ...C5 are constants chosen to ensure that the function 

matches smoothly and also that there is a maximum (or minimum on the lower 

branch) at an arbitrary point in the interval p e  [0 , pm], and ±  obtains the upper 

or lower branch respectively. The fundamental diagram for this density-flux law is 

shown in figure 6 .1 ; it captures the main features required that were elucidated at 

the start of chapter 5. As we consider only uni-directional grain movement we choose 

the positive branch without loss of generality. This law is used in the computational 

analysis immediately below with which we try to emulate the inviscid solutions.

The second flux-density relation, used below in the asymptotic analysis of section 

6.4 for the sake of simplicity, is

where 7  =  1 for convenience and we choose the positive (upper) branch. The funda­

mental diagram is shown in figure 6 .2 . Clearly there is no maximum density here, 

but one-way solutions require no branch switch anyway. Otherwise, the fundamental 

diagram displays the required features elucidated upon in chapter 5 .

Initially, the code is used in an attempt to emulate some of the analytical results

± p 4, 0  <  p  <  1,

q =  < ±  (cipA +  c2 p3  4- C3 /0 2  +  C4 P +  C5 ) 1 < p < 10, (6.10)

±  (Pm  -  p )2 , 10 <  p  < p m -

0 <  p <  1,

(6 . 11)
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Figure 6.1: The fundamental diagram used in the computation.
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Figure 6.2: The fundamental diagram used in the asymptotic analysis of section 6.4.
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seen in chapter 5. Recall that these solutions were for discrete, discontinuous input, 

as these formed a simple starting point for the analysis. We attempt to approximate 

such initial conditions in the code, although of course it is not particularly desirable 

to start the computation with discontinuous input.

6.3.1 Emulating a translating shock

For the first example we try to mimic the translating shock type of solution seen in 

subsection 5.1.1. We repeat that the solution in 5.1.1 is for the inviscid hyperbolic 

equation (5.6), whereas the numerical solutions we seek here are for the parabolic 

p.d.e. (6.1). If, however, v  is taken to be sufficiently small, the numerical solutions 

to (6.1) may approximate well the inviscid solutions to the hyperbolic equation. 

(The effect of vpxx is to smooth out the discontinuities in the hyperbolic equation; 

if v  is sufficiently small then there is sufficient smoothing to allow the computation 

to run and thus produce seemingly ‘sharp’ solutions, while avoiding any associated 

problems with discontinuities). In this example, u =  0.0001.

The initial condition used for this example is

p{x, 0) =  <

2, x < 4,

e-25(x-5)2 +  2 , 4 < £ < 5, (6.12)

3, x > 5.

and the boundary conditions are

p(0,£) =  2, (6.13a)

p(15,t) =  3. (6.13b)

Hence there are two regions of constant density, both with q >  0 (i.e. the density 

is fixed on the upper branch), and there is a smooth transition between the two

regions; this approximates the discontinuous input leading to a translating shock

type of solution in subsection 5.1.1.

Figure 6.3 shows the solution obtained at times t =  0.5, 1, and 1.5. As time 

increases, the ‘jump’ between the two near-constant regions steepens considerably
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Figure 6.3: Figure showing the solution at t — 0.5, 1, and 1.5 for the example in 

subsection 6.3.1. The initial condition is the smoothest thick black line. As time 

increases, the ‘jump’ between the two near-constant regions steepens considerably 

and translates leftward, mimicking a translating shock. The solution is shown at 

times t =  0.5, 1, and 1.5.

and translates leftward, mimicking well a translating shock. (For the analogous 

inviscid problem with discontinuous input, it is easy to determine that a leftward 

translating shock is the correct solution).

6.3.2 Emulating an expansion fan

For the second example, we try to replicate an expansion fan type of solution seen 

in subsection 5.1.2. Again we put v  =  0.0001. The initial condition is

p{x, 0) =  <

The boundary conditions are

13, x < 2.5,

2 e -1000(x-2.5)2 +  11? 2.5 < x < 3,

11, x > 3.

p(0,t) =  13, 

p(5,t) =  l l .

(6.14)

(6.15a)

(6.15b)
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Figure 6.4: The figure shows the initial condition and two solutions, one at t =  0.1 

and the other at t =  0.2. As time increases, the ‘jump’ between the two near-constant 

regions flattens considerably and spreads rightwards across the chute, mirroring well 

an expansion fan.

Hence initially there are two regions of constant density, each now with q <  0 (i.e. 

the density is on the lower branch), and a smooth, yet steep, transition between 

the two regions, approximating the discontinuous input leading to an expansion fan 

type of solution in subsection 5.1.2.

Figure 6.4 shows the initial condition and the solution obtained at times t =  

0.1 and 0.2. As time increases, the ‘jump’ between the two near-constant regions 

flattens considerably and spreads rightwards across the chute, resembling an expan­

sion fan. (Again, in the analogous inviscid problem with discontinuous input, it is 

easy to determine that such an expansion fan is the correct solution).

6.3.3 Solutions involving a branch switch and further comments

It is desirable to seek solutions involving a branch switch in order to replicate some 

of the more complex solutions seen in chapter 5, such as those in subsection 5.1.3. 

Moreover, it might allow us to model collisions or separations or allow us to find 

general solutions to the continuum model. With the current code, however, the sign

100



of the flux q must be specified artificially in the initial condition and q cannot be 

changed as p changes. It is impossible, therefore, to include both branches of the 

fundamental diagram in the scheme, where we solve solely for p(x, t).

In chapter 7 we return to the branch-switch problem, after first considering neces­

sary adaptations to the fundamental diagram in the light of the viscous dissipation 

term, and attempt to solve the continuum equation in polar co-ordinates to allow 

the solution to freely move around the fundamental diagram. In the remainder of 

the current chapter other uni-directional solutions are sought. In the next section, 

an asymptotic solution to the continuum equation for a smooth initial condition is 

examined, which is valid at small times. Following this, steady states are sought.

The steady state can be regarded approximately as the density profile as the grains 

reach the bottom of the chute.

6.4 A n asym ptotic solution  to  th e  continuum  equation

Here we find an asymptotic and a numerical solution for the non-constant smooth ini­

tial condition p (x, 0) =  x and the boundary conditions p (x =  0, t) =  0 and p (x — x \ , t) =  

xi, and then we make comparisons. Strictly, the asymptotic part is for asymptoti­

cally small time, but it is anticipated to be useful for comparisons with the numerical 

part over a finite range of early times. The motivation for so-doing is to find a so­

lution which remains on one branch which does not mimic the discontinuous input 

used in the inviscid model, thus extending the types of solution obtained. The sub­

sections 6.4.1 - 6.4.4 below cover the core, the inner layer, the outer layer and the 

resulting comparison in turn. For this analysis the flux-density law is as given in 

equation (6.11).

6.4.1 Core expansion

First consider an expansion in the core (where x is of order unity) for asymptotically 

small time. Let

P =  Po (*) +  tpi  (x) +  t2 p2 (x) +  ... ; (6.16)
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we refer to the end of this subsection for a note on why non-integer powers have 

been neglected. The initial condition

p ( x , t  =  0) =  x (6.17)

gives

po =  x. (6.18)

In the above c has also been expanded as

c =  co +  £ci -f ... (6.19)

Substituting the expansion for p into equation (6.11) results in

c =  co +  tci +  ... =  7 (p 0 +  tpi)$ e^+tpi)  Q  _  (po +  t p i )^ +  ...

so

(6.20)

do = 7Poe ** ( f - Po) -  (6-21)

Hence

(pi +  2 tp2 ) +  (So +  tci) (pq +  tp[) =  v (pQ +  tp^) +  O (t2) (6.22)

upon substitution into equation (6.1). At 0 (1 )  in equation (6.22) we see

Pi +  c0po =  vpo (6.23)

hence

Pi =  ~ i x h ~ x Q  -  x'j (6.24)

after substituting for po and Cq. Observe that Pi(x) does not satisfy the boundary 

condition p\ (x =  x \ , t) = 0 . Therefore, in the core we have

+ 0 ( 1 ») (6.25)

It is worth recording that only integer powers of t are involved in the core. For, if 

p =  po(x) +  trpr (x) + ... with r non-integer instead of (6.16), then c = c q  +  t r C r  +  ... .  

(with dr oc pr) and so substitution into (6.1) yields pr =  0. Hence the term pr is 

absent, in effect, as is Cr.
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6.4.2 Inner-layer expansion

At small time an inner layer must be introduced so that the left-hand boundary 

condition at x =  0  is satisfied for all time. (Although equation (6.25) satisfies 

the left-hand boundary condition up to O (t2), it does not do so at higher orders). 

Balancing terms in equation (6.1), with the local c(p) behaviour going as p*, we 

obtain the orders

j  +  7  p%- =  v -^ .  (6.26)
t x x 1

Noting that 7  and v  are order one constants (in fact, we have chosen 7 = 1  earlier and 

when we compare the asymptotic result to the numerical result we choose v  =  1 .) 

and that p ~  x, we guess that the first and the third terms must balance in order to 

introduce an effect distinct from that in the core. Hence the inner variable is chosen 

to be

V =  4 -  (6-27)
t 2

Now the expansion implied is

P =  9o (v) +  1 (v) +  **92 (rj) +  • (6.28)

It can be seen that these powers must be chosen by putting p =  go 4 - tng\ -f tmg2 

with 0 < n < m  and substituting into equation (6.1). After finding the derivatives 

in terms of 7/ by using the chain rule and a little further manipulation we arrive at

ntn~lgi +  m r - ' g t  -  ^  ( tV , +  tmg'2)

+ t ig*  (1 + («nsi + tmS2)

=  j ( t y {  +  tmg! )̂. (6.29)

Here a prime denotes differentiation with respect to 77 and we have also found the 

local c(p)  relation, c ~  p%, to be

c =  t i g ?  +  (6.30)

and go =  0 as we see that this is a valid solution to (6.29) if the leading order terms

are included. At O (fn_1) an ordinary differential equation for g\ is thus obtained:

"91 +  1 9i - n g i = 0  (6.31)
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and we can see that if n =  \  then g\ — Constant x 77 is one solution and that this

matches as required with the core. At the next order the terms of order £m_1 and

£^r- 5 must balance. Since n =  \  we obtain rri=  | .

Therefore, substituting (6.28) into equation (6.1), we ultimately reach

1
l _ i  5 i 7? , t u i  ,t l gi +  -£402  r9l -  — 02
* 4 2£2 ^

+  H  ( t i g *  +  +  # & )

=  j  (£^0i H- £ 0̂ 2 )  • (6.32)

By including terms of O ( t ”3  ̂ we find that we are required to solve

v9i +  ~ ^ i  =  0 (6.33)

subject to

gi (0) =  0 (6.34)

and, to match with the core where po =  x,

$91 (V -> 0 0 ) ~  po• (6.35)

Note again that one solution is

0 1  =  Br) (6.36)

where B  is a constant. To find the other solution first differentiate equation (6.33)

with respect to rj to yield

fli" + Yv9'{ = 0. (6.37)

£Multiplying by an integrating factor e4* and integrating once gives

g’[  =  A e ~ i  (6.38)

where A is a constant of integration. Hence

rv * 2

g[ =  A e * d f j .  (6.39)
J 0 0
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The lower bound can be chosen at liberty and so we pick infinity for convenience. 

The full solution to equation (6.33) is, therefore,

gi =  A f  Idfj 4- Bg  (6.40)
J o

where

I  =  / e 4 udfj. (6-41)
Joo

Note that at rj — 0, g\ =  0 as required, and also that, from (6.35),

1*00 PT) 2
t*9 i (v * 00) =  Bt^rj +  At* /  I e~**df] ~  x (6-42)

J o  Joo

must be satisfied, i.e.

i i P  f t
t 2gi (77 ~ *> 00) =  Bx  +  At? / I e 4v d r ]~ x .  (6.43)

J o  Joo

Consequently, we must choose A=0, so that an O term is not driven into the 

core, and we must also choose B =  1 ; the necessary absence of non-integral powers 

of t in the core was shown just after (6.25). Therefore

9 i =  9 - (6.44)

Moving on to O in equation (6.32) we find that we are required to solve

+  f  02 ~  J92 =  • (6.45)

First, for the particular integral, try

9 2 p i  =  . (6.46)

Substituting into equation (6.45) reveals

92PI ~  (6-47)

For the complementary functions

u92 +  02 ~~ ~£92 — 0 (6.48)
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must be solved. The general solution is subject to the boundary conditions

92 (0) =  0 (6.49)

and

t i g 2 (77 -> 00) =  0, (6.50)

so that an O (t* Ĵ term is not driven into the core; again see just after (6.25).

Just below we provide a numerical solution to this equation, by employing the 

Runge-Kutta method. A second method of solution, found by a general integral 

transform of the form:

92CF =  [  eWV4> (w) dw (6.51)
Jc

is presented in appendix E. A third method of solution, kindly noted by Professors 

Kerr and Please, can be found by making the substitution

9 2  {vi) =  (77). (6.52)

The subsequent differential equation is that of a Parabolic Cylinder Function, which

can be rescaled into one of the standard forms of Abramowitz and Stegun [1 ]. Known

properties of these functions can then be used to obtain the required behaviour.

First, we examine a series solution to equation (6.48) in order to show that a 

7 7 5  +  h.o.t solution can exist at large 77 before we go on to search for it with the 

Runge-Kutta scheme. It is possible that the 7 7 5  term alone, when added to <7 1 , might 

show the right trends as the solution passes from layer to core. The 9 '2 (0) condition 

in the Runge-Kutta scheme must be changed until the solution is sufficiently close 

to the 7 7 5  growth at large 77.

Put

9 2 c f  ~  A o n *  +  A i r j n  +  ... (6.53)

into equation (6.48) to obtain

^-AqT}^ +  vA\n  (n -  1 ) r f ~ 2 +  -  j A i r f  +  ... =  0. (6.54)

Balance the first, third and fourth terms to get n =  Then
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Figure 6.5: Plotted above are numerical solutions (solid black lines) to equation 

(6.45) for many different initial conditions for g2. The dashed line is a plot of —7 7 2 , 

the series solution. We see that if we choose g2 (0) =  —0.965 in the computation 

then the solution asymptotes to the series solution.

must be satisfied so equation (6.54) holds true up to O ( j )^ -  Matching the rfi term 

with the particular integral (6.47), in order to satisfy the boundary condition (6.50), 

gives

A0 =  - 4 -  (6-56)

and

so

A 1 =  -1 ; (6.57)

9 2 g s  ~  ~ r) 2 +  ••• • (6.58)

Now solve equation (6.45) by a Runge-Kutta scheme. The initial conditions are

92 (0) =  0 (6.59)

and the value for gf2 (0 ) that gives a solution which asymptotes to — 7 7 5  is chosen. 

We use the numerical scheme 25.5.18 in Abramowitz and Stegun [1]. We require the 

separatrix, in effect.

Figure 6.5 reveals that if g2 (0) =  —0.965 is chosen then the solution asymptotes to 

the series solution (6.58). Consequently the solution for <72 is given by the numerical
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scheme with the initial conditions g2 (0) =  0 and g'2 (0) =  —0.965. Unfortunately 

this solution cannot be written in a neat closed form.

6.4.3 Outer-layer expansion

Since the core expansion does not satisfy the right-hand boundary condition p ( x i) =  

x\  an outer-layer expansion must also be introduced near x  =  x \ .  In this region the 

similarity variable

* =  (6-60) 
a

is appropriate and p  is expanded as

i
p  =  X I  +  t7£ +  tFo ( 0  +  t Fi (£) +  . . .  (6.61)

We need to find an expression for the wave speed c near the point x  =  x \ .  Substi­

tuting a Taylor expansion for c about x  =  x\  reveals that

c =  ^ x f e - Xl -  x f e ~ Xl +  O(t). (6.62)

Also c is expanded as

so

c =  6q +  tci +  ...; (6.63)

co =  ^Xj2e Xl -  x \ e  Xl. (6.64)

Once again, if the relevant expansions are substituted into equation (6.1) we reach 

i f  i  +  F0 +  2tF\ -  i  ( ti  +  +  t 2 F{)

+  (cq +  tci) ( ~ r )  (^5 +  tFl  +  t2-f,)

. *2 r?n

At O H
=  j { t F ^  +  t2 F{'). (6.65)

f  -  f  =  0 (6.66)

is immediately satisfied. More interestingly, at 0( 1) ,  the solution to

^ o '  +  | f o - f b  =  £o (6.67)
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must be found subject to

F0 (0) =  0 (6.68)

and, in view of the core in subsection 6.4.1

Fq ~  — pi as £ —> —oo. (6.69)

First we note that one complementary function is Fq =  £2 +  2 v. Also observe

that a particular integral is FoPI =  — Co- The other complementary function can be

found by putting

F0 = ( ?  +  2 v ) H  (6.70)

and solving for the resultant equation for H :

H" +  i ^ f C2 10oU\ H ' =  0. (6.71)
2 v  (£2 +  2 u)

Use an integrating factor,

l F  =  /  +  /  ^

Evaluating the integrals leads to

IF  =  *  -  +  21n |£2 +  2 v \ . (6.73)
4 v  1 1

Consequently, after integrating once, we find that

-(*% *)
H' =  A —n ? (6.74)

( e + 2 v f

where A is a constant of integration. Now try a solution of the form

H  =  +  DErf f  - O
£2 +  2*/ \ 2 y / v  J

(6.75)

where C  and D  are constants. By substitution it is seen that equation (6.74) can 

be satisfied if
^  2 vD



Hence, the general solution for Fo is 

• 2
F0 =  A

_ i  - S i
R 3 e  4k

i  :------- +4v 8 z/t
+  B  ( { 2 +  2k) -  cq. (6.78)

Using the matching condition (6.69) we see that

- i . - i f
£> I  £—►—oo \

To prevent the right hand side from diverging we choose

A
I6 u2

so we axe left with

x i e X1 I « ~  x i ) =  °o

coj  •

(6.79)

(6.80) 

(6.81)

which we know to be true already from equation (6.64). 

Finally, the initial condition (6 .6 8 ) gives

8 coVy/e
A =

2  +  \pa
(6.82)

and so

F 0 =
_ i  - S i  e 4«/

~  + 8 ^ 2

+  m ! (6'83)

Thus we have now determined (at least) the leading order terms for the expansions 

in the inner, core and outer layers.

6.4.4 Comparison with finite difference solution

It is now possible to compare the asymptotic solution to a numerical finite difference 

solution obtained as in section 6 .2 .

Figure 6 . 6  shows the density as a function of position at a fixed small positive 

time t. Although a very close agreement is seen between the two solutions the result
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Figure 6 .6 : Plotted above is p as a function of £ at a fixed time, t =  0.1. The 

solid black line and the solid grey line are the numerical and two term asymptotic 

solutions, respectively. See also figures 6.7 and 6 .8 .

is not necessarily conclusive since neither solution has deviated very far at all from 

the initial condition.

One alternative approach is to plot the value of the derivative of the density with 

respect to position at the origin for varying time, as in figure 6.7. A reasonably close 

agreement is seen for small time, exactly as one would expect. Figure 6 . 8  shows a 

close-up of the small time region and again a fairly close agreement is seen between 

the two results. The difference between the finite difference result and the small­

time asymptotic result may be due to the value of g îO) coming from a Runge-Kutta 

scheme only to an accuracy of three decimal places. (The numerical accuracy of the 

finite difference scheme has been established by finding the solution on a number of 

different grids. It appears to remain the same for each grid, as we would hope).

Alternatively, figure 6.9 shows the percentage error between the value of ^  

from the numerical scheme and from the two-term asymptotic result up to t =  0 .0 1 . 

The error is fairly small. Therefore, we can be reasonably confident that we have 

found an asymptotic solution to equation (6 .1 ) for a particular example in which 

the initial condition does not replicate any of the inviscid solutions obtained earlier 

and which remains on one branch for all time.
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Figure 6.7: An alternative check between the numerical and the small-time-

asymptotic result is to plot the derivative of the density with respect to x  at the 

origin for a range of times. Above, the dashed line gives the values of
i = 0

from the numerical scheme and the solid line gives the values from the asymptotic 

scheme. (See also the close-up in figure 6 .8 ). The agreement is seen to be fairly 

close for approximately t < 0.05, exactly as one would expect (or hope) for small 

time asymptotics.

6.5 Steady sta te solutions

Steady states are sought now for solutions which remain on one branch of the fun­

damental curve. Steady states may be related to the final density profile obtained 

near the end of the chute before ejection takes place and they are thus of interest to 

Sortex.

First, a particular steady state is sought in which the density at the left boundary 

Pl  &  Pr , where pr  is the density at the right boundary. This case yields to analysis 

and hence numerical solutions can be verified. Other steady states are then sought, 

but we find that the numerics can be unreliable, the reasons for which are considered.

6.5.1 Seeking a steady state with pL «  p r

First, a steady state is computed in which the densities at the boundaries (p i  and 

P r )  are asymptotically close, specifically P l  — PR — £ with e small. In this case an
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x= 0

Figure 6 .8 : Here a close-up in the small time region of the value of for
2 = 0

varying time is shown. Again, the dashed line gives the values from the numerical 

scheme and the solid line gives the values from the asymptotics. There is reasonable 

close agreement between the two solutions. A possible source for the discrepancy 

is discussed in the text. Note that the computation was calculated on a grid with 

the spatial step-length and temporal step-length given by Sx =  1 0 - 3  and St =  1 0 - 6  

respectively.

Percentage
error 0 .0 0 2 0.008

2 = 0
for the asymptoticFigure 6.9: The percentage error between the value of ^  

result and the numerical result is shown up to t =  0.01. It is relatively small (less 

than 1 %) throughout.
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approximate analytical solution can be found, thus providing a way to check the 

subsequent numerical results. The approximate analytic solution is as follows.

As p l  and p r  are asymptotically close, the wave-speed c can be assumed to be 

constant along the range [p l , P r ]- That is, c  =  c ( p l ) =  cq with cq constant. Hence 

from (6 .1 ) the equation for the steady states is given by

This is easily solved to obtain

p =  A +  B e ^ x (6.85)

where A and B  are constants of integration. The boundary conditions are

p{xL) =  p l  (6 .8 6 a)

and

p (x r ) =  p r . (6 .8 6 b)

A =  p i  — (6.87a)e^ x L +  e ^ x R

B =  i PL~ PI£  . (6.87b)e-$*L +  e-?-XR

The steady state is also computed by a Runge-Kutta method. A basic fourth-order 

accurate scheme [14] is used to solve (6.84) with

%  =  9  (6 .8 8 a)

and
^ 9  CQ Q Q I  \

Tx =  U9  ( 6 ' 8 8 b )

where v — 1, cq — — 1 and for the present computational run Sx =  •

In figure 6.10 the analytical result and the result from the Runge-Kutta scheme 

are plotted. The discrepancy between the solutions is seen to be small. Thus we 

can be reasonably certain that a steady state to the continuum equation has been

found.

This yields

and
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Figure 6.10: This figure shows a steady state for the case when pl ~  PR and Co 

remains approximately constant. Both the analytic solution and the Runge-Kutta 

solution are plotted. Virtually no difference is observed between the solutions.

6.5.2 Other steady states

An attempt to find other steady state solutions that always remain on one branch 

was also made. Time-marching solutions from the finite difference scheme were 

computed to large times and compared to numerical solutions of the steady state 

equation (6.84), found by a trapezoidal method. The difference between the results 

from each scheme, however, was marked. An error seems likely to have arisen in 

the finite difference scheme at the change in sign of the windward differencing. For 

reasons of brevity, we do not include the computations but they can be obtained from 

the author on request. Perhaps the results could be re-examined in the future with 

use of a compact differencing scheme. Such steady states could evolve in principle, 

nevertheless, as outlined below.

The continuum equation (6.1) can be integrated in x  to give

where f** pdx is identical to the total mass. The flux q -  vpx is non-zero at the 

boundaries, in general, since these solutions remain on one branch and do not have 

p =  pM at the boundaries. (We shall see that this is not so in the two-way case,

(6.89)
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investigated in section 7.5 in the next chapter). Consequently, i Q p f c  *  0  in 

general. Therefore in principle the mass can evolve with time, starting from its 

initial value and approaching the steady state value. Therefore, a steady state may 

evolve in such cases. (Again, we shall see in the next chapter in section 7.5 that this 

is not so for the case of multivalued fluxes and the steady state there may not be 

reached). In passing, we mention that (6.89) provides a method of checking mass 

conservation numerically in time by using the calculated total flux at the boundaries.

6.6 Sum m ary

In this chapter we have attempted to find solutions to the viscous continuum model 

that remain on one branch for all time, for which the grain movement is uni-directional. 

The motivation was to extend from the inviscid solutions found in the preceding 

chapter to more general cases which do not start with discontinuous input. In order 

to find such solutions, an artificial viscous dissipation term was added, which has 

the effect of smoothing out the discontinuities. Thus numerical solutions may then 

be found more easily. Importantly, this results in a parabolic equation and the flux 

now changes to q — upx.

First a finite difference scheme was employed to find solutions which replicate 

those in the preceding chapter. This is possible, provided that the parameter v 

is small. Second, an asymptotic solution, valid at small time, was found for a 

smooth initial condition that did not replicate the initial conditions for the inviscid 

equation. Third, we examined steady state solutions for this uni-directional case. A 

steady state was obtained for the case of the densities at the two boundaries being 

asymptotically close, but other steady states were more difficult to compute. This 

is possibly due to an error arising at the change of sign of the windward differencing 

in the finite difference scheme.

In the next chapter, we wish to extend this still further and obtain solutions to 

the viscous continuum model for which the grains are able move to and fro. As the 

fundamental diagram then is not single-valued, this necessitates finding the solution
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by expressing the density and the flux in different terms, such as polar co-ordinates. 

Prior to finding such steady states we first investigate the requirement of changing 

the fundamental diagram; in particular, local viscous laws at the endpoints are 

investigated. Changes in the local curvature of the fundamental diagram allow the 

solution to switch branches more easily.
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Chapter 7

The ‘viscous’ continuum model 

for grains in two-way flow

7.1 Introduction

The solutions of the continuum equation (6.1) have been limited so far to the inviscid 

case, for which the initial conditions were restricted to discontinuous input, or to 

the case when solutions remain on one branch. We now aim to compute solutions 

for cases involving colliding and separating grains, which need to switch between 

branches on the Q (p) curve. In order to avoid problems associated with the double­

valued fundamental diagram we solve for the density and q (no longer the flux) as 

functions of polar co-ordinates.

Prior to doing this we re-investigate the nature of the fundamental diagram. In 

particular, in chapter 5 we determined that the two branches of the fundamen­

tal diagram must meet at cusps at the endpoints. Such geometry/discontinuity is 

required if the wavespeed is to change smoothly during the branch switch in the 

inviscid model, but in the viscous parabolic governing equation such discontinuities 

are found to be incompatible with the viscous dissipation term. Consequently, the
3

local q ~  p? relation should be altered for the viscous case.

We wish to determine whether the new q =  Q(p) relation produces physically
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sensible results or not. Even though the q =  Q(p) law may not have been deter­

mined itself by a complete physical argument, we may nevertheless gain some insight 

into the behaviour of the system. Guessing such laws, examining the outcome and 

subsequently discussing the validity of the particular fundamental diagram is in the 

tradition of traffic flow theory. In fact, many different fundamental diagrams exist 

as empirical models of traffic flow and there is discussion in the literature about 

which one is best [7]. As this is a novel approach for chute flows, there is currently 

no such discussion in the literature; so we shall choose this law, however arbitrary 

it may seem, and examine its implications. Obviously, we do not claim that this is 

‘the law’ for chute flow, but it is rather a first model for the viscous case.

On changing the fundamental diagram locally at the endpoints, we suggest below 

that the local behaviour near the origin (or maximum) must be q ~  p? (or q ~  

{pM — p)^) and then we examine if a valid solution exists. To repeat, although this 

may not necessarily be driven by physics it may yield some understanding of the 

behaviour of the system. The suggested behaviour above can actually be put on 

surer ground by considering that as the solution passes through a minimum, as it 

may do in separating regions, p ~  x2. Balancing terms in equation (6.1) thus reveals 

immediately that q ~  x, i.e. q ~  p% as just above. A similar relation applies near a 

maximum.

Therefore in sections 7.2 and 7.3 the consequences of this new law in the vicinity of 

the p =  0 and p =  pm cusps respectively are considered. In the former case we find 

a similarity solution valid at small time, and in the latter case, for small viscosity, 

a local viscous region is introduced. In both cases the new viscous fundamental 

diagram indeed allows physically sensible solutions to evolve. Steady states and 

solutions at large time are then sought in terms of polar co-ordinates in sections 7.4 

and 7.5.
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7.2 V iscous separation

7.2.1 Similarity equation and local behaviour.

We find a similarity equation valid at small time to examine the local behaviour 

of the solution near the origin. This is near a density minimum; analogous work 

applies near a maximum. Branch-switching at the origin physically relates to grain 

separation. We have q ~  p2 , so c =  =  \p~% and substituting into the (6.1) we

obtain the ordering

£ ± w : * £ ~  4
t X X 1

where Co is an order one constant arising from the local form of the flux-density law. 

Balancing terms in p we see that x ~  t? and hence p ~  t. This is acceptable since 

the density is small in a separating region. Therefore the similarity variable q =  -y  

and the form p — t f  (rj) hold locally.

Substituting into the continuum equation (6.1) we have ^  =  /  — § =
1 o2

£ 3  and =  /"  where a prime denotes differentiation with respect to 77. (Positive 

Co is chosen when the flux q is greater than zero. Here locally f  >  0. Conversely, 

the negative Co is chosen when the flux q is less than zero, where f  <  0  locally). 

Also putting

as the nominal small-time equation near the density extremum. As the purpose 

here is to describe separating grains we examine the case when the density passes 

through a minimum. It is shown in the next subsection that /  =  0 necessarily 

at a minimum. Thus equation (7.1) is to be solved in subsection 7.2.3 subject to

c ~  icop  2 =  ±

we obtain

(7.1)

f {k)  =  f'(k) =  0, where 77 =  k is the location of the minimum. Also /  is expected 

to grow proportionally to rf  at large \rj\.
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7.2.2 Core behaviour

Approximating the behaviour away from the extremum, in the core, we put

c ~  ± cqP 2

and expand

P =  Po (®) +  tpi {x) +  t2 p2 ( x)  

and on substitution into (6 .1 ) we obtain

Pi +  Ztp2 ±co(po +  tpi) 2 (pq +  tp'i) = v  (Pq +  tp") +  0 ( t 2).

Now if we assume that, for some positive constant A,

po «  Xx2,

which is the most general form for a minimum (separating grains) local to the origin, 

then at leading orders we find

pi =  2A? (a?i/ =f cq) , (7.2)

and
-eg  ±  C0I/A5 „

P2 =  -------~ 2------- • (7.3)

Therefore approximately

p =  Xx2 +  2 t \ l  T co) -  ( 7  4)

Hence if x2 ~ t  then the three leading terms become O (t ) and the series is no longer 

asymptotic. This reinforces the earlier similarity equation in section 7.2.1 where the 

similarity variable is rj — xt~%. Moreover, if A =  CqV~ 2 then the O  (t ) and the O (t2) 

terms are zero and so the expansion may still be valid. Therefore a simple crossover 

between branches may be possible with A =  Cg -̂2 .

If we can find a solution to equation (7.1) that is valid for all r) then it may 

be possible to have a p% law in the viscous case. We shall discuss how it might 

correspond to the physics of separation. First of all,

/ = i y  (7.5)
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is an exact solution if

Other solutions are found below in the form

/  = j y  +  e/' (7.6)

with e small, as studied in subsection 7.2.5, and in numerical form as described next.

7.2.3 Solving equation (7.1) by a Runge-Kutta method

There are two cases to be examined here. One is where the minimum of /  is zero, in 

which case we need a series solution through the minimum so the numerical scheme 

does not blow up. The second case is where the minimum has /  non-zero: the series 

in this case is not regular. The latter might be dismissed by a physical argument 

(the density must be zero at the centre of a separating region) but an analysis is 

presented for completeness. The series are helpful in the subsequent numerical study. 

First put /  =  F 2 so equation (7.1) becomes

( * - M ) f )  - \ f 2 =  0 (7.7)

where we have defined s = 77 -  k and / '  =  0 at r] =  k. Above a prime denotes 

differentiation with respect to s.

We mention here that having k non-zero allows the minimum, which cannot then 

be at the origin, to move with speed x =  Thus the solution has a fixed

minimum point at x =  0  only if k — 0  (we shall see later that this corresponds 

to the exact solution /  =  Trj2). We axe free to choose k in the local problem; it 

is actually determined by the global solution across the whole chute. Since t <C 1  

slower movements correspond to A : —> 0, in effect, and faster movements can be 

roughly approximated by |fc| becoming large.

Expand

F  =  Fq +  sFi +  s 2 F2 +  ... (7 .8 )

which implies that

F' =  F\ +  2sF2 +  ...

vF F "  +  F ’ ( v F '  T cq +  i
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Now / '  =  0 at 7] =  k implies that 2 FF' =  0 at s =  0 which results in

FqFi =  0 .

Therefore, if Fo ^  0 we must have F\ =  0. (We shall continue with this choice for 

now, but we shall soon see that we must re-expand (7.8) with F\ ^  0 and F q =  0). 

Hence the expansion (7.8) becomes

F  =  F0  +  s2 F2  +  s3 F3  +  O(s4) (7.9)

Substituting (7.9) into equation (7.7) results in

v (Fo +  s2 F2 +  s3Fs) (2 F2  +  6 SF3 )

+  (2 sF2  +  3s2 F3 ) (2 sF 2  +  3s2 F3 ) ^  cq +  — {k +  s) (Fo -f s 2 F2  +  s 3 Fs)^

-  i  (F0  +  s2 F2 +  s3 F3 ) 2 =  0 +  0(s-4) (7.10)

so at leading order we obtain

2 uFqF3 — =  0  (7.11)

giving

F0  =  0 or F2  =  ^ .  (7.12)4i/

So this leads to either Fo =  0, implying that /  =  0 at the minimum, or to a series 

for the case when /  =  Fo at the minimum.

Second, then, is the case where /  =  0 at the minimum, so that Fo =  0. We must 

re-expand

F  =  *Fi +  s2 F2 +  s3 F3  +  s4 F4  +  0 ( s 5) (7.13)

about s == 0. On substitution into equation (7.7) we see

(sFi +  s 2 F2  +  s3Fs +  s 4 F4) (2F2  +  6 sF3  +  12s2 F4)

+  ( f ,  +  2sF2  +  3s2 F3  +  4s3 F4 -  ^  +  (SF, +  S2 F2 +  s3 F3 +  s4 F4) )  *

(Fi +  2sF2  +  3s2 F3  +  4s3 F4) -  (sFi +  s2 F2  +  s 3 F3  +  s4 F4 ) 2  =  0 +  0 ( s 5)

(7.14)
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where we have chosen cq to be positive since the gradient of /  is positive and so we

must be on the upper branch of the Q (p) curve. At leading order we obtain

Fi (* l "  * )  =  0 (7.15)

implying

Fi =  j  (7.16)

if F\ £  0. (The F\ =  0 case is considered in the section incorporating equations 

(7.29) to (7.32) below, it relates to the case in which /  ^  0 at the centre of a 

separating region and is ultimately dismissed). At 0(.s),

4FiF 2  +  i . f 2  =  0  ( 7 . 1 7 )

SO

8 1 /

At 0 ( s 2),

F2 =  ~ F i .  (7.18)

3k
9FiF3 +  6 F | +  —  F2Fx =  0  (7.19)

2 v

which eventually leads to

F3 =  ^ Fl. (7.20)

Finally, at 0 ( s 3),

F^ - i k { 2 m F 3 + ^ + - ^ + 2 J l? E )  '7-21>

resulting in

256 )■ (T.22)

CT.23)

So

F  =  .................... .
v \  96^2 256 V6 ^ 3  u2

Similarly, we need to find the series solution to the left of s =  0. Substituting s =  - L

changes equation (7.7) to

FF" +  ( f ' +  -  -  ~  ^ f ] F' - ^  =  0 (7.24)
V v 2 v )  2 v  v '
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where a prime now denotes differentiation with respect to L. We now expand F as 

F  =  - L F i  +  L 2F 2 -  L 3F s  +  L4 F4  +  ■■■■ (7.25)

Comparing terms in like powers of L results in the series solution

F = - — ( l  +  L2^ -  +  f  F T  “  ^2 ) +  ■■) (7’26)v \  8 u 96i/2 256 \Qu3 u2 J J v '

to the left of the minimum. In fact, any number of terms in the series can be

deduced.

We can now use the above series in s  (equation (7.23)) to march from the minimum 

to the right to some positive value s  =  a, say (i.e. 77 =  k +  a)  to give us /  and f  

here. (Recall f  — F 2 and / '  =  2FF'). Similarly we can use the series in L (equation 

(7.26)) to find the values of /  and its first derivative at some L =  6 , b >  0 which is to 

the left of the minimum (rj — k — L). Hence we have the starting conditions for two 

Runge-Kutta schemes; one starting at 77 =  k +  a  and solving equation (7.1) shooting 

forward to some large positive 77, and the other starting at 77 =  k — b and solving 

equation (7.1) shooting backward to some large negative 77. To solve equation (7.1) 

by a Runge-Kutta scheme we put

f  =  9 (7.27)

and

± 7 H ) * - / )  (7-28)

and use the numerical method 25.5.18 in Abramowitz and Stegun [1]. Note we 

choose +co if / '  > 0  and - cq if / '  < 0  because cq > 0  on the upper branch where 

locally at the origin / '  > 0  and vice versa.

Third, we return to the option where the minimum /  7  ̂ 0 i.e. Fo 7  ̂ 0 and F\ =  0. 

Recall equation (7.9) is the pertinent expansion in this case, which led to equation 

(7.10) and at leading order F2  =  in (7.12). We shall see that the series in this 

option is not regular and furthermore it results in the unphysical condition that 

/  7  ̂ 0  at the centre of a separating region, and this option is therefore ultimately 

dismissed. Continuing to O (s) with this choice results in

8 vFqF$ 2 F2 C0  +  F2 F0 A: =  0. (7.29)
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Thus

F> — ^
Note that for / '  > 0, Co > 0 and vice versa. The shape of the solution is concave 

upwards; to the right of the minimum /  has a positive slope. Hence

_  _ i o *  JfSL ,7 , n

3 ~  241/2 +  24i/2 ' <7'31)

Therefore, the expansion to the right of the minimum is

^  =  7ro f l  +  ^  +  *3 ( ' - ^  +  T T ^ r ' ) V  (7.32)Av \  2Au2 \2v 2 Fq

Again, the series must also be found to the left of the minimum. As before it is

possible to make the substitution s =  —L and consequently we are required to solve 

equation (7.24) once more, this time with the expansion

F =  F0 +  L2 F2 -  L3 F3 +  .... (7.33)

Similarly, comparing like powers of L and noting that to the left /  has negative slope

forcing Co < 0  leads to the series solution

L 2  T 3  (  k  CQF = F 0  (7.34)

Writing this in powers of s reveals

F = F ° { 1 + £ + °3 { - ^ - T t h ) ) -  ^

The central point here is that the third term in (7.32) differs from the third term 

in (7.35) in the sign of cq. The series about the minimum is therefore not regular 

if Fo 7  ̂ 0, which is unacceptable as we are seeking a smooth solution. An inner- 

inner region would be required if the series solution were non-regular, within which 

more knowledge of the local physics would be required, possibly concerning ‘jump 

conditions’ for example. This solution also has /  non-zero at the minimum and so can 

be dismissed by physical arguments. Altogether therefore the minimum must occur 

with f  =  0 and series (7.23) and (7.26) can be used in conjunction with a Runge-

Kutta method, as explained above, to find solutions of (7.1). These correspond to

the density to being zero at the centre of a separating region, agreeing perhaps with 

physical intuition.
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Figure 7.1: A solution to equation 7.1 where the minimum occurs at (77, / )  =  (1 ,0 ). 

A series solution has been used to enable passage through the m inim um . See en­

largement in figure 7.2. The step size in this example is h. =  0.001.

7.2.4 Solutions

The first solution we find is for the values a =  b =  0.1 and k =  1 , corresponding to  

the minimum being located at (77, / )  =  (1 ,0 ). A series expansion is used to  find the  

solution between 77 =  [0.9,1.1] and then two Runge-K utta schemes are used to shoot 

forwards or backwards from the end points of the series. Figure 7.1 shows that the  

density relatively rapidly increases to  large values to the left of the m inim um  yet 

increases to a smaller value to the right of the minimum: the density distribution  

is asymmetric either side of the minimum. Figure 7.2 shows an enlargem ent of the  

solution near the minimum, highlighting the series solution through the m inim um  

and showing that it matches well w ith the solutions from the R unge-K utta schemes. 

Four terms have been used in the series expansion in this case. A lthough this 

may seem a surprisingly small number, when the number of term s in the series is 

changed to check the numerical accuracy the solution remains virtually the same. 

The solution f  ~  r}2 to  equation (7.1) in the lim it 77 —» ± 0 0  can be used to check 

if the numerical solutions display the correct behaviour. Thus figure 7.3 shows a 

plot of the solution divided by tj2, and as 77 increases to  large positive and negative 

values the curve in figure 7.3 apparently tends to a constant as expected.
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Figure 7.2: Closely examining the minimum in figure 7.1 reveals the series solution 

(thin line) is seen to match well with the numerical solution (heavy line). In this 

case, the series solution goes to O (s4).

£

2

1 0

Figure 7.3: Above we plot ^  and see that this appears to tend to a constant for 

large values of 77. Therefore the numerical solution appears to asymptote to rf  at 

large 77 as expected.
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Figure 7.4: Plotted above is the full solution for three different step lengths; h. =  

0.0001, h =  0.001, and h =  0.01. All three appear to coincide virtually exactly. 

Figure 7.5 shows an enlargement of the solutions near the origin.

The numerical accuracy of the above solution was further checked. The step- 

length was made shorter or longer to check the grid-dependence of the solution. 

Also the number of terms in the series expansion was changed, and the interval of rj 

in which the series is applied, to make sure the solution is not dependent on either. 

Finally, the length of the series can be changed to further ensure the result has no 

dependence on this as well. Figures 7.4 to 7.10 investigate these aspects, and the 

solution does indeed remain virtually the same in all cases.

A number of other solutions can be found where the minimum is located at dif­

ferent points. These solutions have quantitatively different behaviour from the one 

found above. For example, the solution shown in figure 7.11 has the minimum placed 

(*?>/) =  (0 , 0 ). Again, a four-term series expansion is used to find the solution 

through the minimum and then the Runge-Kutta scheme is used to find the solutions 

from the end-points of the series which are located at rj =  —0.1 and r/ =  0.1. In this 

case, the analytical solution is exactly /  = Trj2 with V =  CqV~ 2 which is symmetric 

about the origin: see figure 7.13. Therefore this case corresponds to the situation 

where grains separate into regions of equal density.

Another example is to find the solution when the minimum is placed at (77, / )  =  

( -2 ,0 ) , as shown in figure 7.14. Again we see an asymmetric solution; to the left
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Figure 7.5: This plot shows the solution near the minimum for three different step 

lengths; h =  0.0001, h =  0.001, and h =  0.01. All three coincide and consequently 

all three match well with the series expansion through the minimum.
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Figure 7.6: Plotted above is the full solution for three different lengths of the series 

expansion. A series expansion is used to find the solution between rj =  [0.9,1 .1 ], 

ri =  [0.99,1.01] and t) =  [0,2] in each case. All three appear to coincide virtually 

exactly. Figures 7.2, 7.7 and 7.8 show an enlargement of the solutions near the 

origin.
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Figure 7.7: Shown above is an enlargement of the solution near the minimum when 

a series expansion with four terms is used between 17 =  [0.99,1.01].
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Figure 7.8: Shown above is an enlargement of the solution near the minimum when 

a series expansion with four terms is used between rj =  [0 , 2 ].
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Figure 7.9: Plotted above is the full solution for two cases: one with a two-term 

series expansion and the other with a four-term series expansion. Both solutions are 

virtually the same. Figure 7.10 shows an enlargement of the two-term solution near 

the origin.
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Figure 7.10: Shown above is a close-up of the solution near the minimum when a 

series expansion with two terms is used between 77 =  [0.9,1.1]. c.f. figure 7.2
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Figure 7.11: The solution to (7.1) for when the minimum is located at the origin. 

A step size of h =  0.001 was used and a four term series expansion was used to find 

the solution through the minimum. An enlargement of this region is shown in figure 

7.12. The grains separate into two regions of equal density.

/
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0.005

- 0 . 2 0 . 1 0 . 1 0 . 2

Figure 7.12: Once more, the series expansion allows the solution to pass through 

the minimum.
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Figure 7.13: The solution in figure 7.11 is divided by ry2  and is equal to a constant 

everywhere. This is the exact solution, /  =  Trj2 with T =  CqV~ 2 =  1.

of the minimum /  increases only to relatively small values, whereas to the right of 

the minimum the solution increases relatively rapidly to large values of / .  We pay 

particular note to the way in which the curve seems to tend to a small constant 

for a large distance to the left of the minimum before beginning to increase. This 

can be explained analytically as in 7.2.5 later. Once more the series expansion is 

shown enlarged, in figure 7.15, and is seen to sensibly take the solution through 

the minimum and match well with the solutions from the Runge-Kutta schemes. 

Also figure 7.16 shows that the numerical solution does indeed display the expected 

behaviour as r) —* ± 0 0 .

Before a physical interpretation of the results is given, and before conclusions are 

drawn about the local viscous c(p)  law for grains separating at low density, we move 

on to seek analytical solutions.

7.2.5 Analytical solution

A solution is now sought in the form

/  = r»2 + £/'+ ... , (7.36)
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Figure 7.14: The solution to (7.1) when the minimum is located at (77, / )  =  (—2,0). 

Again we see an asymmetric solution; to the left of the minimum /  increases only to 

relatively small values, whereas to the right the solution rapidly increases to large 

values of / .  The solution appears to have a large region where /  remains constant, 

a feature to which reference is made in section 7.2.5. For the above solution a step 

size of h =  0 . 0 0 1  was again used, as was a four term series expansion through the 

minimum. The solution near the minimum is enlarged in figure 7.15.
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Figure 7.15: An enlargement near the minimum of the solution in figure 7.14 is 

shown. The thin line is the series expansion through the minimum and the thicker 

lines are the solutions from the Runge-Kutta schemes.
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V 10- 20 - 1 0

Figure 7.16: The solution divided by rf  tends to a constant for large values of 77, as 

expected from looking at equation (7.1) in this limit.

which from (7.1) yields

* (2T + <r) -  (±<* (IV )-*  (1 -  2̂ ) - 1)  (a r , + ' ? )

-  ( r v2 +  e f+ . . ' )  = 0 .  (7.37)

Thus, at leading order, the equation

c o r -  5 7/
2IV -  ( ± ^ - r -  -  t- 1 (2 Tt7 ) -  Trj2 =  0

\v\

has to be satisfied, resulting in

(7.38)

(7.39)

where we have used the fact that (t; 2 ) 5  =  |t;|. The result (7.39) agrees with what 

we had earlier in (7.5).

At 0 (e )  the differential equation

is obtained. Since for small 77 the equation can be approximated as

(7.40)

77 772
(7.41)

136



it can be seen by substitution that locally

/  «  Arj +  Brjlnr) for small 77. (7.42)

Consequently,

/  «  Tr}2 +  e (At} +  Brjlnrj). (7.43)

Notice that if 77 =  O(e) then the first term is O (fi2), as is the second term to 

within a logarithm. The value of B  depends on the behaviour in an inner region 

studied below, where two types (I, II) of solution are found. Type I leads clearly

to the requirement B =  0 and we have, that mainly in mind. If B  is non-zero on

the other hand then e in (7.36) can be replaced by j—p to account for the change 

ln77 —> ln£ +  0 (l) in the logarithmic term when 77 becomes e£ with £ ~  1  in the inner 

region, and the following working remains unaltered.

T ype I. In the inner region

77 =  e£ and /  =  e2F  (4) +  ... (7.44)

with £, F  of order unity and

|  =  ,F ' and g  =  F", (7.45)

giving, from equation (7.1),

vF" -  ( ± - 2 ^  -  tF' -  <?F =  0 (7.46)
\  eF 2 2 /

where a prime denotes differentiation with respect to f . Consequently, at leading 

order the nonlinear ordinary differential equation

must be solved.

Integrating once gives

vF" ±  • ~ F / =  0  (7.47)
F  2

vF' c q F 2 =  k \  (7.48)

where k \  is a constant of integration. Then we multiply by ^  and solve the resulting 

equation,



for £ as a function of F  and invert. 

Consider
f  dF  -  rv I    =  / .

J k̂  ±  2 cnF^fo ±  2 cqF^

Letting u =  ±F% and then making the substitution s =  ki +  2co« gives

I  =  ± ^ 2  f  1 -  — ds.
2 4 J  s

Hence, the solution for £ is

£ +  k2 =  ( fo ±  2cqF% -  foln k\ ±  2c$F% (7.50)

where fo is another constant of integration.

It can be seen from (7.50) that at large |£| the asymptote F  ~  fo £ 2  +  fo£ln£ +  0(£)  

is self-consistent, with fo =  ( ^ - ) 2  and fo oc fo. The contribution fo or fo here plays 

a key role.

We are now required to invert this solution to find F  (£) and then match F  with 

the outer region where the /  (77) solution is valid. Two solution types are found: one 

(I) in which the shape of the solution is parabolic, and the other (II) in which the 

log branch can be included and the solution has a large region where F  tends to a 

constant.

Type I has fo =  0 and the solution for F  simply follows as

F = ( ^ f ( (  +  k2 f .  (7.51)

Continuing to match this solution with the outer-layer of (7.43) yields

2
e2  ( ^ )  ({ +  k2f  ~  i y  +  eAri (7.52)

with B  =  0. That is,

( ? )  ^  +  2 ^ 2  0 )  +  f 2 ( ? )  fo ~  r V  +  Aerj 4-... (7.53)

Therefore,

0 ) \ ; 2 =  i y ,  (7.54)
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which we know to be true already since T =  ( ^ ) 2. Also, from the order epsilon 

term,

A =  2 k2T (7.55)

and the e2r k 2 term must balance with the undetermined O (e2) term on the right- 

hand side.

Hence,

/  = l V +  e(2fc2r»)) +  0 ( c 2) (7.56)

and

F  = £2r ( 2  +  fc2) 2 . (7.57)

This solution is therefore seen to correspond to an origin shift.

Let us now consider what happens if k\ is non-zero. Recall from equation (7.50) 

that £ grows like for large F. In order for £ to be a smooth function of F valid 

for all £ the solution in the small F  region must connect the two branches of the 

+>/~F and —VF  curve. Therefore there must somewhere exist a turning point with 

infinite. Since

^ r =  M ( ± 2 c o T _ ^  (7.58)
d F 2 V  \  f c i ± 2 c o F 2 y

is to be infinite, at such a turning point

F5 =  (7.59)
2 cq

However, for this value of F%, £ (F) is singular. In consequence a solution with a 

minimum of F  at finite £ does not exist if k\ is non-zero and if B  =  0 . So k\ =  0  

for this particular shape of the £ (F) curve. See figure 7.17.

T yp e II. An altogether different type of solution, which includes a log branch, is 

valid if the shape of the £ (F) curve is of the form of that sketched in figure 7.18. We 

now wish to see if the log branch in the inner region allows a single-valued solution. 

The log branch is to send /  toward zero at the end away from the inner region (where 

£ is large and negative), and then it is possible to match this with /  as ij ~  c_ 1  into 

an outer region.
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Figure 7.17: Sketched above is £(F 5). For a smooth solution the ±F*  branches 

(solid lines) must be connected and so there must exist a turning point with j p  =  oo. 

This cannot be satisfied if k\ ^  0 and B  =  0.

In this case cq > 0 since F' >  0. Hence equation (7.50) can be written as

£ =  ( —ki +  2cF% +  Aqln - k i  +  2 coF 2 |  ̂ -  fc2  (7.60)

where k\ =  —k\ and k\ > 0. Therefore, as F? —> £ —> —oo with -^r---- * oo.
Zc° dFl

That is to say, the inclusion of the log branch allows a long flat inner-region where 

F  (essentially the density) tends to a constant. The solution is sketched in figure 

7.18.

The solution in the inner region must now be matched with the outer solution as 

rj —> O (e-1 ). We match with rj =  O (e_1) because the inner solution has a long, flat 

region with £ —̂► — oo as has just been demonstrated. Far to the left, after the region 

of small density, /  starts to increase to large values (as this makes sense physically 

for a separating region). Consequently, f  <  0 here and so cq <  0. Therefore, the 

—Co case is chosen and putting £ =  erj is appropriate, corresponding to £ =  e~2(. 

As the solution leaves the inner region and enters the rj =  O (e-1 ) region f  =  e2F 

must still be satisfied. Let /  ~  e2F  (£) in this region.

Note also that scale e- 1  has been chosen because the solution must increase to 

large values far to the left with F  parabolic, to match with the parabolic behaviour 

in the outer region. If e~ 1 is chosen then equation (7.62) below is satisfied, which
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Figure 7.18: Sketched above is F  as a function of £. It is possible for F to tend to 

a constant at one end if the log term is included. This may then match with /  as 

77 —* O {epsilon"1).

eventually results in a quadratic solution for F  as required. Thus equation (7.1) can 

be written as
A ,,'„F" -  ( - W  e*F =  0

where a prime denotes differentiation with respect to (.

At leading order the solution to

(ft+1) ̂   ̂- 0
must be found. Multiplying by and a little rearranging gives

d r

(7.61)

Integrating once yields

—ry =  cqF  . 
dF  2

F ? (  =  — cq  +  C F

(7.62)

(7.63)

(7.64)

after a minimal amount of manipulation; C  is a constant of integration. The resulting

equation is simply a quadratic for F 2 and the standard formula reveals

p i  < ± v ' C 2  +  4Cco
2 C

Squaring shows that
C 2  +  2 C c 0  ±

2  C 2
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f'

The solution must now match with Trj2, as £ —> — oo and with as £ —i► 0 . As4Cq

£ —> -o o  we must choose the positive square root so the solution is non-trivial. The 

matching condition then results in

A solution of type II is allowed, then, and the constants can be found by matching 

as above. In fact, a numerical example of this type of solution was seen in figure 

7.14.

7.2.6 Physical interpretation of solutions and conclusions.

By modifying the fundamental diagram to include a representative local viscous law 

we see that physically sensible solutions axe obtained for the case of separating grains 

at low density for small times and order one viscosity.

In the solutions presented above the condition /  =  0 must be satisfied at the 

centre of the separating region. That is, the density must always be zero in the 

centre of the separating region. This agrees perhaps with physical intuition and also 

fits well with results from the idealised inviscid case.

Furthermore, the solutions can be asymmetric about the origin. This corresponds 

to grains moving apart, possibly at different speeds, into regions of differing density. 

It is important that the continuum model allows this kind of solution as it was seen 

in numerical simulations where clusters of different sizes develop.

~  r r ? 2  +  • • • (7.67)

Since £ =  erj then,

Therefore C  can be found by matching with the (as yet undetermined) O (e4) on 

the right-hand side of (7.68). As £ —» 0“ , matching requires that

(7.69)

so

(7.70)
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We found both analytically and numerically that a large region of low density can 

evolve between two separating regions: see figure 7.14 and the discussion at the end 

of section 7.2.5. Again, one would expect this to occur for some cases of separating 

regions and also we recall that numerical simulations had some large regions that 

were devoid of grains.

Finally, an origin shift of the centre of the separating region was possible i.e. the 

grains do not have to separate about a fixed point, which is also a physically sensible 

result.

Consequently, it seems reasonable to conclude for cases of separating grains that
3 1

the q ~  p  2 law from the inviscid case can be changed locally to a viscous q ~  p? 

law.

The question of whether the same be done for colliding grains at the other end of

the Q (p) curve in the neighbourhood of p =  pm is investigated in the next section. 
*

7.3 V iscous clashing

7.3.1 Introduction

Cases which drive the solution to the high density end of the Q (p) curve and the 

branch switch there are now considered. We investigate the possibility of introducing 

a similar viscous Q(p) law at the high density endpoint. The earlier stated qualifi­

cations about the empiricism of the approach also apply here. Branch-switching at 

the high density endpoint physically corresponds to colliding grains.

A viscous region of small size e <IC 1 is therefore introduced in the neighbourhood of 

P =  PM,  where p m  denotes the maximum (jammed) density. Here q =  ±e ( p m  ~  p ) 1
3

locally. This matches into the inviscid part of the curve where q =  ± { p m  — p)*
3

locally: if p  ~  p m  — t  then q ~  in both regions and therefore they match. Also 

c =  q'  ~  These power laws are chosen by the same reasoning as in section 7.1.

In the inviscid analysis, the wavespeed c  is close to zero in the vicinity of p m . The 

P =  PM point itself is stationary. The flux q is also small in this neighbourhood. 

Hence, if a particular region has an initial density close to p u  the characteristics will
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not travel far from this point. Therefore the viscous part is valid for a small region 

near p =  p m ', so x «  1 . We wish also to find solutions for order one time. (N.B. 

in the separating case a solution valid for order one viscosity and small time was 

found. Conversely, we seek here solutions valid for all time but only small viscosity). 

Therefore we choose the scalings t ~  1 and x «  1 alongside p ~  e, q ~  65 and
iC ~ 62.

Balancing these terms in the continuum equation (6.1),

Pt CPx ~  Vpxxi (7*71)

yields in terms of orders of magnitude

3
e 6  2 i/e .

-  +  — =  7.72
t x x l

Therefore x (h and v  /v
3

Note that v  ~  e is clearly a central case. If e were smaller, then the q ~  p* law

would hold true for almost all (q , p) and we have seen in previous computations that

this poses a difficulty.

7.3.2 Derivation of the equation for the high density viscous region

Given the above scalings, we now put

x =  Ax, (7.73a)

p - P M -  vP,  (7.73b)

c = Ac, (7.73c)

q =  A q , (7.73d)

j
where X,  P, C  and Q are all order one. It is important to note that c =  ^  =  

i-e- c =  - * ^ 3 $  and therefore C  =  - < § .  Now and ^  =

So equation (7.71) becomes

Pt +  CP x  =  P x x • (7.74)
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Letting q be a representative linear combination of the viscous and inviscid laws 

results in

q =  ±(^Ae(pM -  p ) \ +  B ( pm ~  p)*) , (7.75)

where A and B  are (positive) constants. Hence

c =  ±  ( - ^ |  (PM -  p ) ~ 5  -  | B  (pm  -  p)^ \  , (7.76)

c = ± H p- L f p ' ) '  (7'77)
Choosing A =  2 and B  =  |  without loss of generality (the validity of this is quickly 

outlined in appendix F) gives

Pt T ( p - i  +  P i )  Px  =  Pxx-  (7.78)

As a consequence of the multi-valued wavespeed, we do not solve (7.78) but in­

stead invert and solve the equation for Q (x , t) with P  =  P  (Q ). Since the P  =  P  (Q) 

relation is single-valued and general solutions may be found more easily. This ap­

proach, and the approach of section 7.3.4, is reminiscent to that of Li et al. [37] in

which the authors examine the intrusion of normal pressure gradients in near-wall 

dynamics of transitional-turbulent boundary layers.

We have

C  =  =F ( p - i  +  p i )  . (7.79)

Therefore

Q =  ±  ^ 2 P% +  +  constant. (7.80)

Since Q =  0 at p =  p m , i-e. at P  =  0, the constant is equal to zero. Consequently, 

since we take positive Q on the upper branch and negative Q on the lower branch,

2 ph  +  I p i  =  |Q |, (7.81)

a relation which needs to be inverted. Let Asinhfl =  P%. Then

3Asinh0 +  A3 sinh30 =  ^ |Q |. (7.82)
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We require the left-hand side to be equal to .Asinh30 =  3-Asinh# +  4i4sinh3 0. This 

requires X =  A and A3  =  4A  Therefore A3 — 4A =  0 implying that A =  0 or A =  2. 

Taking A =  2 to avoid triviality yields

2sinh30 =  — |< )̂.

Therefore, after a little manipulation,

P  =  4sinh2  ( jjsinh 1
1

|w i

(7.83)

(7.84)

Writing the partial derivatives in (7.74) as Pt =  QtPQ, Px ~  Qx Pq and P x x  — 

Qx x Pq +  ( Q x ) 2  Pqq  and further noting that C =  -Q p ,  gives

O'iQt ~ Q x  =  a iQ xx  +  a2 (QxY (7.85)

as the equation for Q(X,  £), where a\ and a2 are Pq and Pqq respectively. Explicitly

3« £<2 L si„h f 2 inh-> 1 0 1 (7.86)

and

a2 =  -■ ® ^ % s i n h  g d n h - 1

016 ( l  +  9 f £ ) 5
1 0 1

H 7 rr-cosh { -s in h
2 f i  +  ^  V 3

- l
\Q\ . (7.87)

{ }  [ 16 )

Observe that cq and a2 have discontinuous higher derivatives. In terms of P(X),  P  

and at least its first two derivatives are continuous.

7.3.3 Numerical solution of equation (7.85) 

Equation (7.85) is discretized as

Qi -  Q i\ _ f  Qi+i ~ Q i-A
J V MX J

Qi+l ~ %Qi "b Qi—1
St

a i
SX 2 +  * 2  I Q'+'2 Sx ' ~ '  ) <7-88)
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0where ai and a2  are evaluated at the known time-step, as is the (Qx) term. A 

bar denotes the quantity at the known time-step, while absence of a bar denotes a 

quantity at the unknown time-step. The subscript i denotes the quantity at each 

spatial grid-point. The solution is then found by a usual finite-difference method.

Solutions are found on a number of grids to ensure they are accurate. The grid 

sizes used are (5X,5 t ) =  (10_ 1 ,10-3 ), (10- 2 ,10-5 ) and (10~3 ,10-7 ). Figure 7.19 

shows a solution for the above three grid sizes. There is excellent agreement between 

all three. All other solutions are found on a grid of (SX,8 t) =  (10~2 ,10-5 ).

Figure 7.20 shows solutions for the case in which two regions collide symmetrically 

about a central point located at x =  0.25. Note in all solutions that we plot pm — P  

versus X  to show the local change in the density through the clashing region. The 

viscosity has a value of v  =  0.001. As time increases the hump shape spreads 

across the domain tending to produce a region of maximum (jamming) density. The 

boundary conditions in this case are consistent with a continual input of grains at a 

fixed density. The solutions were found for times of t =  0.1, 1.0 and 10.0.

Figure 7.21 shows solutions in which two regions collide asymmetrically about 

a particular point. Again the boundary conditions are consistent with a continual 

input of grains at a fixed density. The viscosity in this example has a value of 

v  =  0.1. Solutions are plotted at times of t =  0.1, 1.0 and 10.0. Again a hump forms 

and spreads across the chute over time. In this case the growth of the hump is not 

isotropic; the density increases to higher values more rapidly to the left of the initial 

point of collision.

The boundary conditions used just are tentative however, namely Q { X i , t) =  Q i ,  

Q ( X R , t )  =  Q r , with Q i ,  Q r  arbitrary non-zero constants. In the next section we 

find the correct boundary conditions which correctly match solutions to equation 

(7.85) into an inviscid expansion fan.
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Figure 7.19: The plot shows the local deviation in the density (pm — P) near the 

maximum at a time t =  0.1 for a number of different grids. The grid sizes used 

are (SX, St) =  (10- 1 ,10-3 ), (10- 2 , 1 0 -5 ) and (10- 3 ,10-7 ). There is good agreement 

between all three curves. Recall that here, and in figures 7.20 and 7.21, P  =  

and X  =  - r̂ with v  small. Here u =  0.001.
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PM ~  P

Figure 7.20: This figure shows local deviation of the density against position for a 

solution to equation (7.85) for various times. The initial condition was for grains 

to be continually colliding symmetrically about a particular point. A hump of large 

density appears and this spreads and increases over time. Here v  =  0.001.
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PM ~  P

Figure 7.21: Another solution to equation (7.85) for various times is plotted above. 

In this example the initial condition was for grains to continually collide asymmet­

rically about a particular point. Again, a hump appears and spreads over time but 

the density increases to higher values more rapidly to the left of the initial point of 

collision. Here v  =  0.1.
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7.3.4 Finding the appropriate boundary conditions which correctly 

match the viscous clashing region with the inviscid bulk

We seek a similarity solution to equation (7.74) as |X | tends to infinity, i.e. as the 

solution leaves the viscous clashing region and enters the inviscid bulk, in order 

to find the more appropriate boundary conditions for the numerical scheme (7.88). 

Prom equation (7.85) we see that we must balance j ,  ^  and as Q ~  and 

\X\ -+oo.

One choice could be ^  ~  but this results in P  ~  X ~ 2. This is a contradiction. 

As X  increases, the solution should leave the inviscid region, so P  should tend to 

large values, making u^P — 0 (1 ) . Another choice is to balance 7  ~  We wish

this balance to hold true for all time, so t is order one. Therefore P  X 2 and

Q ~  X 3.

Hence the solution of equation (7.74) is required at large X  and order-one time 

with P  X 2 and Q ~  X 3. In this limit C  ~  P% must be taken since this is 

appropriate in the inviscid region. Therefore we seek the solution to

P t T P * P x  =  0. (7.89)

(As we shall see, the solution to this equation does in fact lead to the required 

P  ~  X 2 and Q ~  X 3 behaviour.)

Put P  =  r2 so

n  =F rrx =  0. (7.90)

Let r  =  (t — to)mf(ri) with rj =  . Balancing terms from the partial differential

equation for r yields r  ~  y .  Therefore,

X  (t -  t0)m(X  -  X 0)
(7.91)

t (t -  t0)n

and hence

n — 1 =  m.  (7.92)

Finding the derivatives in terms of rj in the standard way and substituting into (7.90) 

reveals the similarity equation

m f  -  nr,}' T / / '  =  0 (7.93)
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where a prime denotes differentiation with respect to 77. 

Now notice that the choice of n =  1  => m  =  0 gives

f ' ( T f  -  ?7) =  0 (7.94)

so / '  =  0 or /  =  TV-  For this choice of n, the f  =  T V  solution leads eventually to

is the large X  solution to equation (7.74) which matches into the expansion fan 

solutions which axe obtained for colliding grains in the inviscid bulk. We have

Q is negative on the right of the chute. This ensures that a clashing region occurs.

Therefore, if we wish to find a solution to equation (7.85) that matches into an 

expansion fan then the appropriate boundary conditions are:

In the computation we have arbitrarily chosen X q =  O'and to =  1 , a choice which 

will be discussed later in this section. Furthermore, X l  and X r  are the locations of 

the left-hand and right-hand edge of the viscous colliding region.

Therefore we now solve equation (7.85) by the numerical scheme (7.88) subject 

to the boundary conditions (7.97). We choose X r  =  —15 and X r  =  15. Also, a 

grid size of ( S X , 5 t )  =  (10- 2 ,10-5 ) is used again and the viscosity has the value

Figure 7.22 shows solutions for p(x, t) at various times (n.b. we show the plots in 

terms of the global co-ordinates p(x,t) ,  not the local coordinates P(X,t )) .  As time

p  ( X -  X 0 ) 2  

(t  -  to)2
(7.95)

which is the exact form of the expansion fan solutions we met previously (since this 

locally gives C  ~  y  cf. equation (5.16)). Moreover, (7.95) is an exact solution to 

equation (7.89). Recall that Q ~  p i .  Thus

(7.96)

chosen the negative root so that initially Q is positive on the left of the chute and

(7.97b)

(7.97a)

v =  0.001.
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Figure 7.22: A solution is plotted for the initial condition in which grains do not 

continually collide, but instead match into an expansion fan. The hump spreads and 

increases over time and appears to be heading to a constant equal to the maximum 

(jamming) density.

increases, the hump spreads across the chute and the density increases. It appears as 

though the hump is tending to a constant equal to the maximum (jamming) density. 

At both sides of the plot there is a ‘lip’ that rises to a significantly higher density.

The presence of the ‘lips’ may appeal* peculiar at first, but it seems likely to be a 

consequence of imposing the arbitrary boundary conditions (7.97) on the problem. 

We recall that in the computation we set to =  —1, the idea being that the time- 

marched solution would tend toward the asymptotic form (7.95). The time-marched 

solution does indeed appear to head toward an asymptote of the same form but 

with a different value of to, and it then veers away from that asymptote ‘at the 

last moment’ in order to satisfy the particular boundary condition which we have 

imposed. Hence the ‘lips’ occur at the sides of the plot.

Such a view concerning the asymptote is supported by figures 7.23, 7.24 and 

7.25. First, figure 7.23 shows solutions at t=2 for various values of to- Each curve
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has roughly the same trend in the core but the ‘lips’ at the sides vary for each 

value of to- Figure 7.24 shows two time-marched solutions at t =  2, one with 

(X l , X r ) =  (—15,15) and the other with {X l , X r ) =  (—30,30) (computed on the 

same grid) and both have £ 0  =  - 1 , alongside two plots of the asymptote (7.95), one 

with to =  —1 and the other with to =  0- Regardless of the two different boundary 

conditions in the numerical scheme, both time-marched solutions appear to lie very 

close to the asymptote with to =  0  (as well as to each other, as a check on grid 

effects). Similarly, figure 7.25 shows three time-marched solutions at t =  2, one 

with to =  —1, another with to =  —0.2 and a third with to =  —0.5 (all three have 

(Xl , X r ) =  (—15,15)), alongside two plots of the asymptote (7.95), one of which has 

to =  0  and the other has to =  —1. Once more, regardless of the boundary conditions 

in the numerical scheme, all three time-marched solutions appear to lie very close to 

the asymptote which has to =  0. Thus the solutions do indeed have the asymptotic 

form (7.95) with a particular (small) value of to that seems to be independent of 

the value set in the boundary condition. The bulk or core of the solution develops 

its asymptote by itself, in a sense, a feature which is in line with the underlying 

characteristics of the inviscid limit being directed outwards with slope > 0  for 

X  >  0 and < 0 for X  < 0 from (7.89). The ‘lips’ would not occur if suitably 

adjusted boundary conditions were imposed of course, but the latter are unknown in 

advance and determining the corresponding value of to is nontrivial; see for example 

a similar problem in Li et al. [37]. For small t the behaviour is similar to that of 

section 6.4; viz. there is a discontinuous start with matching between several layers.

7.3.5 Interpretation of solutions and conclusion

The introduction of a local viscous Q(p) law at the high density cusp of the funda­

mental diagram has produced physically sensible results. Recall that in the previous 

numerical simulations of chapter 3 areas of densely packed grains were observed. 

This behaviour has also been seen in images provided by Sortex. In the solutions 

found above, we observe the growth of dense regions, symmetrically and asymmet-
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Figure 7.23: This figure shows the occurrence of the ‘lips’ for various values of to: 

A has to — - I ,  B has to =  -0 .5  and C has to =  —0.2. See the full discussion in the 

text.

rically, for a number of reasonable boundary conditions. Consequently, we can be 

fairly confident that the introduction of such a viscous law allows solutions to be 

found which are congruous with our understanding of the behaviour of grains in­

volved in collisions.

The continuum model has now been seen to produce what are felt to be qualita­

tively sensible results for three special cases: the bulk inviscid behaviour from chap­

ter 5, viscous separation and viscous clashing (at least for the cases investigated so 

far). In the last two cases, the fundamental diagram is modified as a consequence of 

the introduction of the introduction of the viscous dissipation term. Although this 

fundamental diagram cannot be entirely supported by physical arguments, physi­

cally sensible results are nevertheless obtained. The modifications therefore appear 

to be admissible. The next step is to develop a computational procedure for the 

continuum equation (6 .1 ) for general cases which might involve any combination of 

the above three cases.
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Figure 7.24: This figure shows two time-marched solutions (solid lines A and 

B) at t=2, alongside two asymptotes (dashed lines). Curve A corresponds to 

the computation which has (X l , X r ) =  (—15,15) and curve B to the one with 

(Xl , X r ) =  (—30,30). The value of to on the asymptote is shown adjacent to each 

curve. See the discussion in the text.
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Figure 7.25: This figure shows three time-marched solutions (solid lines A, B and 

C) at t=2, alongside two asymptotes (dashed lines). Curve A corresponds to the 

computation which has to =  — 1, curve B to the one with to =  —0.5 and curve C to 

the one with to =  —0.2. The value of to on the asymptote is shown adjacent to each 

curve. See the discussion in the text.
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7.4 A  general com putational procedure

The problem of branch switching can be avoided in many cases by writing the con­

tinuum equation in terms of polar co-ordinates. In so doing here, however, we choose 

to simplify the flux-density relationship because solving for the original fundamental 

diagram would lead to too complicated a function, as a first step. For simplicity we 

choose the fundamental diagram to be circular as an approximation to the ‘proper’ 

fundamental diagram determined in the preceding section. Although the motivation 

for doing so is to make the mathematics more tractable, we should obtain behaviour 

qualitatively similar to that of the complete model. Consequently,

q —a sin (8 ) (7.98)

and

p — a (1 +  cos (0)) (7.99)

where a is the radius of the circle with a =  Qjr and 9 is the angle, a function of 

position and time. Hence pt =  Podt, px =  poOx, and pxx =  p$8 xx+poe {9X) 2 ■ Note that 

Pq =  -a sin (0 )  and pee =  -a co s(0 ). Finally note that c =  ^  =  qeOp =  -c o t(0 ) .  

Therefore the continuum equation (6.1) becomes

9t -  cot (0) 9X =  v 8 xx +  v  cot (0) (0a;)2 , (7.100)

a partial differential equation for the unknown function 6 (x,t).  It is assumed that 

9(x, t) is a well behaved smooth function of x and t. It is tempting to think that when 

sin(0) is small boundary-layer like behaviour may occur. This is not so, however, as 

outlined in subsection 7.5.2.

We now solve this equation by a finite difference scheme. There are a number 

of different ways in which the equation can be discretized, depending on which 

terms are treated as unknown for the current time-step. Numerous schemes have 

been tried, but the one which appears to be most stable is the one in which the 

cot (0) terms and the (0X ) 2  term are evaluated at the previous time-level. Upwind 

or downwind differencing is chosen depending on the sign of cot(0 ) at the previous 

time-level.
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Observe that at switching, where sin (0) =  0, in effect the time derivative and 

the second derivative in x vanish from equation (7.100). This leaves, in view of the 

smoothness of the function,

0x (v0x + 1) =  0. (7.101)

Therefore if 9 is an integer multiple of 7r then we must impose either the condition 

0 X =  0 or 9X =  —K  Which to choose? The former condition, 0X =  0, forces 

9(x, t) to be maximal in x when sin(0 ) =  0  and the density is either zero or at the 

jamming density, pm. If 0(x, t ) were to be at a maximum at these points then the 

density would approach the branch switch but would not actually be able to switch 

branches. In order to switch branches 9(x , t) must continually increase so that the 

density and the flux can ‘circulate’ around the fundamental diagram. Hence 0X =  0 

is the inappropriate condition to impose and we must enforce 6 X — — To ensure 

the latter does not introduce any discontinuities in the gradient, the initial condition 

is always chosen to satisfy it. Although this may seem as though there are too many 

boundary conditions, the problem is in fact not over-prescribed: see the discussion 

in section 7.5.1.

We employ the code to seek solutions up to large times and compare to the 

steady state solutions. The steady state may be regarded approximately as the 

density profile at the end of the chute. In section 7.5, large time solutions are 

sought which have p =  pm at the boundaries x i  and xr  with Px\XL,XR ~  0- This is 

in order to ensure that the flux q — vpx =  0 , which is the general condition at the 

boundaries (the condition we apply is actually a special case of this). If p =  p u  is 

chosen then q =  0  is immediately satisfied and so px =  0  must also hold true at the 

boundaries. Observe that p — 0 could also be chosen to ensure 9  =  0, but this choice 

is not investigated here as consequence of an argument from the inviscid model, see 

appendix D. The argument itself may have certain strengths and weaknesses, as 

discussed in the appendix, but in any case we do not study the p =  0  boundary 

condition in this thesis. Unfortunately, only a small number of solutions could be 

found despite a relatively large effort.
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7.5 Steady sta tes and solutions at large tim es

It is possible to examine the steady states analytically. The continuum equation can 

be written as

Pt "I" Qx =  VPxx' (7.102)

Since the steady-state solution is being sought, the pt term is now taken to be zero. 

Integrating the remaining terms once yields

Q =  "Px ~ ci (7.103)

where c\ is a constant of integration which must necessarily be zero for the total 

flux to be zero, as mentioned below. Recall that in the present specific case q(p) is 

circular and so

(7-io4)

where q is a circle of radius ^ - (=  a), centred at Pj-.

We consider only the case where the density profile is flat when q =  0, to ensure 

the flux is zero across the boundaries. If p =  pm =  2a then 0 =  nn with n an even 

integer from equation (7.99). Therefore pq — 0 and thus px =  0, provided 6 X is 

finite (since px — p q 6x ).  The case of 9X being infinite would result in non-zero flux 

at the boundaries. We have now from (7.103) that c\ — 0. In other words, for zero 

flux at the boundaries we require q -  vpx =  0 , since q — 0  also at the boundaries 

(so that the density is maximal there) we therefore must necessarily satisfy px =  0  

and hence c\ =  0. (For non-zero flux at the boundaries refer to subsection 6.5.2 

in chapter 6 , which deals with steady states for one-way flows away from the chute 

walls). Therefore,

(7-io5)

Integrating, we can find that

p =  a ^1 +  sin (7.106)

if the positive root is taken, or



p
1 0

-2- 4

Figure 7.26: In the above figure, the solution is plotted together with the initial 

condition. The solution is shown at t  — 0.5,1.0, ...,4.5,5.0 and all curves appear 

to coincide with each other and with the initial condition. The initial condition is 

therefore seen to persist for all time, as one might expect.

if the negative root is taken, where xq and x\  are constants of integration. The 

positive and negative roots correspond respectively to q > 0  and q < 0  and hence 

to the two branches of the fundamental diagram. Also p  =  constant is a solution. 

Owing to the fact that q =  0 at p  =  p m  and at p  — 0 we see that p  =  p m  and p  =  0 

could also be valid solutions. This is discussed further in subsection 7.5.2.

Steady states are now sought by time-marching, utilizing the finite difference 

scheme outlined at the beginning of the chapter. In each example, the viscosity 

takes the value u — 1 . In the first instance, to test the code, the steady state is 

chosen to be the initial condition; it is found to persist for all time, as one might 

expect, see figure 7.26. This offers some encouragement about the accuracy of 

the numerical scheme. Next, an initial condition is chosen which resembles the 

steady state, but is slightly perturbed, or kinked, in two locations either side of 

the branch switch. Figure 7.27 shows the initial condition. Figure 7.28 shows the 

solution at t  =  0.01,0.05,0.1,0.2,0.5 and 1. There is an artificial shift in the origin
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Figure 7.27: The initial condition shown here resembles the steady state except for 

being slightly kinked, although smooth. See also figure 7.28.

of each solution so that a proper comparison can be made. The kink is seen to 

disappear as time increases and then a steady state seems to appear. The apparent 

steady state resembles the sinusoidal steady state found in the analysis (7.106), 

(7.107). The solution at t =  0.1 has been found on three grid sizes in order to 

investigate the numerical accuracy. Figure 7.29 shows this solution on grids of size 

{6 x , 6 t) =  (V2  x 0 .0 1 , 0 .0 0 0 0 0 1 ), ( V 2  x 0 .0 1 , 0 .0 0 0 0 0 2 ) and (V 2  x 0.01,0.0000005). 

Some slight differences in solution can be seen to the right of the origin, but in 

general the agreement is quite close. Hence we can be reasonably confident in the 

accuracy of the numerical scheme. Unfortunately, it has not been possible to find 

any other steady states of this sort, in spite of a concerted hunt for them. One reason 

for this seems to be that a steady state with conserved mass will not evolve unless 

the initial condition starts with a precise mass. This is elaborated on immediately 

below.

The total mass M  is given by

fXR
M =  / pdx (7.108)

JXL
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Figure 7.28: The solution that develops from the initial state of the previous figure 

is shown at £ =  0.01,0.05,0.1,0.2,0.5 and 1. The kink disappears and a steady state 

appears to be reached which resembles the sinusoidal steady state found analytically. 

There is an artificial origin shift in each solution to aid ease of comparison.

P
10

- 2 - 1

Figure 7.29: This figure shows the solution at t =  0.1 on grid sizes of (Sx, St) =  (y/2 * 

0.01,0.000001), (v/2* 0.01,0.000002) and (V2 * 0.01,0.0000005). There is generally 

good agreement between each solution.
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if there are walls located at x  =  x i  and x =  x r .  For the steady state with px — 0 

at the walls we know that

q =  vpx, (7.109)

from (7.103), and

« = i V r - ^ - ^ f ) 2- (7110)

It is possible to split the domain into two regions, one region with q < 0 and

P  € [pm, 0] on x e  [£z,,0] and the other with q > 0 and p € [0,pm] on x e  [0,x/*].

Integrating (7.109) produces

dp

and

This results in

and

[x]

/•0 rO
I dx — —u I —=_____________

J x l  J p m  J  £&■ -  ( / )  —  ^ 2 . ) 2

p - — r  , *
J o  J p m  y j e k  _  ( ^  _  ^ ) 2

( ' - t ) ) j

J oI •'Tin =  v

2  . - i  (  2— sin I —
. Pm. \  Pm

— sin 
. Pm  \ P m

0

Pm

Pm

0

Evaluating the above two expressions yields

I/7T

and

Pm

Pm

(7.111)

(7.112)

(7.113)

(7.114)

(7.115)

(7.116)

Therefore the period of the steady-state is very precise, namely Hence the mass 

is precisely defined as

M  =  /  pdx.
J-MJL

Pm

(7.117)

Next consider that

/ pdx +  q{xR) -  q(xL) =  upx\X=XR -  vpx\x=XL , (7.118)
Jxt

d f XR 
dt
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from integrating equation (6.1). Now q(xR) =  q(xi)  =  vpx\X=XR =  vpx\X=XL -  0 

because there is no flux across the walls. Therefore

Therefore if the mass in the initial condition is not equal to the steady state mass 

M, then a steady state with conserved mass may not be able to evolve - an issue 

that remains unresolved. Perhaps this is why so few steady states have been found.

Finding steady states that are significantly different from each other which start 

with this precise mass, satisfy the boundary conditions and which also satisfy the 

6 X =  — i  condition seems to be a difficult problem. Some other solutions have 

been found, but these are seemingly discontinuous solutions of the sort discussed in 

subsection 7.5.2 below. Although these may well exist, we seek smooth solutions of 

the kind demonstrated in sections 7.2 and 7.3 i.e. those that are smooth through 

the branch switch.

7.5.1 Remarks on the boundary conditions

We note that both the gradient and the value of the density are fixed at each wall in 

the above cases. The problem at first sight seems over-prescribed because there seem 

to be four boundary conditions for a second-order problem. This is not the case, 

however. The restriction occurs because we must force 6 X =  — -  whenever 9 =  nnI'
and 0  must take these values at the boundaries for the density to be maximal there. 

Consequently, since 9X is finite, px — 0 also holds at the walls. (The alternative case, 

with 6 X infinite and px ^  0, leads to non-zero flux at the walls). To demonstrate 

that the problem is not over-prescribed we show in the current subsection that a 

solution that smoothly marches forward in time does exist.

Let p =  pm — (t — to)f(rj) +  ... as t —> with rj =  — — r . Substituting into the
( t - t o ) ?

continuum equation with the local form of c ~  ±co(pm — p)~ 2 (since p is close to 

P m )  yields the nonlinear ordinary differential equation

(7.119)

(7.120)
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for /  (rj) (this happens to be the same equation as (7.1) studied in section 7.2). This 

must be solved subject to

/(0 ) =  0, (7.121a)

and

/'(0) =  0 (7.121b)

so that p =  pm  and px =  0  at the boundaries.

Near the wall, the solution of (7.120) expands in the form

/  =  /n77n +  / m77m +  ... (7.122)

for small rj with 0 < n < m.  Substituting into equation (7.120), and manipulating

a little, produces

un(n -  l ) f nr}n~2 +  vm{m -  l ) f mrfn~2 -  ( ± ±  c ° m / m 7?m ~ f - 1
V  f l

2 /1  2 f l  1 1 I

- f n V n - f m V m  =  0 + ~  (7.123)

Let n =  2, to obtain what we might expect to be the most general result,

2 v f i  +  vm(m  -  l ) / mum - 2  -  ( ±
V f l  f l

c o f m f 2  „ m —2 -r- ^•0^7' / m  „ 2 m —4 r  „ 2  m  i  „ r
=F----- 3— V T  -------- 1- 7 ? -  /2 f?  -  ^ / m 7?

/ 2* 2 / |  2

- / 2 7?2 - / m 77m =  0 +  ... . (7.124)

Therefore, balancing the 0 (1) terms reveals that

2 ^ / 2  T 2co/^ =  0; (7.125)

hence

/ 2 = 0 ) 2 . (7.126)
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The possible remaining balances for m  are m  =  0,1 or 2. The first two would violate 

the ordering chosen earlier, however, and the last would only add to the f i  term. 

Therefore, if /'(0 ) =  0, the above argument implies that we must have the exact 

solution

/ = 0 ) % ; 2  (7.127)

of (7.120) and so

P =  Pm~ x2 +  ... . (7.128)

Thus the wall-layer here is trivial as it is, in effect, identical to the solution in the

core at small x.

In fact, in the core, we have a regular time expansion where

p =  p0 (x) +  tpi(x)  +  t2p2 (x) +  ... . (7.129)

The leading order term is prescribed by the wall layer near x =  0 and is, at small x,

ck
Pa =  pm — ^ X 2. (7.130)

We also expand the wave-speed as

c =  c0 (x) +  <c*i (x) +  ... (7.131)

for small x, where co(x) can be determined from the fundamental diagram. Placing 

these expansions in the continuum equation (6 .1 ) gives

Pi +  2£p2 ■+■ (co +  t&i) (p'q +  tpi)  =  upQ +  i'p^t +  ... . (7.132)

Hence, at leading order,

Pi +  hp'o =  vp'o (7.133)

which can easily be solved to obtain, for small x,

Pi +  ^YCqx =  -  — . (7.134)
v 1 v

We found earlier that the wall-layer is trivial, since the solution there is exact 

and all terms are 0(1). Consequently, to avoid a contradiction, we must satisfy



pi, P2 , P n - ,  ••• =  0. (Otherwise, at some point in time a balance would be required 

between the x 2 term and an 0 (tn) term, and a wall layer would have to be intro­

duced). Therefore

co =  ux~l , (7.135)

in order to prevent a non-trivial wall layer.

We recall that c =  so cq +  tc\ =  ^  and hence cq =  3 ^ . As x —> 0

the wall is approached. At the wall p =  pm. The fundamental diagram has infinite 

gradient at maximum density. Therefore, as x —* 0, co —► 0 0 . Consequently the 

behaviour of co determined in equation (7.135) is entirely acceptable and so a viscous 

wall-layer is avoided.

In summary, having px =  0 enables a solution to develop which does not have 

any viscous wall-layers and thus is regular in x, t locally. (In principle a steady 

state might evolve at large times). In that sense, the problem appears not to be 

over-prescribed.

7.5.2 More remarks on the steady state solution

Observe that p =  0 and p — p u  are perfectly valid special solutions to the steady 

equation (7.103). There therefore seems to be an entire set of solutions to (7.103) 

where (7.106) can be used for any part and either of the special solutions can be 

used for any other part. It appears at first that these solutions could then be placed 

together, ensuring that the function is continuous, allowing any number of steady 

solutions to be ‘stitched together’ in this manner.

Solutions of this sort, however, do not form an acceptable steady state (in the 

sense of a steady state being a large-time limit) as the solution would not stay 

intact at the matching points if it were marched forward in time. The reason is 

as follows. In section 7.2.3 we saw that local to a minimum if a region with local 

curvature Xx2 say matches with a region px 2 say, with p  ^  A, then there exists an 

intermediate region with x =  kt% with k non-zero. (An example is A 0 and p  =  0, 

corresponding to a solution of form (7.106) matching with p =  0). Thus as time 

increases to order one values and beyond a f i  spatial growth will occur at the point



F

of matching. This can only be avoided if k — 0 for which A =  /i ^  0 necessarily, 

eliminating the possibility of the stitching-together of solutions as described above. 

The same line of argument applies at a maximum.

7.6 C oncluding remarks

In chapters 5, 6  and 7 we have attempted to develop a continuum model for the 

flow, including colliding and separating grains.

Chapter 5 in particular deals with the inviscid (bulk) model and we initially found 

solutions with discontinuous input, these being cases that yield relatively easily to 

analysis. In chapter 6 , we attempted to extend the number of solutions to other 

cases. To obviate problems associated with the discontinuities present in the model, 

we added an artificial viscous dissipation term so that the governing equation is 

parabolic. We focused in this chapter solely on problems in which grain movement 

is uni-directional so that no branch-switching occurred. Hence we used a finite 

difference scheme to obtain numerical solutions that imitate those found in chapter 

6 . Following this, an asymptotic solution valid at asymptotically small times was 

obtained. Some steady state solutions were then presented.

Finally, in the present chapter 7 we extended the work still further to encompass 

a two-way flow in which grains can move to and fro. In order to find such solutions, 

the fundamental diagram is modified so its curvature is convex outwards at the end­

points. It was determined that such an alteration still allows physically reasonable 

descriptions of separating and clashing grains to develop. A general computational 

procedure was then employed to find solutions in terms of polar co-ordinates and 

the unknown function 6 (x,t),  thus avoiding concerns about the multi-valued fun­

damental diagram since 6 {x, t) is single-valued. Again some steady state solutions 

were found, as these might correspond to the density profile of grains as they exit 

the chute, but it was difficult to find very many such solutions. In fact, a steady 

state with conserved mass may not always be able to evolve, an issue that remains 

unresolved.
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Chapter 8

Air effects

Air effects in the full chute flow have so far been entirely neglected in both the 

computational simulations and the continuum modelling. However, air effects are 

potentially of great significance, as we saw for the single grain in chapter 2 , and so 

they are examined in this chapter.

As discussed throughout the thesis, the ideal situation for Sortex is for a uniform 

ordered array of grains to fall down the chute in a manner such that each grain is 

aligned with an ejector. Ideally, the grains would be evenly spaced and uniformly 

oriented. We wish to determine in the current chapter whether such an array of 

grains is stable to the effects of the air flow. If the idealised array is unstable to air 

effects then a chute design that would produce a uniform grain distribution must 

also tackle problems associated with the unstable aerodynamics. Therefore a study 

of the air effects between grains and the air effects on arrays of grains is crucial to 

the industrial setting.

Some of the specific situations discussed in order to gain insight into possible 

behaviour are, for example, air effects between two flat grains, effects between two 

grains with curvature included, effects between unbounded arrays of grains and 

effects between arrays of grains bounded by chute walls. As we found in chapter 2  

that the grain-based Reynolds number is Reg =  0(150), i.e. a moderate Reynolds 

number not clearly in the low or high regimes, we therefore discuss in the current 

chapter both viscous and inviscid effects, as described below.
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First, lubrication effects are considered. These are significant when the separation 

between grains is relatively small and may be important during collisions, for exam­

ple. We start with a study of the viscous effects between only two grains. It is found 

that grains cannot actually touch when viscous effects alone are included (other 

physics must be included to describe collisions, such as molecular forces). Next, the 

viscous air effects are investigated for an array of grains and the subsequent stability 

of the grain array is considered.

Lubrication theory has been seen to be crucial in other similar situations. For ex­

ample, Ishikawa and Pedley [25] examined such effects on micro-organisms known as 

‘squirmers’. The orientation of the squirmers changes dramatically as they approach 

each other in the limit when viscous effects dominate. An engineering example is 

given by Korobkin and Ohkusu [31]. They studied the impact of two circular plates, 

one of which is floating on a thin liquid layer. As the plates come together the 

air flow is of major importance and air cushion effects perhaps explain some of the 

dynamic responses in the system. Smith, Li and Wu [52] have also investigated air 

cushioning effects in the gap between an almost inviscid fluid and a solid wall and 

once more the important physics is seen to depend predominantly on the lubrication 

effects in the air.

Hinch and Leal [20], [33] have examined the rheology of particle suspensions in 

Newtonian fluids. Their work relates in particular to effects of Brownian motion, 

especially rotary Brownian motion, on the suspensions of spheroids. As Brownian 

motion is pertinent only to the dynamics of small particles (when the dynamics of 

the fluid at the molecular level cannot be neglected) we anticipate that such effects 

are not directly relevant here.

Hinch and Leal have also co-authored research with Russel and Tieffenbruck [49] 

on the motion of rods falling vertically near a wall and this is more directly relevant to 

the current chapter. They employed slender body theory and a mixture of analysis, 

numerics and experiment to study the dynamics of a falling rod at low Reynolds 

number. Essentially, they demonstrate that two motions can occur, dependent on 

the initial angle of inclination of the rod, one type being a ‘glancing’ motion and
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the other a ‘reversing’ motion. Their research also notes that contact cannot occur 

between the rod and the wall when lubrication theory is applied to the case of close 

approach.

Second, inviscid air effects are studied. Initially we examine again the effects 

between only two grains. The absence of viscosity modifies the grain dynamics, as 

might be expected. This is followed by an investigation of the inviscid effects on an 

array of grains without walls. Surprisingly, the dynamics is somewhat similar to the 

viscous case.

Recent research on air effects of interest here include those by Andersen, Pesavento 

and Wang [3], [4]. They investigate the dynamics of freely falling particles in a quasi- 

two-dimensional flow at large Reynolds number. This has application to cards falling 

through air. They find that the cards exhibit fluttering or tumbling motions with a 

possibly chaotic transition between the two motions. Interestingly they find that a 

card falling with its edge downward is always an unstable configuration, whereas a 

card falling with its broadside downward is stable.

Other aerodynamic effects could be investigated, such as the motion of the grains 

near the walls of the chute. This may have similarities to the study of fluid motions 

between cars and the ground by Jones and Smith [27]. They studied the boundary 

layer equations in the limit when lubrication theory is valid and also in an inviscid 

limit in the presence of a moving wall.

Research on impacting spheres, the hydrodynamics of spheres moving in the pres­

ence of wall and particle-wall collisions and so forth can be found in, for example, 

the theoretical studies by Eames et al. [13], Leweke et al. [35] and the experimental 

work by Joseph [28] and co-workers and references therein.

Finally, it is pertinent to mention here that other aspects of the aerodynamics in 

the food-sorting process have been subject to a number of studies [51], [56], [63]. 

These include the swirl-flow effects and turbulent boundary layer through the ejector 

ducts, and the flow from the ejector nozzle arrays.
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8.1 V iscous air effects betw een two grains

We first examine the effects due to the air between only two grains when their sepa­

ration is small relative to their length. Initially the grains are simply modelled as two

grains for simplicity. Following this, a more realistic shape that includes some cur­

vature is studied.

However, the problem is formulated in the same way in both cases, and is illus­

trated in figure 8 .1 . Suppose there are two grains separated by a small gap. Let the 

upper surface of the lower grain be located at y — f  and the gap height between 

the grains be h =  h{x,t)  =  g{x) +  r(£). Observe that writing h(x, t) in this way 

restricts the grains to certain types of motion. For example, this does not allow the 

orientation of the grains to change. The lower surface of the upper grain is located 

at y =  f  +  h. In the gap the force acting on the grains is due to the pressure of the 

air, p. Outside of the gap the air is at atmospheric pressure, po, and for convenience 

Po is taken to be the zero pressure level. If the lower grain has mass m\  and the 

upper grain a mass m 2  then

from Newton’s second law, where a dot denotes differentiation with respect to time. 

The length of each grain is 2a with one end placed at x =  —a, the other at x — a 

and the centre of the grain at x =  0. We further assume that there is no normal 

pressure variation within the gap so

Finally, as we have assumed the gap between grains is relatively small, lubrication 

theory is a valid approximation. (The reduced Reynolds number, aRe  must be small, 

where Re =  is the air-flow Reynolds number, based on separation distance,

and a  =  •pr represents a slope factor. Note that U* is a typical velocity in the

flat plates. Throughout the rest of this chapter we consider only two-dimensional

(8 .1)

and

(8 .2 )



Figure 8.1: A schematic diagram showing the formulation of the air effects problem 

for two grains. The upper surface of the lower grain is located at y =  / ,  the height of 

the gap is h and the pressure in the gap is p. Separation between grains is assumed 

to be small so that lubrication theory is valid.

gap, H* is the height of the gap, L* »  H* is the length of a grain and v* is the 

viscosity of the air). Of course, in three dimensions the air between two rice gains 

that collide in the configuration shown could escape sideways not lengthways, and 

the diameter of the rice would be an important length scale, but here we keep to 

the two-dimensional model. Thus

(h3px)x =  i h  (8.4)

(see [44], for example) where 7  is a constant proportional to the viscosity of the air.

Derivation of Reynolds’ equation

Equation (8.4) is in fact Reynolds’ equation. The derivation of this equation is 

sketched out here.

Consider a gap between a grain and a flat wall where the height of the gap is 

small relative to the length of the grain. The grain approaches the wall with a 

downward velocity of V  and we assume that there is no horizontal motion of the 

grain. Furthermore, the wall is stationary. The grain has a typical length of /(=  2a) 

and its surface is located at y* =  h*(x,t). (An asterisk denotes a dimensional 

quantity). The height of the air gap is scaled as IS with S «  1 .

We assume that the pressure and viscous forces balance and that there is no 

pressure variation in the vertical direction. Using the Navier-Stokes and continuity



equations for the air, and noting that conservation of mass suggests ~  j ,  where 

u\  is the horizontal velocity component of the air, allows us to write

ux +  vy =  0 , 

Px "f* Hyy ~=:

and

(8.5)

(8 .6)

(8.7)0 =  ~Py

after suitable non-dimensionalisation. The boundary conditions state that there is 

no slip along the wall and the shear forces in the air match those at the grain’s 

surface, i.e.

u =  v =  0  on y =  0

and

u =  0 , v =  ht on y  =  h(x,t).

Thus it is possible to solve equation (8 .6 ) and obtain

“=\ i v{v ~ h)■

Integrating the continuity equation from y =  0 to y  =  h yields

>'h(x,t)

J 0
uxdy +  ht =  0 .

Writing the integral as

rh ( x , t )  d  rh{x , t )  Q h

/ „  u*dy  =  S I  udv ~ T x u  • » -
and substituting equation (8.9) for u reveals

’'h(xyt)

Finally, substituting this into equation (8.10), results in

rh ( x , t )
/  uxdy =  -  

Jo

d_
dx

1  dp h?
2  dx 6

d_
dx dx =  'yht

(8 .8 a)

(8 .8 b)

(8.9)

(8 .10)

(8 .11)

(8 .12)

(8.13)

where 7  is a constant. This is Reynolds’ equation for a lubricating layer.
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Note that in the case of a moving wall the boundary conditions must be modified

to

where U is the speed of the (leftward) moving wall. It is assumed that U does not 

vary along the length of the wall.

Consequently, the solution to equation (8 .6 ) is now

After performing the same manipulations as above, we find that an extra term is 

generated in Reynolds’ equation:

8.1.1 Grains modelled as two flat plates

As mentioned above, we first simply model the grains as flat plates. This reduces 

h(x, t ) to r ( t ) only, with r(0) =  k where A; is a positive constant. (If, for a flat plate, 

we wrote h(x, t) =  g(x) +  r(t) ,  g(x) would add a constant only). That is, k is the 

initial gap height. Consequently the equation from lubrication theory, (8.4), is now

Substituting equation (8.18) into equation (8.19) results in an equation for the height

u =  —U, v  =  0  on y  =  0 (8.14a)

and

u =  0 , v =  ht on y  =  h (8.14b)

(8.15)

(8.16)

T 3P x x  =  I T . (8.17)

Integrating, and assuming the pressure is symmetric about x =  0, yields

(8.18)

Eliminating /  from equations (8.1) and (8.2) produces

(8.19)



Performing each integration, we obtain an ordinary differential equation for r:

r 3f  +  Af =  0 (8.21)

where

A =  +  — ) 7 - (8 -2 2 )3 \ m i  7712/

Although it is possible to solve equation (8.21) to find r(£), an analysis of the phase 

plane ( f , r) provides more easily, perhaps, insight into the possible dynamics. The 

boundary conditions for equation (8 .2 1 ) are

r( 0) =  k (8.23a)

f  (0) =  a  (8.23b)

where a  is the rate of change of the gap height at t — 0  and is a (positive or negative) 

constant.

Phase plane analysis

Integrating equation (8.21) once with respect to time gives

f  =  ±  +  A (8.24)

where A is a constant of integration. Prom (8.23a) and (8.23b) it is easy to find that

A =  (8.25)

so

f  =  ^ ( t - 2  — k~2) +  a. (8.26)
£d

Note that physically we require r > 0. Also observe that f  =  0 when r =  

Consequently trajectories that cross the r axis exist only when 2k2a  < 

A, otherwise r  is always positive.

It is now possible to determine the phase plane. Figure 8.2 shows a sketch of the 

phase plane. The dynamics depend upon the initial conditions, but from the phase 

plane we see that qualitatively there are only four different types of behaviour.
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Figure 8 .2 : A sketch of the phase plane shows the different dynamical behaviours as 

described in the text. The circles highlight the equilibrium points and the arrows 

show the direction of movement along each trajectory. Grains can separate to a 

fixed distance, collapse to a fixed distance or separate indefinitely depending on the 

initial condition.
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First, if a  =  0 then the initial condition will be located exactly at one of the 

equilibrium points. Therefore the grains will remain stationary for all time.

Second, if the initial condition has a  >  0, then one of two events can occur. If 

2k2a  < A then the grains will move apart to a constant separation. This corresponds 

to moving along a trajectory in the phase plane to an equilibrium point. Since ^  is 

always negative (which can be seen from equation (8.26) with r > 0 ) the value of r 

at an equilibrium point will always be greater than the initial value of r  (provided a  

is positive). Alternatively, if the trajectory has no root (i.e. if 2 k2a  > A) and a  >  0  

then the grains will continue to separate for all time. This is sensible: if the initial 

value of the separation speed is sufficiently large the grains will continue to separate. 

This can be justified by examining equation (8.26); a s r -> o o , f — whi ch is 

positive since 2k2a  >  A. Viz. there exists an asymptote for f  at large times, namely 

a ~W!-
Finally, if the initial condition has a  <  0 then 2k2a  < A is always satisfied and 

the trajectories will always have a root. Owing to the fact that is always negative 

the value of r  at an equilibrium point (viz. at the root) will be less than the initial 

value of r if a  < 0. Therefore in this case grains will move toward each other but 

never meet. They will come to rest at a finite positive separation. This is because 

viscous forces will dominate at small gap heights and the pressure response will not 

allow the grains to touch. This is the expected response - see for example [52].

Thus we have determined all the different dynamic behaviours for two grains when 

they are modelled as flat plates. If a  is sufficiently large and positive at t =  0 then 

the grains will continually separate. If a  is small and positive the grains will separate 

to a constant distance. If a  is initially negative then the grains will move toward 

each other, but they can never touch.

At first sight it may seem rather worrying that the inclusion of air effects does 

not allow grain-grain impacts, especially in light of all the prior computational and 

continuum modelling. However, other workers [44] have found that if appropriate 

physics is included when grain separation is small enough, for example molecular 

forces such as the Van der Waals force, grain impacts can occur.
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Figure 8.3: Schematic diagram showing the initial gap height between two grains 

when curvature is included.

8.1.2 Viscous air effects for more realistic grain shapes

The previous analysis was done with the rather crude assumption that each grain 

is a flat plate. We now wish to investigate whether more realistic shapes, especially 

those with non-zero curvature, have any important effect on the dynamics.

We now have

as a representative initial profile of the gap height. The equation for the pressure

(8.18) now becomes

h(x,t)  =  g{x) +  r ( 0 (8.27)

with g(x) 7  ̂ 0. To introduce some curvature into the model, we choose g(x) =  x2

(8.28)

The initial conditions on r(t )  are

r( 0 ) =  k (8.29a)

and

f  (0) = a (8.29b)

where k >  0 so that initial gap height is as depicted in figure 8.3 and the initial rate 

of change of the gap height is a , which can be positive or negative.

Evaluating

(8.30)

we find that the pressure is



Hence, an ordinary differential equation for r is

m i  +  m 2 \  f a  y f  (  1

m i>»2 /  4 V( a 2 +  r2)2 (x2  +  r ):* =  ( ) I ±  I , ,  . . . i  -  T ^ — T5  ) ^  (8.32)

The integral on the right hand side can be written as

1 x2
( a 2 +  t ) 4

(8.33)
t ( t  +  x2) t { t  +  x 2 ) 2

The first two terms can be integrated immediately, and the third is evaluated by 

parts with u =  x  and v' =  Consequently,

, / m i + m j W  r r » _ j r ^ tan- ^ a \ \
\  m i m 2  J \ 4 { a 2 +  T) 2 4 r |  \ V f J J

Equation (8.34) is an ordinary differential equation for r(t)  subject to initial 

conditions (8.29a) and (8.29b). However, rather than solving explicitly for r(f), we 

choose to examine the dynamics by phase plane methods.

First, integrating (8.34) yields

mi + m2 \  / 7cl

mi m2 J  V ^(a2 +  r)
~ r a

l l t  , j. , t a n
4 \ a  \  r  J  yfr

+  C  (8.35)
LV^J

where we have used the standard formula for the integral of tan - 1  x as given by 

Abramawitz and Stegun [1 ]. From equations (8.29a) and (8.29b) C  is easily deter­

mined to be

c  =  a _ ( r n 1 ± r m \  ( _  /  <?\  j y  ^
m i m 2 J V 4(a2 +  k) 4a \  k j  2 \[k \ y / k J )

(8.36)

Some typical curves in the phase plane are shown in figure 8.4. Note that the 

r < 0  region is unphysical in this section, since this corresponds to overlapping

grains. Essentially, there are two types of curve: those which cross the r axis and

those which do not.

On a curve of the former type three eventualities can occur.

1. If f  (0) =  0 then the grains remain stationary.
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Figure 8.4: The phase plane is shown for the case of curved grains. Note that the 

r < 0 region is unphysical. The curves are much the same as the case for flat grains, 

and so apparently there are no extra effects owing to the curvature. There are two 

main types of motion; curves ( 1 ) that do not cross the r axis, and (2 ) curves that 

do.

2. If f(0) =  a  <  0 then the particle separation will decrease until the particles 

are at a constant separation.

3. If f  (0) =  a  >  0 then the particle separation increases until the particles are at 

a constant separation.

On curves which do not cross the r  axis, there is only one possible type of motion. 

In this case f(0) =  a  >  0. This means that the grains will separate forever, and at 

infinity will move apart at a constant velocity. This can be justified by noting, from 

equation (8.34), that f  —> C  as r  —> oo.

The dynamics, then, are seen to be much the same as for the case of flat grains. 

There is no apparent extra behaviour owing to the curvature of the grains. Perhaps 

this is to be expected, since in the neighbourhood of the points where grains would 

touch the grains axe locally flat. In none of the cases do the grains touch.
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c r

— f n + l

— f n  +  h ,

Pn

V =  fi

Pn

Figure 8.5: A schematic diagram showing a section of an array of grains. The upper 

surface of the nth grain is located at y — f n, the height of the nth gap is hn and the 

pressure in the gap is pn. Separation between grains is assumed to be small so that 

lubrication theory is valid.
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8.2 V iscous air effects for an array o f N  grains

For an array of N  grains the problem formulation is much the same as the two-grains 

case and is depicted in figure 8.5. Once more, the force on each grain balances with 

the pressure difference across it. The nth grain with the position of its upper surface 

given by y =  f n{x, t), the pressure on its upper surface given by pn(x,t)  and the 

pressure on its lower surface given by pn- i  thus satisfy

from Newton’s second law. Here m  is the mass of each grain, 2a is the length of 

each grain and x is the distance along the length of each grain. A dot denotes 

differentiation with respect to time, t. If hn is the height of the gap between each 

grain, and is a function of x  and i, then the shape of each grain is determined by

where s(x) is some representative function for the shape. However, in this section 

we restrict our study to the case of flat grains so that hn =  hn(t) only. Finally, 

assuming the gap between each grain is small, lubrication theory holds true there. 

Hence,

where 7  is a constant that is proportional to the viscosity of the air (see [44]). For 

the next pair of grains along in the array, equation (8.37) becomes

Using equation (8.38) (with s(x) effectively equal to zero) we see that this can be 

written as

(8.37)

f n + l  f n  h n  — (® ) (8.38)

hlPnxx =  l K (8.39)

(8.40)

(8.41)

Substituting (8.37) into the above equation yields

(8.42)
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Therefore equations (8.39) and (8.42) yield a set of N  coupled equations for the 

pressure in each gap, pn, and the height of each gap, hn.

From here, we find a symmetric steady solution and then linearly perturb about 

that solution. In this way, we may gain a useful insight into the physics of the 

problem, particularly about the physics of stability.

To find the symmetric solution, fix f n= 0 and choose pi — p2 =  • •• =  Pn — ••■PN

so that all the pressures are equal. Thus hn =  0 from equations (8.38) and (8.40).

Consequently, hn =  k, where k is a constant. Therefore the equation from lubrication 

theory reduces to

hlPnxx =  0. (8.43)

Hence

p n = L ( i ) d i  (8-44)

where A is a constant of integration. Therefore,

Pnx =  p  (8.45)

and if pnx is symmetric about x =  0 (the centre of each grain) then A =  0. So pn is 

then also a constant. This solution is denoted as pn =  pn and hn =  h,n =  k.

To perturb about this solution, let

Pn = p n  +  ePn(x, t) +  ... (8.46a)

and

h =  hn +  eHn(t) +  ... (8.46b)

where e «  1 measures the amplitude of the small perturbations.

Substitution into (8.39) produces

(hn +  eHn ) 3 (pn +  ePn)xx =  6 7 Hn +  higher order terms. (8.47)

At leading order we find

h3nPn„ =  0  (8.48)
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for which we know the solution already. Then at 0(e)

(3 h iH npn„  +  h3nPn„ )  =  7 Hn. (8.49)

A little manipulation leads to

Pn = (  p -  ( l H nx  -  3h2nH npnx +  0 i )  dx  (8.50)
J  —a

where C\ (t) is a function of t only. If the perturbed pressure is also symmetric about 

x  =  0 then C\  =  0.

Substituting the expressions (8.46a) and (8.46b) for the perturbed pressure and 

gap height into equation (8.42) results in

“ 1  f a
hn +  eHn =  — /  (~Pn+l -  €Pn+1 +  2pn +  2eP„ -  Pn- 1 -  eP n -1 ) dx. (8.51)

m  J —a

So at 0(e)

H„ =  -  f “ (-P „ + 1 +  2 Pn -  P n - J d x .  (8.52)
TH J —a

Thus equations (8.50) and (8.52) yield a set of N  coupled but linear equations for

the perturbed pressure in each gap, Pn , and the perturbation to the height of each

gap, H n .

We now seek solutions of the form

Hn =  Hne«  (8.53)

and

Pn =  p ne*  (8.54)

with the constant q complex in general, H n constant and Pn =  Pn (x )- 

Placing these into equation (8.50) yields

Pn(x)e‘>t =  f  ^ 3  ('iqHne*tx -  3h2nHne^p„x)  dx. (8.55)

Substituting for the flat plate solution, with both the pressure and the perturbed

pressure symmetric about the origin, results in

Pn(x) =  (8.56)
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(after performing the integration).

Substituting the forms of Pn and Hn into equation (8.52) and integrating reveals

q2 Hn = ( -P n + lix )  +  2Pn (x) -  P n - i ( x j )  dx. (8.57)

Hence, using (8.56) and integrating yields

q2Hn =  (--ffn + i +  2Hn  -  H „ - i)  . (8.58)

Thus the Hn are governed by the equation

q2fln  = r? ( //„ + !  -  2H n +  (8.59)

where T =  which is a positive constant.

As an aside, we note that equation (8.56) is roughly Pn a  — Hn (Observe x € 

(—a,a), hence the minus sign). Also we observe that q2 Hn oc Hn■ Furthermore, the 

right-hand-side of equation (8.57) is reminiscent of a discretized second derivative. 

Consequently, equation (8.57) can loosely be thought of as oc It is well-

known that the heat equation is stable to perturbations of the form P  oc et/iS (if 

Pt =  DPSS). Thus intuitively we expect the gap height and pressure to be stable 

to spatially oscillatory perturbations. Furthermore, this strongly hints at a possible 

numerical scheme for determining the pressure in each gap - see subsection 8 .2 .1 .

To allow us to investigate the stability of some simple perturbations, we choose 

to write

H„ =  CeA" (8.60)

and

Pn =  C(z)eAn (8.61)

with A complex in general and £ independent of n. Thus equation (8.56) becomes

£ex" =  | f C e An^ 2 ~ 0^  (8.62)

and (8.59) becomes

q2 {eXn =  TqC (eA(n+1) -  2eAn +  eA(n_1))  (8.63)
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i.e. unforced modes exist if

which is

q2 =  Tq ^eA -  2 +  e (8.64)

q2 =  4rgsinh2  ( ^  ) . (8.65)
2

Taking here the non-trivial solution only implies that

q =  4Tsinh2  . (8 .6 6 )

Therefore

Hn =  ATnexp ^4Tsinh2  (8.67)

for some A.

If A is real then the perturbation will always grow since 4Tsinh2  (^) t >  0 for all 

time. The case of A being real, however, corresponds to a shift in position in each 

grain, since Hn =  eXn. The gap between each grain will be consecutively larger or 

smaller as n increases, depending on the sign of A, and grows without bound as n 

increases.

On the other hand, if A is purely imaginary, put A =  iA. Then

Hn =  JTnexp ^4Tsinh2  ^  • (8 .6 8 )

We recall that

therefore

sinh2  ( y )  =  -s in 2  ( |  ) , (8.69)

Hn =  tf„exp ( —4rsin2 ( | j  i j  . (8.70)

Thus the perturbation now decays since —4Tsin2  (^) t < 0 for all t. Observe that 

imaginary A corresponds to a spatially oscillatory perturbation with A akin to a 

wavenumber (since in this case Hn =  elAn). This is in full agreement with our 

intuitive expectations described above.

Similarly note that the perturbed pressure is

Pn =  Pnexp ^4Tsinh2  ^  (8.71)
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or

Pn =  Pnexp ^ -4rsinh 2  ^  

depending on whether A 6  R or A 6  C.

8.2.1 Com puting an example: an array of ten grains

In the previous section it was observed that a suitable numerical scheme could be 

used to find the perturbed pressures in each gap based the right hand side of equation 

(8.57) being reminiscent of a second derivative. We elaborate on this here.

We reiterate that equation (8.56) is roughly Pn oc —Hn and q2 Hn oc Hn. Thus 

equation (8.57) can be thought of as

P n  =  — f “ (P»+l -  2 P n +  P n - l ) d x .  (8.73)
nfc J —a

If the above equation is discretized so that Pr* represents the pressure in the nth gap 

at the ith time then

p i + l  _  p i  o n

n st  * =  -  ( ^ + 1  -  2p n +  P ln-i)  (8-74)

where St is a small increment in time.

Hence, given an initial condition for the pressure perturbation, it is easy to calcu­

late the size of the perturbation in each gap a small time later. Thus it is possible 

to compute the perturbed pressures as a function of time. Indeed we do so, and the 

results are presented below.

The height perturbations are also calculated alongside the pressure. Recall that 

Pn a  — Hn. Hence we calculate Hn in discretized form as

H 'n+ 1  =  H '„ - StP* (8.75)

and an initial condition for the height perturbations is chosen arbitrarily.

A simple case is examined first in which the perturbation to the pressure alternates 

between two constants: in the first gap the pressure perturbation is P l ( 0 )  =  1 , in 

the second gap P2 (0 ) =  3, in the third Ps(0) =  1 and so on. In figure 8 .6 , which

shows the temporal evolution, we see that the perturbed pressures settle to positive
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Figure 8.6: The pressure perturbations in each gap for a simple arbitrary initial 

condition in which the pressures are initially perturbed by alternate constants, P  =  

1 and P  =  3. T he perturbations settle to positive constant values after t «  5. 

The curves are labelled according to which gap the solution corresponds to. At 

sufficiently large t  the pressures are seen to be distributed linearly in n: that result 

is independent of the initial condition (according to the end of this section and also 

another arbitrary case in figures 8.8, 8.9).

constant values after t «  5. This corresponds to all grains separating with a constant 

speed, as described below.

The height perturbations for this pressure perturbation are shown in figure 8.7. 

The initial condition for the height perturbation is H i(0) =  1, 772(0) =  3, 7 / 3 (0 ) =  1 

and so on so that the gap height also alternates between two constants. At increased 

times the perturbations appear to grow linearly in time.

In each figure the curves are labelled according to which gap the solution corre­

sponds to. In every case the pressures and gap heights at large times appear to be 

distributed linearly in n. T his is commented on at the end of this section.

In the second exam ple the pressure is perturbed by a small positive random value. 

Once again the perturbations settle to constant values, in this case at around t  «  15, 

and the gap heights appear to grow linearly, see figures 8.8 and 8.9.

Finally, here, in figure 8.10, the pressure is perturbed alternately between P  =  ±1  

in each gap. Again the pressure perturbations settle to constant values after 5
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Figure 8.7: The height perturbations of each gap corresponding to the simple initial 

condition of figure 8.6 in which the pressures are perturbed by alternate constants, 

P  =  1 and P  =  3. T he perturbations appear to grow linearly in time. The curves are 

labelled w ith the number, n, corresponding to the gap that the particular solution 

corresponds to. The heights are also seen to be distributed linearly in n.

P  ,
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0 . 8
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0 . 4

0 . 2

-I
2 0  t l10 155

Figure 8.8: In this second exam ple the pressure is perturbed by a small positive 

random value. Once again the perturbations settle to constant values, in this case 

at around t «  15.
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Figure 8.9: T he height perturbations of each gap corresponding to the simple initial 

condition of figure 8.8 in which the pressures are perturbed by random amounts. 

Again, the perturbations appear to grow linearly in time.

and the perturbed gap heights appear to grow linearly w ith tim e, see figure 8.11.

Thus in each exam ple we have seen that the pressure perturbations do not grow 

or decay exponentially, but settle  to  constant values after a finite time. Hence the 

flow disturbances do not grow exponentially nor do they stabilize to zero pressures. 

Similarly, the height disturbances in each gap neither grow exponentially nor de­

cay. Another behaviour is evident, in which the pressures asym ptote to non-zero 

constants and the heights grow algebraically with time. This can be explained as 

follows.

As m otivated by the com putational results above, we examine the possibility that 

H n{t) —> a nt as t —► oo. On substitution into (8.50) we obtain

after recalling that p nx =  C i =  0 for the symmetric case. Therefore each Pn asymp­

totes to a constant at any given point x  E [—a, a] as t  —> oo.

Thus the algebraic growth of H ( t)  and the asym ptotic behaviour of each Pn seen in 

the com putations above can be reconciled w ith the analysis. This algebraic growth 

of H (t ) will dom inate over the neutrally stable normal modes behaviour previously 

described. Hence the linearisation will break down as \H\ ~  e-1  and some other 

behaviour will be subsequently observed.

(8.76)
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Figure 8.10: In the final exam ple the pressure is perturbed alternately by ±1 . Once 

more the perturbations settle to constant values, in this case at around t «  5.
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Figure 8.11: T he height perturbations of each gap corresponding to the simple initial 

condition in which the pressures are perturbed by alternate constants, P  =  ±  1. As 

in the above cases, the perturbations seem to grow linearly in time.
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We remark here that if linear growth of H(t)  occurs then, also,

0 =  Pn+1 — 2 Pn +  Pn- i  (8.77)

must be satisfied, as seen from equation (8.52). That is,

n  _  7 a n+ 1 27 a n 7 & n - l  fo
-  "p -----------------+  T3---- ' I8’78)

n + 1  n'n a n - l

Hence, if all hn’s are identical then all a n’s are identical or each a n is the average 

of its neighbours. Therefore distributions of Pi(n)  and of Hi(n)  that are linear in i 

are also acceptable solutions, and it is these which axe observed as time increases in 

the computations above.

8.3 Inviscid air effects

Having examined viscous air effects, inviscid effects are now investigated. In the 

first instance, we restrict ourselves to the case of inviscid effects between only two 

grains.

The governing equations are determined as follows (see Smith, Li and Wu for 

some related details [52]). Consider a body falling toward a surface with downwards 

velocity V. Its lower surface is located at y =  h*(x*, £*), where an asterisk denotes a 

dimensional quantity. Velocities are conserved at the interface between the air and 

the body’s surface, hence
dh* * dh* * /0
a F  +  u 9 ^  =  v - <8-79)

The Navier-Stokes equation for the air, in the horizontal, is

where p2 is the density of the air, since viscous forces essentially vanish. In the 

vertical ^  =  0. Finally, the continuity equation is

^  +  £ 1  =  0. (8.81)
dx* dy*

Also note that g is the acceleration due to gravity, p\ and p\  are respectively the

density and viscosity of the falling body, P2 is the viscosity of the air. The typical
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horizontal length scale of the falling body is Z, and the gap between the falling body 

and the surface is 51 with 5 «  1, so the gap is small relative to the length of the 

grain.

We observe that, from the continuity equation, the typical horizontal velocities in 

the air scale as u  ~  -j.  Therefore v* can be non-dimensionalised as v* =  —y y - .

Crucially, v* ~  u x . The other quantities can be non-dimensionalised as t* =  y t ,

X* =  Ix, u* =  i f , y *  =  ISh and h* =  l28 h.

Thus the kinematic condition in non-dimensional form is

ht +  {uh)x =  0. (8.82)

If we further assume that V — constant and u =  u(x, t), and scale the pressure as 

p* =  -^rzP then the Navier-Stokes equation becomes

Ut “I- uux ~  Px• (8.83)

If we assume that the grains are flat then h =  h(t) only and equation (8.82) is

now

ht -1- uxh =  0. (8.84)

Now let u =  x U (t ) so equation (8.83) is

xU  +  xU 2 =  - px, (8.85)

where a dot denotes differentiation with respect to t , and equation (8.84) is

h +  Uh =  0. (8.86)

Therefore

U =  - y .  (8.87)
h

By symmetry, and from typical pressure responses seen in these types of fluid 

problems, we might expect the pressure response to be parabolic:

p =  p +  x2 P( t ) (8.88)
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where p  is a constant. Therefore equation (8.85) is

U +  U2 =  —2 P. (8.89)

Substituting equation (8.87) produces

2 h \ h
(8.90)

Consider that at x =  a, i.e. at the end of the grains, the air is at atmospheric 

pressure. Therefore, from equation (8.88), we obtain

p  =  —a2 P(t).

Hence,

f  pdx =  f  (x2 — a2 )P(t)dx  =  —C\P{t)
J —a J —a

(8.91)

(8.92)

  4a3
~  3 1where C\  is a positive constant, namely C\  

Newton’s second law is

mh  =  I pdx ,

since it is assumed that the only force is due to the air pressure. Hence

mh  =  C\P{t) .

On substitution into (8.90) we discover that

mh  =  C\

(8.93)

(8.94)

h 
2h

(8.95)

which is an ordinary differential equation for h(t).

Putting h =  G(h) yields h =  This reduces (8.95) to a first order o.d.e. for

G(h): /  n , n \  dn m \ 2
(8.96)_ CiCN dG _  G  

m G + ~2 h )  dh - C l l h

Rearranging yields
2ci1 dG

G dh h{2 hm +  c\)
(8.97)
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Integrating, via partial fractions, produces

G  =  ——s’
(fc+fe)

(8.98)

i.e.
Ah2

(8.99)

Although it is possible to solve equation (8.99) to find t(h), we prefer to deduce 

the dynamics by a phase plane analysis. First note that

h =  0. Finally, we draw attention to the fact that h <  0 is unphysical, since this 

corresponds to overlapping grains.

Therefore, the phase plane is as sketched in figure 8.12. The arrows indicate the 

direction of motion with increasing time. There are three possible behaviours:

1. Trivially, if A  =  0 then the grains do not separate or coalesce,

2. If A > 0 then the grains separate for all time, asymptotically at a constant 

speed,

3. If A < 0 then the grains approach each other and touch at a finite time.

8.4 Inviscid air effects on m any grains

The inviscid air effects on an array of many grains are now investigated. The problem 

is formulated in a way similar to that in section 8.2, and figure 8.5 is again a suitable 

schematic diagram. The equations in each air gap are now as follows: the inviscid 

horizontal momentum equation from the Navier-Stokes equation,

,  M Q )  ( M O )  +  ^ ) 2 
MO)2

(8 .100)

so A >  0 if h(0) > 0 and vice versa. Next, observe that if h «  then h ~  h2. 

Conversely, if h »  ^  then h ~  A. At h =  0, h — 0 and h is symmetric about
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Figure 8.12: A sketch of the phase plane for two grains acting under inviscid air 

effects. The arrows indicate the direction of motion with increasing time. There are 

three possible types of motion, as described in the text.

the kinematic condition,

dt dx 

Newton’s second law,

ra /n  =  f  (P n - l  -  P n )  d x \  
J  —a

and a function governing the shape of each grain,

+  7T“ ( u n  +  h n ) =  0; (8.102)

(8.103)

fn(x, t )  =  f n- i ( x , t )  +  hn- i ( x , t )  +  s(x). (8.104)

We note again that the normal pressure satisfies ^  =  0.

The grains are assumed to be flat so that hn =  hn(t) only. (If we wrote h(x, t ) =  

g(x) +  h(t), g(x) would add a constant only). Thus the kinematic equation can be 

simplified to

A„ +  / i „ ^ r  =  o. (8 . 1 0 5 )

We further assume that u =  xU(t), this being a way to examine some simple solu­

tions for which the equations are now separable. Therefore, the simplified Navier-

Stokes equation (8.101) can be written as

xUn +  x U l =  (8.106)
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and the kinematic equation produces

Un =
hn (8.107)

Hence we arrive at

hn / hn
hn \  hn

+  x hn
hn

&Pn
dx

(8.108)

If the pressure response is also assumed to be parabolic then

Pn =  Pn +  3 ? P n ( t ) , (8.109)

where pn is a constant. Hence

(8 .110)
UJL.

and therefore (8.108) is

- r + ( r )  =  - * > « •  (8 -in )hn \^hn J

Since the pressure is atmospheric at x =  ±a, we find pn =  —a?Pn(t). Consequently 

Pn — (#2 — a2 )Pn{t)- Therefore

/  (pn-i  -  pn)dx =  CiPn- i ( t )  -  CiPn(t) (8.112)
J —a

where once again C\  is a positive constant and C\ =  This yields

m  'fn =  CiPn- i ( t )  -  CiPn{t).

From equation (8.104) we obtain

and from (8.103)

Therefore,

fn+l — fn d~ hn

fn+1 — f  (Pn Pn+l)dx. 
J—a

TTlhn — f  ( Pn—1 d" ^Pn Pn+l)dx, 
J —a

(8.113)

(8.114)

(8.115)

(8.116)
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after substituting for (8.103). Ultimately, this yields

mhn =  -C i  [Pn_i(t) -  2 PN{t) +  Pn+i( t ) ) . (8.117)

Equations (8.111) and (8.117) are two coupled ordinary differential equations for 

hn(t) and Pn(£). Equation (8.111) is nonlinear. It is desirable to investigate the 

stability of the array. In order to do this, we will utilize standard linear stability 

analysis and the method of normal modes.

We shall denote the basic solutions (which are determined shortly) to this problem 

as P  and h. Perturbations

Pn(t) =  Pn(t) +  ePn(f), € «  1, P»(0 =  0(1)  (8.118)

and

hn(t) =  hn(t) +  ehn(t), € < <  1, hn{t) =  0 (1 ) (8.119)

are made about these solutions.

Substituting the perturbed pressure and height into equation (8.111) and per­

forming the appropriate expansions yields

(An +  ^  ( h j  +  2  e h „ h „ ' j  /  ^

2 h  V hi \  (hn
=  - A .  -  eP„ +  0 ( e 2 ) .  ( 8 . 1 2 0 )

At leading order it is found, as we may expect, that

v 2

- k + { T n )  ~ p"  (8121)

which is the equation for the basic flow.

Then, at 0 (e ) we see

- & S  Y  +  +  2 A „ U n  -  2 h l K  =  - h l P n . (8 .1 2 2 )

Similarly, at the same order, we find from equation (8.117) that

mJh,n =  - C i  (p n_i -  2Pn +  Pn+1)  . (8.123)
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The basic solutions Pn and hn will be determined later. For the moment the 

general case is adhered to and normal modes of the form

P„(t) =  e*Pn (8.124a)

and

hn(t) =  e^ln  (8.124b)

are sought. In general, q is complex and Pn and hn are constants.

Equation (8.122) is thus

L  ( -  ̂  ^  +  I q K K  -  2 « ^ )  =  - h l h  (8.125)

and equation (8.123) is

mq2 Zh n = - C l ( P n - l - 2 f>n +  Pn+l)-  (8.126)

Now we substitute for the basic flow solution. Observe that if hn =  k, where k 

is an arbitrary constant then equations (8.111) and (8.117) are satisfied provided

Pn =  0. Therefore hn — k and Pn =  0 is an acceptable solution for the basic flow.

Consequently equation (8.125) is

^ p j  =  - k3Pn. (8.127)

Now we seek solutions of the form hn =  (e An and Pn — £eXn in order to investigate 

basic motions of the grains. Equation (8.126) is now

mq2 C =  -Cj£sinh2 (8.128)

and equation (8.125) is further reduced to

C ( - ^ P )  =  - fc3«- (8.!29)

It is therefore possible to determine that

£ Q2

< 2k (8'130)
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and eliminating both £ and £ from (8.128) produces a quadratic equation for q:

Rather surprisingly, the only solution (apart from a special case considered below) 

is q =  0. As a consequence, the normal mode analysis fails and the perturbations 

seem to neither grow nor decay.

Consider this point a little further. After substituting for the basic flow solution, 

equation (8.122) can be written as

a weighted average of the pressure in the neighbouring gaps. On consideration, this

Observe that q =  0 also implies £ =  0 through equation (8.130) (leaving £ unde­

fined). Hence Pn =  Pn =  0 for all n. Therefore we find hn =  0, so

where A and B  are constants of integration.

Therefore there is no exponential growth or decay of the gap height between 

grains. There is, rather, an algebraic growth in the gap height similar to that found

grains over time. This drifting would occur for finite times up to £ ~  e \  after 

which some unknown behaviour would occur.

(8.131)

hn =  2 kPn. (8.132)

On substitution into equation (8.123) this yields

2kmPn =  - C i  (p n _ 1  -  2Pn -I- Pn+1 ) (8.133)

i.e.

(8.134)

The linearisation allows h to be eliminated from (8.123) and we find that each P  is

is consistent with <7 =  0. If q =  0 then Pn =  Pn, where Pn is an order one constant. 

Thus Pn could correspond to the right hand side of (8.134).

hn — At  +  5 , (8.135)

for the viscous problem without walls. Physically this relates to a ‘drifting’ of the
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As an aside we consider the special case of non-zero q. In this instance, we find 

from equation (8.131) that the wavenumber A is precisely defined as

Hence we obtain

and

A =  sinh 1

Pn(t) =  £exp < sinh 1

2 k
m

M O  =  Cexp

for arbitrary q e  C with k , m  6  R. 

If we write q =  <f> +  i0  we find

|  sinh- 1  ^

2 k
m

2 k
m

n +  qt

n +  qt

(8.136)

(8.137)

(8.138)

P n i t )  =
([§]*)

e* . (8.139)

Similarly,
sinh

K( t )  =  V mJ V ‘. (8.140)

We observe, therefore, that for the q ±  0 case there appears to be three eventualities, 

as follows.

1 . If 0 =  0 and 0  7  ̂ 0 then hn(t) and Pn(t) are purely oscillatory and the 

amplitude of the oscillations increases with n.

2. If 0 ^  0 and 0  =  0 then hn(t) and Pn(t) grow exponentially with increasing 

time. The growth is more rapid for increased to.

3. If 0 ^ 0 and 0 ^ 0  then hn(t) and Pn(t) are again oscillatory, but the oscilla­

tions blow up as time increases. The blow up is larger for increased to.

These behaviours are different from any seen in the viscous case and are peculiar to 

the inviscid case.
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8.5 Sum m ary

In this chapter we have investigated some of the air effects acting upon the grains.

First, viscous effects between two flat grains were examined. It was found that 

the grains would be unable to collide owing to lubrication effects.

Second, viscous effects were again examined but this time some representative cur­

vature of the grains was included. The qualitative behaviour remained unchanged. 

This can be understood by recalling that locally to a point of impact the grains 

would be flat.

Third, the viscous effects in an array of N  grains were investigated in the absence 

of walls. A normal modes approach suggested that the array could be stable to 

oscillatory perturbations. However, a computation demonstrated that there is a 

solution that has linear growth in the perturbed height, with the perturbed pressure 

tending to a constant. This was found to be compatible with the analysis. The 

linear growth will dominate over the normal modes behaviour until a finite time of 

order e-1 , after which some other unknown behaviour would come into play.

Inviscid effects were then researched. Initially, we returned to the case of only two 

flat plates. A phase plane analysis revealed that two non-trivial behaviours exist: 

either the grains separate for all time, asymptotically at a constant speed, or the 

grains coalesce after a finite time.

Finally, inviscid effects between an array of grains in the absence of walls were 

studied. Similar behaviour to the viscous case was seen to occur. That is to say, 

there was a linear growth in the perturbed gap height with equal pressures in each 

gap. This corresponded to a drifting of the grains for a finite time (t =  0 (e -1 )), 

after which some other, as yet undetermined, behaviour would dominate the flow. 

In an aside we briefly examined a special case with behaviour that was different to 

the viscous case.

Some questions of interest that remain unanswered are as follows. First, for 

the viscous analysis when walls are present, it would be satisfying to determine 

analytically the value of a  for which the air-grain flow regains stability. Second,
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in the examples in which we demonstrated that the grains ‘drift’ up to t =  0 (e~l ) 

the large time behaviour is undetermined. We do not know if these motions will 

lead ultimately to instabilities or not. Finally, only certain sorts of grain motions 

have been allowed in the formulation of the problems in this chapter. It would be 

of interest, for example, to research how changes in grain orientation would affect 

the stability.
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Chapter 9

Concluding remarks

9.1 O verview

In this thesis we have developed a potential mathematical model for a chute flow of 

grains. This was motivated by a particular problem from the food-sorting industry 

(Sortex Ltd). As there is no existing ‘grand unified theory’ of chute flows, we 

have necessarily advanced a relatively simple and basic model for the grain flow. 

Nevertheless, the model has yielded some complex and interesting results of both a 

mathematical and practical nature.

In particular, a main new feature in this thesis is the extension of the Lighthill- 

Whitham theory of traffic flow to the chute flow. This involves the introduction 

of a multivalued flux-density relationship and also a multivalued wave-speed. The 

strengths and weaknesses of the fundamental diagram in this thesis have been dis­

cussed. Such a law generates many new interesting problems, and much of the thesis 

has been concerned with this. Problems of especial mathematical interest have been 

the inclusion of shocks and fans into the analytical and numerical solutions of the 

governing equation, the modification of the fundamental curve to include viscous 

branch switching, the impact that this has on solutions relating to separation and 

clustering of grains, and the search for general solutions and steady states of the 

governing equation. We mention here specifically that the problem of finding steady 

states computationally was not a trivial one.
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Prior to developing the continuum theory for the chute flow, we investigated a 

basic case of one particle in a chute. Following this, a large computation of the many- 

grain flow was undertaken. This revealed that clustering is indeed a key feature of 

the grain flow.

The thesis ended with an analysis of air effects on the grain flow. We demon­

strated that viscous effects prevent grains from touching, both for flat and curved 

grains. Then an original study of the interaction effects on an array of grains was 

undertaken. We observed that in the absence of the walls the array is neutrally 

stable and a ‘drifting’ of the grains occurs. This dominates over the stable normal 

modes behaviour. Inviscid effects were also researched. Grains are able to touch if 

viscosity is ignored. Surprisingly perhaps, the interaction effects within an inviscid 

array demonstrate a similar qualitative behaviour to that observed for the viscous 

case, including the finding of marginal instability.

9.2 Sum m ary discussions o f each chapter

We present here a more detailed discussion of the results from each chapter.

In chapter 2 we showed that a continuous approximation yields a fair agreement 

with the inherently discrete problem of one particle bouncing down a chute, when 

compared to results from an iterative scheme. The approximation was to take the 

coefficient of restitution close to unity in a narrow chute. Air effects on a single 

falling grain were also addressed and notably we observed that the boundary layer 

is of the order of the grain size.

A computational simulation of the many-grain flow was expounded in chapter 3. 

First, a simple code was developed by the author. This used simple ballistic laws 

for the particles’ motion and neglected air effects. Binary collisions only were con­

sidered. Collisions were detected by an ‘overlap’ method. Clustering is seen to be a 

key feature, and is dependent on the coefficient of restitution. The results from the 

simulation appeared to agree qualitatively with those provided by Sortex.

More complex effects of vertical interactions between particles and effects of chute
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geometry, and the combination of the two, were studied with the aid of a commer­

cially available code called PFC2D. Clustering is still a key feature for these flows, 

but perhaps less so for those which include vertical interactions.

Chapter 4 briefly discussed possible analytical methods that may be of use when 

studying chute flows. A short probabilistic analysis was presented, but appeared 

to generate poor results. The value of continuum modelling in other problems of a 

particulate nature, such as in traffic or pedestrian flows, was also addressed.

In chapter 5 the continuum modelling for the chute flow was begun in earnest. 

An analogy to the Lighthill-Whitham model was utilized. Most notably, our model 

involved the introduction of a multi-valued fundamental diagram for the flux-density 

relationship. This in turn generated a multi-valued wave speed for any given density. 

The basic features of the fundamental diagram were postulated by basic physical 

concerns. In particular, the fundamental curve was symmetric about the p-axis 

and the two branches met at cusps at zero and maximum density. The strengths 

and weaknesses of the fundamental diagram in the thesis have been discussed. In 

particular, we point out that the flux-density relation in this thesis may be especially 

relevant to colliding or separating grains, but by no means should it be expected to 

describe the entire chute flow.

We solved the resultant hyperbolic kinematic wave equation by a method of char­

acteristics. Shocks and fans must sometimes be incorporated in the solutions. In the 

results presented in this chapter, only discontinuous input was considered, as this 

formed a basic starting point for the analysis. Some quite complex solutions were 

contrived which incorporated a series of shocks and fans as the solution switched 

branches. These were seen to describe well the clusters and voids on the chute. The 

chapter ended with some remarks on mass conservation and entropy.

More general solutions were sought in chapter 6 focusing solely, however, on cases 

which remain always on one branch of the fundamental diagram. In order to find 

solutions numerically, an artificial viscous dissipation term was added to change the 

equation from a hyperbolic to a parabolic partial differential equation. (Actually 

there is also some physical support for including such a term). This had the effect
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of ‘smoothing out’ the discontinuities so that problems associated with shocks and 

fans did not occur within the computation. This modified equation was called ‘the 

continuum equation’.

We solved the equation by a finite difference scheme to replicate closely the evo­

lution of expansion fans and translating shocks found in the inviscid analysis in 

chapter 5. The analysis was then extended from solutions with, or mimicking, dis­

continuous input and instead we attempted to solve the continuum equation for a 

smooth initial condition. We found an asymptotic solution valid at small time and 

compared this to the result from the finite difference scheme, a satisfactory measure 

of agreement being observed.

Steady state solutions for the one-way flow were then examined. We found ana­

lytically a steady state for the case of the densities at the boundaries being nearly 

equal. Others were sought numerically but the code appeared to be very sensitive 

when checked against solutions to the steady governing equation. We suspect that 

the sensitivity may arise from inaccuracies introduced at the change in direction of 

the upwind differencing.

Two-way flows, for which the grains can move to and fro across the chute, were 

examined in chapter 7. First, viscous branch switching was discussed. As the gov­

erning equation is now a parabolic partial differential equation, we argued that the 

nature of the fundamental curve should be changed in a small viscous region near the 

branch switches. The aim was to find solutions that can smoothly switch branches 

by changing the local curvature at the branch switches.

Initially, we addressed the branch switch at the zero density end of the funda­

mental diagram. We found a similarity equation for low densities valid at small 

times. This was in fact a nonlinear ordinary differential equation that corresponds 

to separating regions. The equation is singular at zero density, so we found a series 

solution locally. Runge-Kutta schemes were then employed to find the density either 

side of this minimum, showing that smooth solutions can indeed exist. In particular, 

we found that the density must always be zero in the centre of a separating region 

and that symmetric and asymmetric solutions can exist. This corresponds to voids
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forming between regions of the same or differing density. The minima in the asym­

metric solutions can move in time, a property which has ramifications for the steady 

state solutions mentioned below. Separately, an analysis yielded solutions that are 

asymptotically close to a simple exact solution. Thus we demonstrated that a large 

region of low density can evolve, which mimics the evolution of a large void and 

agrees with the Runge-Kutta findings.

Following this, we examined the branch switch at maximum density. Here we 

introduced a small viscous layer valid to order one times and found the appropriate 

scalings for the density, the flux and the wave-speed. This resulted in a partial 

differential equation for the local density which was inverted and solved by a finite 

difference scheme, in order that the dependent variable in the partial differential 

equation was single-valued. Smooth symmetric and asymmetric solutions indicative 

of the evolution of high density clusters were found to exist.

Thus we demonstrated that changing the fundamental diagram to include local 

viscous regions allowed smooth solutions to form which incorporated branch switch­

ing. We therefore attempted to find steady state solutions and solutions at large 

times that have a smooth branch switch. In order to do this, we solved the contin­

uum equation in polar coordinates for a simplified (circular) fundamental diagram, 

to capture the essential features of the two-way flow. A few steady states could be 

found analytically and numerically, but although we demonstrated that the problem 

is not over-prescribed it was difficult to find very many solutions that were signifi­

cantly different. Some solutions can be found which join together the sinusoidal-type 

solution with a constant solution; however, we find that such solutions have a £5 

growth at order one times at the ‘junctions’ and thus do not form valid steady state 

solutions, in the sense of a steady state being a large-time limit. Hence they were 

ultimately dismissed.

Finally, in chapter 8, the effect of the air on the grain flow was researched. First 

we examined viscous effects between two grains in the case of the separation between 

grains being relatively small. We assumed that the dominating force is the pressure 

in the air between the grains and that lubrication theory is valid there. We found
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the well-known result that the viscosity prevents the grains from touching, if other 

effects are neglected. We included some representative curvature and the same 

qualitative result was seen to hold true. We then examined the viscous air effects for 

a large array of many grains separated by lubricating layers. A normal mode analysis 

revealed that such an array could be stable to spatially oscillatory perturbations. 

A computation however, accompanied by some analysis, demonstrated that a linear 

growth in the height of the gaps could occur, at least for order one times. This 

dominates over the stable behaviour mentioned above. Thus the grains are observed 

to ‘drift’ over time. Inviscid effects were then addressed. The governing equations 

in this case were a reduced form of the Navier-Stokes equations accompanied by a 

kinematic condition. Initially, we returned to the case of two flat grains and noted 

that the grains can now touch during impacts. When the stability of a large array of 

grains separated by small inviscid layers was investigated, we observed a behaviour 

qualitatively similar to that in the viscous case. That is to say, a linear growth in 

the perturbations was again seen for order one times, corresponding to a drifting of 

the grains.

9.3 Suggestions for future work

We finish the main body of the thesis with some suggestions for future work.

One extension could be to further develop the computational simulations of chap­

ter 3. This could include research on other modifications to the chute shape, perhaps 

in the plane of the falling grains. Other effects to be studied could be friction be­

tween grains, friction between grains and the chute, surface roughness and so on. 

Non-spherical particle shapes could also be included. This would make the numerics 

significantly harder as spin must be included and collision detection between parti­

cles is no longer trivial. A three-dimensional simulation could also be developed. A 

rigorous quantitative measure of the clustering might be considered.

Some statistical methods were discussed in chapter 4. These may form problems 

of interest for future work. In particular, the lattice gas automata technique could
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be used to model the grain dynamics and the statistics of random walks could be 

applied.

Concerning chapter 7 the non-smooth solutions could perhaps be investigated 

further. Questions of interest axe, for example: ‘For how long spatially will the 

flat regions persist?’ and ‘How do the flat and sinusoidal regions match at large 

times?’. Also, the computation in this chapter could be changed to incorporate 

a compact difference scheme, as opposed to the standard finite difference scheme 

we have employed. This might obviate problems associated with the change in 

directional windward differencing and produce more robust solutions. Furthermore, 

the simplified fundamental diagram we have used in these computations could be 

adapted to be more realistic and perhaps more similar to the one originally described. 

It would be interesting to find the steady states in this case. Finally here, the 

relationship between mass conservation and the difficulty of finding solutions at 

large times could be examined further.

Concerning the final chapter, it would be of interest to find the large time be­

haviour of the viscous and inviscid arrays that were observed to drift with time. In 

particular, over a larger (nonlinear) time scale, do they remain marginally unstable 

or do they become strongly unstable? Chute walls could be included in the calcu­

lations for the viscous and inviscid arrays, indeed some preliminary work has been 

undertaken for the former case and an interesting dependence of the stability on the 

angle of inclination of the grains to the wall seems to exist. We hope to examine this 

fully in a future paper. Finally, here, different grain motions could be investigated, 

especially those which permit the orientation to change.

More generally, it is greatly appealing to extend the continuum model to two 

dimensions and thus include interactions between sets of falling particles. Chapters 

5 - 7  could be repeated for such a theory where the two dimensional equations (5.7) 

and (6.2) would now be relevant. This model would perhaps be more applicable 

to the industrial setting and it would be fascinating to study the extra effects in 

themselves.
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Appendix A

A simple test of the 

computational simulation

It is possible to find an exact expression for the velocity of a particle in a simplified 

case of the many-grain chute flow. We can compare this to the velocity found in a 

corresponding simulation as a way of checking whether the code is correct.

A .l  V elocity o f the leftm ost particle

Consider a very simple configuration of particles in the chute. Suppose that particles 

enter the top of the chute evenly spaced along the line y =  0. Furthermore, suppose 

that all particles have zero initial velocity with the exception of one particle at the 

far right-hand end of the chute (named the ‘renegade’ particle) which has a finite 

horizontal velocity component directed toward its neighbour. All particles except 

the renegade will initially fall vertically through the chute. The renegade will follow 

a parabolic trajectory for some time. At the first collision, the renegade will collide 

with its neighbouring particle. This particle will now have a horizontal velocity 

component and the horizontal velocity component of the original renegade will have 

been reduced. We call the leftmost particle that has a parabolic path ‘the leftmost 

particle’. (In reality this is not the leftmost particle, that would be the vertically 

falling particle at the other far end of the chute). A plot of the leftmost particle is
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Figure A.l: The parabolic trajectories are the path of the ‘leftmost particles’

shown for clarity in figure A.I.

It is possible to determine analytically the velocity of the leftmost particle at each 

collision. Call un the velocity of the leftmost particle at the nth event. Then we see

from equation (3.10), since all other u;’s are initially zero. Thus at the nlh collision,

We can plot this expression for the velocity of the ‘leftmost particle’ against 

the results from the simulation. To do so, we simply choose the initial conditions 

in the code to arrange the particles in the configuration described and record the 

appropriate velocity. We find that there is a very close agreement, see figure A.2. 

This adds some weight to the view that the code produces accurate results.

that

(A.l)

(A.2)
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Appendix B

Detailed study of clustering

In this appendix we consider clustering a little more thoroughly.

Choosing a periodic velocity distribution will provoke the clustering phenomenon 

as there will be regions where all the particles axe moving toward a fixed point and 

regions where all the particles separate from a fixed point. Clusters and voids will 

begin to form around these points. We can locate these points simply as the roots of 

the horizontal velocity component: roots across which the velocity is decreasing are 

the points where clusters form, while roots across which the velocity is increasing are 

the points where voids form. If e =  0 then particles will coalesce at the point where 

clusters form and create one large particle of ever-increasing mass. Thus it is possible 

to find the distance between successive coalesced particles on the chute for different 

initial conditions, provided e =  0. Furthermore, we can also find a correction for 

this separation distance for non-zero e. We can compare this theoretical value to 

one estimated from the numerics to determine whether the suggested mechanism for 

clustering is indeed the correct one.

Consider an initial velocity distribution of the form

Ui =  Acos(ki)  (B.l)

where U{ is the particle velocity for the i ih particle. The amplitude of the velocity 

is A and k is the wave number. Recall that the particles are initially evenly spaced
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along a horizontal line; the horizontal co-ordinate, x , of the ith particle is given by

Xi =  (i — 1 )d (B.2)

where d is the particle separation. Hence,

)) (B.3)

and the wavelength, A, is

Let us also define m  as

If we wish one wavelength of the velocity to exactly coincide with the particle

same velocity and will not collide with each other. Consequently there will be no 

clusters. If, however, we choose m =  2 then A =  2d and so there will be pairs of 

particles moving toward each other, see figure B .l. Hence we expect evenly spaced 

clusters to form with a separation, denoted A duster, equal to 2d.

Furthermore, if m  =  3, then every third particle is going rightward, and the two 

particles in between are going leftward. Hence the first collision is between the 

rightward moving particle and the neighbouring leftward moving particle. Following 

this we will have a coalesced particle still moving rightward heading toward the 

remaining leftward moving particle. These will collide to form a coalesced particle 

composed of the three initial particles and there will be no further collisions. In this 

situation the separation between clusters is A duster — 3 d.

The case for m =  4 is a little more involved. In this situation the velocity dis­

tribution coincides with the particles so that one particle is moving rightward, the 

next is stationary, the third is moving leftward and the final one is stationary again 

before the pattern is repeated. Thus the final state is a cluster of three particles 

centred on the second particle, called a triplet, followed by the fourth particle which 

is stationary and on its own, the singlet. See figure B.2 for clarity. Here we define 

Aclu ste r  as the distance between successive triplets and so A c lu ster  =  4d.

positions we must choose m =  1 so that A =  d. Thus all the particles will have the
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Figure B.l: Sketch showing cluster formation for m =  2. The particles represented 

by a square are moving rightward, the particles represented by a circle are moving 

leftward. Thus clusters form in the positions depicted by a hexagon. We expect to 

see the separation between clusters to equal 2 d in this case.
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Figure B.2: Sketch showing cluster formation for m  — 4. The top line depicts the 

initial particle positions and their velocities. A zero above a particle denotes that 

it is stationary. The triplets form in the positions depicted by the large circles. We 

expect to see the separation between triplets to equal 4d in this case.

Unfortunately it is problematic to go further than m — 4 since for higher values 

of m it becomes difficult to define clusters; the situation becomes ever more complex 

involving singles, pairs and triplets and so on. Consequently, we stop here and 

compare the theoretical value of A cluster to the one obtained from the numerics,

A obs-

To calculate Xobs we measure the distance between the centres of ten clusters at 

the end of the corresponding simulation and find the average. It must be noted that 

this method is rather subjective since it is a little awkward to find the centre of 

each cluster. Also, in the above analytics we calculated A duster for e =  0. It is not 

possible to run the computation for this value of e, so instead we obtain \ 0b$ for 

e =  0 .01 .

The results presented in table B .l are quite close for each value of m. This mech­

anism seems therefore to be useful in describing the physical process of clustering.
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Table B.l: Table of results in which predicted values of the separation between 

clusters, A clusters are compared to those from the computation. We see fairly good 

agreement. ________________________________

C om parison o f A d u s te r  to  K b a

m A c lu s te r Xobs

1 - -

2 0.0040 0.0039

3 0.0060 0.0057

4 0.0080 0.0075

B .l  Further results concerning clustering

In the computation above we obtained values of A0bs for small e, as opposed to e =  0 

which was the value used in the analysis. Now we obtain a correction to the analysis 

for the m =  2 case for non-zero e.

At a collision the particle velocities are changed in accordance with equations 

(3.9) and (3.10). After the collision we see that two particles 1 and 2 would separate 

with a velocity given by

u \ -  u2 =  —e (u\ -  u2) (B.6)

for non-zero e. Rather than coalesce, the two particles will actually have separated 

by a distance given by s:

s =  -e (u \  -  u2 ) t , (B.7)

where t is the time spent in the chute. Consequently, A du ster is reduced by this 

distance and the new value is A'ciuater where

^cluster =  ^cluster ~  £(^1  — U2) t . (B.8 )

Applying the above correction, the new value for the separation between clusters 

is A'ciuster =  0.00399. This is only marginally closer to the computed value X0bs =

0.0039. (N.B. the computed value itself is only a rough approximation anyway;
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recall that it is difficult to locate the centre of the clusters when making the required 

measurement of Xobs)-

We observe that U\ — U2 =  2 A, for the case of m — 2, where A was the amplitude of 

the velocity. Therefore the correction, s, is s — 2 eAt. If the time spent on the chute 

is t, =  0 (1 )  then s =  O(eA).  Furthermore, consider that A duster =  m d =  0( d) .  

Therefore if s ~  Aduster then the clustering structure will break down. Particles 

from one cluster will have separated so much they will have entered the neighbouring 

cluster. Thus the final particle distribution will look homogeneous (see figure 3.2, 

for example). Therefore if
* 2 d
e ~  —  (B.9)

then the clustering phenomenon will disappear, for the case of m  =  2. For typical 

values in the computation we find that this value is around e =  0.4.
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Appendix C

Experimental work

In chapter 3, section 3.4, we employed nearest neighbour distributions in order to  

measure the clustering on the chutes. T his is a naive approach, used sim ply as a 

guide. Some experim ental work however was undertaken at Sortex Ltd, the purpose 

of which was to find a more rigorous quantitative measure of the clustering. We 

briefly discuss this work here. (Com plete reports of this work are available from the  

author on request).

First, we review the work on nearest neighbour distributions. We define a quantity 

c as

where N a is the number of particles per unit area, n  is the mean nearest neighbour 

distance and (n) is the average of the mean nearest neighbour distance after many 

trials. For a random (Poisson) distribution the mean nearest neighbour distance is 

the Poisson mean [48],

If the particles are uniformly distributed, then the mean nearest neighbour distance  

is sim ply

Therefore c can be used to quantify the clustering from a nearest neighbour distri­

bution as follows. If the distribution is uniform then c — 1 from equation (C.3);

( C . l )

<n > Poisson ~  2 y/ N X ’ (C.2)

(n ) uniform y/W/i' (C.3)
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Figure C .l: Particles A and B are touching and yet C is the nearest neighbour of B. 

If particle B is ejected it is likely that A would be ejected too, rather than the nearest 

neighbour C. In this instance, finding the nearest neighbour has been fruitless.

if the distribution is random then c =  0 from equation (C.2 ); if the distribution is 

clustered then (n) <  [48] and so c <  0. This quantity is calculated for each

nearest neighbour distribution.

We find that both for synthetic and for real data  the quantity c gives ambiguous 

results for the clustering. Nevertheless, it seem s likely from the experim ental data  

that the particle distributions at the bottom  of straight chutes are random.

Nearest neighbour distributions, moreover, would perhaps seem  to be a poor clus­

tering measure for ellipsoidal particles. W hen a particle is ejected, its surrounding 

particles and particles touching it are usually ejected as well. This is the root of 

the inefficiency of the machines. It could happen that two grains of rice, A  and 

D  say, are touching end-to-end along their major axes and that a third grain C  is 

neighbouring the particles and not touching the grains. Yet this particle (C ) could 

be found as the nearest neighbour. See figure C .l, for exam ple. In this case it is 

fruitless to find the nearest neighbour, as the touching particle is perhaps more likely 

to  be erroneously ejected.

Another measure of the clustering was consequently investigated and this is re­

viewed below.

The general idea for the new m ethod is to place a grid of boxes over an image of 

the product feed. The number of grains in each box is counted and the standard  

deviation in particle number per box is found. If the feed is uniform, a small standard  

deviation is expected whereas if the feed is clustered, a large standard deviation is 

expected.
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The standard deviation in particle number per box is defined as

•s =  \  (c -4> 
\  n = l

(C.4)

where N  is the total number of boxes, x n is the number of particles in the n th

box and x  is the average number of particles per box. T he standard deviation is 

measured for twenty trials of each experiment and the signal, m , is the average:

where, s*, is the standard deviation at the i th trial. The noise in the measurement 

is defined to be the standard deviation in s*,

If trial A gives a significantly more uniform flow than trial B, in terms of uniformity 

of feed, then d  is large and negative, and if the converse is true then d  is large and 

positive.

The discriminant was tested first on synthetic data and in each case the expected  

results were seen, i.e. the discriminant correctly ‘identified’ the chute w ith the 

m ost clustering. W hen tested on data from experim ent the discriminant was again 

seen to be a useful measure of clustering. Therefore we can conclude that the 

discriminant may be able to  suggest which chutes yield the better performance in 

terms of uniformity of feed.

In summary, the experimental work undertaken by the author at Sortex Ltd. 

reveals that

1 . the nearest neighbour distributions may not be a useful measure of clustering, 

especially for ellipsoidal particles; and

2 . the discriminant d, defined above, is a useful factor in comparing chute per-

(C.5)

noise (C .6 )

Finally, we define a ‘discrim inant’ between two feeds A and B as

m A -  m s
(C.7)

noise A +  noise B

formances.
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Appendix D

Grain-wall interactions in the 

inviscid model

We propose an argument to find the relevant analytical solutions that incorporate 

shocks and fans interacting at the chute walls. The physical boundary condition  

must be for there to be no flux across a wall, which implies that either p  =  0  or 

p =  p M at the wall. As yet, both seem equally valid. However the argument in the  

current appendix forces p  =  p m • If a particle collides w ith a wall then its velocity  

can be considered to instantaneously change direction at impact. The m agnitude of 

the rebound velocity depends on the value of the coefficient of restitution between  

the grain and the wall. As the flux q is propagated along a characteristic, this m ust 

change at the wall due to the fact that the particle rebounds. Therefore the gradient 

of the characteristic must change. If the incoming characteristic has q >  0 say, then  

the outgoing characteristic must have q <  0. The m agnitude of q along the outgoing  

characteristic is then determined by the value of the coefficient of restitution. Two  

cases are considered: first, the case when the coefficient of restitution e =  0 ; second, 

the case when the coefficient of restitution e =  1. The former case corresponds to  

totally  inelastic collisions in which colliding grains lose all their energy upon im pact 

and coalesce; the latter case corresponds to totally elastic collisions in which colliding  

grains do not lose any energy at an impact. We shall see in both cases that p =  p m
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P T 1

Figure D .l: A  sketch of the fundamental curve and the key values for the case of 

clashing at walls when e =  0. The two shocks are also shown.

is forced at the boundaries, consistent w ith the no-flux condition across the walls. 

In theory, intermediate values of e could also be dealt with.

D .l  Case one: e =  0

If e =  0, all grains will coalesce upon collision. This is analogous to a queue forming 

at a traffic light. Suppose we start with incoming grains flowing freely toward a wall 

at some value p  =  p j .  Then we start with characteristics of slope c ( p j ) .  At the end 

of this region there are no incoming particles, so there is the appropriate shock fan 

structure down to zero density. (There is not a continual input of grains). At the  

wall particles coalesce, thus p  — p m • Hence there is another shock-fan structure 

between pj and pM- Figures D .l  and D.2 illustrate this well.

Observe that at t  =  £3 the two shocks merge and form a third shock between the  

two expansion fans. As this shock translates, it weakens over tim e (the gradient of 

the shock tends to  zero). Thus, the density profile asym ptotes to two expansion fans 

separated by a stationary shock.

Thus a picture of the evolution of the density profile can be obtained. See figures
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.WALL

Shock weakens 
over tim e

t \  t 2 H £4

Figure D.2: The characteristics are plotted in the x — t plane. T he characteristics 

describing the incom ing region of constant density can be seen adjacent to and above 

the shock-fan structure down to zero density. There is also a shock-fan structure  

after the point where the first characteristic intersects the wall, which describes the  

coalescing grains there. These two shocks intersect at t =  after which a single 

shock separates the two fans. This shock weakens over tim e (viz. its gradient, and 

therefore its speed, decrease over tim e).
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p

Figure D.3: Initially there is a region of constant density m oving toward the wall. 

P

Pri
fan

Figure D.4: At t  =  t \  the grains just reach the wall. A leftward translating shock 

exists adjacent to  a fan from p r  1 to p =  0 .

D .3 - D.7.

D.2 Case two: e =  1

If e =  1 , an incom ing grain will collide at the wall and reverse its direction. If 

we have an incom ing particle w ith (p ,q ) =  (p j ,q j)  then upon a collision w ith a 

wall it will instantaneously change its direction and have (q ,p ) =  (—q j , p j ). Thus 

when the incoming characteristic intersects w ith the wall its gradient w ill instantly  

switch from c(pj)  to —c{pj).  This ‘reflected’ characteristic will in turn intersect 

with the next incom ing characteristic. The sign of q is different on each of these  

characteristics, hence the familiar shock-fan-shock structure is required to describe
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p

Pti

fan

Figure D.5: As the grains coalesce at the wall, a region of m axim um  density is 

formed. A rightward and leftward moving shock expunge the region of constant 

density.

PM
PT2

Pt i

shock t  =  £3

fan x

Figure D .6 : The two shocks, s i  and S2 , have merged to form one rightward translat­

ing shock. There is a high density fan next to the wall, and a low density fan next 

to  the shock.
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p

Shock jnoves alm ost t  — £4 

nfinitely slowly

Figure D.7: Eventually the shock will come to rest. The final profile is a high density 

region next to  the wall that protrudes on to the chute for a certain distance. Then  

there is a discontinuous jum p to a low density region which becom es ever more 

sparse.

this clashing region.

As the colliding grains are moving away from the wall there will be a shock-fan 

structure down to zero density located at the wall. T he upper shock from the shock- 

fan-shock structure describing the clashing of the reflected and incom ing grains 

will then enter the expansion fan at the wall and weaken. As a consequence, the 

expansion fan down to zero density, which is located at the wall, will vanish and be 

replaced entirely w ith the q  >  0  half of the expansion fan from the clashing region. 

See figures D . 8  and D.9.

Now note that in reality the characteristics (*) and (**) will be infinitesiinally 

close for the incom ing c ( p j )  particles. As they coincide this case becom es identical 

to  the e =  0  case because the shock-weakening and vanishing of the fan at the wall, 

described above, happen instantaneously. This is made clear in figure D.10.

Therefore, by exam ining two extreme cases, we have seen that the correct con­

dition at chute walls is for the density to be maximal, i.e. p  =  p rn at boundaries. 

For values of e in between zero and one, we assume that this is still the case. This 

appears to be reasonable since the cases of fully inelastic and fully elastic collisions 

yield the same result.
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Pt i

Pt i

Figure D .8 : A plot of the fundamental curve and the key values for the case of 

clashing at walls when e =  1. The shocks are also shown.

x

Figure D.9: The characteristics are plotted in the x — t plane.
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Wall

x

Figure D.10: In reality the characteristics (*) and (**) will coincide, so the picture 

above (figure D.9) is in fact identical to  the e =  0 case, as seen here.

Recall that in the above examples the density of the incom ing grains satisfied  

p <  pp.  As a consequence, the characteristic describing this region intersects the 

wall. However, if we had chosen p >  pp  the characteristic for the incoming grains 

would not have intersected with the wall. There would seem ingly be a region devoid 

of characteristics adjacent to  the wall. The solution in th is case is to  introduce an 

expansion fan and treat the wall as another incom ing region of grains by a method  

of images. Hence there would be a horizontal characteristic running alongside the 

wall once again describing a stationary region of m axim um  density.
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Appendix E

One method of solving the 

ordinary differential equation
5

for the 0 ( t ^ )  correction to the 

density in the inner-layer.

In chapter 6.4, section 6.4.2, we mention a m ethod to  find the com plem entary func­

tions of

v dL +  \^ 2  “  \d 2  =  17)*- (E.l)

The m ethod is to seek a solution to the homogeneous equation in the form of a 

complex integral.

Such a solution has the form

92cf =  [  ewr}(j){w)dw (E .2)
J c

where C  is an arbitrary contour and 4>{w) is an unknown function [24]. On differ­

entiation with respect to  77 we find that

92cF =  /  w ewr>(f){w)dw 
J c

and

92Cf =  [  w 2ewr}<j)(w)dw.
J c
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Substituting into the homogeneous form of the ordinary differential equation (E .l) ,  

in order to find the complementary function, reveals that

v  [  w 2 ewri(f)(w)dw +  — [  w ewr)<f)(w)dw — 7  /  ewr,4>(w)dw =  0. (E.3)
J c  2 J c  4 J c

Integrating the second term by parts yields

v  I  w 2 ewv4>{w)dw
J c

+ W (j> ,W1)
\ L dw

(w<j>)dw

-  7  f  ewr,<t>(w)dw =  0. (E.4) 
4  J c

If we choose a contour such that j ^ e ^ j  =  0 then the ordinary differential equa­

tion
2 1 d . . 5

v w (j)  — — —— \W<p) — -(f> =  0
2  dw

must also be satisfied. That is,

<t>' + 1  ) <t> =  ° .

(E.5)

(E .6 )

where a prime denotes differentiation with respect to w. U tilizing an integrating  

factor of /  =  e i  ln (u,) _"u;2 we obtain

(j> =  A w  ?ew2,

where A  is a constant of integration. Now consider

(E.7)

c
0. If C  is the sem i-infinite contour w  e  [0,ioo) or w  G (—zoo,0] t

A w  % r w ’i + w n
2 

tien

and

32 CFl

92cF2

?ew+WTidw

B
/ w  2

J - i o o
ew + m >dw

(E .8 a)

(E .8 b)

are complementary functions of (E .l) , where we take only the finite part ( F P )  of 

the integrals, i.e.

92cfx
_  a  r ° °  ( 

~  2 Jo 1
w- l ev>2+uV_w- l ev 2 1 +  wrj +

W 2 7]21
dw (E.9a)
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and

92cF2 - i U
w - l ew*+wri _ W- I ew* 1 + W T )  +

w 2 r f 1
(E.9b)

where the principal parts of the integrand in (E .8 a), (E .8 b) have been removed. We 

can dem onstrate the validity of removing these parts by showing that (E.9a) does 

indeed satisfy the homogeneous version of the ordinary differential equation (E .l)  

as follows. (O f course, the same argument applies equally well to  (E .9b)).

Differentiating the homogeneous version of (E .l)  three tim es gives

g "  +  '1 g '  +  - g  =  o,
2 4

where G  =  9 2 CF(il)- To solve for G(rj) we again seek a solution of the form

1

G  = f  enif { t ) d t  
Jc

(E.10)

( E .l l )

implying

X{‘2+ 2 t + \ } en>nt)dt = 0 (E'12)
on substitution into (E .l) . This is an exact differential of the form ^  {e^ /i(£ )}  if

h =  ( t2 +  | )  /(£ )  and h =  | / ( £ ) .  Therefore h =  t^ e *2 and hence /  =  2t~ ? e i2. Thus

G =  J  (E.13)

is a solution provided that

(E.14)£3 =  0 .

One contour could be C \ — £ €  [0 ,ioo) (and the other C 2 =  £ €  (—zoo,0]) so that

m
92c Fl

r io o  -I

Jo Vt
l+T)tdt. (E.15)

Now, this is a well-defined finite solution as the integral is indeed convergent; it 

could be integrated numerically, say, and hence g2CF\ (v) would be obtained. It is 

demonstrated next that this solution is consistent w ith (E.9a).

Integrating (E.15) once w ith respect to 77 gives

&CFl = A j ™  [ r i e ^  + a(t ) }  dt, (E.16)
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where a(t)  corresponds to a constant of integration. We m ust take care to ensure

that the integral is still convergent so, w ithout loss of generality, we write

g'iCF1 = a J  { r  ! e ‘2+’" -  H e ' 2 +  a ( t ) }  dt. (E.17)

Similarly, we carefully integrate twice more to  find

a r  L - z  t2+vt ri2 t2 
@2cfi = A Jo 2e *  -  - j 1 2e +

- r ) t~ ie l 2 +  b ( t)y  — t ~ i e ‘2 +  c(t)  J  dt. (E.18)

i.e.

92cf\ ->r +T)t
2+21

1 +  r/f +
Tj t

\ d t  +  a  | +  677 4 - c, (E.19)

where a, 6  and c are constants which m ust be chosen so th at the homogeneous 

version of equation (E .l)  is satisfied. To determ ine their value, then, we integrate 

(E.10) three tim es to give in turn:

j m  . V in 1 j t  -
92 +  2 92 ~  4  2 ~

and

92 +  2 ^ 2  “  4 92 — arj +  b,

(E.20a)

(E.20b)

71 5  71̂  ~
92 +  2 ^  “  J92 — d —  -f 677 -f c, (E.20c)

where a oc a, b <x b and c oc c. The right hand side of each m ust be equal to  zero in 

order for the hom ogeneous equation to be satisfied. Therefore a — b =  c =  0. Thus

r f t 21
92cfi = A J0 ^ I +  rjt + |  d t , (E.21)

which is exactly the sam e as (E.9a). Hence the finite parts of (E .8 a), (E .8 b), nam ely 

(E.9a) and (E .9b), are indeed valid complementary functions of the ordinary differ­

ential equation (E .l) .

236



Appendix F

The local wavespeed-density 

relation at the large-density 

endpoint of the viscous 

fundamental diagram

In chapter 7, equation (7.77) gives the local wavespeed-density relation C ( P )  at the  

large-density endpoint of the viscous fundamental diagram. It is asserted that it is 

possible to choose A =  2 and B  =  |  without loss of generality. T he truth of the  

assertion is dem onstrated here.

P ut P  =  a P , C  =  /3C, t =  j t  and X  =  SX.  Substituting into (7.74) yields

+  (F-D

and into (7.77) yields

0 C  =  ±  . (F .2)

In order to obtain (7.78) we must therefore choose

7 - 1  =  PS’ 1 =  S~ 2 (F.3)
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in (F .l), and
A  1 j  3 B oc2 . .

— T  =  1 and ——  =  1 (F.4)
2(3ot'>

in (F .2). Therefore equations (F.3) and (F .4) give four equations for the four un­

knowns a , (3, 7  and <5 and hence a  =  (3 =  |  ( ^ ) 5 ) 7  =  §$  and 8 =  |  ( 7I ) 5 •

Therefore ‘w ithout loss of generality’ means essentially putting

P  =  ± P ,  (F.5a)

C = f ( l ) I p ' (F5b)
4A ~

t  =  (F.5c)

and

* - § ( 4 ) ’ *  (F'5d)
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Appendix G

Recommendations to Sortex Ltd

In the main body of th is thesis, we have developed a m athem atical m odel of a chute 

flow of grains. T his m odel has necessarily started from first principles, as there is 

no existing ‘grand theory of everything’ for granular phenom ena. Consequently, the  

results obtained thus far are of lim ited practical use, as it would be unreasonable 

to  include all the effects of geometry, the air, ellipsoidal shapes etc. into one m odel 

or sim ulation at th is stage. A m odel of such com plexity would perhaps be required 

to  accurately describe the flow for engineering purposes. As we have seen, the  

m athem atics of even the one-dim ensional m odel yields som e com plex behaviours, 

and a steady state  (which can loosely be thought of as the density profile at the end 

of the chute) is difficult to  com pute even here. If other effects were to be included, 

the problem would perhaps becom e increasingly com plex, if not intractable. It would 

be very interesting, nonetheless, to try to progressively develop the m odel further in 

the future.

Four results o f practical engineering/industrial im portance arising from this thesis 

are described below.

1 . In chapter 3 an investigation of chute shaping effects shows that, of the ge­

om etries studied, there is no noticeable improvement on the performance of a 

straight chute.

2 . T he creation of clusters and voids (see chapters 3, 5, 7 and appendix B) in the
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flow of the grains appears to  be a common phenom enon in the m odel results as 

well as in the industrial chute settings, encouraging further m odelling aimed  

at cluster eradication.

3. A study of the air effects in chapter 8  dem onstrates that a uniform flow dis­

tribution of grains arranged in a manner that would be ideal for reducing the 

ejection problem is alm ost certainly unstable.

4. A lthough designing a chute that would align the grains in such a fashion would 

seem to be of lim ited promise, design alterations of the air effects can be 

considered in future work w ith a view to stabilising the grain flow instead, 

enabling the efficiency of the machines to be increased.
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